WO2007018291A1 - 水素吸蔵合金とその製造方法、水素吸蔵合金電極、及び二次電池 - Google Patents

水素吸蔵合金とその製造方法、水素吸蔵合金電極、及び二次電池 Download PDF

Info

Publication number
WO2007018291A1
WO2007018291A1 PCT/JP2006/315944 JP2006315944W WO2007018291A1 WO 2007018291 A1 WO2007018291 A1 WO 2007018291A1 JP 2006315944 W JP2006315944 W JP 2006315944W WO 2007018291 A1 WO2007018291 A1 WO 2007018291A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen storage
storage alloy
phase
general formula
hydrogen
Prior art date
Application number
PCT/JP2006/315944
Other languages
English (en)
French (fr)
Inventor
Tetsuya Ozaki
Tetsuo Sakai
Manabu Kanemoto
Minoru Kuzuhara
Tadashi Kakeya
Masaharu Watada
Original Assignee
Gs Yuasa Corporation
National Institute Of Advanced Industrial Science And Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gs Yuasa Corporation, National Institute Of Advanced Industrial Science And Technology filed Critical Gs Yuasa Corporation
Priority to JP2007529639A priority Critical patent/JP5092747B2/ja
Priority to US12/063,391 priority patent/US8021606B2/en
Priority to CN2006800291617A priority patent/CN101238232B/zh
Publication of WO2007018291A1 publication Critical patent/WO2007018291A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/24Electrodes for alkaline accumulators
    • H01M4/242Hydrogen storage electrodes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0052Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing titanium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/0005Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes
    • C01B3/001Reversible uptake of hydrogen by an appropriate medium, i.e. based on physical or chemical sorption phenomena or on reversible chemical reactions, e.g. for hydrogen storage purposes ; Reversible gettering of hydrogen; Reversible uptake of hydrogen by electrodes characterised by the uptaking medium; Treatment thereof
    • C01B3/0031Intermetallic compounds; Metal alloys; Treatment thereof
    • C01B3/0047Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof
    • C01B3/0057Intermetallic compounds; Metal alloys; Treatment thereof containing a rare earth metal; Treatment thereof also containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/383Hydrogen absorbing alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S420/00Alloys or metallic compositions
    • Y10S420/90Hydrogen storage

