WO2007023097A1 - Verfahren zur herstellung wasserabsorbierender polymerpartikel - Google Patents

Verfahren zur herstellung wasserabsorbierender polymerpartikel Download PDF

Info

Publication number
WO2007023097A1
WO2007023097A1 PCT/EP2006/065206 EP2006065206W WO2007023097A1 WO 2007023097 A1 WO2007023097 A1 WO 2007023097A1 EP 2006065206 W EP2006065206 W EP 2006065206W WO 2007023097 A1 WO2007023097 A1 WO 2007023097A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerization
polymer particles
reaction products
water
reactors
Prior art date
Application number
PCT/EP2006/065206
Other languages
English (en)
French (fr)
Inventor
Rüdiger Funk
Jürgen Schröder
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se filed Critical Basf Se
Priority to US11/997,941 priority Critical patent/US7910675B2/en
Priority to JP2008527433A priority patent/JP5044555B2/ja
Priority to CN2006800302664A priority patent/CN101242891B/zh
Priority to EP06778210.2A priority patent/EP1919609B1/de
Publication of WO2007023097A1 publication Critical patent/WO2007023097A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/01Processes of polymerisation characterised by special features of the polymerisation apparatus used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/22Stationary reactors having moving elements inside in the form of endless belts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2445Stationary reactors without moving elements inside placed in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00033Continuous processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/93Water swellable or hydrophilic

Abstract

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation in mindestens zwei parallelen kontinuierlichen Polymerisationsreaktoren unter weitgehend identischen Bedingungen, wobei die Reaktionsprodukte in mindestens einem Verfahrenschritt gemeinsam weiterverarbeitet werden.

