WO2007021035A1 - 珪素の製造方法 - Google Patents

珪素の製造方法 Download PDF

Info

Publication number
WO2007021035A1
WO2007021035A1 PCT/JP2006/316667 JP2006316667W WO2007021035A1 WO 2007021035 A1 WO2007021035 A1 WO 2007021035A1 JP 2006316667 W JP2006316667 W JP 2006316667W WO 2007021035 A1 WO2007021035 A1 WO 2007021035A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
silicon
reaction
less
ppm
Prior art date
Application number
PCT/JP2006/316667
Other languages
English (en)
French (fr)
Inventor
Kunio Saegusa
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to US12/063,574 priority Critical patent/US20090232722A1/en
Priority to CN2006800300442A priority patent/CN101243014B/zh
Priority to DE112006002203T priority patent/DE112006002203T5/de
Publication of WO2007021035A1 publication Critical patent/WO2007021035A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/033Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by reduction of silicon halides or halosilanes with a metal or a metallic alloy as the only reducing agents

Definitions

  • the present invention relates to a method for producing silicon.
  • the present invention relates to a method for producing silicon suitable for solar cell production.
  • Silicon for solar cells is currently made mainly from non-standard semiconductor grade silicon.
  • Semiconductor grade silicon is manufactured by refining metallurgical grade silicon.
  • Metallurgical grade silicon is produced by reducing carbon and silica in an arc furnace.
  • the reaction of metallurgical grade silicon and H C 1 synthesizes dolichlor ⁇ run, which is purified by rectification and then reduced at high temperature using hydrogen to produce semiconductor grade silicon.
  • This method can produce extremely high degrees of silicon, but the conversion rate to silicon is low, a large amount of hydrogen is required to make this equilibrium favorable for silicon, and still a lot because the conversion rate is low. It is necessary to recycle the unreacted gas again, and various halogenated silanes are generated in the unreacted gas. Therefore, separation by distillation again is required. Finally, tetrachloride cannot be reduced with hydrogen. High cost due to the large amount of silicon produced.
  • a method of synthesizing high-purity silicon by synthesizing high-purity carbon and high-purity silica and reducing it in a furnace using a high-purity furnace material Japanese Patent Laid-Open Nos. 55-136116 and 57-20.
  • 9814, JP-A-61-117110 method of reducing silicon tetrachloride with zinc, fluidized bed reduction of trichlorosilane, method of reducing silicon tetrachloride with aluminum (Shiro Yoshizawa, Tomoyasu Tanno, Osaka) B.
  • New, reduction of aluminum tetrachlorochloride, Journal of Occupational Chemistry 64 (8) 1347-50 (1961), JP 59-182221, JP 63-103811, # Kaihei 2-64006 Gazette) has been reported.
  • An object of the present invention is to provide a method for efficiently producing silicon, and in particular, to provide a method for efficiently producing silicon particularly suitable for the production of solar cells.
  • the present invention provides a method for producing silicon including the step (i).
  • n is an integer of 0 to 3
  • X is at least one selected from F, Cl, Br and I, and when there are a plurality of X, a plurality of X are the same or different from each other]
  • the metal has a melting point of 1300 ° C or lower, is in a liquid phase at the time of the reduction reaction, and the shape of the liquid phase is spherical or thin film, In the case of a sphere, when the radius is r (urn), the reaction time is t (min), and the reaction temperature is X (° C), the equations (A), (B) and (C) are satisfied,
  • the present invention further provides the method according to 1), further comprising step (ii).
  • the present invention provides the method according to 1) or 2), further comprising step (iii).
  • FIG. 1 shows silicon (S i) analysis results, aluminum (A 1) analysis results, and scanning electron microscope (SEM) photographs of silicon particles having a particle size of 150 m obtained in Example 1.
  • FIG. 2 shows the Si analysis result, the A 1 analysis result, and the SEM photograph of the particle having a particle diameter of 1 mm obtained in Comparative Example 1.
  • the method for producing silicon according to the present invention includes a step (i) of reducing a parogenated silane with a metal.
  • the halogenated silane is represented by the above formula (1), for example, silicon tetrachloride.
  • halogenated silane Trichlorosilane, dichlorosilane, monochlorosilane.
  • a high-purity product prepared by a conventional method may be used.
  • Preparation of halogenated silane is, for example, a method in which halogenation is performed at a high temperature of 100 to 140 ° C in the presence of silica and carbon, or metallurgical grade silicon and halogen or hydrogen halide are reacted. This can be done by a method. By distilling the halogenated silane thus obtained, a high-purity halogenated silane of 6 N or more can be obtained.
  • the amount of the halogenated silane is preferably more than the metal soot described below.
  • the reaction between the halogenated silane and the metal proceeds in a stoichiometric ratio in equilibrium because the free energy of the reaction is large and negative.
  • By setting the amount in excess of the amount of metal it is advantageous from the viewpoint of kinetics and the separation step described later.
  • the halogenated silane is usually supplied as a gas.
  • the halogenated silane may be supplied alone, or in order to control the reactivity, the halogenated silane may be diluted with an inert gas and supplied as a mixed gas of a halogenated silane and an inert gas. .
  • the halogenated silane concentration in the mixed gas is preferably 5 V o 1% or more.
  • An example of the inert gas is argon.
  • Metals are used as reducing agents for halogenated silanes.
  • the metal may be any metal (reducible metal) having the ability to reduce the halogenated silane at the temperature described later, and the melting point is usually 1300 ° C or lower, preferably 1100 ° C or lower, more preferably 9 0 0 ° C or less. ,
  • Metals are, for example, sodium (N a), potassium (K), magnesium (M g), calcium (C a), aluminum (A 1), zinc (Z n), and are preferred Or A 1. These metals may be used alone or in combination. From the viewpoint of improving the purity of the obtained silicon, the metal is preferably a high-purity metal, for example, a purity of preferably 99.9% or more, and more preferably 99.99%. is there . Among impurities in metals, boron (B), phosphorus (P), carbon (C), iron (Fe), copper (Cu), gallium (Ga), titanium (T i), and nickel (N i) are few. It is preferable.
  • the P content is preferably 1 ppm or less, more preferably 0.5 ppm or less, and particularly preferably 0.3 ppm or less. is there.
  • the B content is preferably 5 ppm or less, more preferably 1 ppm or less, and particularly preferably 0.3 ppm or less.
  • the C content is also preferably 20 ppm or less, more preferably 10 p pip or less.
  • the content of all impurities is preferably 30 ppm or less, more preferably 10 ppm or less, and particularly preferably from the viewpoint of improving the yield of the directional solidification process. 3 p pm or less.
  • high-purity metals examples include those purified by conventional methods.
  • high-purity aluminum can be obtained by refining electrolytically reduced aluminum (ordinary aluminum) by a segregation solidification method, a three-layer electrolytic method, or the like.
  • the metal to be supplied to the step (i) only needs to satisfy the conditions described later in the reduction reaction, and differs depending on the apparatus, etc.
  • the shape is spherical or thin, and the ratio is compared from the viewpoint of the reaction rate. A spherical shape with a large surface area is preferred. .
  • the metal shape is spherical
  • its radius r is usually 250 / im or less, preferably 150 m or less, more preferably 100 m or less, more preferably 50 Aim or less. Preferably, it is 1 m or more, more preferably 2. or more, and even more preferably 5 or more.
  • the thickness r ′ is usually 5 0 0 ⁇ m or less, preferably 3 0 0 m or less, more preferably 2 0 0 m or less, more preferably 1 0 0 m or less, Preferably it is 1 zm or more, more preferably 10 / m or more.
  • Particles can be formed using, for example, a gas atomization method in which molten metal is supplied into a gas jet stream, a rotating disk method in which molten metal is sprayed on a disk that rotates at high speed, or centrifugal force from a nozzle that rotates at high speed. What is necessary is just to carry out by the method of ejecting, and the method of discharging from many nozzles with high filling.
  • the particle size may be adjusted by changing the atomizing gas type, the flow rate, the flow rate, and the metal supply amount. For example, the higher the flow rate or the higher the flow rate, the finer the silicon obtained. Also, the smaller the metal supply, the finer the silicon obtained.
  • the thin film can be formed, for example, by providing a wall in a heat-resistant reaction vessel and forming a molten metal thin film thereon, or providing a shelf in the reaction vessel and forming a molten metal thin film thereon.
  • the method may be carried out by a method in which a packed layer of an inert material is formed in the reaction vessel, and a molten metal is dropped thereon, or a method in which a film is discharged from the slit.
  • the reduction reaction in step (i) is performed under the condition that the relationship between the size of molten metal (liquid phase), time, and temperature satisfies a certain relationship.
  • the radius is set to 'r (m )
  • the reaction time is t (minutes) and the reaction temperature is X (° C)
  • the reaction is performed under the conditions satisfying the above formulas (A), (B) and (C).
  • the liquid phase is a thin film
  • the above formula (A '), (), where r and (urn) are the thickness
  • t (min) is the reaction time
  • X (° G) is the reaction temperature.
  • ⁇ ') and (C) it is preferable to adjust X and r or r ′ so that the reaction time f is within the range of 0.1 minutes or more and 4 320 minutes or less.