Definitions

  • the present invention relates to a hydrogen storage alloy containing a novel phase as a crystal structure, a method for producing the same, a hydrogen storage alloy electrode, and a secondary battery using the hydrogen storage alloy electrode.
  • a hydrogen storage alloy is a metal alloy that can store hydrogen as an energy source safely and easily. Therefore, it has attracted much attention as a new energy conversion and storage material.
  • hydrogen storage alloys as functional materials include hydrogen storage and transport, heat storage and transport, thermomechanical energy conversion, hydrogen separation and purification, hydrogen isotope separation, and hydrogen-based batteries It has been proposed for a wide range of catalysts and temperature sensors in synthetic chemistry.
  • a nickel metal hydride storage battery using a hydrogen storage alloy as a negative electrode material has (a) a high capacity, (b) the battery is not easily deteriorated even if overcharged or overdischarged, (c) It has features such as being able to charge and discharge at a high rate and (d) being clean with little adverse effects on the environment. For this reason, it is attracting attention as a consumer battery, and its application and practical use are actively being carried out.
  • hydrogen storage alloys have a variety of mechanical, physical, and chemical applications, and are therefore listed as one of important materials in future industries.
  • an AB type rare earth M-type alloy having a porcelain CaCu type crystal structure has been put into practical use so far.
  • the discharge capacity of the alloy is limited to about 300mAhZg, and it is difficult to achieve higher capacity.
  • rare earth-Mg-M based alloys capable of high capacity are attracting attention in recent years.
  • Each of these alloys has a different and complicated laminated structure, and it has been reported that when used in an electrode, it exhibits a discharge capacity that exceeds that of an AB-type alloy.
  • (1) P An electrode using a LaCaMgNi alloy having a uNi-type crystal structure is disclosed in Japanese Patent No. 30158.
  • Patent Document 1 (1) CeNi type, Gd Co type, Ce Ni type available
  • Patent Document 3 discloses that the reaction rate with hydrogen in the process is high.
  • Patent Document 1 Japanese Patent No. 3015885
  • Patent Document 2 Japanese Patent Laid-Open No. 11-323469
  • Patent Document 3 Japanese Patent No. 3490871
  • a first invention according to the present invention includes a phase having a chemical composition represented by a general formula A B C
  • A is one or more elements selected from rare earth elements.
  • B is one or more elements selected from the group consisting of Mg, Ca, Sr and Ba, and C is Ni, Co, Mn, Al, Cr, Fe, Cu, Zn, Si, Sn, V , Nb, Ta, Ti, Zr, and Hf, one or more elements selected from the group consisting of x, where x represents a number in the range of 0.1 to 0.8, and is a powerful R-3m space group
  • the hydrogen storage alloy is characterized in that the phase has a crystal structure of 5 to 12.5, the ratio of the c-axis length to the a-axis length in the lattice constant.
  • the “rare earth element” described in this specification includes Y (yttrium). In the present specification, in the first invention, it is represented by the general formula A B C and is a space of R—3 m.
  • a phase belonging to the group and having a ratio of the c-axis length to the a-axis length in the lattice constant of 11.5 to 12.5 is referred to as an A BC phase for convenience.
  • the crystal structure belonging to the R-3m space group belongs to the rhombohedral system.
  • the a-axis length and the c-axis length described in the first invention are at the lattice constant when the crystal structure is regarded as a hexagonal system that is not a rhombohedral system. Therefore, the a-axis length and the c-axis length described in the first invention are not equal.
  • elements other than A, B, and C may be contained in minute amounts so that the effects of the present invention are not lost.
  • elements other than A, B, and C may contain trace amounts of molybdenum, tungsten, palladium, platinum, etc.
  • a second invention according to the present invention is the hydrogen storage alloy of the first invention, wherein the chemical yarn is represented by the general formula Rl Mg R2 R3, and in the general formula Rl Mg R2 R3, R1 is rare.
  • a third invention according to the present invention is characterized in that, in the hydrogen storage alloy of the second invention, R1 contains La and R2 contains both Ni and Co.
  • a fourth invention according to the present invention is characterized in that, in the hydrogen storage alloy of the first invention, the crystal grain size of the hydrogen storage alloy is 10 to 1 OOnm.
  • a fifth invention according to the present invention is characterized in that in the hydrogen storage alloy of the first invention, the phase contains at least one element of Mn and A1.
  • a sixth invention according to the present invention is the hydrogen storage alloy according to the first invention, wherein A is La, Ce,
  • It is characterized by being one or more elements selected from Mn, Al, Fe, Cu, Zn, Si, Sn, V, Zr and Hf.
  • a seventh invention according to the present invention is a hydrogen storage alloy electrode comprising the hydrogen storage alloy according to any one of the first to sixth inventions as a hydrogen storage medium.
  • An eighth invention according to the present invention is a secondary battery comprising the hydrogen storage alloy electrode of the seventh invention as a negative electrode.
  • a ninth invention according to the present invention includes a phase having a chemical composition represented by a general formula A B C
  • A is one or more elements selected from rare earth elements.
  • B is one or more elements selected from the group consisting of Mg, Ca, Sr and Ba
  • C is Ni ⁇ Co, Mn, Al, Cr ⁇ Fe ⁇ Cu, Zn ⁇ Si ⁇ Sn ⁇ V
  • Nb ⁇ Ta ⁇ is one or more elements selected from the group consisting of Ti, Zr, and Hf
  • x represents a number in the range of 0.1 to 0.8
  • R-3m space group A method for producing a hydrogen storage alloy, wherein the phase has a crystal structure in which the ratio of the c-axis length to the a-axis length in the lattice constant is 11.5 to 12.5 In the active gas atmosphere!
  • a tenth invention according to the present invention is characterized in that, in the method for producing a hydrogen storage alloy according to the ninth invention, an atmosphere of inert gas in which annealing is performed is a helium gas atmosphere.
  • an atmosphere of inert gas in which annealing is performed is a helium gas atmosphere.
  • the chemical composition of the produced hydrogen storage alloy has the general formula Rl Mg R a b
  • Rl is selected from rare earth elements cdabed R2 is at least one element of Ni and Co, R3 is at least one element of Mn and A1, and a, b, c and d are 16 ⁇
  • the chemical composition is represented by the general formula A B C, belongs to the R—3m space group, and the lattice constant
  • the phase in which the ratio of the c-axis length to the a-axis length in 11.5 to 12.5 is a novel phase.
  • the first invention according to the present invention contains this novel phase, so that even when hydrogen storage and release are repeated, the retention rate of the hydrogen storage capacity is high and the hydrogen storage amount is large! ⁇ ⁇ Provide a hydrogen storage alloy with excellent properties.
  • the secondary battery of the eighth invention according to the present invention includes such a novel hydrogen storage alloy, so that the capacity retention rate is maintained even when charging and discharging with high discharge capacity are repeated. Lowering it will be excellent in durability.
  • a ninth invention according to the present invention includes a second step of producing a solidified body by solidifying the melt at a cooling rate of 1000 KZ seconds or more, and a solidified body under a pressurized inert gas atmosphere. And a third step of annealing at 980 ° C. As a result, it is possible to efficiently generate a new ABC phase, which is a metastable phase that is inherently not very stable. Therefore, the ninth
  • an excellent hydrogen storage alloy having both a high hydrogen storage capacity and a long charge / discharge cycle life can be efficiently produced.
  • the hydrogen storage alloy and the hydrogen storage alloy electrode according to the present invention have a large amount of hydrogen storage and excellent durability.
  • the secondary battery according to the present invention is less likely to have a reduced capacity retention rate even after repeated charging and discharging with a high discharge capacity.
  • the method for producing a hydrogen storage alloy according to the present invention can efficiently produce a hydrogen storage alloy having a large amount of hydrogen storage and excellent durability.
  • FIG. 1 is a diagram showing an example of an X-ray diffraction result of a hydrogen storage alloy according to the present invention.
  • FIG. 2 A three-dimensional view of the structural model of the A BC phase.
  • FIG.3 A two-dimensional view of the structural model of the A BC phase.
  • FIG. 4 A graph showing the difference in alloy weight change due to different inert gas atmospheres during firing.
  • FIG. 5 The horizontal axis represents the proportion (% by weight) of the ABC phase in the hydrogen storage alloys of Examples and Comparative Examples.
  • the hydrogen storage alloy of the first invention according to the present invention has a chemical composition represented by the general formula A B C.
  • A is selected from rare earth elements
  • B is one or more elements selected from the group consisting of Mg, Ca, Sr and Ba
  • C is Ni, Co, Mn, Al, Cr, Fe, Cu, Zn, Si
  • One or more elements selected from the group consisting of Sn, V, Nb, Ta, Ti, Zr and Hf, and x represents a number in the range of 0.1 to 0.8
  • the phase has a crystal structure belonging to the space group and having a ratio of the length of the c-axis length to the length of the a-axis in the lattice constant of 11.5 to 12.5.
  • Such an ABC phase is a conventional AB ⁇ type rare earth alloy or AB type rare earth alloy.
  • Quantification of each element in the A BC phase is performed, for example, by subjecting the pulverized alloy powder to X-ray diffraction analysis.
  • the analysis can be performed by analyzing by a probe probe microanalysis (EPMA) or the like and analyzing the analysis result by the Rietveld method.
  • EPMA probe probe microanalysis
  • FIG. 1 shows a chemical composition as an embodiment of the hydrogen storage alloy of the present invention containing an A BC phase.
  • X-ray diffraction shows a powder of hydrogen storage alloy whose composition is represented by La Mg Ni Co Mn Al
  • the X-ray diffraction used here is based on the following measurement conditions.
  • Lattice parameter: a-axis length 4. 98 to 5. 08A
  • the lattice parameter of the A BC phase contained in the hydrogen storage alloy according to the present invention is in the above range.
  • novel ABC phase contained in the hydrogen storage alloy according to the present invention has the crystal structure model shown in FIG.
  • the new A BC phase is a stack of AC
  • ABC phase is inserted at some distance from each other.
  • the ABC phase has a large hydrogen storage capacity.
  • the AC phase absorbs hydrogen compared to the ABC phase.
  • the storage capacity of hydrogen is increased by forming a structure in which ABC phases are inserted in layers in which five phases are stacked.
  • the phase that only has the force of the conventional ABC phase has a large lattice volume and a large hydrogen storage capacity.
  • the graphic power shown in FIG. 2 is a unit cell when the ABC phase is regarded as a hexagonal system. But
  • the length of the bottom side of the lattice in Fig. 2 is the a-axis length, and the height of the lattice is the c-axis length.
  • the content of the A BC phase is particularly limited.
