WO2007029447A1 - 流体軸受装置 - Google Patents

流体軸受装置 Download PDF

Info

Publication number
WO2007029447A1
WO2007029447A1 PCT/JP2006/315859 JP2006315859W WO2007029447A1 WO 2007029447 A1 WO2007029447 A1 WO 2007029447A1 JP 2006315859 W JP2006315859 W JP 2006315859W WO 2007029447 A1 WO2007029447 A1 WO 2007029447A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing device
carbon fiber
bearing
resin composition
hydrodynamic bearing
Prior art date
Application number
PCT/JP2006/315859
Other languages
English (en)
French (fr)
Inventor
Kazutoyo Murakami
Masaki Egami
Kenji Ito
Isao Komori
Mitsuo Sasabe
Original Assignee
Ntn Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005262660A external-priority patent/JP2007082267A/ja
Priority claimed from JP2005274474A external-priority patent/JP5085025B2/ja
Application filed by Ntn Corporation filed Critical Ntn Corporation
Priority to US12/063,174 priority Critical patent/US20090297076A1/en
Priority to CN2006800295779A priority patent/CN101243264B/zh
Publication of WO2007029447A1 publication Critical patent/WO2007029447A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/08Structural association with bearings
    • H02K7/085Structural association with bearings radially supporting the rotary shaft at only one end of the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/10Sliding-contact bearings for exclusively rotary movement for both radial and axial load
    • F16C17/102Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
    • F16C17/107Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C35/00Rigid support of bearing units; Housings, e.g. caps, covers
    • F16C35/02Rigid support of bearing units; Housings, e.g. caps, covers in the case of sliding-contact bearings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/16Means for supporting bearings, e.g. insulating supports or means for fitting bearings in the bearing-shields
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/52Polyphenylene sulphide [PPS]

