WO2007029742A1 - 分極性電極 - Google Patents

分極性電極 Download PDF

Info

Publication number
WO2007029742A1
WO2007029742A1 PCT/JP2006/317658 JP2006317658W WO2007029742A1 WO 2007029742 A1 WO2007029742 A1 WO 2007029742A1 JP 2006317658 W JP2006317658 W JP 2006317658W WO 2007029742 A1 WO2007029742 A1 WO 2007029742A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic polymer
gel
polymer compound
electrode
polarizable electrode
Prior art date
Application number
PCT/JP2006/317658
Other languages
English (en)
French (fr)
Inventor
Nozomu Sugo
Hideharu Iwasaki
Original Assignee
Kuraray Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co., Ltd. filed Critical Kuraray Co., Ltd.
Priority to JP2007534453A priority Critical patent/JPWO2007029742A1/ja
Priority to CN2006800330081A priority patent/CN101258571B/zh
Priority to EP06797553A priority patent/EP1923895A4/en
Priority to US11/916,496 priority patent/US20100193218A1/en
Publication of WO2007029742A1 publication Critical patent/WO2007029742A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a polarizable electrode useful as an electrode of an electric double layer capacitor.
  • a pair of polar electrodes made of activated carbon as a raw material as an electricity storage device that has a larger electric capacity than a conventional capacitor and has a high output and excellent durability such as a sanitary characteristic even compared to a battery.
  • An organic electric double layer capacitor hereinafter simply referred to as “a positive electrode”, “a negative electrode” and a non-aqueous electrolyte solution in which a quaternary ammonium salt is dissolved in an organic solvent is impregnated into the laminate. (Abbreviated as “capacitor”).
  • Patent Document 1 a gas storage space is provided in the capacitor container to reduce the influence of the generated gas rather than suppressing the gas generation itself. It has been proposed to enclose a desiccant such as zeolite (Patent Document 2) and to provide a gas discharge valve in the capacitor container (Patent Document 3). However, in the former case, the volume of the capacitor increases, and in the latter case, moisture may enter the capacitor through the discharge valve.
  • Patent Document 2 zeolite
  • the electric double layer capacitor is used in an environment where the gas generation is increased, for example, in an automobile.
  • gas generation cannot be sufficiently suppressed when used in high temperature environments such as engine rooms and under high voltage to achieve high energy.
  • Patent Documents 6 and 7 By the way, from the viewpoint of suppressing the generation of gas, techniques for coating the surface of the polarizable electrode of an electric double layer capacitor with an organic compound have been proposed (Patent Documents 6 and 7).
  • Patent Document 6 is to apply a polar solvent swellable resin on a carbon electrode to function as a separator. For this reason, if the thickness of the polar solvent swellable resin layer is excessively reduced, a short circuit occurs and the separator function is not achieved. Therefore, in the example of Patent Document 6, the thickness of the polar solvent swellable resin layer formed on the electrode is set to be about 1 1 ⁇ ⁇ and the force is also a separator, so no short circuit occurs. Thus, the electrode surface needs to be completely covered with the polar solvent swellable resin layer. Therefore, when the technique of Patent Document 6 is applied to the polarizable electrode of the activated carbon of the electric double layer capacitor, the resistance value of the capacitor is increased.
  • the electrode is coated with an electrode coating agent containing an electrochemically polymerizable monomer and then a capacitor is formed, and a polymer film formed by performing electrochemical polymerization is statically treated. It functions as a polymerized film that reduces the leakage current without reducing the electric capacity.
  • the unreacted monomer may remain in the polymer film formed by the technique of Patent Document 7, and in such a case, the capacitor performance changes with time and the monomer is volatilized. This may increase the internal pressure of the capacitor.
  • the technique of Patent Document 7 requires a complicated operation, it is unsuitable as a processing method for industrially manufacturing a polarizable electrode. Thus, it must be said that it is difficult to use the technique of Patent Document 6 or Patent Document 7 for suppressing gas generation in the electric double layer capacitor.
  • Patent Document 1 Japanese Patent Laid-Open No. 9-162082
  • Patent Document 2 Japanese Patent Laid-Open No. 10-321483
  • Patent Document 3 Japanese Utility Model Publication No. 1-73921
  • Patent Document 4 Japanese Patent Laid-Open No. 2003-243265
  • Patent Document 5 Japanese Unexamined Patent Application Publication No. 2004-146610
  • Patent Document 6 Japanese Patent Laid-Open No. 2000-173875
  • Patent Document 7 Japanese Patent Laid-Open No. 2002-64037
  • An object of the present invention is a polarizable electrode that can be produced by a simple method using a complicated method such as electrochemical polymerization, and when used in an electric double layer capacitor, the It is to provide a polarizable electrode capable of greatly suppressing generation.
  • the present inventors have surprisingly found that the surface of a polarizable electrode can form a gel-forming organic polymer capable of forming a gel in a non-aqueous electrolyte used for an electric double layer capacitor. It has been found that the above object can be achieved by a very simple method of thinly coating with a child compound, and the present invention has been completed.
  • the present invention is a polarizable electrode containing activated carbon, characterized in that the surface thereof is coated with a thin film layer of a gel-forming organic polymer compound having a thickness of less than 5 ⁇ m.
  • a polarizable electrode is provided.
  • the electrode surface of the present invention is coated with a thin layer of an extremely thin gel-forming organic polymer compound having a thickness less than a specific thickness, complicated operations are not required for production.
  • this force is applied to an electric double layer capacitor, the generation of gas can be greatly suppressed.
  • it is difficult for liquid leakage or deterioration failure of the non-aqueous electrolyte to occur, and a capacitor exhibiting good durability can be provided.
  • a compact and efficient capacitor can be provided.
  • FIG. 1 is a schematic cross-sectional view showing an example of a coin-type capacitor.
  • FIG. 2 is a cross-sectional photograph of the electrode used in Example 1.
  • FIG. 3 is a schematic sectional view of a cylindrical capacitor.
  • FIG. 4 is an enlarged view of portion A of the cylindrical capacitor of FIG.
  • FIG. 5 is a graph showing changes in cell resistance in the respective controls of Examples 1 to 3 and Examples 2 to 3.
  • FIG. 6 is a graph showing the change in capacitance in each of Examples 1 to 3 and Examples 2 to 3.
  • FIG. 7 is a graph showing the relationship between the amount of gas generated and the gas composition in each of Examples 1 to 3 and Examples 2 to 3.
  • FIG. 8 is a graph showing changes in cell resistance in Examples 4 to 5 and their controls.
  • FIG. 9 is a graph showing changes in capacitance in Examples 4 to 5 and their controls.
  • FIG. 10 is a graph showing the amount of gas generated in Examples 4 to 6 and Comparative Example 1.
  • FIG. 11 is a cross-sectional photograph of the electrode used in Example 5.
  • FIG. 12 is a cross-sectional photograph of the electrode used in Comparative Example 2.
  • the present invention is a polarizable electrode containing activated carbon, characterized in that its surface is coated with a thin film layer of a gel-forming organic polymer compound having a thickness of less than 5 ⁇ m.
  • Activated carbon which is a constituent element of the polarizable electrode of the present invention, is obtained by activating a carbonaceous material as a raw material for activated carbon by a conventional method.
  • a carbonaceous material can be widely selected from plant-based, mineral-based, natural-based materials, and synthetic-based materials, as long as they can form activated carbon upon activation.
  • plant-based carbonaceous materials include fruit shells such as wood, charcoal, and coconut shells
  • mineral-based carbonaceous materials include petroleum-based and Z- or coal-based pitches, mesophase pitch, petroleum coatus, coal
  • carbonaceous materials of natural materials such as coatas and pitch coaters, natural fibers such as cotton and hemp, recycled fibers such as rayon and viscose rayon, semi-synthetic fibers such as acetate and triacetate
  • carbonaceous materials of synthetic materials examples thereof include polyamides such as nylon, polyvinyl alcohols such as vinylon, resins such as butyl chloride, polyurethane and phenol, and sugars such as sucrose.
  • the shape of the carbonaceous material is not limited, and various shapes such as granular, fine powder, fiber, and sheet can be used.
  • a carbonaceous material is activated to become activated charcoal, but the activation method is not particularly limited.
  • Known activation methods such as chemical activation of calcium, sodium chloride, and zinc can be employed.
  • the shape of the activated carbon is not particularly limited, and it is used in various shapes such as granular, fine powder, fiber, and sheet.
  • the polarizable electrode before being coated with the gel-forming organic polymer compound can be produced from the activated charcoal as described above according to a conventional method.
  • a binder such as polyvinylidene fluoride, polytetrafluoroethylene, styrene butylene copolymer, etc. is added to activated carbon up to several percent to several tens of percent as necessary, and then kneaded and then put into a mold. It can be formed into a polarizable electrode by pressing and molding, punching into a required shape after rolling and sheeting, or drying and rolling after coating on a current collector. During the kneading, if necessary, an organic compound such as alcohol or N-methylpyrrolidone, a solvent such as water, a dispersant, and various additives may be used.