  • a second invention according to the present invention is the hydrogen storage alloy of the first invention, wherein the chemical yarn is represented by the general formula Rl Mg R2 R3, and in the general formula Rl Mg R2 R3, R1 is rare.
  • Rl Mg R2 R3, R1 is rare.
  • An eleventh invention according to the present invention is the method of producing a hydrogen storage alloy according to the ninth invention or the tenth invention, wherein the chemical composition of the produced hydrogen storage alloy has the general formula Rl Mg R a b
  • Rl is selected from rare earth elements c d a b e d
  • R2 is at least one element of Ni and Co
  • R3 is at least one element of Mn and A1
  • a, b, c and d are 16 ⁇
  • the hydrogen storage alloy contains no elements other than Rl, Mg, R2, and R3.
  • elements other than Rl, Mg, R2 and R3 may be contained in a trace amount so that the effect of the invention is not lost.
  • elements other than Rl, Mg, R2, and R3 include Ca, Sr, Ba, Cr, Fe, Cu, Zn, Si, Sn, V, Nb, Ta, Ti, Zr, Hf, Mo, W, Pd, Pt, etc. may be contained in a trace amount.
  • a is 16.5 ⁇ a ⁇ 17.5, b force 4.2 ⁇ b ⁇ 4.5, c Force S73 ⁇ c ⁇ 77, d force S2 ⁇ d ⁇ 5
  • a is 16.5 ⁇ a ⁇ 17.5
  • b force 4.2 ⁇ b ⁇ 4.5 a force 4.2 ⁇ b ⁇ 4.5
  • c Force S73 ⁇ c ⁇ 77 a force S2 ⁇ d ⁇ 5
  • a high-capacity hydrogen storage alloy with high capacity retention is obtained.
  • R1 contains La and R2 contains both Ni and Co.
  • the durability of the hydrogen storage alloy can be further improved by including at least one element of Mn and A1 in the hydrogen storage alloy.
  • the ABC phase and the AC phase constituting the novel ABC phase of the hydrogen storage alloy according to the present invention store hydrogen.
  • the hydrogen storage alloy according to the present invention preferably has a primary particle diameter of 10 to LOOnm.
  • the primary particle size By setting the primary particle size to a range of 10 to: LOOnm, the volume expansion of the hydrogen storage alloy accompanying hydrogen storage is reduced. As a result, a fine powder of the hydrogen storage alloy is generated.
  • the primary particle size is in the range of 10 to: LOOnm, phase transformation due to atomic rearrangement easily occurs during heat treatment. As a result, A BC
  • the primary particle diameter of 10 to: LOOnm means that almost all of the primary particles are included in the range of a minimum of 10 nm and a maximum of lOOnm. Specifically, when the particle size is measured for 100 arbitrary objects in an electron micrograph, the particle size is 10 to: The ratio force occupied by particles within the range of LOOn m The area ratio is 80% or more. Say something.
  • the primary particles are particles having a single crystal structure composed of one crystallite (also referred to as crystal grains). The method for measuring the grain size of each crystal grain is according to the method described in the examples described later.
  • the method for producing a hydrogen storage alloy according to the present invention is as follows. First, based on the chemical composition of the target hydrogen storage alloy, a predetermined amount of the alloy raw material powder is weighed and placed in a reaction vessel. Next, the raw material powder is melted using a high-frequency melting furnace in an inert gas atmosphere under reduced pressure or normal pressure. Thereafter, in order to increase the rate of formation of the metastable phase, the molten raw material is rapidly solidified at a cooling rate of 1000 KZ seconds or more. Furthermore, the new ABC phase according to the present invention can be produced with high efficiency by annealing the solidified raw material at 860 to 980 ° C. for 2 to 50 hours under a pressurized inert gas atmosphere.
  • the atmosphere and temperature conditions during melting and annealing may be appropriately adjusted depending on the alloy composition. If the cooling rate is less than 1000 KZ seconds, use CaCu
  • a stable phase such as a 5-type crystal structure is easily generated. Therefore, the A BC phase, which is a metastable phase, can be generated efficiently.
  • the cooling rate is preferably 1000 KZ seconds or more. From this point of view, the cooling method is a melt spinning method with a cooling rate of 100, OOOKZ seconds or more, and a cooling rate of 10
  • ⁇ seconds a gas atomizing method, a cooling rate of about ⁇ seconds, a water-cooled mold manufacturing method, a water-cooled plate rapid solidification method, and the like can be suitably used.
  • the annealing be performed in an inert gas atmosphere (for example, argon gas or helium gas) pressurized to 0. IMPa (gauge pressure) or higher.
  • IMPa gauge pressure
  • the pressure it is preferable to set the pressure to 0.2 to 0.5 MPa (gauge pressure). Since helium has better thermal conductivity than argon, the temperature difference in the firing furnace is reduced and the alloy can be heat-treated at a more uniform temperature. By such a heat treatment at a uniform temperature, for example, an alloy such as Mg can be effectively prevented from evaporating, and an alloy having a desired composition and phase can be produced without changing the alloy weight.
  • Fig. 4 shows a hydrogen storage alloy having a chemical composition of La Mg Ni Co Mn Al, 0.2
  • the heat treatment temperature is 860 to 980 ° C, preferably 880 to 930 ° C.
  • the A BC phase is the main phase, that is,
  • the hydrogen storage alloy of the present invention is used as an electrode
  • the hydrogen storage alloy is preferably used after being pulverized. Grinding may be performed before or after annealing, but since the surface area is increased by grinding, it is desirable to grind after annealing to prevent acidity on the alloy surface.
  • the pulverization is preferably performed in an inert atmosphere in order to prevent oxidation on the alloy surface. For the pulverization, for example, a ball mill or the like is used.
  • the obtained powder is mixed with an appropriate binder (for example, a resin such as poly (vinyl alcohol)) and water (or other liquid) to form a paste and filled into a nickel porous body.
  • an appropriate binder for example, a resin such as poly (vinyl alcohol)
  • water or other liquid
  • a negative electrode that can be used in a secondary battery such as a nickel hydrogen battery can be manufactured by pressure molding into a desired electrode shape.
  • the negative electrode produced as described above is combined with a positive electrode (for example, a nickel electrode), an alkaline electrolyte, and the like to produce a secondary battery (for example, a nickel hydrogen battery) according to the present invention.
  • a positive electrode for example, a nickel electrode
  • an alkaline electrolyte for example, a nickel hydrogen battery
  • La 17.0, Mg is 4.3, Ni is 70.2, Co is 6.4, Mn is 1.1 and A1 is 1.1.
  • a predetermined amount of each raw material ingot was weighed and placed in a crucible. The material was melted by heating to 1500 ° C using a high-frequency melting furnace in an argon gas atmosphere with a reduced pressure of 0.0MPa (gauge pressure). Then, the melted material was transferred to a water-cooled type in a high-frequency melting furnace and solidified. Furthermore, the obtained alloy was heated to 910 ° C in a helium gas atmosphere pressurized to 0.2 MPa (gauge pressure, the same shall apply hereinafter).
  • the hydrogen storage alloy of Example 1 was obtained by annealing. The obtained hydrogen storage alloy was mechanically pulverized by a pulverizer in an argon gas atmosphere, and the average particle size (D50) was adjusted to 60 m.
  • Example 2 The test was carried out under the same conditions as in Example 1 except that the molar ratio of the elements of the hydrogen storage alloy was set to the chemical composition shown in Table 1 and that the annealing temperature was set to the conditions shown in Table 1. Examples 2 to 51 The hydrogen storage alloys of 1 were prepared.
  • Comparative Example 1 under the same conditions as in Example 1 except that the molar ratio of the elements of the hydrogen storage alloy was set to the chemical composition shown in Table 2 and that the annealing was performed under the conditions shown in Table 2. Up to 14 hydrogen storage alloys were prepared. In the hydrogen storage alloys of Comparative Examples 1 to 14, no A BC phase was formed.
  • Table 4 shows the atomic arrangement of 5 24 5 24. Co, Mn and A in the ABC phase of the hydrogen storage alloy of Example 1
  • the chemical yarns listed in Table 1 are the hydrogens containing the A BC phase, not the A BC phase yarns.
  • Mg is used as the B element of the phase represented by the general formula A B C.
  • the average particle size and particle size distribution of the hydrogen storage alloy were measured by a laser diffraction / scattering method using a particle size analyzer (manufactured by Microtrack, product number “MT3000”).
  • the average particle diameter refers to the cumulative average diameter D50, which is the particle diameter at which the cumulative curve becomes 50% when the total powder volume is 100%.
  • the average particle diameter referred to here is the average of the diameters of particles that are larger than the primary particles by agglomerating primary particles described later. [0066] (Measuring method of crystal grain (primary particle) diameter)
  • the crystal grain size was measured using the transmission electron microscope (Hitachi H9000), measuring the longest, longest and shortest, and shortest lengths of each of the 100 target grains. Obtained by the formula.
  • a mixture was obtained by adding 3 parts by weight of nickel powder (manufactured by INCO, # 210) to 100 parts by weight of the obtained hydrogen storage alloy powder of Example or Comparative Example.
  • An aqueous solution in which a thickener (methylcellulose) was dissolved was added to the mixture, and 1.5 parts by weight of a binder (styrene butadiene rubber) was added to prepare a paste.
  • the paste was applied to both sides of a 45 m thick perforated steel plate (opening ratio 60%), dried, and then pressed to a thickness of 0.36 mm to produce a negative electrode.
  • an excess capacity sintered (sintered) hydroxide-nickel electrode was used as the positive electrode.
  • the negative electrode produced as described above was sandwiched between positive electrodes via a separator to obtain a laminate.
  • the laminate was fixed with bolts so that a pressure of 1 kgfZcm 2 was applied, and an open cell was assembled.
  • As the electrolyte a mixture containing 6.8 mol / L KOH and 0.8 mol / L LiOH was used.
  • An HgZHgO electrode was used as a reference electrode.
  • the prepared battery was placed in a 20 ° C water bath and charged and discharged for 10 cycles under the following conditions: o
  • the maximum discharge capacity in 10 cycles was defined as the maximum discharge capacity.
  • the results are shown in Tables 7 and 8.
  • the capacities listed in Table 7 and Table 8 are maximum discharge capacities (mAhZg) per weight of hydrogen storage alloy.
  • Figure 5 shows the graph with Y on the Y axis.
  • Table 9 shows the lattice constant and the A: B: C composition ratio of the La 5 MgNi 24 phase (same as the A ⁇ C phase) of Examples:! To 51 hydrogen storage alloys obtained by Rietveld analysis.
  • the "represented by the general formula ABC" described in the first invention means the total amount of A and B.
  • the ratio of the amount of C to C has no width.
  • the ratio of the amount of C to the total amount of A and B may deviate slightly from 4 to the extent that the effect of the present invention is not lost.
  • the ratio of the amount of C to the total amount of A and B is slightly deviated from 4. This is understood from Table 9. Even in such a case, the effect of the present invention is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 化学組成が、一般式A5-xB1+xC24で表される相を含有し、  前記一般式A5-xB1+xC24において、Aは希土類元素から選択される1種以上の元素であり、BはMg、Ca、SrおよびBaからなる群より選択される1種以上の元素であり、CはNi、Co、Mn、Al、Cr、Fe、Cu、Zn、Si、Sn、V、Nb、Ta、Ti、ZrおよびHfからなる群より選択される1種以上の元素であり、かつxは-0.1~0.8の範囲の数を表し、かつ R-3mの空間群に属し、かつ格子定数におけるa軸長に対するc軸長の長さの比が11.5~12.5である結晶構造を、前記相が有する、  水素吸蔵合金。