  • the reaction proceeds more rapidly as the specific surface area of the molten metal particles or film increases, that is, as the particle radius or film thickness decreases. If the reaction time is too short, unreacted metal remains and becomes an impurity in silicon. Even if the reaction time is too long, further improvement in yield cannot be expected, and wasted time is a factor in cost increase.
  • reaction temperature X is lower than 400 ° C, the reaction rate is not sufficient.
  • reaction temperature is higher than 1300 ° C., the reaction between the halogenated silane and silicon of the reaction product produces low-order octarogenated silane, and the yield of silicon decreases.
  • the reaction temperature dependence of d is expressed by the exp (— E / k T) equation expressed by the reaction kinetics. It is presumed that this shows the temperature dependence in consideration of the activation energy of the reaction.
  • the radius r ( ⁇ ) is usually 1 to 250 m, preferably 1 to 15 50 m, more preferably 2.5 to; L 0 0 m, Preferably it is 5-50.
  • the radius r is less than 1 m, it is difficult to handle the reaction product.
  • the radius r is more than 2500 m, the reaction temperature X becomes high or the reaction time t becomes too long to satisfy the formula (A). It becomes longer and disadvantageous for industrial production due to the material of the reactor and production time. '
  • the thickness r, (m) is usually 1 to 500 m, preferably 1 to 300 m, more preferably 5 to 200 m, and more preferably 1 0-: L 0 0 m.
  • Silicon halide e.g., S i C .1 4 If the silicon obtained by the reaction with maintains the shape of the metal before the reaction, the particle size of the obtained silicon particles seeking the radius of the molten metal droplets also good.
  • the metal undergoes a volume change according to the valence and density, silicon particles with an equivalent grain size can be obtained.
  • the metal is aluminum (A 1)
  • the amount of silicon (S i) to be reduced is 3/4 mol of A 1 because A 1 is trivalent.
  • the atomic weight is 2 7 for A 1 and 2 8 for S i, so 1 mol A 1 reacts to 2 1 g of Si.
  • the reduction reaction is performed in an atmosphere containing a halogenated silane gas.
  • the concentration of octylgenated silane in the atmosphere is preferably 5 ⁇ ⁇ 1% or more. From this point of view, it is more preferable not to include a gas such as water or oxygen.
  • the atmosphere may also contain hydrogen halide from the viewpoint of silicon purification. However, since the basic unit of metal deteriorates depending on the amount of hydrogen halide (for example, hydrogen chloride), the concentration of hydrogen halide is adjusted as appropriate when the reduction reaction is performed in an atmosphere containing hydrogen halide. It is preferable to save.
  • a reduction reaction is usually carried out in a reaction vessel made of a material that has heat resistance at the reaction temperature and does not contaminate the product silicon.
  • the material of the reaction vessel is, for example, carbon, silicon carbide, silicon nitride, aluminum nitride, alumina, or 'quartz.
  • a molten metal thin film or droplet is usually reacted with a halogenated silane to produce silicon and a metal halide (eg, aluminum chloride) as a reaction product.
  • the production method of the present invention may further include a step (ii) in which silicon obtained in the step (i) is separated from the metal halide.
  • the separation step (ii) may be any method that separates metal halide from silicon.
  • solid-gas separation, solid-liquid separation, rinsing, and water washing may be performed according to the form of the metal halide. Good.
  • Aluminum chloride is a gas at temperatures above 200 ° C, so keep the mixture obtained in step (i) above 200 ° C to keep unreacted halogen ⁇ silane, diluent gas, aluminum chloride Gas mixture gas and reaction product silicon are separated into solid and gas. Next, the mixed gas is cooled to 200 ° C. or lower so that the aluminum chloride becomes a solid. Separate. Unreacted halogenated silane is separated from the diluent gas as required. The recovered halogenated silane may be used for the reaction with aluminum.
  • the mixed gas of unreacted halogenated silane and diluted gas is cooled to make the octahalogenated silane into a liquid and gas-liquid separation is performed.
  • the metal halide for example, aluminum chloride
  • the metal halide by-produced in process ⁇ is highly pure and can be reused.
  • the recovered water-free aluminum chloride may be used as a catalyst, or it may be reacted with water to produce polyaluminum chloride.
  • Aluminum hydroxide may be produced, and alumina may be produced by reacting with water vapor or oxygen at a high temperature.
  • the silicon obtained in step (i) usually has . ⁇ in 1 ppm or less, P in lp pm or less, and Fe, Cu, Ga, Ti, or Ni each have 10 p pm or less. . Purification
  • the production method of the present invention may further include a step (iii) of refining silicon obtained in step (i) or optional step (ii).
  • the step of solidifying silicon (iii-l ), Step (iii-2) of dissolving silicon under high vacuum (vacuum melting), preferably step (iii-1) may be included. These may be performed alone or in combination.
  • impurity elements contained in silicon are further reduced.
  • step (iii-1) the solid portion obtained by directional solidification is usually removed at the ends with a high impurity concentration, and high-purity silicon is obtained.
  • High-purity silicon usually has boron at 0.1 ppm
  • phosphorus is 0.5 p pm or less
  • each element of Fe, Cu, Ga, Ti, and Ni is 1. O p pm or less.
  • Directional solidification may be performed under conditions such as, for example, growth rate: about 0.01 to about 0.1 mm / min.
  • Elemental analysis was performed by EPMA (Electron Probe Microanalysis) on a microscopic part having the same cross section as observed by SEM.
  • EPMA Electro Probe Microanalysis
  • Three-layer electrolytic high-purity aluminum (manufactured by Sumitomo Chemical Co., Ltd., see Table 1 for component analysis values) is processed into a spherical shape in helium (He) by the gas atomization method and further sieved with 75-1
  • Aluminum particles in the range of 50 zm (radius 37.5-75 ⁇ ) were selected. Place 0.5 g of aluminum particles in a quartz core tube of an electric furnace, and place the tube in Ar gas. Changed.
  • the temperature was raised to 600 ° C at 10 ° C / min, and then Ar was flowed at a flow rate of 0.5 LZ into a cylinder filled with silicon tetrachloride (Wako Pure Chemical Industries, Ltd.) maintained at 20 ° C. It was passed in minutes, and this was blown into the core tube. The temperature was held for 180 minutes. After that, the gas was switched to Ar and the temperature was lowered to room temperature. Although 600 ° C is below the melting point of A 1, when Si is present, the eutectic point of A 1 -S i is 577 ° C, so a 'liquid phase was formed during the reaction.
  • the particle size of the Si particles after the reaction was 150 m (radius r: 75 m).
  • Silicon was obtained in the same manner as in Example 1 except that the three-layer electrolytic high-purity aluminum was sieved to sieves 37 to 63.
  • Example 2 Same as Example 1 except that the reaction conditions were changed from 600 ° C 180 min to 750 ° C 5 min. The silicon operation was performed to obtain silicon.
  • Silicon was obtained in the same manner as in Example 1 except that the reaction conditions were changed from 600 ° C 180 minutes to 680 ° C 180 minutes.
  • the particle size of the Si particles after the reaction was 150 zm
  • Example except that sieved products of 500 m or more of three-layer electrolytic high-purity aluminum were used The same operation as 4 was performed. The particle size after the reaction was 1 mm.
  • Fig. 2 shows a cross-sectional observation photograph. As shown in Fig. 2, the outer periphery of the particle was Si, and its ridge was an Al-Si alloy, and the reduction reaction to Si did not proceed sufficiently. Comparative Example 2
  • Example 2 The same operation as in Example 1 was carried out except that a spherical high-purity aluminum 150-500 m sieved product was used and the reaction conditions were changed to 70.0 ° C for 5 minutes.
  • the particle size after the reaction was 300 m. .
  • the obtained Si spheres were taken out, washed with dilute hydrochloric acid and then with pure water, dried and analyzed for purity. Moreover, the cross section was observed with a scanning electron microscope and EPMA, and the reaction rate was determined by the area ratio of A 1ZS i. As a result, the outer periphery of the particle was S i, the inside (the central part of the particle, diameter about 100 m ) Is A 1—Si alloy 3 (S i 13%), and the reduction reaction to Si did not proceed sufficiently.
  • S i the inside (the central part of the particle, diameter about 100 m ) Is A 1—Si alloy 3 (S i 13%)
  • Silicon was obtained in the same manner as in Example 1 except that the reaction conditions were changed to 700 ° C for 5 minutes.
  • Silicon was obtained in the same manner as in Example 1 except that the reaction conditions were changed to 800 ° C for 5 minutes.
  • the particle size of the S 1 particles after the reaction was 125 to 180 m.
  • Silicon was obtained in the same manner as in Example 1 except that the three-layer electrolytic high-purity aluminum was sieved to 75-50 O ⁇ m with a sieve and the reaction conditions were changed to 900 ° C for 5 minutes.
  • the particle size of the Si particles after the reaction was 130 to 300 m.
  • Silicon was obtained in the same manner as in Example 1 except that the reaction conditions were changed to 800 ° C. for 10 minutes.
  • the particle size of the Si particles after the reaction was 105-: L 50 m.
  • Silicon was obtained in the same manner as in Example 1 except that the reaction conditions were changed to 800 ° C for 1 minute.
  • the particle size of the Si particles after the reaction was 84 m.
  • Example 2 The same operation as in Example 1 was performed, except that a 150-500 m sieved product of three-layer electrolytic high-purity aluminum was used and the reaction conditions were changed to 550 ° C for 30 minutes. The particle size after the reaction was 200.
  • Example 2 The same operation as in Example 1 was performed, except that three-layer electrolytic high-purity aluminum 500 or more sieved products were used and the reaction conditions were changed to 800 ° C for 1 minute.
  • high-purity silicon can be obtained efficiently (for example, a reaction rate of 90% or more).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

