WO2007026722A1 - 投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素子 - Google Patents
投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素子 Download PDFInfo
- Publication number
- WO2007026722A1 WO2007026722A1 PCT/JP2006/317018 JP2006317018W WO2007026722A1 WO 2007026722 A1 WO2007026722 A1 WO 2007026722A1 JP 2006317018 W JP2006317018 W JP 2006317018W WO 2007026722 A1 WO2007026722 A1 WO 2007026722A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light transmission
- semiconductor film
- light
- laser
- projection mask
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 239000010409 thin film Substances 0.000 title claims abstract description 36
- 238000003754 machining Methods 0.000 title abstract 4
- 230000005540 biological transmission Effects 0.000 claims description 146
- 238000002425 crystallisation Methods 0.000 claims description 69
- 230000008025 crystallization Effects 0.000 claims description 69
- 230000001678 irradiating effect Effects 0.000 claims description 39
- 230000008569 process Effects 0.000 claims description 35
- 239000000463 material Substances 0.000 claims description 27
- 238000012545 processing Methods 0.000 claims description 27
- 230000010355 oscillation Effects 0.000 claims description 14
- 238000003672 processing method Methods 0.000 claims description 10
- 239000010408 film Substances 0.000 abstract description 233
- 239000004065 semiconductor Substances 0.000 abstract description 233
- 239000013078 crystal Substances 0.000 description 112
- 238000010586 diagram Methods 0.000 description 18
- 239000000758 substrate Substances 0.000 description 14
- 229910021417 amorphous silicon Inorganic materials 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000003384 imaging method Methods 0.000 description 7
- 239000004973 liquid crystal related substance Substances 0.000 description 6
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 238000007796 conventional method Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- GQPLMRYTRLFLPF-UHFFFAOYSA-N Nitrous Oxide Chemical compound [O-][N+]#N GQPLMRYTRLFLPF-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229910021419 crystalline silicon Inorganic materials 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007715 excimer laser crystallization Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 238000012804 iterative process Methods 0.000 description 1
- 238000005499 laser crystallization Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021424 microcrystalline silicon Inorganic materials 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000001272 nitrous oxide Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000027756 respiratory electron transport chain Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- HGCGQDMQKGRJNO-UHFFFAOYSA-N xenon monochloride Chemical compound [Xe]Cl HGCGQDMQKGRJNO-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02367—Substrates
- H01L21/0237—Materials
- H01L21/02422—Non-crystalline insulating materials, e.g. glass, polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/066—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms by using masks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02524—Group 14 semiconducting materials
- H01L21/02532—Silicon, silicon germanium, germanium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02678—Beam shaping, e.g. using a mask
- H01L21/0268—Shape of mask
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02675—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
- H01L21/02686—Pulsed laser beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02656—Special treatments
- H01L21/02664—Aftertreatments
- H01L21/02667—Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
- H01L21/02691—Scanning of a beam
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
- H01L27/127—Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
- H01L27/1274—Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
- H01L27/1285—Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using control of the annealing or irradiation parameters, e.g. using different scanning direction or intensity for different transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/12—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
- H01L27/1214—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
- H01L27/1259—Multistep manufacturing methods
- H01L27/1296—Multistep manufacturing methods adapted to increase the uniformity of device parameters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/04—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
Definitions
- the present invention relates to a projection mask, a laser processing method, and a laser processing apparatus used when crystallizing an irradiation object by irradiating laser light, and further, a thin film transistor formed on a crystallized irradiation object It relates to an element.
- a semiconductor device is formed on a single crystal silicon (Si) configured as a substrate or a silicon thin film formed on a glass substrate. Such semiconductor devices are used in image sensors, active matrix liquid crystal display devices, and the like.
- a semiconductor device used in a liquid crystal display device is configured by forming a regular array of thin film transistor (abbreviation: TFT) elements on a transparent substrate, for example, and each TFT element functions as a pixel controller. .
- TFT element used in the liquid crystal display device is formed of an amorphous silicon film, but instead of an amorphous silicon film having a low electron mobility, a TFT having a high electron mobility is used. By forming TFT elements, the switching characteristics of TFT elements are improved, and liquid crystal display devices with low power consumption and high response speed are now being manufactured!
- a polycrystalline silicon film is a laser beam emitted from an excimer laser on an amorphous silicon or microcrystalline silicon film deposited on a substrate, for example, a line length of 200 mm or more and less than 400 mm and a line width of 0.2 mm or more. 1. Formed by a method that melts by irradiating a linear laser beam that is less than Omm, and crystallizes silicon in the solidification process (Excimer Laser Crystallization; abbreviated as ELC). Is done.
- the semiconductor film irradiated with the laser beam is melted leaving a part of the semiconductor film that is not melted over the entire thickness direction. If the semiconductor film is simply melted and solidified by the ELC method, crystal nuclei are generated everywhere on the entire interface between the unmelted region and the molten region, and the crystal is directed to the outermost layer of the semiconductor film. Growing and different A large number of crystal grains having different sizes and different crystal orientations are formed. Therefore, the crystal grain size is very small, specifically, lOOnm or more and less than 200nm. When a large number of small crystal grains are formed, a large number of crystal grain boundaries, which are the contact interfaces between the crystal grains, are formed, and these crystal grain boundaries capture electrons and serve as barriers for electron transfer.
- the electron mobility is lower than that of a polycrystalline silicon film having a small crystal size, that is, a relatively large crystal grain size. Also, in small crystals of different sizes and orientations, the electron mobility differs from one crystal to another, in other words, a large number of TFT elements having different operating performances are formed.
- the TFT array also has non-uniform switching characteristics. When such non-uniformity occurs, the liquid crystal display device has a problem that a response speed is high, a pixel and a response speed are low, and a pixel coexists in one display screen. Therefore, in order to further improve the performance of the liquid crystal display device, it is necessary to form a TFT array with uniform switching characteristics.
- TFT element is formed.
- it is necessary to improve the quality of the polycrystalline silicon film that is, to increase the crystal grain size to be crystallized as much as possible and to control the crystal orientation.
- various techniques for obtaining a polycrystalline silicon film having performance close to that of single crystal silicon have been proposed.
- FIG. 17 is a diagram showing the configuration of the laser cache device 1 of the first conventional technique.
- FIG. 18 is a cross-sectional view showing the configuration of the semiconductor element 8.
- FIGS. 19A to 19D are diagrams schematically showing a crystal growth process in the semiconductor film 17.
- the first conventional technique is a laser crystallization technique classified as a lateral growth method, and a laser processing apparatus 1 forms long and narrow crystals aligned in the crystal growth direction.
- the laser carriage apparatus 1 includes a light source 2 capable of emitting pulsed laser light 12, a variable attenuator 3, a plurality of mirrors 4 that reflect the laser light 12 emitted from the light source 2 and change its direction,
- the variable focus field lens 5, the projection mask 6 that allows the laser beam that has passed through the variable focus field lens 5 to pass in a predetermined pattern, and the laser beam that has passed the projection mask 6 are applied to one surface portion of a semiconductor element 8 to be described later.
- the imaging lens 7 to be imaged and the semiconductor element 8 are placed on the stage 9 which can move the semiconductor element 8 in the direction indicated by the arrow 11, and the output control of the light source 2 and the direction indicated by the arrow 11 on the stage 9
- the control unit 10 is configured to perform the drive control.
- the light source 2 is realized by, for example, an excimer laser.
- the laser beam 12, which also emits excimer laser power as the light source 2 was placed on the stage 9 via the variable attenuator 3, the mirror 4, the variable focus field lens 5, the projection mask 6, and the imaging lens 7.
- One surface of the semiconductor element 8 is irradiated.
- the semiconductor element 8 includes a transparent substrate 15 having optical transparency, a base film 16 formed on the transparent substrate 15, and a semiconductor film 17 formed on the base film 16.
- region B the region indicated by the arrow B of the semiconductor film 17
- the semiconductor film 17 is heated by irradiating the region B of the semiconductor film 17 with a laser beam 12 that also emits excimer laser power.
- the energy of the laser beam 12 irradiated to the region B is converted into heat energy, and heat can be induced to the region B of the semiconductor film 17 and the semiconductor film 17 is extended in the thickness direction. Can be melted.
- the semiconductor film 17 in which the region B is melted is solidified by cooling, and the region Bl and B2 between the region B and the other regions are directed to the center of the region B as shown in FIG. In this way, crystals are grown.
- a new region C adjacent to the region B is set so as to include a portion where no crystal is formed in the region B, and the region C is melted in the same manner as the above procedure.
- the semiconductor film 17 melted in the region C is solidified to form crystals in the region C as shown in FIG. 19C.
- a desired crystal is grown stepwise along the extending direction A of the semiconductor film 17.
- FIG. 19D a semiconductor crystal having a polycrystalline structure can be enlarged, and a polycrystalline silicon film having a large crystal grain can be formed (for example, JP 2000-505241 A). (See pages 15-16, Figure 1).
- the mask slit is divided into a plurality of blocks, and the polycrystalline silicon film is formed by arranging the partially grown crystals without growing the crystals on the entire surface of the substrate. (For example, see Special Table 2003-509844 (Fig. 9)).
- a TFT element formed on a substrate having a crystallized semiconductor film is not necessarily fixed in one direction in order to increase the mounting density as much as possible or for the convenience of circuit arrangement. However, it is arranged depending on the array structure such as the display element.
- the direction of the current flowing from the source S to the drain D that is, the direction of the current indicated by the arrow J and the direction of crystal growth are parallel.
- the current flow direction and the crystal growth direction are perpendicular to each other.
- the third prior art is configured so that the axial force extending along the predetermined direction of crystal growth is inclined by 45 degrees, and a mask is used to eliminate the boundary area between the polycrystalline silicons. Attempts have been made (see, for example, US Pat. No. 6,706,545 (Figs. 6-8)). However, in the third prior art, even if the growth direction of the crystal is tilted, the switching characteristics of the TFT element are not necessarily uniform. The problem is that the mask is designed to reduce the boundary between crystal grains. If it is difficult, there is a problem.
- An object of the present invention is to provide a projection mask, a laser processing method, and a laser processing apparatus capable of uniformly crystallizing an irradiation object, and to provide electrical characteristics when formed on the irradiation object. It is an object to provide a thin film transistor element that can be made uniform.
- a light transmission pattern that transmits light for crystallizing an irradiation object is formed.
- the projection mask is characterized in that the extending direction of the light transmission pattern is inclined with respect to a plurality of directions in which the irradiation object is to be crystallized.
- the present invention is a projection mask in which a light transmission pattern that transmits light for crystallizing an irradiation object is formed
- the projection mask includes a plurality of mask portions in which the extending direction of the light transmission pattern is inclined with respect to a plurality of directions in which the irradiation object is to be crystallized.
- the present invention is characterized in that the light transmission pattern includes a first light transmission pattern extending in a predetermined first direction and a second light transmission pattern extending in a second direction orthogonal to the first direction. .
- a first light transmission pattern extending in a predetermined first direction is formed in one of the plurality of mask portions, and a second direction orthogonal to the first direction is formed in the other mask portion.
- a second light transmission pattern extending in the direction is formed.
- the present invention is characterized in that the first light transmissive pattern and the second light transmissive pattern are formed in such a manner that they are not connected to each other.
- the invention is characterized in that the first and second light transmission patterns are formed such that both end portions in each extending direction are tapered when viewed in the thickness direction of the projection mask.
- a length dimension in the extending direction of the first and second light transmission patterns is less than three-fourths of a channel length of a thin film transistor element formed on the irradiation object.
- the present invention also relates to a laser processing method for crystallization by irradiating a layer of amorphous material force, which is an object to be irradiated, with laser light.
- It has a crystallization step of irradiating a laser beam so as to incline the extending direction of the irradiation region with respect to a plurality of directions in which the irradiation object is to be crystallized, and crystallizing the amorphous material.
- This is a laser processing method.
- the present invention is further characterized by further including a moving step of moving the irradiation object relative to the light source that emits the laser light.
- the present invention further includes a repeating step of repeating the crystallization step and the moving step. It is characterized by.
- the crystallization step includes
- the present invention also relates to a laser processing apparatus for irradiating a layer of amorphous material force, which is an object to be irradiated, with laser light for crystallization.
- a laser processing apparatus comprising a light source for irradiating a laser beam so that an extending direction of an irradiation region is inclined with respect to a plurality of directions in which an irradiation object is to be crystallized.
- FIG. 1 is a diagram showing a configuration of a laser processing apparatus 20 according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing the configuration of the semiconductor element 27.
- FIG. 3 is a plan view schematically showing the projection mask 25.
- FIG. 4 is a diagram schematically showing the state of the crystal 40 formed in the crystallization process.
- FIG. 5 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIG. 6 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIG. 7 is a diagram showing a light transmission pattern 49 formed on the projection mask.
- FIG. 8 is a diagram showing the state of the crystal 50 formed by irradiating the laser beam that has passed through the projection mask on which the light transmission pattern 49 shown in FIG. 7 is formed.
- FIG. 9 is a diagram showing a first light transmission pattern 25a and a second light transmission pattern 25b formed on the projection mask 25. As shown in FIG.
- FIG. 10 is a diagram showing a state of the crystal 51 formed by irradiating the laser beam that has passed through the projection mask 25 on which the first and second light transmission patterns 25a and 25b shown in FIG. 9 are formed.
- FIG. 11 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIG. 12 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIG. 13 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIG. 14 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIG. 15 is a diagram showing a configuration of a laser processing apparatus 60 according to the fourth embodiment of the present invention.
- FIG. 16 is a graph showing the relationship between the output time of the first laser beam 65 and the second laser beam 66 and the output.
- FIG. 17 is a diagram showing a configuration of the laser processing apparatus 1 of the first conventional technique.
- FIG. 18 is a cross-sectional view showing the configuration of the semiconductor element 8.
- 19A to 19D are diagrams schematically showing a crystal growth process in the semiconductor film 17.
- FIG. 1 is a diagram showing a configuration of a laser processing apparatus 20 according to the first embodiment of the present invention.
- FIG. 2 is a cross-sectional view showing the configuration of the semiconductor element 27.
- Figure 3 shows a schematic of projection mask 25 FIG.
- the laser processing method according to the first embodiment of the present invention is performed by the laser processing apparatus 20.
- the laser processing apparatus 20 includes a light source 21, a variable attenuator 22, a mirror 23, a variable focal field lens 24, a projection mask 25, an imaging lens 26, a stage 28, and a control unit 29.
- the light source 21 can emit pulsed laser light, and is realized, for example, by an excimer laser oscillator using xenon chloride (XeCl) having a wavelength of 308 nm.
- XeCl xenon chloride
- laser light having a pulse width of 30 ns is emitted from an excimer laser oscillator. Since the light source and the excimer laser oscillator are substantially the same, the “light source 21” may be referred to as the “excimer laser oscillator 21” in the following description.
- the variable attenuator 22 is configured so that the transmittance of the laser light 31 emitted from the light source 21 can be set. By changing the transmittance with the variable attenuator 22, the illuminance of the laser light 31 emitted from the light source 21 can be adjusted.
- the mirror 23 reflects the laser light 31 emitted from the light source 21 and changes its direction.
- the variable focus field lens 24 is a lens that adjusts the focus by emitting the laser beam 31 emitted from the light source 21 and incident.
- the projection mask 25 is formed with a light transmission pattern that transmits light for crystallizing the irradiation object. The laser light transmitted through the variable focus field lens 24 is transmitted through a predetermined light transmission pattern formed on the projection mask 25.
- the imaging lens 26 forms an image of the laser light transmitted through the projection mask 25 on one surface in the thickness direction of a semiconductor element 27 described later.
- the stage 28 has a predetermined first moving direction X (the left-right direction in FIG. 1 in FIG. 1) X and a second moving direction (in FIG. 1, the direction perpendicular to the first moving direction X and the thickness direction of the stage 28). It is configured to be movable in the direction perpendicular to the paper surface (Y). On the stage 28, a semiconductor element 27 as an irradiation object is placed.
- the control unit 29 is a processing circuit realized by a microcomputer or the like that includes a central processing unit (abbreviation: CPU).
- a light source 21 and a stage 28 are electrically connected to the control unit 29.
- the control unit 29 controls the output of the light source 21, specifically controls the oscillation pulse time and period of the laser light 31 emitted from the light source 21, and the first movement direction X and second movement direction Y of the stage 28. Specifically, the position of the semiconductor element 27 placed on the stage 28 is controlled.
- the control unit 29 For control of the oscillation pulse time and period of light, the control unit 29 generates a correspondence table using, for example, the oscillation pulse time and period predetermined for each crystallization processing condition of the semiconductor element 27 as related information, and the correspondence table is stored.
- the drive control of the stage 28 may be configured to perform numerical control (abbreviation: NC) based on information given in advance to the control unit 29, and a position sensor that detects the position of the semiconductor element 27. It may be configured to control in response to the detection output of the position sensor force.
- NC numerical control
- a laser beam 31 emitted from a light source 21 in accordance with a control signal from a control unit 29 passes through a variable attenuator 22, a variable focus field lens 24, and a projection mask 25, and is formed by a semiconductor element by an imaging lens 26.
- One surface portion in the thickness direction of 27 is irradiated.
- the semiconductor element 27 includes a transparent substrate 35 having optical transparency, a base film 36, and a semiconductor film 37.
- the base film 36 and the semiconductor film 37 are sequentially stacked on the transparent substrate 35. Is done.
- Materials used for the base film 36 are silicon dioxide (SiO 2), nitrous oxide
- Dielectric materials such as silicon dioxide (SiON), silicon nitride (SiN), and aluminum nitride (A1N).
- the base film 36 is laminated on the transparent substrate 35 by vapor deposition, ion plating, sputtering, or the like.
- an amorphous silicon film which is a semiconductor film 37 is laminated.
- the semiconductor film 37 is laminated on the base film 36 by plasma enhanced chemical vapor deposition (abbreviation: PECVD), vapor deposition or sputtering. At this point, the semiconductor film 37 is in an amorphous state.
- the film thickness of the base film 36 is lOOnm
- the film thickness of the semiconductor film 37 is 50 nm.
- the projection mask 25 is formed, for example, by patterning a chromium thin film on a synthetic quartz substrate (hereinafter sometimes simply referred to as “substrate”).
- the projection mask 25 includes a plurality of first light transmission patterns 25a and second light that pass through in the thickness direction of the substrate and transmit light for crystallizing the semiconductor film 37 of the semiconductor element 27 that is the irradiation target.
- a transmission pattern 25b is formed.
- the portions other than the first and second light transmission patterns 25a and 25b of the projection mask 25 are non-transmission portions 25c that do not transmit light.
- the projection mask 25 of this embodiment is shown in FIG. As shown in FIG.
- the projection mask 25 is divided into four regions, a first region, a second region, a third region, and a fourth region.
- the projection mask 25 includes the first block BA corresponding to the first area, the second block BB corresponding to the second area, the third block BC corresponding to the third area, and the fourth block BD corresponding to the fourth area.