Description

明 細 書
水素吸蔵合金とその製造方法、水素吸蔵合金電極、及び二次電池 技術分野
[0001] 本発明は、結晶構造として新規な相を含有する水素吸蔵合金とその製造方法、水 素吸蔵合金電極、及び該水素吸蔵合金電極を用いた二次電池に関する。
背景技術
[0002] 水素吸蔵合金は、安全に、かつ容易にエネルギー源としての水素を貯蔵できる合 金である。したがって、新しいエネルギー変換及び貯蔵用材料として非常に注目され ている。
機能性材料としての水素吸蔵合金の応用分野は、水素の貯蔵'輸送、熱の貯蔵- 輸送、熱 機械エネルギーの変換、水素の分離'精製、水素同位体の分離、水素を 活物質とした電池、合成化学における触媒、温度センサーなどの広範囲にわたって 提案されている。
[0003] 例えば、水素吸蔵合金を負極材料に使用したニッケル水素蓄電池は、(a)高容量 であること、(b)過充電または過放電がなされても電池が劣化しにくいこと、(c)高率 充放電が可能であること、(d)環境に与える悪影響が少なくクリーンであること、など の特長を持つ。そのため、民生用電池として注目され、また、その応用 ·実用化が活 発に行われている。
このように、水素吸蔵合金は、機械的、物理的、化学的に様々な応用の可能性を 有して 、るので、将来の産業における重要な材料の一つとして挙げられる。
[0004] このような水素吸蔵合金の一応用例であるニッケル水素蓄電池の電極材としては、 これまで〖こ CaCu型結晶構造を有する AB型希土類 M系合金が実用化されてい
5 5
る。しかし、その合金の放電容量は約 300mAhZgで限界となっており、さらなる高容 量ィ匕は困難な状況である。
[0005] これに対し、近年、高容量ィ匕が可能な、希土類— Mg—M系合金が注目されてい る。これらの合金は、それぞれ異なる複雑な積層構造を有しており、電極に用いられ た場合に AB型合金を上回る放電容量を示すことが報告されている。例えば、(1) P uNi型結晶構造を有する LaCaMgNi合金を用いた電極が、 日本国特許第 30158
3 9
85号公報 (特許文献 1)に開示されている。(2) CeNi型、 Gd Co型、 Ce Ni型を有
3 2 7 2 7 する、希土類— Mg— Ni系合金を用いた電極力 高い水素吸蔵用容量を維持しつ つ、良好な水素放出特性を示すことが、日本国特開平 11— 323469号公報 (特許文 献 2)に開示されている。(3)組成が一般式 AB (Xは 3. 5〜5)で表され、表層部に C e Co 型結晶構造の相を有する水素吸蔵合金の粒子において、水素の吸収、放出
5 19
過程における水素との反応速度が速!、ことが、 日本国特許第 3490871号公報 (特 許文献 3)に開示されている。
[0006] 特許文献 1:日本国特許第 3015885号公報
特許文献 2 :日本国特開平 11— 323469号公報
特許文献 3 :日本国特許第 3490871号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、上記の 3件の特許文献に開示された AB〜 型希土類系合金は、水
3 3.8
素吸蔵量は多いが、 AB型希土類系合金に比べ、二次電池に用いた際に耐久性に
5
劣るという問題がある。
[0008] そこで、本発明は、水素吸蔵量が多ぐ耐久性にも優れた水素吸蔵合金および水 素吸蔵合金電極を提供することを一の課題とする。また本発明は、放電容量が高ぐ 充放電を繰り返した際にも容量保持率が低下しにくい二次電池を提供することを他 の課題とする。さらに、本発明は、水素吸蔵量が多ぐ耐久性にも優れた水素吸蔵合 金を効率的に製造し得る水素吸蔵合金の製造方法を提供することを他の課題とする 課題を解決するための手段
[0009] 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、耐久性に優れ 、しカゝも水素吸蔵量も多い新規な相を含有する水素吸蔵合金を発見し、本発明を完 成するに至った。
[0010] 本発明による第一の発明は、化学組成が、一般式 A B C で表される相を含有
5-x 1+x 24
し、一般式 A B C において、 Aは希土類元素から選択される 1種以上の元素であ り、 Bは Mg、 Ca、 Srおよび Baからなる群より選択される 1種以上の元素であり、 Cは N i、 Co、 Mn、 Al、 Cr、 Fe、 Cu、 Zn、 Si、 Sn、 V、 Nb、 Ta、 Ti、 Zrおよび Hfからなる群 より選択される 1種以上の元素であり、かつ xは 0. 1〜0. 8の範囲の数を表し、力 つ R— 3mの空間群に属し、かつ格子定数における a軸長に対する c軸長の長さの比 力 5〜12. 5である結晶構造を、前記相が有することを特徴とする、水素吸蔵合 金である。
なお、本明細書に記載の「希土類元素」とは、 Y (イットリウム)をも含むものとする。 本明細書では、第一の発明における、一般式 A B C で表され、 R— 3mの空間
5-x 1+x 24
群に属し、かつ格子定数における a軸長に対する c軸長の長さの比が 11. 5〜12. 5 である相を、便宜上 A BC 相と記載する。
5 24
[0011] R— 3mの空間群に属する結晶構造は、菱面体晶系に属する。菱面体晶では、格 子定数において a軸長 =b軸長 =c軸長となる。し力しながら、第一の発明に記載の a 軸長および c軸長は、結晶構造を菱面体晶系としてではなぐ六方晶系とみなした場 合の格子定数におけるものである。したがって、第一の発明に記載の a軸長と c軸長と は等しくならない。
[0012] なお、第一の発明に記載の「一般式 A B C で表され」とは、 A BC 相が A、 Bお
5-x 1+x 24 5 24
よび C以外の元素を全く含まな 、ことを意味するものではな 、。本発明の効果が失わ れない程度に、 A、 Bおよび C以外の元素を微量に含んでいてもよいことは当然であ る。例えば、 A、 Bおよび C以外の元素として、モリブデン、タングステン、パラジウム、 白金などを微量に含んで 、てもよ 、。
[0013] 本発明による第二の発明は、第一の発明の水素吸蔵合金において、化学糸且成が、 一般式 Rl Mg R2 R3で表され、かつ 一般式 Rl Mg R2 R3において、 R1は希 a b e d a b e d 土類元素力も選択される 1種以上の元素であり、 R2は Niおよび Coの少なくとも 1種の 元素であり、 R3は Mnおよび A1の少なくとも 1種の元素であり、かつ a、 b、 cおよび dは 、 16≤a≤18, 3≤b≤6, 72≤c≤78, l≤d≤6, a+b + c + d= 100を満たす数で ある。
[0014] 本発明による第三の発明は、第二の発明の水素吸蔵合金において、 R1として Laを 含有し、 R2として Niおよび Coの両方を含有することを特徴とする。 [0015] 本発明による第四の発明は、第一の発明の水素吸蔵合金において、水素吸蔵合 金の結晶粒径が 10〜 1 OOnmであることを特徴とする。
[0016] 本発明による第五の発明は、第一の発明の水素吸蔵合金において、前記相が、 M nおよび A1の少なくとも 1種の元素を含有することを特徴とする。
本発明による第六の発明は、第一の発明の水素吸蔵合金において、 Aが La、 Ce、
Prおよび Yから選択される 1種以上の元素であり、 Βが Mgであり、かつ Cが Ni、 Co、
Mn、 Al、 Fe、 Cu、 Zn、 Si、 Sn、 V、 Zrおよび Hfから選択される 1種以上の元素であ ることを特徴とする。
[0017] 本発明による第七の発明は、第一から第六の発明のいずれかの水素吸蔵合金を 水素貯蔵媒体として含有することを特徴とする水素吸蔵合金電極である。
[0018] 本発明による第八の発明は、第七の発明の水素吸蔵合金電極を負極として備えた ことを特徴とする二次電池である。
[0019] 本発明による第九の発明は、化学組成が、一般式 A B C で表される相を含有
5-x 1+x 24
し、 一般式 A B C において、 Aは希土類元素から選択される 1種以上の元素で
5-x 1+x 24
あり、 Bは Mg、 Ca、 Srおよび Baからなる群より選択される 1種以上の元素であり、 C は Niゝ Co、 Mn、 Al、 Crゝ Feゝ Cu、 Znゝ Siゝ Snゝ V、 Nbゝ Taゝ Ti、 Zrおよび Hfからな る群より選択される 1種以上の元素であり、かつ xは 0. 1〜0. 8の範囲の数を表し、 かつ R— 3mの空間群に属し、かつ格子定数における a軸長に対する c軸長の長さの 比が 11. 5〜12. 5である結晶構造を、前記相が有する、水素吸蔵合金の製造方法 であって、原料を不活性ガス雰囲気下にお!/ヽて加熱溶融して溶融体を作製する第 一の工程と、溶融体を 1000KZ秒以上の冷却速度で凝固させて凝固体を作製する 第二の工程と、凝固体を加圧状態の不活性ガス雰囲気下で 860〜980°Cにて焼鈍( 焼きなまし)する第三の工程とを備えることを特徴とする。
[0020] 本発明による第十の発明は、第九の発明の水素吸蔵合金の製造法において、焼 鈍がおこなわれる不活性ガス雰囲気力 ヘリウムガス雰囲気であることを特徴とする。 本発明による第十一の発明は、第九の発明または第十の発明における水素吸蔵 合金の製造法において、製造される水素吸蔵合金の化学組成が、一般式 Rl Mg R a b
2 R3で表され、かつ一般式 Rl Mg R2 R3において、 Rlは希土類元素から選択さ c d a b e d れる 1種以上の元素であり、 R2は Niおよび Coの少なくとも 1種の元素であり、 R3は M nおよび A1の少なくとも 1種の元素であり、かつ a、 b、 cおよび dは、 16≤a≤18, 3≤b ≤6、 72≤c≤78, l≤d≤6, a+b + c + d= 100を満たす数となるように、原料力調 製されている。
化学組成が一般式 A B C で表され、 R— 3mの空間群に属し、かつ格子定数
5-x 1+x 24
における a軸長に対する c軸長の長さの比が 11. 5〜12. 5である相は、新規な相で ある。本発明による第一の発明は、この新規な相を含有することにより、水素の吸蔵と 放出を繰り返した場合にも水素吸蔵容量の保持率が高ぐしかも、水素吸蔵量も多い と!ヽぅ優れた性質を備える水素吸蔵合金を提供する。
[0021] したがって、本発明による第八の発明の二次電池は、そのような新規な水素吸蔵合 金を備えたことにより、放電容量が高ぐ充放電を繰り返した際にも容量保持率が低 下しに《耐久性に優れたものとなる。
[0022] 本発明による第九の発明は、溶融体を 1000KZ秒以上の冷却速度で凝固させて 凝固体を作製する第二の工程と、凝固体を加圧状態の不活性ガス雰囲気下で 860 〜980°Cにて焼鈍する第三の工程とを備える。その結果、本来はあまり安定しない準 安定相である新規な A BC 相を効率よく生成させることができる。したがって、第九
5 24
の発明では、高水素吸蔵量と長い充放電サイクル寿命とを兼ね備えた優れた水素吸 蔵合金を効率的に製造することができる。
発明の効果
[0023] 以上のように、本発明に係る水素吸蔵合金および水素吸蔵合金電極は、水素吸蔵 量が多ぐ耐久性にも優れたものとなる。また、本発明に係る二次電池は、放電容量 が高ぐ充放電を繰り返した際にも容量保持率が低下しにくいものとなる。さらに、本 発明に係る水素吸蔵合金の製造方法は、水素吸蔵量が多ぐ耐久性にも優れた水 素吸蔵合金を効率的に製造することができる。
図面の簡単な説明
[0024] [図 1]本発明による水素吸蔵合金の X線回折結果の一例を示した図。
[図 2]A BC 相の構造モデルを 3次元的に示した図。
5 24
[図 3]A BC 相の構造モデルを 2次元的に示した図。 [図 4]焼成時の不活性ガス雰囲気の違 、による合金重量変化の差を示したグラフ。
[図 5]実施例及び比較例の水素吸蔵合金中の A BC 相の割合 (重量%)を横軸とし
5 24
、その容量保持率 (%)を縦軸としたグラフ。
発明を実施するための最良の形態
[0025] 本発明による第一の発明の水素吸蔵合金は、化学組成が、一般式 A B C で表
5-x 1+x 24 される相を含有し、一般式 A B C において、 Aは希土類元素カゝら選択される 1種
5-x 1+x 24
以上の元素であり、 Bは Mg、 Ca、 Srおよび Baからなる群より選択される 1種以上の 元素であり、 Cは Ni、 Co、 Mn、 Al、 Cr、 Fe、 Cu、 Zn、 Si、 Sn、 V、 Nb、 Ta、 Ti、 Zr および Hfからなる群より選択される 1種以上の元素であり、かつ xは 0. 1〜0. 8の 範囲の数を表し、かつ R— 3mの空間群に属し、かつ格子定数における a軸長に対す る c軸長の長さの比が 11. 5〜12. 5である結晶構造を、前記相が有する。
[0026] このような、 A BC 相は、従来の AB〜 型希土類系合金や、 AB型希土類系合
5 24 3 3.8 5
金と!、つた範疇に含まれな 、新規な相である。