珪素の製造方法を提供する。珪素の製造方法は工程(i)を含む。式(1)で示されるハロゲン化シランを金属により還元する工程(i)、SiHnX4-n      (1)〔式中、nは0~3の整数であり、XはF、Cl、Br及びIから選ばれる少なくとも1つであり、Xが複数のとき、複数のXは互いに同一でも異なってもよい。〕前記金属は、融点が1300℃以下であり、還元反応時に液相であり、かつその液相の形状は球状又は薄膜状であり、球状の場合その半径をr(μm)、反応時間をt(分)、反応温度をx(℃)としたとき、式(A)、(B)及び(C)を満たし、又は薄膜状の場合その厚みをr'(μm)、反応時間をt(分)、反応温度をx(℃)としたとき、式(A')、(B')及び(C)を満たす。ln(r/√t)≦(10.5−7000/(x+273))  (A)ln(r'/√t)≦(10.5−7000/(x+273)) (A')1≦r≦250    (B)1≦r'≦500    (B')400≦x≦1300 (C)

Description

明 細 書 珪素の製造方法 技術分野
本発明は珪素の製造方法に関する。 特に、 太陽電池製造に適した珪素の製造方 法に関する。 背景技術
太陽電池用珪素は、 現在、 半導体グレード珪素の規格外品を主な原料としてい る。 半導体グレード珪素は、 冶金グレード珪素を精製して製造されている。 冶金 グレード ¾素は、 炭素、 珪石を混合してアーク炉により還元製造されている。 冶 金グレード珪素と H C 1の反応によりドリクロル^ランを合成し、 これを精留精 製後、 水素を用いて高温で還元して半導体グレード珪素が製造される。 この方法 では極めて高^度の珪素を製造できるが、 珪素への転換率が低く、 この平衡を珪 素に有利にするために多量の水素が必要なこと、 それでも転換率が低いために多 くの未反応ガスを再度循環使用する必要があること、 未反応ガス中に種々のハ口 ゲン化シランが生成するため、 再度蒸留によって分離が必要になること、 最終的 に水素で還元できない四塩化珪素が多量に生成してくること、 などのために高コ ストである。
一方、 太陽電池は近年の炭酸ガスなどの環境問題に対する有力な解決手段とし て注目されていて、 需要も著しい伸びを示している。 しかしながら、 現在の太陽 電池は高価なため、 これにより^られる電力の価格は商業電力の電気代に比較し て数倍である。 現在、 環境問題、 増加するエネルギー需要に対応して太陽電池の 需要が伸張して、 従来の半導体規格外珪素だけでは原料に不足する事態になりつ つあり、 それに代わる多量の低コスト太陽電池用珪素の供給が望まれている。 太陽電池用珪素については、 従来から各種の製造方法が提案されている。 例え ば、 高純度炭素と高純度シリカを合成し、 高純度の炉材を用いた炉で還元して高 純度珪素を合成する方法 (特開昭 55 - 136116号公報、 特開昭 57-20 9814号公報、 特開昭 61-117110号公報) 、 四塩化珪素を亜鉛で還元 する方法、 トリクロルシランの流動床還元法、 四塩化珪素をアルミニウムで還元 する方法 (吉沢四郎、 端野朝康、 阪ロ新、 四塩化ケィ素のアルミニウム還元、 ェ 業化学雑誌 64 (8) 1347- 50 (1961) 、 特開昭 59— 182221 号公報、 特開昭 63 - 103811号公報、 #開平 2— 64006号公報) が報 告されている。
しかしながら、. いずれの方法も太陽電池用珪素の製造方法として実甩化されて いない。 発明の開示
本発明の目的は、 珪素を効率的に製造する方法を提供することにあり、.特に太 陽電池製造に適した珪素を効率的に製造する方法を提供することにある。
本発明者らは、 珪素の製造方法について鋭意検討した結果、 本発明を完成させ るに至った。
すなわち本発明は、 工程(i)を含む珪素の製造方法を提供する。
式 (1) で示されるハロゲン化シランを金属により還元する工程(i)、
S 1 HnX4_n ( 1ノ
〔式中、 nは 0〜3の整数であり、 Xは F、 C l、 B r及び Iから選ばれる少な くとも 1つであり、 Xが複数の き、 複数の Xは互いに同一でも異なってもよい
。 〕 前記金属は、 融点が 1300°C以下であり、 還元反応時に液相であり、 かつ その液相の形状は球状又は薄膜状であり、 球状の場合その半径を r (urn) とし、 反応時間を t (分) 、 反応温度を X (°C ) としたとき、 式 (A) 、 (B) 及び (C) を満たし、
又は薄膜状の場合その厚みを r ' m) とし、 反応時間を t' (分) 、 反応温度 を X (°C) としたとき、 式 (Α' ) 、 (Β' ) 及び (C) を満たす。
1 η (τ /ft) ≤ (10. 5— 7000/ (x +273) ) (A) I n (r, / t) ≤ (10. 5 -7000/ (x + 273) ) (A, )
1≤ r≤250 (B)
1≤ r ' ≤500 (B, )
400≤x≤ 1300 (C)
本発明は、 さらに工程(ii)を含む前記 1) 記載の方法を提供する。
工程(i)で得られる珪素をハロゲン化金属から分離する工程(ii)'。
また、 本発明は、 さらに工程(iii)を含む前記 1) 又は 2) 記載の方法を提供す る。
前工程で得られた珪素を精製する工程 (i i i)。 図面の簡単な説明
図 1は実施例 1で得られた粒径 150 mの珪素粒子の珪素 (S i) 分析結果 、 アルミニウム (A 1) 分析結果及び走査電子顕微鏡 (SEM) 写真を示す。 図 2は比較例 1で得られた粒径 1 mmの粒子の S i分析結果、 A 1分析結果及 び SEM写真を示す。 発明を実施するための最良の形態
本発明の珪素の製造方法は、 パロゲン化シランを金属により還元する工程(i)を 含む。
, ノヽロゲン化シラン
ハロゲン化シランは前記式 (1 ) で示されるものであり、 例えば、 四塩化珪素
、 トリクロロシラン、 ジクロロシラン、 モノクロルシランである。 ハロゲン化シ ランは、 従来法で調製した高純度品を使用すればよい。 ハロゲン化シランの調製 は、 例えば、 珪石と炭素の共存下、 1 0 0 0〜 1 4 0 Q °Cの高温でハロゲン化す る方法、 あるいは冶金グレード珪素とハロゲンまたはハロゲン化水素とを反応さ せる方法により行えばよい。 こうして得られるハロゲン化シランを蒸留すること により、 6 N以上の高純度ハロゲン化シランが得られる。
, ハロゲン化シランの量は、 後述する金属の畺より過剰とすることが好ましい。 ハロゲン化シランと金属の反応は、 反応の自由エネルギーが大きな負のため、 平 衡論的には化学量論比で進行する。 金属の量より過剰とすることにより、 速度論 的な観点及び後述の分離工程にて有利となる。
工程(i)では、 通常、 ハロゲン化シ.ランは気体として供給される。 ハロゲン化シ ランは単独で供給しても良く、 あるいは反応性を制御するためにハロゲン化シラ ンを不活性ガスにて希釈してハロゲン化シランと不活性ガスの混合ガスにし供給 しても良い。 混合ガス中のハロゲン化シラン濃度は 5 V ο 1 %以上であることが 好ましい。 不活性ガスとしては、 例えば、 アルゴンが挙げられる。 金属
金属はハロゲン化シランの還元剤として用いられる。 金属は、 後述する温度で ハロゲン化シランを還元する能力を有するもの (還元性金属) であればよく、 融 点が通常 1 3 0 0 °C以下、 好ましくは 1 0 0 0 以下、 より好ましくは 9 0 0 °C 以下である。 、
