WO2007026956A1 - 低温発酵性及び/又は冷凍耐性を増強させる遺伝子及びその用途 - Google Patents

低温発酵性及び/又は冷凍耐性を増強させる遺伝子及びその用途 Download PDF

Info

Publication number
WO2007026956A1
WO2007026956A1 PCT/JP2006/317699 JP2006317699W WO2007026956A1 WO 2007026956 A1 WO2007026956 A1 WO 2007026956A1 JP 2006317699 W JP2006317699 W JP 2006317699W WO 2007026956 A1 WO2007026956 A1 WO 2007026956A1
Authority
WO
WIPO (PCT)
Prior art keywords
yeast
polynucleotide
low
protein
seq
Prior art date
Application number
PCT/JP2006/317699
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Nakao
Yukiko Kodama
Tomoko Shimonaga
Original Assignee
Suntory Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suntory Limited filed Critical Suntory Limited
Priority to CA002620877A priority Critical patent/CA2620877A1/en
Priority to AU2006285604A priority patent/AU2006285604A1/en
Priority to JP2007533380A priority patent/JPWO2007026956A1/ja
Priority to EP06797575A priority patent/EP1930431A4/en
Priority to US11/990,942 priority patent/US20090175983A1/en
Publication of WO2007026956A1 publication Critical patent/WO2007026956A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/37Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi
    • C07K14/39Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts
    • C07K14/395Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from fungi from yeasts from Saccharomyces
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C11/00Fermentation processes for beer
    • C12C11/003Fermentation of beerwort
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C12/00Processes specially adapted for making special kinds of beer
    • C12C12/002Processes specially adapted for making special kinds of beer using special microorganisms
    • C12C12/004Genetically modified microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12CBEER; PREPARATION OF BEER BY FERMENTATION; PREPARATION OF MALT FOR MAKING BEER; PREPARATION OF HOPS FOR MAKING BEER
    • C12C12/00Processes specially adapted for making special kinds of beer
    • C12C12/002Processes specially adapted for making special kinds of beer using special microorganisms
    • C12C12/006Yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G1/00Preparation of wine or sparkling wine
    • C12G1/02Preparation of must from grapes; Must treatment and fermentation
    • C12G1/0203Preparation of must from grapes; Must treatment and fermentation by microbiological or enzymatic treatment
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/18Baker's yeast; Brewer's yeast
    • C12N1/185Saccharomyces isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12GWINE; PREPARATION THEREOF; ALCOHOLIC BEVERAGES; PREPARATION OF ALCOHOLIC BEVERAGES NOT PROVIDED FOR IN SUBCLASSES C12C OR C12H
    • C12G2200/00Special features
    • C12G2200/11Use of genetically modified microorganisms in the preparation of wine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces

Definitions

  • the present invention relates to a gene that enhances and enhances low-temperature fermentability and Z or freezing tolerance (hereinafter also referred to as “low-temperature performance”) and its use, and in particular, a brewer's yeast excellent in low-temperature performance, manufactured using the yeast S® and its manufacturing method. More specifically, the present invention improves low-temperature performance by increasing the expression level of the gene DLT1, which encodes Dltlp, a protein that enhances the low-temperature performance of brewer's yeast, particularly the nonScDLTl gene characteristic of brewer's yeast.
  • the present invention relates to a fermented yeast and a method for producing alcoholic beverages using the yeast. Background technology.
  • Lager beer f is fermented at low temperatures (10-15 ° C) and is characterized by a clean taste without miscellaneous taste.
  • the Shimonan fermenting yeast used in the production of lager beer is excellent in this low-temperature fermentability, but the genes involved in the low-temperature fermentability have not been clarified!
  • fragrance components such as esters 'maintaining enzyme activity, reducing the activity of fragrance component degrading enzymes, and' increasing fragrance component substrates. It is known.
  • the present invention provides a novel gene that enhances the low-temperature performance characteristically present in brewer's yeast, a protein encoded by the gene, a transformed yeast with regulated expression of the gene, and regulation of the expression of the gene.
  • the present invention provides the following polynucleotide, a vector containing the polynucleotide, a transformed yeast introduced with the vector, a method for producing alcoholic beverages using the transformed yeast, and the like.
  • Polynucleotide 5 which encodes a protein having an amino acid sequence having a sequence of 6Q% or more with respect to the amino acid sequence of 2 and having an activity of enhancing low-temperature performance. Polynucleotide containing
  • F a polynucleotide encoding a protein consisting of a 2 'geminoic acid sequence or b
  • (g) ' consists of the amino acid sequence of SEQ ID NO: 2 or the amino acid sequence of SEQ ID NO: 2, wherein 1 to 10 amino acids are deleted, substituted, inserted and / or appended.
  • a polynucleotide containing a polynucleotide encoding a protein having an activity of enhancing low-temperature viability
  • Polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1, or polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: 1 and highly stringent conditions-under high conditions and low temperature performance
  • a polynucleotide comprising a polynucleotide that codes for a protein having an activity of enhancing the activity.
  • polynucleotide according to (1) above which comprises a polynucleotide comprising the nucleotide sequence of SEQ ID NO: 1.
  • polynucleotide according to (1) above which comprises a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2.
  • a vector comprising the polynucleotide according to any one of (1) to (5) above.
  • a method for evaluating the low-temperature performance of a test yeast by culturing the test yeast and measuring the expression level of a gene that enhances the low-temperature performance having the nucleotide sequence of SEQ ID NO: 1.
  • test yeast is cultured, the protein described in (6) above is quantified or the expression level of the gene having the nucleotide sequence of SEQ ID NO: 1 that enhances low temperature saturation is measured, and
  • a method for selecting yeast comprising selecting a test yeast having the protein amount or the gene expression amount according to the display performance.
  • test yeast Cultivate the test yeast, measure the low temperature fermentability or low temperature fermentative activity or freezing tolerance ', and select the test yeast with the desired low temperature fermentative capacity or low temperature fermentative activity or freezing tolerance. How to select yeast.
  • the reference yeast and the test yeast are cultured, the protein described in (6) above in each yeast is quantified, and the test yeast having a larger amount of the protein than the reference yeast is selected.
  • the low-temperature fermentability is improved, and the fermentation period in the low-temperature fermentation can be shortened.
  • “low temperature performance” means low temperature fermentability and / or freezing tolerance.
  • Fig. 1 is a graph showing the change over time in the amount of yeast grown in beer test brewing.
  • the horizontal axis shows the time during fermentation, and the vertical axis shows the value of OD660.
  • FIG. 2 is a diagram showing the change over time in the amount of extract consumed in beer test brewing.
  • the horizontal axis indicates fermentation time, and the vertical axis indicates appearance extract concentration (V / D). ,
  • FIG. 3 shows the expression behavior of the nonScDLTl gene in yeast during beer test brewing.
  • the horizontal axis shows the fermentation time, and the vertical axis shows the detected Sidana / le luminance.
  • FIG. 4 is a graph showing the freezing tolerance of the parent strain and the non-ScDLTl high expression strain.
  • the present inventors considered that it is possible to perform fermentation at low temperature more efficiently by further enhancing the performance of yeast. Based on this idea, research is repeated and is it open? Based on the genome information of brewer's yeast decoded by the method disclosed in 004-283169, the ⁇ -ScDLTl gene that identifies a protein that enhances the low-temperature performance unique to bee and leu yeast was identified. This base sequence is shown in SEQ ID NO: 1. Also encoded by this gene The amino acid sequence of the cleavable protein is shown in SEQ ID NO: 2,
  • the present invention provides (a) a polynucleotide containing a polynucleotide consisting of the nucleotide sequence of SEQ ID NO: 1 5; and (b) a polynucleotide containing a polynucleotide encoding a protein consisting of the amino acid sequence of SEQ ID NO: 2. Nucleotides are provided.
  • the polynucleotide may be D iv A or R N A.
  • the polynucleotide targeted by the present invention is not limited to the polynucleotide encoding the protein that enhances the low-temperature performance derived from the above-mentioned brewer's yeast, but encodes a protein functionally equivalent to this 10 protein.
  • functionally equivalent proteins including other polynucleotides include (c) one or more amino acids deleted, substituted, inserted and / or added in the amino acid sequence of SEQ ID NO: 2. Examples thereof include proteins having an amino acid sequence and having an activity of enhancing low temperature performance.
  • 15-Such proteins include: 'in the amino acid sequence of SEQ ID NO: 2, for example.
  • proteins include amino acid residues having deletion, substitution, insertion and Z or added amino acid sequences, and an activity that enhances low-temperature performance. In general, the smaller the number of amino acid residues deleted, substituted, inserted and / or 5.
  • SEQ ID NO: '2 ⁇ amino acid sequence and about 60% or more, about 70% or more, 71% or more, 72% or more 73% or more, 74% or more, 75% More than 76%, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 4% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 5% or more, 96% or more, 97% or more, 98% or more, 99% or more, 99.1% or more, .99.
  • the low-temperature fermentability can be evaluated, for example, by measuring the amount of ethanol produced and the ethanol production rate from 10 ° C to 15 ° C. When brewing at the same temperature, if the amount of ethanol produced or the rate of ethanol production is increased compared to a reference yeast (eg, Saccharomyces cerevisiae NBRC2002, AJL4002 etc.), “activity to enhance low temperature fermentability” Judge that there is.
  • a reference yeast eg, Saccharomyces cerevisiae NBRC2002, AJL4002 etc.
  • Such an increase rate is preferably 5% ⁇ or more, more preferably 10% or more, more preferably 15% or more, and even more preferably 20% or more.
  • freezing tolerance can be determined by using a yeast suspension containing a test yeast that is not frozen and a yeast suspension containing the test yeast once. It can be evaluated by comparing the glucose consumption rate of the thawed product after freezing. That is, the lower the glucose consumption rate after freezing treatment, the higher the freezing tolerance.
  • the present invention also relates to (e) a protein having an activity of hybridizing with a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of SEQ ID NO: ⁇ under stringent conditions and having an activity of enhancing the low-temperature performance. And (f) a polynucleotide comprising a nucleotide sequence complementary to the nucleotide sequence of the polynucleotide encoding the protein consisting of the amino acid sequence of SEQ ID NO: 2, and stringent conditions Also included are polynucleotides that contain a polynucleotide that encodes a protein that has the activity of hybridizing with or enhancing low-temperature performance.
  • stringent a polynucleotide that is hybridized under normal conditions
  • the colony hybridization method plaque hybridization method, or Southern hybridization method can be used.
  • Renucleotides eg, DNA: As a method of hybridization, ! j. Molecular Cloning 3rd Ed., Current Protocols in Molecular Biology, John Wiley & Sons 1987-1997 can be used.
  • stringent conditions may be any of low stringent conditions, medium stringent conditions, and high stringent conditions.
  • Low stringent conditions are, for example, 5 X SS (:, 5 X Denhardt's solution, 0.5% SDS, 50% lumamide, 32 ° C.
  • “medium stringent conditions” Is, for example, 5'X SS ⁇ X Denhardt's solution, 0.5% SDS, 50% formamide, 42 ° C
  • “High stringent conditions” are, for example, 5 X SSC :, 5 X Denhardt's solution, 0.5% SDS, 50% formamide, 50 ° C
  • factors affecting the stringency of high-pridition may include multiple elements such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration. Then select these elements as appropriate It is possible to achieve a similar stringency diene Sea in Rukoto. '
  • Alkphos Direct Labeling Reagents manufactured by Amashya Alfumasia
  • the protocol attached to the kit incubate with the labeled probe, and place the membrane in 0.1% (w / v) SDS at 55 ° C. After washing with the primary washing buffer containing the hybridized polynucleotide (eg, DNA) can be detected.
  • the hybridized polynucleotide eg, DNA
  • polynucleotides that can be hybridized with the polynucleotide that encodes the amino acid sequence of SEQ ID NO: 2 when calculated by default parameters using homology search software such as FASTA and BLAST are approximately 60%. % Or higher, approx.
  • s corre 50
  • wo r d lengt h 3.
  • the present invention also provides a protein that is linked to any one of the polynucleotides (a;) to (i).
  • a preferred protein of the present invention has the amino acid sequence of SEQ ID NO: 2.
  • the amino acid sequence of SEQ ID NO: 2 comprises an amino acid sequence in which the number of amino acid residues as described above is deleted, substituted, inserted and Z or attached, and Examples thereof include proteins having an activity of enhancing low-cost performance.
  • Such proteins are described in "Molecular Cloning 3rd Edition", “Current 'Protocols' in 'Molecular' Pirology", “Nuc. Acids. Res., 10, 648,7 (1982)", “Proc Natl .. 'Acad., Sci. USA, 79,
  • one or more amino acid residues are deleted, substituted, Insertion and / or addition means any and one in the same sequence, and 'is a deletion, substitution, insertion and / or deletion of one or more amino acid residues at a position in a plurality of amino acid sequences.
  • it means that there is an addition, and two or more of deletion, substitution insertion and addition may occur at the same time.
  • amino acid residues that can be substituted with each other are shown below.
  • Amino acid residues in the same group can be substituted for each other.
  • Group A Leucine, Isoleucine, Norleucine, Valine, Norvali; ⁇ Alanine, 2-Aminobutanoic acid, Methionine, 0-Methylserine, t-Butylglycine, t-Putylalanin, Hexylalananine;
  • Group B 'Aspartic acid , Glutamic acid, isoaspartic acid, isoglutamic acid, 2-aminoadipic acid, 2-aminoaminosuberic acid;
  • group C asparagine, 'glutamine;
  • group D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-Diaminopropionic acid;
  • Group E proline, 3-hydroxyproline, 4-hydroxyproline;
  • Group F se
  • the protein of the present invention can also be produced by chemical synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl 'method) and the tBoc method (t-butyloxycarbonyl method). Also, peptides such as Advans Dochemtech, Perkin Elma, Pharmate, Proteintechnolo I ⁇ Instrument, Synthesel Vega, Perceptive, Shimadzu, etc. It can also be synthesized using a synthesizer.
  • chemical synthesis methods such as the Fmoc method (fluorenylmethyloxycarbonyl 'method) and the tBoc method (t-butyloxycarbonyl method).
  • peptides such as Advans Dochemtech, Perkin Elma, Pharmate, Proteintechnolo I ⁇ Instrument, Synthesel Vega, Perceptive, Shimadzu, etc. It can also be synthesized using a synthesizer.
  • the present invention provides a vector containing the above-described polynucleotide.
  • the vector of the present invention contains the polynucleotide (DNA) described in any one of the above (a) to (: 0. Further, the vector of the present invention is usually (X) a promoter that can be transcribed in yeast cells. (Y) the polynucleotide (DNA) according to any one of the above (a;) to (i) bound to the promoter in the sense direction or antisense direction; and (z) an RNA molecule Concerning transcription termination of polyadenylation, it is constructed to contain an expression cassette containing cygano that functions in yeast as a component.
