WO2007018149A1 - 撮像光学系 - Google Patents

撮像光学系 Download PDF

Info

Publication number
WO2007018149A1
WO2007018149A1 PCT/JP2006/315510 JP2006315510W WO2007018149A1 WO 2007018149 A1 WO2007018149 A1 WO 2007018149A1 JP 2006315510 W JP2006315510 W JP 2006315510W WO 2007018149 A1 WO2007018149 A1 WO 2007018149A1
Authority
WO
WIPO (PCT)
Prior art keywords
antireflection
optical system
lens element
imaging optical
multilayer film
Prior art date
Application number
PCT/JP2006/315510
Other languages
English (en)
French (fr)
Inventor
Hiroaki Okayama
Motonobu Yoshikawa
Keiki Yoshitsugu
Yoshiharu Yamamoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US12/063,147 priority Critical patent/US20090257127A1/en
Priority to JP2007529551A priority patent/JP4803836B2/ja
Priority to CN2006800284401A priority patent/CN101233429B/zh
Publication of WO2007018149A1 publication Critical patent/WO2007018149A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/118Anti-reflection coatings having sub-optical wavelength surface structures designed to provide an enhanced transmittance, e.g. moth-eye structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/001Axicons, waxicons, reflaxicons
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • G02B5/045Prism arrays