金属は、 例えば、 ナトリウム (N a ) 、 カリウム (K) 、 マグネシウム (M g ) 、 カルシウム (C a ) 、 アルミニウム (A 1 ) 、 亜鉛 (Z n ) であり、 好まし くは A 1である。 これらは単独又は組合わせて用いればよい 金属は、 得られる珪素の純度を向上させる観点から、 高純度のものが好ましく 、 例えば、 純度 99. 9%以上が好ましく、 更に好ましくは 99. 99%である 。 金属中の不純物のうち、 ホウ素 (B) 、 リン (P) 、 炭素 (C) 、 鉄 (Fe) 、 銅 (Cu) 、 ガリウム (Ga) 、 チタン (T i) 、 ニッケル (N i) は少ない ことが好ましい。
金属中の Pは、 後述する方向凝固工程で十分な除去が困難であるため、 P含量 は好ましくは 1 p.pm以下、 さらに好ましくは 0. 5 ppm以下、 特に好ましく は 0. 3 ppm以下である。 Bも方向凝固工程で十分な除去が困難であるため、 B含量は好ましくは 5 ppm以下、 さらに好ましくは 1 ppm以下、 特に好まし くは 0. 3 ppm以下である。 さらに、 C含量も、 同様に、 好ましくは 20 pp m以下、 さらに好ましくは 10 p pip以下である。 Fe、 Cu、 Ga、 T i、 N iについては、 方向凝固工程の収率向上の観点から、 いずれの不純物もその含量 は好ましくは 30 p pm以下、 さらに好ましくは 10 p pm以下、特に好ましく は 3 p pm以下である。
このような高純度の金属としては従来法で精製したものが挙げられる。 例えば 、 高純度アルミニウムは電解還元アルミニウム (普通アルミニウム) を偏析凝固 法、 三層電解法などによって精製することにより得られる。 工程(i)に供給する金属は、 還元反応において後述する条件を満足するものであ ればよく、 装置等により異なるが、 例えば、 形状が球状、 薄膜状であり、 反応速 度の観点から比表面積の大きい球状が好ましい。 .
金属の形状が球状である場合、 その半径 rが通常 250 /im以下、 好ましくは 150 m以下、 より好ましくは 100 m以下、 更に好ましくは 50 Aim以下 であり、 好ましくは 1 m以上、 より好ましくは 2 . 以上、 さらに好まし くは 5 以上である。
金属の形状が薄膜である場合、 その厚み r ' は通常 5 0 0 ^ m以下、 好ましく は 3 0 0 m以下、 より好ましくは 2 0 0 m以下、 更に好ましくは 1 0 0 m 以下であり、 好ましくは 1 z m以上、 より好ましくは 1 0 / m以上である。 粒子の形成は、 例えば、 ガスのジェット流中に溶融金属を供給するガスアトマ ィズ法、 高速で回転する円盤に溶融金属を吹き付ける回転ディスク法、 高速で回 転するノズルから遠心力を利用して噴出する方法、 多数のノズルから高填に吐出 させる方法により行えばよい。
粒子の大きさは、 例えば、 ガスアトマイズ法の場合、 アトマイズ用のガスの種 類 ·流量 '流速、 及び、 金属の供給量を変えることにより調節すればよい。 例え ば、 流速が大きいほど又は流量が多いほど、 得られるシリコンは微粒になる。 ま ' た、 金属の供給量が少ないほど、 得られる珪素は微粒になる。
回転ディスク法の場合、 回転数が高いほど、 円盤の径が大きいほど、 又は、 供 給量が少ないほど得られる珪素は微粒になる。
多数のノズルから吐出させる場合、 ノズル径を変えて粒子の大きさを調節すれ ばよい。 薄膜の形成は、 例えば、 耐熱性反応容器内に壁を設け、 その上に溶融金属の薄 膜を形成させる方法、 反応容器内に棚段を設け、 その上に溶融金属の薄膜を形成 する方法、 反応容器内に不活性材料による充填層を形成し、 その上に溶融金属を 滴下する方法、 スリツトから膜状に吐出する方法により行えばよい。 還兀
工程(i)の還元反応は、 溶融金属 (液相) の大きさ、 時間、 温度が一定の関係を 満足する条件で行われ、 液相の形状が球状である場合、 半径を' r ( m) 、 反応 時間を t (分) 、 反応温度を X (°C) としたときに前記式 (A) 、 (B ) 及び ( C) を満たす条件で行われる。 また、 液相の形状が薄膜状である場合、 厚みを r , ( u rn) 、 反応時間を t (分) 、 反応温度を X (°G) としたときに前記式 (A ' ) 、 (Β ' ) 及び (C) を満たす条件で行われる。 工程(i)の生産性を考慮すると、 反応時間 fが 0 . 1分以上 4 3 2 0分以下の範 囲内となるように Xと r又は r ' とを調整して行うことが好ましい。
通常、 溶融した金属の粒子あるいは膜の比表面撢が大きいほど、 即ち粒子半径 や膜厚みが小さいほど反応は速やかに進行する。 反応時間が短すぎると未反応金 属が残留して珪素中の不純物となる めに好ましくない。 反応時間をあまり長ぐ しても、 収率の更なる向上は望めず、 無駄な時間を費やしてコストアップの要因 · となる。
本発明では、 原子の拡散距離の時間依存性が時間の平方根に比例することから 、 r又は r ' が tの平方根に比例すると推定し、 後述する実施例の結果に基づき 、 式 (A) 又は式 (Α ' ) を導出した。 反応温度 Xは、 装置材質及びエネルギーコストを勘案すると、 4 0 0 °C以上 1
3 0 0 °C以下、 好ましくは 5 0 0 °C以上 1 2 0 0 °C以下、 更に好ましくは 6 0 0
°C以上 1 0 0 0 °C以下である。 反応温度 Xが 4 0 0 °Cより低いと、 反応速度が十 分でない。 一方、 反応温度が 1 3 0 0 °Cより高いと、 ハロゲン化シランと反応生 成物の珪素の間の反応で低次の八ロゲン化シランが生成して、 珪素の収率が低下 す 。 dの反応温度依存性は、 反応速度論で示される e x p (— E/ k T) の式 と同じ意味で反応の活性化エネルギーを考慮した温度依存性を示しているものと 推定される。 溶融金属 (液相) が球状である場合、 半径 r ( πι) が通常 1〜2 50 m、 好ましくは 1〜1 5 0 m、 より好ましくは 2. 5〜; L 0 0 mであり、 さらに 好ましくは 5〜5 0 である。 半径 rが 1 m未満であると、 反応生成物のハ ンドリングが困難であり、 2 5 0 mを超えると、 式 (A) を満足させるため、 反応温度 Xが高温になり又は反応時間 tが長くなり、 反応装置材質、 生産時間な どから工業生産に不利となる。 '
また、 溶融金属が薄膜状である場合、 厚み r, ( m) が通常 1〜 50 0 m 、 好ましくは 1〜3 0 0 m、 より好ましくは 5〜20 0 mであり、 さらに好 ましくは 1 0〜: L 0 0 mである。 ハロゲン化珪素 (例えば、 S i C .14) と反応して得られる珪素が反応前の金属 の形状を維持する場合、 得られた珪素粒子の粒径から溶融金属液滴の半径を求め てもよい。