Definitions

  • the present invention relates to a hydrodynamic bearing device.
  • Hydrodynamic bearing devices are spindle motors for information equipment, for example, magnetic disk devices such as HDD and FDD, optical disk devices such as CD-ROM, CD-R / RW, DVD-ROMZRAM, and magneto-optical disk devices such as MD and MO. It is suitable as a bearing device for a polygon scanner motor of a laser beam printer (LBP), a color wheel of a projector, or a small motor such as an electric device such as an axial fan.
  • LBP laser beam printer
  • a color wheel of a projector or a small motor such as an electric device such as an axial fan.
  • the various motors are required to have high speed, low cost, low noise, and the like.
  • One of the components that determine these required performances is a bearing device that supports the spindle of the motor.
  • this type of bearing device the use of a hydrodynamic bearing device having characteristics excellent in the required performance has been used. Considered or actually used.
  • This type of hydrodynamic bearing device has a dynamic pressure generating portion for generating a dynamic pressure in the lubricating fluid in the bearing gap and a non-dynamic pressure generating portion (a so-called perfect circle bearing). It is roughly divided into
  • Patent Document 1 discloses a hydrodynamic bearing device used in a spindle motor of a disk drive device such as an HDD.
  • This bearing device includes a bottomed cylindrical housing, a bearing sleeve fixed to the inner periphery of the housing, and a shaft member having a flange portion that is inserted into the inner periphery of the bearing sleeve and projects to the outer diameter side. .
  • the shaft member rotates, fluid dynamic pressure is generated in the radial bearing gap and the thrust bearing gap formed between the shaft member and the fixed member (bearing sleeve, housing, etc.), and the shaft member is caused by this fluid dynamic pressure.
  • the bearing device described in Patent Document 2 includes a housing having a cylindrical inner peripheral surface, a bearing sleeve fixed to the inner periphery, and a shaft inserted into the inner periphery of the bearing sleeve. Part And a disk hub attached to the shaft member.
  • the shaft member rotates, fluid dynamic pressure is generated in the radial bearing gap formed between the shaft member and the bearing sleeve and in the thrust bearing gap formed between the disk hub and the housing.
  • the shaft member and the disc hub are supported in a non-contact manner.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2000-291648
  • Patent Document 2 JP 2005-188552 A
  • an object of the present invention is to provide a fluid dynamic bearing device that has high durability and can be manufactured at low cost.
  • a rotating body composed of a shaft portion and a hub portion integrally or separately attached to the shaft portion, and the shaft portion is inserted into the inner periphery.
  • a fluid bearing device that includes a fixed body and rotatably supports the rotating body with an oil film formed in a bearing gap between the fixed body and the hub portion, at least a portion of the hub portion facing the bearing gap is It is characterized in that it is formed of a rosin composition containing bilen sulfide (PPS) as a base resin and carbon fiber as a filler.
  • PPS bilen sulfide
  • the cost can be reduced and the weight can be reduced as compared with the case where the hub portion is formed with metal.
  • the hub part is molded with a resin composition containing PPS as a base resin, it is expensive. It became clear that wear resistance was obtained.
  • carbon fiber is further added to the resin material as a filler, the strength and wear resistance can be further improved and conductivity can be imparted. As a result, the conductivity of the rotating body and the fixed body is ensured, so that problems caused by static electricity being charged to the rotating body can be solved.
  • the blending amount of the carbon fiber in the coconut is preferably set within a range of 20 to 35 vol%. If the amount of carbon fiber exceeds 35 vol%, the fluidity of the resin material during injection molding will be poor and it will be difficult to mold the parts. If the amount is below 20 vol%, the hub will have the required strength. This is because it cannot be done.
  • the present invention provides a hydrodynamic bearing device that rotatably supports a rotating body with a rotating body, a fixed body, and an oil film formed in a bearing gap between the fixed body and the rotating body.
  • a resin composition using PPS as a base resin is formed of a resin composition using PPS as a base resin.
  • the strength can be improved and the wear resistance can be improved.
  • grease is an insulating material
  • the static electricity of the rotator generated by friction with air is charged to the rotator, and the potential difference between the magnetic disk and the magnetic head. Or damage to peripheral equipment due to electrostatic discharge.
  • carbon fiber is included in the filler in the resin member, it is possible to secure the current-carrying property on the rotating side and the fixed side and solve the problem.
  • the blending amount of the carbon fiber in the resin is preferably set within a range of 10 to 35 vol%. If the amount of carbon fiber exceeds 35 vol%, the fluidity of the resin material during injection molding will be poor and it will be difficult to mold parts. On the other hand, if it is less than 10 vol%, the effect of blending carbon fiber cannot be sufficiently obtained.
  • PAN-based carbon fiber having characteristics excellent in strength and elastic modulus can be used.
  • the motor having the hydrodynamic bearing device, the rotor magnet, and the stator coil described above has excellent wear resistance and excellent characteristics in terms of durability and rotational accuracy.
  • a fluid dynamic bearing device that has high durability and can be manufactured at low cost can be obtained.
  • FIG. 1 conceptually shows a configuration example of a spindle motor for information equipment incorporating a hydrodynamic bearing device 1 according to a first embodiment of the present invention.
  • This spindle motor is used in a disk drive device such as an HDD, and is opposed to a hydrodynamic bearing device 1 that rotatably supports a rotating body 3 having a shaft portion 2 through a radial gap, for example.
  • a stator coil 4a, a rotor magnet 4b, and a motor bracket 5 are provided.
  • the stator coil 4 a is attached to the outer diameter side of the motor bracket 5, and the rotor magnet 4 b is attached to the outer periphery of the rotating body 3.
  • the housing 7 of the hydrodynamic bearing device 1 is fixed to the inner periphery of the motor bracket 5.
  • the rotating body 3 holds one or more disk-shaped information recording media (hereinafter simply referred to as disks) such as magnetic disks.
  • disks disk-shaped information recording media
  • the rotor magnet 4b is rotated by the electromagnetic force generated between the stator coil 4a and the rotor magnet 4b.
  • the disk held by the rotating body 3 rotates as a unit.
  • FIG. 2 shows the hydrodynamic bearing device 1.
  • the hydrodynamic bearing device 1 includes a fixed body 6 and a rotating body 3 that rotates relative to the fixed body 6.
  • the fixed body 6 includes a housing 7 and a bearing sleeve 8 fixed to the housing 7, and the rotating body 3 includes a shaft portion 2 and a hub portion 9 disposed on the opening side of the housing 7.
  • the side sealed with the lid member 10 is the lower side, and the side opposite to the sealing side is The upper side will be described below.
  • the hub portion 9 is inserted into the shaft portion 2 formed separately and is injection-molded with a resin material.
  • the disc portion 9a covers the opening side (upper side) of the housing 7, and the outer peripheral portion of the disc portion 9a. And a disc mounting surface 9c and a flange portion 9d provided on the outer periphery of the cylindrical portion 9b.
  • a disk (not shown) is fitted on the outer periphery of the disk portion 9a and placed on the disk mounting surface 9c. Then, the disc is held on the hub portion 9 by appropriate holding means (such as a clamper) not shown.
  • the shaft portion 2 is formed of a metal material such as stainless steel.
  • An annular groove 2c is formed in a portion of the outer peripheral surface 2a of the shaft portion 2 where the hub portion 9 is attached, and acts as a retaining member for the shaft portion 2 from the hub portion 9.
  • a flange portion 20 made of, for example, a metal material is fixed to the lower end of the shaft portion 2 by means such as screw connection.
  • the bearing sleeve 8 can be formed of a metal material such as a copper alloy such as brass or an aluminum alloy, or can be formed of a porous body made of sintered metal. In this embodiment, it is formed in a cylindrical shape with a porous body of sintered metal mainly composed of copper.
  • a region where a plurality of dynamic pressure grooves are arranged as a radial dynamic pressure generating portion is formed on the entire inner surface or a part of the cylindrical region of the inner peripheral surface 8a of the bearing sleeve 8.
  • two regions in which a plurality of dynamic pressure grooves 8al and 8a2 are arranged in a herringbone shape are separated from each other in the axial direction.
  • This dynamic pressure groove forming region is opposed to the outer peripheral surface 2a of the shaft portion 2 as a radial bearing surface, and the first and second radial bearings are in contact with the outer peripheral surface 2a of the shaft portion 2 when the rotating body 3 rotates.
  • Form radial bearing clearances at sections Rl and R2 see Fig. 2).
  • a region where a plurality of dynamic pressure grooves are arranged in a spiral shape is formed on the entire lower surface 8c of the bearing sleeve 8 or a partial annular region, as a thrust dynamic pressure generating portion. Is done.
  • This dynamic pressure groove forming region faces the upper end surface 20a of the flange portion 20 as a thrust bearing surface, and the second thrust bearing is interposed between the upper end surface 20a of the flange portion 20 when the shaft portion 2 (rotating body 3) rotates.
  • Form a thrust bearing gap in part T2 (see Figure 2).
  • the louvering 7 is formed of a metal material in a cylindrical shape, has a shape in which both ends in the axial direction are opened, and the lower opening is sealed by the lid member 10.
  • the thrust dynamic pressure generating portion is provided with a plurality of members as shown in FIG. A region in which the dynamic pressure grooves 7al are arranged in a spiral shape is formed.
  • This dynamic pressure groove 7al formation region is opposed to the lower end surface 9al of the disk portion 9a of the hub portion 9 as a thrust bearing surface, and a first thrust, which will be described later, is formed between the lower end surface 9al and the rotating body 3 when rotating.
  • a thrust bearing gap in the bearing section T1 see Fig. 2.
  • the lid member 10 that seals the other end of the sleeve 7 is made of a metal material or a resin material, and is fixed to a step 7b provided on the inner peripheral side of the lower end of the housing 7.
  • the fixing means is not particularly limited.
  • means such as adhesion (including loose adhesion, press-fit adhesion), press-fit, welding (for example, ultrasonic welding), welding (for example, laser welding), a combination of materials, It can be selected as appropriate according to the required assembly strength and sealing performance.
  • the outer peripheral surface 8b of the bearing sleeve 8 is fixed to the inner peripheral surface 7c of the housing 7 by an appropriate means such as adhesion (including loose adhesion or press-fitting adhesion), press-fitting, or welding.
  • a tapered sealing surface 7d that is gradually enlarged in diameter upward is formed.
  • the tapered seal surface 7d forms an annular seal space S having a radial dimension gradually reduced from the lower side to the upper side of the housing 7 with the inner peripheral surface 9bl of the cylindrical portion 9b.
  • the seal space S communicates with the outer diameter side of the thrust bearing gap of the first thrust bearing portion T1 when the rotating body 3 rotates.
  • the fluid bearing device 1 is filled with lubricating oil, and the oil level of the lubricating oil is always maintained in the seal space S.
  • lubricating oil can be used.
  • the lubricating oil provided for a fluid dynamic bearing device for a disk drive device such as an HDD is required to have a low evaporation rate and low viscosity.
  • Ester lubricants such as octyl sebacate (DOS) and dioctylazelate (DOZ) are preferred.
  • the hub portion 9 is formed of a resin material, and the lower end surface 9 al of the disc portion 9a of the hub portion 9 is formed by the thrust bearing surface of the upper end surface 7a of the housing 7 and the first thrust bearing portion. Opposite through the thrust bearing clearance of T1.
  • the opposed surfaces slide against each other through these bearing gaps, so wear of the sliding surfaces is inevitable.
  • the housing 7 is made of metal as in this embodiment, the wear of the hub 9 made of resin progresses, and the gap width of the thrust bearing gap of the thrust bearing portion T1 becomes excessive. There is a risk that the bearing capacity of the bearing part T1 will decrease. Therefore, the hub part 9 has high wear resistance. It is necessary to select a resin material having wear properties.
  • the grease material of the hub portion 9 is required to keep the oil resistance against the lubricating oil, the outgas generation amount and the water absorption amount during use low.
  • high heat resistance is required in consideration of temperature changes in the operating atmosphere.
  • the base resin of the resin composition forming the hub portion 9 may be a crystalline resin such as poly-phenylene sulfide (PPS), liquid crystal polymer (LCP), or polyether ether ketone (PEEK). If so, the above conditions (abrasion resistance, oil resistance, low outgas resistance, low water absorption, heat resistance) are satisfied. Above all, PPS is available at a lower cost than other crystalline resins, and has excellent fluidity (melt viscosity) during molding, so it is a base resin for the hub 9 Especially suitable.
  • PPS poly-phenylene sulfide
  • LCP liquid crystal polymer
  • PEEK polyether ether ketone
  • PPS is generally produced by polycondensation reaction of sodium sulfate and paradichlorobenzene, and at the same time, contains sodium chloride sodium which is a by-product. If this sodium salt is eluted in the lubricating fluid (eg, lubricating oil) filled in the bearing, it may cause deterioration of the lubricating oil or change in viscosity, which may reduce the bearing performance. In addition, when the bearing is for HDD, such metal elements are deposited on the hard disk head, causing damage to the hard disk.
  • the lubricating fluid eg, lubricating oil
  • a solvent having a relative dielectric constant of at least 10 or more is preferable, preferably 20 or more, more preferably 50 or more.
  • water relative permittivity of about 80
  • ultrapure water is particularly preferable. Washing with such a solvent mainly removes Na from the PPS end groups, so the Na content in the PPS can be reduced (for example, 2000 ppm or less), and Na can be eluted into the lubricating oil. Can be prevented. It also has the advantage of increasing the crystallization rate by removing Na from the terminal group.
  • PPS is roughly classified into a cross-linked PPS, a semi-linear PPS, and a linear PPS depending on the structure.
  • the base resin of the hub composition 9 is used.
  • the power that can be used as a linear PPS is There are many that satisfy the matter.
  • the amount of Na ions eluted into the lubricating oil can be suppressed, and the surface of the disk or disk head (not shown) held by the hydrodynamic bearing device 1 or the rotating body 3 can be reduced. It is possible to prevent the precipitation of Na more reliably.
  • a reinforcing filler for example, carbon fiber, glass fiber, etc.
  • the hub part 9 can be strengthened and the hub part can be strengthened.
  • High dimensional stability can be obtained by suppressing the dimensional change accompanying the temperature change of 9.
  • the bearing gap during use can be controlled with high accuracy.
  • carbon fiber is the most preferred reinforced filler because it has the following characteristics.
  • the hub 9 Because of its low specific gravity and high strength, the hub 9 can be made lighter.
  • glass fiber which is also a fibrous reinforcing agent, is a key compound, so that a trace amount of silicon may elute over time.
  • the high conductivity of the carbon fiber is expressed, and sufficient conductivity (for example, 1. 1.10 6 ⁇ ′cm or less in volume resistance) can be imparted to the hub portion 9.
  • sufficient conductivity for example, 1. 1.10 6 ⁇ ′cm or less in volume resistance
  • Various carbon fibers such as PAN, Pitch, and gas phase synthesis can be used as the carbon fiber, but they have a relatively high tensile strength (preferably 3000 MPa or more) from the viewpoint of the reinforcing effect.
  • PAN-based carbon fiber is preferable as a material having particularly high electrical conductivity.
  • PAN-based carbon fiber one having the following size range can be used.
  • the carbon fiber is cut and shortened.
  • the strength, conductivity, and the like decrease significantly, and it becomes difficult to satisfy these required characteristics. Therefore, it is preferable to use longer fibers in consideration of fiber breakage during molding as the carbon fiber to be blended in the resin.
  • the average fiber length It is desirable to use carbon fibers of 100 ⁇ m or more (preferably lmm or more)! /.
  • the resin cured in the mold may be taken out, melted again, kneaded with the virgin resin composition, and reused (recycled).
  • some fibers will be recycled repeatedly, so if the initial fiber length in the resin is too long, the fiber will be significantly shorter than the original fiber length due to the cutting involved in recycling.
  • changes in the properties of the resin composition (such as a decrease in melt viscosity) become significant.
  • a decrease in melt viscosity is an important characteristic that affects the dimensional accuracy of a product.
  • the selection of the fiber length of the carbon fibers described above can be determined depending on what type of resin composition is used in the actual injection molding process. For example, when only a virgin resin composition is used, or when a recycled resin composition is mixed and used, and the ratio of the virgin resin composition is high, from the viewpoint of suppressing a decrease in strength, conductivity, etc. In addition, since the blending amount of carbon fibers can be reduced, it is preferable to use carbon fibers having the dimensional range described in (1) above. On the other hand, if the recycled resin composition is used at a high rate, carbon fibers with the size range described in (2) above should be used from the viewpoint of suppressing changes in the properties of the resin composition associated with the recycling. Is desirable.
  • any of the carbon fibers (1) and (2) the longer the fiber length, the better the connectivity between the fibers, so that the reinforcing effect and the conductive effect are enhanced.
  • the fiber diameter is shorter, the number of blends increases, which is effective for uniform product quality. Therefore, the higher the aspect ratio of the carbon fiber, the more preferable it is.
  • the average fiber diameter is suitably 5 to 20; ⁇ ⁇ in consideration of workability and availability.
  • the filling amount of the carbon fiber into the base resin is preferably 20 to 35 vol%. This is because when the carbon fiber filling amount is less than 20 vol%, the strength required for mounting the disk on the hub portion 9, particularly the tensile strength, is not obtained. When the filling amount exceeds 35 vol%, the hub portion 9 This is because the moldability of the resin deteriorates and it is difficult to obtain high dimensional accuracy.
  • the melt viscosity of a resin composition containing carbon fiber in the above base resin (PPS) is In order to fill the inside of the bitity with molten resin with high accuracy, it is better to keep the resin temperature and shear rate lOOOs- 1 at 500 Pa's or less at the time of resin injection molding. Therefore, it is desirable that the melt viscosity of the base resin (PPS) be lower than the above viscosity to compensate for the increase in viscosity due to the filling of various fillers such as carbon fibers. It is preferable to be 300P a ⁇ s or less.
  • the hub portion 9 is formed of a resin composition
  • the manufacturing cost is reduced and the impact resistance is improved by light weight compared to the case where the hub portion 9 is formed of a metal material.
  • PPS the base resin of the resin composition
  • the wear resistance is improved, and the fixed body 6 (the thrust bearing surface of the upper end surface 7a of the housing 7) and the bearing device when starting and stopping the bearing device are improved. Wear due to contact sliding can be suppressed.