Description

Verfahren zur Herstellung wasserabsorbierender Polymerpartikel
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel durch Polymerisation in mindestens zwei parallelen kontinuierlichen Polymerisationsreaktoren, wobei die Reaktionsprodukte in mindestens einem Verfahrenschritt gemeinsam weiterverarbeitet werden.
Wasserabsorbierende Polymere sind insbesondere Polymere aus (co)polymerisierten hydrophilen Monomeren, Pfropf(co)polymere von einem oder mehreren hydrophilen Monomeren auf einer geeigneten Pfropfgrundlage, vernetzte Cellulose- oder Stärke- ether, vernetzte Carboxymethylcellulose, teilweise vernetztes Polyalkylenoxid oder in wässrigen Flüssigkeiten quellbare Naturprodukte, wie beispielsweise Guarderivate. Solche Polymere werden als wässrige Lösungen absorbierende Produkte zur Herstellung von Windeln, Tampons, Damenbinden und anderen Hygieneartikeln, aber auch als wasserzurückhaltende Mittel im landwirtschaftlichen Gartenbau verwendet.
Wasserabsorbierende Harze haben typischerweise eine Zentrifugenretentionskapazität von 15 bis 60 g/g, vorzugsweise von mindestens 20 g/g, bevorzugt von mindestens 25 g/g, besonders bevorzugt von mindestens 30 g/g, ganz besonders bevorzugt von mindestens 35 g/g. Die Zentrifugenretentionskapazität (CRC) wird gemäß der von der E- DANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 441.2-02 "Centrifuge retention capacity" bestimmt.
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Flüssigkeitsleitfähigkeit (SFC) in der Windel und Absorption unter Druck (AUL), werden wasserabsorbierende Polymerpartikel im allgemeinen nachvernetzt. Diese Nachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Nachver- netzer beschichtet, getrocknet und thermisch nachvernetzt. Dazu geeignete Vernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylat- gruppen des hydrophilen Polymeren kovalente Bindungen bilden können oder die mindestens zwei Carboxylgruppen oder andere funktionelle Gruppen mindestens zweier verschiedener Polymerketten des Grundpolymers miteinander vernetzen können.
Die Herstellung wasserabsorbierender Harze ist vielfach beschrieben, siehe beispielsweise "Modern Superabsorbent Polymer Technology", F. L. Buchholz and AT. Graham, Wiley-VCH, 1998, Seiten 69 bis 117.
Die Herstellung wasserabsorbierender Harze umfasst üblicherweise die Schritte Polymerisation, Gelzerkleinerung, Trocknung, Mahlung, Siebung, Nachvernetzung und ggf. erneute Siebung. Ein Problem bei der kontinuierlichen Herstellung wasserabsorbierender Polymerparti- kel ist, dass die Eigenschaften der hergestellten Polymerpartikel, wie Zentrifugenreten- tionskapazität (CRC), Absorption unter Druck (AUL), Flüssigkeitsweiterleitung (SFC), Restmonomerengehalt, Partikelgrößenverteilung, Extrahierbare und Wassergehalt, während der Produktion über die Zeit nur schwer konstant gehalten werden können.
EP-A 1 426 402 offenbart ein Verfahren zur kontinuierlichen Herstellung wasserabsorbierender Polymere, wobei Abweichungen bei der Produktqualität ausgeglichen werden, indem das Produkt nach der Nachvernetzung analysiert, Produkt mit zu großer Qualitätsabweichung vollständig abgetrennt und in das noch nicht analysierte Produkt zurückgeführt wird.
Die Aufgabe der vorliegenden Erfindung war die Bereitstellung eines verbesserten Verfahrens zur kontinuierlichen Herstellung wasserabsorbierender Polymerpartikel mit gleichbleibender Qualität.
Ein weiteres Problem bei der Herstellung wasserabsorbierender Polymerpartikel ist die Tatsache, dass nicht spezifikationsgerechtes Produkt, welches bei Störungen bei der Polymerisation anfällt, nicht in spezifikationsgerechtes Produkt umgewandelt werden kann und entsorgt werden muss.
Eine weitere Aufgabe der vorliegenden Erfindung war daher die Bereitstellung eines Verfahrens zur kontinuierlichen Herstellung wasserabsorbierender Polymerpartikel, wobei das erfindungsgemäße Verfahren insbesondere geringfügige Dosierungenauig- keiten bei der Polymerisation ausgleichen kann.
Dosierungenauigkeiten treten beispielsweise bei der kontinuierlichen Polymerisation auf. Die Einsatzstoffe werden dabei üblicherweise mengengeregelt dosiert, wobei die verwendeten Regler die Ventilöffnung erst bei einer Sollwertabweichung anpassen.
Die Polymerisation ist eine sehr empfindliche Reaktion. Abweichungen bei der Dosierung, insbesondere bei der Initiatordosierung, können daher zu signifikanten Abweichungen bei der Produktqualität führen.
Gelöst wurde die Aufgabe durch ein Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, wobei die Polymerisation in mindestens zwei parallelen kontinuierlichen Polymerisationsreaktoren unter weitgehend identischen Bedingungen durchgeführt wird und die Reaktionsprodukte in mindestens einem Verfahrensschritt gemeinsam weiterverarbeitet werden.
Dadurch, dass wasserabsorbierender Polymerpartikel gleicher Rezeptur in parallelen Polymerisationsreaktoren hergestellt werden, werden mögliche Störungen während der Polymerisation nur gedämpft weitergegeben. Dies ist insbesondere deshalb wichtig, weil die Polymerisation ein äußerst empfindlicher Verfahrensschritt ist.
Weitgehend identische Bedingungen bedeutet, dass in den parallelen Polymerisations- reaktoren im Rahmen der Dosiergenauigkeit identische Monomerlösungen polymeri- siert werden, mit dem Ziel identische Hydrogele zu erhalten.
Der mindestens eine Verfahrensschritt, in dem die Polymere aus den parallelen Polymerisationsreaktoren gemeinsam weiterverarbeitet werden, dient der Homogenisie- rung. Daher sollten die Polymere gut durchmischt werden. Nachdem die Polymere aus den parallelen Polymerisationsreaktoren gut durchmischt wurden, können die Polymere auch getrennt weiterverarbeitet werden.
Geeignete Reaktoren sind Knetreaktoren oder Bandreaktoren. Im Kneter wird das bei der Polymerisation einer wässrigen Monomerlösung entstehende Polymergel durch beispielsweise gegenläufige Rührwellen kontinuierlich zerkleinert, wie in WO 01/38402 beschrieben. Die Polymerisation auf dem Band wird beispielsweise in DE-A 38 25 366 und US 6,241 ,928 beschrieben. Bei der Polymerisation in einem Bandreaktor entsteht ein Polymergel, das in einem weiteren Verfahrensschritt zerkleinert werden muss, bei- spielsweise in einem Fleischwolf, Extruder oder Kneter.
Vorzugsweise werden im erfindungsgemäßen Verfahren Bandreaktoren und/oder Kneter verwendet. In einer bevorzugten Ausführungsform werden ausschließlich Bandreaktoren oder Kneter verwendet.
Im erfindungsgemäßen Verfahren können zwei, drei, vier, fünf oder mehr parallele Polymerisationsreaktoren eingesetzt werden.