金属は価数と密度に応じた体積変化は起こすものの、 同等の粒径をもつ珪素粒 子が得られる。 例えば、 金属がアルミニウム (A 1 ) である場合、 A 1が 3価の ために、 還元される珪素 (S i ) の量は A 1の 3/4モルである。 原子量は A 1 が 2 7、 S iが 2 8なので、 1モル A 1が反応すると 2 1 gの S iになる。 密度 は A 1が 2. 7、 S iが 2. 3 3であるので、 1 0 c m3の A 1は 9 c m3の S iに 変化する。 これは粒径比が約 9 6 %であり、 実質的に同じであることを表す。 還元反応は、 ハロゲン化シランガス含有雰囲気下で行われる。 雰囲気中の八口 ゲン化シラン濃度は 5 ν ο 1 %以上であることが好ましく、 雰囲気は、 反応進行 の観点から、 水、 酸素のようなガスを含まないことがより好ましい。 また、 雰囲 気は、 珪素の精製の観点からハロゲン化水素を含んでもよい。 レかし、 ハロゲン 化水素 (例えば、 塩化水素) の量に応じて金属の原単位が悪化するので、 ハロゲ ン化水素を含む雰囲気下で還元反応を行う場合、 ハロゲン化水素の濃度を適宜調 節することが好ましい。 還元反応ば、 通常、 反応温度での耐熱性があり、 製品である珪素を汚染しない 材質からなる反応容器内で行われる。 反応容器の材質は.、 例えば、 炭素、 炭化珪 素、 窒化珪素、 窒化アルミニウム、 アルミナ、' 石英である。 ' 工程 ωでは、 通常、 溶融金属の薄膜あるいは液滴とハロゲン化シランを反応さ せ、 反応生成物として珪素とハロゲン化金属 (例えば、 塩化アルミニウム) が生 成する。 分離
本発明の製造方法は、 さらに、 工程(i)で得られる珪素をハロゲン化金属から分 離する工程(i i)を含んでもよい。
分離工程(i i)は、 珪素をハロゲン化金属を分離する方法であればよく、 ハロゲ ン化金属の形態に応じて、 例えば、 固気分離、 固液分離、 リ一ヂング、 水洗など で行えばよい。
金属がアルミニウムである場合、 塩化アルミニウムが副生する。 塩化アルミ二 ゥムは 2 0 0 °C以上ではガスであるので、 工程(i)で得られる混合物を 2 0 0 °C以 上に保持して、 未反応ハロゲン^シラン、 希釈ガス、 塩化アルミニウムガスの混 合ガスと反応生成物の珪素を固気分離する。 次いで、 混合ガスを 2 0 0 °C以下に 冷却して塩化アルミニウムを固体とし、 未反応ハロゲン化シラン及び希釈ガスか ら分離する。 未反応ハロゲン化シランは、 必要に応じて希釈ガスから分離される 。 回収されたハロゲン化シランはアルミニウムとの反応に用いてもよい。 希釈ガ スからの分離では、 未反応ハロゲン化シランと希釈ガスの混合ガスを冷却して八 ロゲン化シランを液体とし、 気液分離する。 工程 ωで副生するハロゲン化金属 (例えば、 塩化アルミニウム) は高純度であ るので再利用可能である。 例えば、 電解により金属とハロゲンに分離し、 回収さ れたハロゲンはハロゲン化シランの製造に使用し、 金属はハロゲン化シランの還 元に循環して使用してもよい。 また、 金属が τルミ二ゥムの場合、 回収された無 水塩化アルミニウムは触媒として使用してもよく、 また水と反応させてポリ塩化 アルミニウムを製造してもよく、 アルカリで中和レて水酸化アルミニウムを製造 してもよく、 水蒸気又は酸素と高温で反応させてアルミナを製造してもよい。 工程(i)で得られた珪素は、 通常、 . Βが l ppm以下、 Pが l p pm以下、 F e 、 Cu、 Ga、 T i、 N iの各元素がいずれも 10 p pm以下である。 精製
本発明の製造方法は、 さらに、 工程(i)又は任意の工程(ii)で'得られる珪素を精 製する工程(iii)を含んでもよく、 例えば、 珪素を方向凝固する工程(iii-l)、 珪 素を高真空化で溶解 (真空溶解) する工程(iii- 2)、 好ましくは工程(iii-1)を含 んでもよい。 これらは単独又は組合わせて行ってもよい。 これらの工程により、 珪素に含まれる不純物元素がさらに低減される。 工程(iii-1)では、 通常、 方向凝固して得られた固体は不純物濃度の高い端部が 除去され、 高純度珪素が得られる。 高純度珪素は、 通常、 ホウ素が 0. l ppm 以下、 リンが 0. 5 p pm以下、 F e、 Cu、 Ga、 T i、 N iの各元素がいず れも 1. O p pm以下である。 方向凝固は、 例えば、 成長速度..:約 0. 01—約 0. 1mm/分のような条件下で行えばよい。
こうして得られる珪素は太陽電池製造用として好適に使用される。 上記において、 本発明の実施の形態を説明したが、'上記に開示された本発明の 実施の形態は、 あくまで例示であって、 本発明の範囲はこれらの実施の形態に限 定されない。 本発明の範囲は、 特許請求の範囲によって示され、 さらに特許請求 の範囲の記載と均等の意味及び範囲内でのす ての変更を含む。 実施例
本発明を実施例によってさらに詳細に説明するが、 本発明はこれらによって限 定されるものではない。 なお、 本明細書における各種の測定は下記で行った。 純度: 試料を粉碎後、 塩酸中に 48 h r浸漬後、 I C Pにより分析する。
断面観察: 試料を樹脂に包埋後切断し、 断面を走査型電子顕微鏡 (SEM) に より観察した。 '
元素分析: SEM観察したと同様な断面の微小部分について EPMA (Electro n Probe Microanalysis) により元素分析した。 実施例 1 '
三層電解高純度アルミニウム (住友化学 (株) 製、 成分分析値は表 1参照) を ヘリウム (He) 中でガスアト ィズ法により球状に加工し、 更に篩で 75— 1
50 zm (半径 37. 5 - 75 ΐη) の範囲のアルミニウム粒子を選別した。 ァ ルミニゥム粒子 0. 5 gを電気炉の石英製炉心管内に置き、 管内を A rガスに置 換した。
電気炉は、 10°C/分で 600°Cまで昇温した後、 20°Cに保った四塩化珪素 (和光純薬 (株) 製) を充填したボンベに A rを流速 0. 5 LZ分で通過させ、 これを炉心管内に吹き込んだ。 その温度 180分保持した。 その後、 ガスを Ar に切り替えて室温まで降温した。 600°Cは A 1の融点以下であるが、 S iが存 在すると A 1 -S iの共融点が 577 °Cとなるため、 '反応時は液相が生成した。 A 1と S iの密度、 分子量が近いため、 固体 A 1粒子は A 1 -S i融液粒子とな つても、 ほぼ同サイズを維持する。 また、 最終的に同サイズの S iに変化してい ることは反応前後の同一粒子の顕微鏡写真に Ϊり確認できた tt
反応後の S i粒子の粒径 (=A 1粒子の粒径) は 150 m (半径 r : 75 m) であった。
従って、 1 n. ( r / t ) =1. 721、
10. 5 - 700 OX (x + 273), =2. 482であり、 式 (A) を満足した 反応終了後、 得られた珪素粒子を取り出し、 純水で洗浄後乾燥して純度分析を 行った。 また各粒子の断面を走査型電子顕微鏡及び EPMAで観察して反応率を A 1/S iの面積比により求めた。 反応率は 99%以上であった。
純度分析値を表 1、 断面観察写真を図 1に示す。
図 1に示すように、 A 1粒子はその外形を保って S i粒子にな'つていた。 また 表 1に示すように、 P<0. 5 p pmの高純度珪素が得られた。 原料アルミニウム及び珪素の分析値
Figure imgf000015_0001
実施例 2
三層電解高純度アルミニウムを篩 37〜63 に篩別した以外は実施例 1 と同じ操作を行って珪素を得た。 反 、後の S i粒子の粒径 (=A 1粒子の粒径) は 50 mであった。
1 n (r T.t) = 0. 622、
10. 5— 700ひ Z (x +273) =2. 482であり、 式 (A) を満足した 反応終了後、 得られた珪素を取り出し、 粉碎して希塩酸、 次いで純水で洗浄後 乾燥して純度分析を行った。 また、 各粒子の断面を走査型電子顕微鏡及び EPM Aで観察して反応率を A 1ZS iの面積比により求めた。 反応率は 99%以上で あった。 実施例 3
反応条件を 600 °C 180分から 750 °C 5分に変更した以外は実施例 1と同 じ操作を行って珪素を得た。