  • a hub portion 9 having excellent mechanical strength, electrostatic removability, and dimensional stability can be obtained by mixing carbon fiber in an appropriate amount according to the application.
  • the metal shaft portion 2 is inserted into the hub portion 9 and integrally molded with a resin to form the rotating body 3.
  • the resin material expands and contracts as the ambient temperature rises and falls.
  • peeling or displacement may occur at the adhesion interface between the insert member and the grease portion. is there.
  • the disc is fitted on the outer periphery of the disk portion 9a of the hub portion 9, and is placed on the disc mounting surface 9c. If the difference in coefficient of linear expansion between the hub 9 and the disk is excessive, the gap between the inner diameter of the disk and the outer periphery of the disk 9a of the hub 9 will become a negative gap due to temperature fluctuations when using the bearing. Therefore, distortion may occur due to unnecessary stress applied to the disk.
  • the linear expansion coefficient of the resin material used for the hub portion should be within the above two limits (limit from the insert member, limit from the disk). It is necessary to select.
  • the inner peripheral surface 8a of the bearing sleeve 8 serves as a radial bearing surface (two upper and lower dynamic pressure grooves 8al and 8a2). Forming region) is opposed to the outer peripheral surface 2a of the shaft portion 2 via a radial bearing gap.
  • the lubricating oil in the radial bearing gap is pushed toward the axial center of the dynamic pressure grooves 8al and 8a2. And the pressure rises.
  • the dynamic pressure action of the dynamic pressure grooves 8al and 8a2 constitutes the first radial bearing portion R1 and the second radial bearing portion R2 that support the rotating body 3 in a non-contact manner in the radial direction.
  • the radial bearing gap, the thrust bearing gap of the second thrust bearing portion T2, the gap between the upper end surface 8d of the bearing sleeve 8 and the lower end surface 9al of the disk portion 9a of the hub portion 9, And the circulation groove 11 are filled with lubricating oil.
  • the lubricating oil is circulated so as to sequentially pass through each gap (including the circulation groove 11), it is possible to prevent the occurrence of negative pressure by preventing the collapse of the pressure balance in each gap.
  • the axial dimension X of the upper region is larger than the axial dimension Y of the lower region.
  • Lubricating oil can be circulated. The direction of circulation of the lubricating oil may be reversed, and if it is not particularly necessary, it is not necessary to give a bombing force difference to the dynamic pressure groove in the upper and lower regions.
  • FIG. 5 shows a hydrodynamic bearing device 101 according to the second embodiment of the present invention.
  • the hydrodynamic bearing device 101 is different from the first embodiment in that the shaft portion 2 and the hub portion 9 are integrally formed of resin and the housing 107 is formed of resin.
  • the surface of the first thrust bearing portion T1 facing through the thrust bearing gap that is, the upper end of the housing 107
  • Both the surface 107a and the lower end surface 9al of the disk portion 9a of the hub portion 9 are formed of grease. Since these surfaces slide in contact with the motor when the motor is started and stopped, it is necessary to form the surface with a highly wear-resistant resin material.
  • the housing 107 and the knob portion 9 are both formed of a resin composition using polyphenylene sulfide (PPS) as a base resin.
  • PPS polyphenylene sulfide
  • the filling amount of the carbon fiber to be blended in the resin composition is preferably 10 to 35 vol%, more preferably 15 to 25 vol%. This is because if the carbon fiber filling amount is less than 10 vol%, the reinforcing effect by the carbon fiber will not be sufficiently exerted, and the wear resistance at the sliding part of the housing 107 and the hub part 9 will be ensured.
  • FIG. 6 shows a hydrodynamic bearing device 201 according to the third embodiment of the present invention.
  • the shaft member 202 serving as the rotating body 3 has a composite structure composed of a shaft portion 202a formed of a metal material and a flange portion 202b formed of a resin material at the lower end thereof.
  • the fixed body 6 includes a nosing 207, a bearing sleeve 208 fixed to the inner periphery of the housing 207, and a lid member 210 that closes the lower opening of the housing 207.
  • a seal part 213 protruding inward is formed in the body.
  • the upper end surface 210a of the lid member 210 is formed with, for example, a region in which a plurality of dynamic pressure grooves are arranged in a spiral shape, and the lower end surface 208c of the bearing sleeve 208 has a similar shape. A region in which the dynamic pressure grooves are arranged is formed.
  • the first thrust bearing portion T11 is formed between the lower end surface 208c of the bearing sleeve 208 and the upper end surface 202bl of the flange rod 202b of the shaft rod member 202, and the upper end surface 210a of the lid member 210
  • a second thrust bearing portion T12 is formed between the lower end surface 202b2 of the flange portion 202b.
  • the flange portion 202b may be formed of only a resin, or may be a composite structure in which a metal mandrel is coated with a resin.
  • the flange portion 202b and the lid member 210 of the shaft member 202 are both P It is formed with a resin composition based on PS.
  • the cost and weight of the hydrodynamic bearing device 201 can be reduced.
  • the lid member 210 and the flange portion 202b facing each other through the thrust bearing gap of the second thrust bearing portion T12 can have excellent wear resistance, and both the members at the time of starting and stopping the motor can be provided. Wear due to contact sliding is suppressed.
  • FIG. 7 shows a hydrodynamic bearing device 301 according to a fourth embodiment of the present invention.
  • the housing 307 constituting the fixed body 6 and the seal portion 313 are formed separately, and the seal portion 313 is fixed to the inner periphery of the upper end portion of the housing 307 by means such as adhesion, press-fitting, or welding.
  • the lid member 310 is molded with a resin material integrally with the housing 307.
  • Both the lid member 310 and the flange portion 302b of the shaft member 302 are formed of a resin composition using PPS as a base resin. Note that the effects of this embodiment and the configuration other than those described above are the same as those of the third embodiment, and thus description thereof is omitted.
  • FIG. 8 shows a hydrodynamic bearing device 401 according to the fifth embodiment of the present invention.
  • the hydrodynamic bearing device 401 differs from the hydrodynamic bearing device according to the above-described embodiment in that a bearing sleeve 408 and a housing 407 are formed as a single body, and this integrated product constitutes the fixed body 6.
  • a radial bearing gap is formed between the inner peripheral surface 408 a of the bearing sleeve 408 and the outer peripheral surface 2 a of the shaft portion 2.
  • a first thrust bearing gap is formed between the upper end surface 407a of the housing 407 and the lower end surface 9a 1 of the disk portion 9a of the hub portion 9, and the flange portion of the lower end surface 408b of the bearing sleeve 408 and the shaft portion 2 is formed.
  • a second thrust bearing gap is formed between the upper end face 20a of the 20 and the upper end face 20a.
  • the circulation groove 11 is formed by a through hole that penetrates the bearing sleeve 408 and opens to the upper end surface 408d and the lower end surface 408b. Since other configurations are the same as those in the first embodiment, description thereof is omitted.
  • the housing 407 and the hub portion 9 are both formed of a resin composition containing PPS as a base resin, thereby reducing cost and weight. Further, the members facing each other through the first thrust bearing gap and the radial bearing gap have excellent wear resistance, and wear due to contact sliding of each member can be suppressed.
  • the case where carbon fiber is blended as a filler has been exemplified, but metal fiber, glass fiber, whisker, etc. in addition to carbon fiber, etc., if the required characteristics of the application to be used are satisfied.
  • the inorganic substance may be added.
  • PTFE polytetrafluoroethylene
  • carbon black can be blended as a conductive agent.
  • the hydrodynamic bearing device 1 (see Fig. 2) according to the first embodiment, the hydrodynamic bearing device 101 (see Fig. 5) according to the second embodiment, and the fluid according to the fifth embodiment.
  • the bearing device 401 (see FIG. 8)
  • a thrust bearing surface in which a plurality of dynamic pressure grooves are arranged is provided on the upper end surface of the housing (first thrust bearing portion T1), and a plurality of dynamic pressure grooves are provided on the lower end surface of the bearing sleeve.
  • first thrust bearing portion T1 first thrust bearing portion
  • second thrust bearing portion T2 the present invention can be similarly applied to a hydrodynamic bearing device provided with only the first thrust bearing portion T1.
  • the shaft portion 2 can be formed into a straight shape without the flange portion 20, and the housing 7 is integrally formed of a resin material with the lid member 10 as a bottom portion, thereby forming a bottomed cylinder. It can be in the form of a shape.
  • the radial bearing portions Rl, R2 and the thrust bearing portions Tl, ⁇ 2 are exemplified as a configuration in which the dynamic pressure action of the lubricating fluid is generated by the herringbone-shaped or spiral-shaped dynamic pressure grooves.
  • the present invention is not limited to this.
  • a so-called step-like dynamic pressure generating portion in which axial grooves are formed at a plurality of locations in the circumferential direction, or in the circumferential direction.
  • a so-called multi-arc bearing in which a plurality of arc surfaces are arranged and a wedge-shaped radial gap (bearing gap) is formed between the outer peripheral surfaces 2a of the opposed shaft portions 2 may be employed.
  • the inner peripheral surface 8a of the bearing sleeve 8 serving as a radial bearing surface is a perfect circular inner peripheral surface that does not have a dynamic pressure groove or arc surface as a dynamic pressure generating portion, and is opposed to this inner peripheral surface.
  • a so-called perfect circle bearing can be constituted by the perfectly circular outer peripheral surface 2a of the shaft portion 2 to be operated.
  • one or both of the thrust bearing portions Tl and ⁇ 2 are provided with a plurality of radial groove-shaped dynamic pressure grooves at predetermined intervals in the circumferential direction in a region that becomes a force thrust bearing surface that is not shown in the figure.
  • it can be constituted by a so-called step bearing or a corrugated bearing (the corrugated step type).
  • the bearing surface on which these dynamic pressure generating portions are formed is not limited to the fixed body side. It can also be provided on the side of the rotating body facing these.
  • a hub part test specimen was prepared from a plurality of resin compositions having different compositions, and the required characteristics of the hub part (rotating body) for the hydrodynamic bearing device were evaluated. Went. Fig. 9 and Fig. 10 show the material composition of the resin composition.
  • Linear type PPS Dainippon Ink and Chemicals, grade; LC 5G, (melting temperature 310 ° C, shear viscosity 10 3 S- 1 melt viscosity 280 Pa's)
  • Cross-linked PPS (l): Dainippon Ink & Chemicals, grade; T-4 (melt viscosity lOOPa's at a melting temperature of 310 ° C and a shear rate of 10 3 S- 1 )
  • Cross-linked PPS (2) Dainippon Ink & Chemicals, grade; MB—600 (melting temperature 31
  • Polyethersulfone Sumitomo Chemical Co., Ltd. grade; 4100G
  • PC Polycarbonate
  • PAN-based carbon fiber Toho Tenax Co., Ltd. grade: HM35—C6S (fiber diameter 7 ⁇ m, average fiber length: 6 mm, aspect ratio: 857, tensile strength: 3240 MPa)
  • Pitch-based carbon fiber Made by Mitsubishi Chemical Co., Ltd., grade; K223NM (fiber diameter 10 / ⁇ ⁇ , average fiber length; 6mm, aspect ratio; 600, tensile strength; 2400MPa)
  • Carbon Black Made by Mitsubishi Chemical Co., Ltd., Grade; # 3350B (Particle size; 24 nm)
  • Ketjen Black Made by Lionakuzo Co., Ltd., Grade; EC600JD (Particle size; 34 nm)
  • Arbolex Shikoku Kasei Kogyo Co., Ltd. Grade
  • Y Main component: Aluminum borate , Average diameter 0.5 to 1 m, average fiber length; 10 to 30 ⁇ m, aspect ratio; 10 to 60
  • Tismo Otsuka Igaku Co., Ltd., grade
  • N main component: potassium titanate
  • PTFE Made by Kitamura, grade; KTL—620
  • Evaluation items were (1) Abrasion resistance, (2) Conductivity, (3) Ion non-elution, (4) Tensile strength, (5) Flatness, (6) There are a total of 6 items of linear expansion coefficient. The evaluation methods and acceptance criteria for each evaluation item are shown below.
  • a ring-on-disk test in which a ring-shaped specimen formed of a material having the composition shown in Figs. 9 and 10 is pressed against a disk-shaped sliding mating material with a predetermined load in lubricating oil.
  • a ring-shaped resin molded body having a diameter of 21 mm (outer diameter) X 17 mm (inner diameter) X 3 mm (thickness) was used as a specimen.
  • a disk material made of SUS420 with a surface roughness of RaO. 04 ⁇ m, ⁇ 30mm (diameter) x 5mm (thickness) was used as the sliding counterpart.
  • di (2-ethylhexyl) azelate was used as the diester oil.
  • the kinematic viscosity of this lubricating oil at 40 ° C is 10.7 mm 2 Zs.
  • the contact pressure of the sliding material against the specimen was 0.25 MPa
  • the rotational speed (circumferential speed) was 1.4 mZmin
  • the test time was 14 h
  • the oil temperature was 80 ° C.
  • Regarding the pass / fail judgment criteria regarding ring wear depth, 3 m or less is passed ( ⁇ ), and those exceeding 3 m are rejected (X). ), And those that exceed are considered as rejected (X).
  • Volume resistance was measured by a four-probe method according to JIS K 7194 using test pieces made of materials having the compositions shown in FIGS. Acceptance criteria are: 1. 'pass below cm ( ⁇ ), 1. 0 10' ⁇ ⁇ 10 6 ⁇ was "11 unacceptable ones Yue Eru the ().
  • ions that can be analyzed by a column generally used in ion chromatography were used as detection target ions. If the following ions were not detected, the test was accepted ( ⁇ ), and if detected, the test was rejected (X).
  • Tensile strength was evaluated at a pulling speed of lOmmZmin using a No. 1 dumbbell made of a material having the composition shown in FIGS. 9 and 10 and defined by IS K7113.
  • the pass / fail judgment criteria were 100 MPa or higher as acceptable ( ⁇ ), and those not satisfying it as unacceptable (X).
  • the resin composition forming the hub portion 9 needs to be molded with high flatness.
  • a side gate with a diameter of lmm is provided on the side, and a drilled disk-shaped molded body with a diameter of 10 mm (outer diameter) X 7 mm (inner diameter) X 2 mm (thickness) is shown in Figs.
  • An injection molding is performed with the material of the composition, and this is used as a test piece for flatness test.
  • This test piece was placed on a rotating table of Talirond made by Taylor Hobson, and the test piece contacted with a probe on a measuring circle diameter of 8 mm was rotated 360 ° to measure the flatness of the test piece.
  • the pass / fail judgment criteria were flat (10) or less for flatness ( ⁇ ), and those exceeding 10 ⁇ m for failure (X).
  • the linear expansion coefficient of the resin composition was measured using TMA (thermomechanical property analyzer). The evaluation method is shown below.
  • (Ii) Set the test piece on the TMA. Set so that the measurement direction of the measurement probe is the diameter direction of the test piece so that the amount of thermal expansion in the diameter direction of the ring-shaped test piece can be measured.
  • (U) Measure the amount of thermal expansion of the set specimen under a measurement load of 0.05 N, a measurement temperature range of 25 ° C to 90 ° C, a heating rate of 5 ° C Zmin, and an atmospheric gas of nitrogen. The linear expansion coefficient was calculated. In this test, the linear expansion coefficient was measured in two directions, a diameter direction (MD) parallel to the flow direction of the resin during molding of the test piece and a diameter direction (TD) perpendicular to the flow direction.
  • MD diameter direction
  • TD diameter direction
  • the acceptance / rejection determination criteria are set in response to (A) a limit on the number of insert members and (B) a limit from the disc.
  • the linear expansion coefficient in the material of the insert member (shank) SU S420 25 ° C ⁇ 90 ° C; 1. 05 X 10- 5 ° C-, disk material glass (25 Linear expansion coefficient from ° C to 90 ° C; 0.65 X 10— 6 ° C—, the diameter gap between the hub and the disk when cold is 0.010 mm, the hub outside diameter when cold is 5 mm
  • the operating temperature range was 25 ° C to 90 ° C.
  • the coefficient of linear expansion of the resin is set within 4.0 times the coefficient of linear expansion of the insert member, peeling and displacement at the close contact interface between the hub part and the insert member can be avoided. Therefore, the upper limit value of the linear expansion coefficient of the resin composition due to the restriction of the insert member force is set to 4.2 X 10— — 1 .
  • FIG. 11 shows a summary of the pass / fail judgment criteria for the above evaluation tests.
  • Figures 12 and 13 show the test results. As shown in this test result, the resin composition of the example in which PPS (one with low ion elution) is used as a base resin and an appropriate amount of carbon fiber is blended satisfies all the evaluation criteria. Suitable for the material forming the hub.
  • Liquid crystal polymer Polyplastics Co., A950 (melt temperature 310 ° C, melt viscosity 40 Pa 's at a shear speed of 10 3 S _1)
  • Carbon fiber PAN type: Toho Tenax Co., Ltd., HM35-C6S (fiber diameter: 7 / ⁇ ⁇ , average fiber length: 6mm, tensile strength: 3240MPa)
  • Conductive agent Carbon black (grade; # 3350B, average particle size; 24 nm), manufactured by Mitsubishi Chemical Corporation
  • Inorganic compounds Shikoku Kasei Kogyo Co., Ltd., Arborex (grade; Y, main components; e Aluminum oxalate, average diameter; 0.5 ⁇ : L 0 / ⁇ ⁇ , average fiber length; 10-30 / ⁇ ⁇ , shape;
  • Mold release agent manufactured by Kitamura Co., Ltd., polytetrafluoroethylene (PTFE) (KTL-620)
  • a disk-shaped specimen serving as a stationary member and a ring-shaped specimen serving as a rotating member are formed, and the amount of wear with respect to each contact sliding is determined.
  • Other test conditions and pass / fail criteria are the same as in Example 1 above, and will not be described.
  • Fig. 15 and Fig. 16 show the test results.
  • Comparative Examples 1 to 4 shown in FIG. 16 when the base resin of the resin composition forming the ring-shaped specimen and the disk-shaped specimen is both LCP, or either When either one is LCP and the other is PPS, the wear depth of both specimens exceeds the standard value, so it cannot be said that it has sufficient wear resistance against sliding friction.
  • Examples 1 to 5 shown in FIG. 15 when the base resin of the resin composition forming the ring-shaped specimen and the disk-shaped specimen is PPS, Both the wear depths of the members are below the reference value. Therefore, if a resin composition containing PPS as a base resin is selected as both specimens for sliding friction, sufficient wear resistance can be obtained.
  • FIG. 1 is a cross-sectional view of a spindle motor incorporating a hydrodynamic bearing device 1 according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the hydrodynamic bearing device 1.
  • FIG. 3 is a sectional view of the bearing sleeve 8.
  • FIG. 4 is a top view of the housing 7.
  • FIG. 5 is a cross-sectional view of the hydrodynamic bearing device 101.
  • FIG. 6 is a cross-sectional view of the hydrodynamic bearing device 201.
  • FIG. 7 is a cross-sectional view of the hydrodynamic bearing device 301.
  • FIG. 8 is a cross-sectional view of a hydrodynamic bearing device 401.
  • FIG. 9 is a diagram showing the material composition of the greave composition used in the example in Example 1.
  • FIG. 10 is a diagram showing a material composition of a greave composition used in a comparative example in Example 1.
  • FIG. 11 is a diagram showing acceptance criteria for evaluation tests in Example 1.
  • FIG. 12 is a diagram showing test results of an example in Example 1.
  • FIG. 13 is a diagram showing test results of a comparative example in Example 1.
  • FIG. 14 is a diagram showing a material composition of a reference example in Example 2.
  • FIG. 15 is a view showing a comparative test result of an example in Example 2.
  • FIG. 16 is a view showing a comparative test result of a comparative example in Example 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