- the first area may be referred to as a first block BA, the second area as a second block BB, the third area as a third block BC, and the fourth area as a fourth block BD.
- the first block BA, the second block BB, the third block BC, and the fourth block BD are provided in a line in the longitudinal direction of the projection mask 25 in this order.
- the first to fourth blocks BA to BD have a rectangular shape extending in the short direction of the projection mask 25.
- a plurality of first light transmission patterns 25a are formed in the first and second blocks BA and BB.
- the plurality of first light transmission patterns 25 a are formed at intervals in the longitudinal direction and the short direction of the projection mask 25.
- the first light transmission pattern 25a has a predetermined first direction in a plane including a first axis extending along the longitudinal direction of the projection mask 25 and a second axis extending along the short direction of the projection mask 25. In the present embodiment, it extends in a direction inclined 45 degrees from the second axis to one of the predetermined circumferential directions around the intersection of the first axis and the second axis.
- the one circumferential direction refers to a direction in which the laser beam incident side plane of the projection mask 25 is angularly displaced counterclockwise around the intersection of the first axis and the second axis.
- a plurality of second light transmission patterns 25b are formed in the third and fourth blocks BC and BD.
- the plurality of second light transmission patterns 25b are formed at intervals in the longitudinal direction and the short direction of the projection mask 25, respectively.
- the second light transmission pattern 25b extends in a predetermined second direction, that is, a direction orthogonal to the first direction in the present embodiment, in a plane including the first and second axes.
- the first light transmission pattern 25a and the second light transmission pattern 25b are substantially hexagonal.
- the substantially hexagonal shape includes a hexagonal shape.
- region F the region other than the region indicated by the arrow F (hereinafter referred to as “region F” t) may be masked) of the semiconductor film 37 is masked and emitted from the excimer laser oscillator 21.
- the energy of the laser beam 31 irradiated to the region F is converted into thermal energy, and heat can be induced to the region F of the semiconductor film 37, and the semiconductor film 37 is melted in the thickness direction. Can do.
- the semiconductor film 37 in which the region F is melted is solidified by cooling and crystallized.
- the control unit 29 drives and controls the stage 28 to move the stage 28 by a predetermined distance in the first moving direction X-direction.
- the semiconductor element 27 placed on the stage 28 can be moved by a predetermined distance in the first movement direction X-direction.
- the laser beam 31 transmitted through the plurality of first and second light transmission patterns 25a and 25b formed on the projection mask 25 is irradiated onto one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27.
- This area is an area moved by a predetermined distance in the first movement direction X ⁇ . The new area partially overlaps the area before the movement.
- the predetermined distance when the stage 28 is moved in the first movement direction X-direction is the transverse dimension W of the first to fourth blocks BA to BD of the projection mask 25.
- FIG. 4 is a diagram schematically showing the state of the crystal 40 formed in the crystallization process.
- the laser light transmitted through the first light transmission pattern 25a of the projection mask 25 is aligned in the thickness direction of the semiconductor film 37 without moving the stage 28 in a predetermined reference position force.
- the state of the crystal 40 formed by irradiating the surface portion is shown.
- the shape of the crystal 40 is the same as the shape of the first light transmission pattern 25a, specifically, a hexagonal shape.
- the crystal 40 When viewed from one side in the thickness direction of the semiconductor film 37, the crystal 40 is perpendicular to the extending direction of the crystal 40 ( Hereinafter, it grows stepwise from both ends of the crystal (which may be referred to as “the width direction of the crystal”) so as to be directed toward the center in the width direction of the crystal 40. Then, the crystal grown from one side in the width direction and the crystal grown from the other side in the width direction collide with each other in the center in the width direction of the crystal 40 to form a protrusion 41 protruding in one thickness direction of the semiconductor film 37.
- the protrusions 41 are formed on the first apex 42 and the second apex of the hexagonal crystal 40, as seen in the thickness direction one force of the semiconductor film 37.
- FIG. 4 shows a boundary portion 44 between a plurality of crystals in which the force at both ends in the width direction of the irradiation region has also grown.
- FIG. 5 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIG. 6 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed. 5 and 6 show a part of the crystallized region 46 formed in the semiconductor film 37 for easy understanding.
- the same reference symbol “X” as that of the first movement direction of the stage 28 is given as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor film 37 As a reference sign in the short direction, the same reference sign “Y” as that in the second movement direction of the stage 28 is attached.
- the semiconductor film 37 that is an object to be irradiated is crystallized by alternately repeating the crystallization process and the movement process described above in the repetition process. Specifically, in the iterative process, the laser light 31 emitted from the light source 21 and transmitted through the first and second light transmission patterns 25a and 25b of the projection mask 25 is applied to the semiconductor film 37 that is the irradiation object.
- the crystallization process for crystallizing the irradiated region is performed four times, and the stage 28 is set in the first moving direction X-direction, and in the short direction dimension W of the first to fourth blocks BA to BD.
- the movement process is carried out three times by moving the corresponding distance.
- first crystallized region a region crystallized in the shape of the first light transmission pattern 25a (hereinafter sometimes referred to as “first crystallized region”) 46a
- second crystallization region regions crystallized in the shape of the second light transmission pattern 25b (hereinafter sometimes referred to as “second crystallization region”) 46b alternately in the lateral direction Y of the semiconductor film 37.
- a crystallized region 46 arranged in a wave shape bent in the direction is formed.
- the crystallization region 46 is related to a direction perpendicular to the first extending direction in which the first crystallization region 46a and the second crystallization region 46b extend (hereinafter sometimes referred to as “second extending direction”).
- a thin film transistor element is arranged on the semiconductor film 37 so that the source S, the gate G, and the drain D are arranged in this order in the longitudinal direction X-direction of the semiconductor film 37 in which the crystallized region 46 is formed and toward the other side.
- TFT element may be sometimes referred to.
- the drain D, the gate G, and the source S are arranged in this order from the short direction Y— toward the other side.
- the state in which the element 47 is formed is shown.
- the arrangement of the TFT elements 47 formed in the semiconductor film 37 is arranged such that the source S, the gate G, and the drain D are arranged in this order as the longitudinal direction X-direction force of the semiconductor film 37 moves to the other side.
- the TFT is formed on the semiconductor film 37 so that the drain D, the gate G, and the source S are arranged in this order from the short direction Y-direction of the semiconductor film 37 toward the other side.
- the arrangement direction 47 is referred to as a second arrangement direction.
- the length dimension in the extending direction of the first and second light transmission patterns 25a and 25b is irradiated with the laser light having the shape of the first and second light transmission patterns 25b.
- the length dimension from the one end P1 in the extending direction of the crystal 40 thus formed to the other end P2 in the extending direction is defined as a, and the channel length of the TFT element 47 is defined as shown in FIG.
- the channel portion of the TFT element 47 disposed in the first arrangement direction with respect to the semiconductor film 37 and the channel portion of the TFT element 47 disposed in the second arrangement direction are each included in the crystal.
- the magnitude relational force between the length dimension a and the channel length L may satisfy the following equation (2). That is, the length dimension a and the channel length L are defined so that the length dimension a is smaller than the value obtained by multiplying the value obtained by dividing the square root of “2” by “2” by the channel length L.
- the first axis and the first axis are within the plane including the first axis and the second axis.
- a plurality of first light transmission patterns 25a extending in a first direction inclined at 45 degrees to a predetermined circumferential direction from the second axis around the intersection with the second axis, and the front in the plane.
- the projection mask 25 formed with a plurality of second light transmission patterns 25b extending in a second direction orthogonal to the first direction inclined 45 degrees is irradiated with light, and the first and the second masks formed on the projection mask 25 are irradiated with light.
- the semiconductor film 37 irradiated with the laser light having the shape of the first and second light transmission patterns 25a and 25b is melted. Uniform crystallization can be achieved.
- the arrangement direction of one TFT element 47 with respect to the semiconductor film 37 is the first arrangement direction, and the other TFT element is arranged. Even if the arrangement direction of the TFT element 47 is different such that the arrangement direction of the 47 is the second arrangement direction, the crystallization region included in the channel portion of each TFT element 47 arranged in each arrangement direction Can be made the same shape. In other words, even if the arrangement direction of the plurality of TFT elements 47 with respect to the semiconductor film 37 in which the crystallized region 46 is formed is shifted between the first arrangement direction and the second arrangement direction, the crystal growth occurs.
- the direction of the current flowing from the source S to the drain D of the plurality of TFT elements 47 with respect to the direction can be made the same.
- the electrical characteristics of the plurality of TFT elements 47 formed in the semiconductor film 37, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of the plurality of TFT elements 47 can be made uniform.
- the length dimension a in the extending direction of the first and second light transmission patterns 25a, 25b is made less than 3Z4 of the channel length L of the TFT element 47, in other words, the extension.
- the channel length of the TFT element 4 7 arranged in the first arrangement direction by selecting a value satisfying the expression (2) as the value of the length dimension a in the direction and the channel length L of the TFT element 47
- the shape of the crystallization region 46 included in each of the channel portions of the TFT elements 47 arranged in the second arrangement direction can be made completely the same.
- FIG. 7 is a diagram showing a light transmission pattern 49 formed on the projection mask.
- FIG. 8 is a diagram showing the state of the crystal 50 formed by irradiating the laser beam that has passed through the projection mask on which the light transmission pattern 49 shown in FIG. 7 is formed.
- FIG. 9 is a diagram showing a first light transmission pattern 25a and a second light transmission pattern 25b formed on the projection mask 25.
- FIG. 10 is a diagram showing a state of the crystal 51 formed by irradiating the laser beam transmitted through the projection mask 25 on which the first and second light transmission patterns 25a and 25b shown in FIG. 9 are formed.
- the first light transmission pattern 25a and the second light transmission pattern 25b are connected to each other through a projection mask in which a light transmission pattern 49 formed in a substantially V shape is formed.
- a semiconductor film 37 which is an object, is irradiated with laser light.
- the substantially V shape includes a V shape.
- the crystal 50 formed by irradiating the laser beam having the shape of the light transmission pattern 49 in the semiconductor film 37 a protrusion formed on a portion other than the bent portion 50a of the crystal 50 viewed from one side in the thickness direction of the semiconductor film 37.
- the formation direction S1 of 41 is parallel to the extending direction of the crystal 50
- the formation direction S2 of the protrusion 41 formed on the bent portion 50a of the crystal 50 viewed from one side in the thickness direction of the semiconductor film 37 is the crystal 50 It is not parallel to the direction of the extension.
- one end of the crystal 50 in the extending direction that is, the crystal growth direction in the bent portion 50a of the crystal 50
- a portion on the other end in the extending direction from one end in the extending direction of the crystal 50 that is, the bending of the crystal 50
- the crystal growth direction in the part other than the part 50a is different.
- the arrangement direction of one TFT element 47 with respect to the semiconductor film 37 and the other TFT element 47 If the arrangement direction is different, the source force of the plurality of TFT elements 47 with respect to the crystal growth direction will vary in the direction of the current flowing in the drain.
- the TFT element 47 Although the electrical characteristics of the TFT element 47 are good, the direction of the current is perpendicular to the crystal growth direction, that is, the direction of the current is parallel to the protrusion 41. The characteristics will be bad. Therefore, if the TFT element 47 is formed on the non-uniformly crystallized semiconductor film 37 as described above, the arrangement direction of the TFT element 47 Depending on the case, the electrical characteristics of the TFT element 47, specifically, the switching characteristics may be non-uniform.
- the first and second light transmission patterns 25a and 25b are not connected to each other, and the projection mask 25 formed in a manner is used to form a semiconductor that is an irradiation object.
- the film 37 is irradiated with laser light.
- the first light transmission pattern 25a viewed from one side in the thickness direction of the semiconductor film 37 among the crystals 51 formed by irradiating the laser light having the shape of the first and second light transmission patterns 25a and 25b.
- the formation direction T1 of the protrusion 41 formed in a portion other than the overlapping portion 51a of the laser beam having the shape of 2 and the laser light having the shape of the second light transmission pattern 25b is parallel to the extending direction of the crystal 51.
- the formation direction T2 of the protrusion 41 formed on the overlapping portion 51a viewed from one side in the thickness direction of the semiconductor film 37 is also parallel to the extending direction of the crystal 51.
- one end portion in the extending direction of the crystal 51 that is, the crystal growth direction in the overlapping portion 51a
- a portion on the other end side in the extending direction from one end portion in the extending direction of the crystal 51 that is, a portion other than the overlapping portion 51a.
- the crystal growth direction in is the same.
- the crystal growth direction The direction of the current flowing from the source to the drain of the plurality of TFT elements 47 can be the same.
- the electrical characteristics, more specifically the switching characteristics, of the plurality of TFT elements 47 can be ensured to be the same. In other words, the switching characteristics of the plurality of TFT elements 47 can be made uniform uniformly.
- the first and second light transmission patterns 25a and 25b are formed such that both end portions in the extending direction are tapered as viewed in the thickness direction of the projection mask 25. Therefore, unlike a light transmission pattern that is not formed in a tapered shape such as a rectangular shape, the extending direction and the irradiation direction of the semiconductor film 37 irradiated with the laser light in the shape of the first and second light transmission patterns 25a and 25b Both ends of the semiconductor film 37 in the direction perpendicular to the thickness direction Protrusions 41 formed by the collision of the growing crystal are formed up to the tapered portions at both ends in the extending direction.
- the semiconductor film 37 on which 7 is formed can be crystallized more uniformly. Therefore, even when the arrangement direction of one TFT element 47 with respect to the semiconductor film 37 is different from the arrangement direction of the other TFT element 47, the directions of the currents flowing through the plurality of TFT elements 47 with respect to the crystal growth direction are the same. can do. Therefore, the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements 47 formed in the semiconductor film 37 can be reliably made the same. In other words, the switching characteristics of the plurality of TFT elements 47 can be made uniform uniformly.
- FIG. 11 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIG. 12 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIGS. 11 and 12 show a part of the crystallized region 46 formed in a part of the semiconductor film 37 for easy understanding.
- the same reference symbol “X” as that of the first movement direction of the stage 28 is given as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor As a reference sign in the short direction of the film 37, the same reference sign “Y” as that in the second moving direction of the stage 28 will be attached for explanation.
- the semiconductor film 37 that is an object to be irradiated is crystallized using a projection mask described below.
- the projection mask according to the present embodiment is divided into four regions of first to fourth regions, similar to the projection mask 25 according to the first embodiment. Specifically, the projection mask corresponds to the first block ⁇ ⁇ corresponding to the first region, the second block ⁇ ⁇ corresponding to the second region, the third block ⁇ ⁇ C corresponding to the third region, and the fourth region.
- the fourth block is divided into BDs.
- a plurality of first light transmission patterns 25a are formed on the first and second blocks ⁇ and ⁇ .
- the plurality of first light transmission patterns 25a are formed at intervals in the longitudinal direction and the short direction of the projection mask.
- the first light transmission pattern 25a has a predetermined first direction, a first axis extending along the longitudinal direction of the projection mask in this embodiment, and a second axis extending along the lateral direction of the projection mask. In the plane that contains the first axis Centering on the intersection with the second axis, it extends in a direction inclined 15 degrees from the second axis to one of the predetermined circumferential directions.
- the one circumferential direction refers to the direction of angular displacement counterclockwise about the intersection of the first axis and the second axis on the laser light incident side plane of the projection mask.
- a plurality of second light transmission patterns 25b are formed in the third and fourth blocks BC and BD.
- the plurality of second light transmission patterns 25b are formed at intervals in the longitudinal direction and the short direction of the projection mask.
- the second light transmission pattern 25b extends in a direction perpendicular to the first direction in a second direction determined in advance, in the present embodiment, in a plane including the first and second axes.
- the first light transmission pattern 25a and the second light transmission pattern 25b are substantially hexagonal.
- the substantially hexagonal shape includes a hexagonal shape.
- the film 37 is irradiated and the crystallization process for crystallizing the irradiated region is performed four times, and the stage 28 is moved in the first moving direction X-direction, and the short sides of the first to fourth blocks BA to BD
- the moving process of moving the distance corresponding to the direction dimension W is performed three times.
- first crystallization region A crystallized region in which 46a and a region crystallized in the shape of the second light transmission pattern 25b (hereinafter sometimes referred to as a “second crystallized region”) 46b are arranged in a wave shape continuously bent alternately. 46 is formed.
- the crystallized region 46 is related to a direction perpendicular to the first extending direction in which the first crystallized region 46a and the second crystallized region 46b extend (hereinafter sometimes referred to as “second extending direction”). It is formed in such a shape that the peak and the peak of the protruding part protruding in one direction in the second extending direction coincide with the valley and the valley of the protruding part protruding in the other direction in the second extending direction.
- the TFT element 47 is arranged on the semiconductor film 37 so that the source film S, the gate G, and the drain D are arranged in this order as the longitudinal direction X-direction force of the semiconductor film 37 in which the crystallized region 46 is formed also goes to the other side.
- the formed state is shown.
- FIG. 12 as the Y-direction in the short direction of the semiconductor film 37 in which the crystallized region 46 is formed also moves toward the other side, the drain D and the gate A state in which TFT elements 47 are formed in the semiconductor film 37 so as to be arranged in the order of G and source S is shown.
- the second axial force is centered on the intersection of the first axis and the second axis.
- a plurality of first light transmission patterns 25a extending in a first direction inclined at a degree and a plurality of second light transmission patterns 25b extending in a second direction orthogonal to the first direction inclined at 15 degrees in the plane are formed.
- the projection mask 25 is used to irradiate light onto the semiconductor film 37 that is an irradiation object. That is, by irradiating the semiconductor film 37 with laser light that has passed through the first and second light transmission patterns 25a and 25b formed on the projection mask 25, the shape of the first and second light transmission patterns 25a and 25b is reduced.
- the semiconductor film 37 irradiated with the laser light can be melted and crystallized uniformly.
- the arrangement direction of one TFT element 47 with respect to the semiconductor film 37 is the first arrangement direction, and the other TFT element is arranged. Even if the arrangement direction of the TFT element 47 is different such that the arrangement direction of the 47 is the second arrangement direction, the crystallization region included in the channel portion of each TFT element 47 arranged in each arrangement direction
- the 46 shapes can be the same.
- the crystal growth direction of the plurality of TFT elements 47 with respect to the semiconductor film 37 in which the crystallization region 46 is formed is shifted between the first orientation direction and the second orientation direction, the crystal growth direction
- the direction of the current flowing from the source S to the drain D of the plurality of TFT elements 47 can be made the same.
- the electrical characteristics of the plurality of TFT elements 47 formed on the semiconductor film 37, specifically, the switching characteristics can be made identical, that is, the switching characteristics of the plurality of TFT elements 47 can be made uniform.
- FIG. 13 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- FIG. 14 is a plan view showing a crystallization region 46 formed in the semiconductor film 37 and a thin film transistor element 47 formed in the semiconductor film 37 in which the crystallization region 46 is formed.