Definitions

  • the present invention relates to an imaging optical system.
  • the present invention relates to an imaging optical system in which the reflectance on the optical surface is suppressed, the handling is easy, the mass productivity is excellent, and the imaging optical system can be suitably used for various imaging devices such as a digital camera.
  • a meniscus lens element having a strong and negative power may be used to achieve a high magnification ratio while maintaining a relatively compact size. is there.
  • a lens element having a large maximum inclination angle of the optical surface may be included in the imaging optical system.
  • an imaging optical system such as a zoom lens system for a compact camera
  • the most object side surface of the lens system has a convex shape toward the object side.
  • the peripheral region of the optical surface near the effective diameter has a large inclination angle.
  • a multilayer film for preventing reflection (hereinafter referred to as an antireflection multilayer film) is generally formed on the optical surface of the lens element provided in the imaging optical system.
  • an antireflection multilayer film By forming the antireflection multilayer film on the optical surface, the reflectance on the optical surface of the lens element can be reduced.
  • the function of reducing the reflectance by the antireflection multilayer film reduces the incident angle dependence. Therefore, the antireflection effect changes near the center of an optical surface with a gentle tilt angle or near the periphery of an optical surface with a large tilt angle. For this reason, there is a problem that reflected light is generated in the vicinity of the optical surface where the reflectance is not sufficiently suppressed, which causes image quality degradation such as ghost and flare.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-329806
  • An imaging optical system disclosed in Japanese Patent Application Laid-Open No. 2003-322711 and Japanese Patent Application Laid-Open No. 2003-329806 discloses a lens element in which a fine periodic structure is formed on the entire optical surface. Therefore, handling during assembly is difficult. In order to assemble the imaging optical system without damaging the fine periodic structure formed on the optical surface of the lens element, an edge must be used when holding the lens element. Therefore, there is a problem that it is difficult to improve automation and mass productivity. Furthermore, if the lens element located on the most object side of the lens elements included in the imaging optical system has a shape with the top of the object protruding to the object side, the user touches the lens surface or removes dirt in actual use. Therefore, the fine periodic structure may be destroyed or worn out.
  • the present invention has been made to solve the above-described problems in the prior art, and provides an imaging optical system in which the reflectance on the optical surface is suppressed, the handling is easy, and the mass productivity is excellent. Objective.
  • the present invention is an imaging optical system including at least one lens element, An optical surface through which incident light is transmitted;
  • One or more optical surfaces comprising an antireflection structure provided in at least a part of a peripheral region located around the central region including the center of the optical surface,
  • the antireflection structure is a structure in which structural units having a predetermined shape are periodically arranged in an array at a pitch smaller than the shortest wavelength of light that should be prevented from being reflected in the incident light.
  • the present invention it is possible to realize an imaging optical system in which the reflectance on the optical surface is sufficiently suppressed, the handling is easy, and the mass productivity is excellent.
  • FIG. 1 is a schematic cross-sectional view showing a configuration of an imaging optical system 1 according to Embodiment 1.
  • FIG. 2 is an enlarged view of a lens element 2 provided in the imaging optical system 1 shown in FIG.
  • FIG. 3A is a schematic enlarged view showing an example of an antireflection structure, and is an enlarged view of a structure having a conical structural unit.
  • FIG. 3B is a schematic enlarged view showing an example of an antireflection structure, and is an enlarged view of a structure having a pyramid-shaped structural unit.
  • FIG. 4A is a schematic enlarged view showing an example of an antireflection structure, and is an enlarged view of a structure having a bell-like structure unit.
  • FIG. 4B is a schematic enlarged view showing an example of an antireflection structure, and is an enlarged view of a structure having a bell-shaped structural unit.
  • FIG. 5A is a schematic enlarged view showing an example of an antireflection structure, and is an enlarged view of a structure having a frustoconical structural unit.
  • FIG. 5B is a schematic enlarged view showing an example of an antireflection structure, and is an enlarged view of a structure having a truncated pyramid-shaped structural unit.
  • FIG. 6 is a graph showing the relationship between the wavelength of incident light and the reflectance for a lens element in which only a conventional general antireflection multilayer film is formed.
  • FIG. 7 shows a lens element on which only a conventional general antireflection multilayer film is formed. It is a graph which shows the relationship between the incident angle of the incident light of wavelength 587nm, and a reflectance.
  • FIG. 8 is a graph showing the relationship between the incident angle of incident light having a wavelength of 435 nm and the reflectance for a lens element in which only a conventional general antireflection multilayer film is formed.
  • FIG. 9 is a graph showing the relationship between the incident angle of incident light having a wavelength of 656 nm and the reflectance for a lens element in which only a conventional general antireflection multilayer film is formed.
  • FIG. 10 is an enlarged view of the lens element 12 provided in the imaging optical system according to Embodiment 2.
  • FIG. 11 is a partially enlarged cross-sectional view of lens element 22 provided in the imaging optical system according to Embodiment 3.
  • FIG. 12 is a schematic enlarged view showing the shape of the antireflection structure used in the simulation, and in the examples, the antireflection structure formed on the lens element located on the most object side of the imaging optical system.
  • FIG. 13 is a graph showing the relationship between the incident angle and the reflectance of incident light having a wavelength of 400 to 800 nm for the lens element on which the antireflection structure shown in FIG. 12 is formed.
  • FIG. 14 shows the wavelength and reflectance of incident light for the lens element formed with the antireflection structure shown in FIG. 12 and the lens element formed only with a conventional general antireflection multilayer film. It is a graph which shows the relationship.
  • FIG. 1 is a schematic cross-sectional view showing the configuration of the imaging optical system 1 according to the first embodiment.
  • Figure 1 is a schematic cross-sectional view showing the configuration of the imaging optical system 1 according to the first embodiment.
  • the imaging optical system 1 is held by a lens barrel 6.
  • the light beams 5a, 5b, and 5c are light fluxes that pass through the imaging optical system 1, and the light beam 5c is a light beam that passes through the maximum angle of view of the imaging optical system 1.
  • FIG. 2 is an enlarged view of the lens element 2 located on the most object side among the lens elements included in the imaging optical system 1 shown in FIG.
  • lens element 2 is a peripheral region (hereinafter simply referred to as “peripheral region”) located around the central region (hereinafter simply referred to as “central region”) including the center (near the center) of the optical surface on the object side.
  • peripheral region located around the central region (hereinafter simply referred to as “central region”) including the center (near the center) of the optical surface on the object side.
  • central region located around the central region including the center (near the center) of the optical surface on the object side.
  • At least part of the structure has an anti-reflection structure 3.
  • a multilayer film is formed in at least a part of the central region of the optical surface.
  • the multilayer film is particularly preferably an antireflection multilayer film having an antireflection function. Yes.
  • the reflectance of unnecessary light (light reflected by the lens element 2 and forming ghosts and flares) in the incident light in the central region of the optical surface can be reduced, and light loss and image quality deterioration can be reduced. be able to.
  • the case where the multilayer film formed in the central region is the antireflection multilayer film 4 will be described as an example.
  • the lens element 2 has an antireflection structure 3 having a specific structure in at least a part of the peripheral area of the optical surface. Thereby, it is possible to sufficiently prevent the unnecessary light in the incident light from being reflected. A method for determining the boundary between the peripheral region where the antireflection structure 3 is formed and the central region where the antireflection multilayer film 4 is formed will be described later.
  • the antireflection structure is a pitch smaller than the lower limit of the wavelength of unnecessary light in incident light (usually a wavelength of about 400 to 800 nm), that is, the shortest wavelength of light that should be prevented from being reflected in the incident light.
  • the reflection-reflecting functional surface can be formed with little dependence on the incident angle and wavelength of the transmission Z reflection characteristics.
  • the pitch refers to an antireflection structure in which a number of structural units are two-dimensionally arranged. In the case of a structure, the pitch in the densest arrangement direction is meant.
  • the antireflection structure is, of course, a structure for preventing reflection of light that should be prevented from being reflected as unnecessary light.
  • the light that should be prevented from being reflected to the extent that it is possible to sufficiently suppress the occurrence of ghost and flare due to stray light that is not limited to the aspect that completely prevents reflection of light that should be prevented from being reflected.
  • a mode for reducing reflection is also included.
  • an antireflection structure that can be used in Embodiment 1, for example, a conical structural unit with a height HI protruding as shown in the schematic enlarged view of FIG. Structures arranged in an array periodically.
  • the pitch P1 is substantially constant in one arrangement direction, and may be smaller than the shortest wavelength of light that should be prevented from being reflected. Since the incident angle dependence and wavelength dependence of the radiation characteristics can be further reduced, the striking pitch P1 must be 1Z2 or less, or even 1Z3 or less, the shortest wavelength of light that should be prevented from being reflected. preferable. For example, considering the manufacturability of an antireflection structure as will be described later, it is desirable that the striking pitch P1 be larger than a certain size. Usually, the shortest wavelength of light that should be prevented from being reflected is about 1Z10. The above is preferable.
  • the antireflection structure 3 for example, a structure having a conical structural unit (FIG. 3A) can be used.
  • the antireflection structure 3 in which structural units having a height of 0.15 m are periodically arranged in an array with a pitch of 0.15 m.
  • the pitch of the antireflection structure can be, for example, about 0.1 to 1 ⁇ m, and preferably about 0.15 to 0.5 ⁇ m.
  • the height HI of all structural units in the antireflection structure in which the height HI of the structural unit is not particularly limited, may not necessarily be constant, but the stronger the height HI, This has the advantage of improving the antireflection function for the light (unnecessary light) that should be prevented from being reflected in the incident light. Therefore, the height HI of the structural unit is not less than the pitch P1 (the minimum structural unit height is not less than the pitch), and more than 3 times the pitch P1 (the minimum structural unit height is not less than 3 times the pitch). ) Is preferable.
  • the high height HI is not more than a certain size. Usually, it is preferably about 5 times or less of the pitch PI (the maximum height of the structural unit is about 5 times or less of the pitch).
  • the structural unit of the antireflection structure 3 is not limited to the conical structural unit shown in FIG. 3A.
  • it is a structural unit of a pyramid shape (FIG. 3B) such as a regular hexagonal pyramid shape or a quadrangular pyramid shape. May be.
  • the structural unit to be applied is not limited to the conical structural unit, but may be a truncated cone shape (Fig. 4A and 4B) having a rounded tip (Fig. 4A and 4B). It may be a frustum-shaped structural unit such as 5A) or a truncated pyramid shape (FIG. 5B).
  • each structural unit does not have to be a strict geometric shape, and may be substantially a cone shape, a bell shape, a frustum shape, or the like.
  • a structure having a protruding structural unit is shown as the antireflection structure.
  • the present invention is not limited to a structure having such a protruding structural unit.
  • an antireflection structure in which concavity-shaped bells, bell-shaped, frustum-shaped, and other structural units are arranged periodically in an array at a pitch smaller than the shortest wavelength of light that should be prevented from being reflected. It can also be used.
  • the structural unit of the antireflection structure has a depressed shape, the depth of the structural unit may be determined in the same manner as the height HI of the protruding structural unit.
  • the projecting-shaped structural unit and the depressed-shaped structural unit may be simultaneously present in one antireflection structural body.
  • the sum of the height of the projecting portion and the depth of the depressed portion is preferably within the range of the height HI.
  • the antireflection structure used in Embodiment 1 is smaller than the shortest wavelength of light that should be prevented from being reflected as unnecessary light, and each structural unit is periodically arrayed at a pitch.
  • the shape of the structural unit is not particularly limited as long as it is arranged and can sufficiently prevent reflection of the unnecessary light.
  • the refractive index of light that should be prevented from being reflected as unnecessary light continuously changes at the interface with the air layer, and the reflection of the unnecessary light can be more sufficiently prevented.
  • the antireflection structure having a substantially conical projecting structural unit the antireflection structure having a substantially conical projecting structural unit, and the substantially conical projecting structural unit. It is preferable to use an antireflection structure having a conical depression-shaped structural unit at the same time. Yes.
  • the substantially pyramid-shaped structural units the substantially regular hexagonal pyramid-shaped structural units are arranged at a high filling rate, and the refractive index of light that should be prevented from being reflected as unnecessary light at the interface with the air layer is further continuous. It is particularly preferable from the viewpoint that the unnecessary light can be more sufficiently prevented from being reflected.
  • the antireflection structure 3 is provided in at least a part of the peripheral area of the optical surface. Of course, the antireflection structure 3 is provided in the entire peripheral area. It may be done.
  • the method of manufacturing the lens element 2 provided with the antireflection structure 3 there is no particular limitation on the method of manufacturing the lens element 2 provided with the antireflection structure 3, but the following method can be given as an example. First, after drawing a pattern on a quartz glass substrate, etc., using an electron beam drawing method, etc., precision processing is performed so that it has the same shape as the antireflection structure 3 by dry etching, etc. Form. Next, using the master mold, the heat-softened glass material is press-molded to produce a glass anti-reflection structure molding mold. Finally, the lens element 2 provided with the antireflection structure 3 can be obtained by using the antireflection structure molding die and subjecting a material such as resin to press molding. When such a method is adopted, the lens element 2 provided with the antireflection structure 3 in at least a part of the peripheral region of the optical surface can be manufactured at low cost and in large quantities.
  • the optical surface on the object side of the lens element 2 has, for example, a radius of curvature of about 53 mm and an effective radius of about 22 mm, and has an inclination angle of about 24 ° at the outermost contour of the effective radius.
  • the optical surface on the image side of lens element 2 has a radius of curvature of about 26 mm and an effective radius of about 18 mm, and has an inclination angle of about 43 ° at the outermost contour of the effective radius.
  • the largest incident angle force of light beam 5c with the highest image height among the light beams incident on lens element 2 is as large as about 4 °, so lens barrel 6 that holds imaging optical system 1 is compactly configured. In order to achieve this, the lens barrel diameter must be reduced and the amount of projection from the lens element 2 toward the object side must be reduced.
  • the optical surface on the object side of the lens element 2 is nearer to the object side than the lens barrel 6 near the top of the surface. It can be seen that the optical surface near the optical axis (near the top of the surface) is easily scratched or soiled. Therefore, in order to impart an antireflection effect to the optical surface near the optical axis where scratches and dirt are easily attached, the antireflection multilayer film 4 having an excellent pulling strength and a structure that easily removes dirt is suitable.