 流体軸受装置のハブ部を、ポリフェニレンサルファイド(PPS)をベース樹脂とし、且つ炭素繊維を配合した樹脂組成物で形成することで、耐摩耗性、導電性を向上させることができる。あるいは、流体軸受装置の固定体及び回転体のうち、軸受隙間を介して対向する部分を、何れもポリフェニレンサルファイド(PPS)をベース樹脂とする樹脂組成物で形成することで、優れた耐摩耗性を得ることができる。

Description

明 細 書
流体軸受装置
技術分野
[0001] 本発明は、流体軸受装置に関する。流体軸受装置は、情報機器、例えば HDD、 F DD等の磁気ディスク装置、 CD— ROM、 CD-R/RW, DVD— ROMZRAM等 の光ディスク装置、 MD、 MO等の光磁気ディスク装置などのスピンドルモータ用、レ 一ザビームプリンタ(LBP)のポリゴンスキャナモータ、プロジェクタのカラーホイ一ノレ、 あるいは電気機器、例えば軸流ファンなどの小型モータ用の軸受装置として好適で ある。
背景技術
[0002] 上記各種モータには、高回転精度の他、高速化、低コスト化、低騒音化などが求め られている。これらの要求性能を決定づける構成要素の一つに当該モータのスピンド ルを支持する軸受装置があり、近年では、この種の軸受装置として、上記要求性能 に優れた特性を有する流体軸受装置の使用が検討され、あるいは実際に使用され ている。
[0003] この種の流体軸受装置は、軸受隙間内の潤滑流体に動圧を発生させるための動 圧発生部を備えたものと、動圧発生部を備えていないもの(いわゆる真円軸受)とに 大別される。
[0004] 流体軸受装置の一例として、例えば HDD等のディスク駆動装置のスピンドルモー タで使用される動圧軸受装置が、特許文献 1に記載されている。この軸受装置は、有 底円筒状のハウジングと、ハウジングの内周に固定された軸受スリーブと、軸受スリー ブの内周に挿入され、外径側に張り出したフランジ部を有する軸部材とを備える。軸 部材の回転時には、軸部材と固定側の部材 (軸受スリーブ、ハウジング等)との間に 形成されたラジアル軸受隙間及びスラスト軸受隙間に流体動圧が発生し、この流体 動圧で軸部材が非接触支持される。
[0005] また、特許文献 2に記載されている軸受装置は、円筒状の内周面を有するハウジン グと、その内周に固定された軸受スリーブと、軸受スリーブの内周に挿入された軸部 材と、軸部材に取付けられたディスクハブとを備える。軸部材の回転時には、軸部材 と軸受スリーブとの間に形成されたラジアル軸受隙間、及びディスクハブとハウジング との間に形成されたスラスト軸受隙間に流体動圧が発生し、この流体動圧で軸部材 およびディスクハブが非接触支持される。
特許文献 1 :特開 2000— 291648号公報
特許文献 2 :特開 2005— 188552号公報
発明の開示
発明が解決しょうとする課題
[0006] 上記のような流体軸受装置は、情報機器の益々の高性能化に伴って必要とされる 高い軸受性能を確保すベぐ各部品の加工精度や組立精度を高める努力がなされ ている。その一方で、情報機器の低価格ィ匕の傾向に伴い、この種の流体軸受装置に 対するコスト低減の要求も益々厳しくなつて 、る。
[0007] 近年の流体軸受装置では、上記要求に応えるベぐ軸受装置の固定体 (例えばノ、 ウジング)や回転体 (例えば軸部材ゃディスクハブ)の榭脂化が検討されて 、る。その 一方、流体軸受装置では、その構造上、軸受隙間を介して対向する回転体と固定体 の一時的な接触摺動が避けられないため、榭脂製の部材が摩耗するおそれがある。
[0008] そこで、本発明は、高い耐久性を有すると共に、低コストに製作可能な流体軸受装 置の提供を目的とする。
課題を解決するための手段
[0009] 上記課題を解決するため、本発明では、軸部と、軸部と一体又は別体に取付けら れたハブ部とで構成される回転体と、内周に軸部が挿入された固定体とを備え、固 定体とハブ部との間の軸受隙間に形成した油膜で回転体を回転自在に支持する流 体軸受装置において、ハブ部の少なくとも軸受隙間に面する部分を、ポリフ 二レン サルファイド (PPS)をベース榭脂とし、充填材として炭素繊維を配合した榭脂組成物 で形成したことを特徴とする。
[0010] このように、ハブ部の少なくとも軸受隙間に面する部分を榭脂糸且成物で形成するこ とで、金属で形成する場合に比べ低コスト化、軽量ィ匕が図られる。また、本発明者ら の検証によれば、ハブ部を PPSをベース榭脂とする榭脂組成物で成形すると、高い 耐摩耗性が得られることが明らかとなった。この榭脂材料に、さらに充填材として炭素 繊維を配合すると、強度ゃ耐摩耗性がより向上すると共に、導電性を付与することが できる。これにより、回転体と固定体の通電性が確保されるため、回転体に静電気が 帯電することによる不具合を解消することができる。
[0011] また、榭脂中における炭素繊維の配合量は、 20〜35vol%の範囲内に設定すると 良い。炭素繊維の配合量が 35vol%を越えると、射出成形時における榭脂材料の流 動性が悪ィ匕し、部品の成形が困難となり、 20vol%を下回ると、ハブ部に必要な強度 を得ることができな 、ためである。
[0012] また、本発明は、回転体と、固定体と、固定体と回転体との間の軸受隙間に形成し た油膜で回転体を回転自在に支持ずる流体軸受装置において、回転体と固定体の うち、少なくとも軸受隙間を介して対向する部分を何れも PPSをベース榭脂とする榭 脂組成物で形成したことを特徴とする。
[0013] このように、回転体と固定体のうち、少なくとも軸受隙間を介して対向する部分を榭 脂組成物で形成すると、金属材料で形成する場合と比べ、低コスト化、軽量化が図ら れる。また、本発明者らの検証によれば、接触摺動する部材を何れも PPSをベース 榭脂とする榭脂組成物で成形すると、高い耐摩耗性が得られることが明らかとなった
[0014] 上記の榭脂材料を、充填材として炭素繊維を含むものとすると、強度ゃ耐摩耗性が 向上すると共に、導電性を付与することができる。一般に榭脂は絶縁材料であるため 、上述のように各部材を榭脂化した場合、空気との摩擦によって発生した回転体の静 電気が回転体に帯電し、磁気ディスクと磁気ヘッド間の電位差を生じたり、静電気の 放電によって周辺機器の損傷を招くおそれがある。これに対し、榭脂部材中の充填 材に炭素繊維を含めれば、回転側と固定側の通電性を確保してカゝかる不具合を解 消することができる。
[0015] この場合、榭脂中における炭素繊維の配合量は、 10〜35vol%の範囲内に設定 すると良い。炭素繊維の配合量が 35vol%を越えると、射出成形時における榭脂材 料の流動性が悪ィ匕し、部品の成形が困難となる。また、 10vol%を下回ると、炭素繊 維を配合することによる効果を十分に得ることができない。 [0016] 以上のような榭脂組成物に配合する炭素繊維としては、強度や弾性率に優れた特 性を有する PAN系の炭素繊維を使用することができる。
[0017] また、以上のような榭脂組成物に配合する炭素繊維として、アスペクト比が 6. 5以 上であるものを用いると、補強効果、導電効果等がよりいつそう顕著に発揮される。
[0018] 以上に述べた流体軸受装置と、ロータマグネットと、ステータコイルとを有するモー タは、耐摩耗性に優れ、耐久性や回転精度の面で優れた特性を有する。
発明の効果
[0019] 本発明によれば、高い耐久性を有すると共に、低コストに製作可能な流体軸受装 置が得られる。
発明を実施するための最良の形態
[0020] 以下、本発明の第 1の実施形態を図 1〜図 4に基づいて説明する。
[0021] 図 1は、本発明の第 1の実施形態に係る流体軸受装置 1を組込んだ情報機器用ス ピンドルモータの一構成例を概念的に示している。このスピンドルモータは、 HDD等 のディスク駆動装置に用いられるもので、軸部 2を有する回転体 3を回転自在に非接 触支持する流体軸受装置 1と、例えば半径方向のギャップを介して対向させたステー タコイル 4aおよびロータマグネット 4bと、モータブラケット 5とを備えている。ステータコ ィル 4aはモータブラケット 5の外径側に取付けられ、ロータマグネット 4bは回転体 3の 外周に取付けられている。流体軸受装置 1のハウジング 7は、モータブラケット 5の内 周に固定される。回転体 3には、図示は省略するが、磁気ディスク等のディスク状情 報記録媒体 (以下、単にディスクという。)が 1枚又は複数枚保持される。このように構 成されたスピンドルモータにおいて、ステータコイル 4aに通電すると、ステータコイル 4aとロータマグネット 4bとの間に発生する電磁力でロータマグネット 4bが回転し、これ に伴って、回転体 3および回転体 3に保持されたディスクが一体に回転する。
[0022] 図 2は、流体軸受装置 1を示している。この流体軸受装置 1は、固定体 6と、固定体 6に対して相対回転する回転体 3とで構成される。固定体 6は、ハウジング 7と、ハウジ ング 7に固定された軸受スリーブ 8とを備え、回転体 3は、軸部 2と、ハウジング 7の開 口側に配置されたハブ部 9とを備える。なお、説明の便宜上、軸方向両端に形成され るハウジング 7開口部のうち、蓋部材 10で封口される側を下側、封口側と反対の側を 上側として以下説明する。
[0023] ハブ部 9は、別体に形成された軸部 2をインサートして榭脂材料で射出成形され、 ハウジング 7の開口側(上側)を覆う円盤部 9aと、円盤部 9aの外周部から軸方向下方 に延びた筒状部 9bと、筒状部 9bの外周に設けられたディスク搭載面 9cおよび鍔部 9 dとで構成される。図示されていないディスクは、円盤部 9aの外周に外嵌され、デイス ク搭載面 9cに載置される。そして、図示しない適当な保持手段 (クランパなど)によつ てディスクがハブ部 9に保持される。
[0024] 軸部 2は、ステンレス鋼などの金属材料で形成される。軸部 2の外周面 2aのうち、ハ ブ部 9が取付けられる部分には、環状溝 2cが形成され、軸部 2のハブ部 9からの抜け 止めとして作用する。軸部 2の下端には、例えば金属材料で形成されたフランジ部 2 0が、ねじ結合等の手段により固定される。
[0025] 軸受スリーブ 8は、例えば真ちゆう等の銅合金やアルミ合金などの金属材料で形成 することができ、あるいは、焼結金属からなる多孔質体で形成することもできる。この 実施形態では、銅を主成分とする焼結金属の多孔質体で円筒状に形成される。
[0026] 軸受スリーブ 8の内周面 8aの全面又は一部円筒領域には、ラジアル動圧発生部と して複数の動圧溝を配列した領域が形成される。この実施形態では、例えば図 3に 示すように、複数の動圧溝 8al、 8a2をへリングボーン形状に配列した領域が軸方向 に離隔して 2箇所形成される。この動圧溝形成領域は、ラジアル軸受面として軸部 2 の外周面 2aと対向し、回転体 3の回転時には、軸部 2の外周面 2aとの間に第 1およ び第 2ラジアル軸受部 Rl、 R2のラジアル軸受隙間を形成する(図 2を参照)。
[0027] 軸受スリーブ 8の下端面 8cの全面または一部環状領域には、スラスト動圧発生部と して、例えば図示は省略するが、複数の動圧溝をスパイラル形状に配列した領域が 形成される。この動圧溝形成領域は、スラスト軸受面としてフランジ部 20の上側端面 20aと対向し、軸部 2 (回転体 3)の回転時には、フランジ部 20の上側端面 20aとの間 に第 2スラスト軸受部 T2のスラスト軸受隙間を形成する(図 2を参照)。
[0028] ノ、ウジング 7は金属材料で円筒状に形成され、その軸方向両端を開口した形状を なし、下側の開口部を蓋部材 10で封口している。ノ、ウジング 7の上端面 7aの全面ま たは一部環状領域には、スラスト動圧発生部として、例えば図 4に示すように複数の 動圧溝 7alをスパイラル形状に配列した領域が形成される。この動圧溝 7al形成領 域は、スラスト軸受面としてハブ部 9の円盤部 9aの下側端面 9alと対向し、回転体 3 の回転時には、下側端面 9alとの間に後述する第 1スラスト軸受部 T1のスラスト軸受 隙間を形成する(図 2を参照)。
