WO2007026558A1 - 内燃機関用燃料点火システム、燃料点火方法、燃料改質システム、燃料改質方法 - Google Patents

内燃機関用燃料点火システム、燃料点火方法、燃料改質システム、燃料改質方法 Download PDF

Info

Publication number
WO2007026558A1
WO2007026558A1 PCT/JP2006/316308 JP2006316308W WO2007026558A1 WO 2007026558 A1 WO2007026558 A1 WO 2007026558A1 JP 2006316308 W JP2006316308 W JP 2006316308W WO 2007026558 A1 WO2007026558 A1 WO 2007026558A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
photocatalyst
light
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2006/316308
Other languages
English (en)
French (fr)
Inventor
Yusuke Niwa
Masaharu Matsumoto
Original Assignee
Nissan Motor Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005248708A external-priority patent/JP2007064037A/ja
Priority claimed from JP2005249383A external-priority patent/JP2007064060A/ja
Application filed by Nissan Motor Co., Ltd. filed Critical Nissan Motor Co., Ltd.
Priority to EP06796571A priority Critical patent/EP1930583A1/en
Priority to CN2006800302791A priority patent/CN101243253B/zh
Priority to US12/064,504 priority patent/US7793631B2/en
Publication of WO2007026558A1 publication Critical patent/WO2007026558A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/02Friction, pyrophoric, or catalytic ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/08Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition
    • F02B23/10Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder
    • F02B23/101Other engines characterised by special shape or construction of combustion chambers to improve operation with positive ignition with separate admission of air and fuel into cylinder the injector being placed on or close to the cylinder centre axis, e.g. with mixture formation using spray guided concepts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M27/00Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like
    • F02M27/02Apparatus for treating combustion-air, fuel, or fuel-air mixture, by catalysts, electric means, magnetism, rays, sound waves, or the like by catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Fuel ignition system for internal combustion engine fuel ignition method, fuel reforming system, fuel reforming method
  • the present invention relates to a fuel ignition system for an internal combustion engine, and more particularly, to a fuel ignition system for an internal combustion engine that ignites an air-fuel mixture with a photocatalyst using light energy emitted from a light generator. .
  • the present invention also relates to a fuel reforming system, a fuel reforming method, a fuel ignition system, and a fuel ignition method for an internal combustion engine. More specifically, the present invention relates to PM (particulates) by utilizing slow oxidation of a photocatalyst.
  • the present invention relates to a fuel reforming system for an internal combustion engine, a fuel reforming method, a fuel ignition system, and a fuel ignition method capable of suppressing the generation of matter.
  • One of the means for improving the fuel efficiency is to improve the thermal efficiency.
  • Examples of means for improving the net thermal efficiency include increasing the compression ratio and dilution of the air-fuel mixture.
  • iridium is used to reduce the diameter of the electrode discharge portion and improve wear resistance in order to ensure the stability of ignition.
  • JP-A-58-195071 and JP-A-63-173852 disclose multi-point ignition, and stable ignition is possible even against strong gas flow that is not possible with conventional spark plugs. Technologies using lasers have been reported.
  • the ignition position can be arbitrarily set in the laser ignition method, even at this point, ignition at multiple points is possible.
  • the ignition time is tens of nanoseconds (about 1,000 nanoseconds with conventional ignition plugs), which is very short, and is not possible for other ignition systems. It has the following characteristics.
  • knocking may occur with a high compression ratio of the air-fuel mixture.
  • knocking can be suppressed by narrowing the end gas region by changing the ignition position or performing multipoint ignition.
  • JP-A-58-195071 and JP-A-63-173852 propose a technique for improving the ignition efficiency by irradiating light in an air-fuel mixture with respect to the energy required for ignition. Disclosure of the invention
  • JP-A-58-195071 and JP-A-63-173852 are both air-fuel mixture ignition in space, they focus on a high energy density light beam. It was necessary to irradiate.
  • the present invention has been made in view of such problems of the prior art.
  • the aim is to provide a fuel ignition system for an internal combustion engine that can ignite a lean mixture with a small amount of light energy. Furthermore, the object is to promote combustion of the mixture and suppress the generation of PM (particulate matter), a fuel reforming system for an internal combustion engine, a fuel reforming method, a fuel ignition system, and a fuel ignition. To provide a method.
  • the inventors of the present invention have made extensive studies to achieve the above object. As a result, the photocatalyst was irradiated with light energy from the light generator, and the photocatalyst was activated to generate radicals necessary for air-fuel mixture ignition. It came to do. Furthermore, the present inventors have found that the above problems can be solved by reforming a part of the fuel by photocatalytic reaction to produce hydrogen or an oxygen-containing compound, thereby completing the present invention.
  • a fuel ignition system for an internal combustion engine that ignites an air-fuel mixture by a photocatalyst using light energy emitted from a light generator, comprising a combustion chamber, and the combustion chamber
  • a fuel ignition system for an internal combustion engine comprising: a photocatalyst provided on the light source; and a light generator that irradiates the photocatalyst with light energy in a planar shape.
  • two or more photocatalysts are disposed in the combustion chamber, and at least one of the two or more photocatalysts is at least one of the light irradiated with the light generator force.
  • At least one of the photocatalysts absorbs at least a part of the light emitted from the light generator to promote reformed mixture ignition
  • a fuel ignition method using the fuel ignition system for an internal combustion engine according to the first aspect characterized in that a plurality of the light generators are used to generate a plurality of lights having different single wavelengths, and the light At least one of changing the light from the generator through an optical filter to generate light with multiple wavelengths, using light in different wavelength ranges for fuel reforming and mixture ignition
  • a photocatalyst disposed in the combustion chamber, and the photocatalyst is irradiated with light.
  • a fuel reforming system for an internal combustion engine comprising a light generating device to obtain, and having a structure in which the photocatalyst absorbs at least a part of the light emitted from the light generating measure and reforms the fuel existing in the combustion chamber.
  • a fuel reforming system for an internal combustion engine is provided.
  • a fuel reforming method using the fuel reforming system for an internal combustion engine wherein a fuel gas mixed with fuel and air is sent to the combustion chamber. And is brought into contact with the photocatalyst and at least a part of the light irradiated by the photogenerator force is absorbed by the photocatalyst, so that the fuel gas is changed to an air-fuel mixture containing at least one of an oxygen-containing compound and hydrogen.
  • the present invention provides a fuel reforming method characterized by improving the quality of the fuel.
  • FIG. 1 is an explanatory diagram showing a schematic cross-sectional shape of a laser oscillator with an irradiation position variable unit.
  • FIG. 2 is an explanatory view showing a state in which light energy is irradiated in a planar shape onto a piston crown surface on which a photocatalyst layer is formed using an irradiation position variable unit.
  • FIG. 3 is an explanatory view showing a schematic cross-sectional shape of a fuel ignition system for an internal combustion engine in the first embodiment.
  • FIGS. 4 (a) and 4 (b) are schematic diagrams showing a first example of a fuel ignition system that controls reforming / ignition timing by the same light generator.
  • FIGS. 5 (a) and 5 (b) are schematic views showing a second example of a fuel ignition system that controls the timing of reforming and ignition by the same light generator.
  • Figs. 6 (a) and 6 (b) are schematic views in which the fuel ignition system and its piston crown are enlarged in the second embodiment.
  • FIGS. 7 (a) and 7 (b) are schematic views showing an example of a compression process and a combustion process, respectively.
  • FIGS. 8 (a) and 8 (b) are schematic views in which the fuel ignition system and its piston crown are enlarged in the third embodiment.
  • FIGS. 9 (a) and 9 (b) are schematic views in which the fuel ignition system and its piston crown are enlarged in the fourth embodiment.
  • FIG. 10 is a graph showing the relationship between operating conditions and irradiation time in Example 5.
  • FIG. 11 is a graph showing the relationship between operating conditions and irradiation output in Example 5.
  • FIG. 12 is a schematic view showing a fuel ignition system in Example 6.
  • FIG. 13 is a schematic diagram showing a fuel ignition system in Comparative Example 1.
  • the fuel ignition system for an internal combustion engine will be described below.
  • a fuel ignition system for an internal combustion engine ignites an air-fuel mixture by a photocatalyst using light energy emitted from a light generator, and is provided in a combustion chamber and the combustion chamber. And a light generator that irradiates the photocatalyst with light energy in a planar shape.
  • the mixture can be ignited with a light energy dose that is significantly less.
  • the light generation device provided irradiates the photocatalyst provided with light energy in a planar shape.
  • the photocatalyst is irradiated with light to generate electrons and holes on the surface of the photocatalyst, and these react with the air-fuel mixture to generate radicals and ignite the air-fuel mixture.
  • the focal point is not set, so that it is possible to increase the number of ignition points formed by the photocatalyst irradiated with light energy by irradiating light energy in a planar shape. As a result, combustion can be stabilized.
  • the light energy can be irradiated in a planar shape, as described above, when the number of ignition points is increased and multipoint ignition is performed, a plurality of light generators are not necessarily required, and the beam is not necessarily required. There is an advantage that the system can be miniaturized without the need for a splitter.
  • irradiating in a planar manner means that the light energy irradiated by the light generator is irradiated in the combustion chamber so that it is not focused!
  • the photocatalytic force provided when the provided combustion chamber is formed by a cylinder head and a piston head,
  • the ton crown surface that is, the one provided on a part of the inner wall surface of the combustion chamber.
  • a photocatalyst is formed by applying or vapor-depositing a photocatalyst on the piston crown surface, or by using a photocatalyst material for the piston head itself, thereby allowing the photocatalytic reaction to proceed efficiently. Is possible.
  • the piston crown surface that is, a part of the inner wall surface of the combustion chamber, the piston crown surface. It is desirable that a relatively large amount of the photocatalyst 20 is provided on the upper side of the region where the gas mixture concentration is relatively high.
  • the air-fuel mixture concentration on the piston crown surface is usually relatively high at the intake port provided in the combustion chamber, that is, on the side facing the intake valve! RU
  • the cylinder head when the combustion chamber provided is formed by a cylinder head and a piston head, the cylinder head has a first protrusion on its inner wall surface.
  • the photocatalyst provided is provided on the first convex part.
  • the inner wall surface of the cylinder head is mixed not only in the vicinity of the inner wall surface of the combustion chamber, such as the piston crown surface, but also in the vicinity of the central portion of the combustion chamber.
  • Qi can be ignited, and the flame propagation distance can be shortened.
  • the "first convex portion provided on the inner wall surface of the cylinder head” is a high temperature with rapid fluctuations that does not hinder the movement of the normally provided intake valve or exhaust valve or piston head in the combustion chamber.
  • its size and shape are not particularly limited.
  • one end is fixed to the wall of the fuel chamber and the photocatalyst can be installed in the direction of light irradiation. V, something like a loose jig.
  • the "second convex portion provided on the piston crown surface” does not impede the movement of the intake valve 'exhaust valve' and the piston head in the combustion chamber, and can withstand high-temperature and high-pressure conditions with sudden fluctuations. If it is, the size and shape are not particularly limited. For example, not only columnar or spindle-shaped projections but also those having suitable through holes, so-called ridge-shaped ones, etc. It can also be mentioned.
  • a mesh carrier having an end joined to the inner wall surface of the combustion chamber is provided inside the combustion chamber, and the photocatalyst provided is provided on the mesh carrier. List what was given.
  • the "mesh-shaped carrier” is not limited as long as it can withstand high-temperature and high-pressure conditions with rapid fluctuations without impeding the movement of the intake valve and exhaust valve and piston head in the combustion chamber.
  • the size and shape are not particularly limited, and examples thereof include a mesh carrier having an opening of a size that does not hinder gas flow in the combustion chamber.
  • a part of the inner wall surface of the combustion chamber functions as a mirror surface.
  • a metal such as an aluminum alloy applied to a piston head, a cylinder head, or an intake valve / exhaust valve head is used as a mirror surface.
  • a metal such as an aluminum alloy applied to a piston head, a cylinder head, or an intake valve / exhaust valve head is used as a mirror surface.
  • the optical axis direction of the light energy emitted by the provided light generator is the reciprocating motion of the provided piston head. Hopefully not parallel to the direction.
  • the angle formed by the optical axis direction and the piston crown surface is an acute angle.
  • the light generator provided when the combustion chamber provided is formed by the cylinder head and the piston head, includes the light energy at the end portion of the piston crown surface in a planar shape. Desirable to irradiate.
  • the air-fuel mixture can be ignited by irradiating the light energy in a planar manner in this way.
  • the end portion of the piston crown surface is relatively low temperature by irradiating the light energy in a planar manner in this way. And more stable lean combustion.
  • the light generating device provided includes an irradiation position adjusting means.
  • the position where the light energy is irradiated in a planar shape can be adjusted as appropriate, and more stable lean combustion can be performed.
  • the combustion chamber provided is formed by a cylinder head and a piston head, and further includes temperature detection means for detecting the temperature of the combustion chamber, and the temperature detection is provided.
  • the irradiation position adjustment means provided adjusts the irradiation position so that light energy is irradiated to the end portion of the piston crown surface that is a part of the inner wall surface of the combustion chamber. Hope to adjust.
  • predetermined temperature can be appropriately determined by experiments or the like.
  • irradiation position adjusting means for adjusting the position (region) where light energy is irradiated in a planar shape
  • FIG. 1 is an explanatory diagram showing a schematic cross-sectional shape of a laser oscillator 50 with an irradiation position variable unit, which is an example of a light generation apparatus provided with an irradiation position adjusting means 54.
  • the laser oscillator 50 with the irradiation position variable unit includes a resonance part 52 and