  • YEp type multi-copy type
  • YCp type single copy Both types
  • Yip type chromosome integration type
  • YEp type vectors YEp24 JR Broach et al., Experimental Manipulation of Gene Expression, Academic Press, New York, 83, 1983
  • YCp type vector YCp50 ⁇ ⁇ D. Rose et al. , gene, 60, 237, 1987
  • YIp5 K. Struhl et al., Pro atl. Acad. Sci. USP, 76, 1035, 1979
  • Yip-type vector is easily available. Can do.
  • any combination may be used as long as it functions in brewing yeast and is not affected by components in mash.
  • a promoter of the dalyceraldehyde 3 phosphate dehydrogenase gene (TDH3) and a promoter of the 3-phosphoglycerate kinase gene (PGK1) can be used.
  • TDH3 dalyceraldehyde 3 phosphate dehydrogenase gene
  • PGK1 3-phosphoglycerate kinase gene
  • the auxotrophic maternal force is not available in the case of brewing yeast, so the dieneticin resistance gene (G418r), the copper resistance gene (CUP1) (Marin et al., Proc. Natl. Acad. Sci. USA, 81, 337 1984), cerulenin resistance gene (fas2m, PDR4) (Ashigaki, et al., Biochemistry, 64, 660, 1992; Hussain et et al., Gene, 101, 149, respectively) , 1991) are available.
  • the dieneticin resistance gene G418r
  • CUP1 copper resistance gene
  • fas2m, PDR4 cerulenin resistance gene
  • the vector constructed as described above is introduced into the host yeast.
  • the host yeast include any yeast that can be used for brewing, for example, brewery yeast for beer, wine, sake and the like. Specific examples include yeasts of the genus Saccharomyces.
  • beer yeasts such as Saccharomyces pastorianus W34 / 70, Saccharomyces carlsbergensis NCYC453, NCYC456 etc., Saccharomyces cerevisiae NBRC1951, NBRC1952, NBRC1953, NBRC1954 etc. can be used.
  • whiskey yeasts such as Saccharomyces cerevisiae NCYC90, wine yeasts such as association wines 1, 3 and 4, sake yeasts such as association yeasts sake 7 and 9 can be used. However, it is not limited to this. In the present invention, beer yeast, for example, Saccharomyces pass Trianus is preferably used.
  • yeast transformation method a publicly known method can be used.
  • the spheroplast method Proc. Natl. Acad. Sci. USA, 75 pl929 (1978)”
  • the lithium acetate method J. Bacteriology, 153, pl63 (1983) ", Proc. Natl. Acad. Sci. USA, 75 pl929 (1978), Methods in yeast genetics, 2000 Edition: A Cold Spring Harbor Laboratory Course Manual. It is not limited to this.
  • the host yeast is a standard yeast nutrient medium (for example, YEPD medium "Genetic Engineering. Vol. 1, Plenum Press, New York, 117 (1979)” etc.), and the value of 0D600nm is 1-6.
  • YEPD medium Genetic Engineering. Vol. 1, Plenum Press, New York, 117 (1979)" etc.
  • an alkali metal ion having a concentration of about 1 to 2M, preferably lithium ion.
  • the cells are allowed to stand at about 30 ° C. for about 60 minutes, and then placed at about 30 ° C. for about 60 minutes together with the DNA to be introduced (about 1 to 20 zg).
  • Polyethylene dalycol preferably about 4,000 dalton polyethylene glycol, is added to a final concentration of about 20% to 50%.
  • the cell suspension is washed with a standard yeast nutrient medium, placed in a predetermined amount of fresh standard yeast nutrient medium, and allowed to stand at about 30 ° C. for about 60 minutes. After that, a transformant is obtained by planting on a standard agar medium containing antibiotics used as a selection marker.
  • Target liquors include, but are not limited to, beer, beer-taste drinks such as happoshu, wine, whiskey ⁇ ", and sake.
  • a known method can be used except that the brewing mother obtained in the present invention is used in place of the parent strain. Therefore, the raw materials, production facilities, production management, etc. may be exactly the same as the conventional method, and there is no increase in the cost for producing alcoholic beverages with a shortened fermentation period. That is, according to the present invention, the existing facility can be used and manufactured without increasing the cost.
  • the present invention relates to a method for evaluating the low-temperature performance of a test yeast using a primer or probe designed based on the base sequence of a gene having the base sequence of SEQ ID NO: 1 that enhances low-temperature performance.
  • a general method of such an evaluation method is publicly known, and is described in, for example, WO 0 1/0 4 0 5 14, Japanese Patent Application Laid-Open No. 8-205 0 00, and the like. This evaluation method will be briefly described below.
  • test yeast genome prepares the test yeast genome.
  • any known method such as Hereford method or potassium acetate method can be used (for example, Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, pl30 (1990)).
  • the primer or probe designed based on the nucleotide sequence (preferably 0RF sequence) of the gene that enhances low-temperature performance for the derived gene the gene or its Check whether a specific sequence exists in the gene.
  • the primer or probe can be designed using a known method.
  • Detection of a gene or a specific sequence can be performed using a known technique.
  • a polynucleotide containing a part or all of a specific sequence or a polynucleotide containing a base sequence complementary to the base sequence is used as one primer, and the upstream or downstream of this sequence is used as the other primer.
  • a polynucleotide containing a part or all of the sequence or a polynucleotide containing a base sequence complementary to the base sequence is used to amplify yeast nucleic acid by PCR, and the presence or absence of the amplified product and the molecular weight of the amplified product are determined. Measure the size.
  • the number of bases of the polynucleotide used for the primer is usually 10 bp or more, preferably 15 to 25 bp.
  • the number of bases in the sandwiched region is usually 300 to 2000 bp.
  • the reaction conditions for the PCR method are not particularly limited. For example, denaturation temperature: 90 to 95 ° C, annealing temperature: 40 to 60 ° C, extension temperature: 60 to 75 ° C, number of cycles: 10 times or more, etc. The following conditions can be used.
  • the obtained reaction product is separated by electrophoresis using agarose gel or the like, and the molecular weight of the amplified product can be measured.
  • This method predicts and evaluates the low-temperature performance of the yeast, depending on whether the molecular weight of the amplified product is large enough to include a specific portion of the DNA molecule. In addition, by analyzing the base sequence of the amplified product, the above performance can be predicted and evaluated more accurately.
  • the low-temperature performance of the test yeast can also be evaluated by culturing the test yeast and measuring the expression level of a gene having the base sequence of SEQ ID NO: 1 that enhances low-temperature performance. it can.
  • the expression level of the gene can be measured by culturing the test yeast and quantifying mRNA or protein, which is a gene product that enhances low-temperature performance.
  • Quantification of mRNA or protein can be performed using a known method. For example, mRNA quantification can be performed by, for example, Northern hybridization or quantitative RT-PCR, and protein quantification by, for example, Western plotting (Current Protocols in Molecular Biology, John Wiley & Sons 1994- 2003) 0
  • a yeast suitable for brewing a desired liquor can be selected.
  • a reference yeast and a test yeast may be cultured, the gene expression level in each yeast may be measured, and a desired yeast may be selected by comparing the gene expression levels of the reference yeast and the test yeast.
  • a standard yeast and a test yeast are cultured, and the expression level of the gene having the base sequence of SEQ ID NO: 1 that enhances low-temperature performance is measured in each yeast.
  • a test yeast having a high expression of yeast a yeast suitable for brewing the desired alcoholic beverage can be selected.
  • test yeast suitable for brewing a desired liquor can be selected by culturing the test yeast and selecting a yeast having excellent low-temperature performance.
  • the test yeast or the reference yeast may be, for example, the above-mentioned venom of the invention.
  • Yeast into which a vector has been introduced yeast in which the expression of the polynucleotide (DNA) of the present invention described above is suppressed, yeast that has been subjected to mutation treatment, naturally-mutated yeast, and the like can be used.
  • the low-temperature fermentability can be evaluated, for example, by measuring the amount of ethanol produced and the rate of ethanol production from 10 ° C to 15 ° C. Freezing tolerance can be evaluated by the method described in Example 5, for example.
  • Mutation treatment can be performed by any physical method such as UV irradiation or radiation, chemical method by chemical treatment such as EMS (ethyl methanesulfonate), N-methyl-N-nitrosoguanidine, etc. (For example, see Taiji Oshima, Biochemical Experimental Method 39 Yeast Molecular Genetics Experimental Method, p 67-75, Academic Publishing Center, etc.).
  • EMS ethyl methanesulfonate
  • N-methyl-N-nitrosoguanidine etc.
  • yeasts that can be used as the reference yeast or the test yeast include any yeast that can be used for brewing, for example, brewery yeast for beer, wine, sake and the like. Specific examples include yeasts of the genus Saccharomyces.
  • beer yeasts such as Saccharomyces pastorianus W34 / 70, Saccharomyces carolsbergensis (Saccharomyces carlsbergensis) NCYC453, NCYC456 etc., Saccharomyces cerevisiae NBRC1951, NBRC1952, NBRC1953, NBRC1954 etc. can be used.
  • wine yeasts such as association wines No. 1, 3 and 4 can be used, but sake yeasts such as association yeast sakes No. 7 and 9 can be used, but are not limited thereto.
  • beer yeast such as Saccharomyces pastorianus is preferably used.
  • the reference yeast and the test yeast may be selected from the above yeasts in any combination.
  • Example 1 Cloning of a gene (nonScDLTl) that enhances novel low-temperature fermentability
  • non S C DLTl was found (SEQ ID NO: 1).
  • primers nonScDLTl_F (SEQ ID NO: 3) and ZnonScDLTl_R (SEQ ID NO: 4) for amplifying full-length genes were designed, respectively.
  • a DNA fragment containing the full length gene of nonScDLTl was obtained by PCR using the chromosomal DNA of the strain as a saddle type.
  • the nonScDLTl gene fragment obtained as described above was inserted P CR2.
  • Binole was brewed using the brewer's yeast Saccharomyces pastorianus strain W34 / 70, and mRNA extracted from the brewer's yeast cells during fermentation was detected with a brewer's yeast DNA microarray. Wort extract concentration 12. 69%
  • Yeast input 12.8 X 10 6 cells / mL The fermentation broth was sampled over time, and changes in yeast growth (Fig. 1) and appearance extract concentration (Fig. 2) over time were observed. At the same time, yeast cells were sampled, and the prepared mRNA was labeled with piotin and hybridized to a brewer's yeast DNA microarray described in JP-A-2004-283169. Signal detection was performed using a GeneChip operating system (GC0S; GeneChip Operating Software 1.0, manufactured by Affymetritas). The expression pattern of the nonScDLTl gene is shown in FIG. From this result, it was confirmed that the nonScDLTl gene was expressed in normal beer fermentation.
  • Fig. 1 The fermentation broth was sampled over time, and changes in yeast growth (Fig. 1) and appearance extract concentration (Fig. 2) over time were observed. At the same time, yeast cells were sampled, and the prepared mRNA was labeled with piotin and hybridized to a brewer's yeast DNA microarray
  • Example 3 Production of nonScDLTl high expression strain NonScDLTl / pCR2.
  • 1-TOPO described in Example 1 was digested with restriction enzymes Sacl and Notl to prepare a DNA fragment containing the entire protein coding region. This fragment was ligated to restriction enzymes Sacl and Notl-treated pYCGPYNot to construct a nonScDLTl high expression vector nonScDLTl / pYCGPYNot.
  • pYCGPYNot is a YCp-type yeast expression vector, and the introduced gene is highly expressed by the pyruvate kinase gene PYK1 promoter. It contains the di-neticin resistance gene 6418 ⁇ as a selection marker in yeast, and the ampicillin resistance gene Amp r as a selection marker in Escherichia coli.
  • AJL4004 strain was transformed by the method described in Japanese Patent Application Laid-Open No. 07-303475 using the high expression vector prepared by the above method, and YPD plate medium containing 1 mg of dieneticin (1% yeast extract, 2% polypeptone, Transformants were selected at 2 ° / glucose, 2% agar).
  • Dieneticin 1% yeast extract, 2% polypeptone, Transformants were selected at 2 ° / glucose, 2% agar.
  • Example 5 Evaluation of freezing tolerance
  • the freezing tolerance of the parent strain and the high expression strain was evaluated by the following method.
  • the contents of the medium used in the following examples are as follows.
  • YPD medium 1% yeast extract, 2% bactopeptone and
  • YNB medium A medium consisting of water containing 0.67% yeast nitrogen base, 0.4% casamino acid, 20 pp uracil and 40 pp m adenine.
  • One platinum loop of fungus was inoculated into 10 mL of YPD medium containing 300 mg / L of dieneticin and cultured at 30 ° C with shaking.
  • Two yeast suspensions, one for freezing and one for non-freezing, were prepared for each of the parent strain and the high expression strain.
  • the low temperature performance of yeast is increased, so that alcoholic beverages can be produced in a short time even at low temperatures.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mycology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Distillation Of Fermentation Liquor, Processing Of Alcohols, Vinegar And Beer (AREA)