[0029] ノ、ウジング 7の他端側を封口する蓋部材 10は、金属材料あるいは榭脂材料で形成 され、ハウジング 7の下端内周側に設けられた段部 7bに固定される。ここで、固定手 段は特に限定されず、例えば接着 (ルーズ接着、圧入接着を含む)、圧入、溶着 (例 えば超音波溶着)、溶接 (例えばレーザ溶接)などの手段を、材料の組合せや要求さ れる組付け強度、密封性などに合わせて適宜選択することができる。
[0030] ハウジング 7の内周面 7cには、軸受スリーブ 8の外周面 8bが、例えば接着(ルーズ 接着や圧入接着を含む)、圧入、溶着等の適宜の手段で固定される。
[0031] ハウジング 7の外周には、上方に向かって漸次拡径するテーパ状のシール面 7dが 形成される。このテーパ状のシール面 7dは、筒状部 9bの内周面 9blとの間に、ハウ ジング 7の下方から上方に向けて半径方向寸法が漸次縮小した環状のシール空間 S を形成する。このシール空間 Sは、回転体 3の回転時、第 1スラスト軸受部 T1のスラス ト軸受隙間の外径側と連通して ヽる。
[0032] 流体軸受装置 1の内部には潤滑油が充填され、潤滑油の油面は常にシール空間 S 内に維持される。潤滑油としては、種々のものが使用可能であるが、特に HDD等の ディスク駆動装置用の流体軸受装置に提供される潤滑油には、低蒸発率及び低粘 度性が要求され、例えばジォクチルセバケート(DOS)、ジォクチルァゼレート(DOZ )等のエステル系潤滑油が好適である。
[0033] 上述のように、ハブ部 9は榭脂材料で成形され、ハブ部 9の円盤部 9aの下側端面 9 alは、ハウジング 7の上端面 7aのスラスト軸受面と第 1スラスト軸受部 T1のスラスト軸 受隙間を介して対向する。モータの起動及び停止時などには、これら軸受隙間を介 して対向する面同士が接触摺動するため、摺動面の摩耗は避けられない。特に、本 実施形態のようにハウジング 7が金属製の場合、榭脂製のハブ部 9の摩耗が進行し、 スラスト軸受部 T1のスラスト軸受隙間の隙間幅が過大となることにより、軸受のスラス ト軸受部 T1による支持力が低下するおそれがある。よって、ハブ部 9には高い耐摩 耗性を有する榭脂材料を選定する必要がある。
[0034] また、ハブ部 9の榭脂材料は、潤滑油に対する耐油性や、使用時のアウトガス発生 量や吸水量を低く抑えることが必要となる。また、使用雰囲気下での温度変化を考慮 して、高い耐熱性も要求される。
[0035] ハブ部 9を形成する榭脂組成物のベース榭脂が、結晶性榭脂、例えばポリフエ-レ ンサルファイド(PPS)、液晶ポリマー(LCP)、或いはポリエーテルエーテルケトン(P EEK)等であれば、上記条件 (耐摩耗性、耐油性、低アウトガス性、低吸水性、耐熱 性)を満たす。中でも PPSは、他の結晶性榭脂に比べて安価に入手可能であり、力 つ成形時の流動性 (溶融粘度)〖こも優れた榭脂であるため、ハブ部 9用のベース榭 脂として特に適している。
[0036] ところで、 PPSは、一般的に硫ィ匕ナトリウムとパラジクロロベンゼンの重縮合反応に より製造され、同時に副生成物である塩ィ匕ナトリウムを含む。この塩ィ匕ナトリウムが、軸 受内部に充填される潤滑流体 (例えば潤滑油)中に溶出すると、潤滑油の劣化や粘 度変化の原因となり、軸受性能が低下する恐れがある。また、軸受が HDD用である 場合、このような金属元素はハードディスクのヘッド上に析出し、ハードディスクの破 損の原因となる。
[0037] 力かる不具合を防止するため、適当な溶媒を用いて PPSを洗浄する必要がある。
洗浄するための溶媒としては、少なくとも 10以上の比誘電率を有するものであれば 良ぐ好ましくは 20以上、より好ましくは 50以上のものであればなお良い。さらに環境 面も考慮すると、例えば水(比誘電率約 80)が好ましぐ特に超純水が好ましい。この ような溶媒で洗浄を行うことにより、主に PPS末端基の Naが取り除かれるため、 PPS 中の Na含有量を低減 (例えば、 2000ppm以下)させることができ、 Naの潤滑油への 溶出を防止できる。また、末端基の Naを取り除くことで、結晶化速度が速まるメリットも 有する。
[0038] PPSは、その構造によって、架橋型 PPSと、セミリニア型 PPSと、リニア型 PPSとに 大別される。何れの PPSであっても、 Na含有量が 2000ppm以下のもの、より好まし くは lOOOppm以下のもの、さらに好ましくは 500ppm以下のものであれば、ハブ部 9 の榭脂組成物のベース榭脂として使用可能である力 中でもリニア型 PPSはこの条 件を満たすものが多い。このような榭脂組成物を使用することで、潤滑油中への Naィ オン溶出量を抑え、流体軸受装置 1や、回転体 3に保持されたディスク、あるいはディ スクヘッド(図示省略)表面に Naが析出するのをより確実に防止できる。
[0039] 上記の PPSをベース榭脂とする榭脂組成物に強化充填剤 (例えば、炭素繊維、ガ ラス繊維等)を配合すれば、ハブ部 9の高強度化が図られると共に、ハブ部 9の温度 変化に伴う寸法変化を抑えて高い寸法安定性を得ることができる。この結果、使用時 における軸受隙間を高精度に制御することが可能となる。中でも、以下の特性を有す ることから、炭素繊維が最も好まし ヽ強化充填剤である。
( 1 )繊維自体の引張強さが高い。
(2)母材との接着性が高ぐ少量の添加で榭脂組成物の高強度化に有効に作用す る。
(3)低比重かつ高強度のため、ハブ部 9の軽量ィ匕が可能である。
(4)イオン溶出しないため、上述のイオン溶出による不具合が起こらない。(例えば、 同じく繊維状の強化剤であるガラス繊維は、ケィ酸ィ匕合物であるため、経時的に微量 のシリコンが溶出する可能性がある。 )
(5)炭素繊維の持つ高!ヽ導電性が発現され、ハブ部 9に充分な導電性 (例えば体積 抵抗で 1. Ο Χ 106Ω 'cm以下)を付与することができる。これにより、使用時にディス クに帯電する静電気を、回転体 3及び固定体 6を介して接地側部材 (モータブラケット 5など)に逃がすことができる。
[0040] 炭素繊維には、例えば PAN系や Pitch系、気相合成系など種々のものが使用可 能であるが、補強効果の観点から、比較的高い引張強度 (好ましくは 3000MPa以上 )を有するものが好ましぐ特に高い導電性を併せ持つものとしては、 PAN系炭素繊 維が好ましい。
[0041] この PAN系炭素繊維としては、以下の寸法範囲のものを使用することができる。
[0042] (1)溶融榭脂を混練して射出成形する際には、炭素繊維が裁断されて短繊維化する 。短繊維化が進行すると、強度や導電性等の低下が顕著となり、これらの要求特性を 満足することが難しくなる。従って、榭脂に配合する炭素繊維としては、成形時の繊 維の折れを見込んで長めの繊維を使用することが好ましぐ具体的には平均繊維長 100 μ m以上 (好ましくは lmm以上)の炭素繊維を使用するのが望まし!/、。
(2)その一方、射出成形工程においては、金型内で硬化した榭脂を取り出し、これを 再度溶融させ、バージン榭脂組成物と混練して再使用(リサイクル使用)する場合が ある。この場合、一部の繊維は繰返しリサイクルされることになるので、榭脂中の当初 の繊維長が長すぎる場合には、リサイクルに伴う裁断により、繊維が当初の繊維長に 比べて著しく短くなつて、榭脂組成物の特性変化 (溶融粘度の低下等)が顕著になる 。特に溶融粘度の低下は、製品の寸法精度に影響する重要な特性である。かかる特 性変化を最小限に抑えるため、繊維長はある程度短い方が好ましぐ具体的には平 均繊維長を 500 m以下 (好ましくは 300 μ m以下)とするのが望まし ヽ。
[0043] 以上に述べた炭素繊維の繊維長の選択は、実際の射出成形工程で如何なる榭脂 組成物を使用するかによって定めることができる。例えばバージン榭脂組成物のみを 使用する場合、あるいはリサイクル榭脂組成物を混合使用し、かつバージン榭脂組 成物の比率が高い場合には、強度や導電性等の低下を抑制する観点から、また、炭 素繊維の配合量を低減できることから、上記(1)で述べた寸法範囲の炭素繊維を使 用するのが好ましい。一方、リサイクル榭脂組成物の使用比率が高い場合には、リサ イタルに伴う榭脂組成物の特性変化を抑制する観点から、上記(2)で述べた寸法範 囲の炭素繊維を使用するのが望ましい。
[0044] なお、(1)および(2)の何れの炭素繊維でも、繊維長が長いほど繊維同士の連結 性が向上するため、補強効果や導電効果が高まる。また、繊維径が短いほど配合本 数が増えるため、製品品質の均一化に有効である。従って、炭素繊維のアスペクト比 は大きいほど好ましぐ具体的には 6. 5以上であることが望ましい。また、その平均繊 維径は、作業性や入手性を考慮すると、 5〜20 ;ζ ΐηが適当である。
[0045] 上述の炭素繊維による補強効果ゃ静電除去効果等を充分に発揮するため、炭素 繊維のベース榭脂への充填量は 20〜35vol%とするのがよい。これは、炭素繊維の 充填量が 20vol%未満だと、ハブ部 9にディスクを搭載するために必要な強度、特に 引張強さが得られず、充填量が 35vol%を超えると、ハブ部 9の成形性が低下し、高 い寸法精度を得ることが困難になるためである。
[0046] 上記のベース榭脂 (PPS)に炭素繊維を配合した榭脂組成物の溶融粘度は、キヤ ビティー内を溶融樹脂で高精度に充填するため、樹脂の射出成形時の樹脂温度、 せん断速度 lOOOs— 1において 500Pa' s以下に抑えるのがよい。従って、ベース榭脂 (PPS)の溶融粘度は、炭素繊維等の各種充填剤の充填による粘度増加を補償する ためにも、上記粘度よりも低いことが望ましぐさらに望ましくは、上記条件下で 300P a · s以下であることが好まし 、。
[0047] 以上で述べたように、ハブ部 9を榭脂組成物で形成すれば、金属材料で形成する 場合に比べ、製造コストが低減され、軽量ィ匕による耐衝撃性の向上も図られる。また 、榭脂組成物のベース榭脂を PPSとすることで、耐摩耗性が向上し、軸受装置の起 動、停止時などにおける固定体 6 (ハウジング 7の上端面 7aのスラスト軸受面)との接 触摺動による摩耗を抑えることができる。さらには、炭素繊維を用途に応じて適量配 合することで、機械的強度、静電除去性、寸法安定性にも優れたハブ部 9を得ること ができる。
[0048] 本実施形態では、ハブ部 9に金属製の軸部 2をインサートして榭脂で一体成形し、 回転体 3を形成する。実際の軸受の使用時において、雰囲気温度が上昇'下降する ことにより、榭脂材料は膨張'収縮する。このとき、インサート部材 (軸部 2)と榭脂部( ハブ部 9)との線膨張係数の差が過大だと、インサート部材と榭脂部との密着界面で 、剥離や変位が生じるおそれがある。
[0049] また、ディスクはハブ部 9の円盤部 9aの外周に外嵌され、ディスク搭載面 9cに載置 される。ハブ部 9とディスクとの線膨張係数の差が過大だと、軸受の使用時の温度変 動によって、ディスクの内径とハブ部 9の円盤部 9aの外周との間の隙間が負隙間とな り、ディスクに不要な応力が加わることで歪みが生じる恐れがある。
[0050] 上記のような不具合を回避するため、ハブ部に使用する榭脂材料の線膨張係数は 、上記二つの制限 (インサート部材からの制限、ディスクからの制限)の範囲内となる ものを選定する必要がある。
[0051] 上記構成の流体軸受装置 1において、軸部 2 (回転体 3)の回転時、軸受スリーブ 8 の内周面 8aのラジアル軸受面となる領域 (上下 2箇所の動圧溝 8al、8a2形成領域) は、軸部 2の外周面 2aとラジアル軸受隙間を介して対向する。そして、軸部 2の回転 に伴い、上記ラジアル軸受隙間の潤滑油が動圧溝 8al、 8a2の軸方向中心側に押し 込まれ、その圧力が上昇する。このような動圧溝 8al、 8a2の動圧作用によって、回 転体 3をラジアル方向に非接触支持する第 1ラジアル軸受部 R1と第 2ラジアル軸受 部 R2とがそれぞれ構成される。