  • a conductive material such as carbon black, carbon tube, carbon fiber, ketjen black, etc. may be added to reduce the resistance of the electrode. This can reduce the internal resistance of the polarizable electrode and reduce the electrode volume.
  • the thickness of the polarizable electrode formed in this way before being coated with the gel-forming organic polymer compound is usually about 20 x m to lmm.
  • the electrode surface is thinly coated with a gel-forming organic polymer compound.
  • the electrode surface is thinned with a gel-forming organic polymer compound.
  • the gel-forming organic polymer compound means an organic polymer compound that can be gelled in a non-aqueous electrolyte.
  • organic polymer compounds have affinity with non-aqueous electrolytes because the gel network is loose and electrolyte ions move to the active material surface and the internal resistance does not increase immediately. Is preferred.
  • an organic polymer compound having a —COO_ bond is preferred.
  • an organic polymer compound having a COO— bond an ester compound having a —CO 0 — bond is preferred. Examples include compounds, carbonate compounds having one OCOO— bond, amide compounds and polyamides having a —CONH — bond, and polyurethanes having one NHCOO — bond.
  • the gel-forming organic polymer compound include polyvinyl acetate, polymethyl acrylate, polymethyl methacrylate, polybutyl methacrylate, poly-prolatathone, poly? Acid, polyethylene terephthalate, polybutylene terephthalate, polyvinylene carbonate, 6 nylon, 6, 6 nylon, 12 nylon, poly clinoleamide, polyhi, 'ninolebi lydon, polyethylene carbonate, polybutylene carbonate, bisphenolore A- carbonate , Polyvinylidene fluoride, polyoxyethylene, polyoxypropylene, and copolymers thereof.
  • organic polymer compound having an ester bond and / or a carbonate bond As the gel-forming organic polymer compound.
  • organic high molecular compound having an ester bond or a carbonate bond include acrylic polymers, polyvinyl acetate, polycarbonate, polyester, and polylactide. Among them, acrylic polymers are preferable, and among them, polyalkyl alkenoates such as polyalkyl methacrylates or polyalkyl acrylates are preferable.
  • polymethyl methacrylate examples thereof include polymethyl methacrylate, polyethylenolate methacrylate, polypropyl methacrylate, polybutyl methacrylate, polymethyl acrylate, polypropyl acrylate, and polybutyl acrylate.
  • polymethyl methacrylate can be preferably used.
  • the gel-forming organic polymer compound a compound that can form a so-called stereocomplex composed of two types of compounds having the same primary structure but different constitutional regularities is preferable.
  • stereocomplexes having good gel-forming properties include a mixture of a syndiotactic organic polymer compound and a isotactic organic polymer compound. Specific examples include syndiotactic compounds such as polymethyl metatalylate, polyethyl metatalylate, polypropyl metatalylate, and polybutyl metatalylate. And a stereocomplex composed of a body and an isotactic body.
  • polymethyl metatalylate can be preferably cited as the isotactic organic polymer compound
  • polymethyl metatalylate, polyethyl metatalylate, polypropyl metatalylate, polybutyl metathalate can be cited as syndiotactic organic polymer compounds.
  • Tallylate can be preferably mentioned.
  • both the isotactic organic polymer compound and the syndiotactic organic polymer compound are polymethyl metatalylate.
  • the "isotacticity" of the isotactic organic polymer compound constituting the stereocomplex tends to decrease the gel-forming property if it is too low, so it is preferably at least 80%, more preferably at least 90%. is there.
  • the “syndiotacticity” of the syndiotactic organic polymer compound constituting the stereocomplex is preferably 40% or more, more preferably 50%, because the gel formability tends to decrease if it is too low. That's it.
  • the abundance of each of the isotactic organic polymer compound and the syndiotactic organic polymer compound in the stereocomplex is from the viewpoint of gel formation, and the strength of the isotactic organic polymer compound is preferably 20 to 80% by mass. More preferably 25 to 60% by mass, particularly preferably 30 to 40% by mass, and the syndiotactic organic polymer compound is preferably 20 to 80% by mass, more preferably 40 to 75% by mass, particularly preferably. Is 60-70 mass%.
  • Polyvinylidene fluoride resins such as polyvinylidene fluoride having gel-forming properties, polyoxyethylene units, polyoxyalkylenes containing polyoxypropylene units, and copolymers thereof can also be preferably used.
  • polyvinylidene fluoride it is preferable to use polyvinylidene fluoride copolymerized with hexafluoropropylene or the like from the viewpoint of improving the solubility and stability of the gel shape.
  • the surface of the polarizable electrode is coated with a gel-forming organic polymer compound. If the coating layer is too thick, the resistance of the capacitor tends to increase, so the coating layer thickness should be less than 5 zm. More preferably, it is 2.5 zm or less, and further preferably 2. z or less. In addition, if the coating layer is too thin, the gas generation suppression effect tends to be weak, and it is preferably 0.1 ⁇ m or more from the viewpoint of film formation uniformity. .
  • the thickness of the coating layer can be measured by observing a dried electrode cross section with a scanning electron microscope.
  • the thickness of the coating layer in the present invention means the minimum to maximum thickness measured for the electrode cross section.
  • the polarizable electrode may have a gap, and a gel-forming organic polymer compound thin film may not be formed on the inner wall surface. If at least a portion is applied, a gas suppression effect can be exhibited.
  • a thin layer of a gel-forming organic polymer compound is preferably formed on the side surface in contact with the separator from the viewpoint of the effect of suppressing gas generation.
  • a method for coating the polarizable electrode with the gel-forming organic compound a method in which a gel-forming organic polymer compound dissolved in an organic solvent is spray-coated, the electrode is impregnated in the above solution, and then dried. And the like.
  • a doctor blade method, a screen printing method, a gravure coating method, a roll coating method, a metal mask printing method, an electrostatic coating method, or the like can be used. If necessary, the rolling treatment may be performed by a flat plate press, a calendar roll, or the like.
  • the polarizable electrode of the present invention is useful as an electrode for an electric double layer capacitor.
  • the basic structure of the capacitor includes a pair of polarizable electrodes and a separator sandwiched between them, and gas generation is prevented by using the polarizable electrode of the present invention as at least one of the pair of polarizable electrodes. Can be suppressed.
  • any form such as a coin type, a cylindrical type, a square type, and a laminate type can be selected.
  • a case has a structure having a pair of polarizable electrodes and a separator between them, and the polarizable electrodes and the separator are wetted with a non-aqueous electrolyte.
  • the current collector is on the case side of each polarizable electrode. The case is sealed with a sealing material between the upper lid and the lower case so that the electrolyte solution does not leak.
  • 1 is a schematic cross-sectional view of a coin-type capacitor, in which 1 and 2 are polarizable electrodes, 3 and 4 are current collectors, 5 is a separator, 6 is an upper lid, 7 is a lower lid, and 8 is a gasket. It is shown.
  • Each component constituting the electric double layer capacitor can have the same configuration as a known capacitor except that the polarizable electrode according to the present invention is used.
  • Examples of the current collecting member include aluminum and a conductive polymer.
  • the metal foil as a current collecting member and a polarizable electrode are bonded with a conductive polymer or a mixture of a synthetic resin and a conductive material, or a conductive metal such as aluminum.
  • the current collecting member may be formed by spraying a conductive polymer on the polarizable electrode.
  • an insulator such as polypropylene, butyl rubber, polyamide, polyester, or polyester sulfide is used.
  • Examples of the case include an aluminum case and a stainless steel case.
  • the nonaqueous electrolytic solution used in the present invention is obtained by dissolving an electrolyte salt compound in an organic electrolyte solvent.
  • the solvent may not be used.
  • Examples of the electrolyte salt compound include tetraethylammonium tetraphlophthalate, tetramethylammonium tetraloborate, tetrapropylammonium tetraborate, tetraptylammonium tetraborate.
  • Tetrapropylammonium hexaphosphate Tetrapropylammonium hexaphosphate, tetraptylammonium hexasulfaphosphate, trimethylethylammonium hexafluorophosphate, triete noremethinoremona hexahexafluorophosphietinoresi menoreammoni Ammonium hexafluorophosphates such as umhexafluorophosphate.
  • organic electrolyte solvent examples include carbonates such as dimethyl carbonate, jetyl carbonate, ethylene carbonate and propylene carbonate, nitriles such as acetonitrile and propionitrile, ⁇ -butyrate rataton, ⁇ -methyl Ichijo- Buchiguchi Lactone , ⁇ -Methyl- ⁇ -Buchiguchi Rataton, ⁇ -Valerolataton, 3-Methyl- ⁇ -Valerolataton and other Latatons, Dimethyl Sulfoxide, Jetyl Sulfoxide and Other Sulfoxides, Dimethyl Phosphorus Examples thereof include amides such as rumamide and jetylformamide, ethers such as tetrahydrofuran and dimethoxyethane, dimethylsulfolane and sulfolane. These organic solvents are usually used alone, but may be used as a mixed solvent of two or more.
  • the concentration of the electrolyte salt compound is not particularly limited as long as the electrolyte salt crystals do not precipitate at the stage of preparing the non-aqueous electrolyte, but as the electrolyte, for example, triethylmethylammonte
  • the electrolyte concentration is too low, the capacitance may decrease due to insufficient electrolyte, and if it is too high, salt precipitation may occur when the temperature decreases. Since it may occur, it is preferably 0.:! To 6 molZl, more preferably 0.5 to 5 molZl, particularly preferably 1.0 to 2.5 mol / l.