Abstract

本発明は、低温性能(低温発酵性及び/又は冷凍耐性)を増強させる遺伝子及びその用途に関し、特に、低温性能の高い醸造酵母、該酵母を用いて製造した酒類、その製造方法などに関する。さらに具体的には、本発明は、醸造酵母の低温性能を増強させるDLT1pをコードする遺伝子DLT1、特にビール酵母に特徴的なnonScDLT1遺伝子の発現量を高めることによって、低温性能を向上させた酵母、当該酵母を用いた酒類の製造方法などに関する。

Description

明 細 書
低温発酵性及び/又は冷凍耐性を増.強させる遺伝子及びその用途 技 丁分野
本発明は、 低温発酵性及び Z又は冷凍耐性 (以下、 「低温性能」 ともいう) を増 強さ、せる遺伝子及びその用途に関し、 特に、 低温性能に優れた醸造酵母、 該酵母を 用いて製造した S®、 その製造方法などに関する。 さらに具体的には、 本発明は、 醸造酵母の低温性能を増強させるタンパクである Dltlp をコードする遺伝子 DLT1、 特にビール酵母に特徴的な nonScDLTl遺伝子の発現量を高めることによって、 低温 性能を向 ±させだ酵母、 当該酵母を用いた酒類の製造方法などに関する。 背景技術 .
ラガービール fま低温 (10-15°C) で発酵が行なわれ、 雑味のないすっきりした 味わレ、を特徴とする。 ラガービールの製造に使用される下南発酵酵母はこの低温発 -酵性に優れているが、 低温発酵性に関与じている遺伝子については明らかになって ' いな!/、。
また、 じく低温で発酵が行なわれる清酒では、 エステル類などの香気成分生成 '酵素の活性維持、 香気成分分解酵素の活性低下、'香気成分基質の増加などにおいて 低温が重要な役割を果たしているこ 'とが知られている。
再表 97/02444 公報には、 発酵能の低温感受性を示す変異を相補する遺伝子の 発現により低温発酵能の向上した例が報告されている。 また、 低温増殖に関与する 遺伝子として LTG3 (DLT1) が報告されている (清酒酵母の研究 90年代の研究、 清酒酵 '麹研究会編 p lO3- 10ァ、 2003) 。
一方、 パン酵母の冷凍耐性を増強させる遺伝子として YLR023 Cおよび YMR126 C. (DLT1) が報告されている、(特開平 2003 - 144137号公報) 。 発明 開示 - 上記状 ¾下、'低温において香味の優れた酒類'を製造するために、 低温発酵性にお いて優れた酵母が望ま Lていた。 また、:酵母 冷凍することによって長期間安定に 保存できれば、 生産性の向'上につながるため、 冷凍耐性において優れた酵母も望ま れていた。 . 、
本発明者らは、 上記課題を解決するため鋭意検討を重ねた結果、 ビール酵母から 既知のタンパク質より有利な効果を奏する低温性能を増強させるをコードする遺伝
5 子を同定 ·単離することに成功した。 また、 得られた遺伝子を酵母に導入し発現さ せた 質転換酵母を作製し、 低温性能が増強されることを確認して、 本発明を完成 した。
すなわち本発明は、 ビール酵母に特徴的に存在する新規な低温性能を増強させる 遺伝子、 該遺伝子がコードするタンパク質、 該遺伝子の発現が調節された形質転換0 酵母、 該¾伝子の発現が調節された酵母を用いることによる酒類の製造方法などに 関する。 本発明は、 具体的には、 次に示すポリヌクレオチド、 該ポリヌクレオチド を含有するベクター、 該ベクターが導入された形質転換酵母、 該形質転換酵母を用 いる酒類の製造方法などを提供する。 ·
( 1 ) 以下の(a)〜(f ) からなる群から選択されるポリヌクレオチド:
5 (a)配列番号: 1の塩基配列からなるポ'リヌクレオチドを含有するポリヌクレオ ' チド;.
(b)配列、番号: 2のァミノ酸配列から、なるタンパク質をコードするポリヌクレオ チドを含有するポリヌクレオチド;
(c)配列番号: 2のアミノ酸配列において、 1 もしくは複数個のアミノ酸が欠失、0 置換、 挿入および/または付加したアミノ酸配列からなり.、 かつ低温性能を増強さ せる活性を有するタンパク質をコードするポリヌク,レオチドを含有するポリヌクレ ォチド;
' (ii) ffi列番号: 2のァミノ酸配列に対して 6Q%以上の同一性を有するアミノ酸配 , 列を有し、 かつ低温性能を増強させる活性を有するタンパク質をコードするポリヌ5 . クレオチド.を含有するポ.リ クレオチド;
(e)配列番号: 1の塩基配列と相補的な塩基配列からなるポリヌクレオチドとスト リン 2ヱントな条件下でハイブリダィズし、 かつ低温性能 増強させる活生を有す るタンパク質をコードするポリヌクレオチドを 有するポリ.ヌクレオチド;及び ( f )配列番号: 2'のゲミノ酸配列か bなるタンパク質をコードするポリヌクレオ チド'の塩基配列と相補的 ¾塩基配列からなるポリヌクレオチドとス bリンジェント な条件下でハイ.ブリダイズし、 かつ低温性能を増強させる活性を有するタンパク質 をコードするポリヌクレオチドを含有するポリヌクレオチド。
(2) 以下の(g)〜(i) からなる群から選択される上記 (1) に記載のポリヌクレ ォチド:
(g)'配列番号: 2のァミノ酸配列又は配列番号: 2のァミノ酸配列において、 1〜 10 個のアミノ酸が欠失、 置換、 揷入および/または付カ卩したアミノ酸配列からな り、 かつ低温生能を増強させる活性を有するタンパク質をコードするポリヌクレオ チドを含有するポリヌクレオチド;
(h) 配 番号:' .のァミノ酸配列に対して .90%以上の同一性を有するアミノ酸配 列を有し、 かつ低温性能を増強させる活性を有するタンパク質をコードするポリヌ クレオチドを含有するポリヌクレオチド-;及び
ω配列番号: 1の塩基配列からなるポリヌクレオチド、 .又は配列番号: 1の塩 基配列と相補的な塩基配列からなるポリヌクレオチドとハ ストリンジェントな条 - 件下でハイプリダイズし、 かつ低温性能を増強させる活性を有するタンパク質をコ ードするポリヌクレオチドを含有するポリヌクレオチド。
(3) -配列番号: 1の塩基配列からなるポリヌクレオチドを含有する上記 (1) に '記載のポリヌクレオチド。
(4) 配列番号: 2のアミノ酸配列からなるタンパク質をコードするポリヌクレオ チドを含有する上記: ( 1 ) に記載のポリヌクレオチド。
(5) D皿である、 上記 (1) 〜 (4) のいずれ力 こ記載のポリヌクレオチド。
(6) 上記 (1) 〜'(5) のいずれかに記載のポリヌク ォチドにコードされるタ ンパク質。
(7) 上記 (1) 〜 (5) のいずれかに記載のポリヌクレオチドを含有するべクタ 一。
(7a) 以下の(X)〜( の構成要素を含む発現カセットを含む上記 (7) に記 の ベクター ·
(X)酵母細胞内で転写可能なプロモー ー :
(y)該プロモータ—にセンス方向またはアンチセンス方向で結合した、 上記 '( 1 ) 〜 (5 ) のいずれかに記載のポリヌクレオチド;及ぴ
(z)RNA分子の転写終結およびポリアデュル化に関し、 '酵母で機能するシグナル。
(8Γ上記 (7) に記載のベクターが導入された酵母。
( 9) 上記 (7) に記載のベクターを導入することによって、 低温性能が増強され 5 た上記(8)に記載の酵母。
( 1 0 ) 上記 (6 ) に記載のタンパク質の発現量を増加させることによって低温性 '能が増強された上 f己 ( 9) に記載の酵母。
( 1 1 ) 上記 (8) 〜 (1 0) のいずれかに記載の酵母を用いた酒類の製造方法。
( 1 2) 醸造する酒類が麦芽飲料である上記 (1 1 ) に記載の酒類の製造方法。0 ( 1 3 ) 酵造する酒類がワインである上記 (1 1 ) に記載の酒類の製造方法。
( 1 4 ) 上記 (1 1 ) 〜 (1 3) のいずれかに記載の方法で製造された酒類。
( 1 5 ) 配列番号: 1の塩基配列を有する低温性能を増強させる遺伝子の塩基配列 に基づいて設計したプライマーまたはプローブを用いて、 被検酵母の低温性能につ いて評価する方法。
5 ' ( 1 5 a) 上記 (1 5 ) に記載の方法によって、 低温性能が高い酵母を選別する方 法。 + ' .
. ( 1 5-b) 記 (1 5a) に記載の方法 よって選別された酵母を用いて酒類 (例え 'ば、 ビール) を製造する方法。
( 1 6 ) 被検酵母を培養し、 配列番号: 1の塩基配列を有する低温性能を増強させ0 る遺伝子の'発現量 '測定することによって、 被検酵母の低温性能を評価する方法。
( 1 7) 被検酵母を培養して、 上記 ( 6 ) に記載の,タンパク質を定量または配列番 号: 1の塩基配列を有する低温性飽を増強させる遺伝子 発現量を測定し、 目的と
' する低?显性能に応じた前記タンパク質量または前記遺伝子発現量の被検酵母を選択 , する、 酵母の選択方法。
5. ( 1 7 a ) 裨検酵母を培養して、 低温発酵能もしくは低温発酵活性または冷凍耐性 'を測定し、 目的と十る低温発酵能もしくは低温発酵活性または冷凍耐性の被検酵母 を選 する、.酵母の選択方法。
(i s) '基準酵母およぴ被検酵母を培養'して ia 番号: 1の塩基配列を有する低温 性能を増強させる遺イ^^の各酵母における発現量を測定し、 基準酵母よりも該遺伝 子が髙発現である被検酵母を選択する、 上記 (1 7 ) に記載の酵母の選択方法。
( 1 9 ) 基準酵母および被検酵母を培養して各酵母における上記 (6 ) に記載のタ ンパク質を定量し、 基準酵母よりも該タンパク質量の多い被検酵母を選択する、 上 記 (1 7 ) に記載の酵母の選択方法。 即ち、 複 :の酵母を培養して各酵母における 上記 (6 ) に記載のタンパク質を定量し、 その中で該タンパク質量の多い被検酵母 を選^する、 上記 (1 7 ) に記載の酵母の選択方法。
( 2 0 ) 上記 (8 〜 (1 0 ) に記載の酵母および上記 (1 7 ) 〜 (1 9 ) に記載 の方法により選択された酵母のいずれかの酵母を用いて酒類製造のための ¾酵を行 い、 低温性能を増強させたことを特徴とする、 酒類の製造方法。
本発明の形質転換酵母を用いる酒類の製造法によれば、 低温発酵性が向上し、 低 温発酵における発酵期間の短縮が可能となる。 また、 本発明によれば、 冷凍耐性の 優れた酵母を提供することもできる。 . . なお、 本明細書において、 「低温性能」 とは、 低温発酵能及び/又は冷凍耐性の ことをいう。
-図面の簡単な説明
図 1.は、 ビール試験醸造における酵母増殖量の経時変化を示す図である。 横軸は 発酵時.間を、 縦軸は OD660の値を示している。
' 図 2は、 ビール試験醸造におけるエキス消費量の経時変化を示す図である。 横軸 は発酵時間、 縦軸は外観エキス濃度 ( V/D) を示している。 、
図 3は、 ビ'ール試験醸造中の酵母における nonScDLTl遺伝子の発現挙動を示す図 である。 横軸は発酵時間、 縦軸は検出されたシ.ダナ/レ輝度を示している。
図 4は、 親株ならびに nonScDLTl高発現株の冷凍耐性度を示す図である。 発明を実施するための最良の形態
本発明者らは、 酵母の ®¾性能を増強させることによって.'、' さら'に効率よく低温 での発酵を行なう とが可能であると考えた。 このような着想に基づいて研究を重 ね、 開?004-283169に開示の方法で解読したビール酵母ゲノム情報を基 ίこ、 ビー ,ル酵母特有の低温性能を増強させるタンパクを 一ドする ηοη - ScDLTl 遺伝子を単 離 '同定した。 この塩基配列を配列番号: 1に示す。 またこの遺伝子によりコード きれるタンパク質のァミノ酸配列を配列番号: 2に示す,
1 . 本発明のポリヌクレオチド
まず、 本発明は、 (a)配列番号: 1の塩基配列からなるポリヌクレオチドを含有 5 するポリヌクレオチド;及び (b)配列番号: 2のアミノ酸配列からなるタンパク質 をコードするポリヌクレオチドを含有するポリヌクレオチドを提供する。 ポリヌク レオチドは、 D iv Aであっても R N Aであってもよい。
本発明で対象とするポリヌクレオチドは、 上記のビール酵母由来の低温性能を増 強させるタンパクを.コードするポリヌクレオチドに限定されるものではなく、 この 10 タンパク質と機能的に同等なタンパク質をコードする他めポリヌクレオチドを含む, 機能的に同等なタンパク質としては、 例えば、 (c)配列番号: 2のアミノ酸配列に おいて、 1 もしくは複数個のアミノ酸が欠失、 置換、 挿入および/または付加した ァミノ酸配列からなり、 かつ低温性能を増強させる活性を有するタンパク質が挙げ られる。
15 - このようなタンパク質としては、' 配列番号: 2のアミノ酸配列において、 例えば.
1〜100個、 1〜90個、 1〜80個、 '1〜70個、' 1〜60個、 1〜50個、 1〜40個. , :!〜 39個、 1〜38個、 :!〜 37.個、 1 36個、 :!〜 35個、 ;!〜 34個、 1〜33個、 1〜32個、 1〜31個、 1〜30個、 :!〜 29.個、 .1〜28個、 1〜27個、 1〜26個、 1〜25個、 1〜24個、 1〜23個、 1〜22個、 1〜21個、 1〜20個、 :!〜 19個、 0 1〜18個、' 1〜: 17'個、 1〜16個、 1〜15個、 :!〜 14個、 :!〜 13個、 1〜12個、 :!〜 11·個、 :!〜 10個、 1〜9個、 1〜8個、 1〜 個、 1〜6個 (1〜数個) 、 1〜 5個、 1〜4個、 1 3個、 1〜2個、 1個のアミノ酸残萆が欠失、 置換、 揷入およ ' ぴ Zまたは付加されたァミノ酸配列からなり、,かつ低温性能を増強させる活性を有 するタンパク質が挙げられる。 上記アミノ酸残基の欠失、 置換、 挿入および/また 5. は付力卩の数は、 一般的には小さい程好ましい。 また、 このようなタンパク質として は、 (d)配列番号:' 2 ·のァミノ酸配列と約 60%以上、 約 70%以上、 71%以上、 72% 以上 73%以上、 74%以上、 75%以上、 76%以上、 77%以上、 78%以上、 79%以上、 80%以上、 81%以上、 82%以上、 83%以上、 4%以上、 85%以上、 86%以上、 87% 以上、 88%以上、 89%以上、 90%以上、 91%以上、 92%以上、 93%以上、 94%以上、 5%·以上、 96%以上、 97%以上、 98%以上、 99%以上、 99. 1%以上、,.99. 2%以上、 99. 3%以上、 99. 4%以上、 99. 5 %以上、 99. 6%以上、 99. 7%以上、 99. 8%以上、 99. 9%以上の同一性を有するアミノ酸配列を有し、 かつ低温性能を増強させる活性 を有するタンパク質が挙げられる。 上記相同性の数値は一般的に大きい程好ましレ、。 なお、 低温発酵性は、 例えば 10°Cから 1 5 °Cにおけるエタノール生成量とエタ ノー)レ生成速度を測定することによって評価することができる。 同一温度で醸造し た場合に、,基準酵母 (例えば、 サッカロマイセス セレビシェ NBRC2002、 AJL4002 など) と比較してエタノール生成量またはエタノール生成速度が増加していれば、 「低温発酵性を増強させる活性」 があると判断する。 そのような増加率は、 好まし くは 5 %μ上、 より.好ましくは 1 0 %以上、 より好ましくは 1 5 %以上、 さらに好 ましくは 2 0 %以上である。 冷凍耐性は、 例えば、 本明細書の実施例 5に記載の方 法のように、.被検酵母を含む酵母懸濁液で冷凍しないものと、 その被検酵母を含む 酵母懸濁液を一度冷凍後、 解凍したもののグルコース消費速度などを比較すること によって評価することができる。 すなわち、 冷凍処理後のグルコース消費速度の低 - 下が少ないほど、 冷凍耐性が高いということになる。