[0052] これと同時に、ハウジング 7の上端面 7aのスラスト軸受面となる領域 (動圧溝 7al形 成領域)と、これに対向するハブ部 9の円盤部 9aの下側端面 9alとの間のスラスト軸 受隙間、および軸受スリーブ 8の下端面 8c (動圧溝形成領域)とこれに対向するフラ ンジ部 20の上側端面 20aとの間のスラスト軸受隙間に、動圧溝の動圧作用により潤 滑油の油膜がそれぞれ形成される。そして、これら油膜の圧力によって、回転体 3を スラスト方向に非接触支持する第 1スラスト軸受部 T1と第 2スラスト軸受部 T2とがそれ ぞれ構成される。
[0053] 本発明においては、ラジアル軸受隙間、第 2スラスト軸受部 T2のスラスト軸受隙間、 軸受スリーブ 8の上端面 8dとハブ部 9の円盤部 9aの下側端面 9alとの間の隙間、お よび循環溝 11がそれぞれ潤滑油で満たされる。この際、潤滑油を、各隙間 (循環溝 1 1を含む)を順次通過するよう循環させれば、各隙間での圧力バランスの崩れを防止 して負圧発生防止に努めることができる。図 3では、かかる循環流の発生手段として、 第 1ラジアル軸受部 R1の動圧発生部となる動圧溝 8alにおいて、上側領域の軸方 向寸法 Xを下側領域の軸方向寸法 Yよりも大きくすることにより、上側領域と下側領域 でのボンビング力の差を設けた構造を例示している。この場合、ラジアル軸受隙間→ 第 2スラスト軸受部 T2のスラスト軸受隙間→循環溝 11→軸受スリーブ 8の上端面 8d とハブ部 9の円盤部 9aの下側端面 9alとの間の隙間、の順に潤滑油を循環させるこ とが可能となる。潤滑油の循環方向はこれとは逆でもよぐまた特に必要がなければ、 あえて上下の領域で動圧溝にボンビング力差を与える必要もない。
[0054] 以上、本発明の実施形態を説明したが、本発明は、この実施形態に限定されるもの ではない。
[0055] 図 5に、本発明の第 2の実施形態に係る流体軸受装置 101を示す。この流体軸受 装置 101は、軸部 2とハブ部 9とが樹脂で一体成形されると共に、ハウジング 107が 榭脂で形成される点で、上記第 1の実施形態と異なる。この構成〖こよると、第 1スラスト 軸受部 T1のスラスト軸受隙間を介して対向する面、すなわちハウジング 107の上端 面 107aとハブ部 9の円盤部 9aの下側端面 9alとが何れも榭脂で形成される。これら の面は、モータの起動及び停止時などに接触摺動するため、高い耐摩耗性を有する 榭脂材料で形成する必要がある。
[0056] この点に鑑み、後述する本発明者らの検証結果に基づくと、ハウジング 107及びノヽ ブ部 9を、共にポリフエ-レンサルファイド (PPS)をベース榭脂とする榭脂組成物で 形成することで、接触摺動に対する十分な耐摩耗性が得られる。この榭脂組成物に 配合される炭素繊維の充填量は、 10〜35vol%、より好ましくは 15〜25vol%とする のがよい。これは、炭素繊維の充填量が 10vol%未満だと、炭素繊維による補強効 果ゃ静電除去効果が充分に発揮されない他、ハウジング 107及びハブ部 9の摺動部 分における耐摩耗性が確保されず、充填量が 35vol%を超えると、ノ、ウジング 107及 びノ、ブ部 9の成形性が低下し、高い寸法精度を得ることが困難になるためである。そ の他の榭脂組成物の条件は、上述の流体軸受装置 1のハブ部 9と同様であるため、 説明を省略する。
[0057] 図 6に、本発明の第 3の実施形態に係る流体軸受装置 201を示す。この実施形態 において、回転体 3となる軸部材 202は、金属材料で形成された軸部 202aと、その 下端に榭脂材料で形成されたフランジ部 202bとで構成された複合構造を成している 。固定体 6は、ノヽウジング 207と、ハウジング 207の内周に固定された軸受スリーブ 2 08と、ハウジング 207の下側開口部を閉塞する蓋部材 210とで構成される。ハウジン グ 207の上端部には内周側に突出したシール部 213がー体に形成される。蓋部材 2 10の上端面 210aには、図示は省略するが、例えば複数の動圧溝をスパイラル状に 配列した領域が形成されるとともに、軸受スリーブ 208の下端面 208cにも、同様の形 状に動圧溝を配列した領域が形成される。軸部材 202の回転時には、軸受スリーブ 208の下端面 208cと軸咅材 202のフランジ咅 202bの上端面 202blとの間に第 1ス ラスト軸受部 T11が形成され、蓋部材 210の上端面 210aとフランジ部 202bの下端 面 202b2との間に第 2スラスト軸受部 T12が形成される。なお、フランジ部 202bは榭 脂のみで形成する他、金属製の心金に榭脂をコーティングした複合構造としてもよい
[0058] この実施形態において、軸部材 202のフランジ部 202b及び蓋部材 210は、共に P PSをベース榭脂とする榭脂組成物で形成される。これにより、流体軸受装置 201の 低コスト化、軽量ィ匕が図られる。また、第 2スラスト軸受部 T12のスラスト軸受隙間を介 して対向する蓋部材 210とフランジ部 202bとが、優れた耐摩耗性を有することができ 、モータの起動、停止時などにおける両部材の接触摺動による摩耗が抑えられる。
[0059] 図 7は、本発明の第 4の実施形態に係る流体軸受装置 301を示している。この実施 形態において、固定体 6を構成するハウジング 307とシール部 313とは別体に形成さ れ、シール部 313はハウジング 307の上端部内周に接着、圧入、あるいは溶着等の 手段により固定される。また、蓋部材 310は、ハウジング 307と一体に榭脂材料で型 成形される。蓋部材 310及び軸部材 302のフランジ部 302bは、共に PPSをベース 榭脂とする榭脂組成物で形成される。なお、本実施形態による効果及び上記以外の 構成は、第 3の実施形態に準じるので説明を省略する。
[0060] 以上の実施形態では、ハウジング 7と、ノ、ウジング 7の内周に収容される軸受スリー ブ 8とを別体とした場合を説明したが、これらハウジング 7と軸受スリーブ 8とを榭脂で 一体ィ匕することもできる(ノヽウジング 107、 207、及び 307の場合も同様)。図 8は、本 発明の第 5の実施形態に係る流体軸受装置 401を示すものである。流体軸受装置 4 01は、軸受スリーブ 408とハウジング 407がー体成形され、この一体品が固定体 6を 構成する点で、上記実施形態に係る流体軸受装置と構成を異にする。この場合、軸 受スリーブ 408の内周面 408aと軸部 2の外周面 2aとの間にラジアル軸受隙間を形 成する。また、ハウジング 407の上側端面 407aとハブ部 9の円盤部 9aの下側端面 9a 1との間に第 1スラスト軸受隙間を形成し、軸受スリーブ 408の下側端面 408bと軸部 2のフランジ部 20の上側端面 20aとの間に第 2スラスト軸受隙間を形成する。また、循 環溝 11は、軸受スリーブ 408を貫通し、上側端面 408d及び下側端面 408bに開口 した貫通孔で構成される。なお、これ以外の構成は、第 1の実施形態に準じるので説 明を省略する。
[0061] この実施形態において、ハウジング 407及びハブ部 9が、何れも PPSをベース榭脂 とする榭脂組成物で形成されることにより、低コスト化、軽量ィ匕が図られる。また、第 1 スラスト軸受隙間及びラジアル軸受隙間を介して対向する部材が優れた耐摩耗性を 有し、各部材の接触摺動による摩耗を抑えることができる。 [0062] 以上の実施形態では、充填剤として炭素繊維を配合する場合を例示したが、使用 するアプリケーションの要求特性を満足するのであれば、炭素繊維に加えて金属繊 維やガラス繊維、ウイスカ等の無機物を付加しても構わない。例えば、ポリテトラフル ォロエチレン (PTFE)が耐油性に優れた離型剤として、カーボンブラックが導電化剤 としてそれぞれ配合可能である。
[0063] また、以上の第 1の実施形態に係る流体軸受装置 1 (図 2参照)、第 2の実施形態に 係る流体軸受装置 101 (図 5参照)、及び第 5の実施形態に係る流体軸受装置 401 ( 図 8参照)では、ハウジングの上端面に複数の動圧溝を配列したスラスト軸受面を設 けるとともに (第 1スラスト軸受部 T1)、軸受スリーブの下端面に複数の動圧溝を配列 したスラスト軸受面を設けた場合を説明したが(第 2スラスト軸受部 T2)、本発明は、 第 1スラスト軸受部 T1のみを設けた流体軸受装置にも同様に適用することができる。 この場合、軸部 2を、フランジ部 20を有しないストレートな形状とすることができると共 に、ハウジング 7を、蓋部材 10を底部として一体に榭脂材料で形成することで、有底 円筒形の形態にすることができる。
[0064] また、以上の実施形態では、ラジアル軸受部 Rl、 R2およびスラスト軸受部 Tl、 Τ2 として、ヘリングボーン形状やスパイラル形状の動圧溝により潤滑流体の動圧作用を 発生させる構成を例示しているが、本発明はこれに限定されるものではない。
[0065] 例えば、ラジアル軸受部 Rl、 R2として、図示は省略するが、軸方向の溝を円周方 向の複数箇所に形成した、いわゆるステップ状の動圧発生部、あるいは、円周方向 に複数の円弧面を配列し、対向する軸部 2の外周面 2aとの間に、くさび状の径方向 隙間 (軸受隙間)を形成した、いわゆる多円弧軸受を採用してもよい。
[0066] あるいは、ラジアル軸受面となる軸受スリーブ 8の内周面 8aを、動圧発生部としての 動圧溝や円弧面等を設けない真円状内周面とし、この内周面と対向する軸部 2の真 円状外周面 2aとで、いわゆる真円軸受を構成することができる。
[0067] また、スラスト軸受部 Tl、 Τ2の一方又は双方は、同じく図示は省略する力 スラスト 軸受面となる領域に、複数の半径方向溝形状の動圧溝を円周方向所定間隔に設け た、いわゆるステップ軸受、あるいは波型軸受 (ステップ型が波型になったもの)等で 構成することちできる。 [0068] また、以上の実施形態では、固定体側にラジアル軸受面及びスラスト軸受面が形 成される場合を説明したが、これら動圧発生部が形成される軸受面は固定体側に限 らず、これらに対向する回転体側に設けることもできる。
実施例 1
[0069] 本発明の有用性を明らかにするため、組成の異なる複数の榭脂組成物でハブ部模 擬試験片を作成し、流体軸受装置用のハブ部(回転体)の要求特性に対する評価を 行った。榭脂組成物の材料組成は図 9、図 10に示す。
[0070] 榭脂組成物に使用した原料を以下に示す。
(a)ベース榭脂種及び溶融粘度
リニア型 PPS :大日本インキ化学工業 (株)製、グレード; LC 5G、(溶融温度 310°C 、せん断速度 103S— 1における溶融粘度 280Pa' s)
架橋型 PPS (l):大日本インキ化学工業 (株)製、グレード; T—4 (溶融温度 310°C、 せん断速度 103S— 1における溶融粘度 lOOPa' s)
架橋型 PPS (2):大日本インキ化学工業 (株)製、グレード; MB— 600 (溶融温度 31
0°C、せん断速度 103S— 1における溶融粘度 70Pa' s)
ポリエーテルスルホン(PES):住友化学工業 (株)製、グレード; 4100G
ポリカーボネード (PC):三菱エンジニアリングプラスチックス (株)製、グレード; S— 2
000
(b)充填剤 (炭素繊維)
PAN系炭素繊維:東邦テナックス (株)製、グレード; HM35— C6S (繊維径 7 μ m、 平均繊維長; 6mm、アスペクト比; 857、引張り強さ; 3240MPa)
Pitch系炭素繊維:三菱ィ匕学 (株)製、グレード; K223NM (繊維径 10 /ζ πι、平均繊 維長; 6mm、アスペクト比; 600、引張り強さ; 2400MPa)
(c)充填剤 (導電化剤)
カーボンブラック:三菱ィ匕学 (株)製、グレード; # 3350B (粒子径; 24nm) ケッチェンブラック:ライオンァクゾ (株)製、グレード; EC600JD (粒子径; 34nm)
(d)充填剤 (無機物)