  • the irradiation position variable unit 54 is an example of an optical system, and the irradiation position variable unit 54 includes a pair of front and rear transparent glasses 54a '54b, a concave lens 54c disposed therebetween, and A rod 54d to be coupled is provided.
  • the light L extracted from the resonance portion 52 is transmitted through the transparent glass 54a, the concave lens 54c, and the transparent glass 54b in this order, and is irradiated to a photocatalyst (not shown).
  • the laser oscillator 50 with the irradiation position variable unit can control the irradiation area of the optical energy.
  • the resonance portion 52 is disposed in the vicinity of the irradiation position variable unit 54.
  • laser light can be transmitted by, for example, an optical fiber (not shown).
  • FIG. 2 shows a state in which light energy is irradiated in a planar shape onto the piston crown surface 14a on which the photocatalyst 20 layer is formed, using the laser oscillator 50 with the irradiation position variable unit.
  • the light L extracted from the laser oscillator 50 with the irradiation position variable unit is irradiated onto the photocatalyst 20 provided on the piston crown surface 14a.
  • a in Fig. 2 indicates an irradiation area.
  • an internal combustion engine applied to a fuel fuel ignition system for an internal combustion engine requires fuel, an operating system, a cycle, a single cylinder, a cylinder type, as long as power is obtained by burning a mixture.
  • the cooling method, valve mechanism, number of knobs, etc. are not particularly limited. Furthermore, it is applicable also to a rotary engine.
  • the photocatalyst used in the fuel ignition system for an internal combustion engine of the present invention is, for example, a porous titanium-based oxide, zinc-based oxide, niobium-based oxide, tantalum-based oxide, or tin-based acid. Examples of the present invention and any combination thereof are not limited thereto.
  • the air-fuel mixture applied to the fuel ignition system for an internal combustion engine of the present invention is not particularly limited, but typically, fuel gas (gasoline, light oil, natural gas, alcohol, etc.) and air are arbitrarily selected. It is obtained by blending with.
  • a laser oscillator can be used as the light generator used in the fuel ignition system for an internal combustion engine of the present invention.
  • the powerful laser oscillator varies depending on the type of gas mixture and photocatalyst to be burned, but a solid laser, gas laser, semiconductor laser, excimer laser, free electron laser, etc. can be used alone or in appropriate combination. .
  • an optical system apparatus of such a laser oscillator a conventionally known apparatus can be used.
  • igniting the air-fuel mixture it can be ignited with a small amount of light energy, so that it is possible to reduce the size of the optical system device for reasons such as not focusing and therefore not requiring a condenser lens. .
  • FIG. 3 is an explanatory diagram showing a schematic cross-sectional shape of the fuel ignition system 1 for an internal combustion engine of the present example.
  • the fuel ignition system 1 for the internal combustion engine of the present example is provided on the combustion chamber 10 formed by the cylinder head 12 and the piston head 14 and on the piston crown surface 14a of the combustion chamber 10.
  • the cylinder head 12 has a window 12a, and the light energy irradiated from the laser oscillator 50 passes through the window 12a and is irradiated to the photocatalyst 20 as shown in FIG.
  • the photocatalyst 20 irradiated with one becomes an ignition point and ignites the air-fuel mixture in the combustion chamber 10
  • the air-fuel mixture is also supplied with the fuel supplied from the injector 12c provided in the intake port 12b and the intake air force, and is supplied to the combustion chamber 10 when the intake valve 12d is opened. Further, after the air-fuel mixture burns, the exhaust nozzle 12e is opened and exhausted as combustion gas from the exhaust port 12f.
  • the photocatalyst 20 can be used to ignite with less light! / Light energy than in the past, and therefore, ignition can be performed in a wider area.
  • a fuel reforming system for an internal combustion engine of the present invention includes a photocatalyst disposed in a combustion chamber, and a light generator capable of irradiating the photocatalyst with light.
  • the photocatalyst absorbs at least a part of the light emitted from the light generating device, whereby the fuel existing in the combustion chamber can be reformed.
  • the oxidizing power of the photocatalytic reaction can be suppressed, the fuel can be reformed to an intermediate product without being completely oxidized, and a mixed gas containing oxygen-containing compounds and hydrogen that are easily ignited at high concentrations can be obtained.
  • the combustion chamber can be filled.
  • reforming proceeds only when light is irradiated, the fuel composition can be appropriately changed according to the operating conditions.
  • the desired reformed gas can be obtained by adjusting the type of fuel, the type, arrangement, and amount of the photocatalyst, the wavelength of light emitted from the light generator, the intensity of photon energy, and the like. Obtainable.
  • a catalyst in which a transition metal such as copper is supported on a porous material such as silica can be used.
  • the supporting sites of these photocatalysts are not particularly limited as long as they can contact the air-fuel mixture, but it is effective to increase the specific surface area for the viewpoint power to improve the reforming efficiency.
  • the photocatalyst is preferably supported on the porous inorganic carrier and disposed on the upper part of the piston head or on the outer periphery of the cylinder head.
  • the above light generator varies depending on the mixture to be combusted, the type of photocatalyst, etc., but a device capable of irradiating a solid laser, a gas laser, a semiconductor laser, an excimer laser, a free electron laser, etc. can be used as appropriate. .
  • a xenon lamp, a halogen lamp, a high-pressure mercury lamp, or the like can also be used as appropriate.
  • the fuel to be reformed is not particularly limited.
  • oxygen methane for example, oxygen methane, air
  • -It can be used as fuel gas such as gasoline.
  • the combustion chamber is not particularly limited.
  • a hemispherical type, a multispherical type, a wedge type, a no ⁇ stub type, a pent roof type or the like can be used at a desired displacement.
  • This fuel reforming method uses the above-described fuel reforming system for an internal combustion engine, and sends a fuel gas mixed with fuel and air into the combustion chamber to be brought into contact with the photocatalyst and irradiated from the light generator. At least a part of the light is absorbed by the photocatalyst, and the fuel gas is reformed into an air-fuel mixture containing at least one of an oxygen-containing compound and hydrogen. In this way, by supplying air to the fuel, the fuel can be reformed into an oxygen-containing compound or hydrogen. Specifically, partial oxidation proceeds due to the presence of oxygen to generate an oxygen-containing compound.
  • oxygen-containing compounds examples include alcohols such as methanol and ethanol, aldehydes, and the like.
  • the irradiation output of the light generator can be changed to perform partial oxidation of the fuel and air-fuel mixture ignition, respectively. That is, when the amount of photons to be irradiated is increased, the number of holes necessary for the acid increases and the reaction rate can be increased, so that the amount of modification can be increased.
  • an air-fuel mixture containing at least one oxygen-containing compound and hydrogen (reformed gas) can be ignited by spark ignition.
  • the conventional spark plug or the like can be used without limiting the means, the cost can be reduced.
  • examples of the spark plug include a U-groove type, a protruding type, a 2-pole type, a creeping type, a wide U-type, a wide type, a 4-pole type, a built-in resistor type, and a racing type.
  • the present fuel ignition system includes two or more photocatalysts disposed in the combustion chamber, and a light generator that can irradiate the photocatalyst with light.
  • a photocatalyst that absorbs at least part of the light emitted from the light generator and promotes reforming of the fuel, and at least a part of the light irradiated by the light generator force is absorbed and modified.
  • At least one kind of photocatalyst that promotes post-mixture gas mixture ignition is arranged.
  • metal oxides having different valence band top positions may be provided. Even with the same metal oxide, the activity of the acid can be controlled by doping the anion to increase the position of the valence band to weaken the acid and to add a transition metal.
  • the reforming photocatalyst for example, a catalyst in which a transition metal such as copper is supported on a porous material such as silica can be used.
  • the ignition photocatalyst in addition to the photocatalyst similar to the reforming photocatalyst, for example, porous titanium oxide, zinc oxide, niobium oxide, tantalum oxide Further, gallium-based oxides, strontium-based oxides, iron-based oxides, tungsten-based oxides, tin-based oxides, and any combination thereof can be used.
  • the reforming photocatalyst and the ignition photocatalyst can be uniformly dispersed and arranged on the piston crown surface.
  • reforming and ignition can be performed using the entire area of the piston crown. That is, since reforming can be performed on the entire surface of the piston crown, the reformed gas is sufficiently mixed with the air-fuel mixture, and combustion can be improved. In addition, since ignition can be performed on the entire surface of the piston crown, the flame propagation distance is minimized, and ultra lean combustion and lean combustion are possible. Furthermore, the knock ratio can be suppressed by self-ignition, so the compression ratio can be increased.
  • the reforming and ignition control can be performed, for example, by switching the wavelength of the irradiated light.
  • the ignition photocatalyst and the reforming photocatalyst may be separately provided on the piston crown surface.
  • the ignition photocatalyst can be disposed at the center and outer periphery of the piston crown surface, and the reforming photocatalyst can be disposed between them.
  • the "center” is the center side of the radius of the circle forming the piston crown surface.
  • the flame propagation distance in the combustion chamber can be shortened by arranging the ignition photocatalyst at the center of the piston crown surface and the vicinity thereof. This is effective because knocking can be suppressed.
  • the timing of reforming / igniting can be controlled by adjusting the irradiation angle, irradiation range, and the like of the light generator.
  • the light from the light generator is sequentially changed from the ignition photocatalyst to the reforming photocatalyst by the vertical movement of the piston head. It can be an illuminated structure. It is also effective to control the wavelength of irradiation light in accordance with this timing.
  • a plurality of light generators are used to generate a plurality of lights having different single wavelengths, and light from the light generators is optically filtered.
  • each of the fuel reforming and the air-fuel mixture ignition is performed using light in different wavelength ranges. .
  • the optical filter only needs to be able to remove a predetermined wavelength.
  • a cut-off filter in which a light absorbing agent is mixed in a glass plate, a neutral density one filter, or the like can be used. By using these, light on the long wavelength side can be passed and light on the short wavelength side can be removed. In addition, by combining these, irradiation with a plurality of wavelengths can be performed.
  • the second fuel ignition method of the present invention is the above-described fuel ignition system for an internal combustion engine, wherein a plurality of light generators are used to generate a plurality of lights having different single wavelengths, and an irradiation position of the light generator. By changing at least one of these, fuel reforming and mixture ignition are performed.
  • the reforming and ignition are promoted by disposing one type of light generator. it can.
  • a photocatalyst with a large gap can absorb light and proceed with the photocatalytic reaction.
  • the reforming and ignition can be controlled by, for example, changing the irradiation timing independently by separating the wavelength with a splitter or changing the irradiation position.
  • the third fuel ignition method of the present invention provides a fuel reforming system in the above-described fuel ignition system for an internal combustion engine, by changing at least one of an irradiation time and an irradiation output of the light generator. And each of the mixture ignition.
  • the activity of the reforming photocatalyst is reduced, so that the irradiation time is lengthened.
  • the reforming amount can be secured more.
  • the fuel ignition system 1 for an internal combustion engine includes a laser oscillator 50 and an injector 12c, which are an example of the light generator 30, in the upper part of the combustion chamber 10.
  • an ignition photocatalyst 22 (CuZSiO) is disposed at the center of the piston crown surface 14a, and the outer peripheral portion (the above-mentioned
  • the photocatalyst for reforming 21 (TiO 2) is not disposed on the circumference side of the diameter 1Z5 or less)
  • the internal combustion engine fuel ignition system 1 includes two laser oscillators 51 (an example of the light generator 31) and laser oscillators 53 (light generators 32) that can irradiate light of different wavelengths on the upper part of the combustion chamber 10.
  • the fuel ignition system 1 for an internal combustion engine has the same configuration as that of Example 2 except that it is disposed on the crown surface 14a.
  • the fuel was reformed by irradiating light with a wavelength of 450 nm absorbed by the reforming photocatalyst 21 with weak oxidizing power.
  • 9 (a) and 9 (b) show an outline of the fuel ignition system 1 for an internal combustion engine.
  • the fuel ignition system 1 for an internal combustion engine includes an ignition photocatalyst on the piston crown surface 14a.
  • the filter 9 for changing the wavelength is disposed in the laser oscillator 50, which is an example of the light generator 30, so that light having a wide wavelength range of 250 nm to 550 nm can be irradiated.
  • a fuel ignition system 1 for an internal combustion engine having the same configuration as that of Example 2 except for the above is used.
  • the fuel was reformed by irradiating light having a wavelength of 450 nm absorbed by the reforming photocatalyst 21 having weak oxidizing power.
  • a fuel ignition system 1 for an internal combustion engine having the same configuration as that of Example 2 except that the irradiation time and the irradiation output are changed with respect to the engine speed and the engine torque. did.
  • a fuel ignition system for an internal combustion engine having the same configuration as in Example 2 except that a laser oscillator 50, which is an example of a light generator 30, and an ignition plug 11 connected to a cord 13 are used in combination. It was set to 1.
  • the fuel was reformed by irradiating light with a wavelength of 450 nm absorbed by the reforming photocatalyst 21 having weak oxidizing power.
  • a fuel ignition system 1 for an internal combustion engine having the same configuration as in Example 2 except that
  • Fuel gas was fed into the internal combustion engine fuel ignition system 1 obtained in Examples 2 to 6 and Comparative Example 1, and the amount of PM in the exhaust gas when combusted was measured.
  • Japanese Patent Application 2005—248708 Japanese application: August 30, 2005
  • the photogenerator force is irradiated with light energy to activate the photocatalyst, and the photocatalyst is activated to generate radicals necessary for mixture ignition using the reaction of the photocatalyst.
  • a fuel ignition system for an internal combustion engine that can ignite a lean air-fuel mixture with a significantly small amount of light energy, and further a fuel ignition system for an internal combustion engine that can improve fuel efficiency by lean combustion.
  • a part of the fuel is reformed by photocatalytic reaction to produce hydrogen and oxygen-containing compounds, so that combustion of the air-fuel mixture is promoted and PM (particulate matter) is generated. Can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Catalysts (AREA)