固体 A 1粒子は A 1融液粒子となってもほぼ同サイズを維持し、 最終的に同サ ィズの S iに変化していることは反応前後の同一粒子の顕微鏡写真により確認で きた。 反応後の S i粒子の粒径 (二 A 1粒子の粒径) は 100 mであった。 1 n (r /f t) =3. 107、
10. 5 - 7000/ (x+ 273) = 3. 657であり、 式 (A) を満たした 反応終了後、 得られた珪素を取り出し、 粉碎して希塩酸、 次いで純水で洗浄後 乾燥して純度分析を行った。 また、 各粒子の断面を走査型電子顕微鏡及び EPM Aで観察して反応率を A 1 /S iの面積比により求めた。 反応率は 99%以上で あった。 実施例 4
反応条件を 600 °C 180分から 680 °C 180分に変更した以外は実施例 1 と同じ操作を行って珪素を得た。 反応後の S i粒子の粒径は 150 zmであった
1 n ( r / t ) = 1. 721、
10. 5-7000/ (x+273) = 3. 155であり、 式 '(A) を満たした 反応終了後、 得ら tlた珪素を取り出し、 断面を走査型電子顕微鏡及び EPMA で観察して反応率を A 1ZS iの面積比により求めた。 反応率は 100%であつ た。 比較例 1
三層電解高純度アルミニウムの 500 m以上篩別品を使用した以外は実施例 4と同じ操作を行った。 反応後の粒子の粒径は 1 mmであった。
1 n ( r / t ) =3. 618、
10. 5 - 7000/ (x+ 273) =3. 1 54であり、 式 (A) を満たさな かった。
反応終了後、 得られた珪素を取り出し、 希塩酸、 次いで純水で洗浄後乾燥して 純度分析した。 また、 断面を走査型電子顕微鏡で観察した。 断面観察写真を図 2 に示す。 図 2に示しように、 粒子の外周部は S i、 その內部は A l—S iの合金 であり、 S iへの還元反応は十分進行していなかった。 比較例 2
球状高純度アルミニウムの 150〜500 m篩別品を使用したこと、 及び反 応条件を 70.0°C5分に変更したこと以外は実施例 1と同じ操作を行った。 反応 後の粒子の粒径は 300 mであった。 .
1 n ( r / t) =4. 206、 ,
10. 5— 7000/ (x +273) =3. 306であり、 式 (A) を満たさな かった。
反応終了後、 得られた S i球を取り出し、 希塩酸、 次いで純水で洗浄後乾燥し て純度分析した。 また、 断面を走査型電子顕微鏡及び EPMAで観察して反応率 を A 1ZS iの面積比により求めた結果、 粒子の外周部は S i、 その内部 (粒子 の中心部分であり、 直径約 100 mの領域) は A 1— S iの合金ズ S i 1 3 %) であり、 S iへの還元反応は十分進行していなかった。 実施例 5
反応条件を 700°C 5分に変更した以外は実施例 1と同じ操作を行って珪素を 得た。 反応後の S i粒子の粒径 (=A 1粒子の粒径) は 120 mであった。 1 n (r / t) =3. 29,
10. 5— 7000/ (x +273) =3. 3058であり、 式 (A) を満たし た。 反応率は 98%であった。 実施例 6
反応条件を 800°C 5分に変更した以外は実施例 1と同じ操作を行って珪素を 得た。 反応後の S 1粒子の粒径は 125〜; 180 mであった。
粒径 125 xmの粒子は、
1 n ( r / t ) -3. 330、
10. 5 - 7000/ (x+ 273) = 3. 9763であり、 式 (A) を満たし 、 反応率が 100%であった。
粒径 180 mの粒子は、
1 n i / t) = 3. 695、
10. 5 - 7000/ (x+ 273) =3. 9763であり、 式 (A) を満たし 、 反応率が 99%であった。 実施例 7
三層電解高純度アルミニウムを篩で 75〜50 O^mに篩別したこと、 反応条 件を 900°C5分に変更したこと以外は実施例 1と同じ操作を行って珪素を得た 。 反応後の S i粒子の粒径は 130〜300 mであった。
粒径 130 mの粒子は、
1 n ( r / t) = 3. 370、
10. 5 - 7000/ (x+ 2† 3) =4. 53.24であり、 式 (A) を満たし 、 反応率は 100%であった。
粒径 300 tmの粒子は、 1 n (r / t ) = 4. 206、 —
10. 5- 7000/ (x+ 273) =4. 5324であり、 式 (A) を満たし 、 反応率は 96 %であった。 実施例 8
反応条件を 800°C10分に変更した以外は実施例 1と同 操作を行って珪素- を得た。 反応後の S i粒子の粒径は 105〜: L 50 mであった。
粒径 105 mの粒子は、
1 n ( r / t) =2. 810、
10. 5- 7000/ (x+ 273) =3. 9763であり、 式 (A) を満たし 、 反応率は 100 %であった。
粒径 15 O. mの粒子は、
1 n (r/ "t) =3. 166、
10. 5 - 7000/ (x+ 273). =3. 9763であり、 式 (A) を満たし 、 反応率は 99 %であった。 実施例 9
反応条件を 800°C1分に変更した以外は実施例 1と同じ操作を行って珪素を 得た。 反応後の S i粒子の粒径は 84 mであった。
1 n ( r / t ) = 3. 736、
10. 5 - 7000/ (x+ 273) =3. 9763であり、 式 (A) を満たし 、 反応率は 99%であった。 比較例 3
三層電解高純度アルミニウムの 150— 500 m篩別品を使用したこと、 反 応条件を 700°C 5分に変更した以外は実施例 1と同じ操作を行った。 反応後の 粒子の粒径は 220〜 330 mであった。 ,
粒径 220 mの粒子は、
1 n ( r / t ) = 3. 896、
10. 5 - 7000/ (x+ 273) = 3. 3058であり、 式 (A) を満たさ ず、 反応率は 80%であった。
粒径 330 mの粒子は、
1 n ( r / t) =4. 206、
10. 5 - 7000/ (x+ 273) = 3. 3058であり、 式 (A) ¾満たさ なかった。 得られた粒子はその外形を保っていて外側は S iであったが内部は共 晶組成の A 1— S iで、 未反応 A 1が残存していた。 比較例 4
三層電解高純度アルミニウムの 150〜500 m篩別品を使用したこと、 反 応条件を 550°C30分に変更した以外は実施例 1と同じ操作を行った。 反応後 の粒子の粒径は 200 であった。
1 n ( r /f t) =2. 905、
10. 5 - 7000/ (x+ 273) = 1. 995であり、 式 (A) を満たさな かった。 得られた粒子はその外形を保っていて外储は S 1であつ'たが内部は共晶 組成の A 1 - S iで、 未反応 A 1が残存していた。 比較例 5
三層電解高純度アルミニウム 500 以上篩別品を使用したこと、 反応条 件を 800°C1分に変更したこと以下は実施例 1と同じ操作を行った。 反応後の S i粒子の粒径は 750 mであった。 1 n (r / t) = 5. 927、
10. 5— 7000/ (x +273) =3. 980であり、 式,(A) を満たさな かった。 得られた粒子はその外形を保っていて外側は S iであったが内部は共晶 組成の A 1 - S i粒子で、 未反応 A 1が残存していた。 産業上の利用可能性
本発明の製造方法によれば、 高純度の珪素が効率的 (例えば、 反応率 90%以 上) に得られる。