[0027] A BC 相内における各元素の定量は、例えば、粉砕した合金粉末を X線回折ゃ電
5 24
子線プローブマイクロアナリシス (EPMA)等により分析し、分析結果をリートベルト法 により解析することにより、行うことができる。
図 1は、 A BC 相を含有する本発明の水素吸蔵合金の一実施形態として、化学組
5 24
成が La Mg Ni Co Mn Al で表される水素吸蔵合金の粉末を、 X線回折で
17.0 4.3 70.0 6.4 1.1 1.1
測定した際の測定結果を示したグラフである。
尚、ここで用いた X線回折は、下記の測定条件によるものである。
X線管球 : Cu— Κ α
加速電圧 :40kV
電流 : 100mA
走査速度 :2 deg/min
ステップ角:0. 02 deg
[0028] この実施形態の水素吸蔵合金では、図 1中に Tで示したように、 2 Θ [deg]が 28. 94 、 31. 16、 32. 34、 35. 48、 36. 04、 41. 24、 42. 12および 44. 82【こお!ヽてピー ク値を有する結果が得られた。 この X線回折結果を用いてリートベルト法により構造解析したところ、この実施形態 における新規な A BC 相は、図 2および図 3に示される構造モデルを備えたものであ
5 24
ることが判明した。
[0029] 新規な A BC 相の具体的な結晶構造は、以下の通りである。
5 24
結晶系 :菱面体晶
空間群 : R— 3m
格子パラメータ: a軸長 =4. 98〜5. 08A
c軸長 Za軸長 = 11. 50〜12. 50
[0030] 本発明による水素吸蔵合金に含まれる A BC 相の格子パラメータが上記の範囲と
5 24
なることは、後述する表 9から理解される。
[0031] 本発明による水素吸蔵合金に含まれる、新規な A BC 相は、図 3の結晶構造モデ
5 24
ルに示されている。図 3からわかるように、新規な A BC 相は、 AC相が積層された
5 24 5
相の中に、 ABC相がお互いにある程度離れた位置に挿入された構造になっている
4
[0032] このうち、 ABC相は、水素吸蔵量が大きい。 AC相は ABC相に比べて水素の吸
4 5 4
蔵量では劣るものの、結晶の安定性が高いので、水素の吸蔵および放出が繰り返し 行なわれた際の耐久性が優れる。そして、前述のように、 AC
5相が積層された相の中 に、 ABC相が飛び飛びに挿入された構造を成すことにより、水素の吸蔵量が大きく
4
、かつ、耐久性に優れた水素吸蔵合金が形成されているものと考えられる。
[0033] また、従来の ABC相のみ力 なる相は、格子体積が大きぐ水素吸蔵量は大きい
4
ものの、水素が放出され難いという欠点がある。これは、吸蔵された水素が格子間に 安定に存在しやすいことが理由である。しかし、図 3に示されるように、本発明による 水素吸蔵合金が含む新規な A BC 相においては、 ABC相と AC相とが積層して
5 24 4 5
いる。このことにより、 ABC相の a軸長が AC相の a軸長に適合するように縮小してい
4 5
ると考えられる。その結果、格子間に位置する水素の安定性が低下したために、水素 が放出されやすくなつたものと考えられる。
[0034] 図 2に示される図力 ABC相を六方晶系とみなした場合の単位格子となる。したが
4
つて、図 2の格子の底面の辺の長さが a軸長であり、格子の高さが c軸長である。 [0035] 本発明による水素吸蔵合金においては、 A BC 相の含有量については特に限定
5 24
されないが、水素吸蔵合金全体に対して 25重量%以上含まれていることが好ましぐ 45重量%以上含まれていることがより好ましい。とりわけ、 A BC 相の含有量力 水
5 24
素吸蔵合金全体に対して 65重量%以上である場合には、水素吸蔵量が極めて多く 、耐久性も極めて優れたものとなる。
[0036] 本発明による第二の発明は、第一の発明の水素吸蔵合金において、化学糸且成が、 一般式 Rl Mg R2 R3で表され、かつ 一般式 Rl Mg R2 R3において、 R1は希 a b e d a b e d 土類元素力も選択される 1種以上の元素であり、 R2は Niおよび Coの少なくとも 1種の 元素であり、 R3は Mnおよび A1の少なくとも 1種の元素であり、かつ a、 b、 cおよび dは 、 16≤a≤18, 3≤b≤6, 72≤c≤78, l≤d≤6, a+b + c + d= 100を満たす数で ある。
[0037] 本発明による第十一の発明は、第九の発明または第十の発明における水素吸蔵 合金の製造法において、製造される水素吸蔵合金の化学組成が、一般式 Rl Mg R a b
2 R3で表され、かつ一般式 Rl Mg R2 R3において、 Rlは希土類元素から選択さ c d a b e d
れる 1種以上の元素であり、 R2は Niおよび Coの少なくとも 1種の元素であり、 R3は M nおよび A1の少なくとも 1種の元素であり、かつ a、 b、 cおよび dは、 16≤a≤18, 3≤b ≤6、 72≤c≤78, l≤d≤6, a+b + c + d= 100を満たす数となるように、原料力調 製されている。
[0038] 第二および第十一の発明に規定されるように水素吸蔵合金の組成を限定すること によって、 A BC 相が生成されやすくなるという効果が得られる。
5 24
[0039] なお、第二および第 ^—の発明に記載の「一般式 Rl Mg R2 R3で表され」とは、 a b e d
水素吸蔵合金が Rl、 Mg、 R2、および R3以外の元素を全く含まないことを意味する ものではない。発明の効果が失われない程度に、 Rl、 Mg、 R2、および R3以外の元 素を微量に含んでいてもよいことは当然である。例えば、 Rl、 Mg、 R2、および R3以 外の元素として、 Ca、 Sr、 Ba、 Cr、 Fe、 Cu、 Zn、 Si、 Sn、 V、 Nb、 Ta、 Ti、 Zr、 Hf、 Mo、 W、 Pd、 Ptなどを微量に含んでいてもよい。
[0040] 本発明による第二および第十一の発明においては、より好ましくは、 aが 16. 5≤a ≤17. 5であり、 b力4. 2≤b≤4. 5であり、 c力 S73≤c≤77であり、 d力 S2≤d≤5であ る。このような数値範囲の化学組成であれば、 A BC 相が十分に生成され、極めて
5 24
容量保持率の高 ヽ水素吸蔵合金が得られる。
[0041] 本発明による第二の発明においては、より好ましくは、 R1として Laを含有し、 R2とし て Niおよび Coの両方を含有する。このようにすることによって、水素吸蔵速度の向上 、水素の吸蔵および放出を繰り返した際の寿命性能の向上、または合金に占める A
5
BC 相の比率の向上などの効果が得られる。
24
[0042] 本発明においては、水素吸蔵合金に Mnおよび A1の少なくとも 1種の元素を含有さ せることにより、水素吸蔵合金の耐久性をさらに向上させることができる。本発明によ る水素吸蔵合金の新規な A BC 相を構成する ABC相と AC相は、水素を吸蔵させ
5 24 4 5
た場合に体積変化に大きな差がある。そのため、両相の境界面に歪みが生じるので 、結晶構造が変質する恐れがある。 Mnや A1を、 A BC 相の結晶内に取り込むこと
5 24
によって、その歪みが緩和されるものと推測される。したがって、水素吸蔵合金の耐 久性が向上するものと考えられる。
[0043] 本発明に係る水素吸蔵合金は、一次粒子径が 10〜: LOOnmであることが好ましい。
一次粒子径を 10〜: LOOnmの範囲にすることによって、水素吸蔵に伴う水素吸蔵合 金の体積膨張が緩和される。その結果、水素吸蔵合金の微粉ィ匕が起こりに《なる。 また、一次粒子径を 10〜: LOOnmの範囲にすることによって、熱処理時に原子の再 配列による相変態が起こり易くなる。その結果、 A BC
5 24相が生成されやすくなる。一 次粒子径が lOOnmを超える場合、微粉ィ匕による充放電サイクル劣化が起こりやすく なり、 lOnm未満の場合、酸化による劣化が起こりやすくなる。
[0044] 尚、一次粒子径が 10〜: LOOnmであるとは、一次粒子の略全てが最小 10nm、最 大 lOOnmの範囲内に含まれることを意味するものである。具体的には、電子顕微鏡 写真において任意の 100個を対象として粒径を測定した場合に、粒径が 10〜: LOOn mの範囲内である粒子によって占められる割合力 面積比で 80%以上であることを いう。また、一次粒子とは、 1個の結晶子で構成された単結晶構造を有する粒子 (結 晶粒ともいう)のことをいう。個々の結晶粒の粒径の測定方法は、後述する実施例に 記載の方法にしたがうものとする。
[0045] 本発明による水素吸蔵合金の製造方法は、以下のとおりである。 まず、目的とする水素吸蔵合金の化学組成に基づいて、合金の原料粉末を所定量 秤量して、反応容器に入れる。つぎに、減圧又は常圧下の不活性ガス雰囲気中で、 高周波溶融炉を用いて原料粉末を溶融させる。その後、準安定相の生成率を高める ために、溶融された原料を、 1000KZ秒以上の冷却速度で急冷凝固させる。さらに 、凝固した原料を、加圧状態の不活性ガス雰囲気下で 860〜980°Cにて 2〜50時間 焼鈍することによって、本発明による新規な A BC 相を高効率で生成することができ
5 24
る。
[0046] 溶融および焼鈍する際の雰囲気や温度条件については、合金組成によって適宜 調整すればよい。冷却速度が 1000KZ秒未満の場合は、 CaCu
5型結晶構造などの 安定相が生成しやすい。したがって、準安定相である A BC 相を効率的に生成させ
5 24
る冷却速度としては、 1000KZ秒以上が好ましい。このような観点から、冷却方法と しては、冷却速度が 100, OOOKZ秒以上であるメルトスピユング法、冷却速度が 10
, οοοκΖ秒程度であるガスアトマイズ法、冷却速度が ιοοοκΖ秒程度である水冷 金型铸造法、水冷板上急冷凝固法などを好適に用いることができる。
[0047] また、不活性ガス雰囲気にて焼鈍を行う際には、 0. IMPa (ゲージ圧)以上に加圧 された不活性ガス雰囲気 (例えば、アルゴンガス、ヘリウムガス)で行うことが好ましい 。このようにすることによって、熱処理中の合金からの Mg等の合金の蒸発を防止する ことができる。また、不活性ガスとしてはヘリウムガスを用いることが好ましぐ加圧条 件としては、 0. 2〜0. 5MPa (ゲージ圧)とすることが好ましい。ヘリウムはアルゴンと 比べて熱伝導性に優れるため、焼成炉内の温度差が少なくなり、より均一な温度で 合金を熱処理することが可能となる。このような均一な温度による熱処理により、例え ば Mg等の合金の蒸発を効果的に防止し、合金重量を変動させることなく所望の組 成および相を有する合金を作製することが可能となる。
[0048] 図 4は、化学組成が La Mg Ni Co Mn Al である水素吸蔵合金を、 0. 2
17.0 4.3 70.2 6.4 1.1 1.1
MPa (ゲージ圧)に加圧されたアルゴンガス雰囲気下で焼鈍した場合と、 0. 2MPa ( ゲージ圧)に加圧されたヘリウムガス雰囲気下で焼鈍した場合とにおいて、焼鈍によ る合金重量の変化を比較したグラフである。図 4に示す如ぐヘリウムガスを用いた場 合には、アルゴンガスを用いた場合に比べて合金重量の減少が大きく低減されてい ることがゎカゝる。
[0049] また、前記熱処理温度は 860〜980°Cであるが、好ましくは 880〜930°Cである。
熱処理温度が 980°Cよりも高温の場合、安定相である CuCa型結晶構造相の生成
5
割合が増加し、また、 860°Cよりも低温の場合、熱処理の効果が不十分となり、好まし くない。熱処理温度が 880〜930°Cの範囲であれば、 A BC 相を主相、すなわち、
5 24
最も生成量の多い相として生成し易くなる。
[0050] 本発明の水素吸蔵合金を電極として使用する際には、水素吸蔵合金を粉砕して使 用することが好ましい。粉砕は、焼鈍の前後どちらで行ってもよいが、粉砕により表面 積が大きくなるため、合金表面の酸ィ匕を防止する観点力 焼鈍後に粉砕するのが望 ましい。粉砕は、合金表面の酸ィ匕防止のために不活性雰囲気中で行うことが好まし い。粉砕には、例えば、ボールミルなどが用いられる。
[0051] 必要により粉末化した後、得られた粉末を適当なバインダー(例えば、ポリビュルァ ルコール等の榭脂)および水(または他の液体)と混合してペースト状とし、ニッケル 多孔体に充填して乾燥した後、所望の電極形状に加圧成型することにより、ニッケル 一水素電池等の二次電池に使用しうる負極を製造することができる。
[0052] 上述のようにして作製された負極は、正極 (例えばニッケル電極 )、およびアルカリ 電解液等と組合わされ、本発明による二次電池 (例えば、ニッケル一水素電池)が製 造される。
実施例
[0053] 以下、実施例および比較例を用いて本発明を更に具体的に説明するが、本発明は
、以下の実施例に限定されるものではない。
[0054] (実施例 1)