Abstract

 光発生装置30,31,32から照射される光エネルギーを利用して、光触媒により混合気を点火する内燃機関用燃料点火システム1であって、燃焼室10と、該燃焼室10に設けられた光触媒20,21,22,23と、該光触媒20,21,22,23に対して光エネルギーを面状に照射する光発生装置30,31,32と、を備えた内燃機関用燃料点火システム1。

Description

明 細 書
内燃機関用燃料点火システム、燃料点火方法、燃料改質システム、燃料 改質方法
技術分野
[0001] 本発明は、内燃機関用燃料点火システムに係り、更に詳細には、光発生装置から 照射される光エネルギーを利用して、光触媒により混合気を点火する内燃機関用燃 料点火システムに関する。
[0002] また本発明は、内燃機関用燃料改質システム、燃料改質方法、燃料点火システム 及び燃料点火方法に係り、更に詳細には、光触媒の緩慢な酸化を利用することで P M (パティキュレートマター)の生成を抑制できる内燃機関用燃料改質システム、燃料 改質方法、燃料点火システム及び燃料点火方法に関する。
背景技術
[0003] 燃費を向上させるための手段としては、熱効率を向上させることがその一つとして挙 げられる。そして、正味の熱効率を向上させる手段としては、例えば混合気の高圧縮 比化や希薄化等が挙げられる。
[0004] 混合気の希薄化に関しては、希薄化するに従って燃焼の安定性が悪くなるため、 燃焼室内にスワールやタンブルなどの強力なガス流動を発生させて、火炎伝播速度 を増加させることにより、燃焼期間を短縮し、燃焼を安定させている。
[0005] また、点火プラグに関しても、点火の安定性を確保するために、電極放電部を細径 化すると共に耐消耗性向上のためにイリジウムを使用して 、る。
[0006] 多点点火により火炎伝播距離を短縮して燃焼を安定ィ匕することも行なわれている。
[0007] また特開昭 58— 195071号及び特開昭 63— 173852号では、多点点火に関して 開示しており、従来の点火プラグではなぐ強力なガス流動に対しても安定に点火が 可能なレーザーを用いる技術が報告されて 、る。
[0008] 更に、レーザー点火方式は、点火位置を任意に設定できることから、この点におい ても、多点での点火が可能である。また、点火に要する時間が数十ナノ秒 (従来の点 火プラグでは約千ナノ秒)と非常に短時間で終了するなど、他の点火システムにはな い特徴を有する。
[0009] よって、これらを利用して混合気の燃焼を大幅に改善できる。
[0010] 例えば、自動車エンジンの燃焼室において、混合気を高圧縮比化するとノッキング をともなうことがあるが、点火位置変更や多点点火を行うことにより、エンドガス領域を 狭めてノッキングを抑制できる。
[0011] また、比熱比の高!、希薄燃焼を行うエンジンでは、スワールやタンブルなどの流れ を発生させて火炎伝播速度を増加するが、これが強すぎると点火が困難となることが ある。この点においても、レーザー点火方式では、数十ナノ秒で点火が終了するため に安定な点火が可能となる。
[0012] 特開昭 58— 195071号及び特開昭 63— 173852号では、点火に要するエネルギ 一に関して、混合気中に光^^光させて点火効率を向上する技術を提案している。 発明の開示
[0013] しかしながら、特開昭 58— 195071号及び特開昭 63— 173852号に記載された 点火装置は、いずれも空間における混合気点火であるため、高エネルギー密度の光 ビームを焦点を結んで照射させる必要があった。
[0014] また、ビームスプリッタを用いる場合には、その内部に点火する箇所の分だけ反射 鏡を設置する必要があると共に、集光レンズも同数必要であり、システムが大きくなる という問題点があった。
[0015] 更に、吸気バルブ'排気バルブが存在するために、光発生装置の設置可能な箇所 には限界があるという問題点があった。
[0016] 更に、上述のような、光を用いた混合気を点火するコンセプトはあるものの、これら は熱エネルギーによる気相反応を利用したものであり、点火時のエネルギー消費が 非常に大き 、と 、う問題があった。
[0017] またレーザー点火方式を採用すると装置構成が大きくなつてしまい車載が困難とな るという問題もあった。
一方、燃焼を改善する別の手段として、燃料を改質する方法が知られている。改質 した燃料を燃焼室内に供給するものであり、水素や含酸素化合物に改質することに よりリーン限界の拡大、すすの低減に効果がある。 [0018] しかし、触媒反応による燃料改質は温度制御が困難であった。
[0019] 本発明は、このような従来技術の有する課題に鑑みてなされたものである。その目 的とするところは、大幅に少な 、光エネルギー量で希薄な混合気を点火させ得る内 燃機関用燃料点火システムを提供することにある。更に、その目的とするところは、混 合気の燃焼を促進して、 PM (パティキュレートマター)の生成を抑制し得る内燃機関 用燃料改質システム、燃料改質方法、燃料点火システム及び燃料点火方法を提供 することにある。
[0020] 本発明者らは、上記目的を達成すべく鋭意研究を重ねた。その結果、光発生装置 から光エネルギーを光触媒に照射し、該光触媒を活性化させ、混合気点火に必要な ラジカルを生成させることなどとしたため、上記目的が達成できることを見出し、本発 明を完成するに至った。更に、光触媒反応により燃料の一部を改質して水素や含酸 素化合物を生成させることにより、上記課題が解決できることを見出し、本発明を完 成するに至った。
[0021] 本発明の第 1局面によると、光発生装置力 照射される光エネルギーを利用して、 光触媒により混合気を点火する内燃機関用燃料点火システムであって、燃焼室と、 該燃焼室に設けられた光触媒と、該光触媒に対して光エネルギーを面状に照射する 光発生装置と、を備えたことを特徴とする内燃機関用燃料点火システムを提供してい る。
[0022] 本発明の第 2局面によると、上記燃焼室に 2種以上の光触媒を配設し、上記 2種以 上の光触媒の少なくとも 1種は、該光発生装置力 照射された光の少なくとも一部を 吸収して燃料の改質を促進し、上記光触媒の少なくとも 1種は、該光発生装置から照 射された光の少なくとも一部を吸収して改質後の混合気点火を促進する、ことを特徴 とする第 1局面に記載の内燃機関用燃料点火システムを用いた燃料点火方法であつ て、上記光発生装置を複数用いて異なる単波長の光を複数発生させることと、上記 光発生装置からの光を光学フィルターを介して変更して複数の波長を有する光を発 生させることの、少なくとも 1つにより、燃料改質と混合気点火のそれぞれを、異なる 波長域の光を用いて行わせることを特徴とする燃料点火方法を提供して 、る。
[0023] 本発明の第 3局面によると、燃焼室に配設する光触媒と、この光触媒に光を照射し 得る光発生装置とを備える内燃機関用燃料改質システムであって、該光発生措置か ら照射された少なくとも一部を光触媒が吸収し燃焼室に存在する燃料を改質する構 造を持つことを特徴とする内燃機関用燃料改質システムを提供している。
[0024] 本発明の第 4局面によると、第 3局面に記載の内燃機関用燃料改質システムを用い た燃料改質方法であって、上記燃焼室に燃料及び空気を混合した燃料ガスを送入 し上記光触媒と接触させるとともに、該光触媒に上記光発生装置力 照射された光 の少なくとも一部を吸収させて、該燃料ガスを、含酸素化合物と水素の少なくとも 1つ を含む混合気に改質することを特徴とする燃料改質方法を提供している。
図面の簡単な説明
[0025] [図 1]図 1は、照射位置可変ユニット付きレーザー発振器の概略的断面形状を示す 説明図である。
[図 2]図 2は、照射位置可変ユニットを用いて、光触媒層を形成したピストン冠面に対 して、光エネルギーを面状に照射する様子を示す説明図である。
[図 3]図 3は、実施例 1における、内燃機関用燃料点火システムの概略的断面形状を 示す説明図である。
[図 4]図 4 (a) , (b)は、同一光発生装置により改質 ·点火のタイミングを制御する燃料 点火システムの第 1例を示す概略図である。
[図 5]図 5 (a) , (b)は、同一光発生装置により改質 ·点火のタイミングを制御する燃料 点火システムの第 2例を示す概略図である。
[図 6]図 6 (a) , (b)は、実施例 2における、燃料点火システムとそのピストン冠面を拡 大した概略図である。
[図 7]図 7 (a) , (b)は、それぞれ圧縮工程と燃焼工程の一例を示す概略図である。
[図 8]図 8 (a) , (b)は、実施例 3における、燃料点火システムとそのピストン冠面を拡 大した概略図である。
[図 9]図 9 (a) , (b)は、実施例 4における、燃料点火システムとそのピストン冠面を拡 大した概略図である。
[図 10]図 10は、実施例 5における、運転条件と照射時間の関係を示すグラフである。
[図 11]図 11は、実施例 5における、運転条件と照射出力の関係を示すグラフである。 [図 12]図 12は、実施例 6における、燃料点火システムを示す概略図である。
[図 13]図 13は、比較例 1における、燃料点火システムを示す概略図である。
発明を実施するための最良の形態
[0026] <内燃機関用燃料点火システム >
以下、本発明の内燃機関用燃料点火システムについて説明する。
[0027] 本発明の内燃機関用燃料点火システムは、光発生装置力 照射される光エネルギ 一を利用して、光触媒により混合気を点火するものであって、燃焼室と、該燃焼室に 設けられた光触媒と、該光触媒に対して光エネルギーを面状に照射する光発生装置 と、を備えたものである。
[0028] このような構成とすることにより、光触媒反応を利用して例えば HCや Oラジカルな
2 とを生成でき、大幅に少な 、光エネルギー照射量で混合気点火が可能となる。
[0029] また、希薄燃料によって燃費を向上させ得る内燃機関用燃料点火システムを提供 できる。
[0030] 本発明においては、備える光発生装置が、備える光触媒に対して光エネルギーを 面状に照射する。