- the same reference symbol “X” as that of the first movement direction of the stage 28 is given as the reference symbol in the longitudinal direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28, and the semiconductor As a reference sign in the short direction of the film 37, the same reference sign “Y” as that in the second moving direction of the stage 28 will be attached for explanation.
- the semiconductor film 37 that is an object to be irradiated is crystallized using a projection mask described below.
- the projection mask according to the present embodiment is divided into four regions of first to fourth regions, similar to the projection mask 25 according to the first embodiment. Specifically, the projection mask corresponds to the first block ⁇ ⁇ corresponding to the first region, the second block ⁇ ⁇ corresponding to the second region, the third block ⁇ ⁇ C corresponding to the third region, and the fourth region.
- the fourth block is divided into BDs.
- a plurality of first light transmission patterns 25a are formed on the first and second blocks ⁇ and ⁇ .
- the plurality of first light transmission patterns 25a are formed at intervals in the longitudinal direction and the short direction of the projection mask.
- the first light transmission pattern 25a has a predetermined first direction, a first axis extending along the longitudinal direction of the projection mask in this embodiment, and a second axis extending along the lateral direction of the projection mask.
- the second axis extends from the second axis in a direction inclined by 60 degrees in one predetermined circumferential direction with the intersection point of the first axis and the second axis as the center.
- the one circumferential direction refers to the direction of angular displacement counterclockwise about the intersection of the first axis and the second axis on the laser light incident side plane of the projection mask.
- a plurality of second light transmission patterns 25b are formed in the third and fourth blocks BC and BD.
- the plurality of second light transmission patterns 25b are formed at intervals in the longitudinal direction and the short direction of the projection mask.
- the second light transmission pattern 25b extends in a direction perpendicular to the first direction in a second direction determined in advance, in the present embodiment, in a plane including the first and second axes.
- the first light transmission pattern 25a and the second light transmission pattern 25b are substantially hexagonal.
- the moving step of moving the stage 28 in the first moving direction X-direction by a distance corresponding to the short dimension W of the first to fourth blocks BA to BD is performed three times.
- the first crystallization region 46a crystallized in the shape of the first light transmission pattern 25a and the second light transmission pattern 25b are formed.
- Crystallized regions 46 are formed in a wave shape in which the second crystallized regions 46b crystallized into a shape are continuously and alternately bent.
- the crystallization region 46 is a protrusion protruding in the second extending direction with respect to the second extending direction perpendicular to the first extending direction in which the first crystallization region 46a and the second crystallization region 46b extend. It is formed in such a shape that the crests of the part meet and the troughs of the convex part protruding in the other direction of the second extension match.
- a TFT element 47 is arranged on the semiconductor film 37 so that the source film S, the gate G, and the drain D are arranged in this order as the longitudinal direction X-direction force of the semiconductor film 37 in which the crystallized region 46 is formed is also directed to the other side.
- the formed state is shown.
- the semiconductor film 37 in which the crystallized region 46 is formed has a TFT Y on the semiconductor film 37 so that the drain direction D—gate G and source S are arranged in this order as the lateral direction Y—direction of the semiconductor film 37 also increases.
- the state in which the element 47 is formed is shown.
- the second axial force is centered on the intersection of the first axis and the second axis.
- the semiconductor film 37 that is the object to be irradiated is irradiated with light using the projection mask 25 on which are formed.
- the semiconductor film 37 irradiated with the laser light can be melted and crystallized uniformly.
- the arrangement direction of one TFT element 47 with respect to the semiconductor film 37 is the first arrangement direction, and the other TFT element is arranged. Even if the arrangement direction of TFT elements 47 is different, such as the arrangement direction of 47 is the second arrangement direction, it is included in the channel portion of each TFT element 47 arranged in each arrangement direction.
- the shape of the crystallized region to be rolled can be made the same. In other words, even if the arrangement direction of the plurality of TFT elements 47 with respect to the semiconductor film 37 in which the crystallized region 46 is formed is shifted between the first arrangement direction and the second arrangement direction, the crystal growth occurs.
- the direction of the current flowing from the source S to the drain D of the plurality of TFT elements 47 with respect to the direction can be made the same.
- the electrical characteristics of the plurality of TFT elements 47 formed on the semiconductor film 37, specifically, the switching characteristics can be made identical, that is, the switching characteristics of the plurality of TFT elements 47 can be made uniform.
- FIG. 15 is a diagram showing a configuration of a laser processing apparatus 60 according to the fourth embodiment of the present invention.
- the laser cleaning method according to the fourth embodiment of the present invention is performed by the laser processing apparatus 60. Since the laser carriage device 60 is similar to the laser carriage device 20 of the first embodiment, the corresponding parts are denoted by the same reference numerals and description thereof is omitted.
- the laser processing apparatus 60 includes a first light source 61, a variable attenuator 22, a mirror 23, a variable focal field lens 24, a projection mask 25, an imaging lens 26, a second light source 62, a uniform illumination optical system 63, a stage 28, and A control unit 29 is included.
- the first light source 61 is realized by an excimer laser oscillator capable of emitting a first laser beam 65 having a wavelength in the ultraviolet region, specifically, 308 nm.
- the second light source 62 is realized by a laser oscillator capable of emitting the second laser light 66 having a wavelength from the visible range to the infrared range. More specifically, the second light source 62 can emit a second laser beam 66 having a wavelength of 534 nm, a YAG harmonic laser oscillator capable of emitting a second laser beam 66 having a wavelength of 534 nm, and a second laser beam 66 having a wavelength of 1064 nm. This is realized by a YAG laser oscillator and a carbon dioxide laser oscillator capable of emitting the second laser light 66 having a wavelength of 10.6 m.
- the first laser beam 65 has a higher absorption rate into the semiconductor film 37 in the solid state than in the molten state.
- the first laser beam 65 preferably has an energy amount sufficient to melt the amorphous silicon film that is the semiconductor film 37 in the solid state. This amount of energy varies depending on various conditions such as the type of material of the semiconductor film 37, the film thickness, and the area of the crystallized region, and cannot be uniquely determined. Therefore, it is desirable to use the first laser beam 65 having an appropriate amount of energy in accordance with the above conditions of the semiconductor film 37. Specifically, an amorphous silicon film, which is the semiconductor film 37, is melted at the entire thickness. It is recommended to use the first laser beam 65 with an energy amount that can be heated to a temperature above the point. The same applies to the case where another type of semiconductor film 37 is crystallized instead of the amorphous silicon film.
- the second laser beam 66 has a higher absorption rate into the semiconductor film 37 in the molten state than in the solid state.
- the second laser light 66 is preferably less than the amount of energy sufficient to melt the semiconductor film 37 in the solid state.
- the amount of energy varies depending on the conditions such as the type of material of the semiconductor film 37, the film thickness, and the area of the crystallized region, and cannot be uniquely determined. Therefore, it is desirable to use the second laser light 66 having an appropriate amount of energy according to the above conditions of the semiconductor film 37. Specifically, it is recommended to use the second laser beam 66 having an energy amount less than that sufficient to heat the semiconductor film 37 to a temperature equal to or higher than the melting point. This is the same when applied to other types of semiconductor films 37 instead of amorphous silicon films.
- the first laser light 65 emitted from the first light source 61 in accordance with the control signal from the control unit 10 passes through the variable attenuator 22, the mirror 23, the variable focus field lens 24, the projection mask 25, and the imaging lens 26, and then on the stage.
- the surface of the semiconductor film 37 of the semiconductor element 27 placed on 28 is irradiated to one surface in the thickness direction.
- the second laser light 66 emitted from the second light source 62 passes through the uniform irradiation optical system 63 and the mirror 23 for uniformly irradiating the semiconductor film 37 as the irradiation target with the second laser light, and the stage 23. Irradiated to one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27 placed on 28.
- the first laser beam 65 can also be made to enter a directional force perpendicular to the one surface portion in the thickness direction of the semiconductor film 37, and the second laser beam 66 can be applied in the thickness direction of the semiconductor film 37. It can be incident on the surface from an oblique direction.
- the first light source 61 is not particularly limited to an excimer laser oscillator as long as it is capable of emitting the first laser light 65 and capable of melting the semiconductor film 37.
- the first light source 61 is desirably a laser oscillator capable of emitting laser light having a wavelength in the ultraviolet region, for example, a solid-state laser oscillator typified by an excimer laser oscillator and a YAG laser oscillator.
- the laser oscillator constituting the first light source 61 can emit a pulsed laser beam, and emits a first laser beam 65 having a wavelength of 308 nm.
- Excimer laser oscillators that can be used are particularly preferred.
- the oscillator constituting the second light source 62 is preferably a laser oscillator capable of emitting the second laser light 66 having a wavelength absorbed by the molten semiconductor film 37.
- FIG. 16 is a graph showing the relationship between the output time of the first laser beam 65 and the second laser beam 66 and the output.
- the horizontal axis of the graph represents time, and the vertical axis of the graph represents the output of the first and second laser beams 65 and 66, specifically the amount of energy per unit area of the first and second laser beams 65 and 66.
- a curved line VI shown by a broken line in FIG. 16 represents the output characteristics of the first laser beam 65 emitted from the first light source 61 such as an excimer laser oscillator.
- a curve V2 indicated by a solid line in FIG. 16 represents the output characteristics of the second laser beam 66 emitted from the second light source 62 such as a carbon dioxide laser oscillator.
- the output of the first laser beam 65 in other words, the amount of energy per unit area is, for example, 200 mjZcm 2 or more and less than lOOOmjZcm 2 .
- Amount of energy output per unit area in other words of the second laser beam 66 is, for example LOOmjZcm 2 than on lOOOiujZcm less than 2.
- the second laser beam 66 is emitted from the second light source 62 from time tO to time t3, and the first laser beam 65 is transmitted at time tl after time tO. From the first light source 61 for time t2 before time t3.
- the time during which the first laser beam 65 is emitted is 1Z100 or less of the time during which the second laser beam 66 is emitted, which is shorter than the time during which the second laser beam 66 is emitted. It is about 1Z1000 when the laser beam 66 is emitted. More specifically, the time from time tO to time t3 is, for example, 100 s, and the time from time tl to time t2 is, for example, 100 ns.
- the rise and fall of the output of the first laser beam 65 is relatively steep, and the output reaches the maximum value in a relatively short time after the time tl has elapsed. After that, the output is reduced in a relatively short time. As shown by curve V2, the output reaches the maximum value in a relatively short time after time tO has elapsed, and the output is held at the maximum value until time t2 elapses.
- the fall of the output of the second laser beam 66 after the elapse of time t2 is gentler than that of the rise, and the output is gradually reduced until the time t3 elapses.
- the time and output of the first laser beam 65 and the second laser beam 66 The relationship with force is not limited to the relationship shown in the graph of FIG. 16, but is preferably in the same relationship as the relationship shown in the graph of FIG. Between the time tl and the time t3, the amorphous silicon film as the semiconductor film 37 is in a molten state.
- the step of irradiating the semiconductor film 37, which is an irradiation object, with the second laser light 66 from time tO to time t1 and from time t2 to time t3 is performed by crystallization.
- This corresponds to the first irradiation stage in the process.
- the stage of irradiating the first laser beam 65 and the second laser beam 66 on the semiconductor film 37, which is an irradiation object, between the time tl and the time t2 corresponds to the second irradiation stage in the crystallization process.
- the first laser light 65 emitted from the first light source 61 is emitted from the projection mask 25 at the timing shown by the curve VI in FIG. 16, specifically, from time tl to time t2.
- the first and second light transmission patterns 25a and 25b formed on the semiconductor element 27 are transmitted through the first and second light transmission patterns 25a and 25b to irradiate the first region defined on one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27.
- the second laser light 66 emitted from the second light source 62 at the timing as shown by the curve V2 in FIG.
- the control unit 29 drives and controls the stage 28, thereby moving the stage 28 by a predetermined distance in the first moving direction X-direction.
- the semiconductor element 27 placed on the stage 28 can be moved by a predetermined distance in the first movement direction X-direction.
- the first laser beam 65 transmitted through the plurality of first and second light transmission patterns 25a, 25b formed on the projection mask 25 is irradiated to one surface portion in the thickness direction of the semiconductor film 37 of the semiconductor element 27.
- the new area to be done is an area moved by a predetermined distance in the first movement direction X-direction. The new area partially overlaps the area before movement.
- the predetermined distance when the stage 28 is moved in the first moving direction X is one of the first to fourth blocks BA of the projection mask 25: the dimension W in the short direction of the BD.
- the first laser light 65 emitted from the first light source 61 is formed on the projection mask 25 at the timing shown by the curve VI in FIG. 16 again in the crystallization process.
- the first and second light transmission patterns 25a and 25b are transmitted to irradiate the second region defined on one surface in the thickness direction of the semiconductor film 37 of the semiconductor element 27 placed on the stage 28. The second region partially overlaps the first region.
- the semiconductor film 37 in the second region is melted, and the melted semiconductor film 37 in the second region is solidified and crystallized.
- the crystallization process and the movement process described above are alternately performed until the region to be crystallized of the semiconductor film 37 reaches a predetermined size. As a result, for example, the crystallization region 46 shown in FIGS. 5 and 6 and FIGS. 11 to 14 can be formed.
- the laser film 60 is used to irradiate the semiconductor film 37 that is the object to be irradiated with the first and second laser beams 65 and 66, thereby forming the semiconductor film 37.
- the TFT element 47 is formed on the uniformly crystallized semiconductor film 37 which is crystallized uniformly. Therefore, when a plurality of TFT elements 47 are formed in the uniformly crystallized semiconductor film 37, even if the direction of the arrangement of one TFT element 47 with respect to the semiconductor film 37 is different from the direction of the other TFT element 47, The source S force of the plurality of TFT elements 47 with respect to the crystal growth direction can make the direction of the current flowing through the drain D the same.
- the electrical characteristics of the plurality of TFT elements 47 formed on the semiconductor film 37 can be made the same.
- the switching characteristics of the plurality of TFT elements 47 can be made uniform.
- the switching characteristics of the TFT element 47 can be made uniform regardless of the arrangement direction of the TFT element 47 with respect to the semiconductor film 37, so that the degree of freedom in designing a display device using the TFT element 47 can be increased. .
- the semiconductor film 37 in the molten state is irradiated with the second laser light 66 in addition to the first laser light 65 in the second irradiation stage in the crystallization process,
- the cooling rate of the molten semiconductor film 37 can be reduced.
- the time until the molten semiconductor film 37 is solidified can be extended. Therefore, the distance of lateral growth of the semiconductor polycrystal formed by solidifying the amorphous silicon film, which is the semiconductor film 37 in the molten state, can be greatly extended.
- the semiconductor film 37 when the semiconductor film 37 is crystallized, it can be grown into relatively large crystal grains.
- the electron mobility of the crystallized semiconductor film 37 can be made relatively high, and the TFT element 47 can be formed in the semiconductor film 37 with relatively high electron mobility.
- the electrical characteristics of the TFT element 47 specifically, the switching characteristics can be improved.
- the second axial force is 45 degrees in a predetermined circumferential direction around the intersection of the first axis and the second axis within the plane including the first axis and the second axis.
- the second axial force is also inclined at an arbitrary angle out of an angle in the range of 15 degrees to less than 30 degrees and a range of 60 degrees to less than 75 degrees in one predetermined circumferential direction.
- the plurality of first light transmission patterns 25a extending in the first direction and the plurality of second light extending in the second direction orthogonal to the first direction in a plane including the first axis and the second axis. You can also use a projection mask on which a transmission pattern 25b is formed.
- the semiconductor film 37 that is an irradiation object can be uniformly crystallized, and the switching characteristics of the plurality of TFT elements 47 formed on the semiconductor film 37 Can be made uniform.
- the semiconductor film 37 that is an object to be irradiated is formed using the laser cage devices 20 and 60 including the one projection mask 25 on which the first and second light transmission patterns 25a and 25b are formed.
- a laser cafe apparatus including a projection mask including a plurality of mask portions may be used.
- the first light transmission pattern is Irradiate the object to be irradiated with laser light that has passed through one of the mask portions to be formed.
- the semiconductor film 37 that is the irradiation target may be crystallized by irradiating the irradiation target with laser light that has passed through the other mask portion on which the two-light transmission pattern is formed. Even in this case, the semiconductor film 37 can be crystallized uniformly as in the case of using the single projection mask 25, and the switching characteristics of the plurality of TFT elements 47 formed on the semiconductor film 37 can be made uniform. can do.
- the case where the projection film 25 is used to crystallize the semiconductor film 37 that is the irradiation object has been described.
- the stage 28 is moved relative to the light source to move the irradiation object.
- the semiconductor film 37 without using the projection mask 25 is crystallized by irradiating laser light so that the extending direction of the irradiation region is inclined with respect to a plurality of directions in which the semiconductor film 37 is to be crystallized. Is possible.
- the number of parts of the laser processing apparatus can be reduced and the structure of the laser processing apparatus can be simplified.
- an amorphous silicon film is applied as the semiconductor film 37 has been described.
- amorphous germanium and alloys thereof may be used without being limited thereto.
- the projection mask is formed so that the extending direction of the light transmission pattern that transmits the light for crystallizing the irradiation object is inclined with respect to the plurality of directions in which the irradiation object is to be crystallized. Is done. Irradiation with light in the shape of a light transmission pattern by irradiating light onto the projection mask formed as described above, and irradiating the irradiation object with light transmitted through the light transmission pattern formed on the projection mask The object can be melted and crystallized almost uniformly.
- TFT elements thin film transistor elements
- the direction in which one TFT element is disposed with respect to the irradiation object and the other TFT element can be made substantially the same.
- the electrical characteristics of the plurality of TFT elements formed on the irradiation object, specifically, the switching characteristics can be made substantially the same. In other words, the switching characteristics of a plurality of TFT elements can be made substantially uniform.
- the projection mask has a plurality of directions in which the extending direction of the light transmission pattern that transmits light for crystallizing the irradiation object is inclined with respect to the plurality of directions in which the irradiation object should be crystallized. Including the mask part.
- TFT elements thin film transistor elements
- the direction in which one TFT element is disposed with respect to the irradiation object and the other TFT element can be made substantially the same.
- the electrical characteristics of the plurality of TFT elements formed on the irradiation object, specifically, the switching characteristics can be made substantially the same. In other words, the switching characteristics of a plurality of TFT elements can be made substantially uniform.
- the light transmissive pattern has a first light transmissive pattern extending in a predetermined first direction and a second light transmissive pattern extending in a second direction orthogonal to the first direction.
- light is irradiated to the projection mask on which the first and second light transmission patterns whose extending directions are orthogonal to each other are formed, and light transmitted through the first and second light transmission patterns formed on the projection mask is irradiated.
- the irradiation object irradiated with the light in the shape of the first and second light transmission patterns can be melted and crystallized uniformly.
- TFT elements thin film transistor elements
- one TFT element is arranged on the irradiation target. Even when the direction of the TFT element is different from the direction in which the other TFT element is disposed, the direction of the current flowing in each of the plurality of TFT elements relative to the crystal growth direction can be made the same.