Claims

請求の範囲
1. 工程(i)を含む珪素の製造方法。
式 (1) で示されるハロゲン化シランを金属により還元する工程(i)、 S i HnX4_n ( 1 )
〔式中、 nは 0〜3の整数であり、 Xは F、 C 1、 B r及び Iから選ばれる 少なくとも 1つであり、 Xが複数のとき、 複数の Xは互いに同一でも異なつ てもよい。 〕 前記金属は、 融点が 1300°C以下であり、 還元反応時に液相 であり、 かつその液相の形状は球状又は薄膜状であり、 球状の場合その半径 を r ( m) 、 反応時間を t (分) 、 反応温度を X (°C) としたとき、 式 ( A) 、 (B) 及び (C) を満たし、 又は薄膜状の場合その厚みを r, ( m ) 、 反応時間を t (分) 、 反応温度を X CC) としたとき、 式 (Α' ) 、 ( B' ) 及び (C) を満たす。
1 η (Γ/Λ Ϊ) ≤ (10. 5 - 7000/ (χ+ 273) ) (A) 1 n (r ' /ft) ≤ (10. 5— 7000ノ (x +273).) (A, ) 1≤ r≤250 (B)
1≤ r ' ≤ 500 (B, )
400≤x≤ 1300 (C)
2. さらに、 工程(ii)を含む請求項 1記載の方法。
工程(i)で得られる珪素を八ロゲン化金属から分離する工程(ii)。
3. さらに、 工程(iii)を含む請求項 1又は 2記載の方法。
前工程で得られた珪素を精製する工程(i i i)。
4. 精製は、 方向凝固又は真空溶解で行われる請求項 3記載の方法。
5. 精製は、 方向凝固で行われる請求項 4記載の方法。
6. ハロゲン化シランは不活性ガスとの混合ガスとして供給される請求項 1記載 の方法。
7. 混合ガス中のハロゲン化シラン濃度は 5 vo 1 %以上である請求項 6記載の 方法。
8. ハロゲン化シランはハロゲン化シランガスとして供給される請求項 1記載の 方法。
9. 金属は Na、 K、 Mg、 C a、 A 1及び Z nからなる群より選ばれた少なく とも 1つである請求項 1記載の方法。
10. 金属は A 1である請求項 9記載の方法。
11. 金属は純度が 99. 9%以上である請求項 1記載の方法。
〔金属の純度は 100 %からそれ自身、 ; F e、 Cu、 Ga、 T i及び N iの 含有量の合計を差し引いたもの。 〕
12. 金属はホウ素含有量が 5 p pm以下、 リン含有量が 1 p pm以下、 F e含 有量が 30 p pm以下である請求項 1記載の方法。
13. 金属は、 厚み 20 O^m以下の薄膜状である請求項 1記載の方法。
14. 金属は、 半径 100 im以下の球状である請求項 1記載の方法。
15. 前工程で得られた珪素は、 ホウ素含有量が 1 p pm以下、 リン含有量が 1 ppm以下、 F e、 Cu、 Ga、 T i、 N iの各元素の含有量が 10 p pm 以下である請求項 3記載の方法。
16. 工程(i')を含む珪素の製造方法。
式 (1) で示されるハロゲン化シランを金属により還元する工程(i')、
S 1 HnX4-n ( 1 )
〔式中、 nは 0〜3の整数であり、 Xは F、 Cし B r及び Iから選ばれる 少なくとも 1つであり、 Xが複数のとき、 複数の Xは互いに同一でも異なつ てもよい。 〕
前記金属は、 融点が 1300°C以下であり、 供給する時の形状は球状又は薄 膜状であり、 球状の場合その半径を Γ (βΐΐΐ) 、 反応時間を t (分) 、 反応 温度を X (°C) としたとき、 式 (A) 、 (B) 及び (C) を満たし、 又は薄 膜状の場合その厚みを r' (p m) 、 反応時間を t (分) 、 反応温度を X ( °C) としたとき、 式 (Α' ) 、 (Β' ) 及び (C) を満たす。
1 n ( r / t ) ≤ (10. 5-7000/ (x + 273) ) (A)
1 n (r ' / t ) ≤ (10. 5-7000/ (x+ 273) ) (A, )
1≤ r≤250 (B)
1≤ r ' ≤ 500 (B, )
400≤x≤ 1300 (C)
17. さらに、 工程(ii)を含む請求項 16記載の方法。
工程(i)で得られる珪素をハロゲン化金属から分離する工程(i i)。
18. さらに.、 工程(iii)を含む請求項 16又は 17記載の方法。
前工程で得られた珪素を精製する工程(i i i)。
19. 精製は、 方向凝固又は真空溶解で行われる請求項 18記載の方法。
20. 精製は、 方向凝固で行われる請求項 19記載の方法。
PCT/JP2006/316667 2005-08-19 2006-08-18 珪素の製造方法 WO2007021035A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/063,574 US20090232722A1 (en) 2005-08-19 2006-08-18 Method for producing silicon
CN2006800300442A CN101243014B (zh) 2005-08-19 2006-08-18 硅的制备方法
DE112006002203T DE112006002203T5 (de) 2005-08-19 2006-08-18 Verfahren zur Herstellung von Silicium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-238314 2005-08-19
JP2005238314 2005-08-19