[0031] 本内燃機関用燃料点火システムでは、光触媒に光を照射して光触媒の表面で電 子と正孔を生成し、これらが混合気と反応することによりラジカルが生成され混合気が 点火する。このため、従来のレーザー点火とは異なり焦点を結ばないので、光ェネル ギーを面状に照射して、光エネルギーが照射された光触媒により形成される点火箇 所を増やすことができる。その結果、燃焼を安定させることができる。
[0032] また、光エネルギーを面状に照射させることができるため、上述したように点火箇所 を増やして多点点火するに当たり、必ずしも光発生装置を複数必要とせず、また、必 ずしもビームスプリッタを必要とせずシステムを小型化できるという利点がある。
[0033] なお、「面状に照射する」とは、光発生装置により照射された光エネルギーが燃焼 室内にお!、て焦点を結ばな!/、ように照射することを!、う。
[0034] (第 1実施形態)
更に、本発明における光触媒の配置の第 1実施形態としては、備える燃焼室がシリ ンダヘッドとピストンヘッドによって形成されている場合に、備える光触媒力 そのビス トン冠面、即ち燃焼室の内壁面の一部に設けられたものを挙げる。
[0035] 具体的には、ピストン冠面上に光触媒を塗布や蒸着するなどして光触媒を形成す る、又はピストンヘッドそのものに光触媒の材料を使用することによって、光触媒反応 を効率良く進行させることが可能となる。
[0036] 更にまた、本発明においては、備える燃焼室がシリンダヘッドとピストンヘッドによつ て形成される場合に、そのピストン冠面、即ち燃焼室の内壁面の一部において、ビス トン冠面上の混合気濃度が相対的に高い領域側に、光触媒 20が相対的に多く設け られたものが望ましい。
[0037] 例えば、ピストン冠面上に光触媒を形成する際に、混合気濃度が相対的に高い領 域において、ピストン冠面における光触媒層の被覆率を高くすることなどにより、効率 良く混合気を点火できる。
[0038] なお、ピストン冠面上の混合気濃度は、通常、燃焼室に備えられた吸気口、つまり 吸気バルブに対向する側にぉ 、て、相対的に高!、ものとなって!/、る。
[0039] (第 2実施形態)
また、本発明における光触媒の配置の第 2実施形態としては、備える燃焼室がシリ ンダヘッドとピストンヘッドによって形成されている場合に、そのシリンダヘッドが、そ の内壁面に第 1凸部を有し、備える光触媒がその第 1凸部に設けられたものを挙げる
[0040] このような光触媒を設けた第 1凸部を備えることにより、シリンダヘッドの内壁面ゃピ ストン冠面のような燃焼室の内壁面近傍だけでなぐ燃焼室の中央部付近において も混合気を点火可能となり、火炎伝播距離を短縮できる。
[0041] この結果、より安定的に希薄燃焼を行なえる。
[0042] なお、「シリンダヘッドの内壁面が備える第 1凸部」は、燃焼室内において、通常備 える吸気バルブ'排気バルブやピストンヘッドの動きを阻害せず、急激な変動を伴つ た高温、高圧条件に耐え得るものであれば、その大きさや形状について特に限定さ れないが、例えば、一端を燃料室の壁に固定し、光触媒を光照射方向に設置できる よう L字型の形状をした、 V、わゆるジグのようなもの等を挙げる。
[0043] (第 3実施形態) 更に、本発明における光触媒の配置の第 3実施形態としては、備える燃焼室がシリ ンダヘッドとピストンヘッドによって形成されて 、る場合に、そのピストン冠面が第 2凸 部を有し、備える光触媒力 Sかかる第 2凸部に設けられたものを挙げる。
[0044] このような光触媒を設けた第 2凸部を備えることにより、シリンダヘッドの内壁面ゃピ ストン冠面のような燃焼室の内壁面近傍だけでなぐ燃焼室の中央部付近において も混合気を点火可能となり、火炎伝播距離を短縮できる。
[0045] この結果、上述したように、より安定的に希薄燃焼を行なえる。
[0046] なお、「ピストン冠面が備える第 2凸部」は、燃焼室内における吸気バルブ'排気バ ルブゃピストンヘッドの動きを阻害せず、急激な変動を伴った高温、高圧条件に耐え 得るものであれば、その大きさや形状について特に限定されないが、例えば、柱状や 錘状の突起物だけでなぐ更にはこれらが適当な貫通孔を有し、いわゆる櫓のような 形状をしたもの等を挙げることもできる。
[0047] (第 4実施形態)
更にまた、本発明における光触媒の配置の第 4実施形態としては、燃焼室の内壁 面に端部が接合されたメッシュ状担体を燃焼室の内部に有し、備える光触媒がその メッシュ状担体に設けられたものを挙げる。
[0048] このような光触媒を設けたメッシュ状担体を備えることにより、シリンダヘッドの内壁 面やピストン冠面のような燃焼室の内壁面近傍だけでなぐ燃焼室の中央部付近に おいても混合気を点火可能となり、火炎伝播距離を短縮できる。
[0049] この結果、上述したように、より安定的に希薄燃焼を行なえる。
[0050] なお、「メッシュ状担体」は、燃焼室内における吸気バルブ'排気バルブやピストン ヘッドの動きを阻害せず、急激な変動を伴った高温、高圧条件に耐え得るものであ れば、その大きさや形状について特に限定されないが、例えば、燃焼室内のガス流 動を妨げにく 、大きさの開口部を有するメッシュ状担体等を挙げる。
[0051] また、本発明においては、燃焼室の内壁面の一部が、鏡面として機能するものを挙 げる。
[0052] このような鏡面として機能する部位を燃焼室の内壁面に設けることにより、照射され た光エネルギーが反射され、その反射された光エネルギーが他の部位に照射され、 当該他の部位に光触媒を設けることにより、例えば分散した多くの箇所を点火箇所と することができる。
[0053] これにより、火炎伝播距離を短縮できると共に、より安定的に希薄燃焼を行なえる。
[0054] なお、燃焼室の内壁面の一部を鏡面として機能させるには、例えばピストンヘッドや シリンダヘッド、吸気バルブ'排気バルブのヘッドに適用されるアルミニウム合金など のような金属を鏡面カ卩ェすればょ 、が、これに限定されな 、。
[0055] 更に、本発明においては、備える燃焼室がシリンダヘッドとピストンヘッドによって形 成されている場合に、備える光発生装置が照射する光エネルギーの光軸方向が、備 えるピストンヘッドの往復動方向と平行でな 、ことが望まし 、。
[0056] 具体的には、上記光軸方向とピストン冠面とのなす角が鋭角であることが望ましい。
[0057] 光軸方向とピストンヘッドの往復動方向とが平行である場合、換言すれば光軸方向 とピストン冠面とのなす角が直角である場合には、上ピストン冠面以外、即ちシリンダ ヘッドの内壁面等を点火箇所として利用し難ぐ火炎伝播距離の短縮という観点から は望ましくない。
[0058] また、本発明にお 、ては、備える燃焼室がシリンダヘッドとピストンヘッドによって形 成されている場合に、備える光発生装置が、そのピストン冠面の端部に光エネルギー を面状に照射することが望ま 、。
[0059] 端部に光触媒が設けられている場合には、このように光エネルギーを面状に照射 することにより、混合気を点火できる。
[0060] 一方、端部に光触媒が設けられていない場合であっても、このように光エネルギー を面状に照射することにより、ピストン冠面の端部は比較的低温であるため、暖機で き、より安定的な希薄燃焼を行なえる。
[0061] 更に、本発明においては、備える光発生装置が、照射位置調整手段を備えること が望ましい。
[0062] このような照射位置調整手段を備えることにより、光エネルギーを面状に照射する 位置を適宜調整でき、より安定的な希薄燃焼を行なうことが可能となる。
[0063] 更にまた、本発明においては、備える燃焼室がシリンダヘッドとピストンヘッドによつ て形成され、且つ当該燃焼室の温度を検知する温度検知手段を備え、その温度検 知手段が検知する温度が所定の温度以下の場合に、備える照射位置調整手段が、 燃焼室の内壁面の一部であるピストン冠面の端部に光エネルギーが照射されるよう に照射位置を調整することが望まし 、。
[0064] このような構成とすることにより、更に効率良ぐより安定的な希薄燃焼を行なえる。
[0065] なお、「所定の温度」は、実験等によって適宜定めることができる。
[0066] ここで、光エネルギーを面状に照射する位置 (領域)を調整する照射位置調整手段
54を備えた光発生装置の一例を図面を用いて説明する。
[0067] 図 1は、照射位置調整手段 54を備えた光発生装置の一例である照射位置可変ュ ニット付きレーザー発振器 50の概略的断面形状を示す説明図である。
[0068] 図 1に示すように、照射位置可変ユニット付きレーザー発振器 50は、共振部分 52と
、光学系の一例である照射位置可変ユニット 54とから構成され、照射位置可変ュ- ット 54は、前後一対の透明ガラス 54a' 54bと、これらに間に配設した凹レンズ 54cと、 これらを結合するロッド 54dを備える。
[0069] そして、共振部分 52から取り出された光 Lは、透明ガラス 54a、凹レンズ 54c、透明 ガラス 54bの順に透過して、光触媒(図示無し)に照射される。
[0070] そして、凹レンズ 54cをァクチユエータ(図示無し)によってロッド 54dに沿う方向に 前後移動することにより、照射位置可変ユニット付きレーザー発振器 50は光ェネル ギ一の照射領域を制御できる。
[0071] なお、図 1においては、照射位置可変ユニット 54の近傍に共振部分 52を配設して いるが、例えば光ファイバ一など(図示無し)によりレーザー光を伝送可能であるため
、双方を離して配設することも可能であり、その配設する際の位置関係は任意である
[0072] また、図 2に、照射位置可変ユニット付きレーザー発振器 50を用いて、光触媒 20層 を形成したピストン冠面 14aに対して、光エネルギーを面状に照射する様子を示す。
[0073] 照射位置可変ユニット付きレーザー発振器 50から、取り出された光 Lは、ピストン冠 面 14aに設けられた光触媒 20に照射される。
[0074] なお、図 2中の Aは、照射領域を示す。
[0075] また、ここで、本発明の内燃機関用燃料点火システムを構成する具体的な要素に ついて説明する。
[0076] まず、本発明の内燃機関用燃料燃料点火システムに適用する内燃機関は、混合 気を燃焼することにより動力が得られればよぐ燃料、作動方式、サイクル、シリンダ 一数、シリンダー形式、冷却方式、バルブ機構、ノ レブ数などは特に限定されない。 更に、ロータリーエンジンにも適用可能である。