水素吸蔵合金の元素のモル比において、 Laが 17. 0、 Mgが 4. 3、 Niが 70. 2、 C oが 6. 4、Mnが 1. 1および A1が 1. 1となるように原料インゴットをそれぞれ所定量秤 量して、るつぼに入れた。 0. 06MPa (ゲージ圧)減圧されたアルゴンガス雰囲気下 において、高周波溶融炉を用いて 1500°Cに加熱し、材料を溶融させた。そして、溶 融させた材料を高周波溶融炉中で水冷铸型に移し固化させた。さらに、得られた合 金を 0. 2MPa (ゲージ圧、以下同じ)に加圧されたヘリウムガス雰囲気下で 910°Cで 焼鈍することにより、実施例 1の水素吸蔵合金を得た。得られた水素吸蔵合金を、ァ ルゴンガス雰囲気下で粉砕機により機械的に粉砕し、平均粒径 (D50)が 60 mとな るように調整した。
[0055] (実施例 2〜51)
水素吸蔵合金の元素のモル比が表 1に記載の化学組成となるようにしたことと、焼 鈍の温度を表 1に記載の条件としたこと以外は、実施例 1と同じ条件で、実施例 2〜5 1の水素吸蔵合金を作製した。
[0056] (比較例 1〜14)
水素吸蔵合金の元素のモル比が表 2に記載の化学組成となるようにしたことと、焼 鈍を表 2に記載の条件としたこと以外は、実施例 1と同じ条件で、比較例 1〜14の水 素吸蔵合金を作製した。比較例 1〜14の水素吸蔵合金では、 A BC 相が生成しな
5 24
かった。
[0057] (結晶構造の測定)
X線回折装置(BrukerAXS社製、品番 M06XCE)を用い、 40kV, 100mA (Cu 管球)の条件で、実施例および比較例の水素吸蔵合金の粉末の X線回折測定を行 つた。得られた X線回折パターンに基づいてリートベルト法(解析ソフト、 RIETAN20 00使用)により構造解析を行なった。実施例 1についてリートベルト解析により得られ た、 A BC 相の主な回折ピークの面指数と回折角(ピーク位置)を表 3に、 A BC 相
5 24 5 24 の原子配置を表 4に示す。実施例 1の水素吸蔵合金の A BC 相中の Co、 Mnおよ
5 24
び A1は、表 4の Nil〜Ni8の原子のサイトのいずれかに位置する。また、各合金にお ける生成相の含有量を表 5及び表 6に示す。表 5および表 6に記載の La MgNi は、
5 24 本発明における A BC 相に相当する。表 6に記載の as castとは、铸造したのちに
5 24
焼鈍をおこなって ヽな 、ことを意味する。
[0058] [表 1] W
Figure imgf000015_0001
Figure imgf000015_0002
059] [表 2]
化学 a成 条件
圧力
La Mg Ni Co Mn Al 雰囲気
°c pa
難なし
17.0 4.3 702 6.4 1.1 1.1 比糊 2 1030 0.2 He 比糊 3 赚なし
17.0 4.3 68.1 6.4 2.1 2.1 ΰ Μ4 1030 02 He なし
17.0 4.3 68.1 6.4 4.3 0
1030 02 He 觸なし
17.0 4.3 68.1 6.4 0 4.3 tb^JS 1030 02 He 比較例 9 雌なし
17.0 4.3 72.3 2.1 2.1 2.1
1030 0.2 He 比瞧 1 * よし
17.0 4.3 63.8 10.6 2.1 2.1
1030 02 He なし
17.8 4.4 66.7 6.7 22 22
1030 02 He
[0060] [表 3]
Figure imgf000016_0001
[0061] [表 4]
[S挲] [2900]
Ζ.990Ό 90 90 01 481 8!N
εεειο 90 90 01 L\H
0 0 90 01 9!N εεει?Ό 0 0 0"L 09 9!N 乙 99ε·0 0 0 01 °9 fr!N
εο 0 0 OH 39 C!N εεεζο 0 0 01 2!N
90 0 0 01 qe N
Figure imgf000017_0001
0 0 0 01 39
εεεοο 0 0 ΟΊ 09 ζ Λ X ま萆?
6Sl£/900Zdr/13d 9V Ϊ6Ζ8Ϊ0/.00Ζ OAV
Figure imgf000018_0001
表 6] 相含有量 [wt%]
Figure imgf000019_0001
[0064] なお、表 1に記載の化学糸且成は、 A BC 相の糸且成ではなぐ A BC 相を含む水素
5 24 5 24
吸蔵合金全体の組成である。しかし、表 1に記載の各元素は、いずれも A BC
5 24相に も含まれる。このことは、電子線プローブマイクロアナリシス(EPMA)で確認すること ができる。
上記実施例では、一般式 A B C で表される相の A元素として、すべての希土類
5-x 1+x 24
元素で実験をおこなっているわけではない。しかし、希土類元素の性質の類似性か ら、実験をおこなって ヽな 、希土類元素にお 、ても同様の結果が得られるものと考え られる。
上記実施例では、一般式 A B C で表される相の B元素として、 Mgが使用され
5-x 1+x 24
ている。し力し、 Mgと同じ Ila族に属する Ca、 Srまたは Baを Mgの代わりに用いた場 合や、これらの Ila族元素を組み合わせて用いた場合であっても、 Ila族元素の性質 の類似性から、上記実施例と同様の効果が得られるものと考えられる。
[0065] (平均粒子径の測定方法)
水素吸蔵合金の平均粒径及び粒度分布は、粒度分析計 (マイクロトラック社製、品 番「MT3000」)を用い、レーザ回折'散乱法で測定した。
尚、平均粒径とは、累積平均径 D50を指し、粉体の全体積を 100%として累積カー ブが 50%となる点の粒径をいう。なお、ここで言う平均粒径とは、後述の一次粒子が 凝集して、一次粒子よりも大きくなつた粒子の径の平均である。 [0066] (結晶粒 (一次粒子)径の測定方法)
結晶粒径は、透過型電子顕微鏡 (Hitachi H9000)を用い、任意の 100個を対 象としてそれぞれの結晶粒の最も長 、長辺と最も短!、短辺の長さを測定し、下記の 式により求めた。
結晶粒径 = (長辺 +短辺) Z2
[0067] (充放電特性の測定)
(a)電極の作製
得られた実施例又は比較例の水素吸蔵合金粉末 100重量部に、ニッケル粉末 (IN CO社製、 # 210) 3重量部を加えて混合物を得た。その混合物に、増粘剤 (メチルセ ルロース)を溶解した水溶液を加え、さらに結着剤 (スチレンブタジエンゴム)を 1. 5重 量部加えることによって、ペーストを作製した。そのペーストを、厚み 45 mの穿孔鋼 板(開口率 60%)の両面に塗布して乾燥した後、厚さ 0. 36mmにプレスすることによ つて、負極を製作した。一方、正極としては、容量過剰のシンター(焼結)式水酸ィ匕- ッケル電極を用いた。
(b)開放形電池の作製
上述のようにして作製した負極を、セパレータを介して正極で挟んで積層体とした。 この積層体に lkgfZcm2の圧力が力かるようにボルトで固定し、開放形セルを組み 立てた。電解液としては、 6. 8mol/Lの KOHおよび 0. 8mol/Lの LiOHを含む混 合液を使用した。参照電極として、 HgZHgO電極を用いた。
(c)最大放電容量の測定
作製した電池を 20°Cの水槽中に入れ、つぎの条件で 10サイクルの充放電をおこな つた o
充電: 0. 1Cで 150%の容量を充電
放電: 0. 2ItAで負極電位が 0. 6V(vs. HgZHgO)になるまで放電
10サイクルのなかで最大となった放電容量を最大放電容量とした。結果を表 7及び 8 に示す。表 7および表 8に記載の容量は、水素吸蔵合金重量あたりの最大放電容量 (mAhZg)である。
(d)容量保持率の測定 最大放電容量の測定に引き続き、同じ水槽中において、充電は 0. 1Cで 150%、 放電は 1. OltAで終止電圧—0. 6V(vs. HgZHgO)の条件で 11〜49サイクルの 充放電を行った後、再び 0. 2ItAで終止電圧 0. 6V (vs. HgZHgO)の条件に戻 し、 50サイクル目の放電容量を測定した。
そして、測定された 10サイクル目の放電容量と 50サイクル目の放電容量から、容量 保持率(10サイクル目の放電容量に対する 50サイクル目の放電容量(%) )を求めた 。その結果を表 7及び 8に示す。
さらに、水素吸蔵合金中の A BC 相の割合 (重量%)を X軸とし、容量保持率 (%)
5 24
を Y軸としたグラフを図 5に示す。
[表 7]
容量 容量保持率 実施例"! 334 97.2 実施例 2 328 97.9 実施例 3 328 97.9 実施例 4 325 98.2 実施例 5 325 98.0 実施例 6 323 95.1 実施例 7 322 97.5 実施例 8 319 97.8 実施例 9 320 96.3 実施例 1 0 31 9 95.2 実施例 1 1 326 96.9 実施例 1 2 321 97.5 実施例 1 3 322 97.2 実施例 1 4 327 94.5 実施例 1 5 330 92.2 実施 f列 1 6 329 93.4 実施冽 1 7 327 94.5 実施例 1 8 301 91 .Β 実施例 1 9 302 92.8 実施例 20 305 94.2 実施例 21 310 93.2 実施 M22 318 93.1 実施例 23 320 95.4 実施例 24 31 9 97.7 実 31 Β 96.9 実施例 26 322 91 .5 実施例 27 325 91 .6 実施例 28 330 92.8 実施例 29 332 93.4 実施例 30 321 92.5 実施例 31 324 93.1 実施冽 32 32Β 93.6 実施 f列 33 332 94.1 実施 M34 317 94.1 実施例 35 320 94.3 実施例 36 309 91 .6 実施 ί列 37 31 5 91 .9 実施例 38 325 92.1 実施例 39 330 92.1 実施例 40 328 94.1 実施例 41 330 94.2 実施例 42 320 91 .7 実施 321 91 .9 実施 CT44 322 91 .9 実施 !|45 325 92.0 実施例 46 321 92.1 実施 f列 47 323 92.2 実施 ί列 48 321 92.0 実施 ί列 49 322 92.5 実施別 50 31 7 91 .9 実施 ί列 51 320 93.2 8]
Figure imgf000023_0001
[0070] 表 7及び 8に示したように、 A BC 相を含む本発明の水素吸蔵合金(実施例 1〜51
5 24
)と A BC 相を含まない水素吸蔵合金 (比較例 1〜14)とを比べた場合、 A BC 相を
5 24 5 24 含む本発明の水素吸蔵合金は、 A BC
5 24相を含まない水素吸蔵合金と比べて容量保 持率が大きく改善されていることが認められる。
[0071] 上記の実験結果から、 Zr、 Hf、および Vを A BC 相に含む実施例で、本発明の効
5 24
果が得られることが確認されている。 Zrおよび Hfと同じ IVa族元素には Tiがあり、 Vと 同じ Va族元素には Nbおよび Taがある。特定の結晶構造の安定化において、 Tiが Z rおよび Hfと同様の効果を示すことは、他の合金系で広く知られている。同様に、特 定の結晶構造の安定ィ匕において、 Nbおよび Taが Vと同様の効果を示すことは、他 の合金系で広く知られている。したがって、本発明における合金系において、 A BC
5 24 相に Ti、 Nb、または Taが含まれている場合においても、上記の実施例と同様の効果 が得られるものと考えられる。
[0072] 従来の水素吸蔵合金においては、 Crは、 Fe、 Co、 Mnなどの遷移金属と同様に、 Niサイトに Niの置換元素として挿入されることが一般的におこなわれてきた。本発明 においても、一般式 A B C における C元素に Crを含有させた場合であっても、上 記の実施例と同様の効果が得られるものと考えられる。
リートベルト解析で得られた、実施例:!〜 51の水素吸蔵合金の La5MgNi24相(A^C 相と同じ)の格子定数および A: B: C組成比を表 9に示す。
24
9]
Figure imgf000024_0001
[0074] なお、第一の発明に記載の「一般式 A B C で表され」とは、 Aと Bとの合計量に
5-x 1+x 24
対する Cの量の比が全く幅を持たないことを意味するものではない。本発明の効果が 失われな 、程度に、 Aと Bとの合計量に対する Cの量の比が 4からわずかにずれても よいことは当然である。本発明による実施例においても、 Aと Bとの合計量に対する C の量の比が 4からわずかにずれているものが多くある。このことは、表 9から理解される 。このような場合であっても本発明の効果は得られている。
[0075] 本出願は、 2005年 8月 11日出願の日本特許出願(特願 2005-233541)および 2005 年 8月 29日出願の日本特許出願 (特願 2005-247991)に基づくものであり、それらの 内容はここに参照として取り込まれる。