  • the antireflection effect of the antireflection multilayer film 4 is affected by the inclination angle of the optical surface on which the antireflection multilayer film 4 is formed and the incident angle of the light flux. It may cause a loss of light quantity or deterioration of image quality. Further, in the peripheral area of the optical surface, the lens barrel 6 that holds the lens element 2 protrudes toward the object side, so that damage such as scratches due to external force is relatively small. Unlike the antireflection multilayer film 4, the antireflection structure 3 having a low incidence angle dependency is suitable.
  • incident angle means the incident angle of the light flux on the lens surface, and is simply expressed as “incident angle” in this specification.
  • the reflectance (antireflection effect) of light incident on the imaging optical system depends on the wavelength of the incident light. To do.
  • FIG. 6 is a graph showing the relationship between the wavelength of incident light and the reflectance (the wavelength dependence of the antireflection effect) for a lens element in which only a conventional general antireflection multilayer film is formed. .
  • the vertical axis represents the reflectance
  • the horizontal axis represents the wavelength m) of the incident light.
  • the antireflection multilayer film used here has a three-layer structure, and BK7 is a base material, and the side force of the base material is 1Z4 Al O, 1/2 ZrO, and 1Z4 MgF. Consists of
  • the ⁇ is 587 nm.
  • the antireflection effect varies depending on the incident angle. Next, the influence of the wavelength of incident light and the incident angle on the antireflection effect will be described.
  • FIG. 7, FIG. 8 and FIG. 9 show lens elements on which only a conventional general antireflection multilayer film is formed. It is a graph which shows the relationship between the incident angle and the reflectance (incident angle dependence of the antireflection effect) for the child.
  • the vertical axis represents the reflectance
  • the horizontal axis represents the incident angle (°).
  • the graph shown in FIG. 7 shows the results when the wavelength of the incident light is 587 nm
  • the graph shown in FIG. 8 shows the results when the wavelength is 435 nm
  • the graph shown in FIG. 9 shows the wavelength of 656 nm. Is the result of.
  • the antireflection effect of a general antireflection multilayer film depends on the incident angle, and the antireflection effect is around an incident angle of 15 to 20 °. It can be seen that the deterioration occurs as the incident angle increases with the boundary.
  • the antireflection structure formed on the optical surface so that the boundary between the antireflection structure and the antireflection multilayer film, that is, the boundary between the peripheral region and the central region of the optical surface satisfies the following condition (1): Desirable to determine the area of the.
  • BR Optical axial force Radial distance to the boundary between the peripheral region and the central region
  • condition (1) is established for an optical surface having a curvature.
  • the lower limit value RD X O. 20 is a value at which the incident angle is about 15 °, that is, a value satisfying sinl5 °.
  • BR is less than RD X O. 20
  • anti-reflection multilayer film prevents reflection
  • the antireflection structure is formed in an unnecessarily large area, so that it is difficult to secure a sufficient space for holding the lens element. Therefore, handling becomes difficult, and mass productivity decreases, and at the same time, there is a risk that defects such as scratches may occur.
  • the upper limit value RD X O. 70 is a value at which the incident angle is about 45 °, that is, a value satisfying sin 45 °.
  • BR exceeds RD X O. 70, the reflectance on the long wavelength side increases dramatically, which may cause light loss and image quality degradation.
  • the boundary between the antireflection structure and the antireflection multilayer film that is, the boundary between the peripheral area and the central area of the optical surface satisfies the following condition (la).
  • BR Optical axial force Radial distance to the boundary between the peripheral region and the central region
  • RD X O. 25 is a value at which the incident angle is about 17.5 °.
  • BR Optical axial force Radial distance to the boundary between the peripheral region and the central region
  • the lower limit value RD X O. 40 is a value at which the incident angle is about 25 °
  • the upper limit value RD X O. 60 is a value at which the incident angle is about 40 °. .
  • the antireflection effect of the antireflection multilayer film sufficiently functions in the center region of the optical surface of the lens element, and the antireflection multilayer Around the optical surface where the effect of the film changes and the incident angle of the light beam increases An antireflection structure is formed in the region.
  • the multilayer film for obtaining the antireflection effect is not limited to the multilayer film having the three-layer structure, and may be a multilayer film having a plurality of layer structures of four layers or more, for example. It may be a film in which a multilayer film having a layer structure is laminated with a film having a function other than the antireflection function, such as a protective film. Furthermore, a single layer film having an antireflection function can also be used. In these cases, the same effect as that obtained when a multilayer film having a three-layer structure is used can be obtained.
  • the boundary between the antireflection multilayer film and the antireflection structure may not be strictly separated, and the antireflection multilayer film and the antireflection structure may partially overlap each other. . In this way, the boundary between the antireflection multilayer film and the antireflection structure is overlapped with a finite region, so that a sufficient antireflection effect can be obtained while taking into consideration actual productivity. it can.
  • the antireflection multilayer film is formed in the central region of the lens element located on the most object side, and the antireflection structure is formed in the peripheral region.
  • the antireflection multilayer film is formed so as to cover the entire surface of the lens element, and the antireflection structure is formed thereon.
  • FIG. 1 is used for the configuration of the imaging optical system.
  • the lens element 2 in FIG. 1 is replaced with the lens element 12 shown in FIG. 10 below in the second embodiment.
  • FIG. 10 is an enlarged view of the lens element 12 included in the imaging optical system according to the second embodiment.
  • an antireflection multilayer film 14 is formed so as to cover the entire surface of the lens element 12.
  • the lens element 12 has an optical surface.
  • the antireflection structure 13 is provided in at least a part of the peripheral region.
  • the anti-reflection multilayer film 14 force is different from the lens element 12 according to the first embodiment in that the lens element 12 is formed on substantially the entire optical surface of the lens element 12.
  • the antireflection structure 13 shown in FIG. 10 corresponds to the antireflection structure 3 shown in FIG.
  • the method for determining the boundary between the peripheral region and the central region is the same as the method in the first embodiment.
  • the antireflection multilayer film is formed on substantially the entire surface of the optical surface of the lens element, and the antireflection structure is formed on at least a part of the peripheral area of the optical surface. It is formed. This eliminates the need for high positioning accuracy when forming the antireflection multilayer film on the optical surface, which is necessary when forming the antireflection multilayer film only in the central region of the optical surface. Further, in the actual multilayer film formation process, a special tool such as a mask, which is necessary when forming a multilayer film only in the central region of the optical surface, is not necessary. Furthermore, when forming the antireflection structure, the shape can be adjusted with a slight tolerance with respect to the boundary.
  • the basic configuration of the imaging optical system according to the third embodiment is the same as that of the imaging optical system according to the first embodiment, but in the lens element located on the most object side, the peripheral area of the optical surface on the object side is
  • the configuration of the antireflection structure provided at least in part is different from the configuration of the antireflection structure in the first embodiment.
  • FIG. 11 is a partially enlarged cross-sectional view of the lens element 22 provided in the imaging optical system according to the third embodiment.
  • the lens element 22 corresponds to the lens element 2 shown in FIG. 1, and is a lens element located on the most object side in the imaging optical system 1 of FIG.
  • a sheet 25 having an antireflection structure 23 is affixed to at least a part of the peripheral region of the base material 24 that constitutes the lens element 22 and has a material force capable of absorbing incident light, for example. Has been.
  • the sheet 25 is also made of a transparent resin material such as acrylic resin, and has a pitch smaller than the shortest wavelength of light that should be prevented from being reflected in at least a part of its surface.
  • an antireflection structure 23 in which structural units having a predetermined shape are periodically arranged in an array is provided.
  • the thickness of the sheet 25 is easy to handle and has sufficient mechanical strength. Preferably, it is 10 ⁇ m or more.
  • the height of the structural units constituting the antireflection structure 23 and the pitch at which the structural units are arranged may be determined in the same manner as in the first embodiment.
  • a conical structural unit having a height of 0.15 m is periodically arranged at a pitch of 0.15 m.
  • the antireflection structure 23 corresponds to a structure in which structural units having a pitch smaller than the wavelength range of visible light and having a height equal to or higher than the pitch are periodically arranged in an array.
  • the difference between the refractive index of the sheet 25 and the refractive index of the substrate 24 is preferably 0.2 or less.
  • the difference between the refractive index of the sheet 25 and the refractive index of the substrate 24 is particularly preferably 0.1 or less.
  • the method for producing the sheet 25 having the antireflection structure 23 is not particularly limited, but the following method is given as an example. First, after drawing a pattern on a quartz glass substrate or the like by an electron beam drawing method or the like, precision processing is performed by dry etching or the like so that it has the same shape as the antireflection structure 23, thereby obtaining a high-precision master mold. Form. Next, using the master mold, the heat-softened glass material is press-molded to produce a glass antireflection structure molding mold. Finally, the sheet 25 having the antireflection structure 23 can be obtained by using the antireflection structure molding die and subjecting the resin material such as the acrylic resin material to press molding. When such a method is adopted, the sheet 25 having the antireflection structure 23 on at least a part of the surface thereof can be manufactured at a low cost and in large quantities.
  • the acrylic resin material used for press molding is a material having a thickness of about 10 m or more (the thickness of the sheet 25 + 0.15 / zm) from the viewpoint of easy handling and sufficient mechanical strength. It is preferable that
  • a material force capable of absorbing incident light is also provided.
  • the sheet 25 having the antireflection structure 23 is also provided.
  • the force described by taking acrylic resin as an example of the material of the sheet in addition to the acrylic resin, for example, polycarbonate, polyethylene terephthalate, or the like can be used.
  • a conical structural unit (Fig. 3A) has been described as an example of the structural unit of the antireflection structure.
  • the structural unit of the body is not limited to such a conical structural unit, and may be a structural unit of a pyramid shape (FIG. 3B) such as a regular hexagonal pyramid shape or a quadrangular pyramid shape.
  • the structural unit to be applied is not limited to a cone-shaped structural unit, but also has a truncated cone shape (Fig. 5A) which may be a bell-shaped structural unit (Figs. 4A and 4B).
  • each structural unit does not have to be a strict geometric shape, and may be substantially a cone shape, a bell shape, a truncated cone shape, or the like.
  • the structural unit of the antireflection structure may be a protruding shape or a depressed shape.
  • the lens element located on the most object side of the imaging optical system is described as an example of the lens element having the antireflection structure, but other lens elements included in the imaging optical system are described.
  • the lens element may have an antireflection structure. In consideration of mass productivity, it is difficult to hold only the edge of the lens element when inserting the lens element into the lens barrel. Hold the element. If an antireflection structure is formed in the central region of the optical surface of the lens element, the structural unit of the antireflection structure may be destroyed or missing during adsorption.
  • the optical surface is positioned around the central region of the optical surface regardless of the irregularities and the radius of curvature of the optical surface. Form in the peripheral area.
  • the imaging optical system of the present example corresponds to the imaging optical system according to Embodiment 1 shown in FIG.
  • FIG. 12 is a schematic enlarged view showing the antireflection structure formed on the object-side optical surface of the lens element located closest to the object among the lens elements included in the imaging optical system in the present embodiment.
  • the antireflection structure shown in FIG. 12 is a structure periodically arranged in an array at a structural unit force pitch of about lOOnm having a quadrangular pyramid shape with a height of about 300 nm.
  • the base material constituting the antireflection structure is BK7.
  • the relationship between the incident angle and the reflectance when light entered the lens element on which the antireflection structure shown in FIG. 12 was formed was determined by simulation.
  • the method used for the simulation is the RCWA method (Rigorous Coupled Wave Analysis).
  • the RCWA method is one of rigorous calculation methods for obtaining the behavior of electromagnetic waves in a diffraction grating, and is described in detail in References 1 and 2 below.
  • the simulation was performed assuming an object formed in a planar shape as an incident object. In the simulation with the angle changed, the object was formed with an angle with respect to the object formed in the planar shape.
  • the calculation of the simulation is based on the assumption that the antireflection structure is continuously present, and the area of the antireflection structure and the number of structural units are not limited. Is assumed to be the limit.
  • FIG. Figure 13 shows the relationship between the incident angle and reflectance of each incident light (incidence angle dependence of the reflectance characteristics) when the wavelength of incident light is changed in increments of 50 nm within the wavelength range of 400 to 8 OOnm. It is a graph to show.
  • the vertical axis represents the reflectance
  • the horizontal axis represents the incident angle (°).
  • the lens element in which the antireflection structure shown in Fig. 12 is formed according to the present embodiment shows the relationship between the incident angle and the reflectance even when the wavelength of the incident light is different.
  • the shapes of the graphs shown are almost the same, and the difference in the incident angle dependence for each wavelength is small.
  • a conventional lens element formed only with an antireflection multilayer film has a graph shape showing the relationship between the incident angle and the reflectance for each wavelength of incident light, as shown in FIGS. Are greatly different, and the difference in the incident angle dependence for each wavelength is large.
  • FIG. 14 is a graph showing the relationship between the wavelength of incident light and the reflectance (the wavelength dependence of the antireflection effect) for the lens element according to the present example and the conventional lens element.
  • the vertical axis represents the reflectance
  • the horizontal axis represents the wavelength (nm) of the incident light.
  • the solid line is a graph for the lens element according to the present embodiment
  • the broken line is a graph for the conventional lens element. The graph for the conventional lens element is obtained by adapting the graph shown in FIG. 6 to the scale shown in FIG.
  • the lens element according to the present example can suppress the reflectance to be low in a wide wavelength region. From FIG. 14, it is understood that the reflectance is suppressed to about 0.006 even in the vicinity of the wavelength of 800 nm where the reflectance is highest.
  • the conventional lens element in which only the antireflection multilayer film is formed has the lowest reflectivity! Although the wavelength is near 500 nm and the wavelength is 650 nm, it is related to the present embodiment near the same wavelength. It exceeds the reflectance of the lens element.
  • the reflectance on the optical surface is suppressed, and handling is performed.
  • the imaging optical system of the present invention has a low reflectance on the optical surface, is easy to handle and has excellent mass productivity, and can be suitably used for various imaging devices such as a digital camera.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