[0077] 次に、本発明の内燃機関用燃料点火システムに用いる光触媒は、例えばポーラス なチタン系酸ィ匕物、亜鉛系酸化物、ニオブ系酸化物、タンタル系酸ィ匕物又はスズ系 酸ィ匕物及びこれらを任意に組合わせたもの等を挙げるが、これらに限定されない。
[0078] 次に、本発明の内燃機関用燃料点火システムに適用する混合気は、特に限定され ないが、代表的には、燃料ガス (ガソリン、軽油、天然ガス、アルコールなど)と空気を 任意に配合して得られる。
[0079] 次に、本発明の内燃機関用燃料点火システムに用いる光発生装置としては、例え ばレーザー発振器を使用できる。
[0080] 力かるレーザー発振器としては、燃焼させる混合気や光触媒の種類などにより異な るが、固体レーザー、気体レーザー、半導体レーザー、エキシマレーザー、自由電子 レーザー等を単独で又は適宜組合わせて利用できる。
[0081] また、かかるレーザー発振器の光学系装置としては、従来公知のものを使用できる 。なお、混合気を点火するに当たり、少ない光エネルギー量で点火できるため、焦点 を結ばず、そのため集光レンズを必要としないなどの理由から、光学系装置をより小 型化することが可能である。
[0082] 以下、本発明を実施例 1により更に詳細に説明する。
[0083] (実施例 1)
図 3は、本例の内燃機関用燃料点火システム 1の概略的断面形状を示す説明図で ある。
[0084] 図 3に示すように、本例の内燃機関用燃料点火システム 1はシリンダヘッド 12とビス トンヘッド 14によって形成された燃焼室 10と、燃焼室 10のピストン冠面 14aに設けら れた光触媒 20と、その光触媒 20に対して光エネルギーを面状に照射する光発生装 置 30の一例であるレーザー発振器 50と、を備える。 [0085] また、シリンダヘッド 12は、窓 12aを有しており、レーザー発振器 50より照射された 光エネルギーは窓 12aを通過して、図 2に示すように光触媒 20に照射され、光エネ ルギ一が照射された光触媒 20は点火箇所となり、燃焼室 10内の混合気を点火する
[0086] なお、混合気は、吸気ポート 12bに設けられたインジェクター 12cから供給される燃 料と吸入された空気力も得られ、吸気バルブ 12dが開くことにより燃焼室 10に供給さ れる。また、混合気が燃焼した後は、排気ノ レブ 12eが開き、排気ポート 12fから燃 焼ガスとして排気される。
[0087] このように、光触媒 20を用いて、従来よりも少な!/、光エネルギーで点火可能となつ たため、より広い領域で点火できる。
[0088] その結果、燃焼が安定して、希薄燃焼が可能となり、希薄燃焼領域が拡 (大した。
[0089] <内燃機関用燃料改質システム >
以下、本発明の内燃機関用燃料改質システムについて詳細に説明する。なお、本 特許請求の範囲及び本明細書において、「%」は特記しない限り質量百分率を表す ものとする。
[0090] 本発明の内燃機関用燃料改質システムは、燃焼室に配設する光触媒と、この光触 媒に光を照射し得る光発生装置とを備えて成る。
[0091] これにより、光発生装置から照射された光の少なくとも一部を光触媒が吸収すること で、燃焼室に存在する燃料を改質できる。
[0092] 照射条件を変更することにより光触媒反応の酸化力を抑制して燃料を完全酸化せ ず中間生成物に改質でき、点火し易い含酸素化合物や水素を高濃度で含む混合ガ スを燃焼室内に充満させ得る。また、光を照射したときにのみ改質が進行するため、 運転状況に応じて燃料組成を適宜変更できる。
[0093] 反応機構に関して、光触媒にバンドギャップ以上のエネルギーを持つ光が照射さ れると、価電子帯力 伝導帯へ電子が励起され価電子帯には正孔が生じる。そして、 電子や正孔は触媒表面に移動し、電子は還元、正孔は酸ィ匕を行う。
[0094] このときの酸ィ匕還元力は、伝導帯下端が高ければ高いほど還元力が強ぐ価電子 帯上端が低ければ低いほど酸ィ匕力が強くなる。 [0095] よって、本発明では、燃料の種類や、光触媒の種類、配置、量や、光発生装置の照 射光の波長、光子エネルギーの強さ等を調節することで、所望の改質ガスを得ること ができる。
[0096] ここで、上記改質用光触媒としては、例えば、銅などの遷移金属をシリカなどの多 孔質材料に担持した触媒等が使用できる。
[0097] これらを使用するときは、酸化を制御し易ぐ完全酸ィ匕を抑制することで中間生成物 を生成し易くなる。
[0098] また、これら光触媒の担持部位は、混合気に接触できる限り特に限定されないが、 改質効率を向上させる観点力もは、比表面積を増カロさせて担持することが有効であ る。
[0099] 例えば、高い比表面積を持つアルミナ、チタ-ァ、シリカ、イットリア、ジルコユア又 はセリア、及びこれらを任意に組合わせて成る多孔質無機担体に担持して使用でき る。このときは、光触媒は、多孔質無機担体に担持した形態で、ピストンヘッドの上部 や、シリンダヘッドの外周辺に配設するのが良い。
[0100] 更に、上記光発生装置は、燃焼させる混合気や光触媒の種類などにより異なるが、 固体レーザー、気体レーザー、半導体レーザー、エキシマレーザー、自由電子レー ザ一等を照射できるものを適宜使用できる。
[0101] また、キセノンランプ、ハロゲンランプ、高圧水銀灯なども適宜使用できる。
[0102] なお、改質する燃料は、特に限定されるものではなぐ例えば、酸素 メタン、空気
-ガソリンなど燃料ガスとして使用できる。
[0103] また、上記燃焼室は、特に限定されるものではなぐ例えば、半球形型、多球形型、 くさび型、ノ《スタブ型、ペントルーフ型等を所望の排気量で使用できる。
[0104] <燃料改質方法 >
次に、本発明の燃料改質方法について詳細に説明する。
[0105] 本燃料改質方法は、上述の内燃機関用燃料改質システムを用い、燃料及び空気 を混合した燃料ガスを燃焼室に送入し光触媒と接触させるとともに、光発生装置から 照射された光の少なくとも一部を該光触媒に吸収させて、含酸素化合物と水素の少 なくとも 1つを含む混合気に該燃料ガスを改質する。 [0106] このように、燃料に空気を供給することにより、燃料を含酸素化合物や水素に改質 できる。具体的には、酸素の存在により部分酸化が進行して含酸素化合物が生成す る。
[0107] 含酸素化合物としては、メタノール、エタノールなどのアルコール類のほ力、アルデ ヒド類等が挙げられる。
[0108] これら含酸素化合物が生成することにより、排気ガス中の PM生成を抑制できる。
[0109] また、本燃料改質方法においては、上記光発生装置の照射出力を変更して、燃料 の部分酸化、混合気点火のそれぞれを行わせることができる。即ち、照射する光子 量を増加すると酸ィ匕に必要な正孔数が増加し、反応速度を高めることができるので、 改質量を増加できる。
[0110] 例えば、自動車などの内燃機関においては、負荷変動にともない供給される燃料 量が増加するので、これに対応するために光子量を増やす、つまり出力を増加する ことが重要である。
[0111] 更に、本燃料改質方法においては、含酸素化合物と水素の少なくとも 1つ(改質ガ ス)を含む混合気を、火花点火により点火できる。
[0112] このときは、手段が限定されることなく従来の点火プラグ等を使用できるので、コスト を低減できる。(なお、点火プラグとしては、例えば、 U溝型、突出し型、 2極型、沿面 型、ワイド U型、ワイド型、 4極型、レジスター内蔵型、レーシング用等が挙げられる。
[0113] <内燃機関用燃料点火システム >
次に、本発明の内燃機関用燃料点火システムについて詳細に説明する。
[0114] 本燃料点火システムは、燃焼室に配設する 2種以上の光触媒と、これら光触媒に光 を照射し得る光発生装置とを備えて成る。
[0115] 上記光触媒として、光発生装置から照射された光の少なくとも一部を吸収して燃料 の改質を促進する光触媒と、光発生装置力 照射された光の少なくとも一部を吸収し て改質後の混合気点火を促進する光触媒と、が少なくとも 1種ずっ配設されて成る。
[0116] 尚、 1種のみの光触媒を含む内燃機関用燃料点火システムについては図 2〜3を 参照しながら上記している。
[0117] このように、酸化力の異なる光触媒を配設することで、光触媒の酸化力に合わせて 改質と点火のそれぞれを制御できるようになる。よって、改質ガスを含む混合気を効 率良く点火できる。
[0118] 即ち、酸ィ匕還元力に関しては、伝導帯下端が高ければ高いほど還元力が強ぐ価 電子帯上端が低ければ低いほど酸ィ匕力が強くなる。従って、酸ィ匕カを制御するには 、価電子帯上端の位置の異なる金属酸ィ匕物を配設すればよい。また、同じ金属酸化 物であってもァニオンをドープして価電子帯の位置を高くして酸ィ匕カを弱めたり、遷 移金属を添加することにより酸ィ匕の活性を制御できる。
[0119] ここで、上記改質用光触媒としては、例えば、銅などの遷移金属をシリカなどの多 孔質材料に担持した触媒等が使用できる。
[0120] また、上記点火用光触媒としては、上記改質用光触媒と同様の光触媒の他、例え ば、ポーラスなチタン系酸ィ匕物、亜鉛系酸化物、ニオブ系酸化物、タンタル系酸化物 、ガリウム系酸ィ匕物、ストロンチウム系酸ィ匕物、鉄系酸化物、タングステン系酸ィ匕物又 はスズ系酸ィ匕物、及びこれらを任意に組合わせたもの等が使用できる。
[0121] 具体的には、シリンダヘッドの内壁面とピストンヘッドによって形成される燃焼室で は、上記改質用光触媒と上記点火用光触媒を、ピストン冠面に均一に分散、配設で きる。
[0122] このときは、ピストン冠面の全域を利用して改質と点火を行える。即ち、ピストン冠面 の全面で改質できるので、改質ガスが混合気に十分混合され、燃焼が改善され得る 。また、点火もピストン冠面の全面で行えるので、火炎伝播距離が最短になり、超希 薄燃焼や希薄燃焼が可能となる。更に、自点火によるノック抑制ができるため、圧縮 比が上げられる。
[0123] なお、改質,点火の制御は、例えば照射する光の波長を切り替えることにより行える
[0124] また、ピストン冠面において、上記点火用光触媒と上記改質用光触媒とを別個独立 に配設してもよい。代表的には、上記点火用光触媒をピストン冠面の中心部及び外 周部に配設し、これらの間に上記改質用光触媒を配設できる。