Claims

請求の範囲
[1] 化学組成が、一般式 A B C で表される相を含有し、
5-x 1+x 24
前記一般式 A B C において、 Aは希土類元素から選択される 1種以上の元素
5-x 1+x 24
であり、 Bは Mg、 Ca、 Srおよび Baからなる群より選択される 1種以上の元素であり、 C は Niゝ Co、 Mn、 Al、 Crゝ Feゝ Cu、 Znゝ Siゝ Snゝ V、 Nbゝ Taゝ Ti、 Zrおよび Hfからな る群より選択される 1種以上の元素であり、かつ xは 0. 1〜0. 8の範囲の数を表し、 かつ
R— 3mの空間群に属し、かつ格子定数における a軸長に対する c軸長の長さの比が 11. 5〜12. 5である結晶構造を、前記相が有する、
水素吸蔵合金。
[2] 化学組成力 一般式 Rl Mg R2 R3で表され、かつ
a b e d
前記一般式 Rl Mg R2 R3において、 Rlは希土類元素力 選択される 1種以上 a b e d
の元素であり、 R2は Niおよび Coの少なくとも 1種の元素であり、 R3は Mnおよび A1の 少なくとも 1種の元素であり、力つ a、 b、 cおよび dは、 16≤a≤18, 3≤b≤6, 72≤c
≤78, l≤d≤6, a+b + c + d= 100を満たす数である、
請求項 1記載の水素吸蔵合金。
[3] 前記 R1として Laを含有し、前記 R2として Niおよび Coの両方を含有することを特徴 とする請求項 2記載の水素吸蔵合金。
[4] 前記水素吸蔵合金の結晶粒径が 10〜: LOOnmであることを特徴とする請求項 1記載 の水素吸蔵合金。
[5] 前記相が、 Mnおよび A1の少なくとも 1種の元素を含有することを特徴とする請求項
1記載の水素吸蔵合金。
[6] 前記 A力La、 Ce、 Prおよび Yから選択される 1種以上の元素であり、前記 Βが Mg であり、かつ前記 Cが Ni、 Co、 Mn、 Al、 Fe、 Cu、 Zn、 Si、 Sn、 V、 Zrおよび Hfから 選択される 1種以上の元素であることを特徴とする請求項 1記載の水素吸蔵合金。
[7] 請求項 1〜6の何れか一項に記載の水素吸蔵合金を水素貯蔵媒体として含有する ことを特徴とする水素吸蔵合金電極。
[8] 請求項 7に記載の水素吸蔵合金電極を負極として備えたことを特徴とする二次電 池。
[9] 化学組成が、一般式 A B C で表される相を含有し、
5-x 1+x 24
前記一般式 A B C において、 Aは希土類元素から選択される 1種以上の元素
5-x 1+x 24
であり、 Bは Mg、 Ca、 Srおよび Baからなる群より選択される 1種以上の元素であり、 C は Niゝ Co、 Mn、 Al、 Crゝ Feゝ Cu、 Znゝ Siゝ Snゝ V、 Nbゝ Taゝ Ti、 Zrおよび Hfからな る群より選択される 1種以上の元素であり、かつ xは 0. 1〜0. 8の範囲の数を表し、 かつ
R— 3mの空間群に属し、かつ格子定数における a軸長に対する c軸長の長さの比が 11. 5〜12. 5である結晶構造を、前記相が有する、
水素吸蔵合金の製造方法であって、
原料を不活性ガス雰囲気下において加熱溶融して溶融体を作製する第一の工程 と、
前記溶融体を 1000KZ秒以上の冷却速度で凝固させて凝固体を作製する第二の 工程と、
前記凝固体を加圧状態の不活性ガス雰囲気下で 860〜980°Cにて焼鈍する第三の 工程とを備える水素吸蔵合金の製造方法。
[10] 前記焼鈍がおこなわれる前記不活性ガス雰囲気が、ヘリウムガス雰囲気であること を特徴とする請求項 9記載の水素吸蔵合金の製造方法。
[11] 製造される前記水素吸蔵合金の化学組成が、一般式 Rl Mg R2 R3
a b e dで表され、か つ
前記一般式 Rl Mg R2 R3において、 R1は希土類元素力 選択される 1種以上 a b e d
の元素であり、 R2は Niおよび Coの少なくとも 1種の元素であり、 R3は Mnおよび A1の 少なくとも 1種の元素であり、力つ a、 b、 cおよび dは、 16≤a≤18, 3≤b≤6, 72≤c ≤78、 l≤d≤6, a+b + c + d= 100を満たす数となるように、
前記原料が調製されている請求項 9又は 10に記載の水素吸蔵合金の製造方法。
PCT/JP2006/315944 2005-08-11 2006-08-11 水素吸蔵合金とその製造方法、水素吸蔵合金電極、及び二次電池 WO2007018291A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007529639A JP5092747B2 (ja) 2005-08-11 2006-08-11 水素吸蔵合金とその製造方法、水素吸蔵合金電極、及び二次電池
US12/063,391 US8021606B2 (en) 2005-08-11 2006-08-11 Hydrogen storage alloy, its production method, hydrogen storage alloy electrode, and secondary battery
CN2006800291617A CN101238232B (zh) 2005-08-11 2006-08-11 储氢合金及其制造方法、储氢合金电极和二次电池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005233541 2005-08-11
JP2005-247991 2005-08-29
JP2005247991 2005-08-29
JP2005-233541 2005-11-08