 本発明の撮像光学系は、少なくとも1つのレンズ素子を含み、入射光が透過する光学面と、1つ以上の光学面において、該光学面の中心を含む中心領域の周辺に位置する周辺領域の少なくとも一部に設けられた反射防止構造体とを備え、前記反射防止構造体が、前記入射光中の、反射を防止すべき光の最短波長よりも小さいピッチで、所定の形状を有する構造単位が周期的にアレイ状に配列された構造体であり、光学面における反射率が充分に抑制され、かつ取り扱いが容易で量産性に優れる。

Description

明 細 書
撮像光学系
技術分野
[0001] 本発明は、撮像光学系に関する。特に本発明は、光学面における反射率が抑制さ れ、かつ取り扱いが容易で量産性に優れ、例えばデジタルカメラ等の各種撮像装置 に好適に使用し得る撮像光学系に関する。
背景技術
[0002] 近年、デジタルカメラの市場規模はますます拡大傾向にある。一般的に、デジタル カメラの巿場は、高倍率及び高解像度のカメラをターゲットとする市場と、コンパクトな カメラをターゲットとする市場とに大別される。一方で、さらなる市場の拡大を狙い、広 角タイプのカメラ等をターゲットとする新たな市場を開拓する動きが始まっている。
[0003] 高倍率用ズームレンズ系等の撮像光学系では、比較的コンパクトさを維持しつつ、 高倍率ィ匕を実現するために、強 、負のパワーのメニスカスレンズ素子が用いられるこ とがある。この際、光学面の最大傾斜角が大きいレンズ素子が撮像光学系に含まれ る場合がある。
[0004] コンパクトカメラ用ズームレンズ系等の撮像光学系では、小型化を実現するために、 レンズ素子の肉厚を小さくし、光学面の曲率半径を小さくすることが必要となってきて いる。この際にも、光学面の傾斜角が大きいレンズ素子を撮像光学系に組み込むこ とが必要な場合がある。
[0005] また、広角タイプの撮像光学系のうち、正のパワーのレンズ群が最物体側に配置さ れるタイプの撮像光学系では、レンズ系の最物体側面が物体側に向けて凸形状とな つている。特に、最物体側に位置するレンズ素子において、有効径付近の光学面の 周辺領域は大きな傾斜角を有して 、る。
[0006] 一方、撮像光学系が備えるレンズ素子の光学面には、一般的に、反射防止のため の多層膜 (以下、反射防止多層膜という)が形成されている。反射防止多層膜を光学 面に形成することによって、レンズ素子の光学面における反射率を低減させることが できる。し力しながら、反射防止多層膜による反射率の低減機能は、入射角依存性を 有しており、傾斜角の緩い光学面の中心付近や、傾斜角の大きな光学面の周辺付 近では、反射防止効果が変化してしまう。このため、反射率の抑制が不充分な光学 面の周辺付近において、反射光が発生し、ゴースト、フレア等の画質劣化の要因とな る問題がある。
[0007] 前記問題を解決するために、近年、微細周期構造を光学面上に形成し、反射防止 機能を付与する技術が開発されている(例えば、特開 2003— 322711号公報及び 特開 2003 - 329806号公報)。特開 2003 - 322711号公報及び特開 2003 - 329 806号公報に開示の撮像光学系では、レンズ素子の、最大傾斜角が大きい光学面 全体に微細周期構造が形成されており、該光学面にて反射防止効果が発現される。 特許文献 1:特開 2003— 322711号公報
特許文献 2:特開 2003 - 329806号公報
発明の開示
発明が解決しょうとする課題
[0008] し力しな力 Sら、特開 2003— 322711号公報及び特開 2003— 329806号公報に開 示の撮像光学系は、光学面全体に微細周期構造が形成されて ヽるレンズ素子を含 むため、組み立ての際の取り扱いが困難である。レンズ素子の光学面に形成されて いる微細周期構造を破損せずに撮像光学系を組み立てるためには、レンズ素子を 保持する際にコバを用いなければならない。したがって、自動化や量産性の向上が 困難であるという問題がある。さらに、撮像光学系が備えるレンズ素子のうち、最物体 側に位置するレンズ素子が、物体側に面頂がせり出した形状を有する場合、実使用 上、ユーザがレンズ面に触れたり、汚れを除去する必要性が生じるため、微細周期構 造が破壊されたり、磨耗する恐れがある。
[0009] 本発明は、従来技術における前記課題を解決するためになされたものであり、光学 面における反射率が抑制され、かつ取り扱いが容易で量産性に優れた撮像光学系 を提供することを目的とする。
課題を解決するための手段
[0010] 前記目的の 1つは、以下の撮像光学系により達成される。すなわち本発明は、 少なくとも 1つのレンズ素子を備える撮像光学系であって、 入射光が透過する光学面と、
1つ以上の光学面において、該光学面の中心を含む中心領域の周辺に位置する周 辺領域の少なくとも一部に設けられた反射防止構造体とを備え、
前記反射防止構造体が、前記入射光中の、反射を防止すべき光の最短波長よりも 小さいピッチで、所定の形状を有する構造単位が周期的にアレイ状に配列された構 造体である、撮像光学系
に関する。
発明の効果
[0011] 本発明によれば、光学面における反射率が充分に抑制され、かつ取り扱いが容易 で量産性に優れた撮像光学系を実現することができる。
図面の簡単な説明
[0012] [図 1]図 1は、実施の形態 1に係る撮像光学系 1の構成を示す概略断面図である。
[図 2]図 2は、図 1に示す撮像光学系 1が備えるレンズ素子 2の拡大図である。
[図 3A]図 3Aは、反射防止構造体の一例を示す概略拡大図であり、円錐形状の構造 単位を有する構造体の拡大図である。
[図 3B]図 3Bは、反射防止構造体の一例を示す概略拡大図であり、角錐形状の構造 単位を有する構造体の拡大図である。
[図 4A]図 4Aは、反射防止構造体の一例を示す概略拡大図であり、釣鐘状の構造単 位を有する構造体の拡大図である。
[図 4B]図 4Bは、反射防止構造体の一例を示す概略拡大図であり、釣鐘状の構造単 位を有する構造体の拡大図である。
[図 5A]図 5Aは、反射防止構造体の一例を示す概略拡大図であり、円錐台形状の構 造単位を有する構造体の拡大図である。
[図 5B]図 5Bは、反射防止構造体の一例を示す概略拡大図であり、角錐台形状の構 造単位を有する構造体の拡大図である。
[図 6]図 6は、従来の一般的な反射防止多層膜のみが形成されたレンズ素子につい ての、入射光の波長と反射率との関係を示すグラフである。
[図 7]図 7は、従来の一般的な反射防止多層膜のみが形成されたレンズ素子につい ての、波長 587nmの入射光の入射角度と反射率との関係を示すグラフである。
[図 8]図 8は、従来の一般的な反射防止多層膜のみが形成されたレンズ素子につい ての、波長 435nmの入射光の入射角度と反射率との関係を示すグラフである。
[図 9]図 9は、従来の一般的な反射防止多層膜のみが形成されたレンズ素子につい ての、波長 656nmの入射光の入射角度と反射率との関係を示すグラフである。
[図 10]図 10は、実施の形態 2に係る撮像光学系が備えるレンズ素子 12の拡大図で める。
[図 11]図 11は、実施の形態 3に係る撮像光学系が備えるレンズ素子 22の部分拡大 断面図である。
[図 12]図 12は、シミュレーションに用いた反射防止構造体の形状を示す概略拡大図 であり、実施例中、撮像光学系の最物体側に位置するレンズ素子に形成された反射 防止構造体の拡大図である。
[図 13]図 13は、図 12に示す反射防止構造体が形成されたレンズ素子につ 、ての、 波長 400〜800nmの入射光の入射角度と反射率との関係を示すグラフである。
[図 14]図 14は、図 12に示す反射防止構造体が形成されたレンズ素子及び従来の一 般的な反射防止多層膜のみが形成されたレンズ素子についての、入射光の波長と 反射率との関係を示すグラフである。
符号の説明
[0013] 1 撮像光学系
2、 12、 22 最物体側に位置するレンズ素子
3、 13、 23 反射防止構造体
4、 14 反射防止多層膜
5a、 5b、 5c 光束
6 鏡筒
24 基材
25 シート
発明を実施するための最良の形態
[0014] (実施の形態 1) 図 1は、実施の形態 1に係る撮像光学系 1の構成を示す概略断面図である。図 1は
、焦点距離が変動しない広角撮影に適した撮像光学系の例を示しており、撮像光学 系 1は、鏡筒 6に保持されている。光束 5a、 5b及び 5cは、撮像光学系 1を通過する光 束であり、光束 5cは、撮像光学系 1の最大画角を通過する光束である。
[0015] 図 2は、図 1に示す撮像光学系 1が備えるレンズ素子のうち、最物体側に位置する レンズ素子 2の拡大図である。図 2において、レンズ素子 2は、物体側の光学面の中 心(中心付近)を含む中心領域 (以下、単に「中心領域」という)の周辺に位置する周 辺領域 (以下、単に「周辺領域」という)の少なくとも一部に、反射防止構造体 3を有す る。
[0016] また、少なくとも光学面の中心領域の一部には、多層膜が形成されていることが好 ましぐ該多層膜は、反射防止機能を有する反射防止多層膜であることが特に好まし い。これにより、光学面の中心領域における入射光中の不要光(レンズ素子 2で反射 し、ゴースト及びフレアを形成する光)の反射率を低減させることができ、光量の損失 及び画質劣化を低減させることができる。以下、中心領域に形成される多層膜が反 射防止多層膜 4である場合を例に説明する。
[0017] 本発明の大きな特徴の 1つは、レンズ素子 2が、光学面の周辺領域の少なくとも一 部に、特定構造の反射防止構造体 3を有することである。これにより、入射光中の不 要光が反射するのを充分に防止することが可能となる。なお、反射防止構造体 3が形 成される周辺領域と、反射防止多層膜 4が形成される中心領域との境界の決定方法 については後述する。
[0018] 反射防止構造体とは、入射光 (通常、波長が約 400〜800nm)中の不要光の波長 の下限値よりも小さいピッチ、すなわち入射光中の反射を防止すべき光の最短波長 よりも小さいピッチで、所定の形状を有する構造単位が周期的にアレイ状に配列され た構造体である。このように所定の形状を有する構造単位を周期的にアレイ状に配 列させることによって、反射を防止すべき光に対して、見かけ上屈折率を連続的に変 化させ、空気層との界面での透過 Z反射特性の入射角依存性及び波長依存性が少 な 、反射防止機能面を形成させることができる。
[0019] なお前記ピッチとは、反射防止構造体が、多数の構造単位が二次元的に配列され た構造体である場合には、最も密な配列方向におけるピッチを意味する。
[0020] また反射防止構造体とは、勿論、不要光である反射を防止すべき光の反射を防止 するための構造体である。しかしながら、本実施の形態 1には、反射を防止すべき光 の反射を完全に防止する態様だけではなぐ迷光によるゴースト及びフレアの発生を 充分に抑制し得る程度まで、反射を防止すべき光の反射を低減させる態様も含まれ る。
[0021] 実施の形態 1にて用いることができる反射防止構造体としては、例えば図 3Aの概 略拡大図に示すような、高さ HIの突出した円錐形状の構造単位が、ピッチ P1で周 期的にアレイ状に配列された構造体があげられる。
[0022] ピッチ P1は、反射防止構造体中、一配列方向において実質上略一定であり、反射 を防止すべき光の最短波長よりも小さければよいが、空気層との界面での透過 Z反 射特性の入射角依存性及び波長依存性をより一層低減させることができるという点か ら、力かるピッチ P1は反射を防止すべき光の最短波長の 1Z2以下、さらには 1Z3 以下であることが好ましい。なお、例えば後述するような反射防止構造体の製造性を 考慮すると、力かるピッチ P1はある程度の大きさ以上であることが望ましぐ通常、反 射を防止すべき光の最短波長の 1Z10程度以上であることが好ましい。
[0023] 本実施の形態 1においては、前記のように、反射防止構造体 3として、例えば円錐 形状(図 3A)の構造単位を有する構造体を用いることができる。この場合、例えば、 高さ 0. 15 mの構造単位がピッチ 0. 15 mで周期的にアレイ状に配列された反 射防止構造体 3を形成することが好ましい。反射防止構造体のピッチは、例えば 0. 1 〜1 μ m程度とすることができ、好ましくは 0. 15-0. 5 μ m程度である。
[0024] また構造単位の高さ HIには特に限定がなぐ反射防止構造体中、全ての構造単 位の高さ HIが必ずしも一定でなくてもよいが、力かる高さ HIが高いほど、入射光中 の反射を防止すべき光 (不要光)に対する反射防止機能が向上するという利点があ る。したがって、該構造単位の高さ HIは、前記ピッチ P1以上 (最小の構造単位の高 さがピッチ以上)、さらにはピッチ P1の 3倍以上 (最小の構造単位の高さがピッチの 3 倍以上)であることが好ましい。なお、やはり、例えば後述するような反射防止構造体 の製造性を考慮すると、力かる高さ HIはある程度の大きさ以下であることが望ましぐ 通常、ピッチ PIの 5倍程度以下 (最大の構造単位の高さがピッチの 5倍程度以下)で あることが好ましい。