Der mindestens eine Verfahrensschritt, in dem die wasserabsorbierenden Polymerpar- tikel gemeinsam weiterverarbeitet werden, unterliegt keiner Beschränkung. Wichtig ist aber, dass die Reaktionsprodukte erst dann gemeinsam weiterverarbeitet werden, wenn die Polymerisation im wesentlichen abgeschlossen ist. Die Polymerisation ist im wesentlichen abgeschlossen, wenn das Polymergel die Reaktoren verlässt. Üblicherweise beträgt der Monomerumsatz mindestens 90 mol-%, vorzugsweise mindesten 95 mol-%, besonders bevorzugt mindestens 97 mol-%. Dadurch dass die Polymerisation weitgehend abgeschlossen ist, haben statistische Abweichungen oder Störungen in den späteren Verfahrensschritten nur noch wenig Einfluss auf die innere Struktur der Polymerpartikel. Beispielsweise kann der Verfahrensschritt, in dem die Polymere gemeinsam weiterverarbeitet werden, die Lagerung des Hydrogels, die Trocknung des Hydrogels, die Mahlung des getrockneten Hydrogels, die Siebung der gemahlenen Polymerpartikel, die Nachvernetzung oder die Siebung der nachvernetzten Polymerpartikel sein. Der mindestens eine Verfahrensschritt, in dem die wasserabsorbierenden Polymerpartikel gemeinsam weiterverarbeitet werden, ist üblicherweise die Nachvernetzung, vorzugsweise die Siebung der gemahlenen Polymerpartikel, bevorzugt die Mahlung des getrockneten Hydrogels, besonders bevorzugt die Trocknung des Hydrogels, ganz besonders bevorzugt die Lagerung des Hydrogels nach der Polymerisation.
Vorteilhaft werden die Reaktionsprodukte der mindestens zwei kontinuierlichen Polymerisationsreaktoren zu einem möglichst frühen Stadium des Verfahrens nach der Polymerisation gemeinsam weiterverarbeitet.
Besonders vorteilhaft ist das erfindungsgemäße Verfahren, wenn die verwendeten Monomere mit nur wenig Polymerisationsinhibitor stabilisiert sind, d.h, wenn bezogen auf das Monomer weniger als 0,016 Gew.-%, vorzugsweise von 0,001 bis 0,013 Gew.-%, besonders bevorzugt von 0,003 bis 0,007 Gew.-%, Polymerisationsinhibitor eingesetzt wird. Polymerisationsinhibitoren werden aus Sicherheitsgründen verwendet, um eine Polymerisation vor dem Reaktor zu verhindern. Durch einen geringeren Anteil an Polymerisationsinhibitor wird die Reaktion schneller und ist schwerer zu regeln.
Das Hydrogel wird vorzugsweise mittels eines Bandtrockners getrocknet.
Die im erfindungsgemäßen Verfahren herstellbaren wasserabsorbierenden Polymerpartikel können durch Polymerisation einer Monomerlösung, enthaltend
i) mindestens ein ethylenisch ungesättigtes, säuregruppentragendes Monomer, ii) mindestens einen Vernetzer, iii) gegebenenfalls ein oder mehrere mit i) copolymerisierbare ethylenisch und/oder allylisch ungesättigte Monomere und iv) gegebenenfalls ein oder mehrere wasserlösliche Polymere, auf die die Monomere i), ii) und ggf. iii) zumindest teilweise aufgepfropft werden können,
wobei das dabei erhaltene Grundpolymer getrocknet, klassiert,
v) gegebenenfalls mit mindestens einem Nachvemetzer nachbehandelt, getrocknet und thermisch nachvernetzt
wird, hergestellt werden.
Geeignete Monomere i) sind beispielsweise ethylenisch ungesättigte Carbonsäuren, wie Acrylsäure, Methacrylsäure, Maleinsäure, Fumarsäure und Itaconsäure, oder de- ren Derivate, wie Acrylamid, Methacrylamid, Acrylsäureester und Methacrylsäureester. Besonders bevorzugte Monomere sind Acrylsäure und Methacrylsäure. Ganz besonders bevorzugt ist Acrylsäure. Die Monomere i), insbesondere Acrylsäure, enthalten vorzugsweise bis zu
0,025 Gew.-% eines Hydrochinonhalbethers. Bevorzugte Hydrochinonhalbether sind
Hydrochinonmonomethylether (MEHQ) und/oder Tocopherole.
Unter Tocopherol werden Verbindungen der folgenden Formel verstanden
Figure imgf000006_0001
wobei R1 Wasserstoff oder Methyl, R2 Wasserstoff oder Methyl, R3 Wasserstoff oder Methyl und R4 Wasserstoff oder ein Säurerest mit 1 bis 20 Kohlenstoffatomen bedeutet.
Bevorzugte Reste für R4 sind Acetyl, Ascorbyl, Succinyl, Nicotinyl und andere physiologisch verträgliche Carbonsäuren. Die Carbonsäuren können Mono-, Di- oder Tricar- bonsäuren sein.
Bevorzugt ist alpha-Tocopherol mit R1 = R2 = R3 = Methyl, insbesondere racemisches alpha-Tocopherol. R4 ist besonders bevorzugt Wasserstoff oder Acetyl. Insbesondere bevorzugt ist RRR-alpha-Tocopherol.
Die Monomerlösung enthält bevorzugt höchstens 130 Gew.-ppm, besonders bevorzugt höchstens 70 Gew.-ppm, bevorzugt mindestens 10 Gew.-ppm, besonders bevorzugt mindestens 30 Gew.-ppm, insbesondere bevorzugt um 50 Gew.-ppm, Hydrochinonhalbether, jeweils bezogen auf Acrylsäure, wobei Acrylsäuresalze rechnerisch als Acryl- säure mit berücksichtigt werden. Beispielsweise kann zur Herstellung der Monomerlösung eine Acrylsäure mit einem entsprechenden Gehalt an Hydrochinonhalbether verwendet werden.
Die wasserabsorbierenden Polymere sind vernetzt, d.h. die Polymerisation wird in Ge- genwart von Verbindungen mit mindestens zwei polymerisierbaren Gruppen, die in das Polymernetzwerk radikalisch einpolymerisiert werden können, durchgeführt. Geeignete Vernetzer ii) sind beispielsweise Ethylenglykoldimethacrylat, Diethylenglykoldiacrylat, Allylmethacrylat, Trimethylolpropantriacrylat, Triallylamin, Tetraallyloxyethan, wie in EP-A 0 530 438 beschrieben, Di- und Triacrylate, wie in EP-A 0 547 847, EP-A 0 559 476, EP-A 0 632 068, WO 93/21237, WO 03/104299, WO 03/104300, WO 03/104301 und in der deutschen Patentanmeldung mit dem Aktenzeichen 10331450.4 beschrieben, gemischte Acrylate, die neben Acrylatgruppen weitere ethy- lenisch ungesättigte Gruppen enthalten, wie in den deutschen Patentanmeldungen mit den Aktenzeichen 103 31 456.3 und 103 55 401.7 beschrieben, oder Vernetzermi- schungen, wie beispielsweise in DE-A 195 43 368, DE-A 196 46 484, WO 90/15830 und WO 02/32962 beschrieben.
Geeignete Vernetzer ii) sind insbesondere N,N'-Methylenbisacrylamid und N1N'- Methylenbismethacrylamid, Ester ungesättigter Mono- oder Polycarbonsäuren von Polyolen, wie Diacrylat oder Triacrylat, beispielsweise Butandiol- oder Ethylenglykoldi- acrylat bzw. -methacrylat sowie Trimethylolpropantriacrylat und Allylverbindungen, wie Allyl(meth)acrylat, Triallylcyanurat, Maleinsäurediallylester, Polyallylester, Tetraallylo- xyethan, Triallylamin, Tetraallylethylendiamin, Allylester der Phosphorsäure sowie Vi- nylphosphonsäurederivate, wie sie beispielsweise in EP-A 0 343 427 beschrieben sind. Weiterhin geeignete Vernetzer ii) sind Pentaerythritoldi-, Pentaerythritoltri- und Pentae- rythritoltetraallylether, Polyethylenglykoldiallylether, Ethylenglykoldiallylether, Glyzerin- di- und Glyzerintriallylether, Polyallylether auf Basis Sorbitol, sowie ethoxylierte Varianten davon. Im erfind ungsgemäßen Verfahren einsetzbar sind Di(meth)acrylate von Po- lyethylenglykolen, wobei das eingesetzte Polyethylenglykol ein Molekulargewicht zwischen 300 und 1000 aufweist.