Publications (1)

Publication Number Publication Date
WO2007018291A1 true WO2007018291A1 (ja) 2007-02-15

Family

ID=37727467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315944 WO2007018291A1 (ja) 2005-08-11 2006-08-11 水素吸蔵合金とその製造方法、水素吸蔵合金電極、及び二次電池

Country Status (4)

Country Link
US (1) US8021606B2 (ja)
JP (1) JP5092747B2 (ja)
CN (2) CN101238232B (ja)
WO (1) WO2007018291A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008208428A (ja) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd 水素吸蔵合金、該合金を用いた水素吸蔵合金電極及びニッケル水素二次電池
WO2009060666A1 (ja) * 2007-11-09 2009-05-14 Gs Yuasa Corporation ニッケル水素蓄電池および水素吸蔵合金の製造方法
JP2013199703A (ja) * 2012-02-20 2013-10-03 Gs Yuasa Corp 水素吸蔵合金、電極、ニッケル水素蓄電池及び水素吸蔵合金の製造方法
JP2014114476A (ja) * 2012-12-07 2014-06-26 Gs Yuasa Corp 水素吸蔵合金、電極、ニッケル水素蓄電池及び水素吸蔵合金の製造方法
JP2014229593A (ja) * 2013-05-27 2014-12-08 三洋電機株式会社 アルカリ蓄電池
US9234264B2 (en) 2004-12-07 2016-01-12 Hydrexia Pty Limited Magnesium alloys for hydrogen storage
US9435489B2 (en) 2010-02-24 2016-09-06 Hydrexia Pty Ltd Hydrogen release system
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5173320B2 (ja) * 2007-08-29 2013-04-03 三洋電機株式会社 水素吸蔵合金電極およびこの水素吸蔵合金電極を用いたアルカリ蓄電池
CN103259003B (zh) * 2012-02-20 2017-03-01 株式会社杰士汤浅国际 贮氢合金、电极、镍氢蓄电池及贮氢合金的制造方法
CN111636012B (zh) * 2020-05-20 2021-06-15 有研工程技术研究院有限公司 一种La-Mg-Ni系储氢材料及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048841A1 (en) * 1999-12-27 2001-07-05 Kabushiki Kaisha Toshiba Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
JP2002105564A (ja) * 2000-09-29 2002-04-10 Toshiba Corp 水素吸蔵合金とその製造方法、およびそれを用いたニッケル−水素二次電池
JP2002164045A (ja) * 2000-11-27 2002-06-07 Toshiba Corp 水素吸蔵合金、二次電池、ハイブリッドカー及び電気自動車
JP2004263213A (ja) * 2003-02-28 2004-09-24 Sanyo Electric Co Ltd 水素吸蔵合金、水素吸蔵合金電極及びそれを用いたニッケル水素蓄電池
JP2005023341A (ja) * 2003-06-30 2005-01-27 Yuasa Corp 水素吸蔵合金及びその製造方法、並びに、これを用いたニッケル水素蓄電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11323469A (ja) 1997-06-17 1999-11-26 Toshiba Corp 水素吸蔵合金及び二次電池
JPH1115885A (ja) 1997-06-26 1999-01-22 Hitachi Ltd 点数表マスタ管理システム
JP3015885B2 (ja) 1997-11-07 2000-03-06 工業技術院長 新規な水素吸蔵合金及びその合金を用いた水素電極
US7344677B2 (en) * 2004-04-02 2008-03-18 Ovonic Battery Company, Inc. Hydrogen storage alloys having improved cycle life and low temperature operating characteristics

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001048841A1 (en) * 1999-12-27 2001-07-05 Kabushiki Kaisha Toshiba Alloy for hydrogen storage, secondary battery, hybrid car and electric vehicle
JP2002105564A (ja) * 2000-09-29 2002-04-10 Toshiba Corp 水素吸蔵合金とその製造方法、およびそれを用いたニッケル−水素二次電池
JP2002164045A (ja) * 2000-11-27 2002-06-07 Toshiba Corp 水素吸蔵合金、二次電池、ハイブリッドカー及び電気自動車
JP2004263213A (ja) * 2003-02-28 2004-09-24 Sanyo Electric Co Ltd 水素吸蔵合金、水素吸蔵合金電極及びそれを用いたニッケル水素蓄電池
JP2005023341A (ja) * 2003-06-30 2005-01-27 Yuasa Corp 水素吸蔵合金及びその製造方法、並びに、これを用いたニッケル水素蓄電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9234264B2 (en) 2004-12-07 2016-01-12 Hydrexia Pty Limited Magnesium alloys for hydrogen storage
JP2008208428A (ja) * 2007-02-27 2008-09-11 Sanyo Electric Co Ltd 水素吸蔵合金、該合金を用いた水素吸蔵合金電極及びニッケル水素二次電池
WO2009060666A1 (ja) * 2007-11-09 2009-05-14 Gs Yuasa Corporation ニッケル水素蓄電池および水素吸蔵合金の製造方法
US9634324B2 (en) 2007-11-09 2017-04-25 Gs Yuasa International Ltd. Nickel-metal hydride battery and method for producing hydrogen storage alloy
US9435489B2 (en) 2010-02-24 2016-09-06 Hydrexia Pty Ltd Hydrogen release system
US10215338B2 (en) 2010-02-24 2019-02-26 Hydrexia Pty Ltd. Hydrogen release system
JP2013199703A (ja) * 2012-02-20 2013-10-03 Gs Yuasa Corp 水素吸蔵合金、電極、ニッケル水素蓄電池及び水素吸蔵合金の製造方法
JP2014114476A (ja) * 2012-12-07 2014-06-26 Gs Yuasa Corp 水素吸蔵合金、電極、ニッケル水素蓄電池及び水素吸蔵合金の製造方法
JP2014229593A (ja) * 2013-05-27 2014-12-08 三洋電機株式会社 アルカリ蓄電池
US11141784B2 (en) 2015-07-23 2021-10-12 Hydrexia Pty Ltd. Mg-based alloy for hydrogen storage

Also Published As

Publication number Publication date
CN102127664B (zh) 2012-08-08
US8021606B2 (en) 2011-09-20
CN101238232A (zh) 2008-08-06
JP5092747B2 (ja) 2012-12-05
JPWO2007018291A1 (ja) 2009-02-19
CN102127664A (zh) 2011-07-20
CN101238232B (zh) 2011-06-29
US20090104527A1 (en) 2009-04-23

Similar Documents

Publication Publication Date Title
US9869007B2 (en) Hydrogen storage alloy, hydrogen storage alloy electrode, secondary battery, and method for producing hydrogen storage alloy
WO2007018291A1 (ja) 水素吸蔵合金とその製造方法、水素吸蔵合金電極、及び二次電池
US7951326B2 (en) Hydrogen absorbing alloy, hydrogen absorbing alloy electrode, secondary battery and production method of hydrogen absorbing alloy
JP5718006B2 (ja) 水素吸蔵合金およびニッケル水素二次電池
JPWO2009060666A1 (ja) ニッケル水素蓄電池および水素吸蔵合金の製造方法
JP5119551B2 (ja) 水素吸蔵合金とその製造方法、及び二次電池
WO2003054240A1 (en) Hydrogen storage alloy and hydrogen storage alloy powder, method for production thereof, and negative electrode for nickel-hydrogen secondary cell
CN102834538B (zh) 氢吸藏合金、氢吸藏合金电极及二次电池
CN112913057A (zh) 碱性蓄电池用吸氢合金和使用该吸氢合金的碱性蓄电池
JP7158684B2 (ja) アルカリ蓄電池用水素吸蔵合金およびそれを負極に用いたアルカリ蓄電池ならびに車両
JP5099870B2 (ja) 水素吸蔵合金とその製造方法、水素吸蔵合金電極および二次電池
JPH11323404A (ja) 水素吸蔵合金粉末及びアルカリ蓄電池用負極
JP5499288B2 (ja) 水素吸蔵合金とその製造方法、水素吸蔵合金電極および二次電池
CN117940595A (zh) 碱蓄电池用氢吸留合金

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680029161.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529639

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12063391

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06796382

Country of ref document: EP

Kind code of ref document: A1