Publications (1)

Publication Number Publication Date
WO2007021035A1 true WO2007021035A1 (ja) 2007-02-22

Family

ID=37757679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/316667 WO2007021035A1 (ja) 2005-08-19 2006-08-18 珪素の製造方法

Country Status (5)

Country Link
US (1) US20090232722A1 (ja)
CN (1) CN101243014B (ja)
DE (1) DE112006002203T5 (ja)
TW (1) TW200711999A (ja)
WO (1) WO2007021035A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153181A1 (ja) * 2007-06-15 2008-12-18 Solar Silicon Technology Corporation 太陽電池用シリコン原料を製造するための反応装置
WO2010080777A1 (en) * 2009-01-08 2010-07-15 Bp Corporation North America Inc. Impurity reducing process for silicon and purified silicon material
US20110280786A1 (en) * 2008-12-10 2011-11-17 National Institute For Materials Science Silicon manufacturing method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5311930B2 (ja) * 2007-08-29 2013-10-09 住友化学株式会社 シリコンの製造方法
US20090296073A1 (en) * 2008-05-28 2009-12-03 Lam Research Corporation Method to create three-dimensional images of semiconductor structures using a focused ion beam device and a scanning electron microscope
KR20110102301A (ko) * 2008-12-01 2011-09-16 스미또모 가가꾸 가부시끼가이샤 n 형 태양 전지용 실리콘 및 인 첨가 실리콘의 제조 방법
US9156705B2 (en) * 2010-12-23 2015-10-13 Sunedison, Inc. Production of polycrystalline silicon by the thermal decomposition of dichlorosilane in a fluidized bed reactor
TWI465577B (zh) 2012-06-25 2014-12-21 Silicor Materials Inc 純化鋁之方法及使用純化之鋁純化矽之方法
KR101733325B1 (ko) 2012-06-25 2017-05-08 실리코르 머티리얼즈 인코포레이티드 실리콘의 정제 방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182221A (ja) * 1983-03-24 1984-10-17 バイエル・アクチエンゲゼルシヤフト ケイ素の製法
JPH0264006A (ja) * 1988-07-15 1990-03-05 Bayer Ag 太陽のシリコンの製造方法
JPH11199216A (ja) * 1998-01-12 1999-07-27 Kawasaki Steel Corp シリコンの一方向凝固装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4247528A (en) 1979-04-11 1981-01-27 Dow Corning Corporation Method for producing solar-cell-grade silicon
DE3123009A1 (de) 1981-06-10 1982-12-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zum herstellen von fuer solarzellen verwendbarem silizium
JPS61117110A (ja) 1984-11-07 1986-06-04 Kawasaki Steel Corp 金属珪素の製造方法ならびにその製造装置
US4919912A (en) * 1985-10-18 1990-04-24 Ford, Bacon & Davis Incorporated Process for the treatment of sulfur containing gases
DE3635064A1 (de) 1986-10-15 1988-04-21 Bayer Ag Verfahren zur raffination von silicium und derart gereinigtes silicium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59182221A (ja) * 1983-03-24 1984-10-17 バイエル・アクチエンゲゼルシヤフト ケイ素の製法
JPH0264006A (ja) * 1988-07-15 1990-03-05 Bayer Ag 太陽のシリコンの製造方法
JPH11199216A (ja) * 1998-01-12 1999-07-27 Kawasaki Steel Corp シリコンの一方向凝固装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008153181A1 (ja) * 2007-06-15 2008-12-18 Solar Silicon Technology Corporation 太陽電池用シリコン原料を製造するための反応装置
JPWO2008153181A1 (ja) * 2007-06-15 2010-08-26 ソーラーシリコンテクノロジー株式会社 太陽電池用シリコン原料を製造するための反応装置
US20110280786A1 (en) * 2008-12-10 2011-11-17 National Institute For Materials Science Silicon manufacturing method
WO2010080777A1 (en) * 2009-01-08 2010-07-15 Bp Corporation North America Inc. Impurity reducing process for silicon and purified silicon material

Also Published As

Publication number Publication date
DE112006002203T5 (de) 2008-07-17
TW200711999A (en) 2007-04-01
CN101243014B (zh) 2011-09-07
US20090232722A1 (en) 2009-09-17
CN101243014A (zh) 2008-08-13

Similar Documents

Publication Publication Date Title
WO2007021035A1 (ja) 珪素の製造方法
US20090202415A1 (en) Process for producing high-purity silicon and apparatus
EP1670961B1 (en) Methods and apparatuses for producing metallic compositions via reduction of metal halides
JP5311930B2 (ja) シリコンの製造方法
JP5194404B2 (ja) 珪素の製造方法
US7959707B2 (en) Methods for producing consolidated materials
WO1998016466A1 (fr) Procede et appareil de preparation de silicium polycristallin et procede de preparation d&#39;un substrat en silicium pour cellule solaire
JP2008534415A (ja) 液体Znを用いたSiCl4の還元によるSiの製造方法
JP2012515129A (ja) シリコン精製方法および装置
WO2006098199A1 (ja) 高融点金属の分離回収方法
JP5256588B2 (ja) 高純度シリコンの製造方法
WO2008034578A1 (en) Process for the production of germanium-bearing silicon alloys
WO2007001093A1 (ja) 高純度シリコンの製造方法
WO2008145236A1 (en) Economical process for the production of si by reduction of sicl4 with liquid zn
TWI520903B (zh) 三氯矽烷的製備
JP2008007395A (ja) 多結晶シリコンの製造方法
US20230295767A1 (en) Low temperature reduction of metal oxides
JP6033176B2 (ja) シラン類の製造方法
JP2008156208A (ja) シリコンの製造方法
EP1903005A1 (en) Production of Si by reduction of SiCI4 with liquid Zn, and purification process
JP5471450B2 (ja) シリコンの製造方法
WO2022073579A1 (en) Process of producing technical silicon from silicon metal-containing material
EP1903007A1 (en) Process for the production of germanium-bearing silicon alloys

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680030044.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 12063574

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060022032

Country of ref document: DE

RET De translation (de og part 6b)

Ref document number: 112006002203

Country of ref document: DE

Date of ref document: 20080717

Kind code of ref document: P

WWE Wipo information: entry into national phase

Ref document number: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06783015

Country of ref document: EP

Kind code of ref document: A1