Besonders vorteilhafte Vernetzer ii) sind jedoch Di- und Triacrylate des 3- bis 20-fach ethoxylierten Glyzerins, des 3- bis 20-fach ethoxylierten Trimethylolpropans, des 3- bis 20-fach ethoxylierten Trimethylolethans, insbesondere Di- und Triacrylate des 2- bis 6- fach ethoxylierten Glyzerins oder Trimethylolpropans, des 3-fach propoxylierten Glyzerins oder Trimethylolpropans, sowie des 3-fach gemischt ethoxylierten oder propoxylierten Glyzerins oder Trimethylolpropans, des 15-fach ethoxylierten Glyzerins oder Trimethylolpropans, sowie des mindestens 40-fach ethoxylierten Glyzerins, Trimethylo- lethans oder Trimethylolpropans.
Ganz besonders bevorzugte Vernetzer ii) sind die mit Acrylsäure oder Methacrylsäure zu Di- oder Triacrylaten veresterten mehrfach ethoxylierten und/oder propoxylierten Glyzerine wie sie beispielsweise in der älteren deutschen Anmeldung mit Aktenzeichen DE 103 19 462.2 beschrieben sind. Besonders vorteilhaft sind Di- und/oder Triacrylate des 3- bis 10-fach ethoxylierten Glyzerins. Ganz besonders bevorzugt sind Di- oder Triacrylate des 1- bis 5- fach ethoxylierten und/oder propoxylierten Glyzerins. Am meisten bevorzugt sind die Triacrylate des 3- bis 5-fach ethoxylierten und/oder propoxylierten Glyzerins. Diese zeichnen sich durch besonders niedrige Restgehalte (typischer- weise unter 10 Gew.-ppm) im wasserabsorbierenden Polymer aus und die wässrigen Extrakte der damit hergestellten wasserabsorbierenden Polymere weisen eine fast unveränderte Oberflächenspannung (typischerweise mindestens 0,068 N/m) im Vergleich zu Wasser gleicher Temperatur auf.
Die Menge an Vernetzer ii) beträgt vorzugsweise 0,01 bis 1 Gew.-%, besonders bevorzugt 0,05 bis 0,5 Gew.-%, ganz besonders bevorzugt 0,1 bis 0,3 Gew.-%, jeweils bezogen auf das Monomer i). Mit den Monomeren i) copolymerisierbare ethylenisch ungesättigte Monomere iii) sind beispielsweise Acrylamid, Methacrylamid, Crotonsäureamid, Dimethylaminoethyl- methacrylat, Dimethylaminoethylacrylat, Dimethylaminopropylacrylat, Diethylaminopro- pylacrylat, Dimethylaminobutylacrylat, Dimethylaminoethylmethacrylat, Diethylami- noethylmethacrylat, Dimethylaminoneopentylacrylat und Dimethylaminoneopentyl- methacrylat.
Als wasserlösliche Polymere iv) können Polyvinylalkohol, Polyvinylpyrrolidon, Stärke, Stärkederivate, Polyglykole oder Polyacrylsäuren, vorzugsweise Polyvinylalkohol und Stärke, eingesetzt werden.
Die Herstellung eines geeigneten Grundpolymers sowie weitere geeignete hydrophile ethylenisch ungesättigte Monomere i) werden in DE-A 199 41 423, EP-A 0 686 650, WO 01/45758 und WO 03/104300 beschrieben.
Die Umsetzung wird vorzugsweise in einem Kneter, wie beispielsweise in WO 01/38402 beschrieben, oder auf einem Bandreaktor, wie beispielsweise in EP-A 955 086 beschrieben, durchgeführt.
Vorteilhaft wird das Hydrogel nach dem Verlassen des Polymerisationsreaktors noch bei höherer Temperatur, vorzugsweise mindestens 500C, besonders bevorzugt mindestes 700C, ganz besonders bevorzugt mindestens 800C, sowie vorzugsweise weniger als 1000C, gelagert, beispielsweise in isolierten Behältern. Durch die Lagerung, üblicherweise 2 bis 12 Stunden, wird der Monomerumsatz weiter erhöht.
Die Säuregruppen der erhaltenen Hydrogele sind üblicherweise teilweise neutralisiert, vorzugsweise zu 25 bis 95 mol-%, bevorzugt zu 27 bis 80 mol-%, besonders bevorzugt zu 27 bis 30 mol-% oder 40 bis 75 mol-%, wobei die üblichen Neutralisationsmittel verwendet werden können, vorzugsweise Alkalimetallhydroxide, Alkalimetalloxide, Al- kalimetallcarbonate oder Alkalimetallhydrogencarbonate sowie deren Mischungen. Statt Alkalimetallsalzen können auch Ammoniumsalze verwendet werden. Natrium und Kalium sind als Alkalimetalle besonders bevorzugt, ganz besonders bevorzugt sind jedoch Natriumhydroxid, Natriumcarbonat oder Natriumhydrogencarbonat sowie deren Mischungen. Üblicherweise wird die Neutralisation durch Einmischung des Neutralisationsmittels als wässrige Lösung, als Schmelze, oder bevorzugt auch als Feststoff erreicht. Beispielsweise kann Natriumhydroxid mit einem Wasseranteil deutlich unter 50 Gew.- als wachsartige Masse mit einem Schmelzpunkt oberhalb 23°C vorliegen. In diesem Fall ist eine Dosierung als Stückgut oder Schmelze bei erhöhter Temperatur möglich. Die Neutralisation kann nach der Polymerisation auf der Stufe des Hydrogels durchgeführt werden. Es ist aber auch möglich bis zu 40 mol-%, vorzugsweise 10 bis 30 mol-%, besonders bevorzugt 15 bis 25 mol-%, der Säuregruppen vor der Polymerisation zu neutralisieren indem ein Teil des Neutralisationsmittels bereits der Monomerlö- sung zugesetzt und der gewünschte Endneutralisationsgrad erst nach der Polymerisation auf der Stufe des Hydrogels eingestellt wird. Die Monomerlösung kann durch Einmischen des Neutralisationsmittels neutralisiert werden. Das Hydrogel kann mechanisch zerkleinert werden, beispielsweise mittels eines Fleischwolfes, wobei das Neutralisationsmittel aufgesprüht, übergestreut oder aufgegossen und dann sorgfältig unter- gemischt werden kann. Dazu kann die erhaltene Gelmasse noch mehrmals zur Homogenisierung gewolft werden. Die Neutralisation der Monomerlösung direkt auf den Endneutralisationsgrad ist bevorzugt.
Das neutralisierte Hydrogel wird dann mit einem Band- oder Walzentrockner getrock- net bis der Restfeuchtegehalt vorzugsweise unter 15 Gew.-%, insbesondere unter 10 Gew.-% liegt, wobei der Wassergehalt gemäß der von der EDANA (European Disposables and Nonwovens Association) empfohlenen Testmethode Nr. 430.2-02 "Moisture content" bestimmt wird. Wahlweise kann zur Trocknung aber auch ein Wirbelbetttrockner oder ein beheizter Pflugscharmischer verwendet werden. Um beson- ders weiße Produkte zu erhalten, ist es vorteilhaft bei der Trocknung dieses Gels einen schnellen Abtransport des verdampfenden Wassers sicherzustellen. Dazu ist die Trocknertemperatur zu optimieren, die Luftzu- und -abführung muss kontrolliert erfolgen, und es ist in jedem Fall auf ausreichende Belüftung zu achten. Die Trocknung ist naturgemäß umso einfacher und das Produkt umso weißer, wenn der Feststoffgehalt des Gels möglichst hoch ist. Bevorzugt liegt der Feststoffgehalt des Gels vor der
Trocknung daher zwischen 30 und 80 Gew.-%. Besonders vorteilhaft ist die Belüftung des Trockners mit Stickstoff oder einem anderen nicht-oxidierenden Inertgas. Wahlweise kann aber auch einfach nur der Partialdruck des Sauerstoffs während der Trocknung abgesenkt werden, um oxidative Vergilbungsvorgänge zu verhindern. Im Regel- fall führt aber auch eine ausreichende Belüftung und Abführung des Wasserdampfes zu einem noch akzeptablen Produkt. Vorteilhaft hinsichtlich Farbe und Produktqualität ist in der Regel eine möglichst kurze Trocknungszeit.