  • the electrolyte when an ionic liquid such as 1-ethyl-3-methylimidazole tetraborate is used as the electrolyte, the upper limit of the concentration is not required unless it solidifies in the temperature range to be used. In addition, various additives can be obtained as long as the effects of the present invention are not impaired.
  • an ionic liquid such as 1-ethyl-3-methylimidazole tetraborate
  • gel-forming organic polymer compound coating solutions A to D were prepared according to Reference Examples 1 to 4, respectively.
  • a three-necked flask equipped with a stirrer and a condenser is equipped with MwlO million and 93% isotacticity.
  • a coating solution B was obtained in the same manner as in Reference Example 1 except that i_PMMAlg, s_PMMA2g, and black mouth form 297g were used.
  • a coating solution C was obtained in the same manner as in Reference Example 1 except that poly (hexafluoropropylene copolymerized vinylidene fluoride) (manufactured by Aldrich, Mn: 130000) lg and 99 g of tetrahydrofuran were used.
  • a coating solution D was obtained in the same manner as in Reference Example 1 except that 10 g of polyvinylidene fluoride and 40 g of N-methylpyrrolidone used in Reference Example 3 were used.
  • the obtained kneaded product was pulverized into a pulverized powder having an average particle diameter of about 1 mm, and the pulverized powder was subjected to a calendering treatment to obtain a sheet-like molded product. Subsequently, the sheet-like molded product was rolled to produce an electrode sheet having a width of 110 mm. This electrode sheet is bonded to both sides of an aluminum current collector with a width of 115 mm using a conductive paste containing fine powder of carbon black and graphite to form a polarizable electrode. The polarizable electrode was dried by flowing at a flow rate of 30 minutes for 30 minutes.
  • coating solution A was applied to the activated carbon side of the negative electrode using a spray, then dried at 50 ° C, and the coating weight after drying per electrode area (gel forming property)
  • the organic high molecular weight compound was adjusted to 0.19 mg / cm 2 .
  • a thickness of 0.27 xm to 2.2 ⁇ The coating layer was recognized.
  • Fig. 2 shows a cross-sectional view of the electrode using a scanning electron microscope.
  • Electrode element was prepared so that the coating film of the gel-forming organic polymer compound was on the separator side.
  • the electrode element was wound in the length direction and accommodated in the periphery of the hollow core of a bottomed cylindrical container made of aluminum, and the electrode and the separator were wound around the core.
  • the bottomed cylindrical container containing the electrode element was dried at a temperature of 160 ° C. for 72 hours under a reduced pressure of 5 Pa.
  • FIG. 3 9 is a cylindrical container with a bottom, 10 is an electrode element, 11 is an opening of the container, 12 is a lid, and 13 is a hollow core.
  • FIG. 4 is an enlarged view of portion A in FIG. 3.
  • 14 is a polarizable electrode, 15 is a current collector, 16 is an electrode sheet, and 17 is a separator.
  • Example 2 A polarizable electrode was obtained in the same manner as in Example 1 using the activated carbon of the same lot as the activated carbon used in Example 1.
  • a coated electrode was obtained in the same manner as in Example 1 except that the coating mass after drying of the coating solution A per electrode area was 0.35 mgZcm 2 to produce a cylindrical capacitor.
  • Figures 5 and 6 show the cell resistance change and capacitance change of the cylindrical capacitor, respectively.
  • Figure 5 shows the cell resistance and relative capacitance with respect to elapsed time measured by repeating this example except that the gel-forming organic polymer compound was applied and the electrode was used. And also shown in FIG. 6 (control of Example 2).
  • FIG. 7 shows the results of analysis of the amount of gas generated and gas composition. The results of gas amount and gas composition analysis measured by repeating this example except that a polarizable electrode not coated with a gel-forming organic high molecular compound was used are shown in FIG. 7 ( Control of Example 2).
  • a polarizable electrode was obtained in the same manner as in Example 1 except that the coating mass of the coating solution A per electrode area after drying was 0.41 mg / cm 2 to produce a cylindrical capacitor.
  • Example 1 when the cross section of the dried electrode was observed with a scanning electron microscope, a coating layer having a thickness of 0.28 m to 3. O xm was observed.
  • the changes in cell resistance and capacitance of the cylindrical capacitor are shown in Figs. 5 and 6, respectively.
  • the cell resistance and the relative capacitance with respect to elapsed time measured by repeating this example except that a polarizable electrode not coated with a gel-forming organic polymer compound is used are shown in FIGS. 5 and 6, respectively. This is also shown (control of Example 3).
  • Occurrence Figure 7 shows the results of gas amount and gas composition analysis. The results of gas amount and gas composition analysis measured by repeating this example except that a polarizable electrode not coated with a gel-forming organic high molecular compound was used are shown in FIG. 7 ( Control for Example 3).
  • Example 2 In the same manner as in Example 1, except that coating solution B was used instead of coating solution A, and coating solution B per electrode area was coated so that the coating weight after drying was 0.25 mg Zcm 2. Thus, a cylindrical capacitor was produced.
  • coating solution B was used instead of coating solution A, and coating solution B per electrode area was coated so that the coating weight after drying was 0.25 mg Zcm 2.
  • a cylindrical capacitor was produced.
  • the electrode surface in a dry state was observed with an electron microscope in the same manner as in Example 1, a coating layer having a thickness of 0.24 xm to 2.4 ⁇ 2. ⁇ was observed.
  • the cell resistance and relative capacitance with respect to the elapsed time of the obtained cylindrical capacitor are shown in Figs. 8 and 9, respectively.
  • Figure 10 shows the measurement results for the amount of gas generated.
  • the measurement results of the gas amount obtained by repeating this example except that a polarizable electrode not coated with a gel-forming organic polymer compound was used are also shown in FIG. 10 (contrast with Example 4). ).
  • Polarization was performed in the same manner as in Example 1 except that coating solution C was used instead of coating solution A, and coating solution C per electrode area was coated so that the coating weight after drying was 0.14 mg / cm 2.
  • An electrode was obtained to produce a cylindrical capacitor.
  • a coating layer having a thickness of 0.35 x m to 1.05 ⁇ m was observed.
  • Fig. 11 shows a cross-sectional view of the electrode using a scanning electron microscope. The cell resistance and relative capacitance with respect to the elapsed time of the obtained cylindrical capacitor are shown in Figs. 8 and 9, respectively.
  • Occurrence Figure 10 shows the measurement results of the gas volume.
  • the measurement results of the gas amount obtained by repeating this example except using a polarizable electrode not coated with a gel-forming organic polymer compound are also shown in FIG. 10 (contrast with Example 5). ).
  • a polarizable electrode was obtained in the same manner as in Example 5 except that it was applied to both the negative electrode and the positive electrode to produce a cylindrical capacitor.
  • the cross section of the dried electrode was observed with a scanning electron microscope in the same manner as in Example 1, a coating layer having a thickness of 0.30 x m to l.l z m was observed.
  • the relative capacitance after 1000 hours of the obtained cylindrical capacitor was 0.93, and the cell resistance value was 2.6 m ⁇ .
  • FIG. 10 shows the measurement results for the amount of gas generated.
  • the measurement results of the gas amount obtained by repeating this example except that a polarizable electrode not coated with a gel-forming organic polymer compound was used are also shown in FIG. 10 (control of Example 6). ).
  • a cylindrical capacitor was prepared in the same manner as in Example 1 except that the gel-forming organic polymer compound was not applied, and the change in discharge performance was measured.
  • the cell resistance and relative capacitance with respect to the elapsed time of the cylindrical capacitor were measured. Further, after 1000 hours and 2000 hours, the amount of gas generated was measured in the same manner as in Example 1. As a result, it was 30 ml after 1000 hours (see FIG. 10) and 62 ml after 2000 hours.
  • Example 1 except that application solution D was used instead of application solution A, and the same polarizable electrode as in Example 1 was adjusted so that the application mass after drying per electrode area was 6.2 mg / cm 2.
  • a polarizable electrode was obtained in the same manner as described above to produce a cylindrical capacitor.
  • the dried electrode cross-section was observed with a scanning electron microscope and found to have a thickness of 6. ⁇ ⁇ !
  • the coating layer of ⁇ 6 was recognized.
  • Fig. 12 shows a cross-sectional view of the electrode using a scanning electron microscope.
  • the cell resistance of the obtained cylindrical capacitor is 9. ⁇ ⁇ .
  • Gel-forming organic high shown in Comparative Example 1 The internal resistance of a capacitor using an electrode to which no molecular compound is applied is 2.lm Q.
  • the coating thickness after drying is 5 ⁇ m or more, the increase in DC cell resistance is very large. As a result, the output characteristics and energy density decreased.
  • the electrode surface is thinly coated with a gel-forming organic polymer compound having a thickness of less than 5 ⁇ m. Therefore, when this polarizable electrode is used for an electric double layer capacitor, gas Can be significantly suppressed.
  • a capacitor is excellent in durability, in which non-aqueous electrolyte leakage and deterioration failure are unlikely to occur.
  • the volume of the gas storage space in the capacitor can be reduced, a compact and efficient capacitor can be provided, which is industrially useful.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