[0025] 反射防止構造体 3の構造単位は、図 3Aに示す円錐形状の構造単位に限定される ものではなぐ例えば正六角錐形状、四角錐形状等の角錐形状(図 3B)の構造単位 であってもよい。また、力かる構造単位は、錐状の構造単位に限定されるものでもなく 、先端が丸くなっている釣鐘状(図 4A及び図 4B)の構造単位であってもよぐ円錐台 形状 (図 5A)、角錐台形状 (図 5B)等の錐台状の構造単位であってもよい。さらに、 各構造単位は厳密な幾何学的な形状でなくてもよぐ実質的に、例えば錐状、釣鐘 状、錐台状等であればよい。
[0026] さらに図 3A、図 3B、図 4A、図 4B、図 5A及び図 5Bでは、反射防止構造体として、 突出形状の構造単位を有する構造体を示しているが、実施の形態 1においては、こ のような突出形状の構造単位を有する構造体に限定されることはない。例えば、平面 に錐状、釣鐘状、錐台状等の陥没形状の構造単位が、反射を防止すべき光の最短 波長よりも小さいピッチで周期的にアレイ状に配列された反射防止構造体を用いるこ とも可能である。なお、反射防止構造体の構造単位が陥没形状である場合、該構造 単位の深さは、前記突出形状の構造単位の高さ HIと同様に決定すればよい。また 突出形状の構造単位と陥没形状の構造単位とが 1つの反射防止構造体中に同時に 存在していてもよい。なお、突出形状の構造単位と陥没形状の構造単位とを同時に 有する反射防止構造体の場合、その突出部の高さと陥没部の深さとの合計が前記 高さ HIの範囲内であることが好ましい。このように、本実施の形態 1に用いられる反 射防止構造体は、不要光である反射を防止すべき光の最短波長よりも小さ!、ピッチ で、各構造単位が周期的にアレイ状に配列され、該不要光の反射を充分に防止する ことができるものであれば、その構造単位の形状等は特に限定されるものではな 、。
[0027] 実施の形態 1においては、空気層との界面で、不要光である反射を防止すべき光 の屈折率が連続的に変化し、該不要光の反射をより充分に防止することができるとい う点から、略錐状の突出形状の構造単位を有する反射防止構造体、略錐状の陥没 形状の構造単位を有する反射防止構造体、及び略錐状の突出形状の構造単位と略 錐状の陥没形状の構造単位とを同時に有する反射防止構造体を用いることが好まし い。なお、略錐状の構造単位の中でも、略正六角錐状の構造単位は、高充填率で 配列され、空気層との界面で、不要光である反射を防止すべき光の屈折率がさらに 連続的に変化し、該不要光の反射をより一層充分に防止することができるという点か ら、特に好ましい。
[0028] 実施の形態 1に用いられるレンズ素子 2では、光学面の周辺領域の少なくとも一部 に反射防止構造体 3が設けられているが、勿論、周辺領域全体に反射防止構造体 3 が設けられていてもよい。
[0029] 反射防止構造体 3が設けられたレンズ素子 2の製造方法にも特に限定がないが、 一例として次の方法があげられる。まず、石英ガラス基板等に電子線描画法等の方 法でパターンを描画した後、ドライエッチング等にて、反射防止構造体 3と同一形状と なるように精密加工を行い、高精度のマスター型を形成する。次に、該マスター型を 用い、加熱軟化したガラス材料をプレス成形してガラス製の反射防止構造体成形用 型を作製する。最後に、該反射防止構造体成形用型を用い、例えば榭脂等の材料 をプレス成形に供して、反射防止構造体 3が設けられたレンズ素子 2を得ることができ る。このような方法を採用した場合には、光学面の周辺領域の少なくとも一部に反射 防止構造体 3が設けられたレンズ素子 2を、安価でかつ大量に製造することができる
[0030] 次に、レンズ素子 2において、反射防止構造体 3が形成される周辺領域と、反射防 止多層膜 4が形成される中心領域との境界の決定方法について説明する。
[0031] レンズ素子 2の物体側の光学面は、例えば、曲率半径が 53mm程度、有効半径が 22mm程度であり、有効半径の最外郭で約 24° の傾斜角を有している。また、レン ズ素子 2の像側の光学面は、曲率半径が 26mm程度、有効半径が 18mm程度であ り、有効半径の最外郭で約 43° の傾斜角を有している。撮像光学系 1において、レ ンズ素子 2に入射する光束のうち、最も像高が高い光束 5cの最大入射角度力 4° 程度と大きいので、撮像光学系 1を保持する鏡筒 6をコンパクトに構成するためには、 鏡筒径を小さくし、レンズ素子 2からの物体側への突出量を少なくしなければならな い。
[0032] このように、レンズ素子 2の物体側の光学面は、面頂部付近が鏡筒 6よりも物体側に 突出している場合があり、光軸付近 (面頂部付近)の光学面は傷や汚れが付き易いこ とがわかる。そこで、傷や汚れが付き易い光軸付近の光学面に反射防止効果を付与 するには、引つ搔き強度に優れ、なおかつ汚れを除去し易い構造の反射防止多層 膜 4が適している。
[0033] 一方、光学面の周辺領域では、反射防止多層膜 4による反射防止効果は、該反射 防止多層膜 4が形成される光学面の傾斜角度や光束の入射角度によって影響を受 けるため、光量損失や画質劣化等の原因となる場合がある。また、光学面の周辺領 域では、レンズ素子 2を保持する鏡筒 6が物体側に突出していることから、外部からの 力による傷等の破壊が比較的少ないので、該周辺領域には、反射防止多層膜 4とは 異なり、入射角依存性が低い反射防止構造体 3が適している。
[0034] なお、本明細書において「入射角度」とは、光束のレンズ面への入射角度を意味す るものであり、本明細書中では、このように単に「入射角度」と表現する。
[0035] レンズ素子に、例えば従来の一般的な反射防止多層膜のみが形成されている場合 には、撮像光学系に入射した光の反射率 (反射防止効果)は、入射光の波長に依存 する。
[0036] 図 6は、従来の一般的な反射防止多層膜のみが形成されたレンズ素子についての 、入射光の波長と反射率との関係 (反射防止効果の波長依存性)を示すグラフである 。図 6において、縦軸は反射率を表し、横軸は入射光の波長 m)を表す。
[0037] なお、ここで用いた反射防止多層膜は三層構造であり、 BK7を基材として、基材側 力も順に Al Oを 1Z4え、 ZrOを 1/2え、 MgFを 1Z4えとした膜で構成されてい
2 3 2 2
る。また、 λは 587nmである。
[0038] 図 6から、撮像光学系 1を設計する際の中心波長として用いている 587nm付近に おける反射率は抑制されているが、短波長側と長波長側とで反射率が高くなる傾向 力 Sあることがわ力る。したがって、一般的な反射防止多層膜による反射防止効果は、 波長に依存することが明らかである。
[0039] さらに、反射防止効果は、入射角度によっても変動する。次に、入射光の波長及び 入射角度が反射防止効果へ与える影響について説明する。
[0040] 図 7、図 8及び図 9は、従来の一般的な反射防止多層膜のみが形成されたレンズ素 子についての、入射角度と反射率との関係 (反射防止効果の入射角依存性)を示す グラフである。図 7、図 8及び図 9において、縦軸は反射率を表し、横軸は入射角度( ° )を表す。また、図 7に示すグラフは、入射光の波長が 587nmの場合の結果であり 、図 8に示すグラフは、波長が 435nmの場合の結果であり、図 9に示すグラフは、波 長が 656nmの場合の結果である。
[0041] 図 7のグラフから、入射光が設計の際の中心波長を有する場合であっても、入射角 度が大きくなるにつれて反射率が大きくなることがわかる。図 8のグラフから、入射光 が短波長を有する場合には、入射角度が大きくなると反射率が低下することがわ力る 。また、図 9のグラフから、入射光が長波長を有する場合には、入射角度 20° 付近か ら反射率が増加し始めることがわかる。
[0042] 図 7、図 8及び図 9に示すように、一般的な反射防止多層膜による反射防止効果は 、入射角度に依存しており、該反射防止効果は、入射角度 15〜20° 付近を境として 、入射角度が大きくなるにつれて劣化することがわかる。
[0043] 以上の結果から、傾斜角度が大きくなることが見込まれる光学面においては、入射 角依存性が少ない反射防止構造体によって反射防止機能を付与することが望ましい 。一方、短波長側の特性を重視し、短波長側の反射率と長波長側の反射率とのバラ ンスが保たれる傾斜角度、即ち、短波長側の反射率と長波長側の反射率とが略同じ になる傾斜角度付近まで、反射防止構造体を使用することも考えられる。したがって 、反射防止構造体と反射防止多層膜との境界、即ち光学面の周辺領域と中心領域と の境界が、以下の条件(1)を満足するように、光学面に形成する反射防止構造体の 領域を決定することが望まし 、。
RD X O. 20< BR<RD X 0. 70 …(1)
ここで、
RD:光学面の曲率半径、
BR:光軸力 周辺領域と中心領域との境界までの半径方向の距離
である。なお、該条件(1)は、曲率を有する光学面に対して成立するものである。
[0044] 下限値である RD X O. 20は、入射角度が約 15° となる値、即ち sinl5° を満足す る値である。 BRが RD X O. 20を下回る場合には、反射防止多層膜による反射防止 効果が充分得られるにもかかわらず、反射防止構造体を必要以上の領域に形成す ることとなるため、レンズ素子を保持するためのスペースを充分に確保することが困難 となる。したがって、取り扱いが困難となり、量産性が低下すると同時に、傷等の不良 が生じる恐れがある。
[0045] 一方、上限値である RD X O. 70は、入射角度が約 45° となる値、即ち sin45° を 満足する値である。 BRが RD X O. 70を上回る場合には、長波長側の反射率が飛躍 的に増加し、光量損失や画質劣化の原因となる恐れがある。
[0046] また、反射防止構造体と反射防止多層膜との境界、即ち光学面の周辺領域と中心 領域との境界は、以下の条件(la)を満足することがさらに好ま 、。
RD X O. 25< BR · · · (la)
ここで、
RD:光学面の曲率半径、
BR:光軸力 周辺領域と中心領域との境界までの半径方向の距離
である。 RD X O. 25は、入射角度が約 17. 5° となる値である。該条件(la)を満足 することにより、レンズ素子を保持するためのスペースを充分に確保しつつ、反射防 止構造体によってさらに高い反射防止効果を得ることができる。
[0047] さらに、以下の条件(lb)を満足するように、反射防止構造体と反射防止多層膜との 境界、即ち光学面の周辺領域と中心領域との境界を決定することが特に好ましい。
RD X O. 40< BR<RD X 0. 60 …(lb)
ここで、
RD:光学面の曲率半径、
BR:光軸力 周辺領域と中心領域との境界までの半径方向の距離
である。
[0048] 下限値である RD X O. 40は、入射角度が約 25° となる値であり、また上限値であ る RD X O. 60は、入射角度が約 40° となる値である。
[0049] 以上のように、本実施の形態 1に係る撮像光学系では、レンズ素子の光学面の中 心領域において、反射防止多層膜による反射防止効果が充分に機能し、なおかつ、 反射防止多層膜では効果が変化する、光束の入射角度が大きくなる光学面の周辺 領域に反射防止構造体が形成されている。したがって、実施の形態 1に係る撮像光 学系では、比較的傷や汚れが付き易い光学面の光軸付近 (面頂部付近)で、このよう な傷や汚れが低減すると共に、反射防止多層膜の反射防止機能が低下し易い光学 面の周辺領域で、反射率が充分に低減し、不要光の反射による光量損失及び画質 劣ィ匕が極めて少、なくなる。
[0050] なお、反射防止効果を得るための多層膜は、前記三層構造を有する多層膜に限定 されるものではなぐ例えば四層以上の複数の層構造を有する多層膜であってもよく 、層構造を有する多層膜に、例えば保護膜といった、反射防止機能以外の他の機能 を有する膜を積層させた膜であってもよい。さらには、反射防止機能を有する単層膜 も用いることができる。これらの場合も、三層構造を有する多層膜を用いる場合と同様 の効果を得ることができる。
[0051] また、反射防止多層膜と反射防止構造体との境界は厳密に分離されていなくてもよ ぐ反射防止多層膜と反射防止構造体とが、互いに部分的に重畳していてもよい。こ のように、反射防止多層膜と反射防止構造体との境界が有限の領域を持って重畳し ていることで、現実の生産性を勘案しながらも、充分な反射防止効果を得ることがで きる。
[0052] (実施の形態 2)
実施の形態 1では、反射防止多層膜が最物体側に位置するレンズ素子の中心領 域に形成され、周辺領域に反射防止構造体が形成されている。ここで、反射防止多 層膜をレンズ素子の表面全体を覆うように形成し、その上に反射防止構造体を形成 することちでさる。