- the electrical characteristics of a plurality of TFT elements formed on the irradiation object, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of a plurality of TFT elements can be made uniform.
- the first light transmission pattern extending in the predetermined first direction is formed in one mask part among the plurality of mask parts, and the first light transmission pattern orthogonal to the first direction is formed in the other mask part.
- a second light transmission pattern extending in two directions is formed.
- Each of the plurality of mask portions is irradiated with light, and the object to be irradiated is irradiated with light transmitted through the first light transmission pattern formed on one mask portion, and the second light transmission formed on the other mask portion.
- TFT elements thin film transistor elements
- the electrical characteristics of a plurality of TFT elements formed on the irradiation object, specifically, the switching characteristics can be made the same. In other words, the switching characteristics of a plurality of TFT elements can be made uniform.
- the first light transmission pattern and the second light transmission pattern are formed so as not to be connected to each other. If the irradiation object is irradiated with light through a projection mask formed in such a manner that the first light transmission pattern and the second light transmission pattern are connected to each other, the first and second lights in the irradiation object
- the crystal growth direction in the portion irradiated with light having the shape of the transmission pattern, more specifically, in the connection portion between the first light transmission pattern and the second light transmission pattern is the same as the crystal growth direction in the portion other than the connection portion. Different.
- TFT elements thin film transistor elements
- the arrangement direction of one TFT element relative to the irradiation object If the direction of the other TFT element is different, the crystal growth direction
- the direction of the current flowing through each of the TFT elements varies, and the electrical characteristics of the TFT elements, specifically, the switching characteristics become non-uniform.
- the first and second light beams are irradiated with light through a projection mask formed in such a manner that the first and second light transmission patterns are not connected to each other.
- the crystal growth direction in the portion irradiated with the light having the shape of the transmission pattern, more specifically, in the overlapping portion of the light in the shape of the first light transmission pattern and the second light transmission pattern, is the crystal in the portion other than the overlapping portion. The same growth direction.
- the currents that flow in the TFT elements with respect to the crystal growth direction even if the direction of one TFT element differs from the direction of the other TFT element. Can be made the same direction.
- the electrical characteristics of the plurality of TFT elements, specifically, the switching characteristics can be reliably made the same. In other words, it is possible to ensure uniform switching characteristics of a plurality of TFT elements.
- the first and second light transmission patterns are formed such that both end portions in each extending direction are tapered as viewed in the thickness direction of the projection mask. Therefore, unlike a light transmission pattern that is not formed in a tapered shape such as a rectangular shape, the extending direction and the irradiation target of the irradiation object are irradiated in the irradiation region of the irradiation object having the shape of the first and second light transmission patterns. Protrusions formed by collision of crystals growing from both ends in the direction perpendicular to the thickness direction are formed up to both ends in the extending direction of the irradiation region. Accordingly, when a plurality of TFT elements are formed on the irradiation object, the irradiation object on which the plurality of TFT elements are formed can be crystallized more uniformly.
- the electrical characteristics of a plurality of TFT elements specifically, the switching characteristics can be surely made the same. In other words, the switching characteristics of a plurality of TFT elements can be surely made uniform.
- the length dimension in the extending direction of the first and second light transmission patterns is set to be less than three-fourths of the channel length of the thin film transistor element formed on the irradiation object.
- the portion of the object to be crystallized by being irradiated with light in the shape of the first light transmission pattern and the second light transmission pattern is included in the channel portion of the thin film transistor (abbreviation: TFT element).
- TFT element can be formed on the irradiation object.
- the crystallization shape of the channel portion of each TFT element can be made the same, and the crystal growth direction The direction of current flowing through each channel of multiple TFT elements can be made the same. This ensures that the electrical characteristics, more specifically the switching characteristics, of the plurality of TFT elements are the same. In other words, the switching characteristics of the plurality of TFT elements can be made uniform uniformly.
- the irradiation target in the crystallization process, is formed into a layer having an amorphous material force so as to incline the extending direction of the irradiation region with respect to a plurality of directions in which the irradiation target is to be crystallized.
- the amorphous material can be uniformly crystallized.
- TFT elements thin film transistor elements
- amorphous material layer a layer of amorphous material force uniformly crystallized in this way
- the electrical characteristics, specifically the switching characteristics, of the plurality of TFT elements formed in the amorphous material layer can be made uniform.
- the moving step by moving the irradiation object relative to the light source that emits the laser light, the laser light can be irradiated to a desired region of the irradiation object, and the desired shape is obtained. It can be crystallized to
- the layer having an amorphous material force is also formed so that the extending direction of the irradiation region is inclined with respect to a plurality of directions in which the amorphous material as the irradiation target is to be crystallized.
- the amorphous material layer is sometimes irradiated with laser light to crystallize the amorphous material, and the amorphous material is applied to a light source that emits laser light.
- the desired area of the irradiation object is obtained by repeating the moving step of relative movement. In addition, it is possible to reliably form crystal grains having a desired size.
- the one oscillation wavelength is Irradiation objects are irradiated with laser beams having different oscillation wavelengths.
- the laser beam having one oscillation wavelength is irradiated in the first irradiation stage, and the irradiation target object in the molten state is irradiated with the laser light having another oscillation wavelength.
- the cooling rate can be reduced.
- the irradiation object when the irradiation object is crystallized, it can be grown into relatively large crystal grains.
- the electron mobility of the irradiated object can be made relatively high, and a thin film transistor (abbreviation: TFT element) is formed on the irradiated object having a relatively high electron mobility.
- TFT element thin film transistor
- the laser beam is applied to the layer made of the amorphous material so that the extending direction of the irradiation region is inclined with respect to the plurality of directions in which the amorphous material as the irradiation target is to be crystallized by the light source.
- the amorphous material can be uniformly crystallized.
- TFT elements thin film transistor elements
- amorphous material layer a layer having a uniform crystallized amorphous material force
- the electrical characteristics, more specifically the switching characteristics, of the plurality of TFT elements formed in the amorphous material layer can be made the same. In other words, the switching characteristics of a plurality of TFT elements can be made uniform.
- the irradiation object can be uniformly crystallized without using a projection mask. Therefore, the number of parts of the laser carriage device can be reduced. As a result, the structure of the laser calorie apparatus can be simplified and reduced in size, and the manufacturing cost of the laser processing apparatus can be reduced. Further, according to the present invention, the irradiation object is uniformly crystallized by irradiating the irradiation object with the laser beam using the laser processing apparatus, and the thin film transistor element (abbreviation: abbreviation: TFT element) is formed.
- TFT element thin film transistor element
- the crystal growth can be made the same with respect to the direction.
- the switching characteristics of a plurality of TFT elements can be made uniform.
- the switching characteristics of the TFT element can be made uniform regardless of the direction in which the TFT element is disposed with respect to the irradiation object, so the degree of freedom in designing a display device using the TFT element can be increased. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Engineering (AREA)
- Materials Engineering (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Thin Film Transistor (AREA)
- Recrystallisation Techniques (AREA)
- Liquid Crystal (AREA)
Abstract
照射対象物を均一に結晶化させることができる投影マスク、レーザ加工方法およびレーザ加工装置を提供するとともに、照射対象物に形成したときの電気的特性を均一にすることができる薄膜トランジスタ素子が提供される。照射対象物である半導体膜37を結晶化させるべき複数の方向に対し、前記第1軸線および第2軸線を含む平面内において、第1軸線と第2軸線との交点を中心として第2軸線から予め定める周方向一方に45度傾斜した第1方向に延びる複数の第1光透過パターン25aと、前記平面内において前記45度傾斜した第1方向に直交する第2方向に延びる複数の第2光透過パターン25bとが形成される投影マスク25に、光源21から発せられるレーザ光31を照射し、前記第1および第2光透過パターン25a,25bを透過したレーザ光を半導体膜37に照射する。
Description
明 細 書
投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素 子
技術分野