[0125] ここで、「中心部」とは、ピストン冠面を形成する円の半径のうち、当該半径の中心側
1Z3以下で形成される範囲をいう。「外周部」とは、当該半径の円周側 1Z5以下で 形成される範囲をいう。
[0126] このときは、点火用光触媒をピストン冠面の中心及びその近傍に配設することにより 燃焼室内中の火炎伝播距離が短縮できるため、また外周部に配設することにより自 己点火によるノックを抑制できるため、有効である。
[0127] また、改質用光触媒と点火用光触媒が分離して配設されるので、 1種類の波長の みを発生させる光発生装置を設置すれば足りる。
[0128] なお、改質 ·点火のタイミングは、光発生装置の照射角度、照射範囲等を調製して 制御できる。例えば、図 4 (a) , (b) ,図 5 (a) , (b)に示すように、ピストンヘッドの上下 動により、点火用光触媒から改質用光触媒へ順に光発生装置からの光が照射される 構造となり得る。また、このタイミングに合わせて照射光の波長を制御することも有効 である。
[0129] <燃料点火方法 >
次に、本発明の燃料点火方法について詳細に説明する。
[0130] 《第 1の燃料点火方法〉〉
本発明の第 1の燃料点火方法は、上述の内燃機関用燃料点火システムにおいて、 光発生装置を複数用いて異なる単波長の光を複数発生させることと、光発生装置か らの光を光学フィルターを介して変更して複数の波長を有する光を発生させることの 、少なくとも 1つを行うことにより、燃料改質と混合気点火のそれぞれを、異なる波長 域の光を用いて行わせるものである。
[0131] ここで、光触媒を用いて改質と点火を進行させるには、各光触媒のバンドギャップ 以上のエネルギーを有する波長の光を照射しなければならない。また、使用する複 数の光触媒のうち最も大きいバンドギャップに相当するエネルギーを持つ光を照射 すると、より小さいバンドギャップを持つ光触媒も光を吸収してしまい、双方の光触媒 反応が進行する。
[0132] そこで、改質用光触媒のみが吸収する波長と、改質用光触媒と点火用光触媒が吸 収する波長とを発生させる光発生装置を配設することにより、異なる種類の光触媒が 均一に分散されているときでも、改質と点火を制御できる。また、このときは、改質 '点 火がピストン冠面の全面で促進されるので有効である。 [0133] 光学フィルタ一は、所定の波長を除去できればよぐ例えば、ガラス板に光吸収剤 を配合したカットオフフィルター、ニュートラルデンシティ一フィルタ一等を使用できる 。これらの使用により、長波長側の光を通過させ、短波長側の光を除去できる。また、 これらを組み合わせることで複数の波長の照射をも行える。
[0134] 《第 2の燃料点火方法〉〉
また、本発明の第 2の燃料点火方法は、上述の内燃機関用燃料点火システムにお いて、光発生装置を複数用いて異なる単波長の光を複数発生させることと、光発生 装置の照射位置を変更させることの、少なくとも 1つを行うことにより、燃料改質と混合 気点火のそれぞれを行わせるものである。
[0135] 第 2の燃料点火方法によれば、改質用光触媒と点火用光触媒が分離して配設され ているときに、 1種類の光発生装置の配設により、改質と点火を促進できる。
[0136] 即ち、使用する複数の光触媒のうち最も大きいバンドギャップに相当するエネルギ 一を持つ光を照射すれば!/ヽずれの光触媒も光を吸収し、光触媒反応を進行させ得 る。
[0137] また、改質と点火は、例えば、波長をスプリッタにより分離して照射時期を独立して 変更させることや、照射位置を変更することにより制御できる。
[0138] 《第 3の燃料点火方法〉〉
更に、本発明の第 3の燃料点火方法は、上述の内燃機関用燃料点火システムにお いて、上記光発生装置の照射時間と照射出力の少なくとも 1つを変更させることによ り、燃料改質と混合気点火のそれぞれを行わせる。
[0139] これにより、例えば、始動時や低負荷時など混合気の温度やピストン冠面の温度が 低いときは、改質用光触媒の活性が低下しているので、照射時間を長くすることによ り改質量を確保できる。
[0140] 以下、本発明を実施例 2〜6及び比較例 1により更に詳述するが、本発明は実施例
2〜6に限定されない。
[0141] (実施例 2)
図 6 (a) , (b)に内燃機関用燃料点火システム 1の概略及びピストン冠面 14aの斜視 図を示す。 [0142] この内燃機関用燃料点火システム 1は、燃焼室 10内上部に光発生装置 30の一例 であるレーザー発振器 50、インジェクター 12cを備えている。また、ピストン冠面 14a には、中央部に点火用光触媒 22 (CuZSiO )が配設され、外周部(上記の「当該半
2
径の円周側 1Z5以下」ではありません)に改質用光触媒 21 (TiO )が配設されてい
2
る。
[0143] 1)改質工程 (吸気工程及び圧縮行程) {図 7 (a) }
内燃機関用燃料点火システム 1を用いて、図 7に示すように、燃料の改質 '点火を ρ み/こ。
[0144] また、酸素の存在する状態、具体的には、吸気工程中に燃料を燃焼室 10に供給し た後、光発生装置 30の一例であるレーザー発振器 50より波長 450nmの光を酸ィ匕 力の弱い改質用光触媒 21に照射したところ、燃料が改質され含酸素化合物が生成 した。
[0145] 2)点火工程 (燃焼行程) {図 7 (b) }
次いで、改質ガスを含む混合気が存在する燃焼室 10において、光発生装置 30の 一例であるレーザー発振器 50より波長 380nmの光を酸ィ匕力の強い点火用光触媒 2
2に照射したところ、混合気を点火できた。
[0146] (実施例 3)
図 8 (a) , (b)に内燃機関用燃料点火システム 1の概略及びピストン冠面 14aの斜視 図を示す。
[0147] この内燃機関用燃料点火システム 1は、燃焼室 10内上部に、異なる波長の光を照 射できる 2つのレーザー発振器 51 (光発生装置 31の一例),レーザー発振器 53 (光 発生装置 32の一例)を配設したこと、酸化力の異なる複数の光触媒、即ち改質用光 触媒 21 (CuZSiO )と点火用光触媒 22 (TiO )を均一に混合した光触媒 23をピスト
2 2
ン冠面 14aに配設したこと、以外は実施例 2と同様の構成を有する内燃機関用燃料 点火システム 1とした。
[0148] 改質工程(吸気工程及び圧縮工程)では、酸化力の弱い改質用光触媒 21が吸収 する波長 450nmの光を照射して燃料を改質した。
[0149] 次いで、点火工程 (燃焼行程)では、酸ィ匕力の強い点火用光触媒 22が吸収する波 長 380nmの光を照射したところ、混合気を点火できた。
[0150] (実施例 4)
図 9 (a) , (b)に内燃機関用燃料点火システム 1の概略を示す。
[0151] この内燃機関用燃料点火システム 1は、ピストン冠面 14aにおいて、点火用光触媒
22を中心部と外周部に配設し、改質用光触媒 21をその間に配設した。
[0152] また、波長を変えるためのフィルター 9を光発生装置 30の一例であるレーザー発振 器 50に配設し、幅広い波長 250nm〜550nmの光が照射可能となるようにした。
[0153] これら以外は実施例 2と同様の構成を有する内燃機関用燃料点火システム 1とした
[0154] 改質工程(吸気工程及び圧縮工程)では、酸化力の弱い改質用光触媒 21が吸収 する波長 450nmの光を照射して燃料を改質した。
[0155] また、酸ィ匕力の弱い改質用光触媒 21が吸収する波長 450nmの光をフィルター 9に より選択し、照射して燃料を改質した。
[0156] 次いで、点火工程 (燃焼行程)では、酸ィ匕力の強い点火用光触媒 22が吸収する波 長 380nmの光をフィルター 9により選択し、照射したところ、混合気を点火できた。
[0157] (実施例 5)
図 10,図 11に示すように、エンジン回転数とエンジントルクに対して、照射時間と照 射出力を変更した以外は、実施例 2と同様の構成を有する内燃機関用燃料点火シス テム 1とした。
[0158] (実施例 6)
図 12に示すように、光発生装置 30の一例であるレーザー発振器 50と、コード 13に 接続した点火プラグ 11を、併用した以外は、実施例 2と同様の構成を有する内燃機 関用燃料点火システム 1とした。
[0159] 改質工程(吸気工程及び圧縮工程)では、酸化力の弱い改質用光触媒 21が吸収 する波長 450nmの光を照射し、燃料を改質した。
[0160] 次 、で、点火工程 (燃焼行程)では、点火プラグ 11により混合気を点火できた。
[0161] (比較例 1)
図 13に示すように、ピストン冠面 14aに混合気の点火用光触媒 22 (TiO )のみを配 設した以外は、実施例 2と同様の構成を有する内燃機関用燃料点火システム 1とした
[0162] (評価測定) 実施例 2〜6及び比較例 1で得た内燃機関用燃料点火システム 1に燃 料ガスを送入し、燃焼させたときの排気ガス中の PM量を測定した。
[0163] 混合気としては、ガソリンと空気を空気過剰率え = 1から 1. 5となるように調節して 供給した。
[0164] 比較例 1に比べて実施例 2〜6では排出される PM量が 20%程度低減した。
[0165] 特願 2005— 248708 (曰本国出願曰: 2005年 8月 30曰)及び特願 2005— 2493
83 (日本国出願日: 2005年 8月 30日)の全内容はここに援用される。
[0166] 以上、実施形態及び実施例に沿って本発明の内容を記載したが、本発明はこれら の記載に限定されるものではなぐ種々の変形及び改良が可能であることは、当業者 には自明である。
産業上の利用可能性
[0167] 本発明によれば、光発生装置力 光エネルギーを光触媒に照射し、該光触媒を活 性化させ、混合気点火に必要なラジカルを光触媒の反応を利用して生成させること などとしたため、大幅に少ない光エネルギー量で希薄な混合気を点火させ得る内燃 機関用燃料点火システム、更には希薄燃焼によって燃費を向上させ得る内燃機関用 燃料点火システムを提供できる。
[0168] 更に本発明によれば、光触媒反応により燃料の一部を改質して水素や含酸素化合 物を生成させるので、混合気の燃焼が促進され、 PM (パティキュレートマター)の生 成を抑制し得る。