また、 本発明は、 (e)配列番号: Γの塩基配列と相補的な塩基配列からなるポリ ヌクレオチドとストリンジヱントな条件下でハイブ ダイズし、 かつ低温性能を増 "強させる活性を有するタンパク質をコードするポリヌクレオチドを含有するポリヌ クレオチド;及び (f )配列番号: 2のァミノ酸配列からなるタンパク質をコードす るポリヌク'レオチ の塩基配列と相補的な塩基配列からなるボリヌクレオチドとス トリンジヱントな条件下でハイブリダィズし、 か 低温性能を増強させる活性を有 するタンパク質をコ ドするポリヌクレオチドを含有す, §ポリヌクレオチドも包含 する。 .
ここで、 「ストリンジ; ントな条件下でハイプリダイズするポリヌクレオチド」 とは、 配列番号: 1の塩基配列と相補的な塩基配列からなるポリヌクレオチド又は 配列番号: 2のァ ノ酸配列をコードするポリヌクレオチドの全部または一部をプ ロー 、とレて、 コロニーハイプリダイゼーシヨン法、 プラ クハイブリダィゼーシ ョン法ま'.たはサザンハイブリダイゼーション¾ょどを用いることにより得られるポ リヌクレオチド (例えば、 DNA) をいう:。 ハイブリダィゼーションの方法としては、 !jえ.ば Molecular Cloning 3rd Ed.、 Current Protocols in Molecular Biology, John Wi ley & Sons 1987 - 1997 などに記載されている方法を利用することができる。 本明細書でいう 「ストリンジェントな条件」 は、 低ストリンジヱントな条件、 中 ストリンジェントな条件及ぴ高ストリンジェントな条件のいずれでもよい。 「低ス トリンジヱントな条件」 は、 例えば、 5 X SS (:、 5 Xデンハルト溶液、 0. 5%SDS、 50% ルムアミ ド、 32°Cの条件である。 また、 「中ストリンジェントな条件」 は、 例えば、 5'X SS ^ Xデンハルト溶液、 0. 5%SDS、 50%ホルムアミ ド、 42°Cの条件 である。 「高ストリンジェントな条件」 は、 例えば、 5 X SSC:、 5 Xデンハルト溶液、 0. 5%SDS、 50%ホルムアミ ド、 50°Cの条件である。 これらの条件において、 温度を 上げるほど高い相同性を有するポリヌクレオチド . (例えば、 D N A) が効率的に得 られることが期待できる。 ただし、 ハイプリダイゼーシヨンのストリンジエンシー に影響する要素としては温度、 プローブ濃度、 プローブの長さ、 イオン強度、.時間、 塩濃度など複数の孥素が考えられ、 当業者であればこれら要素を適宜選択すること で同様のストリンジエンシーを実現することが可能である。'
なお、 ハイブリダィゼーシヨンに市販のキットを用いる場合は、 例えば Alkphos Direct Label ling Reagents (アマシ'ャムフアルマシア社製) を用いることができ る。 こ-の場合は、 キットに添付のプロトコルにしたがい、 標識したプローブとのィ ンキュベーションをー晚行った後、 メンブレンを 55°Cの条件下で 0. 1% (w/v) SDS を含む 1次洗浄バッファーで洗浄後、 ハイブリダイズしたポリヌタレオチド (例え ば、 DNA) を検出することができる。
これ以外にハイブリダイズ可能なポリヌクレオチドとしては、 FASTA、 BLAST な どの相同性検索ソフトウェアにより、 デフォルトのパラメータを用いて計算したと きに、 配列番号: 2のアミノ酸配列をコードするポリヌクレオチドと約 60%以上、 約 70%以上、 71 %以上、 72%以上、 73%以上、 74%以上、 75%以上、 76%以上、 77%以上、 .78%以上、 79%以上、 80%以上、 81%以上、 82%'以上、 ' 83%以上、 84% 以上、 85%以上、 86%以上、 87%以上、 88%以上 89%以上、 90%以上、 91%以上、 92% 上、. 93%以上、 94%以上、 95%以上、 96%以上、 97%以上、 98%以上、 99% 以上、 99. 1%以上、 99. 2%以上、 99. 3%以上、 ' . 4%以上、 99. 5%以上、 99. 6%以 上、 99. 7%以上、 99. %以上、 99. 9%以上の同一性を有するポリヌクレオチドをあ げることができる。 '
なお、 ァミノ.酸配列や塩基配列の同一性は、 カーリンおよびアルチユールによる アルゴリズム B LAST (Proc. Natl. Acad. Sci. USA 872264-2268, 1990; Proc Natl Acad Sci USA 90: 5873, 1993) を用いて決定できる。 BLASTのァ ルゴリズムに基づいた B LASTNや. B L A S T Xと呼ばれるプログラムが開発さ れている (Altschul SF, et al: J. Mol. Biol. 215: 403, 1990) 。 BLAST Nを用いて塩基酉 5 ^を解析する場合は、 パラメータ一は、 例えば s c o r e = 10 0、 wo r d l e n g t h= 12とする。 また、 B L A S T Xを用いてアミノ酸配 列を解析する場合は、. パラメータ一は、 例えば s c o r e = 50、 wo r d l e n g t h = 3とする'。 . BLASTと Ga p p e d B L A S Tプログラムを用いる場 合は、 各プログラム.のデフオルトパラメーターを用いる。
2. 本発明のタンパク質
本発明は、 上記ポリヌクレオチド(a;)〜(i)のいずれかに: i一ドされるタンパク質 · も提供する。 本発明の好ましいタンパク質は、 配列番号: 2のアミノ酸配列におい
' て、 1.もしくは複数個のアミノ酸が欠失、 置換、'挿入および/または付カ卩したアミ ノ酸酉&列 らなり、 力、つ低温性能を増強させる活性を有するタンパク質である。 こ
—のようなタンパク質としては、 配列番号: 2のアミノ酸配列において、 上記したよ うな数のアミノ酸残基が欠失、 置換、 揷入および Zまたは付カ卩されたァミノ酸配列 からなり、 'かつ低?盧性能を増強させる活性を有するタンパク質が挙げられる。 また、 このようなタンパク質としては、 配列番号: 2のァ,ミノ酸配列と上記したような相 同性を肴するァミノ酸配列を有し、 かつ低温性能を増強,きせる活性を有するタンパ ク質が挙げられる。 このようなタンパク質は、, 「モレキュラークローニング第 3 版」 、 「カレント 'プロ トコールズ 'イン 'モレキュラー 'パイォロジー」 、. "Nuc. Acids. Res., 10,、 648,7 (1982) " 、 "Proc. Natl..' Acad. , Sci. USA, 79,
6409 (1982) " 、 '"Gene, 34, 315 (1985) " 、 "Nuc. Acids. Res., 13, 4431
(1985 " 、. ."Proc. Natl. Acad. Sci. USA, 82, 488 (1985) " 等に記載の部位特異 的変異導入法を用いて、 取得することが'できる.。,. .
い · )
本発明のタンパク.質 アミノ酸配列において 1以上のアミノ酸残基が欠失、 置換、 淖入および/または付加されたとは、 同一配列中の任意かつ 1もしく,'は複数のァミ ノ酸配列中の位置において、 1 または複数のアミノ酸残基の欠失、 置換、 挿入及び /又ほ付加があることを意味し、 欠失、 置換 揷入及び付加のうち 2種以上が同時 に生じてもよい。
以下に、 相互に置換可能なアミノ酸残基の例を示す。 同一群に含まれるアミノ酸 残基 相互に置換可能.である。 A群: ロイシン、 イソロイシン、 ノルロイシン、 バ リン、 ノルバリ;^ ァラニン、 2 -アミノブタン酸、 メチォニン、 0 -メチルセリン、 t -ブチルグリシン、 t --プチルァラニン、 シク口へキシルァラニン; B群:'ァスパ ラギン酸、 グルタミン酸、 イソァスパラギン酸、 イソグルタミン酸、 2-アミノアジ ピン酸、 2-ァミノ'スベリン酸; C群:ァスパラギン、'グルタミン; D群: リジ ン、 アルギニン、 オル二チン、 2, 4 -ジアミノブタン酸、 2, 3-ジァミノプロピオン 酸; E群:プロリン、 3-ヒ ドロキシプロリン、 4-ヒ ドロキシプロリン; F.群: セリン、 スレオニン、 ホモセリン; G群: フエ二/レアラニン、 チロシン。
また、 本発明の ンパク質は、 Fmoc 法 (フルォレニルメチルォキシカルボニル '法) 、 tBoc 法 (t -プチルォキシカルボニル法) 等の化学合成法によっても製造す ることができる。 また、 ァドバンス ドケムテック社製、 パーキンエルマ一社製、 フ アルマ.シて社製、 プロテインテクノロ' ^一インス トウルメント社製、 シンセセルー ベガ社製、 パーセプティブ社製、 島津製作所社製等のぺプチ.ド合成機を利用して化 学合成することもできる。
3 . 本発明のベクター及ぴこれを導入した形質転換酵母
次に、—本発明は、 上記したポリヌクレオチドを含有するベクターを提供する。 本 発明のベクターは、 上記(a)〜(: 0のいずれかに記載のポリヌクレオチド (DNA) を 含有する。 また、 本発明のベクターは、 通常、 (X)酵母細胞内で転写可能なプロモ —ター; (y)該プロモータ にセンス方向またはアンチセン.'ス方向で結合した、 上 記(a;)〜(i)のいずれかに記載のポリヌクレオチド (DNA) ;及ぴ(z) RNA分子の転写 終結おょぴポリアデニル化に関し、 酵母で機能するシグナノ を構成要素と.して含む 発現カセットを含むように構成される。 . ·
酵母に導入する際^"用いるベクターとしてほ、 多コピー型 (YEp型) 、 単コピー 型 (YCp型) 、 染色体組み込み型 (Yip型) のいずれもが利用可能である。 例えば、 YEp 型ベク ター と しては YEp24 (J. R. Broach et al. , Experimental Manipulation of Gene Expression, Academic Press, New York, 83, 1983) 、 YCp 型ベクターとしては YCp50 (Μ· D. Rose et al. , gene, 60, 237, 1987) 、 Yip型 ベクターとしては YIp5 (K. Struhl et al., Pro atl. Acad. Sci. USP, 76, 1035, 1979) が知られており、 容易に入手することができる。
酵母での遺伝子発現を調節するためのプロモーター zターミネータ一としては、 醸造用酵母中で機能するとともに、 もろみ中の成分に影響を受けなければ、 任意の 組み合わせでよい。 例えばダリセルアルデヒド 3 リン酸デヒドロゲナーゼ遺伝子 (TDH3) のプロモーター、 3-ホスホグリセレートキナーゼ遺伝子 (PGK1) のプロモ 一ターなどが利用可能である。 これらの遺伝子はすでにクローユングされており、 例えば M. F. Tuite et al. , EMB0 J. , 1, 603 (1982) に詳細に記載されており、 既知の方法により容易に入手することができる。
形質転換の際に用いる選択マーカーとしては、 醸造用酵母の場合は栄養要求性マ —力一が利用できないので、 ジエネチシン耐性遺伝子 (G418r) 、 銅耐性遺伝子 (CUP1) (Marin et al., Proc. Natl. Acad. Sci. USA, 81, 337 1984) 、 セルレ ニン耐性遺伝子 (fas2m, PDR4) (それぞれ猪腰淳嗣ら, 生化学, 64, 660, 1992; Hussain et et al. , gene, 101, 149, 1991) などが利用可能である。
上記のように構築されるベクターは、 宿主酵母に導入される。 宿主酵母としては、 醸造用に使用可能な任意の酵母、 例えばビール、 ワイン、 清酒等の醸造用酵母等が 挙げられる。 具体的には、 サッカロマイセス (Saccharomyces) 属等の酵母が挙げ られるが、 本発明においては、 ビール酵母、 例えばサッカロマイセス パストリア ヌス (Saccharomyces pastorianus) W34/70 等、 サッカロマイセス カーノレスべノレ ゲンシス (Saccharomyces carlsbergensis) NCYC453、 NCYC456 等、 サッカロマイ セス セレビシェ(Saccharomyces cerevisiae) NBRC1951、 NBRC1952 , NBRC1953、 NBRC1954等が使用できる。 さらにウィスキー酵母、 例えばサッカロマイセス セレ ピシェ NCYC90等、 ワイン酵母、 例えば協会ぶどう酒用 1号、 同 3号、 同 4号等、 清酒酵母、 例えば協会酵母 清酒用 7号、 同 9号等も用いることができるが、 これ に限定されない。 本発明においては、 ビール酵母、 例えばサッカロマイセス パス トリアヌスが好ましく用いられる。
酵母の形質転換方法としては一般に用いられる公知の方法が利用できる。 例えば、 エレク ト口ポレーシヨン法 " Meth. Enzym. , 194, ρ182 (1990) " 、 スフエロプラス ト法 " Proc. Natl. Acad. Sci. USA, 75 pl929 (1978) " 、 酢酸リチウム法 "J. Bacteriology, 153, pl63 (1983) " 、 Proc. Natl. Acad. Sci. USA, 75 pl929 (1978)、 Methods in yeast genetics, 2000 Edition : A Cold Spring Harbor Laboratory Course Manual などに記載の方法で実施可能であるが、 これに限定さ れない。