アルボレックス:四国化成工業 (株)製、グレード; Y (主要構成要素;ホウ酸アルミ-ゥ ム、平均径 0. 5〜1 m、平均繊維長; 10〜30 μ m、アスペクト比; 10〜60) ティスモ:大塚ィ匕学 (株)製、グレード; N (主要構成要素;チタン酸カリウム、平均径 0 . 3〜0. 6 m、平均繊維長; 10〜20 μ m、ァスぺク卜比; 16〜66)
(e)充填剤 (離型剤)
PTFE : (株)喜多村製、グレード; KTL— 620
[0071] 評価項目は、回転体模擬試験片の(1)耐摩耗性、(2)導電性、(3)イオン不溶出 性、(4)引張り強さ、(5)平面度、(6)線膨張係数の計 6項目である。各評価項目の 評価方法、及び合否判定基準を以下に示す。
[0072] ( 1)耐摩耗性
図 9、図 10に示す組成の材料で形成したリング状の供試体を、潤滑油中でディスク 状の摺動相手材に所定荷重で押し当てた状態でディスク側を回転させるリングオン ディスク試験にて測定した。具体的には、 φ 21mm (外径) X φ 17mm (内径) X 3m m (厚み)のリング状榭脂成形体を供試体として使用した。また、表面粗さ RaO. 04 μ m、 φ 30mm (直径) X 5mm (厚み)の SUS420製のディスク材を摺動相手材として 使用した。潤滑油には、ジエステル油としてジ(2—ェチルへキシル)ァゼレートを使 用した。この潤滑油の 40°Cにおける動粘度は、 10. 7mm2Zsである。リングオンディ スク試験中、供試体に対する摺動相手材の面圧は 0. 25MPa、回転速度 (周速)は 1 . 4mZmin、試験時間は 14h、油温は 80°Cとした。合否判定基準について、リング 摩耗深さに関しては、 3 m以下を合格(〇)、 3 mを超えるものを不合格(X )とし、 摺動相手材の摩耗深さに関しては、 以下を合格(〇)、 を超えるものを不 合格(X )とした。
[0073] (2)導電性
図 9、図 10に示す組成の材料で形成した試験片を用いて、 JIS K 7194による四 探針法により体積抵抗の測定を行った。合否判定基準は、 1. Ο Χ 106 Ω ' cm以下を 合格(〇)、 1. 0 10 '《11を越ぇるものを不合格( )とした。
[0074] (3)イオン不溶出性
榭脂内から溶媒へのイオン溶出の有無を評価する。評価方法は、図 9、図 10に示 す組成の材料で形成した試験片からの各種イオン溶出の有無を、イオンクロマトダラ フィを用いて確認した。具体的な手順を以下に示す。
(ァ)空のビーカに超純水を所定量入れ、その中に予め超純水で表面を十分に洗浄 した上記試験片を投入する。
(ィ)上記ビーカを 80°Cに加温した恒温槽に 1時間セットし、試験片の表面および内 部に含有するイオンを超純水中に溶出させる。他方、試験片を投入しない純水のみ 入ったビーカも同様に 80°Cに加温した恒温槽に 1時間セットし、これをブランクとする
(ゥ)上記で準備した、試験片を投入した超純水に含有するイオン量を、イオンクロマ トグラフィにより測定する (測定値 A)。別途ブランクに含有するイオン量も同様に測定 する (測定値 B)。
(ェ)測定値 Aから測定値 Bを減算し、イオン溶出の有無を確認する。
[0075] なお、合否判定基準としては、イオンクロマトグラフィに一般的に使用されるカラムに て分析可能なイオンを検出対象イオンとした。以下に示すイオンが検出されなければ 合格 (〇)、検出されれば不合格( X )とした。
[0076] 検出対象イオン:
陽イオン; Li+、 Mg2+、 Na+、 Ca2+、 K+、 Sr Rb+、 Ba2+、 Cs+、 NH +
4
陰イオン; F―、 NO3—、 Cl—、 PO 3—、 NO2—、 SO 2—、 Br―、 SO 2
4 4 3
[0077] (4)引張り強さ
図 9、図 10に示す組成の材料で形成し IS K7113で規定される一号ダンベル を用いて、引張り速度 lOmmZminで引張り強さを評価した。合否判定基準は、 100 MPa以上を合格(〇)とし、それに満たな ヽものを不合格 ( X )とした。
[0078] (5)平面度
上記の実施形態で示した榭脂製のハブ部 9において、成形面、特にディスク搭載 面 9cの平面度が悪いと、搭載したディスクに不要な曲げ応力を生じ、ディスク表面の 平滑性が悪ィ匕するため、読み書き特性に悪影響を及ぼす恐れがある。よって、ハブ 部 9を形成する榭脂組成物は、高 、平面度で成形される必要がある。
[0079] 評価方法を以下に示す。側面部に直径 lmmのサイドゲートを設け、 φ 10mm (外 径) X φ 7mm (内径) X 2mm (厚み)の穴明き円盤状成型体を、図 9、図 10に示す 組成の材料で射出成形し、これを平面度試験用試験片とする。この試験片をテーラ ホブソン社製タリロンドの回転盤上に置き、測定円径 8mm上にプローブを接触させ た試験片を 360° 回転させ、試験片の平面度を測定した。合否判定基準は、平面度 が 10 μ m以下を合格(〇)、 10 μ mを越えるものを不合格 ( X )とした。
[0080] (6)線膨張係数
榭脂組成物の線膨張係数を、 TMA (熱機械特性分析装置)を用いて測定した。評 価方法を以下に示す。
(ァ)上記(5)平面度の評価試験で成形した試験片のゲート部を切除し、その切除跡 を # 2000のエメリー紙で研磨する。
(ィ)試験片を TMAにセットする。リング状試験片の直径方向の熱膨張量が計測でき る ように、測定プローブの測定方向が試験片の直径方向となるようにセットする。 (ゥ)セットした試験片を、測定荷重は 0. 05N、測定温度域は 25°C〜90°C、昇温 速度は 5°CZmin、雰囲気ガスは窒素の環境下で熱膨張量を測定し、線膨張係数 を算出した。なお、本試験では、試験片成形時の榭脂の流れ方向と平行な直径 方向 (MD)と、流れ方向と直交する直径方向(TD)の二方向において線膨張係 数を 測定した。
[0081] 合否判定基準は、(A)インサート部材カもの制限、及び (B)ディスクからの制限を 受けて設定される。なお、本評価試験において、インサート部材 (軸部)の素材は SU S420 (25°C〜90°Cにおける線膨張係数; 1. 05 X 10— 5°C— 、ディスクの素材はガラ ス(25°C〜90°Cにおける線膨張係数; 0. 65 X 10—6°C— 、ハブ部とディスクとの冷間 時の直径隙間は 0. 010mm,冷間時のハブ部外径は 5mm、使用温度域は 25°C〜 90。Cとした。
[0082] (A)インサート部材カもの制限:
榭脂部の線膨張係数をインサート部材の線膨張係数の 4. 0倍以内に設定すると、 ハブ部とインサート部材との密着界面での剥離や変位を回避できる。よって、インサ 一ト部材力もの制限による榭脂組成物の線膨張係数の上限値は、 4. 2 X 10— — 1に 設定される。
[0083] (B)ディスクからの制限: 本評価試験の条件下で使用環境温度が最高となるときに、ディスクとハブ部との間 の隙間が負隙間とならないためには、榭脂組成物の線膨張係数の上限値は、 3. 7 X 10— — 1に設定される。
[0084] 上記二つの制限を受けて、本評価試験での合否判定基準は、試験片の線膨張係 数が 3. 7 X 10—5°C— 1以下であれば合格(〇)、 3. 7 X 10—5°C— 1を越えれば不合格(X ) と設定される。
[0085] 上記の評価試験の合否判定基準をまとめたものを図 11に示す。また、図 12、図 13 に試験結果を示す。この試験結果で示されているように、 PPS (イオン溶出の少ない もの)をベース榭脂とし、炭素繊維を適量配合した実施例の榭脂組成物は、すべて の評価基準を満たして 、るので、ハブ部を形成する素材に適して 、る。
実施例 2
[0086] また、本発明の有用性を明らかにするため、組成の異なる複数の榭脂組成物につ いて、榭脂組成物同士の接触摺動に対する摩耗量の評価試験を行った。ベース榭 脂には、リニア型ポリフエ-レンサルファイド (PPS)、架橋型ポリフエ-レンサルフアイ ド (PPS)、液晶ポリマー (LCP)の何れかを使用した。これらベース榭脂に 4種類の充 填材を適宜配合し、図 14に示す参考例 1〜7の榭脂組成物を形成した。
[0087] 榭脂組成物に使用した原料を以下に示す。
リニア型ポリフエ-レンサルファイド (pps):大日本インキ化学工業 (株)製、 LC 5G
(溶融温度 310°C、せん断速度 103S_1における溶融粘度 280Pa' s)
架橋型ポリフ -レンサルファイド (PPS):大日本インキ化学工業 (株)製、 T— 4 (溶 融温度 310°C、せん断速度 103S_1における溶融粘度 lOOPa' s)
液晶ポリマー (LCP):ポリプラスチックス (株)製、 A950 (溶融温度 310°C、せん断速 度 103S_1における溶融粘度 40Pa' s)
炭素繊維 (PAN系):東邦テナックス (株)製、 HM35— C6S (繊維径;7 /ζ πι、平均 繊維長; 6mm、引張り強さ; 3240MPa)
導電化剤:三菱化学 (株)製、カーボンブラック (グレード; # 3350B、平均粒子径; 2 4nm)
無機化合物:四国化成工業 (株)製、アルボレックス (グレード; Y、主要構成要素;ホ ゥ酸アルミニウム、平均径; 0. 5〜: L 0 /ζ πι、平均繊維長; 10〜30 /ζ πι、形状;ゥイス 力)
離型剤:(株)喜多村製、ポリテトラフルォロエチレン (PTFE) (KTL-620)
[0088] 図 14に示す配合比の榭脂組成物で、固定側部材となるディスク状の供試体及び 回転側部材となるリング状の供試体を形成し、それぞれの接触摺動に対する摩耗量 をリングオンディスク試験により測定した。この試験は、ディスク状の供試体にリング状 の供試体を所定荷重を負荷して押し当て、両供試体間に潤滑油を介在させた状態 でリング状の供試体を所定の条件下で回転させた後、両供試体の摩耗深さを測定す るものである。その他の試験条件、及び合否判定基準については、上記の実施例 1 と同様であるため、説明を省略する。
[0089] 図 15、図 16に試験結果を示す。図 16に示す比較例 1〜4のように、リング状の供 試体とディスク状の供試体とを形成する榭脂組成物のベース榭脂が、両供試体とも L CPである場合、もしくは何れか一方が LCPで他方が PPSの場合は、両供試体の摩 耗深さは共に基準値を越えるため、摺動摩擦に対する十分な耐摩耗性を有するとは 言えない。一方、図 15に示す実施例 1〜5のように、リング状の供試体とディスク状の 供試体とを形成する榭脂組成物のベース榭脂が、両供試体とも PPSである場合、両 部材の摩耗深さは共に基準値を下回る。よって、 PPSをベース榭脂とする榭脂組成 物を摺動摩擦する両供試体に選定すると、十分な耐摩耗性が得られる。
図面の簡単な説明
[0090] [図 1]本発明の実施形態に係る流体軸受装置 1を組込んだスピンドルモータの断面 図である。
[図 2]流体軸受装置 1の断面図である。
[図 3]軸受スリーブ 8の断面図である。
[図 4]ハウジング 7の上端面図である。
[図 5]流体軸受装置 101の断面図である。
[図 6]流体軸受装置 201の断面図である。
[図 7]流体軸受装置 301の断面図である。
[図 8]流体軸受装置 401の断面図である。 [図 9]実施例 1における実施例に用いる榭脂組成物の材料組成を示す図である。
[図 10]実施例 1における比較例に用いる榭脂組成物の材料組成を示す図である。
[図 11]実施例 1における評価試験の合否判定基準を示す図である。
[図 12]実施例 1における実施例の試験結果を示す図である。
[図 13]実施例 1における比較例の試験結果を示す図である。
[図 14]実施例 2における参考例の材料組成を示す図である。
[図 15]実施例 2における実施例の比較試験結果を示す図である。
[図 16]実施例 2における比較例の比較試験結果を示す図である。
符号の説明
1 流体軸受装置
2 軸部
3 回転体
4a ステータコイル
4b ロータマグネット
5 モータブラケット
6 固定体
7 ハウジング
8 軸受スリーブ
9 ハブ部
10 蓋部材
11 循環溝
R1、R2 ラジアル軸受部
Tl、 Τ2 スラスト軸受部
S シール空間