[0053] 本実施の形態 2に係る撮像光学系の基本構成は、実施の形態 1に係る撮像光学系 と同様である。したがって、撮像光学系の構成に関しては、図 1を援用する。なお、図 1におけるレンズ素子 2は、本実施の形態 2において、以下の図 10に示すレンズ素子 12に置き換える。
[0054] 図 10は、実施の形態 2に係る撮像光学系が備えるレンズ素子 12の拡大図である。
図 10において、レンズ素子 12の表面全体を覆うように、反射防止多層膜 14が形成さ れている。レンズ素子 12は、実施の形態 1におけるレンズ素子 2と同様に、光学面の 周辺領域の少なくとも一部に、反射防止構造体 13を有する。ここで、反射防止多層 膜 14力 レンズ素子 12の光学面の略全表面に形成されている点で、該レンズ素子 1 2と実施の形態 1に係るレンズ素子 2とは相違する。
[0055] なお、図 10に示す反射防止構造体 13は、図 1に示す反射防止構造体 3に相当す る。また、周辺領域と中心領域との境界の決定方法は、実施の形態 1での方法と同様 である。
[0056] 以上のように、本実施の形態 2では、反射防止多層膜がレンズ素子の光学面の略 全表面に形成され、光学面の周辺領域の少なくとも一部には、反射防止構造体が形 成されている。これにより、反射防止多層膜を光学面の中心領域にのみ形成する場 合に必要な、該反射防止多層膜を光学面に形成する際の高い位置決め精度が不要 となる。また、実際の多層膜形成のプロセスにおいて、光学面の中心領域にのみ多 層膜を形成する場合に必要な、マスク等の特別な治工具が不要となる。さらに、反射 防止構造体を形成する際にも、境界に対して緩!ヽ公差で形状を調整することができ る。
[0057] (実施の形態 3)
本実施の形態 3に係る撮像光学系の基本構成は、実施の形態 1に係る撮像光学系 と同様であるが、最物体側に位置するレンズ素子において、その物体側の光学面の 周辺領域の少なくも一部に設けられた反射防止構造体の構成が、実施の形態 1にお ける反射防止構造体の構成と相違する。
[0058] 図 11は、実施の形態 3に係る撮像光学系が備えるレンズ素子 22の部分拡大断面 図である。レンズ素子 22は、図 1に示すレンズ素子 2に相当し、図 1の撮像光学系 1 において最物体側に位置するレンズ素子である。図 11に示すように、レンズ素子 22 を構成する、例えば入射光の吸収が可能な材料力もなる基材 24の周辺領域の少な くとも一部に、反射防止構造体 23を有するシート 25が貼付されている。
[0059] シート 25は、例えばアクリル系榭脂等の透明な榭脂材料力もなり、その表面の少な くとも一部に、入射光中の、反射を防止すべき光の最短波長よりも小さいピッチで、所 定の形状を有する構造単位が周期的にアレイ状に配列された反射防止構造体 23が 設けられている。シート 25の厚みは、取り扱いが容易で、かつ機械的強度が充分で あればよぐ好ましくは 10 μ m以上である。
[0060] 反射防止構造体 23を構成する構造単位の高さ及び該構造単位を配列するピッチ は、実施の形態 1と同様に決定すればよい。例えば入射光が可視光である場合、シ ート 25上には、例えば図 3Aに示すように、高さ 0. 15 mの円錐形状の構造単位が 、 0. 15 mのピッチで周期的にアレイ状に配列された反射防止構造体 23を形成す ることが好ましい。該反射防止構造体 23は、可視光の波長領域よりも小さいピッチで 、かつ該ピッチ以上の高さを有する構造単位が周期的にアレイ状に配列された構造 体に相当する。
[0061] また、シート 25の屈折率と基材 24の屈折率との差は、 0. 2以下であることが好まし い。これら屈折率の差を 0. 2以下とすることにより、シート 25と基材 24との界面で発 生する反射率を、問題とならない程度まで充分に抑制することができる。さらには、シ ート 25の屈折率と基材 24の屈折率との差は、 0. 1以下であることが特に好ましい。こ れら屈折率の差を 0. 1以下とすることにより、シート 25と基材 24との界面で発生する 反射率をさらに低減することが可能となり、迷光の発生を効率よく抑制することができ る。
[0062] 反射防止構造体 23を有するシート 25の製造方法には特に限定がないが、一例と して次の方法があげられる。まず、石英ガラス基板等に電子線描画法等の方法でパ ターンを描画した後、ドライエッチング等にて、反射防止構造体 23と同一形状となる ように精密加工を行い、高精度のマスター型を形成する。次に、該マスター型を用い 、加熱軟化したガラス材料をプレス成形してガラス製の反射防止構造体成形用型を 作製する。最後に、該反射防止構造体成形用型を用い、例えば前記アクリル系榭脂 材料等の榭脂材料をプレス成形に供して、反射防止構造体 23を有するシート 25を 得ることができる。このような方法を採用した場合には、その表面の少なくとも一部に 反射防止構造体 23を有するシート 25を、安価でかつ大量に製造することができる。
[0063] プレス成形に用いるアクリル系榭脂材料は、取り扱いが容易で、機械的強度が充分 であるという点から、厚みが約 10 m以上(シート 25の厚み + 0. 15 /z m)の材料で あることが好ましい。
[0064] 以上のように、本実施の形態 3では、例えば入射光の吸収が可能な材料力もなる基 材 24の表面に、反射防止構造体 23を有するシート 25を貼付することによって、入射 光中の不要光が空気との界面で反射するのを充分に防止することができる。したがつ て、目的とする光学面に、安価でかつ簡易に反射防止機能を付与することができる。
[0065] また、実施の形態 3では、シートの材料としてアクリル系榭脂を例にあげて説明した 力 該アクリル系榭脂の他にも、例えばポリカーボネート、ポリエチレンテレフタレート 等を用いることちできる。
[0066] また、実施の形態 3では、反射防止構造体の構造単位として、例えば円錐形状の 構造単位 (図 3A)を例にあげて説明したが、実施の形態 1と同様に、反射防止構造 体の構造単位は、このような円錐形状の構造単位に限定されるものではなぐ例えば 正六角錐形状、四角錐形状等の角錐形状 (図 3B)の構造単位であってもよい。また 、力かる構造単位は、錐状の構造単位に限定されるものでもなぐ先端が丸くなって いる釣鐘状(図 4A及び図 4B)の構造単位であってもよぐ円錐台形状(図 5A)、角 錐台形状(図 5B)等の錐台状の構造単位であってもよい。さらに、各構造単位は厳 密な幾何学的な形状でなくてもよぐ実質的に、例えば錐状、釣鐘状、錐台状等であ ればよい。また、実施の形態 1と同様に、反射防止構造体の構造単位は突出形状で あってもよぐ陥没形状であってもよい。
[0067] 実施の形態 1〜3では、反射防止構造体を有するレンズ素子として、撮像光学系の 最物体側に位置するレンズ素子を例にあげて説明したが、撮像光学系に含まれる他 のレンズ素子が反射防止構造体を有していてもよい。なお、量産性を考慮した場合、 レンズ鏡筒内へレンズ素子を挿入する際に、レンズ素子のコバのみを保持することは 困難であるため、一般的には、レンズ面を吸着する方法でレンズ素子を保持する。レ ンズ素子の光学面の中心領域に反射防止構造体が形成されていると、吸着の際に 反射防止構造体の構造単位が破壊したり、欠落することがある。したがって、撮像光 学系に含まれる他のレンズ素子の光学面に反射防止構造体を形成する場合であつ ても、光学面の凹凸や曲率半径に関わらず、光学面の中心領域の周辺に位置する 周辺領域に形成する。
[0068] 次に、本発明の撮像光学系を以下の実施例に基づいてさらに具体的に説明する 力 本発明は力かる実施例のみに限定されるものではない。 [0069] (実施例)
本実施例の撮像光学系は、図 1に示す実施の形態 1に係る撮像光学系に対応する 。図 12は、本実施例において、撮像光学系に含まれるレンズ素子のうち、最物体側 に位置するレンズ素子の物体側の光学面に形成された反射防止構造体を示す概略 拡大図である。図 12に示す反射防止構造体は、高さ約 300nmの四角錐形状を有 する構造単位力 ピッチ約 lOOnmで周期的にアレイ状に配置された構造体である。 また、反射防止構造体を構成する基材は、 BK7である。
[0070] 図 12に示す反射防止構造体が形成されたレンズ素子へ光が入射した際の、入射 角度と反射率との関係をシミュレーションにより求めた。シミュレーションに用いた手法 は、 RCWA法(Rigorous Coupled Wave Analysis)である。なお、該 RCWA法 は、回折格子での電磁波の振舞いを求める厳密計算方法の一つであり、次に示す 参考文献 1及び 2に詳細に示されて ヽる。
参考文献 1 : M. G. Moharam and T. Κ. Gaylord ; "Rigorous coupled— w ave analysis of planar― grating diffraction", J. Opt. Soc. Am. 71、丄 98 1) 811— 818 (ェム ·ジ一'モハラム及びティ一'ケィ ·ゲイロードによる「リガラス カプ ルドウェーブ アナリシス ォブ ブラナーグレイティング ディフラクション」ジャーナ ル ォブ ザ オプティカル ソサイエティ ォブ アメリカ 第 71卷(1981年) 811〜8 18頁)
考文献 2 : M. G. Moharam; Coupled― Wave Analysis of Two Dimen sional Dielectric Gratings , S PIE— The International Society for Op tical Engineering 883 (1988) 8— 11 (ェム'ジ^ ~ ·モハラムによる「カプルドゥエ ーブ アナリシス ォブ トゥー ディメンジョナル ジエレクトリック グレイティングス」 エス'ピ一'アイ'ィ ジ インターナショナル ソサイエティ フォー オプティカル エンジニアリング 第 883卷(1988年) 8〜: L 1頁)
[0071] 前記シミュレーションは、入射物体として平面状に形成された物体を想定して行つ た。角度を振ったシミュレーションは、前記平面状に形成された物体に対して、角度 をもって入射させた。なお該シミュレーションの計算は、反射防止構造体が連続して 存在すると仮定して行っており、反射防止構造体の面積及び構造単位の本数は、無 限であると想定される。
[0072] シミュレーションにより得られた結果を図 13のグラフに示す。図 13は、波長 400〜8 OOnmの範囲内において、 50nm刻みで入射光の波長を変えた際の、各入射光の 入射角度と反射率との関係 (反射率特性の入射角依存性)を示すグラフである。図 1 3において、縦軸は反射率を表し、横軸は入射角度 (° )を表す。
[0073] 本実施例に係る、図 12に示す反射防止構造体が形成されたレンズ素子は、図 13 に示すように、入射光の波長が異なっても、入射角度と反射率との関係を示すグラフ の形状が略同じで、波長毎の入射角依存性の差が小さい。これに対して、反射防止 多層膜のみが形成された従来のレンズ素子は、図 7〜図 9に示すように、入射光の波 長毎に入射角度と反射率との関係を示すグラフの形状が大きく異なり、波長毎の入 射角依存性の差が大きい。
[0074] 次に、図 12に示す反射防止構造体が形成されたレンズ素子へ入射する入射光の 波長と反射率との関係をシミュレーションにより求めた。シミュレーションより得られた 結果を、反射防止多層膜のみが形成された従来のレンズ素子にっ 、ての結果と共 に、図 14のグラフに示す。
[0075] 図 14は、本実施例に係るレンズ素子及び従来のレンズ素子についての、入射光の 波長と反射率との関係 (反射防止効果の波長依存性)を示すグラフである。図 14に おいて、縦軸は反射率を表し、横軸は入射光の波長 (nm)を表す。また図 14におい て、実線は本実施例に係るレンズ素子についてのグラフであり、破線は従来のレンズ 素子についてのグラフである。なお、従来のレンズ素子についてのグラフは、図 6に 示すグラフを図 14のスケールに適合させたものである。
[0076] 本実施例に係るレンズ素子は、図 14に示すように、広い波長領域で反射率を低く 抑制することができる。図 14から、反射率が最も高くなる波長 800nm付近においても 、反射率は 0. 006程度に抑制されていることがわかる。これに対して、反射防止多層 膜のみが形成された従来のレンズ素子は、反射率が最も低!ヽ波長 500nm付近及び 波長 650nm付近にぉ 、ても、同じ波長付近での本実施例に係るレンズ素子の反射 率を上回る。
[0077] 以上のように、本実施例によれば、光学面における反射率が抑制され、かつ取り扱 いが容易で量産性に優れた撮像光学系を提供することができる。
産業上の利用可能性
本発明の撮像光学系は、光学面における反射率が抑制され、かつ取り扱いが容易 で量産性に優れたものであり、例えばデジタルカメラ等の各種撮像装置に好適に使 用することができる。