より具体的には、 宿主酵母を標準酵母栄養培地 (例えば YEPD培地 "Genetic Engineering. Vol. 1, Plenum Press, New York, 117 (1979) " 等) で、 0D600nm の 値が 1〜6 となるように培養する。 この培養酵母を遠心分離して集め、 洗浄し、 濃 度約 1〜2Mのアルカリ金属イオン、 好ましくはリチウムイオンで前処理する。 この 細胞を約 3 0 °Cで、 約 60分間静置した後、 導入する DNA (約 l〜20 z g) とともに 約 30°Cで、 約 60分間静置する。 ポリエチレンダリコール、 好ましくは約 4, 000ダ ルトンのポリエチレングリコールを、 最終濃度が約 20%〜50%となるように加え る。 約 30°Cで、 約 30分間静置した後、 この細胞を約 42°Cで約 5分間加熱処理する。 好ましくは、 この細胞懸濁液を標準酵母栄養培地で洗浄し、 所定量の新鮮な標準酵 母栄養培地に入れて、 約 30°Cで約 60分間静置する。 その後、 選択マーカーとして 用いる抗生物質等を含む標準寒天培地上に植えつけ、 形質転換体を取得する。
その他、 一般的なクローニング技術に関しては、 「モレキュラークローニング第 •3 版」 、 Methods in Yeast Genitics、 A laboratory manual (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY) " 等を参照することができる。
4 . 本発明の酒類の製法及びその製法によって得られる酒類
上述した本発明のベクターを製造対象となる酒類の醸造に適した酵母に導入し、 その酵母を用いることによって低温において短期間で酒類を製造することができる。 また、 下記の本発明の酵母の評価方法によって選択された酵母も同様に用いること ができる。 対象となる酒類としては、 これらに限定されないが、 例えば、 ビール、 発泡酒などのビールテイストドリンク、 ワイン、 ウイスキ^"、 清酒などが挙げられ る。
これらの酒類を製造する場合は、 親株の代わりに本発明において得られた醸造酵 母を用いる以外は公知の手法を利用することができる。 したがって、 原料、 製造設 備、 製造管理等は従来法と全く同一でよく、 発酵期間の短縮された酒類を製造する ためのコストの増加はない。 つまり、 本発明によれば、 既存の施設を用い、 コスト を増加させることなく製造することができる。
5 . 本発明の酵母の評価方法
本発明は、 配列番号: 1の塩基配列を有する低温性能を増強させる遺伝子の塩基 配列に基づいて設計したプライマーまたはプローブを用いて、 被検酵母の低温性能 について評価する方法に関する。 このような評価方法の一般的手法は公知であり、 例えば、 WO 0 1 / 0 4 0 5 1 4号公報、 特開平 8 - 2 0 5 9 0 0号公報などに記 載されている。 以下、 この評価方法について簡単に説明する。
まず、 被検酵母のゲノムを調製する。 調製方法は、 Hereford法や酢酸カリウム 法など、 公知の如何なる方法を用いることができる (例えば、 Methods in Yeast Genetics, Cold Spring Harbor Laboratory Press, pl30 (1990) ) 。 ネ导られたグノ ムを対象にして、 低温性能を増強させる遺伝子の塩基配列 (好ましくは、 0RF配 列) に基づいて設計したプライマーまたはプローブを用いて、 被検酵母のゲノムに その遺伝子あるいはその遺伝子に特異的な配列が存在するか否かを調べる。 プライ マーまたはプローブの設計は公知の手法を用いて行うことができる。
遺伝子または特異的な配列の検出は、 公知の手法を用いて実施することができる。 例えば、 特異的配列の一部または全部を含むポリヌクレオチドまたはその塩基配列 に対して相補的な塩基配列を含むポリヌクレオチドを一つのプライマーとして用い、 もう一方のプライマーとしてこの配列よりも上流あるいは下流の配列の一部または 全部を含むポリヌクレオチドまたはその塩基配列に対して相補的な塩基配列を含む ポリヌクレオチドを用いて、 PCR法によって酵母の核酸を増幅し、 増幅物の有無、 増幅物の分子量の大きさなどを測定する。 プライマーに使用するポリヌクレオチド の塩基数は、 通常、 10bp 以上であり、 15〜25bp であることが好ましい。 また、 挟 み込む部分の塩基数は、 通常、 300 〜2000bpが適当である。 PCR法の反応条件は、 特に限定されないが、 例えば、 変性温度: 90〜95°C、 ァニ ーリング温度: 40〜60°C、 伸長温度: 60〜75°C、 サイクル数: 10 回以上などの条 件を用いることができる。 得られる反応生成物はァガロースゲルなどを用いた電気 泳動法等によって分離され、 増幅産物の分子量を測定することができる。 この方法 により、 増幅産物の分子量が特異部分の DNA分子を含む大きさかどうかによつて、 その酵母の低温性能について予測 ·評価する。 また、 増幅物の塩基配列を分析する ことによって、 さらに上記性能についてより正確に予測 ·評価することが可能であ る。
また、 本発明においては、 被検酵母を培養し、 配列番号: 1の塩基配列を有する 低温性能を増強させる遺伝子の発現量を測定することによって、 被検酵母の低温性 能を評価することもできる。 なお、 遺伝子の発現量の測定は、 被検酵母を培養し、 低温性能を増強させる遺伝子の産物である mRNA又はタンパク質を定量することに よって可能である。 mRNA又はタンパク質の定量は、 公知の手法を用いて行うこと ができる。 例えば、 mRNA の定量は例えばノーザンハイブリダィゼーシヨンや定量 的 R T— P C Rによって、 タンパク質の定量は例えばウェスタンプロッティングに よって行つこと力 Sできる (Current Protocols in Molecular Biology, John Wiley & Sons 1994-2003) 0
さらに、 被検酵母を培養して、 配列番号: 1の塩基配列を有する低温性能を増強 させる遺伝子の発現量を測定し、 目的とする低温性能に応じた前記遺伝子発現量の 酵母を選択することによって、 所望の酒類の醸造に好適な酵母を選択することがで きる。 また、 基準酵母および被検酵母を培養し、 各酵母における前記遺伝子発現量 を測定し、 -基準酵母と被検酵母の前記遺伝子発現量を比較して、 所望の酵母を選択 してもよい。 具体的には、 例えば、 基準酵母およぴ被検酵母を培養して配列番号: 1の塩基配列を有する低温性能を増強させる遺伝子の各酵母における発現量を測定 し、 基準酵母よりも該遺伝子が高発現である被検酵母を選択することによって、 所 望の酒類の醸造に好適な酵母を選択することができる。
あるいは、 被検酵母を培養して、 低温性能の優れた酵母を選択することによって 、 所望の酒類の醸造に好適な被検酵母を選択することができる。
これらの場合、 被検酵母または基準酵母としては、 例えば、 上述した本発明のベ クターを導入した酵母、 上述した本発明のポリヌクレオチド (DNA) の発現が抑制 された酵母、 突然変異処理が施された酵母、 自然変異した酵母などが使用され得る 。 低温発酵能は、 例えば、 例えば 10°Cから 1 5 °Cにおけるエタノール生成量とェ タノール生成速度を測定することによって評価することができる。 冷凍耐性は、 例 えば、 実施例 5に記載の方法によって評価することができる。 突然変異処理は、 例 えば、 紫外線照射や放射線照射などの物理的方法、 E M S (ェチルメタンスルホネ ート) 、 N—メチルー N—ニトロソグァ二ジンなどの薬剤処理による化学的方法な ど、 いかなる方法を用いてもよい (例えば、 大嶋泰治編著、 生物化学実験法 39 酵母分子遺伝学実験法、 p 67-75、 学会出版センターなど参照) 。
なお、 基準酵母、 被検酵母として使用され得る酵母としては、 醸造用に使用可能 な任意の酵母、 例えばビール、 ワイン、 清酒等の醸造用酵母等が挙げられる。 具体 的には、 サッカロマイセス (Saccharomyces) 属等の酵母が挙げられるが、 本発明 においては、 ビール酵母、 例えばサッカロマイセス パス ト リ アヌス (Saccharomyces pastorianus) W34/70等、 サッカロマイセス カーノレスべノレゲン シス (Saccharomyces carlsbergensis) NCYC453、 NCYC456 等、 サッカロマイセス セレビシェ(Saccharomyces cerevisiae) NBRC1951、 NBRC1952、 NBRC1953、 NBRC1954 等が使用できる。 さらにワイン酵母、 例えば協会ぶどう酒用 1号、 同 3号、 同 4号 等、 清酒酵母、 例えば協会酵母 清酒用 7号、 同 9号等も用いることができるが、 これに限定されない。 本発明においては、 ビール酵母、 例えばサッカロマイセス パス トリアヌスが好ましく用いられる。 基準酵母、 被検酵母は、 上記酵母から任意 の組み合わせで選択しても良い。 実 施 例
以下、 実施例によって本発明の詳細を述べるが、 本発明は以下の実施例に限定さ れるものではない。 実施例 1 :新規低温発酵性を増強させる遺伝子 (nonScDLTl) のクローユング
特開 2004-283169に記載の比較データベースを用いて検索した結果、 ビール酵母 に特有の新規低温発酵性を増強させる遺伝子、 nonSCDLTl を見出した (配列番号: 1 ) 。 得られた塩基配列情報を基に、 それぞれ全長遺伝子を増幅するためのプライ マー nonScDLTl_F (配列番号: 3) ZnonScDLTl_R (配列番号: 4) を設計し、 ゲノム 解読株サッカロマイセス パス トリアヌス バイへンステフアン 34/70株の染色体 DNAを铸型とした PCRによって nonScDLTlの全長遺伝子を含む DNA断片を取得した。 上記のようにして得られた nonScDLTl 遺伝子断片を、 TA クローユングによって PCR2. 1-T0P0ベクター (インビトロジェン社製) に挿入した。 nonScDLTl 遺伝子の 塩基配列をサンガーの方法 (F. Sanger, Science, 214, 1215, 1981) で分析し、 塩基配列を確認した。 実施例 2 : ビール試釀中の nonScDLTl遺伝子発現解析
ビール酵母サッカロマイセス パストリアヌス W34/70株を用いてビーノレ試醸を 行い、 発酵中のビール酵母菌体から抽出した mRNAをビール酵母 DNAマイクロアレ ィで検出した。 麦汁エキス濃度 12. 69%
麦汁容量 70L
麦汁溶存酸素濃度 8. 6ppm
発酵温度 15°C
酵母投入量 12. 8 X 106cells/mL 発酵液を経時的にサンプリングし、 酵母増殖量 (図 1) 、 外観エキス濃度 (図 2) の経時変化を観察した。 またこれと同時に酵母菌体をサンプリングし、 調製し た mRNAをピオチンラベルして、 特開 2004-283169に記載のビール酵母 DNAマイク ロアレイにハイブリダィズさせた。 シグナルの検出はジーンチップオペレーティン グシステム (GC0S ; GeneChip Operating Software 1. 0、 ァフィメ トリタス社製) を 用いて行った。 nonScDLTl遺伝子の発現パターンを図 3に示す。 この結果より、 通 常のビール発酵において nonScDLTl遺伝子が発現していることを確認した。 実施例 3 : nonScDLTl高発現株の作製 実施例 1に記載の nonScDLTl/pCR2. 1-TOPOを制限酵素 Saclおよび Notl消化し、 タンパク質コード領域全長を含む DNA断片を調製した。 この断片を制限酵素 Sacl および Notl 処理した pYCGPYNot に連結させ、 nonScDLTl 高発現ベクター nonScDLTl/pYCGPYNot を構築した。 pYCGPYNotは YCp型の酵母癸現ベクターであり、 導入された遺伝子はピルビン酸キナーゼ遺伝子 PYK1 のプロモーターによって高発 現される。 酵母での選択マーカーとしてジヱネチシン耐性遺伝子 6418^を、 また大 腸菌での選択マーカーとしてアンピシリン耐性遺伝子 Amprを含んでいる。
上述の方法で作製した高発現ベクターを用い、 特開平 07- 303475に記載された 方法で AJL4004株を形質転換して、 ジエネチシン 300mg/Lを含む YPD平板培地 (1% 酵母エキス、 2%ポリペプトン、 2°/。グルコース、 2%寒天) で形質転換体を選択した。 実施例 4 : ビール試験醸造における低温発酵性の評価
親株ならびに実施例 3で得られた nonScDLTl高発現株を用いた発酵試験を以下の 条件で行う。 麦汁エキス濃度 12%
1L
約 8ppm
12°C—定
酵母投入量 5g湿酵母菌体. 麦汁 発酵醪を経時的にサンプリングし、 酵母増殖量 (0D660) 、 エキス消費量、 遊離 ァミノ'態窒素 (FAN) の経時変化を調べる。 低温発酵性は、 10°Cから 1 5 °Cにおけ るェタノール生成量とェタノール生成速度を測定することによつて評価する。 実施例 5 :冷凍耐性の評価
親株ならびに高発現株の冷凍耐性を以下の方法で評価した。 以下の例において使 用した培地の内容は次のとおりである。 . Y P D培地:ィーストエキス 1 %、 バクトペプトン 2 %および
グルコース 2 %を含む水よりなる培地。
• Y N B培地:イーストニトロゲンベース 0 . 6 7 %、 カザミノ酸 0 . 4 %、 ゥラ シル 2 0 p p mおよびアデニン 4 0 p p mを含む水よりなる培地。 ジエネチシン 300mg/Lを含む YPD培地 10mLに一白金耳の菌体を植菌し、 30°Cで一 晚振盪培養した。 菌体濁度 (0D660) を測定し、 0D660 = 2相当の菌体を回収した後、 4%グルコース、 5%エタノールおよぴジヱネチシン 300mg/Lを含む YPD培地 lmLに懸濁 した。 親株、 高発現株それぞれについて上記酵母懸濁液を冷凍用 ·非冷凍用の 2本 ずつ準備した。 非冷凍用には直ちに YNB培地 lmLを加え、 30°Cで 2時間振盪培養した。 遠心分離で培養上清を回収し、 バイオセンサ BF- 5 (王子計測機器株式会社製) でグ ルコース濃度を測定した。 冷凍用は、 予冷として氷浴に 30分静置し、 . - 20°Cの冷凍 庫で 2時間凍結させた後、 水浴に 8分間漬けて解凍した。 そこに YNB培地 lmLを加え、 30°Cで 2時間振盪培養した後、 非冷凍用と同様にグルコース濃度を測定した。 冷凍 酵母のグルコース減少量を A、 非冷凍酵母のグルコース減少量を Bとし、 AZBの 値を 「冷凍耐性度」 として、 冷凍耐性の評価を行った。
図 4に示す通り、 親株の冷凍耐性が 0. 4だったのに対して高発現株では 0. 7とな り、 nonScDLTlの高発現によって冷凍耐性が向上することが明らかとなった。 産業上の利用可能性
本発明の酒類製造法によれば、 酵母の低温性能が増大するため、 低温においても 短期間で酒類を製造することが可能となる。