[0001] 本発明は、照射対象物にレーザ光を照射して結晶化させるときに用いられる投影 マスク、レーザ加工方法およびレーザ加工装置に関し、さらに結晶化された照射対 象物に形成される薄膜トランジスタ素子に関する。
背景技術
[0002] 半導体デバイスは、基板を兼ねて構成される単結晶シリコン (Si)またはガラス基板 上に成層されるシリコン薄膜に形成される。このような半導体デバイスは、イメージセ ンサおよびアクティブマトリクス液晶表示装置などに用いられる。液晶表示装置に用 いられる半導体デバイスは、透明な基板上にたとえば薄膜トランジスタ (略称: TFT) 素子の規則的なアレイが形成されることによって構成され、各 TFT素子は画素コント ローラとして機能している。液晶表示装置に用いられている TFT素子は、非晶質シリ コン膜に形成されているけれども、電子移動度の低い非晶質シリコン膜に代えて、電 子移動度の高い多結晶シリコン膜に TFT素子を形成することによって、 TFT素子の スイッチング特性を向上し、消費電力が低くて応答速度が高い液晶表示装置が製造 されるようになってきて!/、る。
多結晶シリコン膜は、基板上に堆積している非晶質シリコンまたは微結晶シリコン膜 にエキシマレーザから発せられるレーザ光、たとえば線長が 200mm以上 400mm未 満で、かつ線幅が 0. 2mm以上 1. Omm未満である線状のレーザ光を照射して溶融 し、凝固過程においてシリコンを結晶化(Excimer Laser Crystallization;略称: ELC) させる方法 (以下、「ELC法」という場合がある)によって形成される。
ELC法では、レーザ光を照射した部分の半導体膜を厚み方向全域にわたって溶 融するのではなぐ半導体膜の一部の領域を残して溶融する。 ELC法によって半導 体膜を単に溶融凝固させるだけでは、未溶融領域と溶融領域との界面の全面にお いて、至る所に結晶核が発生し、半導体膜の最表層に向力つて結晶が成長して、異
なる大きさでかつ異なる結晶方位を有する多数の結晶粒が形成される。したがって結 晶粒径は非常に小さぐ具体的には lOOnm以上 200nm未満となる。多数の小さな 結晶粒が形成されると、結晶粒同士の接触界面である結晶粒界が多数形成され、こ の結晶粒界が、電子を捕獲して電子移動の障壁となるので、結晶粒界が少ない、つ まり結晶粒径が比較的大きい多結晶シリコン膜に比べて電子移動度が低くなる。 また大きさおよび方位が異なる小さな結晶内においては、電子移動度が結晶毎に それぞれ異なるので、換言すれば異なる動作性能を備える TFT素子が多数形成さ れること〖こなるので、各 TFT素子の相互間で構造の不均一性が生じるとともに、 TFT アレイにスイッチング特性の不均一性が生じる。このような不均一性が生じると、液晶 表示装置にぉ 、て、一表示画面中に応答速度の高 、画素と応答速度の低 、画素と が並存するという問題が生じる。したがって液晶表示装置のさらなる性能向上のため には、スイッチング特性の均一化された TFTアレイが形成される必要があり、 TFT素 子のスイッチング特性を均一化するためには、 TFT素子を形成する多結晶シリコン 膜の結晶化領域を広くするとともに、多結晶シリコン膜の品質を向上する、つまり結晶 化される結晶粒径を可能な限り大きくすること、および結晶方位を制御することなどが 必要とされる。そこで、単結晶シリコンに近い性能を有する多結晶シリコン膜を得るた めの種々の技術が提案されて ヽる。
図 17は、第 1の従来技術のレーザカ卩ェ装置 1の構成を示す図である。図 18は、半 導体素子 8の構成を示す断面図である。図 19A〜図 19Dは、半導体膜 17における 結晶の成長過程を模式的に示す図である。第 1の従来技術は、ラテラル成長法に分 類されるレーザ結晶化技術であり、レーザ加工装置 1によって、結晶の成長方向に方 位の揃った長細状の結晶を形成する。レーザカ卩ェ装置 1は、パルス状のレーザ光 12 を発することが可能な光源 2、可変減衰器 3、光源 2から発せられるレーザ光 12を反 射してその方向を変化させる複数のミラー 4、可変焦点視野レンズ 5、可変焦点視野 レンズ 5を透過したレーザ光を所定のパターンに限定して通過させる投影マスク 6、投 影マスク 6を通過したレーザ光を後述する半導体素子 8の一表面部に結像させる結 像レンズ 7、半導体素子 8を載置して半導体素子 8を矢符 11で示す方向に移動可能 なステージ 9、ならびに光源 2の出力制御およびステージ 9の矢符 11で示す方向へ
の駆動制御を行う制御部 10を含んで構成される。光源 2は、たとえばエキシマレーザ によって実現される。光源 2であるエキシマレーザ力も発せられたレーザ光 12は、可 変減衰器 3、ミラー 4、可変焦点視野レンズ 5、投影マスク 6、結像レンズ 7を経由して 、ステージ 9に載置された半導体素子 8の一表面部に照射される。
半導体素子 8は、図 18に示すように、光透過性を有する透明基板 15、透明基板 15 上に形成される下地膜 16および下地膜 16上に形成される半導体膜 17を含む。下 地膜 16上の半導体膜 17の延設方向、図 18では矢符 Aで示す方向に沿って結晶領 域を形成するにあたり、まず半導体膜 17の矢符 Bで示す領域 (以下、「領域 B」という 場合がある)以外の領域をマスキングし、エキシマレーザ力も発せられるレーザ光 12 を半導体膜 17の領域 Bに照射することで半導体膜 17に熱を誘導する。これによつて 領域 Bに照射されたレーザ光 12のエネルギが熱エネルギに変換されて、半導体膜 1 7の領域 Bに熱を誘導することができるとともに、半導体膜 17をその厚み方向にわた つて溶融することができる。
次に、領域 Bが溶融されている半導体膜 17を冷却することによって凝固させ、図 19 Aに示すように、領域 Bとそれ以外の領域との境界 Bl, B2から、領域 Bの中心に向か うように結晶を成長させる。さらに、図 19Bに示すように、領域 Bにおいて結晶が形成 されていない部分が含まれるように、領域 Bと隣り合う新たな領域 Cを設定し、前記手 順と同様に領域 Cを溶融する。そして、領域 Cで溶融されている半導体膜 17を凝固さ せ、図 19Cに示すように、領域 Cに結晶を形成する。このような手順を繰返して、所望 の結晶を半導体膜 17の延設方向 Aに沿って段階的に成長させる。これによつて、図 19Dに示すように、多結晶構造の半導体結晶を拡大させることができ、結晶粒の大き い多結晶シリコン膜を形成することができる(たとえば、特表 2000— 505241号公報 (第 15〜16頁、第 1図)参照)。
前述の第 1の従来技術では、ステージ 9の移動速度が低ぐ半導体膜 17の結晶化 に長時間を要する。この問題点を解決するために第 2の従来技術がある。第 2の従来 技術では、マスクのスリットを複数のブロックに分割し、基板全面で結晶を成長させず に、部分的に成長させた結晶を並べるようにして多結晶シリコン膜を形成するように 構成される(たとえば、特表 2003 - 509844号公報 (第 9図)参照)。
前述のように結晶化した半導体膜を有する基板上に形成される TFT素子は、可能 な限り実装密度を高くするために、または回路配置の都合のために必ずしも一方向 に固定されて配設されるわけではなぐ表示素子などのアレイ構造にも依存して配設 される。つまり、 TFT素子は、図 19Dに模式的に示すように、ソース Sからドレイン Dに 流れる電流の方向、つまり矢符 Jで示す電流が流れる方向と結晶の成長方向とが平 行となるように配設される場合と、前記電流が流れる方向と結晶の成長方向とが垂直 となるように配設される場合とがある。電流が流れる方向と結晶の成長方向とが平行 である場合の TFT素子のスイッチング特性は良好であるけれども、電流が流れる方 向と結晶の成長方向とが垂直である場合の TFT素子のスイッチング特性には不均一 性が生じるという問題がある。
この問題点を解決すべく第 3の従来技術では、結晶の成長方向を予め定める方向 に沿って延びる軸線力も 45度傾けるように構成され、また多結晶シリコン同士の境界 エリアを無くすためにマスクを用いる試みがなされている(たとえば、米国特許第 6, 7 06, 545号明細書 (Fig. 6〜Fig. 8)参照)。しかし第 3の従来技術では、結晶の成 長方向を傾斜させても TFT素子のスイッチング特性が必ずしも均一にならな 、と ヽぅ 問題、および結晶粒の境界を少なくするための前記マスクの設計が困難であると 、う 問題がある。さらにスイッチング特性の均一化のためには、結晶の成長方向の傾け角 度を 45度近傍で試験を行い、適正な角度を決定する必要があるうえ、レーザ光の照 射パターンを変更するたびに再調整が必要となるので、量産の支障となっている。第 2の従来技術でも、水玉マスクを用いて結晶の成長方向のばらつきを低減し、結晶粒 の大きさおよび方位を均一にする試みがなされている力 多結晶シリコンを製造する ときのプロセス条件を決定することが困難であり、量産の支障となっている。
発明の開示
本発明の目的は、照射対象物を均一に結晶化させることができる投影マスク、レー ザ加工方法およびレーザ加工装置を提供することであり、また照射対象物に形成し たときの電気的特性を均一にすることができる薄膜トランジスタ素子を提供することで ある。
本発明は、照射対象物を結晶化させるための光を透過する光透過パターンが形成
される投影マスクであって、
照射対象物を結晶化させるべき複数の方向に対し、光透過パターンの延び方向を それぞれ傾斜させるように形成されることを特徴とする投影マスクである。
また本発明は、照射対象物を結晶化させるための光を透過する光透過パターンが 形成される投影マスクであって、
照射対象物を結晶化させるべき複数の方向に対し、光透過パターンの延び方向が それぞれ傾斜される複数のマスク部を含むことを特徴とする投影マスクである。
また本発明は、前記光透過パターンは、予め定める第 1方向に延びる第 1光透過パ ターンと、第 1方向に直交する第 2方向に延びる第 2光透過パターンとを有することを 特徴とする。
また本発明は、複数のマスク部のうち一方のマスク部には、予め定める第 1方向に 延びる第 1光透過パターンが形成され、他方のマスク部には、第 1方向に直交する第 2方向に延びる第 2光透過パターンが形成されることを特徴とする。
また本発明は、前記第 1光透過パターンと第 2光透過パターンとは、互いに連結し な!、態様で形成されることを特徴とする。
また本発明は、前記第 1および第 2光透過パターンは、各延び方向の両端部が、投 影マスクの厚み方向に見て先細状に形成されることを特徴とする。
また本発明は、前記第 1および第 2光透過パターンの延び方向の長さ寸法は、照射 対象物に形成される薄膜トランジスタ素子のチャンネル長の 4分の 3未満であることを 特徴とする。
また本発明は、照射対象物である非晶質材料力 成る層にレーザ光を照射して結 晶化させるレーザ加工方法であって、
照射対象物を結晶化させるべき複数の方向に対し、照射領域の延び方向を傾斜さ せるようにレーザ光を照射し、前記非晶質材料を結晶化する結晶化工程を有するこ とを特徴とするレーザ加工方法である。
また本発明は、照射対象物を、レーザ光を発する光源に対して相対移動させる移 動工程をさらに有することを特徴とする。
また本発明は、結晶化工程と移動工程とを繰返す繰返し工程を、さらに有すること
を特徴とする。
また本発明は、結晶化工程は、
一の発振波長のレーザ光を照射対象物に照射する第 1照射段階と、
前記一の発振波長のレーザ光を照射するとともに、前記一の発振波長とは異なる 他の発振波長のレーザ光を照射対象物に照射する第 2照射段階とを有することを特 徴とする。
また本発明は、照射対象物である非晶質材料力 成る層にレーザ光を照射して結 晶化させるレーザ加工装置であって、
照射対象物を結晶化させるべき複数の方向に対し、照射領域の延び方向を傾斜さ せるようにレーザ光を照射する光源を有することを特徴とするレーザ加工装置である また本発明は、前記レーザ加工装置を用いて結晶化された照射対象物に形成され ることを特徴とする薄膜トランジスタ素子である。
図面の簡単な説明
本発明の目的、特色、および利点は、下記の詳細な説明と図面とからより明確にな るであろう。
図 1は、本発明の第 1の実施の形態であるレーザ加工装置 20の構成を示す図であ る。
図 2は、半導体素子 27の構成を示す断面図である。
図 3は、投影マスク 25を模式的に示す平面図である。
図 4は、結晶化工程で形成される結晶 40の状態を模式的に示す図である。
図 5は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された 半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図である。
図 6は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された 半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図である。
図 7は、投影マスクに形成される光透過パターン 49を示す図である。
図 8は、図 7に示す光透過パターン 49が形成される投影マスクを透過したレーザ光 を照射して形成した結晶 50の状態を示す図である。
図 9は、投影マスク 25に形成される第 1光透過パターン 25aおよび第 2光透過パタ ーン 25bを示す図である。
図 10は、図 9に示す第 1および第 2光透過パターン 25a, 25bが形成される投影マ スク 25を透過したレーザ光を照射して形成した結晶 51の状態を示す図である。 図 11は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された 半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図である。
図 12は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された 半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図である。
図 13は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された 半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図である。
図 14は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された 半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図である。
図 15は、本発明の第 4の実施の形態であるレーザ加工装置 60の構成を示す図で ある。
図 16は、第 1レーザ光 65および第 2レーザ光 66を発する時間と出力との関係を示 すグラフである。
図 17は、第 1の従来技術のレーザ加工装置 1の構成を示す図である。
図 18は、半導体素子 8の構成を示す断面図である。
図 19A〜図 19Dは、半導体膜 17における結晶の成長過程を模式的に示す図であ る。
発明を実施するための最良の形態
以下図面を参考にして本発明の好適な実施例を詳細に説明する。
以下に、本発明を実施するための複数の形態について説明する。以下の説明にお V、て、先行して説明して 、る事項に対応する部分につ!、ては同一の参照符を付し、 重複する説明を省略する場合がある。構成の一部のみを説明している場合、構成の 他の部分は、先行して説明している部分と同様とする。
図 1は、本発明の第 1の実施の形態であるレーザ加工装置 20の構成を示す図であ る。図 2は、半導体素子 27の構成を示す断面図である。図 3は、投影マスク 25を模式
的に示す平面図である。本発明の第 1の実施の形態であるレーザ加工方法は、レー ザ加工装置 20によって実施される。レーザ加工装置 20は、光源 21、可変減衰器 22 、ミラー 23、可変焦点視野レンズ 24、投影マスク 25、結像レンズ 26、ステージ 28お よび制御部 29を含んで構成される。光源 21は、パルス状のレーザ光を発することが 可能であり、たとえば波長が 308nmの塩化キセノン (XeCl)を用いたエキシマレーザ 発振器によって実現される。本実施の形態では、エキシマレーザ発振器から、パルス 幅が 30nsであるレーザ光が発せられる。光源とエキシマレーザ発振器とは実質的に 同一であるので、以下の説明では「光源 21」を「エキシマレーザ発振器 21」という場 合がある。
可変減衰器 22は、光源 21から発せられたレーザ光 31の透過率を設定可能に構成 される。可変減衰器 22で透過率を変えることによって、光源 21から発せられたレーザ 光 31の照度を調整することができる。ミラー 23は、光源 21から発せられたレーザ光 3 1を反射してその方向を変化させる。可変焦点視野レンズ 24は、光源 21から発せら れて入射したレーザ光 31魏光して焦点を調整するレンズである。投影マスク 25に は、照射対象物を結晶化させるための光を透過する光透過パターンが形成される。 可変焦点視野レンズ 24を透過したレーザ光は、投影マスク 25に形成される所定の 光透過パターンを透過する。結像レンズ 26は、投影マスク 25を透過したレーザ光を 後述する半導体素子 27の厚み方向一表面部に結像させる。ステージ 28は、予め定 める第 1移動方向(図 1では紙面の左右方向) Xと、第 1移動方向 Xおよびステージ 28 の厚み方向にそれぞれ垂直な方向である第 2移動方向(図 1では紙面に垂直な方向 )Yとにそれぞれ移動可能に構成される。ステージ 28上には、照射対象物である半 導体素子 27が載置される。
制御部 29は、中央演算処理装置(Central Processing Unit ;略称: CPU)を備える マイクロコンピュータなどによって実現される処理回路である。制御部 29には、光源 2 1およびステージ 28が電気的に接続されている。制御部 29は、光源 21の出力を制 御、具体的には光源 21から発せられるレーザ光 31の発振パルス時間および周期を 制御するとともに、ステージ 28の第 1移動方向 Xおよび第 2移動方向 Yへの駆動制御 、具体的にはステージ 28上に載置される半導体素子 27の位置を制御する。レーザ
光の発振パルス時間および周期の制御は、制御部 29が、たとえば半導体素子 27の 結晶化処理条件毎に予め定められる発振パルス時間および周期を関連情報として 対応表を生成し、その対応表が記憶される記憶部を制御部 29に設け、記憶部から 読出した前記対応表の関連情報に基づく制御信号を光源 21に与えることによって実 現される。ステージ 28の駆動制御は、制御部 29に予め与えられる情報に基づいて 数値制御(Numerical Control;略称: NC)を行うように構成してもよ 、し、半導体素子 27の位置を検出する位置センサを設け、位置センサ力もの検出出力に応答して制 御を行うように構成してもよ 、。
制御部 29からの制御信号に従って光源 21から発せられるレーザ光 31は、図 1に 示すように、可変減衰器 22、可変焦点視野レンズ 24、投影マスク 25を経由し、結像 レンズ 26によって半導体素子 27の厚み方向一表面部に照射される。
半導体素子 27は、図 2に示すように、光透過性を有する透明基板 35、下地膜 36お よび半導体膜 37を含み、透明基板 35上に下地膜 36および半導体膜 37が順次積層 されて構成される。下地膜 36として用いられる材料は、二酸化珪素(SiO )、酸化窒
2 化珪素(SiON)、窒化珪素(SiN)、窒化アルミニウム (A1N)などの誘電体材料であ る。下地膜 36は、蒸着、イオンプレーティング、またはスパッタリングなどによって透明 基板 35上に積層される。下地膜 36上には、半導体膜 37であるアモルファスシリコン 膜が積層される。半導体膜 37は、プラズマェンノヽンスドィ匕学気相堆積 (Plasma Enhan ced Chemical Vapor Deposition;略称: PECVD)、蒸着またはスパッタリングなどによ つて下地膜 36上に積層される。この時点で、半導体膜 37は、アモルファス (非晶質) の状態である。本実施の形態では、下地膜 36の膜厚は lOOnmであり、半導体膜 37 の膜厚は 50nmである。
投影マスク 25は、たとえば合成石英基板 (以下、単に「基板」という場合がある)にク ロム薄膜をパターユングすることによって形成される。投影マスク 25には、基板の厚 み方向に貫通し、照射対象物である半導体素子 27の半導体膜 37を結晶化させるた めの光を透過する複数の第 1光透過パターン 25aおよび第 2光透過パターン 25bが 形成されている。投影マスク 25の第 1および第 2光透過パターン 25a, 25b以外の部 分は、光を透過しない非透過部 25cである。本実施の形態の投影マスク 25は、図 3
に示すように、大略的に長方形状である。投影マスク 25は、第 1領域、第 2領域、第 3 領域および第 4領域の 4つの領域に分割されている。換言すると投影マスク 25は、第 1領域に対応する第 1ブロック BA、第 2領域に対応する第 2ブロック BB、第 3領域に 対応する第 3ブロック BCおよび第 4領域に対応する第 4ブロック BDを含む。以下の 説明では、第 1領域を第 1ブロック BA、第 2領域を第 2ブロック BB、第 3領域を第 3ブ ロック BCおよび第 4領域を第 4ブロック BDと称する場合がある。第 1ブロック BA、第 2 ブロック BB、第 3ブロック BCおよび第 4ブロック BDは、この順で投影マスク 25の長手 方向に一列に並んで設けられる。第 1〜第 4ブロック BA〜BDは、投影マスク 25の短 手方向に延びる長方形状である。
第 1および第 2ブロック BA, BBには、複数の第 1光透過パターン 25aが形成されて いる。複数の第 1光透過パターン 25aは、投影マスク 25の長手方向および短手方向 のそれぞれの方向に間隔をあけて形成されている。第 1光透過パターン 25aは、投影 マスク 25の長手方向に沿って延びる第 1軸線と、投影マスク 25の短手方向に沿って 延びる第 2軸線とを含む平面内において、予め定める第 1方向、本実施の形態では 第 1軸線と第 2軸線との交点を中心として第 2軸線から予め定める周方向一方に 45 度傾斜した方向に延びている。ここで、前記周方向一方とは、投影マスク 25のレーザ 光の入射側平面において、第 1軸線と第 2軸線との交点を中心として反時計まわりに 角変位する方向をいう。
第 3および第 4ブロック BC, BDには、複数の第 2光透過パターン 25bが形成されて いる。複数の第 2光透過パターン 25bは、投影マスク 25の長手方向および短手方向 のそれぞれの方向に間隔をあけて形成されている。第 2光透過パターン 25bは、前 記第 1および第 2軸線を含む平面内において、予め定める第 2方向、本実施の形態 では前記第 1方向に直交する方向に延びている。第 1光透過パターン 25aおよび第 2 光透過パターン 25bは、略六角形状である。本実施の形態において、略六角形状は 、六角形状を含む。
次にレーザカ卩ェ装置 20によって、ステージ 28に載置される半導体素子 27の半導 体膜 37を結晶化する工程について、図 1〜図 3を参照して説明する。半導体素子 27 の下地膜 36上の半導体膜 37の延設方向、図 2では矢符 Eで示す方向に沿って結晶