Claims

請求の範囲
[1] 少なくとも 1つのレンズ素子を備える撮像光学系であって、
入射光が透過する光学面と、
1つ以上の光学面において、該光学面の中心を含む中心領域の周辺に位置する周 辺領域の少なくとも一部に設けられた反射防止構造体とを備え、
前記反射防止構造体が、前記入射光中の、反射を防止すべき光の最短波長よりも 小さいピッチで、所定の形状を有する構造単位が周期的にアレイ状に配列された構 造体である、撮像光学系。
[2] 少なくとも光学面の中心領域の一部に、多層膜が形成されている、請求項 1に記載 の撮像光学系。
[3] 多層膜が、反射防止機能を有する反射防止多層膜である、請求項 2に記載の撮像 光学系。
[4] 多層膜と反射防止構造体とが、互いに部分的に重畳する、請求項 2に記載の撮像 光学系。
[5] 反射防止構造体が、榭脂材料にて形成されて 、る、請求項 1に記載の撮像光学系
[6] 周辺領域と中心領域との境界が、以下の条件(1)を満足する、請求項 1に記載の 撮像光学系:
RD X O. 20< BR<RD X 0. 70 …(1)
ここで、
RD:光学面の曲率半径、
BR:光軸力 周辺領域と中心領域との境界までの半径方向の距離
である。
[7] 反射防止構造体を有する光学面が、最物体側に位置するレンズ素子の物体側の 光学面である、請求項 1に記載の撮像光学系。
PCT/JP2006/315510 2005-08-08 2006-08-04 撮像光学系 WO2007018149A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/063,147 US20090257127A1 (en) 2005-08-08 2006-08-04 Imaging optical system
JP2007529551A JP4803836B2 (ja) 2005-08-08 2006-08-04 撮像光学系
CN2006800284401A CN101233429B (zh) 2005-08-08 2006-08-04 成像光学系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005229161 2005-08-08
JP2005-229161 2005-08-08