Claims

請求の範囲
[1] 光発生装置力 照射される光エネルギーを利用して、光触媒により混合気を点火 する内燃機関用燃料点火システムであって、
燃焼室と、該燃焼室に設けられた光触媒と、該光触媒に対して光エネルギーを面 状に照射する光発生装置と、を備えたことを特徴とする内燃機関用燃料点火システ ム。
[2] 上記燃焼室が、シリンダヘッドとピストンヘッドによって形成され、上記光触媒が、ピ ストン冠面に設けられたことを特徴とする請求項 1に記載の内燃機関用燃料点火シス テム。
[3] 上記燃焼室が、シリンダヘッドとピストンヘッドによって形成され、ピストン冠面上の 混合気濃度が相対的に高い領域側に、上記光触媒が相対的に多く設けられたことを 特徴とする請求項 1に記載の内燃機関用燃料点火システム。
[4] 上記燃焼室が、シリンダヘッドとピストンヘッドによって形成され、該シリンダヘッドが その内壁面に第 1凸部を有し、上記光触媒が該第 1凸部に設けられたことを特徴とす る請求項 1に記載の内燃機関用燃料点火システム。
[5] 上記燃焼室が、シリンダヘッドとピストンヘッドによって形成され、該ピストンヘッドが ピストン冠面に第 2凸部を有し、上記光触媒が該第 2凸部に設けられたことを特徴と する請求項 1に記載の内燃機関用燃料点火システム。
[6] 上記燃焼室の内壁面に端部が接合されたメッシュ状担体を上記燃焼室の内部に 配置し、上記光触媒が、該メッシュ状担体に設けられたことを特徴とする請求項 1〖こ 記載の内燃機関用燃料点火システム。
[7] 上記燃焼室の内壁面の一部が、鏡面として機能するように構成されたことを特徴と する請求項 1に記載の内燃機関用燃料点火システム。
[8] 上記燃焼室が、シリンダヘッドとピストンヘッドによって形成され、上記光発生装置 が照射する該面状の光エネルギーの光軸方向力 上記ピストンヘッドの往復動方向 と平行でな ヽことを特徴とする請求項 1に記載の内燃機関用燃料点火システム。
[9] 上記燃焼室が、シリンダヘッドとピストンヘッドによって形成され、上記光発生装置 力 該ピストン冠面の端部に光エネルギーを照射することを特徴とする請求項 1に記 載の内燃機関用燃料点火システム。
[10] 上記光発生装置が、照射位置調整手段を備えたことを特徴とする請求項 1に記載 の内燃機関用燃料点火システム。
[11] 上記燃焼室が、シリンダヘッドとピストンヘッドによって形成され、且つ当該燃焼室 の温度を検知する温度検知手段を備え、該温度検知手段が検知する温度が所定の 温度以下の場合に、上記照射位置調整手段が、該ピストン冠面の端部に光エネルギ 一が照射されるように照射位置を調整するように構成されて ヽることを特徴とする請 求項 10に記載の内燃機関用燃料点火システム。
[12] 上記燃焼室に 2種以上の光触媒を配設し、
上記 2種以上の光触媒の少なくとも 1種は、該光発生装置力 照射された光の少な くとも一部を吸収して燃料の改質を促進し、
上記光触媒の少なくとも 1種は、該光発生装置から照射された光の少なくとも一部 を吸収して改質後の混合気点火を促進する、ことを特徴とする請求項 1に記載の内 燃機関用燃料点火システム。
[13] 上記燃焼室が、シリンダヘッドとピストンヘッドによって形成され、
上記改質用光触媒と上記点火用光触媒が、ピストン冠面に略均一に分散、配設さ れていることを特徴とする請求項 12に記載の内燃機関用燃料点火システム。
[14] 上記燃焼室が、シリンダヘッドとピストンヘッドによって形成され、
上記点火用光触媒と上記改質用光触媒とが、ピストン冠面に別個独立に配設され ていることを特徴とする請求項 12に記載の内燃機関用燃料点火システム。
[15] 上記点火用光触媒がピストン冠面の中心部及び外周部に配設され、これらの間に 上記改質用光触媒が配設されていることを特徴とする請求項 14に記載の内燃機関 用燃料点火システム。
[16] 請求項 12に記載の内燃機関用燃料点火システムを用いた燃料点火方法であって 上記光発生装置を複数用いて異なる単波長の光を複数発生させることと、上記光 発生装置からの光を光学フィルターを介して変更して複数の波長を有する光を発生 させることの、少なくとも 1つにより、 燃料改質と混合気点火のそれぞれを、異なる波長域の光を用いて行わせることを 特徴とする燃料点火方法。
[17] 請求項 14に記載の内燃機関用燃料点火システムを用いた燃料点火方法であって 上記光発生装置を複数用いて異なる単波長の光を複数発生させることと、上記光 発生装置の照射位置を変更させることの、少なくとも 1つにより、
燃料改質と混合気点火のそれぞれを行わせることを特徴とする燃料点火方法。
[18] 請求項 12に記載の内燃機関用燃料点火システムを用いた燃料点火方法であって 上記光発生装置の照射時間と照射出力の少なくとも 1つを変更させることにより、燃 料改質と混合気点火のそれぞれを行わせることを特徴とする燃料点火方法。
[19] 燃焼室に配設する光触媒と、この光触媒に光を照射し得る光発生装置とを備える 内燃機関用燃料改質システムであって、
該光発生措置から照射された少なくとも一部を光触媒が吸収し燃焼室に存在する 燃料を改質する構造を持つことを特徴とする内燃機関用燃料改質システム。
[20] 請求項 19に記載の内燃機関用燃料改質システムを用いた燃料改質方法であって 上記燃焼室に燃料及び空気を混合した燃料ガスを送入し上記光触媒と接触させる とともに、該光触媒に上記光発生装置力も照射された光の少なくとも一部を吸収させ て、
該燃料ガスを、含酸素化合物と水素の少なくとも 1つを含む混合気に改質すること を特徴とする燃料改質方法。
[21] 上記光発生装置の照射出力を変更して、燃料の部分酸化、混合気点火のそれぞ れを行わせることを特徴とする請求項 20に記載の燃料改質方法。
[22] 含酸素化合物と水素の少なくとも 1つを含む混合気を、火花点火により点火すること を特徴とする請求項 20に記載の燃料改質方法。
PCT/JP2006/316308 2005-08-30 2006-08-21 内燃機関用燃料点火システム、燃料点火方法、燃料改質システム、燃料改質方法 WO2007026558A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06796571A EP1930583A1 (en) 2005-08-30 2006-08-21 Fuel ignition system for internal combustion engine, method for igniting fuel, fuel reforming system, and fuel reforming method
CN2006800302791A CN101243253B (zh) 2005-08-30 2006-08-21 内燃机用燃料点火系统、点火方法、改性系统及改性方法
US12/064,504 US7793631B2 (en) 2005-08-30 2006-08-21 Fuel ignition system, fuel igniting method, fuel reforming system and fuel reforming method, for internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005-249383 2005-08-30
JP2005-248708 2005-08-30
JP2005248708A JP2007064037A (ja) 2005-08-30 2005-08-30 内燃機関用点火システム
JP2005249383A JP2007064060A (ja) 2005-08-30 2005-08-30 内燃機関の燃料改質システム及び燃料点火システム

Publications (1)

Publication Number Publication Date
WO2007026558A1 true WO2007026558A1 (ja) 2007-03-08

Family

ID=37808657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316308 WO2007026558A1 (ja) 2005-08-30 2006-08-21 内燃機関用燃料点火システム、燃料点火方法、燃料改質システム、燃料改質方法

Country Status (3)

Country Link
US (1) US7793631B2 (ja)
EP (1) EP1930583A1 (ja)
WO (1) WO2007026558A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116879A2 (en) * 2008-03-17 2009-09-24 Wieslaw Oledzki Laser ignition device for combustion engine
JP2010007612A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd 改質器付エンジンシステム
JP2012087805A (ja) * 2011-12-22 2012-05-10 Hitachi Ltd 改質器付エンジンシステム

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009002165A1 (de) * 2009-04-03 2010-10-14 Robert Bosch Gmbh Kolben für eine Brennkraftmaschine
US20140149023A1 (en) * 2012-11-29 2014-05-29 Ford Global Technologies, Llc Method and system for engine position control
US20140149018A1 (en) * 2012-11-29 2014-05-29 Ford Global Technologies, Llc Engine with laser ignition and measurement
US9341157B2 (en) * 2012-12-17 2016-05-17 Jake Petrosian Catalytic fuel igniter
WO2014116797A1 (en) * 2013-01-23 2014-07-31 Combustion 8 Technologies Llc Improved diesel engine efficiency by timing of ignition and combustion using ultraviolet light
CA2918694A1 (en) * 2013-07-19 2015-01-22 V-GRID Energy Systems An ignition system for low grade synthesis gas at high compression
US10024221B2 (en) * 2013-10-09 2018-07-17 Mitsubishi Heavy Industries Engine & Turbocharger, Ltd. Piston for prechamber-type gas engine and prechamber-type gas engine
US10786592B2 (en) * 2015-07-07 2020-09-29 Uvairx, Inc. Reaction core system for photocatalytic purifiers
US10519854B2 (en) 2015-11-20 2019-12-31 Tenneco Inc. Thermally insulated engine components and method of making using a ceramic coating
US10578050B2 (en) 2015-11-20 2020-03-03 Tenneco Inc. Thermally insulated steel piston crown and method of making using a ceramic coating
JP6579338B2 (ja) 2017-04-20 2019-09-25 トヨタ自動車株式会社 内燃機関用燃料の改質装置
CN115304193B (zh) * 2022-10-11 2023-02-07 水之革(山东)环保科技有限责任公司 一种光催化氧化降解染料废水的装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180328U (ja) * 1982-05-27 1983-12-02 日本碍子株式会社 内燃機関の燃焼室壁面構造
JP2641551B2 (ja) * 1987-02-19 1997-08-13 有限会社ハイ・テク・インターナショナル研究所 内燃機関の燃焼方式及びその燃焼装置
JPH10265783A (ja) * 1997-03-24 1998-10-06 Toyota Motor Corp 燃料改質装置
JPH11324879A (ja) * 1998-05-13 1999-11-26 Nissan Motor Co Ltd 内燃機関
JP2000073780A (ja) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd 内燃機関の燃焼室浄化装置
JP2002250231A (ja) * 2001-02-23 2002-09-06 Shigemi Sawada 排気ガス中のNOx濃度を低減させるエンジン

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58195074A (ja) 1982-05-07 1983-11-14 Nippon Denso Co Ltd 内燃機関の点火装置
JPS63173852A (ja) 1987-01-12 1988-07-18 Komatsu Ltd 内燃機関の点火装置
DE3889038T2 (de) 1987-02-19 1994-09-08 Hi Tech International Lab Co L Verbrennungssystem für einen verbrennungsmotor und dabei verwendeter brenner.
JPH09256854A (ja) * 1996-03-22 1997-09-30 Sumitomo Metal Mining Co Ltd 内燃機関の燃焼方法
JPH10176615A (ja) 1996-12-13 1998-06-30 Nippon Telegr & Teleph Corp <Ntt> 燃料貯蔵槽
WO2003031030A2 (en) * 2001-10-10 2003-04-17 Dominique Bosteels Combustion process
EP1476397A4 (en) * 2002-02-19 2008-03-05 Tal Materials MIXED METAL OXIDE PARTICLES BY LIQUID SUPPLY FLAME SPREADING HYPERROLYSIS OF OXID FILLERS IN OXYGENIZED SOLVENTS
US7487763B2 (en) * 2004-06-09 2009-02-10 Fuji Kihan Co., Ltd. Fuel reformer
US7498009B2 (en) * 2004-08-16 2009-03-03 Dana Uv, Inc. Controlled spectrum ultraviolet radiation pollution control process
JP4658094B2 (ja) * 2006-07-28 2011-03-23 アート金属工業株式会社 内燃機関用ピストンの表面改質方法及び内燃機関用ピストン
US20080258080A1 (en) * 2007-04-23 2008-10-23 Bill Rippe Toe Method and apparatus for treating fluids to alter their physical characteristics

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180328U (ja) * 1982-05-27 1983-12-02 日本碍子株式会社 内燃機関の燃焼室壁面構造
JP2641551B2 (ja) * 1987-02-19 1997-08-13 有限会社ハイ・テク・インターナショナル研究所 内燃機関の燃焼方式及びその燃焼装置
JPH10265783A (ja) * 1997-03-24 1998-10-06 Toyota Motor Corp 燃料改質装置
JPH11324879A (ja) * 1998-05-13 1999-11-26 Nissan Motor Co Ltd 内燃機関
JP2000073780A (ja) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd 内燃機関の燃焼室浄化装置
JP2002250231A (ja) * 2001-02-23 2002-09-06 Shigemi Sawada 排気ガス中のNOx濃度を低減させるエンジン

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116879A2 (en) * 2008-03-17 2009-09-24 Wieslaw Oledzki Laser ignition device for combustion engine
WO2009116879A3 (en) * 2008-03-17 2009-11-12 Wieslaw Oledzki Laser ignition device for combustion engine
JP2010007612A (ja) * 2008-06-30 2010-01-14 Hitachi Ltd 改質器付エンジンシステム
US8596231B2 (en) 2008-06-30 2013-12-03 Hitachi, Ltd. Engine system with reformer
JP2012087805A (ja) * 2011-12-22 2012-05-10 Hitachi Ltd 改質器付エンジンシステム

Also Published As

Publication number Publication date
US20090260592A1 (en) 2009-10-22
US7793631B2 (en) 2010-09-14
EP1930583A1 (en) 2008-06-11

Similar Documents

Publication Publication Date Title
WO2007026558A1 (ja) 内燃機関用燃料点火システム、燃料点火方法、燃料改質システム、燃料改質方法
JP6153700B2 (ja) 航空機エンジンを含むガスタービン用のレーザ点火システムのための先進型オプティックスおよび光アクセス
CA1188169A (en) Method and means for stimulating combustion especially of lean mixtures in internal combustion engines
JP5051048B2 (ja) 内燃機関
JP2006307839A (ja) 光伝導体発火システム
JP2016511387A (ja) 燃焼安定のための補助的なレーザ燃焼
JP2009194076A (ja) レーザ着火装置
JP2010138897A (ja) エンジン
JP2007064060A (ja) 内燃機関の燃料改質システム及び燃料点火システム
CN101243253B (zh) 内燃机用燃料点火系统、点火方法、改性系统及改性方法
Vedharaj Advanced ignition system to extend the lean limit operation of spark-ignited (SI) engines—A review
JP4911325B2 (ja) エンジンの燃焼制御装置
McMillian et al. Laser spark ignition: laser development and engine testing
JP4063871B2 (ja) 触媒導入燃焼式の特にガスタービン用のバーナ
KR102626114B1 (ko) 연료를 절감하고 배기가스 배출을 저감하는 내연기관
JP2006307732A (ja) 内燃機関用燃焼システム
JP2001227330A (ja) エンジンシステム
JP2007177762A (ja) 内燃機関
JP2007120369A (ja) 燃料改質装置及びこれを用いた燃料点火システム
JP4035850B2 (ja) 光触媒作用を利用した燃焼効率改善方法および光触媒作用を利用した燃焼効率改善装置
US20090035711A1 (en) Photocatalytic ignition system
JP3556783B2 (ja) 低セタン価エンジンの燃焼装置
JP2006242043A (ja) 着火時期制御方法および装置
JPH10196471A (ja) 内燃機関
JPH10196508A (ja) 内燃機関及び燃焼開始制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680030279.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12064504

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006796571

Country of ref document: EP