 電気二重層キャパシタ用のガス発生抑制効果に優れた分極性電極は、その表面が5μm厚未満のゲル形成性有機高分子化合物の薄膜層で被覆されている。ゲル形成性有機高分子化合物としては、-COO-結合を有する有機高分子化合物、好ましくはアクリル系ポリマー、具体的にはステレオコンプレックスを形成しうるポリアルキルメタクリレート又はポリアルキルアクリレートが挙げられる。中でも、ポリメチルメタクリレートが好ましい。また、ポリフッ化ビニリデン系樹脂も好ましく使用できる。電気二重層キャパシタは、一対の分極性電極とそれに挟持されているセパレータとを含み、その一対の分極性電極の少なくとも一方が前述のガス発生抑制効果に優れた分極性電極であることが好ましい。

Description

明 細 書
分極性電極
技術分野
[0001] 本発明は、電気二重層キャパシタの電極として有用な分極性電極に関する。
背景技術
[0002] 従来のコンデンサに比べ大きな電気容量を有し、電池と比べても、高出力で且つサ イタル特性等の耐久性に優れた蓄電デバイスとして、活性炭を原料とする一対の分 極性電極(正極、負極)でセパレータを挟み込んでなる積層体と、その積層体に含浸 させる、 4級アンモニゥム塩を有機溶剤に溶解した非水電解液とを用いた有機系の電 気二重層キャパシタ(以下単にキャパシタと略称する)が注目されている。
[0003] しかし、有機系キャパシタの場合、残存する僅かな水分等の影響により使用中に非 水電解液が分解してガスが発生するため、耐久性が低下し、また、ガスの発生に伴 レ、、活性炭や導電性助剤などの微粒子が非水電解液中に移動し、漏れ電流の増加 や短絡が発生するという問題がある。更に、キャパシタ内部でガスが大量に発生した 場合、分極性電極の活性炭表面にガスの気泡が付着し、分極性電極の表面でィォ ンの不足が生じ、キャパシタ全体の内部抵抗の増加や容量低下が生ずるという問題 があるだけでなぐキャパシタにおける漏液、破裂などの事故を引き起こす可能性が ある。
[0004] そこで、これらの問題に対し、ガスの発生自体を抑制するのではな 発生したガス による影響を弱める工夫として、貯ガス空間をキャパシタ容器内に設けること(特許文 献 1)、外装ケース内にゼォライト等の乾燥剤を封入すること(特許文献 2)、ガス放出 弁をキャパシタ容器に設けること(特許文献 3)等が提案されている。しかしながら、前 二者の場合、キャパシタの体積が大きくなり、また後者の場合、放出弁を通じて水分 がキャパシタ内部へ混入する可能性がある。
[0005] 一方、ガスの発生自体を抑制する試みとして、活性炭粉末表面に存在するカルボ キシノレ基、キノン基、水酸基及びラタトン基の表面官能基量を 1000 /i mol/g以下と すること(特許文献 4)や、キャパシタに使用する非水電解液にジフヱニルを添加する こと (特許文献 5)が提案されてレ、る。
[0006] し力 ながら、これらのガス発生を抑制する手法自体は、ガス発生抑制の点で一定 の効果が認められるが、電気二重層キャパシタをガス発生が増大するような環境下、 例えば、 自動車のエンジンルーム等の高温環境下や高エネルギー化を達成するた めに高電圧下で使用するような場合には、ガス発生を十分に抑制することができない という問題がある。
[0007] ところで、ガスの発生抑制という観点ではなレ、が、電気二重層キャパシタの分極性 電極の表面を有機化合物で被覆する技術 (特許文献 6、特許文献 7)が提案されて いる。
[0008] しかしながら、特許文献 6の技術は、炭素電極上に極性溶媒膨潤性樹脂を塗布製 膜し、セパレータとして機能させるものである。このため、極性溶媒膨潤性樹脂層の 厚さを過度に薄くするとショートを起こしてセパレータの機能を果たさなくなる。従って 、特許文献 6の実施例では、電極上に形成される極性溶媒膨潤性樹脂層の厚さは 1 Ο μ ΐη程度にかなり厚く設定されており、し力もセパレータであるから、ショートが生じ ないように、極性溶媒膨潤性樹脂層で電極表面が完全に被覆されている必要がある 。よって、特許文献 6の技術を、電気二重層キャパシタの活性炭の分極性電極に適 用すると、キャパシタの抵抗値を上昇させる結果となる。
[0009] また、特許文献 7の技術は、電極表面に電気化学重合性単量体を含む電極被覆 剤を被覆した後にキャパシタを構成し、電気化学重合を行うことにより形成した重合 膜を、静電容量を低下させることなく漏れ電流を低減する重合膜として機能させるも のである。しかし、特許文献 7の技術で形成した重合膜には未反応の単量体が残存 する場合があり、そのような場合には、キャパシタ性能の経時的な変化や単量体の揮 発に伴って、キャパシタ内圧が上昇する可能性がある。また、特許文献 7の技術は煩 雑な操作を必要とするため、工業的に分極性電極を製造する処理の手法としては不 向きである。このように、特許文献 6または特許文献 7の技術を電気二重層キャパシタ のガス発生抑制のために利用することは困難と言わざるを得ない。
特許文献 1:特開平 9一 162082号公報
特許文献 2:特開平 10— 321483号公報 特許文献 3:実開平 1― 73921号公報
特許文献 4 :特開 2003— 243265公報
特許文献 5:特開 2004— 146610公報
特許文献 6 :特開 2000— 173875公報
特許文献 7:特開 2002— 64037公報
発明の開示
発明が解決しょうとする課題
[0010] 本発明の目的は、電気化学重合のような煩雑な手法を利用することな 簡便な手 法により作製可能な分極性電極であって、電気二重層キャパシタに用いた場合にガ スの発生を大幅に抑制可能な分極性電極を提供することである。
課題を解決するための手段
[0011] 本発明者らは鋭意検討を重ねた結果、意外にも分極性電極の表面を、電気二重 層キャパシタに用いられる非水電解液中でゲルを形成し得るゲル形成性有機高分 子化合物で薄く被覆するという極めて簡単な方法により上記目的を達成することがで きることを見出し、本発明を完成させるに至った。
[0012] 即ち、本発明は、活性炭を含有する分極性電極であって、その表面が 5 μ m厚未 満のゲル形成性有機高分子化合物の薄膜層で被覆されていることを特徴とする分極 性電極を提供する。
発明の効果
[0013] 本発明の分極性電極は、電極表面が特定の厚み未満の非常に薄いゲル形成性有 機高分子化合物の薄層で被覆されているので、製造に煩雑な操作が不要であり、し 力も電気二重層キャパシタに適用した場合にガスの発生を大幅に抑制することがで きる。その結果、非水電解液の液漏れや劣化故障が生じにくくなり、良好な耐久性を 示すキャパシタを提供することができる。し力も、キャパシタにおいて、貯ガス空間を わざわざ設ける必要がなくなるので、コンパクトで効率のよいキャパシタを提供するこ とがでさる。
図面の簡単な説明 [0014] [図 1]図 1はコイン型キャパシタの一例を示す概略断面図である。
[図 2]図 2は実施例 1で使用した電極の断面写真である。
[図 3]図 3は円筒型キャパシタの概略断面図である。
[図 4]図 4は図 3の円筒型キャパシタの A部分の拡大図である。
[図 5]図 5は実施例 1〜 3及び実施例 2〜 3のそれぞれの対照におけるセル抵抗の変 化を示すグラフである。
[図 6]図 6は実施例 1〜3及び実施例 2〜3のそれぞれの対照における静電容量の変 化を示すグラフである。
[図 7]図 7は実施例 1〜3及び実施例 2〜3のそれぞれの対照における発生ガス量と ガス組成の関係を示すグラフである。
[図 8]図 8は実施例 4〜5及びそれらの対照におけるセル抵抗の変化を示すグラフで ある。
[図 9]図 9は実施例 4〜 5及びそれらの対照における静電容量の変化を示すグラフで ある。
[図 10]図 10は実施例 4〜6及び比較例 1における発生ガス量を示すグラフである。
[図 11]図 11は実施例 5で使用した電極の断面写真である。
[図 12]図 12は比較例 2で使用した電極の断面写真である。
符号の説明
[0015] 1 分極性電極
2 分極性電極
3 集電体
4 集電体
5 セパレータ
6 上蓋
7 下蓋
8 ガスケット
9 有底円筒状容器
10 電極素子 11 開口部
12 蓋体
13 中空卷芯
14 分極性電極
15 集電体
16 電極シート
17 セパレータ
発明を実施するための最良の形態
[0016] 本発明は、活性炭を含有する分極性電極であり、その表面が 5 μ m厚未満のゲル 形成性有機高分子化合物の薄膜層で被覆されていることを特徴とするものである。
[0017] 本発明の分極性電極の構成要素である活性炭は、活性炭原料となる炭素質材料 を常法により賦活して得られたものである。そのような炭素質材料としては、賦活によ り活性炭を形成するものであればとくに制限はな 植物系、鉱物系、天然系素材及 び合成系素材などから広く選択することができる。具体的には、植物系の炭素質材 料として、木材、木炭、ヤシ殻などの果実殻、鉱物系の炭素質材料として、石油系及 び Z又は石炭系ピッチ、メソフェーズピッチ、石油コータス、石炭コータス、ピッチコー タスなど、天然系素材の炭素質材料として、木綿、麻などの天然繊維、レーヨン、ビス コースレーヨンなどの再生繊維、アセテート、トリアセテートなどの半合成繊維、合成 系素材の炭素質材料として、ナイロンなどのポリアミド系、ビニロンなどのポリビュルァ ルコール系、塩化ビュル、ポリウレタン、フエノール系などの樹脂、ショ糖などの糖類 を例示することができる。