Publications (1)

Publication Number Publication Date
WO2007018149A1 true WO2007018149A1 (ja) 2007-02-15

Family

ID=37727332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/315510 WO2007018149A1 (ja) 2005-08-08 2006-08-04 撮像光学系

Country Status (4)

Country Link
US (1) US20090257127A1 (ja)
JP (1) JP4803836B2 (ja)
CN (1) CN101233429B (ja)
WO (1) WO2007018149A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001103A1 (en) * 2007-06-28 2008-12-31 Microsharp Corporation Limited Optical film
JP2009042472A (ja) * 2007-08-08 2009-02-26 Canon Inc 光学素子
JP2009139775A (ja) * 2007-12-10 2009-06-25 Canon Inc 光学系及びそれを有する光学機器
EP2293120A1 (en) * 2009-09-02 2011-03-09 Sony Corporation Optical element and method for producing the same
CN102004272A (zh) * 2009-09-02 2011-04-06 索尼公司 光学器件及其制造方法和母板的制造方法
WO2012114714A1 (ja) * 2011-02-22 2012-08-30 パナソニック株式会社 光学部材
WO2013118489A1 (ja) * 2012-02-06 2013-08-15 パナソニック株式会社 光学素子及びそれを備えた撮像装置
JP2019113735A (ja) * 2017-12-25 2019-07-11 マクセル株式会社 膜付きレンズ、レンズユニットおよびカメラモジュール
JP2020112747A (ja) * 2019-01-16 2020-07-27 株式会社タムロン 光学素子及びその製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2465607A (en) * 2008-11-25 2010-05-26 St Microelectronics CMOS imager structures
JP5522955B2 (ja) * 2009-02-17 2014-06-18 キヤノン株式会社 光学素子の製造方法
JP2015018005A (ja) * 2011-11-11 2015-01-29 パナソニック株式会社 レンズ鏡筒
JP5376029B1 (ja) * 2012-09-28 2013-12-25 大日本印刷株式会社 反射防止物品
US8442792B1 (en) * 2012-10-26 2013-05-14 Elbex Video Ltd. Method and apparatus for calibrating intelligent AC outlets
US10197800B2 (en) * 2015-09-25 2019-02-05 Everready Precision Ind. Corp. Optical lens
JP6786248B2 (ja) * 2016-04-12 2020-11-18 キヤノン株式会社 光学素子およびその製造方法
JP2018077304A (ja) * 2016-11-08 2018-05-17 株式会社デンソー 撮像装置
US11485052B2 (en) * 2018-07-30 2022-11-01 Canon Kabushiki Kaisha Resin product, method of making resin product, interchangeable lens, and optical device
KR20220022303A (ko) 2020-08-18 2022-02-25 삼성전기주식회사 카메라 모듈 및 휴대 단말기

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322711A (ja) * 2002-05-07 2003-11-14 Canon Inc 観察光学系および光学機器
JP2003329806A (ja) * 2002-05-10 2003-11-19 Canon Inc 光学機器
JP2005062526A (ja) * 2003-08-13 2005-03-10 Canon Inc 光学素子および光学系
JP2005148591A (ja) * 2003-11-19 2005-06-09 Olympus Corp 反射光学素子

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10161020A (ja) * 1996-12-02 1998-06-19 Olympus Optical Co Ltd 回折光学素子を用いた撮影光学系
JPH10186102A (ja) * 1996-12-26 1998-07-14 Yazaki Corp 反射防止膜
WO2002037568A1 (en) * 2000-11-02 2002-05-10 3M Innovative Properties Company Brightness and contrast enhancement of direct view emissive displays
WO2002037146A1 (en) * 2000-11-03 2002-05-10 Mems Optical Inc. Anti-reflective structures
JP4848583B2 (ja) * 2000-11-21 2011-12-28 大日本印刷株式会社 ハードコート層を有するフィルムの製造方法
JP2002350624A (ja) * 2001-05-25 2002-12-04 Canon Inc 光学素子及びそれを有する走査光学系及び画像形成装置
JP2003004916A (ja) * 2001-06-20 2003-01-08 Dainippon Printing Co Ltd 表示装置の窓材、その製造方法、及び表示装置
TW200502670A (en) * 2002-11-21 2005-01-16 Konica Minolta Holdings Inc Objective lens, optical system and optical pickup apparatus
US7212340B2 (en) * 2003-07-14 2007-05-01 Konica Minolta Holdings, Inc. Forming methods, forming devices for articles having a micro-sized shape and optical elements
JP2005157119A (ja) * 2003-11-27 2005-06-16 Olympus Corp 反射防止光学素子及びこれを用いた光学系
JP4833569B2 (ja) * 2005-03-24 2011-12-07 パナソニック株式会社 反射防止構造を有する光学レンズ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003322711A (ja) * 2002-05-07 2003-11-14 Canon Inc 観察光学系および光学機器
JP2003329806A (ja) * 2002-05-10 2003-11-19 Canon Inc 光学機器
JP2005062526A (ja) * 2003-08-13 2005-03-10 Canon Inc 光学素子および光学系
JP2005148591A (ja) * 2003-11-19 2005-06-09 Olympus Corp 反射光学素子

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009001103A1 (en) * 2007-06-28 2008-12-31 Microsharp Corporation Limited Optical film
JP2009042472A (ja) * 2007-08-08 2009-02-26 Canon Inc 光学素子
JP2009139775A (ja) * 2007-12-10 2009-06-25 Canon Inc 光学系及びそれを有する光学機器
US8507841B2 (en) 2009-09-02 2013-08-13 Sony Corporation Optical element and method for producing the same
CN102004272A (zh) * 2009-09-02 2011-04-06 索尼公司 光学器件及其制造方法和母板的制造方法
EP2293120A1 (en) * 2009-09-02 2011-03-09 Sony Corporation Optical element and method for producing the same
WO2012114714A1 (ja) * 2011-02-22 2012-08-30 パナソニック株式会社 光学部材
JPWO2012114714A1 (ja) * 2011-02-22 2014-07-07 パナソニック株式会社 光学部材
US9268067B2 (en) 2011-02-22 2016-02-23 Panasonic Intellectual Property Management Co., Ltd. Optical component having antireflection structure
WO2013118489A1 (ja) * 2012-02-06 2013-08-15 パナソニック株式会社 光学素子及びそれを備えた撮像装置
JP5525656B2 (ja) * 2012-02-06 2014-06-18 パナソニック株式会社 光学素子の製造方法
US9164200B2 (en) 2012-02-06 2015-10-20 Panasonic Intellectual Property Management Co., Ltd. Optical element and imaging apparatus including the same
JP2019113735A (ja) * 2017-12-25 2019-07-11 マクセル株式会社 膜付きレンズ、レンズユニットおよびカメラモジュール
JP7296696B2 (ja) 2017-12-25 2023-06-23 マクセル株式会社 広角レンズユニットおよびカメラモジュール
JP2020112747A (ja) * 2019-01-16 2020-07-27 株式会社タムロン 光学素子及びその製造方法

Also Published As

Publication number Publication date
CN101233429A (zh) 2008-07-30
US20090257127A1 (en) 2009-10-15
CN101233429B (zh) 2011-06-15
JP4803836B2 (ja) 2011-10-26
JPWO2007018149A1 (ja) 2009-02-19

Similar Documents

Publication Publication Date Title
JP4803836B2 (ja) 撮像光学系
JP4608501B2 (ja) 光吸収部材及びそれからなるレンズ鏡筒
JP5512269B2 (ja) 反射防止構造体、光学ユニット及び光学装置
JP4833569B2 (ja) 反射防止構造を有する光学レンズ
KR101252916B1 (ko) 결상 광학계 및 그것을 이용한 촬상 장치
JP2005157119A (ja) 反射防止光学素子及びこれを用いた光学系
WO2008001662A1 (fr) Élément optique et dispositif optique le comprenant
TWI454822B (zh) 摺疊光學裝置、包含該摺疊光學裝置的相機系統及相關方法。
JP5777353B2 (ja) 回折光学素子、光学系、及び、光学機器
JP2008276059A (ja) 光学素子およびそれを有する光学系
JP2016057335A (ja) 積層体、ならびに撮像素子パッケージ、撮像装置および電子機器
JP2010271533A (ja) 光学素子及びそれを有する光学系
JP2005062526A (ja) 光学素子および光学系
JP2012230211A (ja) 光学系、およびそれを用いた光学機器
JP2007171857A (ja) 光学素子および光走査装置
WO2007142186A1 (ja) 光学部材
JP2009069358A (ja) 光学系及びそれを有する撮像装置
JP5213424B2 (ja) 光学系及びそれを有する光学機器
JP2004361906A (ja) 透過型光学素子および光学装置
TWI420230B (zh) 間隔環及使用該間隔環的鏡頭模組
JP2015028552A (ja) 光学素子およびその製造方法
JP6627526B2 (ja) 撮像モジュール、撮像装置
JP2009128540A (ja) 反射防止構造体の製造方法
JP5414945B1 (ja) 光学素子及びそれを備えた撮像装置
JP2021096283A (ja) レンズ系

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680028440.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529551

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 12063147

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06782368

Country of ref document: EP

Kind code of ref document: A1