領域を形成するにあたり、まず結晶化工程において、半導体膜 37の矢符 Fで示す領 域 (以下「領域 F」 t 、う場合がある)以外の領域をマスキングし、エキシマレーザ発振 器 21から発せられるレーザ光 31を半導体膜 37の領域 Fに照射することによって半導 体膜 37に熱を誘導する。これによつて領域 Fに照射されたレーザ光 31のエネルギが 熱エネルギに変換されて、半導体膜 37の領域 Fに熱を誘導することができるとともに 、半導体膜 37をその厚み方向にわたって溶融することができる。領域 Fが溶融されて いる半導体膜 37を冷却することによって凝固させて結晶化する。
そして移動工程において、制御部 29がステージ 28を駆動制御することによって、ス テージ 28を第 1移動方向 X—方に所定の距離だけ移動させる。ステージ 28を移動さ せることによって、ステージ 28上に載置される半導体素子 27を、第 1移動方向 X—方 に所定の距離だけ移動させることができる。これによつて、投影マスク 25に形成され る複数の第 1および第 2光透過パターン 25a, 25bを透過したレーザ光 31が半導体 素子 27の半導体膜 37の厚み方向一表面部に照射される新たな領域は、第 1移動方 向 X—方に所定の距離だけ移動した領域となる。前記新たな領域は、移動前の領域 と一部分が重複して 、る。ステージ 28を第 1移動方向 X—方に移動させるときの前記 所定の距離は、投影マスク 25の第 1〜第 4ブロック BA〜BDの短手方向寸法 Wであ る。
図 4は、結晶化工程で形成される結晶 40の状態を模式的に示す図である。図 4で は、理解を容易にするために、ステージ 28を予め定める基準位置力も移動させない 状態で、前記投影マスク 25の第 1光透過パターン 25aを透過したレーザ光を半導体 膜 37の厚み方向一表面部に照射することによって形成される結晶 40の状態を示し ている。結晶 40の形状は、第 1光透過パターン 25aの形状と同一の形状、具体的に は六角形状であり、半導体膜 37の厚み方向一方から見て、結晶 40の延び方向に直 交する方向(以下、「結晶の幅方向」という場合がある)の両端部から、結晶 40の幅方 向中央部に向力うようにして段階的に成長する。そして結晶 40の幅方向中央部で、 幅方向一方側から成長した結晶と幅方向他方側から成長した結晶とが衝突して、半 導体膜 37の厚み方向一方に突出する突起部 41が形成される。突起部 41は、半導 体膜 37の厚み方向一方力も見て、六角形状の前記結晶 40の第 1頂点 42および第 2
頂点 43を結ぶ線分上に形成される。さらに述べると、突起部 41は、半導体膜 37の厚 み方向一方から見て、照射領域の延び方向に平行に形成される。図 4では、照射領 域の幅方向両端部力も成長した複数の結晶同士の境界部分 44を示している。
図 5は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された 半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図である。図 6は、半 導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された半導体膜 37 に形成される薄膜トランジスタ素子 47とを示す平面図である。図 5および図 6では、理 解を容易にするために半導体膜 37に形成される結晶化領域 46の一部を示している 。本実施の形態では、ステージ 28に載置される半導体素子 27の半導体膜 37の長手 方向の参照符号として、ステージ 28の第 1移動方向と同一の参照符号「X」を付し、 半導体膜 37の短手方向の参照符号として、ステージ 28の第 2移動方向と同一の参 照符号「Y」を付して説明する。
本実施の形態では、繰返し工程において、前述の結晶化工程と移動工程とを交互 に繰返すことによって、照射対象物である半導体膜 37を結晶化する。具体的に述べ ると、繰返し工程では、光源 21から発せられ、投影マスク 25の第 1および第 2光透過 パターン 25a, 25bを透過したレーザ光 31を、照射対象物である半導体膜 37に対し て照射し、照射された領域を結晶化する結晶化工程を 4回行うとともに、ステージ 28 を第 1移動方向 X—方に、前記第 1〜第 4ブロック BA〜BDの短手方向寸法 Wに相 当する距離だけ移動させる移動工程を 3回行う。
このような繰返し工程を行うことによって、図 5および図 6に示すように、第 1光透過 パターン 25aの形状に結晶化された領域 (以下、「第 1結晶化領域」という場合がある ) 46aと、第 2光透過パターン 25bの形状に結晶化された領域 (以下、「第 2結晶化領 域」という場合がある) 46bとが、半導体膜 37の短手方向 Yに、連続的に交互に屈曲 した波形状に並ぶ結晶化領域 46が形成される。また結晶化領域 46は、第 1結晶化 領域 46aおよび第 2結晶化領域 46bが延在する第 1延在方向に垂直な方向(以下、「 第 2延在方向」という場合がある)に関して、第 2延在方向一方に突出する凸部分の 山と山とがー致し、第 2延在方向他方に突出する凸部分の谷と谷とがー致するような 形状に形成される。
図 5では、結晶化領域 46が形成された半導体膜 37の長手方向 X—方カゝら他方に 向かうにつれて、ソース S、ゲート Gおよびドレイン Dの順に並ぶように、前記半導体 膜 37に薄膜トランジスタ素子 (以下、「TFT素子」 ヽぅ場合がある) 47を形成した状 態を示している。図 6では、結晶化領域 46が形成された半導体膜 37の短手方向 Y— 方から他方に向力うにつれて、ドレイン D、ゲート Gおよびソース Sの順に並ぶように、 前記半導体膜 37に TFT素子 47を形成した状態を示している。以下の実施の形態の 説明において、半導体膜 37の長手方向 X—方力も他方に向かうにつれて、ソース S 、ゲート Gおよびドレイン Dの順に並ぶように、半導体膜 37に形成される TFT素子 47 の配設方向を第 1配設方向と称し、半導体膜 37の短手方向 Y—方から他方に向かう につれて、ドレイン D、ゲート Gおよびソース Sの順に並ぶように、半導体膜 37に形成 される TFT素子 47の配設方向を第 2配設方向と称する。
ここで、第 1および第 2光透過パターン 25a, 25bの延び方向の長さ寸法、つまり図 4および図 5に示すように、第 1および第 2光透過パターン 25bの形状のレーザ光が 照射されて形成された結晶 40の延び方向一端部 P1から延び方向他端部 P2までの 長さ寸法を aとし、図 5に示すように TFT素子 47のチャンネル長をしとする。このとき、 半導体膜 37に対して第 1配設方向に配設される TFT素子 47のチャンネル部分と、 第 2配設方向に配設される TFT素子 47のチャンネル部分とのそれぞれに含まれる 結晶化領域 46の形状が完全に同一になるようにするためには、前記長さ寸法 aとチ ヤンネル長 Lとの大小関係力 以下に示す式(2)を満足すればよい。つまり、「2」の 平方根を「2」で除した値に、チャンネル長 Lを乗じた値よりも、長さ寸法 aが小さくなる ように、長さ寸法 aおよびチャンネル長 Lが規定される。
(2 X a) <L X 2
より、
a<L X (^2/2) =L X (3/4) · '· (2)
前述のように本実施の形態によれば、照射対象物である半導体膜 37を結晶化させ るべき複数の方向に対し、前記第 1軸線および第 2軸線を含む平面内において、第 1 軸線と第 2軸線との交点を中心として第 2軸線から予め定める周方向一方に 45度傾 斜した第 1方向に延びる複数の第 1光透過パターン 25aと、前記平面内において前
記 45度傾斜した第 1方向に直交する第 2方向に延びる複数の第 2光透過パターン 2 5bとが形成される投影マスク 25に光を照射し、前記投影マスク 25に形成される第 1 および第 2光透過パターン 25a, 25bを透過したレーザ光を半導体膜 37に照射する ことによって、第 1および第 2光透過パターン 25a, 25bの形状のレーザ光が照射され た半導体膜 37を溶融し、均一に結晶化させることができる。
このように均一に結晶化された半導体膜 37に、たとえば複数の TFT素子 47を形成 するとき、半導体膜 37に対する一方の TFT素子 47の配設方向が第 1配設方向、他 方の TFT素子 47の配設方向が第 2配設方向というように、 TFT素子 47の配設方向 が異なる場合でも、各配設方向に配設される各 TFT素子 47のチャンネル部分に含 まれる結晶化領域の形状を同一にすることができる。換言すると、結晶化領域 46が 形成される半導体膜 37に対する複数の TFT素子 47の配設方向が第 1配設方向お よび第 2配設方向の 、ずれの場合であつても、結晶の成長方向に対する複数の TF T素子 47のソース Sからドレイン Dに流れる電流の方向を同一にすることができる。こ れによって半導体膜 37に形成する複数の TFT素子 47の電気的特性、具体的には スイッチング特性を同一にすることができる。換言すれば、複数の TFT素子 47のスィ ツチング特性を均一にすることができる。
また本実施の形態によれば、第 1および第 2光透過パターン 25a, 25bの延び方向 の長さ寸法 aを、 TFT素子 47のチャンネル長 Lの 3Z4未満にすることによって、換言 すれば前記延び方向の長さ寸法 aおよび TFT素子 47のチャンネル長 Lの値として、 式 (2)を満足する値を選ぶことによって、前記第 1配設方向に配設される TFT素子 4 7のチャンネル部分と、第 2配設方向に配設される TFT素子 47のチャンネル部分と のそれぞれに含まれる結晶化領域 46の形状を完全に同一にすることができる。 したがって半導体膜 37に対する一方の TFT素子 47の配設方向と他方の TFT素 子 47の配設方向とが異なる場合でも、結晶の成長方向に対する複数の TFT素子 47 のソース Sからドレイン Dに流れる電流の方向を確実に同一にすることができる。これ によって複数の TFT素子 47の電気的特性、具体的にはスイッチング特性を確実に 同一にすることができる。換言すれば、複数の TFT素子 47のスイッチング特性を確 実に均一にすることができる。
図 7は、投影マスクに形成される光透過パターン 49を示す図である。図 8は、図 7に 示す光透過パターン 49が形成される投影マスクを透過したレーザ光を照射して形成 した結晶 50の状態を示す図である。図 9は、投影マスク 25に形成される第 1光透過 パターン 25aおよび第 2光透過パターン 25bを示す図である。図 10は、図 9に示す第 1および第 2光透過パターン 25a, 25bが形成される投影マスク 25を透過したレーザ 光を照射して形成した結晶 51の状態を示す図である。
図 7に示すように、第 1光透過パターン 25aと第 2光透過パターン 25bとが連結して 略 V字状に形成された光透過パターン 49が形成される投影マスクを介して、照射対 象物である半導体膜 37にレーザ光を照射した場合を想定する。本実施の形態にお いて、略 V字状は、 V字状を含む。半導体膜 37における光透過パターン 49の形状の レーザ光が照射されて形成された結晶 50のうち、半導体膜 37の厚み方向一方から 見た結晶 50の屈曲部 50a以外の部分に形成される突起部 41の形成方向 S1は、結 晶 50の延び方向に平行になるけれども、半導体膜 37の厚み方向一方から見た結晶 50の屈曲部 50aに形成される突起部 41の形成方向 S2は、結晶 50の延び方向に対 して平行にならない。換言すると結晶 50の延び方向一端部、つまり前記結晶 50の屈 曲部 50aにおける結晶の成長方向と、結晶 50の延び方向一端部よりも延び方向他 端部側の部分、つまり前記結晶 50の屈曲部 50a以外の部分における結晶の成長方 向とが異なる。
このように結晶の成長方向が異なって結晶化された半導体膜 37に、複数の TFT素 子 47を形成するとき、半導体膜 37に対する一方の TFT素子 47の配設方向と他方の TFT素子 47の配設方向とが異なると、結晶の成長方向に対する複数の TFT素子 4 7のソース力 ドレインに流れる電流の方向にばらつきが生じてしまう。
具体的に述べると、 TFT素子 47のソース力 ドレインに流れる電流の方向が結晶 の成長方向に平行、つまり前記電流の方向が突起部 41に対して垂直な方向である 場合には、 TFT素子 47の電気的特性は良好となるが、前記電流の方向が結晶の成 長方向に垂直、つまり前記電流の方向が突起部 41に対して平行な方向である場合 には、 TFT素子 47の電気的特性が悪ィ匕してしまう。したがって前述のように不均一 に結晶化された半導体膜 37に TFT素子 47を形成すると、 TFT素子 47の配設方向
によっては、 TFT素子 47の電気的特性、具体的にはスイッチング特性が不均一にな つてしまう場合がある。
そこで本実施の形態では、図 9に示すように、第 1および第 2光透過パターン 25a, 25bが互いに連結しな 、態様で形成される投影マスク 25を用いて、照射対象物であ る半導体膜 37にレーザ光を照射する。これによつて第 1および第 2光透過パターン 2 5a, 25bの形状のレーザ光が照射されて形成された結晶 51のうち、半導体膜 37の 厚み方向一方から見た、第 1光透過パターン 25aの形状のレーザ光と第 2光透過パ ターン 25bの形状のレーザ光との重畳部 51a以外の部分に形成される突起部 41の 形成方向 T1は、結晶 51の延び方向に平行になる。
また半導体膜 37の厚み方向一方から見た前記重畳部 51aに形成される突起部 41 の形成方向 T2も、結晶 51の延び方向に平行になる。換言すると、結晶 51の延び方 向一端部、つまり前記重畳部 51aにおける結晶の成長方向と、結晶 51の延び方向 一端部よりも延び方向他端部側の部分、つまり前記重畳部 51a以外の部分における 結晶の成長方向とが同一になる。
したがって半導体膜 37に複数の TFT素子 47を形成するとき、半導体膜 37に対す る一方の TFT素子 47の配設方向と他方の TFT素子 47の配設方向とが異なる場合 でも、結晶の成長方向に対する複数の TFT素子 47のソースからドレインに流れる電 流の方向を同一にすることができる。これによつて複数の TFT素子 47の電気的特性 、具体的にはスイッチング特性を確実に同一にすることができる。換言すれば、複数 の TFT素子 47のスイッチング特性を確実に均一にすることができる。
また本実施の形態によれば、第 1および第 2光透過パターン 25a, 25bは、各延び 方向の両端部が、投影マスク 25の厚み方向に見て先細状に形成される。したがって 長方形状などのように先細状に形成されない光透過パターンとは異なり、第 1および 第 2光透過パターン 25a, 25bの形状のレーザ光が照射された半導体膜 37の照射 領域で、延び方向および半導体膜 37の厚み方向に垂直な方向の両端部力 成長 する結晶が衝突してできる突起部 41が、延び方向の両端部の先細状の部分にまで 形成される。
これによつて半導体膜 37に複数の TFT素子 47を形成するとき、複数の TFT素子 4
7が形成される半導体膜 37をより均一に結晶化することができる。したがって半導体 膜 37に対する一方の TFT素子 47の配設方向と他方の TFT素子 47の配設方向とが 異なる場合でも、結晶の成長方向に対する複数の TFT素子 47にそれぞれ流れる電 流の方向を同一にすることができる。それ故、半導体膜 37に形成される複数の TFT 素子 47の電気的特性、具体的にはスイッチング特性を確実に同一にすることができ る。換言すれば、複数の TFT素子 47のスイッチング特性を確実に均一にすることが できる。
次に本発明の第 2の実施の形態であるレーザカ卩ェ装置およびレーザカ卩ェ方法に ついて説明する。図 11は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図 である。図 12は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成 された半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図である。図 1 1および図 12では、理解を容易にするために半導体膜 37の一部に形成される結晶 化領域 46の一部を示している。本実施の形態では、ステージ 28に載置される半導 体素子 27の半導体膜 37の長手方向の参照符号として、ステージ 28の第 1移動方向 と同一の参照符号「X」を付し、半導体膜 37の短手方向の参照符号として、ステージ 28の第 2移動方向と同一の参照符号「Y」を付して説明する。
本実施の形態では、第 1の実施の形態の投影マスク 25に代えて、以下に説明する 投影マスクを用いて照射対象物である半導体膜 37を結晶化する。本実施の形態の 投影マスクは、第 1の実施の形態の投影マスク 25と同様に、第 1〜第 4領域の 4つの 領域に分割されている。具体的に述べると、投影マスクは、第 1領域に対応する第 1 ブロック ΒΑ、第 2領域に対応する第 2ブロック ΒΒ、第 3領域に対応する第 3ブロック Β Cおよび第 4領域に対応する第 4ブロック BDに分割されている。
第 1および第 2ブロック ΒΑ, ΒΒには、複数の第 1光透過パターン 25aが形成されて いる。複数の第 1光透過パターン 25aは、投影マスクの長手方向および短手方向の それぞれの方向に間隔をあけて形成されている。第 1光透過パターン 25aは、予め定 める第 1方向、本実施の形態では投影マスクの長手方向に沿って延びる第 1軸線と、 投影マスクの短手方向に沿って延びる第 2軸線とを含む平面内において、第 1軸線と
第 2軸線との交点を中心として第 2軸線から予め定める周方向一方に 15度傾斜した 方向に延びている。ここで、前記周方向一方とは、投影マスクのレーザ光の入射側平 面において、第 1軸線と第 2軸線との交点を中心として反時計まわりに角変位する方 向をいう。
第 3および第 4ブロック BC, BDには、複数の第 2光透過パターン 25bが形成されて いる。複数の第 2光透過パターン 25bは、投影マスクの長手方向および短手方向の それぞれの方向に間隔をあけて形成されている。第 2光透過パターン 25bは、予め 定める第 2方向、本実施の形態では前記第 1および第 2軸線を含む平面内において 、前記第 1方向に直交する方向に延びている。第 1光透過パターン 25aおよび第 2光 透過パターン 25bは、略六角形状である。本実施の形態において、略六角形状は、 六角形状を含む。
本実施の形態では、第 1の実施の形態と同様に、光源 21から発せられ、投影マスク 25の第 1および第 2光透過パターン 25a, 25bを透過したレーザ光 31を照射対象物 である半導体膜 37に対して照射し、照射された領域を結晶化する結晶化工程を 4回 行うとともに、ステージ 28を第 1移動方向 X—方に、前記第 1〜第 4ブロック BA〜BD の短手方向寸法 Wに相当する距離だけ移動させる移動工程を 3回行う。
このような繰返し工程を行うことによって、図 11および図 12に示すように、第 1光透 過パターン 25aの形状に結晶化された領域 (以下、「第 1結晶化領域」という場合があ る) 46aと、第 2光透過パターン 25bの形状に結晶化された領域 (以下、「第 2結晶化 領域」という場合がある) 46bとが連続的に交互に屈曲した波形状に並ぶ結晶化領域 46が形成される。また結晶化領域 46は、第 1結晶化領域 46aおよび第 2結晶化領域 46bが延在する第 1延在方向に垂直な方向(以下、「第 2延在方向」という場合がある )に関して、第 2延在方向一方に突出する凸部分の山と山とがー致し、第 2延在方向 他方に突出する凸部分の谷と谷とがー致するような形状に形成される。
図 11では、結晶化領域 46が形成された半導体膜 37の長手方向 X—方力も他方に 向かうにつれて、ソース S、ゲート Gおよびドレイン Dの順に並ぶように、前記半導体 膜 37に TFT素子 47を形成した状態を示している。図 12では、結晶化領域 46が形 成された半導体膜 37の短手方向 Y—方力も他方に向かうにつれて、ドレイン D、ゲー
ト Gおよびソース Sの順に並ぶように、前記半導体膜 37に TFT素子 47を形成した状 態を示している。
前述のように本実施の形態によれば、前記第 1軸線および第 2軸線を含む平面内 において、第 1軸線と第 2軸線との交点を中心として第 2軸線力 予め定める周方向 一方に 15度傾斜した第 1方向に延びる複数の第 1光透過パターン 25aと、前記平面 内において前記 15度傾斜した第 1方向に直交する第 2方向に延びる複数の第 2光 透過パターン 25bとが形成される投影マスク 25を用いて、照射対象物である半導体 膜 37に光を照射する。つまり、前記投影マスク 25に形成される第 1および第 2光透過 パターン 25a, 25bを透過したレーザ光を半導体膜 37に照射することによって、第 1 および第 2光透過パターン 25a, 25bの形状のレーザ光が照射された半導体膜 37を 溶融し、均一に結晶化させることができる。
このように均一に結晶化された半導体膜 37に、たとえば複数の TFT素子 47を形成 するとき、半導体膜 37に対する一方の TFT素子 47の配設方向が第 1配設方向、他 方の TFT素子 47の配設方向が第 2配設方向というように、 TFT素子 47の配設方向 が異なる場合でも、各配設方向に配設される各 TFT素子 47のチャンネル部分に含 まれる結晶化領域 46の形状を同一にすることができる。換言すると、結晶化領域 46 が形成される半導体膜 37に対する複数の TFT素子 47の配設方向が第 1配設方向 および第 2配設方向の 、ずれの場合であつても、結晶の成長方向に対する複数の T FT素子 47のソース Sからドレイン Dに流れる電流の方向を同一にすることができる。 これによつて半導体膜 37に形成する複数の TFT素子 47の電気的特性、具体的に はスイッチング特性を同一、つまり複数の TFT素子 47のスイッチング特性を均一に することができる。
次に本発明の第 3の実施の形態であるレーザカ卩ェ装置およびレーザカ卩ェ方法に ついて説明する。図 13は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成された半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図 である。図 14は、半導体膜 37に形成される結晶化領域 46と、結晶化領域 46が形成 された半導体膜 37に形成される薄膜トランジスタ素子 47とを示す平面図である。図 1 3および図 14では、理解を容易にするために半導体膜 37の一部に形成される結晶
化領域 46の一部を示している。本実施の形態では、ステージ 28に載置される半導 体素子 27の半導体膜 37の長手方向の参照符号として、ステージ 28の第 1移動方向 と同一の参照符号「X」を付し、半導体膜 37の短手方向の参照符号として、ステージ 28の第 2移動方向と同一の参照符号「Y」を付して説明する。