Eine weitere wichtige Funktion der Trocknung des Gels ist die hier noch stattfindende Verringerung des Restmonomerengehaltes im Superabsorber. Bei der Trocknung zerfallen nämlich eventuell noch vorhandene Reste der Initiatoren und führen zu einer Einpolymerisation von noch vorhandenen Restmonomeren. Außerdem reißen die verdampfenden Wassermengen noch vorhandene freie wasserdampfflüchtige Monomere, wie beispielsweise Acrylsäure mit, und verringern so ebenfalls den Restmonomeren- gehalt im Superabsorber. Das getrocknete Hydrogel wird hiernach gemahlen und klassiert, wobei zur Mahlung üblicherweise ein- oder mehrstufige Walzenstühle, bevorzugt zwei- oder dreistufige Walzenstühle, Stiftmühlen, Hammermühlen oder Schwingmühlen eingesetzt werden können.
Zur Verbesserung der Anwendungseigenschaften, wie beispielsweise Flüssigkeitsleitfähigkeit (SFC) in der Windel und Absorption unter Druck (AUL), werden wasserabsorbierende Polymerpartikel im allgemeinen nachvernetzt. Diese Nachvernetzung kann in wässriger Gelphase durchgeführt werden. Vorzugsweise werden aber gemahlene und abgesiebte Polymerpartikel (Grundpolymer) an der Oberfläche mit einem Nachver- netzer beschichtet, getrocknet und thermisch nachvernetzt. Dazu geeignete Vernetzer sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylat- gruppen des hydrophilen Polymeren kovalente Bindungen bilden können oder die mindestens zwei Carboxylgruppen oder andere funktionelle Gruppen mindestens zweier verschiedener Polymerketten des Grundpolymers miteinander vernetzen können.
Hierzu geeignete Nachvemetzer v) sind Verbindungen, die mindestens zwei Gruppen enthalten, die mit den Carboxylatgruppen der Polymere kovalente Bindungen bilden können. Geeignete Verbindungen sind beispielsweise Alkoxysiliylverbindungen, Polya- ziridine, Polyamine, Polyamidoamine, Di- oder Polyglycidylverbindungen, wie in
EP-A 0 083 022, EP-A 543 303 und EP-A 937 736 beschrieben, mehrwertige Alkohole, wie in DE-C 33 14 019, DE-C 35 23 617 und EP-A 450 922 beschrieben, oder ß-Hydroxyalkylamide, wie in DE-A 102 04 938 und US 6,239,230 beschrieben. Geeignet sind ferner Verbindungen mit gemischter Funktionalität, wie Glycidol, 3-Ethyl-3- oxetanmethanol (Trimethylolpropanoxetan), wie in EP-A 1 199 327 beschrieben, Ami- noethanol, Diethanolamin, Triethanolamin oder Verbindungen, die nach der ersten Reaktion eine weitere Funktionalität ausbilden, wie Ethylenoxid, Propylenoxid, Isobutylen- oxid, Aziridin, Azetidin oder Oxetan.
Des weiteren sind in DE-A 40 20 780 zyklische Karbonate, in DE-A 198 07 502 2-Oxazolidon und dessen Derivate, wie N-(2-Hydroxyethyl)-2-oxazolidon, in DE-A 198 07 992 Bis- und Poly-2-oxazolidinone, in DE-A 198 54 573 2-Oxotetrahydro- 1 ,3-oxazin und dessen Derivate, in DE-A 198 54 574 N-Acyl-2-oxazolidone, in DE-A 102 04 937 zyklische Harnstoffe, in der deutschen Patentanmeldung mit dem Aktenzeichen 103 34 584.1 bizyklische Amidacetale, in EP-A 1 199 327 Oxetane und zyklische Harnstoffe und in WO 03/031482 Morpholin-2,3-dion und dessen Derivate als geeignete Nachvemetzer v) beschrieben.
Die Nachvernetzung wird üblicherweise so durchgeführt, dass eine Lösung des Nach- vernetzers auf das Hydrogel oder die trockenen Grundpolymerpartikel aufgesprüht wird. Im Anschluss an das Aufsprühen wird thermisch getrocknet, wobei die Nachvernetzungsreaktion sowohl vor als auch während der Trocknung stattfinden kann. Das Aufsprühen einer Lösung des Vernetzers wird vorzugsweise in Mischern mit bewegten Mischwerkzeugen, wie Schneckenmischer, Paddelmischer, Scheibenmischer, Pflugscharmischer und Schaufelmischer, durchgeführt werden. Besonders bevorzugt sind Vertikalmischer, ganz besonders bevorzugt sind Pflugscharmischer und Schaufelmischer. Geeignete Mischer sind beispielsweise Lödige®-Mischer, Bepex®-Mischer, Nauta®-Mischer, ProcessalKD-Mischer und SchugiO-Mischer.
Die thermische Trocknung wird vorzugsweise in Kontakttrocknern, besonders bevor- zugt Schaufeltrocknern, ganz besonders bevorzugt Scheibentrocknern, durchgeführt. Geeignete Trockner sind beispielsweise Bepex®-Trockner und Nara®-Trockner. Überdies können auch Wirbelschichttrockner eingesetzt werden.
Die Trocknung kann im Mischer selbst erfolgen, durch Beheizung des Mantels oder Einblasen von Warmluft. Ebenso geeignet ist ein nachgeschalteter Trockner, wie beispielsweise ein Hordentrockner, ein Drehrohrofen oder eine beheizbare Schnecke. Es kann aber auch beispielsweise eine azeotrope Destillation als Trocknungsverfahren benutzt werden.
Bevorzugte Trocknungstemperaturen liegen im Bereich 50 bis 2500C, bevorzugt bei 50 bis 2000C, und besonders bevorzugt bei 50 bis 1500C. Die bevorzugte Verweilzeit bei dieser Temperatur im Reaktionsmischer oder Trockner beträgt unter 30 Minuten, besonders bevorzugt unter 10 Minuten.
Gemäß dem erfindungsgemäßen Verfahren können wasserabsorbierende Polymerpartikel mit konstanter Qualität hergestellt werden. Die hergestellten wasserabsorbierenden Polymerpartikel weisen in ihren Eigenschaften nur geringe Unterschiede auf. Werden beispielsweise während der kontinuierlichen Produktion wasserabsorbierender Polymerpartikel regelmäßig Proben gezogen, beispielsweise alle 3 Stunden, so ist die Standardabweichung der Messwerte vom Mittelwert bei Verwendung des erfindungsgemäßen Verfahrens niedriger als bei den bisherigen Verfahren.
Weiterhin wirken sich Störungen bei der Polymerisation im erfindungsgemäßen Verfahren weniger auf die Qualität der wasserabsorbierenden Polymerpartikel aus.
Beispiele
In den Beispielen wurden die Abweichungen der Produktqualität mittels eines Würfels simuliert. Hierbei entspricht der Mittelwert 3,5 (bei gleicher Wahrscheinlichkeit für alle Zahlen und unendlich vielen Würfen).
Beispiel 1 (Vergleich) Es wurden zwei unabhängige kontinuierliche Produktionsstraßen simuliert, wobei das Endprodukt in zeitlichen Intervallen analysiert wird.
Straße A
Figure imgf000012_0001
25% der gewürfelten Zahlen (3 + 4) lagen dicht am Mittelwert und 35% der gewürfelten Zahlen (1 + 6) lagen weit vom Mittelwert.
Beispiel 2
Es wurde simuliert, dass die Produkte der beiden getrennten Polymerisationsstraßen in der Aufarbeitung vereinigt werden. Für die Proben wurden die jeweiligen Mittelwerte der oben ermittelten Zahlen verwendet.
Figure imgf000012_0002
50% der Werte (3 - 4) lagen dicht am Mittelwert und nur 10% der Werte (1 + 6) lagen weit vom Mittelwert.
Das Beispiel zeigt, dass nach dem erfindungsgemäßen Verfahren eine deutlich gleichmäßigere kontinuierliche Produktion möglich ist.