[0018] 炭素質材料の形状は限定されるものではなぐ粒状、微粉状、繊維状、シート状な ど種々の形状のものを使用することができる。このような炭素質材料は賦活されて活 性炭となるが、賦活する方法も特に制限されるものではなぐ例えば、水蒸気、二酸 化炭素などの酸性ガス、水酸化ナトリウム、水酸化カリウム、塩化カルシウム、塩ィ匕亜 鉛などの薬品賦活など公知の賦活方法を採用することができる。活性炭としての形状 もとくに限定されるものではなぐ粒状、微粉状、繊維状、シート状など種々の形状で 使用される。 [0019] ゲル形成性有機高分子化合物で被覆される前の分極性電極は、上述したような活 性炭から常法に従って作製することができる。例えば、活性炭に、ポリビニリデンフ口 ライド、ポリテトラフロロエチレン、スチレンブチレン共重合体ポリマー等のバインダー を、必要に応じて数%〜数十%程度まで加えてよく混練した後、金型に入れて加圧 成形したり、圧延してシートィヒした後に必要な形状に打ち抜いたり、集電体上に塗布 した後に乾燥し圧延したりすることにより分極性電極に成形することができる。その混 練の際、必要に応じてアルコールや N—メチルピロリドンなどの有機化合物や水など の溶剤、分散剤、各種添加物を使用してもよい。また、混練の際に更にカーボンブラ ック、カーボンチューブ、カーボンファイバー、ケッチェンブラックなどの導電性材料を 添加し、電極の抵抗を低下させてもよい。これにより分極性電極の内部抵抗を下げ、 電極体積を小さくすることが可能となる。
[0020] また、混練あるいは成形の際に、必要に応じて活性炭に熱をカ卩えてもよいが、必要 以上に高い温度に加熱することは、使用したバインダー成分の劣化だけでなぐ活性 炭成分の表面構造による物性、例えば比表面積などに影響を与えることが懸念され る。よって、その温度条件を考慮する必要があるが、一般的には 250°Cを超えないよ うにする。
[0021] このように成形された、ゲル形成性有機高分子化合物で被覆される前の分極性電 極の厚みとしては、通常 20 x m〜lmm程度である。
[0022] 本発明の分極性電極は、電極表面がゲル形成性有機高分子化合物で薄く被覆さ れていることが重要であり、このように電極表面をゲル形成性有機高分子化合物で薄 く被覆することにより、静電容量を低下させることなぐまた抵抗値を上げることなくガ スの発生を大幅に抑制することができる。なお、ここでレ、うゲル形成性有機高分子化 合物とは、非水電解液中でゲル状となり得る有機高分子化合物のことを示す。
[0023] 有機高分子化合物のゲルの形態としては、ゲル状形態を示す限り、ステレオコンプ レックスのような物理ゲルと、化学結合で架橋構造が形成された化学ゲルのレ、ずれで もよレ、。なお、有機高分子化合物としては、ゲルの網目構造が緩やかになるため電 解質イオンが活物質表面に移動しやすぐ内部抵抗が高くならないという点から、非 水電解液と親和性を有するものが好ましレ、。 [0024] このようなゲル形成性有機高分子化合物としては、 _COO_結合を有する有機高 分子化合物が好ましぐ一 COO—結合を有する有機高分子化合物としては、 -CO 〇_結合を有するエステルイ匕合物、一 OCOO—結合を有するカーボネートイ匕合物、 - CONH -結合を有するアミド化合物やポリアミド、一 NHCOO -結合を有するポリ ウレタン等が挙げられる。
[0025] ゲル形成性有機高分子化合物の具体例としては、ポリビニルアセテート、ポリメチル アタリレート、ポリメチルメタタリレート、ポリブチルメタタリレート、ポリ力プロラタトン、ポ リ?し酸、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリビニレンカーボ 才ヽート、 6 ナイロン、 6, 6 ナイロン、 12 ナイロン、ポリ了クリノレアミド、ポリヒ、'ニノレビ 口リドン、ポリエチレンカーボネート、ポリブチレンカーボネート、ビスフエノーノレ A— カーボネート、ポリフッ化ビニリデン、ポリオキシエチレン、ポリオキシプロピレン、およ びこれらの共重合体などを挙げることができる。
[0026] なお、非水電解液としてカーボネート系溶媒を用いる場合、ゲル形成性有機高分 子化合物としては、エステル結合及び/又はカーボネート結合を有する有機高分子 化合物を使用するのが好ましい。エステル結合やカーボネート結合を有する有機高 分子化合物の例としては、アクリル系ポリマー、ポリビニルアセテート、ポリカーボネー ト、ポリエステル、ボリラクチドなどが挙げられる。中でも、アクリル系ポリマーが好ましく 、その中でも、ポリアルキルメタタリレートあるいはポリアルキルアタリレートなどのポリ アルキルアルケノエートが好ましレ、。その具体例としては、ポリメチルメタタリレート、ポ リエチノレメタタリレート、ポリプロピルメタタリレート、ポリブチルメタタリレート、ポリメチル アタリレート、ポリプロピルアタリレート、ポリブチルアタリレートなどを挙げることができ る。特に、ポリメチルメタタリレートを好ましく使用することができる。
[0027] 特に、ゲル形成性有機高分子化合物としては、一次構造は同じであるが、立体規 則性が異なる構成部位を含む二種の化合物からなる所謂ステレオコンプレックスを形 成しうる化合物が好ましい。ゲル形成性が良好なステレオコンプレックスとしては、シ ンジオタクチック有機高分子化合物とァイソタクチック有機高分子化合物の混合物が 挙げられる。具体例としては、ポリメチルメタタリレート、ポリェチルメタタリレート、ポリ プロピルメタタリレート、ポリブチルメタタリレートなどのそれぞれのシンジオタクチック 体とアイソタクチック体とからなるステレオコンプレックスを挙げることができる。中でも 、ァイソタクチック有機高分子化合物としてポリメチルメタタリレートを好ましく挙げるこ とができ、シンジオタクチック有機高分子化合物としてポリメチルメタタリレート、ポリエ チルメタタリレート、ポリプロピルメタタリレート、ポリブチルメタタリレートを好ましく挙げ ることができる。特に、ァイソタクチック有機高分子化合物及びシンジオタクチック有 機高分子化合物が共にポリメチルメタタリレートである場合が好ましい。
[0028] また、ステレオコンプレックスを構成するァイソタクチック有機高分子化合物の"アイ ソタクチシティ"は、低すぎるとゲル形成性が低下する傾向があるので、好ましくは 80 %以上、より好ましくは、 90%以上である。一方、ステレオコンプレックスを構成するシ ンジオタクチック有機高分子化合物の"シンジオタクチシティ"は、低すぎるとゲル形 成性が低下する傾向があるので、好ましくは 40%以上、より好ましくは 50%以上であ る。
[0029] さらに、ステレオコンプレックスにおけるァイソタクチック有機高分子化合物とシンジ オタクチック有機高分子化合物のそれぞれの存在量は、ゲル形成性の観点から、ァ イソタクチック有機高分子化合物力 好ましくは 20〜80質量%、より好ましくは 25〜 60質量%、特に好ましくは 30〜40質量%であり、シンジオタクチック有機高分子化 合物が、好ましくは 20〜80質量%、より好ましくは 40〜75質量%、特に好ましくは 6 0〜70質量%である。
[0030] また、ゲル形成性を有するポリフッ化ビニリデンなどのポリフッ化ビニリデン系樹脂 や、ポリオキシエチレンユニット、ポリオキシプロピレンユニットを含有するポリオキシァ ルキレン、およびこれらの共重合体も好ましく使用することができる。ポリフッ化ビニリ デンを用いる場合は、溶解性やゲル形状の安定性を向上させ得る点でへキサフロロ プロピレンなどを共重合したポリフッ化ビニリデンを用いることが好ましい。
[0031] 本発明においては、分極性電極の表面がゲル形成性有機高分子化合物で被覆さ れている。被覆層の厚さが厚すぎるとキャパシタの抵抗が大きくなる傾向にあるので、 被覆層の厚さは 5 z m未満とする必要がある。より好ましくは 2. 5 z m以下であり、更 に好ましくは 2. 以下である。尚、被覆層の厚さが薄すぎるとガス発生抑制効果 が弱くなる傾向があり、膜形成の均質性の点からも 0.1 μ m以上とすることが好ましい 。被覆層の厚さは、乾燥状態の電極断面を走査電子顕微鏡で観察することによって 測定することができる。本発明における被覆層の厚さは、電極断面について測定した 最小〜最大の厚さを意味する。
[0032] また、電極を被覆しているゲル形成性有機高分子化合物の単位面積当たりの質量
(塗布量と言い換えることもできる)は、ゲル形成性有機高分子化合物の密度に依存 するものの、少なすぎるとガス抑制効果が乏しぐ多すぎると抵抗が高くなる傾向があ るので、好ましくは 0. 01mgZcm2〜5. Omg/cm2、より好ましくは 0. 05mg/cm2 〜1 · Omg/ cm、 らに好ましくは 0. lOmg/ cm〜0· 3mg/ cmである。
[0033] なお、分極性電極には、隙間が存在する場合があり、その内部壁面にゲル形成性 有機高分子化合物の薄膜が形成されていない場合もあるが、基本的には電極外表 面の少なくとも一部が塗布されていれば、ガス抑制効果を発現することができる。特 に、電気二重層キャパシタに構成した際に、セパレータに接する側表面にゲル形成 性有機高分子化合物の薄層が形成されていることが、ガス発生抑制効果の点から好 ましい。