本実施の形態では、第 1の実施の形態の投影マスク 25に代えて、以下に説明する 投影マスクを用いて照射対象物である半導体膜 37を結晶化する。本実施の形態の 投影マスクは、第 1の実施の形態の投影マスク 25と同様に、第 1〜第 4領域の 4つの 領域に分割されている。具体的に述べると、投影マスクは、第 1領域に対応する第 1 ブロック ΒΑ、第 2領域に対応する第 2ブロック ΒΒ、第 3領域に対応する第 3ブロック Β Cおよび第 4領域に対応する第 4ブロック BDに分割されている。
第 1および第 2ブロック ΒΑ, ΒΒには、複数の第 1光透過パターン 25aが形成されて いる。複数の第 1光透過パターン 25aは、投影マスクの長手方向および短手方向の それぞれの方向に間隔をあけて形成されている。第 1光透過パターン 25aは、予め定 める第 1方向、本実施の形態では投影マスクの長手方向に沿って延びる第 1軸線と、 投影マスクの短手方向に沿って延びる第 2軸線とを含む平面内において、第 1軸線と 第 2軸線との交点を中心として第 2軸線から予め定める周方向一方に 60度傾斜した 方向に延びている。ここで、前記周方向一方とは、投影マスクのレーザ光の入射側平 面において、第 1軸線と第 2軸線との交点を中心として反時計まわりに角変位する方 向をいう。
第 3および第 4ブロック BC, BDには、複数の第 2光透過パターン 25bが形成されて いる。複数の第 2光透過パターン 25bは、投影マスクの長手方向および短手方向の それぞれの方向に間隔をあけて形成されている。第 2光透過パターン 25bは、予め 定める第 2方向、本実施の形態では前記第 1および第 2軸線を含む平面内において 、前記第 1方向に直交する方向に延びている。第 1光透過パターン 25aおよび第 2光 透過パターン 25bは、略六角形状である。
本実施の形態では、第 1の実施の形態と同様に、光源 21から発せられ、投影マスク 25の第 1および第 2光透過パターン 25a, 25bを透過したレーザ光 31を照射対象物 である半導体膜 37に対して照射し、照射された領域を結晶化する結晶化工程を 4回
行うとともに、ステージ 28を第 1移動方向 X—方に、前記第 1〜第 4ブロック BA〜BD の短手方向寸法 Wに相当する距離だけ移動させる移動工程を 3回行う。このような繰 返し工程を行うことによって、図 13および図 14に示すように、第 1光透過パターン 25 aの形状に結晶化された第 1結晶化領域 46aと、第 2光透過パターン 25bの形状に結 晶化された第 2結晶化領域 46bとが連続的に交互に屈曲した波形状に並ぶ結晶化 領域 46が形成される。また結晶化領域 46は、第 1結晶化領域 46aおよび第 2結晶化 領域 46bが延在する第 1延在方向に垂直な第 2延在方向に関して、第 2延在方向一 方に突出する凸部分の山と山とがー致し、第 2延在方向他方に突出する凸部分の谷 と谷とがー致するような形状に形成される。
図 13では、結晶化領域 46が形成された半導体膜 37の長手方向 X—方力も他方に 向かうにつれて、ソース S、ゲート Gおよびドレイン Dの順に並ぶように、前記半導体 膜 37に TFT素子 47を形成した状態を示している。図 14では、結晶化領域 46が形 成された半導体膜 37の短手方向 Y—方力も他方に向かうにつれて、ドレイン D、ゲー ト Gおよびソース Sの順に並ぶように、前記半導体膜 37に TFT素子 47を形成した状 態を示している。
前述のように本実施の形態によれば、前記第 1軸線および第 2軸線を含む平面内 において、第 1軸線と第 2軸線との交点を中心として第 2軸線力 予め定める周方向 一方に 60度傾斜した第 1方向に延びる複数の第 1光透過パターン 25aと、前記平面 内にお 1、て前記 60度傾斜した第 1方向に直交する第 2方向に延びる複数の第 2光 透過パターン 25bとが形成される投影マスク 25を用いて、照射対象物である半導体 膜 37に光を照射する。つまり、前記投影マスク 25に形成される第 1および第 2光透過 パターン 25a, 25bを透過したレーザ光を半導体膜 37に照射することによって、第 1 および第 2光透過パターン 25a, 25bの形状のレーザ光が照射された半導体膜 37を 溶融し、均一に結晶化させることができる。
このように均一に結晶化された半導体膜 37に、たとえば複数の TFT素子 47を形成 するとき、半導体膜 37に対する一方の TFT素子 47の配設方向が第 1配設方向、他 方の TFT素子 47の配設方向が第 2配設方向というように、 TFT素子 47の配設方向 が異なる場合でも、各配設方向に配設される各 TFT素子 47のチャンネル部分に含
まれる結晶化領域の形状を同一にすることができる。換言すると、結晶化領域 46が 形成される半導体膜 37に対する複数の TFT素子 47の配設方向が第 1配設方向お よび第 2配設方向の 、ずれの場合であつても、結晶の成長方向に対する複数の TF T素子 47のソース Sからドレイン Dに流れる電流の方向を同一にすることができる。 これによつて半導体膜 37に形成する複数の TFT素子 47の電気的特性、具体的に はスイッチング特性を同一、つまり複数の TFT素子 47のスイッチング特性を均一に することができる。
図 15は、本発明の第 4の実施の形態であるレーザ加工装置 60の構成を示す図で ある。本発明の第 4の実施の形態であるレーザカ卩ェ方法は、レーザ加工装置 60によ つて実施される。レーザカ卩ェ装置 60は、第 1の実施の形態のレーザカ卩ェ装置 20と類 似しているので、対応する部分については同一の参照符を付して説明を省略する。 レーザ加工装置 60は、第 1光源 61、可変減衰器 22、ミラー 23、可変焦点視野レン ズ 24、投影マスク 25、結像レンズ 26、第 2光源 62、均一照射光学系 63、ステージ 2 8および制御部 29を含んで構成される。
第 1光源 61は、紫外域の波長、具体的には 308nmの第 1レーザ光 65を発すること が可能なエキシマレーザ発振器によって実現される。第 2光源 62は、可視域から赤 外域までの波長の第 2レーザ光 66を発することが可能なレーザ発振器によって実現 される。具体的に述べると、第 2光源 62は、波長が 534nmの第 2レーザ光 66を発す ることが可能な YAG高調波レーザ発振器、波長が 1064nmの第 2レーザ光 66を発 することが可能な YAGレーザ発振器および波長が 10. 6 mの第 2レーザ光 66を発 することが可能な炭酸ガスレーザ発振器によって実現される。
第 1レーザ光 65は、第 2レーザ光 66に比べて、溶融状態よりも固体状態にある半導 体膜 37への吸収率が高い。また第 1レーザ光 65は、固体状態にある半導体膜 37で あるアモルファスシリコン膜を溶融させるに足るエネルギ量を有することが好ましい。 このエネルギ量は、半導体膜 37の材質の種類、膜厚および結晶化領域の面積など の各条件によって変化し、一義的に定めることはできない。したがって半導体膜 37の 前記各条件に応じて適当なエネルギ量を有する第 1レーザ光 65を用いることが望ま しい。具体的には、半導体膜 37であるアモルファスシリコン膜を、全膜厚において融
点以上の温度に加熱することができるエネルギ量を有する第 1レーザ光 65を用いる ことが推奨される。このことは、アモルファスシリコン膜に代えて他の種類の半導体膜 37を結晶化する場合も同様である。
第 2レーザ光 66は、第 1レーザ光 65に比べて、固体状態よりも溶融状態にある半導 体膜 37への吸収率が高い。第 2レーザ光 66は、固体状態にある半導体膜 37を溶融 させるに足るエネルギ量未満であることが好ましい。このエネルギ量は、半導体膜 37 の材質の種類、膜厚および結晶化領域の面積などの各条件によって変化し、一義的 に定めることはできない。したがって半導体膜 37の前記条件に応じて適当なェネル ギ量を有する第 2レーザ光 66を用いることが望ましい。具体的には、半導体膜 37を 融点以上の温度に加熱するに足るエネルギ量未満である第 2レーザ光 66を用いるこ とが推奨される。このことは、アモルファスシリコン膜に代えて他の種類の半導体膜 37 に適用する場合も同様である。
制御部 10からの制御信号に従って第 1光源 61から発せられる第 1レーザ光 65は、 可変減衰器 22、ミラー 23、可変焦点視野レンズ 24、投影マスク 25、結像レンズ 26を 経由して、ステージ 28上に載置される半導体素子 27の半導体膜 37の厚み方向一 表面部に照射される。第 2光源 62から発せられる第 2レーザ光 66は、第 2レーザ光を 照射対象物である半導体膜 37に均一に照射させるための均一照射光学系 63およ びミラー 23を経由して、ステージ 28に載置される半導体素子 27の半導体膜 37の厚 み方向一表面部に照射される。レーザ加工装置 60では、第 1レーザ光 65を、半導体 膜 37の厚み方向一表面部に対して垂直な方向力も入射させることができるとともに、 第 2レーザ光 66を、半導体膜 37の厚み方向一表面部に対して斜め方向から入射さ せることができる。
第 1光源 61は、第 1レーザ光 65を発することが可能で、かつ半導体膜 37を溶融す ることが可能であるレーザ発振器であればよぐ特にエキシマレーザ発振器に限定さ れない。第 1光源 61は、紫外域の波長のレーザ光を発することが可能なレーザ発振 器、たとえばエキシマレーザ発振器および YAGレーザ発振器に代表される固体レー ザ発振器であることが望ましい。また第 1光源 61を構成するレーザ発振器としては、 パルス状のレーザ光を発することが可能で、波長が 308nmの第 1レーザ光 65を発す
ることが可能なエキシマレーザ発振器が特に好ま ヽ。第 2光源 62を構成する発振 器としては、溶融状態の半導体膜 37に吸収される波長の第 2レーザ光 66を発するこ とができるレーザ発振器であることが望ま 、。
図 16は、第 1レーザ光 65および第 2レーザ光 66を発する時間と出力との関係を示 すグラフである。グラフの横軸は時間を表し、グラフの縦軸は第 1および第 2レーザ光 65, 66の出力、具体的には第 1および第 2レーザ光 65, 66の単位面積あたりのエネ ルギ量を表す。図 16に破線で示す曲線 VIは、エキシマレーザ発振器などの第 1光 源 61から発せられる第 1レーザ光 65の出力特性を表している。図 16に実線で示す 曲線 V2は、炭酸ガスレーザ発振器などの第 2光源 62から発せられる第 2レーザ光 6 6の出力特性を表している。第 1レーザ光 65の出力、換言すれば単位面積あたりの エネルギ量は、たとえば 200mjZcm2以上 lOOOmjZcm2未満である。第 2レーザ光 66の出力、換言すれば単位面積あたりのエネルギ量は、たとえば lOOmjZcm2以 上 lOOOiujZcm2未満である。
本実施の形態では、図 16に示すように、第 2レーザ光 66は、時刻 tOから時刻 t3に わたって第 2光源 62から発せられ、第 1レーザ光 65は、時刻 tOの後の時刻 tlから時 刻 t3より前の時刻 t2にわたつて第 1光源 61から発せられる。第 1レーザ光 65が発せ られている時間は、第 2レーザ光 66が発せられている時間に比べて短ぐ第 2レーザ 光 66が発せられている時間の 1Z100以下、具体的には第 2レーザ光 66が発せられ ている時間の 1Z1000程度である。さらに具体的に述べると、時刻 tOから時刻 t3ま での時間は、たとえば 100 sであり、時刻 tlから時刻 t2までの時間は、たとえば 10 0nsである。
本実施の形態では、曲線 VIで示すように、第 1レーザ光 65の出力の立上がりおよ び立下りは比較的急峻であり、時刻 tlの経過後に比較的短時間で出力が最大値に 到達し、その後に比較的短時間で出力を低下させるようにしている。また曲線 V2で 示すように、時刻 tOの経過後に比較的短時間で出力が最大値に到達し、時刻 t2が 経過するまで出力を最大値に保持する。時刻 t2の経過後の第 2レーザ光 66の出力 の立下りは、立上がりに比べて緩やかであり、時刻 t3が経過するまで徐々に出力を 低下させるようにしている。第 1レーザ光 65および第 2レーザ光 66を発する時間と出
力との関係は、図 16のグラフに示す関係に限定されないが、図 16のグラフに示す関 係と同様の関係にあることが好ましい。時刻 tlから時刻 t3までの間において、半導体 膜 37であるアモルファスシリコン膜は溶融状態にある。
本実施の形態において、照射対象物である半導体膜 37に対して時刻 tOから時刻 t 1までの間、および時刻 t2から時刻 t3までの間に第 2レーザ光 66を照射する段階は 、結晶化工程における第 1照射段階に相当する。また照射対象物である半導体膜 37 に対して時刻 tlから時刻 t2までの間に、第 1レーザ光 65および第 2レーザ光 66を照 射する段階は、結晶化工程における第 2照射段階に相当する。
次にレーザカ卩ェ装置 60によって、ステージ 28に載置される半導体素子 27の半導 体膜 37を結晶化する工程について説明する。まず結晶化工程において、図 16の曲 線 VIに示すようなタイミングで、具体的には時刻 tlから時刻 t2までの間に第 1光源 6 1から発せられる第 1レーザ光 65を、投影マスク 25に形成される第 1および第 2光透 過パターン 25a, 25bを透過して、ステージ 28に載置される半導体素子 27の半導体 膜 37の厚み方向一表面部に画される第 1領域に照射する。また図 16の曲線 V2に示 すようなタイミングで、具体的には時刻 tOから時刻 t3までの間に第 2光源 62から発せ られる第 2レーザ光 66を、前記半導体膜 37の厚み方向一表面部に照射する。第 1お よび第 2レーザ光 65, 66の照射によって、前記第 1領域の半導体膜 37を溶融し、溶 融した第 1領域の半導体膜 37を凝固させて結晶化する。
次に移動工程において、制御部 29がステージ 28を駆動制御することによって、ス テージ 28を第 1移動方向 X—方に所定の距離だけ移動させる。ステージ 28を第 1移 動方向 X—方に移動させることによって、ステージ 28上に載置される半導体素子 27 を、第 1移動方向 X—方に所定の距離だけ移動させることができる。これによつて、投 影マスク 25に形成される複数の第 1および第 2光透過パターン 25a, 25bを透過した 第 1レーザ光 65が半導体素子 27の半導体膜 37の厚み方向一表面部に照射される 新たな領域は、第 1移動方向 X—方に所定の距離だけ移動した領域となる。前記新 たな領域は、移動前の領域と一部分が重畳している。ステージ 28を第 1移動方向 X 一方に移動させるときの前記所定の距離は、投影マスク 25の第 1〜第 4ブロック BA 〜: BDの短手方向寸法 Wである。
移動工程において所定の距離だけ移動した後は、再度結晶化工程において、図 1 6の曲線 VIに示すようなタイミングで第 1光源 61から発せられる第 1レーザ光 65を、 投影マスク 25に形成される第 1および第 2光透過パターン 25a, 25bを透過して、ス テージ 28に載置される半導体素子 27の半導体膜 37の厚み方向一表面部に画され る第 2領域に照射する。第 2領域は、前記第 1領域と一部分が重畳している。また第 1 回目の結晶化工程と同様に、図 16の曲線 V2に示すようなタイミングで第 2光源 62か ら発せられる第 2レーザ光 66も、前記半導体膜 37の厚み方向一表面部に照射する 。第 1および第 2レーザ光 65, 66の照射によって、前記第 2領域の半導体膜 37を溶 融し、溶融した第 2領域の半導体膜 37を凝固させて結晶化する。さらに繰返し工程 において、前記半導体膜 37の結晶化される領域が所定の大きさに達するまで、前述 の結晶化工程と移動工程とを交互に行う。これによつて、たとえば前述の図 5、図 6お よび図 11〜図 14に示す結晶化領域 46を形成することができる。
前述のように本実施の形態によれば、レーザカ卩ェ装置 60を用いて、照射対象物で ある半導体膜 37に第 1および第 2レーザ光 65, 66を照射することによって、半導体 膜 37を均一に結晶化し、その均一に結晶化した半導体膜 37に TFT素子 47が形成 される。したがって均一に結晶化された半導体膜 37に複数の TFT素子 47を形成す るとき、半導体膜 37に対する一方の TFT素子 47の配設方向と他方の TFT素子 47 の配設方向とが異なる場合でも、結晶の成長方向に対する複数の TFT素子 47のソ ース S力 ドレイン Dに流れる電流の方向を同一にすることができる。
これによつて半導体膜 37に形成する複数の TFT素子 47の電気的特性、具体的に はスイッチング特性を同一にすることができる。換言すれば、複数の TFT素子 47のス イッチング特性を均一にすることができる。また半導体膜 37に対する TFT素子 47の 配設方向に依らず、 TFT素子 47のスイッチング特性を均一にすることができるので、 TFT素子 47を用いた表示装置などの設計の自由度を高めることができる。
また本実施の形態によれば、溶融状態にある半導体膜 37に対して、結晶化工程に おける第 2照射段階において、第 1レーザ光 65に加えて第 2レーザ光 66を照射する ことによって、前記溶融状態の半導体膜 37の冷却速度を低下させることができる。こ れによって溶融状態の半導体膜 37が凝固するまでの時間を延長することができる。
したがって溶融状態にある半導体膜 37であるアモルファスシリコン膜が凝固すること によって形成される半導体多結晶のラテラル成長の距離を大幅に延ばすことができ る。
それ故、半導体膜 37を結晶化するにあたり、比較的大きな結晶粒に成長させること ができる。比較的大きな結晶粒に成長させることによって、結晶化された半導体膜 37 の電子移動度を比較的高くすることができ、電子移動度の比較的高 、半導体膜 37 に TFT素子 47を形成することによって、 TFT素子 47の電気的特性、具体的にはス イッチング特性を向上することができる。
前述の各実施の形態は、本発明の例示に過ぎず、発明の範囲内において構成を 変更することができる。前述の各実施の形態では、前記第 1軸線および第 2軸線を含 む平面内において、第 1軸線と第 2軸線との交点を中心として第 2軸線力 予め定め る周方向一方に 45度、 15度および 60度のうちいずれ力 1つの角度だけ傾斜した第 1方向に延びる複数の第 1光透過パターン 25aと、前記平面内において前記第 1方 向に直交する第 2方向に延びる複数の第 2光透過パターン 25bとが形成される投影 マスク 25を用いて、半導体膜 37を結晶化する場合について述べた力 投影マスク 2 5に形成される第 1および第 2光透過パターン 25a, 25bは、これらに限定されない。 本発明の他の実施の形態では、前記第 2軸線力も予め定める周方向一方に 15度 以上 30度未満の範囲、および 60度以上 75度未満の範囲の角度のうち、任意の角 度だけ傾斜した第 1方向に延びる複数の第 1光透過パターン 25aと、前記第 1軸線お よび第 2軸線を含む平面内にお 、て前記第 1方向に直交する第 2方向に延びる複数 の第 2光透過パターン 25bとが形成される投影マスクを用いてもょ 、。この場合でも前 述の各実施の形態と同様の効果、つまり照射対象物である半導体膜 37を均一に結 晶化させることができ、半導体膜 37に形成される複数の TFT素子 47のスイッチング 特性を均一にすることができる。
また前述の各実施の形態では、第 1および第 2光透過パターン 25a, 25bが形成さ れる一の投影マスク 25を備えるレーザカ卩ェ装置 20, 60を用いて照射対象物である 半導体膜 37を結晶化する場合の構成について述べたが、複数のマスク部を含む投 影マスクを備えるレーザカ卩ェ装置を用いてもよい。たとえば、第 1光透過パターンが
形成される一方のマスク部を透過したレーザ光を照射対象物に照射するとともに、第
2光透過パターンが形成される他方のマスク部を透過したレーザ光を照射対象物に 照射することによって、照射対象物である半導体膜 37を結晶化するようにしてもよい 。この場合でも、一の投影マスク 25を用いた場合と同様に、半導体膜 37を均一に結 晶化することができ、半導体膜 37に形成される複数の TFT素子 47のスイッチング特 性を均一にすることができる。
前述の各実施の形態では、投影マスク 25を用いて照射対象物である半導体膜 37 を結晶化する場合にっ ヽて述べたが、光源に対してステージ 28を相対移動させて、 照射対象物である半導体膜 37を結晶化させるべき複数の方向に対し、照射領域の 延び方向を傾斜させるようにレーザ光を照射することによって、投影マスク 25を用い ることなぐ半導体膜 37を結晶化することが可能となる。このように投影マスク 25を用 いることなく半導体膜 37を結晶化することによって、レーザ加工装置の部品点数を削 減することができるとともに、レーザ加工装置の構造を簡素化することができる。 前述の各実施の形態では、半導体膜 37としてアモルファスシリコン膜を適用した場 合について説明したが、これに限定されることなぐ非晶質のゲルマニウムおよびそ れらの合金でもよい。
本発明は、その精神または主要な特徴力 逸脱することなぐ他のいろいろな形態 で実施できる。したがって、前述の実施形態はあらゆる点で単なる例示に過ぎず、本 発明の範囲は特許請求の範囲に示すものであって、明細書本文には何ら拘束され ない。さらに、特許請求の範囲に属する変形や変更は全て本発明の範囲内のもので ある。
産業上の利用可能性
本発明によれば、照射対象物を結晶化させるべき複数の方向に対し、照射対象物 を結晶化させるための光を透過する光透過パターンの延び方向をそれぞれ傾斜させ るように投影マスクが形成される。前述のように形成される投影マスクに光を照射し、 投影マスクに形成される光透過パターンを透過した光を照射対象物に照射すること によって、光透過パターンの形状の光が照射された照射対象物を溶融し、ほぼ均一 に結晶化させることが可能となる。
このようにほぼ均一に結晶化された照射対象物に、たとえば複数の薄膜トランジス タ素子 (略称: TFT素子)を形成するとき、照射対象物に対する一方の TFT素子の 配設方向と他方の TFT素子の配設方向とが異なる場合でも、結晶の成長方向に対 する複数の TFT素子にそれぞれ流れる電流の方向をほぼ同一にすることができる。 これによつて照射対象物に形成する複数の TFT素子の電気的特性、具体的にはス イッチング特性をほぼ同一にすることができる。換言すれば、複数の TFT素子のスィ ツチング特性をほぼ均一にすることができる。
また本発明によれば、投影マスクは、照射対象物を結晶化させるべき複数の方向 に対し、照射対象物を結晶化させるための光を透過する光透過パターンの延び方向 がそれぞれ傾斜される複数のマスク部を含む。前述の複数のマスク部にそれぞれ光 を照射し、複数のマスク部に形成される光透過パターンを透過した光をそれぞれ照 射対象物に照射することによって、光透過パターンの形状の光が照射された照射対 象物を溶融し、ほぼ均一に結晶化させることが可能となる。