Claims

Patentansprüche
1. Verfahren zur Herstellung wasserabsorbierender Polymerpartikel, dadurch gekennzeichnet, dass die Polymerisation in mindestens zwei parallelen kontinuierli- chen Polymerisationsreaktoren unter weitgehend identischen Bedingungen durchgeführt wird und dass die Reaktionsprodukte in mindestens einem Verfahrensschritt gemeinsam weiterverarbeitet werden.
2. Verfahren gemäß Anspruch 1 , dadurch gekennzeichnet, dass mindestens einer der parallelen Polymerisationsreaktoren ein Bandreaktor und/oder ein Kneter ist.
3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, dass die parallelen Polymerisationsreaktoren ausschließlich Bandreaktoren oder Kneter sind.
4. Verfahren gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Reaktionsprodukte der parallelen Polymerisationsreaktoren gemeinsam einem Nachvernetzungsschritt unterworfen werden.
5. Verfahren gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Reaktionsprodukte der parallelen Polymerisationsreaktoren gemeinsam gesiebt werden.
6. Verfahren gemäß Anspruch 1 bis 5, dadurch gekennzeichnet, dass die Reaktionsprodukte der parallelen Polymerisationsreaktoren gemeinsam gemahlen werden.
7. Verfahren gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Reaktionsprodukte der parallelen Polymerisationsreaktoren gemeinsam getrocknet werden.
8. Verfahren gemäß Anspruch 7, dadurch gekennzeichnet, dass der Trockner ein Bandtrockner ist.
9. Verfahren gemäß einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Reaktionsprodukte der parallelen Polymerisationsreaktoren vor der Trocknung gemeinsam gelagert werden.
10. Verfahren gemäß einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die in den parallelen Polymerisationsreaktoren polymerisierte Monomerlösung Acrylsäure und mindestens einen mit Acrylsäure copolymerisierbaren Vernetzer enthält.
11. Verfahren gemäß einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die Polymerisation in Gegenwart von weniger als 0,016 Gew.-%, bezogen auf das Monomer, eines Polymerisationsinhibitors durchgeführt wird.
12. Verfahren zur Herstellung von Hygieneartikeln, umfassend die Verwendung gemäß einem der Ansprüche 1 bis 10 hergestellter wasserabsorbierender Polymerpartikel.
PCT/EP2006/065206 2005-08-24 2006-08-10 Verfahren zur herstellung wasserabsorbierender polymerpartikel WO2007023097A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/997,941 US7910675B2 (en) 2005-08-24 2006-08-10 Method for producing water-absorbing polymer particles
JP2008527433A JP5044555B2 (ja) 2005-08-24 2006-08-10 吸水性ポリマー粒子の製造方法
CN2006800302664A CN101242891B (zh) 2005-08-24 2006-08-10 生产吸水性聚合物颗粒的方法
EP06778210.2A EP1919609B1 (de) 2005-08-24 2006-08-10 Verfahren zur herstellung wasserabsorbierender polymerpartikel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71092505P 2005-08-24 2005-08-24
US60/710,925 2005-08-24