[0034] ゲル形成性有機化合物で分極性電極を被覆する手法としては、ゲル形成性有機 高分子化合物を有機溶剤に溶解したものをスプレー塗布する方法、電極を上記した 溶液に含浸した後、乾燥させる方法などを挙げることができる。あるいは、ドクターブ レード法、スクリーン印刷法、グラビアコート法、ロールコート法、メタルマスク印刷法、 静電塗装法などを用いることができる。必要に応じて平板プレス、カレンダーロール などによって圧延処理を行ってもよい。
[0035] 本発明の分極性電極は、電気二重層キャパシタの電極として有用である。キャパシ タの基本構造は、一対の分極性電極とそれに挟持されているセパレータとを含むも のであり、一対の分極性電極の少なくとも一方として本発明の分極性電極を使用する ことで、ガス発生を抑制することができる。
[0036] 電気二重層キャパシタの形態としては、コイン型、円筒型、角型、ラミネート型など、 任意の形態を選択することができる。一般的には、ケースの中に一対の分極性電極 とその間にセパレータを有する構造をしており、分極性電極及びセパレータは非水 電解液で濡れた構造をしてレ、る。さらに集電体がそれぞれの分極性電極のケース側 にあり、ケースは電解質溶液が漏れないように上蓋と下ケースとの間が封止材で封口 されている。図 1は、コイン型キャパシタの概略断面図であり、図中、 1及び 2は分極 性電極、 3及び 4は集電体、 5はセパレータ、 6は上蓋、 7は下蓋、 8はガスケットを示 している。
[0037] 電気二重層キャパシタを構成する各構成要素は、本発明による分極性電極を使用 する以外は公知のキャパシタと同様の構成とすることができる。
[0038] 集電部材としては、アルミニウム、導電性高分子などを挙げることができる。集電部 材の抵抗を低減化するために、導電性高分子や、合成樹脂と導電性材料の混合物 で集電部材である金属箔と分極性電極とを接着したり、アルミニウムなど導電性金属 や導電性高分子を分極性電極上に溶射したりして集電部材としてもよい。キャパシタ の封止材としては、例えば、ポリプロピレン、ブチルゴム、ポリアミド、ポリエステル、ポ リフエ二レンスルフイドなどの絶縁体が用いられる。ケースとしては、アルミニウムケー ス、ステンレスケース等を例示することができる。
[0039] 本発明に使用される非水電解液は、電解質塩化合物を有機系電解質溶媒に溶解 したものであるが、電解質が液体の場合は溶媒を使用しないこともある。
[0040] 電解質塩ィ匕合物の例としては、テトラエチルアンモニゥムテトラフ口ロボレート、テト ラメチルアンモニゥムテトラフ口ロボレート、テトラプロピルアンモニゥムテトラフ口ロボレ ート、テトラプチルアンモニゥムテトラフ口ロボレート、トリメチルェチルアンモニゥムテト ラフ口ロボレート、トリェチルメチルアンモニゥムテトラフ口ロボレート、ジェチルジメチ ルアンモニゥムテトラフ口ロボレート、 N—ェチル _N_メチルピロリジニゥムテトラフ口 ロボレート、 N, N—テトラメチレンピロリジニゥムテトラフ口ロボレート、 1—ェチノレ一 3 —メチルイミダゾリゥムテトラフ口ロボレートのようなアンモニゥムテトラフ口ロボレート類 、テトラエチノレアンモニゥムパーク口レート、テトラメチノレアンモニゥムパーク口レート、 テトラプロピノレアンモニゥムパーク口レート、テトラブチノレアンモニゥムパーク口レート、 トリメチノレエチノレパーク口レート、トリェチノレメチノレアンモニゥムパーク口レート、ジェチ ノレジメチルアンモニゥムパーク口レート、 N—ェチル _N_メチルピロリジニゥムパー クロレート、 N, N—テトラメチレンピロリジニゥムパーク口レート、 1—ェチノレ _ 3—メチ ルイミダゾリゥムパーク口レートのようなアンモニゥム過塩素酸塩類、テトラエチルアン モニゥムへキサフロロホスフェート、テトラメチノレアンモニゥムへキサフロロホスフェート
、テトラプロピルアンモニゥムへキサフロロホスフェート、テトラプチルアンモニゥムへキ サフロロホスフェート、トリメチルェチルアンモニゥムへキサフロロホスフェート、トリェチ ノレメチノレアンモニゥムへキサフロロホスフエェチノレジメチノレアンモニゥムへキサフロロ ホスフェートのようなアンモニゥムへキサフロロホスフェート類などが挙げられる。
[0041] 有機系電解質溶媒の例としては、ジメチルカーボネート、ジェチルカーボネート、ェ チレンカーボネート、プロピレンカーボネートなどのカーボネート類、ァセトニトリル、 プロピオ二トリルなどの二トリル類、 γ—ブチ口ラタトン、 α—メチル一 Ί—ブチ口ラクト ン、 β—メチルー γ—ブチ口ラタトン、 γ—バレロラタトン、 3—メチルー γ—バレロラ タトンなどのラタトン類、ジメチルスルフォキシド、ジェチルスルフォキシドなどのスルフ ォキシド類、ジメチルフオルムアミド、ジェチルフオルムアミドなどのアミド類、テトラヒド 口フラン、ジメトキシェタンなどのエーテル類、ジメチルスルホラン、スルホランなどを 挙げることができる。これらの有機溶媒は通常単独で使用されるが、二種以上の混合 溶媒として使用してもよい。
[0042] 本発明において、上記電解質塩化合物の濃度は、非水電解液を調製した段階で 電解質塩結晶が析出しない範囲であれば特に限定はないが、電解質として、例えば トリェチルメチルアンモニゥムテトラフ口ロボレートなどの常温で固体の塩を用いる場 合、電解質の濃度は、低すぎると電解質不足により静電容量が低下することがあり、 また高すぎると温度が低下したときに塩の析出が生じることがあるので、好ましくは 0. :!〜 6molZl、より好ましくは 0. 5〜5molZl、特に好ましくは 1. 0〜2. 5mol/lであ る。また、電解質として、 1—ェチル一3—メチルイミダゾリゥムテトラフ口ロボレートなど のイオン性液体を用いる場合、使用する温度範囲で凝固しない限り、濃度の上限は なレ、。また、本発明の効果を阻害しない範囲で各種添加剤をカ卩えることもできる。
[0043] 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるも のではない。以下の実施例において、ゲル形成性有機高分子化合物塗布溶液 A〜 Dは参考例 1〜4によって調製した。
[0044] 参考例 1:塗布溶液 Aの調製
攪拌子、冷却器を具備した三ッロフラスコに、 MwlO万、アイソタクチシティ 93%の ァイソタクチックポリメチルメタタリレート(i_ PMMA) 2gとシンジオタクチックポリメチ ルメタタリレート(S— PMMA クラレ製パラペット LW_ 500、 Mw3. 8万、シンジオタ クチシティ 60%) lgとクロ口ホルム 297gを入れて均一に混合し、塗布溶液 Aを得た。
[0045] 参考例 2 :塗布溶液 Bの調製
i_ PMMAlgと s _ PMMA2gとクロ口ホルム 297gを用いた以外は参考例 1と同様 にして塗布溶液 Bを得た。
[0046] 参考例 3:塗布溶液 Cの調製
ポリ(へキサフロロプロピレン共重合フッ化ビニリデン)(アルドリッチ製、 Mn : 130000 ) lgとテトラヒドロフラン 99gを用いた以外は参考例 1と同様にして塗布溶液 Cを得た。
[0047] 参考例 4 :塗布溶液 Dの調製
参考例 3で使用したポリフッ化ビニリデン 10gと N—メチルピロリドン 40gを用いた以 外は参考例 1と同様にして塗布溶液 Dを得た。
[0048] 実施例 1
フエノール樹脂系の活性炭(クラレケミカル株式会社製 RP20)に、アセチレンブラッ ク、ポリテトラフルォロエチレンを、活性炭:アセチレンブラック:ポリテトラフルォロェチ レン = 84 : 8 : 8の質量比になるように混合した。得られた混合物にさらに混練助剤と してイソプロパノールを加え、加圧下で 8分間混練を行ってポリテトラフルォロェチレ ンがフイブリル化された混練物を得た。
[0049] 得られた混練物を粉砕して平均粒子径約 1mmの粉砕粉とし、この粉砕粉をカレン ダ処理に供してシート状成形物を得た。次いで、シート状成形物を圧延して幅 1 10m mの電極シートを作製した。この電極シートを、幅 1 15mmのアルミニウム製集電体の 両面に、カーボンブラックと黒鉛の微粉末を含有する導電ペーストを用いて貼り合わ せて分極性電極とし、 150°Cの乾燥空気を 31Z分の流量で 30分間通流して分極性 電極を乾燥した。
[0050] 得られた分極性電極に対し、スプレーを用いて塗布溶液 Aを負極の活性炭側に塗 布した後、 50°Cで乾燥し、電極面積あたりの乾燥後の塗布質量 (ゲル形成性有機高 分子化合物)が 0. 19mg/cm2になるように調整した。乾燥状態の電極断面を走查 電子顕微鏡(日立製作所製 S— 4000)で観察した結果、厚さ 0. 27 x m〜2. 2 μ χη の塗布層が認められた。走查電子顕微鏡による電極断面図を図 2に示す。
[0051] 次に、レーヨン系セパレータを介して 2枚の分極性電極を対向に配置し、ゲル形成 性有機高分子化合物の塗布膜がセパレータ側になるように電極素子を作製した。該 電極素子を長さ方向に巻き取り、アルミニウム製の有底円筒状容器の中空卷芯の周 囲に収容し、電極とセパレータとが卷芯の周囲に卷回された状態とした。次に、電極 素子を収容した有底円筒状容器を、 5Paの減圧下、 160°Cの温度で 72時間乾燥し た。