このようにほぼ均一に結晶化された照射対象物に、たとえば複数の薄膜トランジス タ素子 (略称: TFT素子)を形成するとき、照射対象物に対する一方の TFT素子の 配設方向と他方の TFT素子の配設方向とが異なる場合でも、結晶の成長方向に対 する複数の TFT素子にそれぞれ流れる電流の方向をほぼ同一にすることができる。 これによつて照射対象物に形成する複数の TFT素子の電気的特性、具体的にはス イッチング特性をほぼ同一にすることができる。換言すれば、複数の TFT素子のスィ ツチング特性をほぼ均一にすることができる。
また本発明によれば、光透過パターンは、予め定める第 1方向に延びる第 1光透過 パターンと、第 1方向に直交する第 2方向に延びる第 2光透過パターンとを有する。 前述のように延び方向が互いに直交する第 1および第 2光透過パターンが形成され る投影マスクに光を照射し、投影マスクに形成される第 1および第 2光透過パターン を透過した光を照射対象物に照射することによって、第 1および第 2光透過パターン の形状の光が照射された照射対象物を溶融し、均一に結晶化させることができる。 このように均一に結晶化された照射対象物に、たとえば複数の薄膜トランジスタ素 子 (略称: TFT素子)を形成するとき、照射対象物に対する一方の TFT素子の配設
方向と他方の TFT素子の配設方向とが異なる場合でも、結晶の成長方向に対する 複数の TFT素子にそれぞれ流れる電流の方向を同一にすることができる。これによ つて照射対象物に形成する複数の TFT素子の電気的特性、具体的にはスィッチン グ特性を同一にすることができる。換言すれば、複数の TFT素子のスイッチング特性 を均一にすることができる。
また本発明によれば、複数のマスク部のうち一方のマスク部には、予め定める第 1 方向に延びる第 1光透過パターンが形成され、他方のマスク部には、第 1方向に直交 する第 2方向に延びる第 2光透過パターンが形成される。複数のマスク部にそれぞれ 光を照射し、一方のマスク部に形成される第 1光透過パターンを透過した光を照射対 象物に照射するとともに、他方のマスク部に形成される第 2光透過パターンを透過し た光を照射対象物に照射することによって、第 1および第 2光透過パターンの形状の 光が照射された照射対象物を溶融し、均一に結晶化させることができる。
このように均一に結晶化された照射対象物に、たとえば複数の薄膜トランジスタ素 子 (略称: TFT素子)を形成するとき、照射対象物に対する一方の TFT素子の配設 方向と他方の TFT素子の配設方向とが異なる場合でも、結晶の成長方向に対する 複数の TFT素子にそれぞれ流れる電流の方向を同一にすることができる。これによ つて照射対象物に形成する複数の TFT素子の電気的特性、具体的にはスィッチン グ特性を同一にすることができる。換言すれば、複数の TFT素子のスイッチング特性 を均一にすることができる。
また本発明によれば、第 1光透過パターンと第 2光透過パターンとは、互いに連結 しない態様で形成される。仮に、第 1光透過パターンと第 2光透過パターンとが互い に連結する態様で形成された投影マスクを介して、照射対象物に光を照射した場合 、照射対象物における第 1および第 2光透過パターンの形状の光が照射された部分 、さらに具体的には第 1光透過パターンと第 2光透過パターンとの連結部分における 結晶の成長方向は、連結部分以外の部分における結晶の成長方向と異なる。
このように結晶の成長方向が異なって結晶化された照射対象物に、複数の薄膜トラ ンジスタ素子 (略称: TFT素子)を形成するとき、照射対象物に対する一方の TFT素 子の配設方向と他方の TFT素子の配設方向とが異なる場合では、結晶の成長方向
に対する複数の TFT素子にそれぞれ流れる電流の方向にばらつきが生じ、 TFT素 子の電気的特性、具体的にはスイッチング特性が不均一になってしまう。
これに対して本発明では、第 1および第 2光透過パターンが互いに連結しない態様 で形成される投影マスクを介して、照射対象物に光を照射することによって、第 1およ び第 2光透過パターンの形状の光が照射された部分、さらに具体的には第 1光透過 パターンと第 2光透過パターンとの形状の光の重畳部分における結晶の成長方向は 、重畳部分以外の部分における結晶の成長方向と同一になる。
したがって照射対象物に複数の TFT素子を形成するとき、一方の TFT素子の配設 方向と他方の TFT素子の配設方向が異なる場合でも、結晶の成長方向に対する複 数の TFT素子にそれぞれ流れる電流の方向を同一にすることができる。これによつ て複数の TFT素子の電気的特性、具体的にはスイッチング特性を確実に同一にす ることができる。換言すれば、複数の TFT素子のスイッチング特性を確実に均一にす ることがでさる。
また本発明によれば、第 1および第 2光透過パターンは、各延び方向の両端部が、 投影マスクの厚み方向に見て先細状に形成される。したがって長方形状などのように 先細状に形成されない光透過パターンとは異なり、第 1および第 2光透過パターンの 形状の光が照射された照射対象物の照射領域で、延び方向および照射対象物の厚 み方向に垂直な方向の両端部から成長する結晶が衝突してできる突起部が、前記 照射領域の延び方向の両端部にまで形成される。これによつて照射対象物に複数の TFT素子を形成するとき、複数の TFT素子が形成される照射対象物をより均一に結 晶ィ匕することができる。
したがって照射対象物に対する一方の TFT素子の配設方向と他方の TFT素子の 配設方向が異なる場合でも、結晶の成長方向に対する複数の TFT素子にそれぞれ 流れる電流の方向を同一にすることができる。それ故、複数の TFT素子の電気的特 性、具体的にはスイッチング特性を確実に同一にすることができる。換言すれば、複 数の TFT素子のスイッチング特性を確実に均一にすることができる。
また本発明によれば、第 1および第 2光透過パターンの延び方向の長さ寸法を、照 射対象物に形成される薄膜トランジスタ素子のチャンネル長の 4分の 3未満にするこ
とによって、照射対象物において第 1光透過パターンおよび第 2光透過パターンの形 状の光が照射されて結晶化された部分が、薄膜膜トランジスタ (略称: TFT素子)の チャンネル部分に含まれるように、照射対象物に TFT素子を形成することができる。 したがって照射対象物に対する一方の TFT素子の配設方向と他方の TFT素子の 配設方向が異なる場合でも、各 TFT素子のチャンネル部分の結晶化形状を同一に することができ、結晶の成長方向に対する複数の TFT素子の各チャンネルを流れる 電流の方向を同一にすることができる。これによつて複数の TFT素子の電気的特性 、具体的にはスイッチング特性を確実に同一にすることができる。換言すれば、複数 の TFT素子のスイッチング特性を確実に均一にすることができる。
また本発明によれば、結晶化工程において、照射対象物を結晶化させるべき複数 の方向に対し、照射領域の延び方向を傾斜させるように、照射対象物である非晶質 材料力も成る層にレーザ光を照射することによって、前記非晶質材料を均一に結晶 化させることができる。このように均一に結晶化された非晶質材料力 成る層(以下、「 非晶質材料層」という場合がある)に、たとえば複数の薄膜トランジスタ素子 (略称: T FT素子)を形成するとき、非晶質材料層に対する一方の TFT素子の配設方向と他 方の TFT素子の配設方向とが異なる場合でも、結晶の成長方向に対する複数の TF T素子にそれぞれ流れる電流の方向を同一にすることができる。これによつて非晶質 材料層に形成する複数の TFT素子の電気的特性、具体的にはスイッチング特性を 同一にすることができる。換言すれば、複数の TFT素子のスイッチング特性を均一に することができる。
また本発明によれば、移動工程において、照射対象物を、レーザ光を発する光源 に対して相対移動させることによって、照射対象物の所望の領域にレーザ光を照射 させることができ、所望する形状になるように結晶化させることができる。
また本発明によれば、繰返し工程において、照射対象物である非晶質材料を結晶 化させるべき複数の方向に対し、照射領域の延び方向を傾斜させるように、非晶質 材料力も成る層(以下、「非晶質材料層」という場合がある)にレーザ光を照射し、前 記非晶質材料を結晶化する結晶化工程と、非晶質材料を、レーザ光を発する光源に 対して相対移動させる移動工程とを繰返すことによって、照射対象物の所望の領域
に所望の大きさの結晶粒を確実に形成することができる。
また本発明によれば、結晶化工程の第 1照射段階において、一の発振波長のレー ザ光を照射対象物に照射し、結晶化工程の第 2照射段階において、前記一の発振 波長とは異なる他の発振波長のレーザ光を照射対象物に照射する。前述のように第 1照射段階で一の発振波長のレーザ光が照射され、溶融状態である照射対象物に 対して、他の発振波長のレーザ光を照射するので、溶融状態の照射対象物の冷却 速度を低下させることができる。
これによつて照射対象物を結晶化するにあたり、比較的大きな結晶粒に成長させる ことができる。比較的大きな結晶粒に成長させることによって、照射対象物の電子移 動度を比較的高くすることができ、電子移動度の比較的高い照射対象物に薄膜トラ ンジスタ(略称: TFT素子)を形成することによって、 TFT素子の電気的特性、具体 的にはスイッチング特性を向上することができる。
また本発明によれば、光源によって、照射対象物である非晶質材料を結晶化させる べき複数の方向に対し、照射領域の延び方向を傾斜させるように、非晶質材料から 成る層にレーザ光を照射することによって、前記非晶質材料を均一に結晶化させるこ とができる。このように均一に結晶化された非晶質材料力も成る層(以下、「非晶質材 料層」という場合がある)に、たとえば複数の薄膜トランジスタ素子 (略称: TFT素子) を形成するとき、非晶質材料層に対する一方の TFT素子の配設方向と他方の TFT 素子の配設方向とが異なる場合でも、結晶の成長方向に対する複数の TFT素子に それぞれ流れる電流の方向を同一にすることができる。これによつて非晶質材料層に 形成する複数の TFT素子の電気的特性、具体的にはスイッチング特性を同一にす ることができる。換言すれば、複数の TFT素子のスイッチング特性を均一にすること ができる。
また光源力 発せられるレーザ光を照射対象物に前述のように照射することによつ て、投影マスクを用いることなく照射対象物を均一に結晶化させることができる。した がってレーザカ卩ェ装置の部品点数を削減することができる。これによつてレーザカロェ 装置の構造を簡単ィ匕して小型化を図ることができるとともに、レーザ加工装置の製造 コストの低減ィ匕を図ることができる。
また本発明によれば、レーザ加工装置を用いて、照射対象物にレーザ光を照射す ることによって照射対象物を均一に結晶化し、その均一に結晶化した照射対象物に 薄膜トランジスタ素子 (略称: TFT素子)が形成される。したがって均一に結晶化され た照射対象物に複数の TFT素子を形成するとき、照射対象物に対する一方の TFT 素子の配設方向と他方の TFT素子の配設方向とが異なる場合でも、結晶の成長方 向に対する複数の TFT素子にそれぞれ流れる電流の方向を同一にすることができる これによつて照射対象物に形成する複数の TFT素子の電気的特性、具体的には スイッチング特性を同一にすることができる。換言すれば、複数の TFT素子のスイツ チング特性を均一にすることができる。前述のように照射対象物に対する TFT素子 の配設方向に依らず、 TFT素子のスイッチング特性を均一にすることができるので、 TFT素子を用いた表示装置などの設計の自由度を高めることができる。
Claims
[1] 照射対象物を結晶化させるための光を透過する光透過パターンが形成される投影 マスクであって、
照射対象物を結晶化させるべき複数の方向に対し、光透過パターンの延び方向を それぞれ傾斜させるように形成されることを特徴とする投影マスク。
[2] 照射対象物を結晶化させるための光を透過する光透過パターンが形成される投影 マスクであって、
照射対象物を結晶化させるべき複数の方向に対し、光透過パターンの延び方向が それぞれ傾斜される複数のマスク部を含むことを特徴とする投影マスク。
[3] 前記光透過パターンは、予め定める第 1方向に延びる第 1光透過パターンと、第 1 方向に直交する第 2方向に延びる第 2光透過パターンとを有することを特徴とする請 求項 1記載の投影マスク。
[4] 複数のマスク部のうち一方のマスク部には、予め定める第 1方向に延びる第 1光透 過パターンが形成され、他方のマスク部には、第 1方向に直交する第 2方向に延びる 第 2光透過パターンが形成されることを特徴とする請求項 2記載の投影マスク。
[5] 前記第 1光透過パターンと第 2光透過パターンとは、互いに連結しない態様で形成 されることを特徴とする請求項 3記載の投影マスク。
[6] 前記第 1および第 2光透過パターンは、各延び方向の両端部が、投影マスクの厚み 方向に見て先細状に形成されることを特徴とする請求項 3〜5のいずれか 1つに記載 の投影マスク。
[7] 前記第 1および第 2光透過パターンの延び方向の長さ寸法は、照射対象物に形成 される薄膜トランジスタ素子のチャンネル長の 4分の 3未満であることを特徴とする請 求項 3記載の投影マスク。
[8] 照射対象物である非晶質材料力 成る層にレーザ光を照射して結晶化させるレー ザ加工方法であって、
照射対象物を結晶化させるべき複数の方向に対し、照射領域の延び方向を傾斜さ せるようにレーザ光を照射し、前記非晶質材料を結晶化する結晶化工程を有するこ とを特徴とするレーザ加工方法。
[9] 照射対象物を、レーザ光を発する光源に対して相対移動させる移動工程をさらに 有することを特徴とする請求項 8記載のレーザ加工方法。
[10] 結晶化工程と移動工程とを繰返す繰返し工程を、さらに有することを特徴とする請 求項 8記載のレーザ加工方法。
[11] 結晶化工程は、
一の発振波長のレーザ光を照射対象物に照射する第 1照射段階と、
前記一の発振波長のレーザ光を照射するとともに、前記一の発振波長とは異なる 他の発振波長のレーザ光を照射対象物に照射する第 2照射段階とを有することを特 徴とする請求項 8〜10のいずれか 1つに記載のレーザカ卩ェ方法。
[12] 照射対象物である非晶質材料力 成る層にレーザ光を照射して結晶化させるレー ザ加工装置であって、
照射対象物を結晶化させるべき複数の方向に対し、照射領域の延び方向を傾斜さ せるようにレーザ光を照射する光源を有することを特徴とするレーザ加工装置。
[13] 請求項 12記載のレーザ加工装置を用いて結晶化された照射対象物に形成される ことを特徴とする薄膜トランジスタ素子。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005248455A JP2007067020A (ja) | 2005-08-29 | 2005-08-29 | 投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素子 |
JP2005-248455 | 2005-08-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007026722A1 true WO2007026722A1 (ja) | 2007-03-08 |
Family
ID=37808809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/317018 WO2007026722A1 (ja) | 2005-08-29 | 2006-08-29 | 投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素子 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2007067020A (ja) |
TW (1) | TW200720836A (ja) |
WO (1) | WO2007026722A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105097453B (zh) * | 2015-08-14 | 2018-10-19 | 京东方科技集团股份有限公司 | 低温多晶硅薄膜、薄膜晶体管及各自制备方法、显示装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1164883A (ja) * | 1997-08-12 | 1999-03-05 | Toshiba Corp | 多結晶半導体薄膜の製造方法および製造装置 |
US20020177259A1 (en) * | 1999-10-29 | 2002-11-28 | Yun-Ho Jung | Method of fabricating a liquid crystal display |
JP2003037061A (ja) * | 2001-07-24 | 2003-02-07 | Sharp Corp | 半導体薄膜およびその形成方法並びに半導体装置 |
JP2004119971A (ja) * | 2002-09-04 | 2004-04-15 | Sharp Corp | レーザ加工方法およびレーザ加工装置 |
JP2004207691A (ja) * | 2002-12-11 | 2004-07-22 | Sharp Corp | 半導体薄膜の製造方法、その製造方法により得られる半導体薄膜、その半導体薄膜を用いる半導体素子および半導体薄膜の製造装置 |
JP2004214614A (ja) * | 2002-12-31 | 2004-07-29 | Lg Philips Lcd Co Ltd | 多結晶シリコン形成方法及び多結晶シリコン形成用レーザー装置のマスク |
-
2005
- 2005-08-29 JP JP2005248455A patent/JP2007067020A/ja active Pending
-
2006
- 2006-08-29 WO PCT/JP2006/317018 patent/WO2007026722A1/ja active Application Filing
- 2006-08-29 TW TW095131876A patent/TW200720836A/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1164883A (ja) * | 1997-08-12 | 1999-03-05 | Toshiba Corp | 多結晶半導体薄膜の製造方法および製造装置 |
US20020177259A1 (en) * | 1999-10-29 | 2002-11-28 | Yun-Ho Jung | Method of fabricating a liquid crystal display |
JP2003037061A (ja) * | 2001-07-24 | 2003-02-07 | Sharp Corp | 半導体薄膜およびその形成方法並びに半導体装置 |
JP2004119971A (ja) * | 2002-09-04 | 2004-04-15 | Sharp Corp | レーザ加工方法およびレーザ加工装置 |
JP2004207691A (ja) * | 2002-12-11 | 2004-07-22 | Sharp Corp | 半導体薄膜の製造方法、その製造方法により得られる半導体薄膜、その半導体薄膜を用いる半導体素子および半導体薄膜の製造装置 |
JP2004214614A (ja) * | 2002-12-31 | 2004-07-29 | Lg Philips Lcd Co Ltd | 多結晶シリコン形成方法及び多結晶シリコン形成用レーザー装置のマスク |
Also Published As
Publication number | Publication date |
---|---|
JP2007067020A (ja) | 2007-03-15 |
TW200720836A (en) | 2007-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5789011B2 (ja) | 薄膜の直線走査連続横方向凝固 | |
KR100779319B1 (ko) | 박막 반도체 장치 및 화상 표시 장치 | |
JP4748836B2 (ja) | レーザ照射装置 | |
US7623292B2 (en) | Laser irradiation apparatus, laser irradiation method, and method for manufacturing semiconductor device | |
JP2004119919A (ja) | 半導体薄膜および半導体薄膜の製造方法 | |
JP2004311906A (ja) | レーザ処理装置及びレーザ処理方法 | |
KR100698436B1 (ko) | 레이저 빔 투영 마스크 및 그것을 이용한 레이저 가공방법, 레이저 가공 장치 | |
JP2005347694A (ja) | 半導体薄膜の製造方法および半導体薄膜製造装置 | |
JP2007096244A (ja) | 投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素子 | |
KR100663221B1 (ko) | 레이저 가공 방법 및 레이저 가공 장치 | |
JP2008227077A (ja) | レーザ光のマスク構造、レーザ加工方法、tft素子およびレーザ加工装置 | |
WO2006075568A1 (ja) | 多結晶半導体薄膜の製造方法および製造装置 | |
JP2005277007A (ja) | 多結晶半導体膜製造方法とその装置および画像表示パネル | |
WO2007026722A1 (ja) | 投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素子 | |
JP2002057105A (ja) | 半導体薄膜製造方法、半導体薄膜製造装置、およびマトリクス回路駆動装置 | |
JP2007207896A (ja) | レーザビーム投影マスクおよびそれを用いたレーザ加工方法、レーザ加工装置 | |
JP2007123445A (ja) | レーザビーム投影マスク、レーザ加工方法、レーザ加工装置および薄膜トランジスタ素子 | |
JP2006086447A (ja) | 半導体薄膜の製造方法および半導体薄膜の製造装置 | |
TWI556284B (zh) | 非週期性脈衝連續橫向結晶之系統及方法 | |
JP2004281771A (ja) | 半導体薄膜の結晶成長方法および結晶成長装置ならびに薄膜トランジスタの製造方法 | |
JP2005123262A (ja) | 半導体デバイスおよびその製造方法 | |
JP2005228808A (ja) | 半導体デバイスの製造方法 | |
JP2007305852A (ja) | 半導体薄膜の製造方法および半導体デバイス | |
JP2005123475A (ja) | 半導体薄膜とその製造方法およびその薄膜を用いた薄膜トランジスタ | |
JPH11345769A (ja) | 半導体薄膜の製造方法及びアニール装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06796995 Country of ref document: EP Kind code of ref document: A1 |