Claims

請求の範囲
1 . 以下の(a)〜(f) からなる群から選択されるポリヌクレオチド:
(a)配列番号: 1の塩基配列からなるポリヌクレオチドを含有するポリヌタレ ォチド;
(b)配列番号: 2のアミノ酸配列からなるタンパク質をコードするポリヌクレ ォチドを含有するポリヌクレオチド;
(c)配列番号: 2のアミノ酸配列において、 1 もしくは複数個のアミノ酸が欠 失、 置換、 挿入および/または付カ卩したアミノ酸配列からなり、 力つ低温性能を 増強させる活性を有するタンパク質をコードするポリヌクレオチドを含有するポ リヌクレオチド;
(d) 配列番号: 2のアミノ酸配列に対して 60%以上の同一性を有するアミノ酸 配列を有し、 かつ低温性能を増強させる活性を有するタンパク質をコードするポ リヌクレオチドを含有するポリヌクレオチド;
(e)配列番号: 1の塩基配列と相捕的な塩基配列からなるポリヌクレオチドと ストリンジヱントな条件下でハイブリダイズし、 かつ低温性能を増強させる活性 を有するタンパク質をコードするポリヌクレオチドを含有するポリヌクレオチ ド;及ぴ
(f)配列番号: 2のアミノ酸配列からなるタンパク質をコードするポリヌクレ ォチドの塩基配列と相禰的な塩基配列からなるポリヌクレオチドとス トリンジェ ントな条件下でハイブリダイズし、 かつ低温性能を増強させる活性を有するタン パク質をコードするポリヌクレオチドを含有するポリヌクレオチド。
2 . 以下の(g)〜(: 0 からなる群から選択される請求項 1に記載のポリヌクレ ォチド:
(g)配列番号: 2のァミノ酸配列又は配列番号: 2のァミノ酸配列にお!/、て、 1 〜10 個のアミノ酸が欠失、 置換、 揷入および Zまたは付加したアミノ酸配列か らなり、 かつ低温性能を増強させる活性を有するタンパク質をコードするポリヌ クレオチドを含有するポリヌクレオチド;
(h) 配列番号: 2のァミノ酸配列に対して 90%以上の同一性を有するアミノ酸 配列を有し、 かつ低温性能を増強させる活性を有するタンパク質をコードするポ リヌクレオチドを含有するポリヌクレオチド;及び
(i)配列番号: 1の塩基配列からなるポリヌクレオチド、 又は配列番号: 1の 塩基配列と相補的な塩基配列からなるポリヌクレオチドとハイストリンジヱント な条件下でハイブリダイズし、 かつ低温性能を増強させる活性を有するタンパク 質をコードするポリヌクレオチドを含有するポリヌクレオチド。
3 . 配列番号: 1の塩基配列からなるポリヌクレオチドを含有する請求項 1に 記載のポリヌクレオチド。
4 . 配列番号: 2のアミノ酸配列からなるタンパク質をコードするポリヌクレ ォチドを含有する請求項 1に記載のポリヌクレオチド。
5 . DNAである、 請求項 1〜4のいずれかに記載のポリヌクレオチド。
6 . 請求項 1〜 5のいずれかに記載のポリヌクレオチドにコードされるタンパ ク質。
7 . 請求項 1〜 5のいずれかに記載のポリヌクレオチドを含有するベクター。
8 . 請求項 7に記載のベクターが導入された酵母。
9 . 請求項 7に記載のベクターを導入することによって、 低温性能が向上した 請求項 8に記載の酵母。
1 0 . 請求項 6に記載のタンパク質の発現量を増加させることによって低温性 能が向上した請求項 9に記載の酵母。
1 1 . 請求項 8〜 1 0のいずれかに記載の酵母を用いた酒類の製造方法。
1 2 . 醸造する酒類が麦芽飲料である請求項 1 1に記載の酒類の製造方法。
1 3 . 醸造する酒類がワインである請求項 1 1に記載の酒類の製造方法。
1 4 . 請求項 1 1〜 1 3のいずれかに記載の方法で製造された酒類。
1 5 . 配列番号: 1の塩基配列を有する低温性能を増強させる遺伝子の塩基配 列に基づいて設計したプライマーまたはプローブを用いて、 被検酵母の低温性能 について評価する方法。
1 6 . 被検酵母を培養し、 配列番号: 1の塩基配列を有する低温性能を増強さ せる遺伝子の発現量を測定することによって、 被検酵母の低温性能を評価する方 法。
1 7 . 被検酵母を培養して、 請求項 6に記載のタンパク質を定量または配列番 号: 1の塩基配列を有する低温性能を増強させる遺伝子の発現量を測定し、 目的 とする低温発酵能に応じた前記タンパク質量または前記遺伝子発現量の被検酵母 を選択する、 酵母の選択方法。
1 8 . 基準酵母および被検酵母を培養して配列番号: 1の塩基配列を有する低 温性能を増強させる遺伝子の各酵母における発現量を測定し、 基準酵母よりも該 遺伝子が高発現である被検酵母を選択する、 請求項 1 7に記載の酵母の選択方法。
1 9 . 基準酵母およぴ被検酵母を培養して各酵母における請求項 6に記載のタ ンパク質を定量し、 基準酵母よりも該タンパク質量の多い被検酵母を選択する、 請求項 1 7に記載の酵母の選択方法。
2 0 . 請求項 8〜 1 0に記載の酵母および請求項 1 7〜 1 9に記載の方法によ り選択された酵母のいずれかの酵母を用いて酒類製造のための発酵を行い、 低温 発酵能を増強させたことを特徴とする、 酒類の製造方法。
PCT/JP2006/317699 2005-09-01 2006-08-31 低温発酵性及び/又は冷凍耐性を増強させる遺伝子及びその用途 WO2007026956A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA002620877A CA2620877A1 (en) 2005-09-01 2006-08-31 Gene capable of improving low temperature fermentability and/or low temperature resistance, and use thereof
AU2006285604A AU2006285604A1 (en) 2005-09-01 2006-08-31 Gene capable of enhancing low temperature fermentation ability and/or freezing stress resistance and use thereof
JP2007533380A JPWO2007026956A1 (ja) 2005-09-01 2006-08-31 低温発酵性及び/又は冷凍耐性を増強させる遺伝子及びその用途
EP06797575A EP1930431A4 (en) 2005-09-01 2006-08-31 FOR IMPROVING FERMENTATION ABILITY AT LOW TEMPERATURE AND / OR RESISTANCE TO FREEZING CAPACITY AND USE THEREOF
US11/990,942 US20090175983A1 (en) 2005-09-01 2006-08-31 Gene capable of improving low temperature fermentability and/or low temperature resistance and use thererof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005253250 2005-09-01
JP2005-253250 2005-09-01

Publications (1)

Publication Number Publication Date
WO2007026956A1 true WO2007026956A1 (ja) 2007-03-08

Family

ID=37809032

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/317699 WO2007026956A1 (ja) 2005-09-01 2006-08-31 低温発酵性及び/又は冷凍耐性を増強させる遺伝子及びその用途

Country Status (8)

Country Link
US (1) US20090175983A1 (ja)
EP (1) EP1930431A4 (ja)
JP (1) JPWO2007026956A1 (ja)
KR (1) KR20080038447A (ja)
CN (1) CN101253266A (ja)
AU (1) AU2006285604A1 (ja)
CA (1) CA2620877A1 (ja)
WO (1) WO2007026956A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033696A (ja) * 2017-08-16 2019-03-07 国立大学法人帯広畜産大学 サッカロマイセス・バヤヌス・バー・ウバルムとサッカロマイセス・セレビシエの交雑により作出した製パン用酵母

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103275881B (zh) * 2013-04-27 2015-01-28 天津科技大学 一种适合于冷冻面团发酵的耐冷冻活性干酵母

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303475A (ja) 1994-05-13 1995-11-21 Suntory Ltd 硫化水素生成が低減された酵母とこの酵母を用いたビール製造法
JPH08205900A (ja) 1995-02-01 1996-08-13 Kirin Brewery Co Ltd 酵母の凝集性判定用dna分子および凝集性判定方法
WO1997002444A1 (de) 1995-07-03 1997-01-23 Brueninghaus Hydromatik Gmbh Hydrostatischer antrieb mit synchronisiertem direktdurchtrieb
JP2003144137A (ja) 2001-11-15 2003-05-20 Kanegafuchi Chem Ind Co Ltd 冷凍耐性パン酵母
JP2004283169A (ja) 2003-03-04 2004-10-14 Suntory Ltd 醸造用酵母遺伝子のスクリーニング法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4227696B2 (ja) * 1999-02-25 2009-02-18 岩手県 ワイン酵母の交雑育種方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07303475A (ja) 1994-05-13 1995-11-21 Suntory Ltd 硫化水素生成が低減された酵母とこの酵母を用いたビール製造法
JPH08205900A (ja) 1995-02-01 1996-08-13 Kirin Brewery Co Ltd 酵母の凝集性判定用dna分子および凝集性判定方法
WO1997002444A1 (de) 1995-07-03 1997-01-23 Brueninghaus Hydromatik Gmbh Hydrostatischer antrieb mit synchronisiertem direktdurchtrieb
JP2003144137A (ja) 2001-11-15 2003-05-20 Kanegafuchi Chem Ind Co Ltd 冷凍耐性パン酵母
JP2004283169A (ja) 2003-03-04 2004-10-14 Suntory Ltd 醸造用酵母遺伝子のスクリーニング法

Non-Patent Citations (26)

* Cited by examiner, † Cited by third party
Title
"Biochemistry Experiments", vol. 39, article "Yeast Molecular Genetic Experiments", pages: 67 - 75
"CURRENT PROTOCOLS IN MOLECULAR BIOLOGY", 1994, JOHN WILEY & SONS
"Genetic Engineering", vol. 1, 1979, PLENUM PRESS, pages: 117
"METHODS IN YEAST GENETICS", 1990, COLD SPRING HARBOR LABORATORY PRESS, pages: 130
"METHODS IN YEAST GENETICS", 2000, COLD SPRING HARBOR LABORATORY
"MOLECULAR CLONING", 1987, JOHN WILEY & SONS, article "CURRENT PROTOCOLS IN MOLECULAR BIOLOGY"
"Nuc. Acids. Res.", vol. 10, 1982, article "MOLECULAR CLONING 3rd Ed., CURRENT PROTOCOLS IN MOLECULAR BIOLOGY", pages: 6487
ALTSCHUL SF ET AL., J. MOL. BIOL., vol. 215, 1990, pages 403
F. SANGER, SCIENCE, vol. 214, 1981, pages 1215
GENE, vol. 34, 1985, pages 315
HUSSAIN ET AL., GENE, vol. 101, 1991, pages 149
J BACTERIOLOGY, vol. 153, 1983, pages 163
J. R. BROACH ET AL.: "EXPERIMENTAL MANIPULATION OF GENE EXPRESSION", 1983, ACADEMIC PRESS, pages: 83
JUNJI INOKOSHI ET AL., BIOCHEMISTRY, vol. 64, 1992, pages 660
K. STRUHL ET AL., PROC. NATL. ACAD. SCI. USA, vol. 76, 1979, pages 1035
KARLIN; ALTSCHUL, PROC. NATL. ACAD. SCI. USA, vol. 87, 1990, pages 2264 - 2268
M. D. ROSE ET AL., GENE, vol. 60, 1987, pages 237
M. F. TUITE ET AL., EMBO J., vol. 1, 1982, pages 603
MARIN ET AL., PROC. NATL. ACAD. SCI. USA, vol. 81, 1984, pages 337
METH. ENZYM., vol. 194, 1990, pages 182
NUC. ACIDS. RES., vol. 13, 1985, pages 4431
PROC, NATL. ACAD. SCI. USA, vol. 82, 1985, pages 488
PROC. NATL. ACAD. SCI. USA, vol. 75, 1978, pages 1929
PROC. NATL. ACAD. SCI. USA, vol. 79, 1982, pages 6409
PROC. NATL. ACAD. SCI. USA, vol. 90, 1993, pages 5873
See also references of EP1930431A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019033696A (ja) * 2017-08-16 2019-03-07 国立大学法人帯広畜産大学 サッカロマイセス・バヤヌス・バー・ウバルムとサッカロマイセス・セレビシエの交雑により作出した製パン用酵母
JP7012952B2 (ja) 2017-08-16 2022-01-31 国立大学法人帯広畜産大学 冷凍耐性及び低温発酵性を備える製パン用交雑酵母

Also Published As

Publication number Publication date
EP1930431A1 (en) 2008-06-11
AU2006285604A1 (en) 2007-03-08
JPWO2007026956A1 (ja) 2009-03-12
EP1930431A4 (en) 2009-11-18
CN101253266A (zh) 2008-08-27
US20090175983A1 (en) 2009-07-09
KR20080038447A (ko) 2008-05-06
CA2620877A1 (en) 2007-03-08

Similar Documents

Publication Publication Date Title
JP5091867B2 (ja) グリセロール3リン酸デヒドロゲナーゼ遺伝子及びその用途
EP1869172B1 (en) Branched-chain amino acid aminotransferase gene and use thereof
JP2009060790A (ja) 酵母に乾燥耐性および/または低温保存耐性を付与する活性を有するタンパク質をコードする遺伝子及びその用途
JP4887367B2 (ja) アルコールアセチルトランスフェラーゼ遺伝子及びその用途
WO2007026956A1 (ja) 低温発酵性及び/又は冷凍耐性を増強させる遺伝子及びその用途
JP2009528024A (ja) マルターゼおよびマルトーストランスポーター遺伝子の転写誘導因子をコードする遺伝子及びその用途
JP2009528019A (ja) トレハロース−6リン酸脱リン酸化酵素をコードする遺伝子及びその用途
JP4954203B2 (ja) 細胞壁マンノプロテインをコードする遺伝子及びその用途
JP4870089B2 (ja) エステラーゼ遺伝子及びその用途
JP4478718B2 (ja) グリコーゲン合成開始因子をコードする遺伝子及びその用途
JP4460004B2 (ja) システインシンターゼ遺伝子及びその用途
JP2009528020A (ja) グリコーゲン分岐酵素をコードする遺伝子及びその用途
JP2009528018A (ja) トレハロース合成促進活性を有するタンパク質をコードする遺伝子及びその用途
WO2007026958A1 (ja) トリプトファントランスポーター遺伝子及びその用途
JP2007053921A (ja) αグルコシドトランスポーター遺伝子及びその用途
JP2008530977A (ja) O−アセチルホモセリンサルフハイドリレース遺伝子及びその用途
JP2009506751A (ja) グリセロールチャネル遺伝子及びその用途
JP2009527220A (ja) アンモニアトランスポーター遺伝子及びその用途
JP2009528021A (ja) グリコーゲン合成酵素をコードする遺伝子及びその用途
WO2007097095A1 (ja) 芳香族アミノ酸トランスポーター遺伝子及びその用途
JP2009527219A (ja) アンモニアトランスポーター遺伝子及びその用途
JP2009165353A (ja) アミノ酸トランスポーター遺伝子及びその用途
WO2007097093A1 (ja) 分枝アミノ酸トランスポーター遺伝子及びその用途
WO2007034984A1 (ja) 細胞壁マンノプロテインをコードする遺伝子及びその用途
JP2007044016A (ja) 3−イソプロピルリンゴ酸デヒドロゲナーゼ遺伝子及びその用途

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680031883.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2007533380

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2620877

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 11990942

Country of ref document: US

Ref document number: 2006285604

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2006285604

Country of ref document: AU

Date of ref document: 20060831

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2006797575

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1554/CHENP/2008

Country of ref document: IN

Ref document number: 1020087007617

Country of ref document: KR