[0052] 1. 5mol/lのトリェチルメチルアンモニゥムテトラフ口ロボレートのプロピレンカーボ ネート溶液を前記有底円筒状容器に収容された電極素子に含浸せしめ、容器の開 口部を蓋体で密封することにより、図 3に示すような円筒型キャパシタを作製した。図 3において、 9は有底円筒状容器、 10は電極素子、 11は容器の開口部、 12は蓋体、 13は中空卷芯である。図 4は図 3の A部分の拡大図であり、 14は分極性電極、 15は 集電体、 16は電極シート、 17はセパレータである。
[0053] 得られた円筒型キャパシタについて、 45°Cにおいて 2. 5Vで連続印加し、一定時 間毎に 25°Cでの放電性能の変化を測定し、 2000時間経過時点でガス発生量を測 定した。なお、放電性能に関しては、 20Aで 2. 5Vまで充電後、 30A定電流放電時 の内部抵抗、静電容量を測定した。内部抵抗は放電電圧が充電電圧の 10%低下し たところから接線を弓 Iいて算出した。経過時間に対するセル抵抗及び相対静電容量 を、それぞれ図 5及び図 6に示す。これらの図からわかるように、溶液を塗布すること によるセル抵抗の増大及びセル相対静電容量の減少はわずかであり、実用上問題 のないものであった。
[0054] また、 45°Cにおいて 2. 5Vで 2000時間経過後の円筒型キャパシタから発生したガ スを抜き取り、そのガス量を測定したところ、ガス発生量は 35mlであり、後述する比較 例 1の未処理のもの 62mlに対して約 44%のガス発生抑制効果が認められた。発生 したガス量とガスクロマトグラフィーを用いてガス組成分析を行った結果を図 7に示す 。発生ガスの主要な成分は水素、一酸化炭素及び二酸化炭素であるが、一酸化炭 素に対する抑制効果が最も高かった。
[0055] 実施例 2 実施例 1で使用した活性炭と同ロットの活性炭を用い、実施例 1と同様にして分極 性電極を得た。得られた分極性電極に対し、電極面積あたりの塗布溶液 Aの乾燥後 の塗布質量を 0. 35mgZcm2とした以外は実施例 1と同様にして塗布電極を得、円 筒型キャパシタを作製した。実施例 1と同様に乾燥状態の電極断面を走査電子顕微 鏡で観察したところ、厚さ 0. 26 x m〜2. 5 z mの塗布層が認められた。円筒型キヤ パシタのセル抵抗変化及び静電容量変化をそれぞれ図 5及び図 6に示した。なお、 ゲル形成性有機高分子化合物を塗布してレ、なレ、分極性電極を使用する以外は本実 施例を繰り返すことにより測定した経過時間に対するセル抵抗及び相対静電容量を それぞれ図 5及び図 6に併せて示した(実施例 2の対照)。
[0056] また、 45°Cにおいて 2. 5Vで 1000時間経過後の円筒型キャパシタカ 発生したガ スを抜き取り、そのガス量を測定したところ、ガス発生量は 17mlであり、後述する比較 例 1の未処理のもの 30mlに対して約 44%のガス発生抑制効果が認められた。発生 したガス量及びガス組成分析を行った結果を図 7に示す。なお、ゲル形成性有機高 分子化合物を塗布していない分極性電極を使用する以外は本実施例を繰り返すこと により測定したガス量及びガス組成分析を行った結果を図 7に併せて示した(実施例 2の対照)。
[0057] 実施例 3
電極面積あたりの塗布溶液 Aの乾燥後の塗布質量が 0. 41mg/cm2となるようにし た以外は、実施例 1と同様にして分極性電極を得、円筒型キャパシタを作製した。実 施例 1と同様に乾燥状態の電極断面を走査電子顕微鏡で観察したところ、厚さ 0. 2 8 m〜3. O x mの塗布層が認められた。円筒型キャパシタのセル抵抗変化及び静 電容量変化を各々図 5及び図 6に示した。なお、ゲル形成性有機高分子化合物を塗 布していない分極性電極を使用する以外は本実施例を繰り返すことにより測定した 経過時間に対するセル抵抗及び相対静電容量をそれぞれ図 5及び図 6に併せて示 した(実施例 3の対照)。
[0058] また、 45°Cにおいて 2. 5Vで 2000時間経過後の円筒型キャパシタから発生したガ スを抜き取り、そのガス量を測定したところ、ガス発生量は 3 lmlであり、後述する比較 例 1の未処理のもの 62mlに対して約 50%のガス発生抑制効果が認められた。発生 したガス量及びガス組成分析を行った結果を図 7に示す。なお、ゲル形成性有機高 分子化合物を塗布していない分極性電極を使用する以外は本実施例を繰り返すこと により測定したガス量及びガス組成分析を行った結果を図 7に併せて示した(実施例 3の対照)。
[0059] 実施例 4
塗布溶液 Aの代わりに塗布溶液 Bを用い、電極面積あたりの塗布溶液 Bの乾燥後 の塗布質量が 0. 25mgZcm2となるように塗布した以外は、実施例 1と同様にして分 極性電極を得、円筒型キャパシタを作製した。実施例 1と同様に乾燥状態の電極断 面を電子顕微鏡で観察したところ、厚さ 0. 24 x m〜2. 4 μ ΐηの塗布層が認められた 。得られた円筒型キャパシタの経過時間に対するセル抵抗及び相対静電容量をそ れぞれ図 8及び図 9に示した。
[0060] また、 45°Cにおいて 2. 5Vで 1000時間経過後の円筒型キャパシタカ 発生したガ スを抜き取り、そのガス量を測定したところ、ガス発生量は 15mlであり、後述する比較 例 1の未処理のもの 30mlに対して約 50%のガス発生抑制効果が認められた。発生 したガス量の測定結果を図 10に示す。なお、ゲル形成性有機高分子化合物を塗布 していない分極性電極を使用する以外は本実施例を繰り返すことにより得たガス量 の測定結果を図 10に併せて示した(実施例 4の対照)。
[0061] 実施例 5
塗布溶液 Aの代わりに塗布溶液 Cを用い、電極面積あたりの塗布溶液 Cの乾燥後 の塗布質量が 0. 14mg/cm2となるように塗布した以外は、実施例 1と同様にして分 極性電極を得、円筒型キャパシタを作製した。乾燥状態の電極断面を走査電子顕微 鏡(日立製作所製 S—4000)で観察した結果、厚さ 0. 35 x m〜l . 05 μ mの塗布 層が認められた。走查電子顕微鏡による電極断面図を図 11に示す。得られた円筒 型キャパシタの経過時間に対するセル抵抗及び相対静電容量をそれぞれ図 8及び 図 9に示した。
[0062] また、 45°Cにおいて 2. 5Vで 1000時間経過後の円筒型キャパシタから発生したガ スを抜き取り、そのガス量を測定したところ、ガス発生量は 14mlであり、後述する比較 例 1の未処理のもの 30mlに対して約 50%のガス発生抑制効果が認められた。発生 したガス量の測定結果を図 10に示す。なお、ゲル形成性有機高分子化合物を塗布 していない分極性電極を使用する以外は本実施例を繰り返すことにより得たガス量 の測定結果を図 10に併せて示した(実施例 5の対照)。
[0063] 実施例 6
負極及び正極の両極に塗布した以外は、実施例 5と同様にして分極性電極を得、 円筒型キャパシタを作製した。実施例 1と同様に乾燥状態の電極断面を走査電子顕 微鏡で観察したところ、厚さ 0. 30 x m〜l . l z mの塗布層が認められた。得られた 円筒型キャパシタの 1000時間後の相対静電容量は 0. 93であり、セル抵抗値は 2. 6m Ωであった。
[0064] また、 45°Cにおいて 2. 5Vで 1000時間経過後の円筒型キャパシタカ 発生したガ スを抜き取り、そのガス量を測定したところ、ガス発生量は 12mlであり、後述する比較 例 1の未処理のもの 30mlに対して約 60%のガス発生抑制効果が認められた。発生 したガス量の測定結果を図 10に示す。なお、ゲル形成性有機高分子化合物を塗布 していない分極性電極を使用する以外は本実施例を繰り返すことにより得たガス量 の測定結果を図 10に併せて示した(実施例 6の対照)。
[0065] 比較例 1
ゲル形成性有機高分子化合物を塗布しない以外は、実施例 1と同様にして円筒型 キャパシタを作製し、放電性能の変化を測定した。円筒型キャパシタの経過時間に 対するセル抵抗及び相対静電容量を測定した。また、 1000時間及び 2000時間経 過後、実施例 1と同様にしてガス発生量を測定したところ、 1000時間経過後で 30ml (図 10参照)、 2000時間経過後で 62mlであった。
[0066] 比較例 2
塗布溶液 Aの代わりに塗布溶液 Dを用い、実施例 1と同じ分極性電極に、電極面積 あたりの乾燥後の塗布質量が 6. 2mg/cm2となるように調整した以外は、実施例 1と 同様にして分極性電極を得、円筒型キャパシタを作製した。実施例 1と同様に乾燥状 態の電極断面を走查電子顕微鏡で観察したところ、厚さ 6. Ο μ π!〜 6. の塗布 層が認められた。走查電子顕微鏡による電極断面図を図 12に示す。得られた円筒 型キャパシタのセル抵抗値は 9. Οπι Ωである。比較例 1に示したゲル形成性有機高 分子化合物を塗布しない電極を用いたキャパシタの内部抵抗は 2. lm Qであり、こ のように乾燥後の塗布厚みを 5 μ m以上にした場合は、直流のセル抵抗の増大が非 常に大きくなり、出力特性、エネルギー密度の低下が生じた。
産業上の利用可能性
本発明の分極性電極は、電極表面が 5 μ m未満の厚さのゲル形成性有機高分子 化合物で薄く被覆されてレ、るので、この分極性電極を電気二重層キャパシタに使用 すると、ガスの発生を大幅に抑制することができる。このようなキャパシタは非水電解 液の液漏れや劣化故障が生じにくぐ耐久性に優れたものとなる。しかも、キャパシタ において貯ガス空間容積を低減できるので、コンパクトで効率のよいキャパシタを提 供することができ、産業上有用である。