Claims

請求の範囲
[1] 軸部と、軸部と一体又は別体に取付けられたハブ部とで構成される回転体と、内周 に軸部が挿入された固定体とを備え、固定体とハブ部との間の軸受隙間に形成した 油膜で回転体を回転自在に支持する流体軸受装置において、
ハブ部の少なくとも軸受隙間に面する部分を、ポリフエ-レンサルファイド (PPS)を ベース榭脂とし、充填材として炭素繊維を配合した榭脂組成物で形成したことを特徴 とする流体軸受装置。
[2] 炭素繊維は、榭脂組成物に 20〜35vol%含まれる請求項 1記載の流体軸受装置
[3] 回転体と、固定体と、固定体と回転体との間の軸受隙間に形成した油膜で回転体 を回転自在に支持する流体軸受装置にお!、て、
回転体と固定体のうち、少なくとも軸受隙間を介して対向する部分を何れもポリフ 二レンサルファイド (PPS)をベース榭脂とする榭脂組成物で形成したことを特徴とす る流体軸受装置。
[4] 榭脂組成物は、炭素繊維を含むものである請求項 3記載の流体軸受装置。
[5] 炭素繊維は、榭脂組成物に 10〜35vol%含まれる請求項 4記載の流体軸受装置
[6] 炭素繊維は、 PAN系である請求項 1又は 4記載の流体軸受装置。
[7] 炭素繊維のアスペクト比が 6. 5以上である請求項 1又は 4記載の流体軸受装置。
[8] 請求項 1〜7何れかに記載の流体軸受装置と、ロータマグネットと、ステータコイルと を有するモータ。
PCT/JP2006/315859 2005-09-09 2006-08-10 流体軸受装置 WO2007029447A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US12/063,174 US20090297076A1 (en) 2005-09-09 2006-08-10 Fluid dynamic bearing device
CN2006800295779A CN101243264B (zh) 2005-09-09 2006-08-10 流体动力轴承装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-262660 2005-09-09
JP2005262660A JP2007082267A (ja) 2005-09-09 2005-09-09 流体軸受装置
JP2005-274474 2005-09-21
JP2005274474A JP5085025B2 (ja) 2005-09-21 2005-09-21 流体軸受装置

Publications (1)

Publication Number Publication Date
WO2007029447A1 true WO2007029447A1 (ja) 2007-03-15

Family

ID=37835571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315859 WO2007029447A1 (ja) 2005-09-09 2006-08-10 流体軸受装置

Country Status (3)

Country Link
US (1) US20090297076A1 (ja)
KR (1) KR20080050566A (ja)
WO (1) WO2007029447A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5318649B2 (ja) 2009-04-27 2013-10-16 Ntn株式会社 動圧軸受装置
JP2014137088A (ja) * 2013-01-16 2014-07-28 Nippon Densan Corp 軸受装置、モータおよび送風ファン
JP7145890B2 (ja) * 2018-01-26 2022-10-03 株式会社三共製作所 転積金型及び転積金型を備えるプレス装置
CN110067811B (zh) * 2019-05-30 2024-03-26 中国工程物理研究院机械制造工艺研究所 一种气浮转台
FR3141368A1 (fr) * 2022-10-27 2024-05-03 Ntn-Snr Roulements Procédé de fabrication de composants structurels en matériau thermoplastique recyclé

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332353A (ja) * 1994-06-06 1995-12-22 Nippon Seiko Kk 動圧軸受
JPH11191234A (ja) * 1997-10-23 1999-07-13 Ntn Corp 光学式ピックアップのレンズホルダおよびそのアクチュエータ
JP2001153134A (ja) * 1999-11-29 2001-06-08 Nsk Ltd 流体軸受装置
JP2005188552A (ja) * 2003-12-24 2005-07-14 Ntn Corp 流体軸受装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050127782A1 (en) * 2001-12-21 2005-06-16 Morinobu Endo Ultrasonic motor, and electronic timepiece having ultrasonic motor
JP2003232354A (ja) * 2002-02-07 2003-08-22 Hitachi Powdered Metals Co Ltd 軸受ユニットおよびその製造方法ならびにスピンドルモータ
KR100968163B1 (ko) * 2002-04-23 2010-07-06 엔티엔 가부시키가이샤 유체 베어링 장치
JP4287098B2 (ja) * 2002-07-18 2009-07-01 日本電産サンキョー株式会社 軸受装置及びその製造方法
JP4045942B2 (ja) * 2002-12-06 2008-02-13 松下電器産業株式会社 流体軸受装置及びこれを用いた磁気ディスク装置
US7267484B2 (en) * 2003-05-13 2007-09-11 Ntn Corporation Fluid bearing device
JP2005003042A (ja) * 2003-06-10 2005-01-06 Ntn Corp 動圧軸受装置
JP4418531B2 (ja) * 2004-09-09 2010-02-17 日本電産株式会社 流体動圧軸受装置及びスピンドルモータ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07332353A (ja) * 1994-06-06 1995-12-22 Nippon Seiko Kk 動圧軸受
JPH11191234A (ja) * 1997-10-23 1999-07-13 Ntn Corp 光学式ピックアップのレンズホルダおよびそのアクチュエータ
JP2001153134A (ja) * 1999-11-29 2001-06-08 Nsk Ltd 流体軸受装置
JP2005188552A (ja) * 2003-12-24 2005-07-14 Ntn Corp 流体軸受装置

Also Published As

Publication number Publication date
KR20080050566A (ko) 2008-06-09
US20090297076A1 (en) 2009-12-03

Similar Documents

Publication Publication Date Title
US20060045395A1 (en) Shaft member for hydrodynamic bearing device
KR101237845B1 (ko) 동압 베어링 장치
JP2009511829A (ja) 流体動圧軸受装置
WO2007029447A1 (ja) 流体軸受装置
US9694567B2 (en) Fluid dynamic bearing apparatus and motor comprising the same
JP5095115B2 (ja) 動圧軸受装置
US8267587B2 (en) Housing for fluid lubrication bearing apparatuses
JP5085025B2 (ja) 流体軸受装置
JP2007082267A (ja) 流体軸受装置
JP4628720B2 (ja) 動圧軸受装置用ハウジング及びこれを備えた動圧軸受装置、並びにこの動圧軸受装置を有するモータ
JP4907106B2 (ja) 流体軸受装置用ハウジング、及び流体軸受装置用ハウジングと軸受スリーブとの一体化部材
JP4901162B2 (ja) 流体軸受装置及びこれを備えたモータ
JP4907105B2 (ja) 流体軸受装置用ハウジング、及び流体軸受装置用ハウジングと軸受スリーブとの一体化部材
JP5031338B2 (ja) 流体軸受装置
JP5031863B2 (ja) 流体軸受装置
JP2008131832A5 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029577.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782645

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12063174

Country of ref document: US