Publications (1)

Publication Number Publication Date
WO2007023097A1 true WO2007023097A1 (de) 2007-03-01

Family

ID=37076209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/065206 WO2007023097A1 (de) 2005-08-24 2006-08-10 Verfahren zur herstellung wasserabsorbierender polymerpartikel

Country Status (6)

Country Link
US (1) US7910675B2 (de)
EP (1) EP1919609B1 (de)
JP (1) JP5044555B2 (de)
CN (1) CN101242891B (de)
TW (1) TW200718714A (de)
WO (1) WO2007023097A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009077526A1 (de) * 2007-12-17 2009-06-25 Basf Se Vorrichtung zur herstellung wasserabsorbierender polymerartikel
WO2009113671A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の充填方法
WO2009123193A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
WO2015046604A1 (ja) 2013-09-30 2015-04-02 株式会社日本触媒 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法
EP2714750B1 (de) 2011-06-03 2015-04-08 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
US10493429B2 (en) 2011-01-28 2019-12-03 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9206446B2 (en) 2006-05-01 2015-12-08 Board Of Trustees Of Michigan State University Extraction of solubles from plant biomass for use as microbial growth stimulant and methods related thereto
US8968515B2 (en) 2006-05-01 2015-03-03 Board Of Trustees Of Michigan State University Methods for pretreating biomass
SA08290556B1 (ar) * 2007-09-07 2012-05-16 نيبون شوكوباي كو. ، ليمتد طريقة لربط راتنجات ممتصة للماء
SG194348A1 (en) 2008-09-16 2013-11-29 Nippon Catalytic Chem Ind Production method and method for enhancing liquid permeability of water-absorbing resin
JP5615801B2 (ja) 2009-03-04 2014-10-29 株式会社日本触媒 吸水性樹脂の製造方法
US10457810B2 (en) 2009-08-24 2019-10-29 Board Of Trustees Of Michigan State University Densified biomass products containing pretreated biomass fibers
US8945245B2 (en) 2009-08-24 2015-02-03 The Michigan Biotechnology Institute Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
ES2529510T3 (es) 2009-08-24 2015-02-20 Board Of Trustees Of Michigan State University Productos de biomasa densificada y pretratada y procedimientos de fabricación y uso de los mismos
US9138505B2 (en) 2009-08-27 2015-09-22 Nippon Shokubai Co., Ltd. Polyacrylic acid (salt)-type water absorbent resin and method for producing of same
WO2011034146A1 (ja) 2009-09-16 2011-03-24 株式会社日本触媒 吸水性樹脂粉末の製造方法
MX341792B (es) 2010-04-19 2016-09-02 Univ Michigan State Biomasa lignocelulósica digeribles y extractos y métodos para producir la misma.
KR20150082098A (ko) * 2014-01-06 2015-07-15 한화케미칼 주식회사 고흡수성 수지 제조 방법
KR20160030711A (ko) * 2014-09-11 2016-03-21 주식회사 엘지화학 고흡수성 수지 제조용 중합 반응기 및 이를 이용하는 고흡수성 수지의 제조 방법
JP6425341B2 (ja) * 2014-12-26 2018-11-21 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US967261A (en) * 1909-10-20 1910-08-16 Edgar Beaumont Valve-regulator in corliss engines.
US3719643A (en) * 1971-01-25 1973-03-06 Dart Ind Inc High pressure process for polyethylene production
GB1443394A (en) * 1974-01-25 1976-07-21 Leuna Werke Veb Process for the production of homo-, co- and terpolymers and polymer alloys of ethylene
EP0574007A2 (de) * 1992-06-11 1993-12-15 Occidental Chemical Corporation Verfahren zur Herstellung von linearen Ethylenpolymere mit Alpha-Alkene
US5480616A (en) * 1983-02-16 1996-01-02 Amoco Corporation Polycondensation apparatus
WO2003093345A1 (de) * 2002-05-02 2003-11-13 Zimmer Ag Verfahren und vorrichtung zur herstellulng von polyestern, copolyestern and polycarbonaten
EP1426402A2 (de) * 2002-12-06 2004-06-09 Nippon Shokubai Co., Ltd. Verfahren zur kontinuierlichen Herstellung eines wasserabsorbierenden Harzproduktes
WO2005010055A1 (ja) * 2003-07-25 2005-02-03 Idemitsu Kosan Co., Ltd. ラジカル重合体の製造方法及び微細化学反応装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1164381B (de) 1961-03-18 1964-03-05 Bayer Ag Reaktorsystem
CA1226993A (en) * 1983-02-16 1987-09-15 Joel A. Richardson Polycondensation process
DE19846412A1 (de) * 1998-10-08 2000-04-13 Basf Ag Hydrophile hochquellfähige Hydrogele sowie Verfahren zu ihrer Herstellung und Verwendung
US7049366B2 (en) * 2001-12-19 2006-05-23 Nippon Shokubai Co., Ltd. Acrylic acid composition and its production process, and process for producing water-absorbent resin using this acrylic acid composition, and water-absorbent resin
DE10221176A1 (de) * 2002-05-13 2003-11-27 Basf Ag Verfahren zur Herstellung geruchsarmer Hydrogelbildender Polymerisate
DE10225943A1 (de) * 2002-06-11 2004-01-08 Basf Ag Verfahren zur Herstellung von Estern von Polyalkoholen
BR0311501A (pt) * 2002-06-11 2005-02-22 Basf Ag éster f, processos para preparar o mesmo e um hidrogel reticulado, polìmero, hidrogel reticulado, uso de um polìmero, composição de matéria, e, uso de uma mistura da reação
JP4642343B2 (ja) * 2002-12-06 2011-03-02 株式会社日本触媒 吸水性樹脂製品の連続製造方法
JP2005036100A (ja) * 2003-07-14 2005-02-10 Nippon Shokubai Co Ltd 吸水性樹脂を製造する方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US967261A (en) * 1909-10-20 1910-08-16 Edgar Beaumont Valve-regulator in corliss engines.
US3719643A (en) * 1971-01-25 1973-03-06 Dart Ind Inc High pressure process for polyethylene production
GB1443394A (en) * 1974-01-25 1976-07-21 Leuna Werke Veb Process for the production of homo-, co- and terpolymers and polymer alloys of ethylene
US5480616A (en) * 1983-02-16 1996-01-02 Amoco Corporation Polycondensation apparatus
EP0574007A2 (de) * 1992-06-11 1993-12-15 Occidental Chemical Corporation Verfahren zur Herstellung von linearen Ethylenpolymere mit Alpha-Alkene
WO2003093345A1 (de) * 2002-05-02 2003-11-13 Zimmer Ag Verfahren und vorrichtung zur herstellulng von polyestern, copolyestern and polycarbonaten
EP1426402A2 (de) * 2002-12-06 2004-06-09 Nippon Shokubai Co., Ltd. Verfahren zur kontinuierlichen Herstellung eines wasserabsorbierenden Harzproduktes
WO2005010055A1 (ja) * 2003-07-25 2005-02-03 Idemitsu Kosan Co., Ltd. ラジカル重合体の製造方法及び微細化学反応装置

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9919284B2 (en) 2007-12-17 2018-03-20 Basf Se Device for producing water-absorbent polymer particles
WO2009077526A1 (de) * 2007-12-17 2009-06-25 Basf Se Vorrichtung zur herstellung wasserabsorbierender polymerartikel
WO2009113671A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の充填方法
WO2009113672A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂の製造方法
WO2009113673A1 (ja) 2008-03-13 2009-09-17 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
WO2009123193A1 (ja) 2008-03-31 2009-10-08 株式会社日本触媒 吸水性樹脂を主成分とする粒子状吸水剤の製造方法
US8912298B2 (en) 2008-03-31 2014-12-16 Nippon Shokubai Co., Ltd. Method for producing particulate water absorbing agent containing water absorbent resin as main component
US10493429B2 (en) 2011-01-28 2019-12-03 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
US9567414B2 (en) 2011-01-28 2017-02-14 Nippon Shokubai Co., Ltd. Method for producing polyacrylic acid (salt)-based water absorbent resin powder
WO2012102407A1 (ja) 2011-01-28 2012-08-02 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂粉末の製造方法
EP2714750B1 (de) 2011-06-03 2015-04-08 Basf Se Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
KR20160064113A (ko) 2013-09-30 2016-06-07 가부시키가이샤 닛폰 쇼쿠바이 입자상 흡수제의 충전 방법 및 입자상 흡수제 충전물의 샘플링 방법
WO2015046604A1 (ja) 2013-09-30 2015-04-02 株式会社日本触媒 粒子状吸水剤の充填方法および粒子状吸水剤充填物のサンプリング方法
US10577135B2 (en) 2013-09-30 2020-03-03 Nippon Shokubai Co., Ltd. Method for filling particulate water absorbing agent and method for sampling filled particulate water absorbing agent
US10934031B2 (en) 2013-09-30 2021-03-02 Nippon Shokubai Co., Ltd. Method for filling particulate water absorbing agent and method for sampling filled particulate water absorbing agent
EP4159307A1 (de) 2013-09-30 2023-04-05 Nippon Shokubai Co., Ltd. Verfahren zum füllen eines partikelförmigen wasserabsorptionsmittels und verfahren zur probenahme eines gefüllten partikelförmigen wasserabsorptionsmittels

Also Published As

Publication number Publication date
CN101242891B (zh) 2011-05-11
EP1919609A1 (de) 2008-05-14
US20080227932A1 (en) 2008-09-18
US7910675B2 (en) 2011-03-22
JP2009506151A (ja) 2009-02-12
JP5044555B2 (ja) 2012-10-10
CN101242891A (zh) 2008-08-13
EP1919609B1 (de) 2018-05-30
TW200718714A (en) 2007-05-16

Similar Documents

Publication Publication Date Title
EP1919609B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP1949011B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2069409B1 (de) Verfahren zur kontinuierlichen herstellung wasserabsorbierender polymerpartikel
EP1838463B1 (de) Verfahren zum klassieren eines teilchenförmigen wasserabsorbierenden harzes
EP1926754B1 (de) Polymerisationsverfahren
EP1940766B1 (de) Neutralisationsverfahren
EP1960440B1 (de) Verfahren zur herstellung wasserabsorbierender polymere mit hoher absorptionskapazität und hoher permeabilität
EP1866345B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP1926758B1 (de) Polymerisationsverfahren
WO2007028746A1 (de) Neutralisationsverfahren
EP1996492A2 (de) Verfahren zur pneumatischen förderung wasserabsorbierender polymerpartikel
EP2238181B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP1965905B1 (de) Verfahren zum kontinuierlichen mischen von polymerpartikeln
EP2225284B1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
EP2222398A1 (de) Verfahren zur herstellung wasserabsorbierender polymerpartikel
DE102005058631A1 (de) Verfahren zum kontinuierlichen Mischen
DE102006006539A1 (de) Verfahren zum kontinuierlichen Mischen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11997941

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006778210

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680030266.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008527433

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006778210

Country of ref document: EP