Claims

請求の範囲
[1] 活性炭を含有する分極性電極であって、その表面が 5 μ m厚未満のゲル形成性有 機高分子化合物の薄膜層で被覆されていることを特徴とする分極性電極。
[2] 該薄膜層の厚みが 2. 5 μ η以下である請求項 1記載の分極性電極。
[3] 該ゲル形成性有機高分子化合物が、 COO 結合を有する有機高分子化合物で ある請求項 1又は 2記載の分極性電極。
[4] 該ゲル形成性有機高分子化合物が、アクリル系ポリマーである請求項 1〜3のいずれ かに記載の分極性電極。
[5] 該ゲル形成性有機高分子化合物が、ポリアルキルアルケノエートである請求項 1〜4 のいずれかに記載の分極性電極。
[6] 該ゲル形成性有機高分子化合物が、ステレオコンプレックスを形成しうる化合物であ る請求項 1〜5のいずれかに記載の分極性電極。
[7] 該ゲル形成性有機高分子化合物が、ポリアルキルメタタリレート又はポリアルキルァク リレートである請求項 1〜6のいずれかに記載の分極性電極。
[8] 該ゲル形成性有機高分子化合物が、ポリメチルメタタリレートである請求項 1〜7のい ずれかに記載の分極性電極。
[9] 該ゲル形成性有機高分子化合物が、ポリフッ化ビニリデン系樹脂である請求項 1又 は 2記載の分極性電極。
PCT/JP2006/317658 2005-09-08 2006-09-06 分極性電極 WO2007029742A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007534453A JPWO2007029742A1 (ja) 2005-09-08 2006-09-06 分極性電極
CN2006800330081A CN101258571B (zh) 2005-09-08 2006-09-06 可极化电极
EP06797553A EP1923895A4 (en) 2005-09-08 2006-09-06 POLARIZABLE ELECTRODE
US11/916,496 US20100193218A1 (en) 2005-09-08 2006-09-06 Polarizable electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005260381 2005-09-08
JP2005-260381 2005-09-08

Publications (1)

Publication Number Publication Date
WO2007029742A1 true WO2007029742A1 (ja) 2007-03-15

Family

ID=37835860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317658 WO2007029742A1 (ja) 2005-09-08 2006-09-06 分極性電極

Country Status (6)

Country Link
US (1) US20100193218A1 (ja)
EP (1) EP1923895A4 (ja)
JP (1) JPWO2007029742A1 (ja)
KR (1) KR20080039849A (ja)
CN (1) CN101258571B (ja)
WO (1) WO2007029742A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140322513A1 (en) * 2008-04-11 2014-10-30 Dupont Teijin Films U.S. Limited Partnership Plastic film having a high voltage breakdown

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332354B (zh) * 2010-12-31 2013-06-05 东莞新能源科技有限公司 一种超级电容器及其极片以及该极片的制作方法
CN102543446B (zh) * 2012-01-16 2013-07-24 武汉大学 一种染料敏化太阳能电池用电解质
US10069131B2 (en) 2012-03-30 2018-09-04 Linda Zhong Electrode for energy storage devices and method of making same
US11508956B2 (en) 2020-09-08 2022-11-22 Licap Technologies, Inc. Dry electrode manufacture with lubricated active material mixture

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323362A (ja) * 1999-05-07 2000-11-24 Toyota Central Res & Dev Lab Inc 電気二重層キャパシタ及びその製造方法
JP2001313237A (ja) * 2000-04-25 2001-11-09 Korea Advanced Inst Of Sci Technol 薄膜型スーパーコンデンサ及びその製造方法並びにそれを利用したハイブリッド電池
JP2003217983A (ja) * 2002-01-28 2003-07-31 Mitsubishi Paper Mills Ltd 電気二重層キャパシタ

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6232019B1 (en) * 1998-11-02 2001-05-15 Lithium Technology Corporation Gel electrolytes for electrochromic and electrochemical devices
JP2000173873A (ja) * 1998-12-02 2000-06-23 Nichicon Corp 電気二重層コンデンサの駆動用電解液
JP2000173875A (ja) * 1998-12-02 2000-06-23 Nichicon Corp 電気二重層コンデンサ
WO2001057940A2 (en) * 2000-02-04 2001-08-09 Amtek Research International Llc Freestanding microporous separator including a gel-forming polymer
JP2002110473A (ja) * 2000-09-29 2002-04-12 Meidensha Corp 電解質及びこれを用いた電気二重層キャパシタ
JP2003217986A (ja) * 2002-01-23 2003-07-31 Meidensha Corp 積層型電気二重層キャパシタ
JP2004172346A (ja) * 2002-11-20 2004-06-17 Kuraray Co Ltd 高分子固体電解質およびこれを用いた電気二重層キャパシタ
TWI258238B (en) * 2003-11-05 2006-07-11 Lg Chemical Ltd Functional polymer film-coated electrode and electrochemical device using the same
JP2005243303A (ja) * 2004-02-24 2005-09-08 Tomoegawa Paper Co Ltd 電気化学素子用部材及びその製造方法、並びにそれを用いた電気化学素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000323362A (ja) * 1999-05-07 2000-11-24 Toyota Central Res & Dev Lab Inc 電気二重層キャパシタ及びその製造方法
JP2001313237A (ja) * 2000-04-25 2001-11-09 Korea Advanced Inst Of Sci Technol 薄膜型スーパーコンデンサ及びその製造方法並びにそれを利用したハイブリッド電池
JP2003217983A (ja) * 2002-01-28 2003-07-31 Mitsubishi Paper Mills Ltd 電気二重層キャパシタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1923895A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140322513A1 (en) * 2008-04-11 2014-10-30 Dupont Teijin Films U.S. Limited Partnership Plastic film having a high voltage breakdown
US9269493B2 (en) * 2008-04-11 2016-02-23 Dupont Teijin Films U.S. Limited Partnership Plastic film having a high voltage breakdown
US10008328B2 (en) 2008-04-11 2018-06-26 Dupont Teijin Films U.S. Limited Partnership Plastic film having a high voltage breakdown

Also Published As

Publication number Publication date
CN101258571A (zh) 2008-09-03
CN101258571B (zh) 2011-04-27
JPWO2007029742A1 (ja) 2009-03-19
EP1923895A4 (en) 2010-03-03
EP1923895A1 (en) 2008-05-21
KR20080039849A (ko) 2008-05-07
US20100193218A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
KR101296183B1 (ko) 전기 이중층 커패시터용 집전체, 전기 이중층 커패시터용 전극, 전기 이중층 커패시터, 및 그들의 제조 방법
JP5939990B2 (ja) 長寿命負極板の製造方法及び該負極板を用いたスーパーキャパシタ
US9941059B2 (en) Low resistance ultracapacitor electrode and manufacturing method thereof
KR101289521B1 (ko) 전기 이중층 캐패시터의 제조 방법
WO2009139493A1 (ja) 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ
US6038123A (en) Electric double layer capacitor, and carbon material and electrode therefor
WO2005036574A1 (ja) 電気二重層キャパシタ用電極とその製造方法、および電気二重層キャパシタ、並びに導電性接着剤
JP4371979B2 (ja) 電気二重層キャパシタ用電極、および電気二重層キャパシタ、並びに導電性接着剤
US10504661B2 (en) Hybrid capacitor and separator for hybrid capacitors
JP3591055B2 (ja) 電気二重層キャパシタ、その製造方法及びそのための電極の製造方法
WO2007029742A1 (ja) 分極性電極
US20130170101A1 (en) Electrochemical capacitor
JP2005129924A (ja) 電気二重層コンデンサ用金属製集電体およびそれを用いた分極性電極並びに電気二重層コンデンサ
JP2002353074A (ja) 電気二重層コンデンサ、該コンデンサに用いる電極用ペースト及び電極
JP6623538B2 (ja) ハイブリッドキャパシタ用セパレータおよびハイブリッドキャパシタ
JP2006269827A (ja) 電気化学素子電極用組成物
JP3812098B2 (ja) 電気二重層キャパシター
JP2004172346A (ja) 高分子固体電解質およびこれを用いた電気二重層キャパシタ
JP4026226B2 (ja) 電気二重層キャパシタ用電極及び該電極を有する電気二重層キャパシタ
US20070139865A1 (en) Electrochemical device
KR102016520B1 (ko) 고전압 슈퍼커패시터 및 그 제조방법
JP2010028007A (ja) 電気二重層キャパシタ用電極および電気二重層キャパシタ
Blanco et al. Hydrogels: Synthesis and Recent Advancements in Electrochemical Energy Storage
JP2001332456A (ja) 電気二重層キャパシタ
JPH11233383A (ja) 固体型電気二重層キャパシタ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680033008.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007534453

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2006797553

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11916496

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077030750

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE