WO2007015392A1 - Method and apparatus for recovering indium from waste liquid crystal display - Google Patents
Method and apparatus for recovering indium from waste liquid crystal display Download PDFInfo
- Publication number
- WO2007015392A1 WO2007015392A1 PCT/JP2006/314626 JP2006314626W WO2007015392A1 WO 2007015392 A1 WO2007015392 A1 WO 2007015392A1 JP 2006314626 W JP2006314626 W JP 2006314626W WO 2007015392 A1 WO2007015392 A1 WO 2007015392A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- indium
- metal
- metal particles
- liquid crystal
- crystal display
- Prior art date
Links
- 239000002699 waste material Substances 0.000 title claims abstract description 114
- 229910052738 indium Inorganic materials 0.000 title claims abstract description 84
- 238000000034 method Methods 0.000 title claims abstract description 43
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 title claims description 79
- 239000004973 liquid crystal related substance Substances 0.000 title claims description 56
- 239000002923 metal particle Substances 0.000 claims abstract description 110
- 229910052751 metal Inorganic materials 0.000 claims abstract description 103
- 239000002184 metal Substances 0.000 claims abstract description 103
- 238000011084 recovery Methods 0.000 claims abstract description 68
- 150000002472 indium compounds Chemical class 0.000 claims abstract description 62
- 239000002245 particle Substances 0.000 claims abstract description 62
- 229910000846 In alloy Inorganic materials 0.000 claims abstract description 26
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims abstract description 19
- 239000007788 liquid Substances 0.000 claims abstract description 17
- 239000002253 acid Substances 0.000 claims abstract description 15
- 239000007787 solid Substances 0.000 claims abstract description 6
- 230000001376 precipitating effect Effects 0.000 claims abstract description 5
- 239000012535 impurity Substances 0.000 claims description 78
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 75
- 238000006243 chemical reaction Methods 0.000 claims description 37
- 239000011701 zinc Substances 0.000 claims description 27
- 238000001556 precipitation Methods 0.000 claims description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims description 17
- 229910052742 iron Inorganic materials 0.000 claims description 16
- 150000002739 metals Chemical class 0.000 claims description 16
- 238000004090 dissolution Methods 0.000 claims description 15
- 238000003756 stirring Methods 0.000 claims description 10
- 239000003513 alkali Substances 0.000 claims description 8
- 229910052718 tin Inorganic materials 0.000 claims description 7
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 5
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052725 zinc Inorganic materials 0.000 claims description 5
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- IGUXCTSQIGAGSV-UHFFFAOYSA-K indium(iii) hydroxide Chemical compound [OH-].[OH-].[OH-].[In+3] IGUXCTSQIGAGSV-UHFFFAOYSA-K 0.000 abstract description 16
- 238000000926 separation method Methods 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 3
- 239000000956 alloy Substances 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 61
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 46
- 238000010828 elution Methods 0.000 description 15
- 238000012545 processing Methods 0.000 description 15
- 230000007423 decrease Effects 0.000 description 12
- 238000001035 drying Methods 0.000 description 11
- 238000006386 neutralization reaction Methods 0.000 description 9
- 239000002244 precipitate Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 238000000605 extraction Methods 0.000 description 5
- 238000004064 recycling Methods 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 238000000151 deposition Methods 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 229910021645 metal ion Inorganic materials 0.000 description 4
- 239000012670 alkaline solution Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000003703 image analysis method Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/006—Wet processes
- C22B7/007—Wet processes by acid leaching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B09—DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
- B09B—DISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
- B09B3/00—Destroying solid waste or transforming solid waste into something useful or harmless
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B25/00—Obtaining tin
- C22B25/06—Obtaining tin from scrap, especially tin scrap
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/04—Extraction of metal compounds from ores or concentrates by wet processes by leaching
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B3/00—Extraction of metal compounds from ores or concentrates by wet processes
- C22B3/20—Treatment or purification of solutions, e.g. obtained by leaching
- C22B3/44—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
- C22B3/46—Treatment or purification of solutions, e.g. obtained by leaching by chemical processes by substitution, e.g. by cementation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B58/00—Obtaining gallium or indium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
- C22B7/005—Separation by a physical processing technique only, e.g. by mechanical breaking
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention relates to a method and apparatus for recovering indium from a discarded liquid crystal display, and more specifically, a discarded liquid crystal television, a mobile phone, a portable game machine, etc., or a liquid crystal discharged as a defective product in a production process.
- the present invention relates to a method and apparatus for recovering valuable indium (In) from a display (hereinafter also referred to as “waste LCD”) as an alloy or a single metal.
- ITO film An indium tin oxide (ITO) film is used as a transparent electrode in a liquid crystal display (hereinafter also referred to as LCD!).
- the ITO film is mainly formed by sputtering, but In is used as the target.
- In is a rare metal obtained during the zinc refining process, and its death has been feared in recent years.
- Waste LCD contains about 300mgZL of In, and with the Withering of In, it is required to collect In during the recycling process.
- Non-Patent Document 1 relates to a fluidized bed LCD processing system, and the fluidized bed LCD processing system comprises a fluidized bed processing section, a cyclone, a cooler, a high temperature bag filter, a catalyst fluidized bed, and a water washing tower.
- the fluidized bed LCD processing system comprises a fluidized bed processing section, a cyclone, a cooler, a high temperature bag filter, a catalyst fluidized bed, and a water washing tower.
- the silicon sand of the fluid medium in the processing section is accumulated in the fluid medium.
- about 60% of the waste LCD accumulates in the fluid medium and the rest is collected by the bag filter, so the indium recovery rate is about 60% overall, and the recovery is The rate was as low as about 60%.
- Non-Patent Document 1 Monthly Display April 2002 P36-46
- Patent Document 1 is a method in which ITO is dissolved in an acid such as nitric acid or hydrochloric acid, impurities such as Sn are precipitated and removed, neutralized by adding ammonia, and recovered as indium hydroxide. .
- Patent Document 1 Japanese Patent Application Laid-Open No. 2000-128531
- the filterability of indium hydroxide obtained by the treatment is poor, the operation takes a long time, and the indium hydroxide obtained by neutralization or the like is used. There is a problem that the nature of the system changes.
- the present invention has been made to solve such a problem, and it is possible to recover In as a valuable metal, which does not need to be recovered in the state of hydroxide hydroxide as in the prior art.
- the present invention has been made to solve such a problem, and the invention according to claim 1 relating to a method for recovering In from waste LCD includes a waste liquid crystal display containing indium tin oxide.
- the crushed waste liquid crystal display also uses acid to dissolve indium tin oxide to obtain an indium compound-containing solution, which flows into the recovery reactor and has an ionic value higher than that of indium in the recovery reactor.
- Metal particles that also have a strong metal force are added, the metal particles are flowed, and indium or an indium alloy contained in the indium compound-containing solution is deposited on the surface of the metal particles, and then the metal is separated by a peeling means. Particle force The deposited indium or indium alloy is peeled off, and the peeled solid indium or indium alloy is liquidized. It is characterized by separating the components and collecting them.
- the invention according to claim 2 is the method for recovering indium from the waste liquid crystal display according to claim 1, wherein the metal particles having a metal force having a larger ionic tendency than indium are zinc particles or aluminum particles. It is characterized by being.
- the invention of claim 3 is the method for recovering indium from the waste liquid crystal display according to claim 1 or 2, wherein the means for peeling off the indium or indium alloy deposited on the metal particles by the metal particle force, It is a means for vibrating metal particles by ultrasonic waves, or a means for stirring metal particles by an electromagnet and causing them to collide with each other.
- the invention of claim 4 is an indium in which indium tin oxide is dissolved from the waste liquid crystal display by using the method for recovering indium from the waste liquid crystal display according to any of claims 1 to 3.
- the indium compound-containing solution Before flowing the compound-containing solution into the recovery reactor, the indium compound-containing solution is allowed to flow into the impurity removal reactor, and the ionic valence tendency is larger than that of impurity metals other than indium in the indium compound-containing solution!
- metal particles made of metal are added into the impurity removal reactor to cause the metal particles to flow, and the impurity metal is deposited on the surface of the metal particles, and then the metal particle force is separated by a peeling means. Peeling and removing the deposited impurity metal
- the invention according to claim 5 is the method for recovering indium of waste liquid crystal display power according to claim 4, wherein the means for separating the impurity metal deposited on the metal particles from the metal particles by ultrasonic waves It is a means for vibrating particles, or a means for stirring metal particles with an electromagnet and causing them to collide with each other. Furthermore, the invention described in claim 6 is characterized in that in the method for recovering indium from the waste liquid crystal display according to claim 4 or 5, the impurity metal is tin.
- the metal particles made of a metal having a higher ionic tendency than an impurity metal are iron particles. It is a feature.
- the invention according to claim 8 is the method for recovering indium from the waste liquid crystal display according to claim 7, wherein an alkali is added to the solution containing the indium compound after removing the impurity metal, and iron is used as a hydroxide. It is characterized by removing the precipitate.
- the invention according to claim 9 is a method in which an indium compound-containing solution is obtained by dissolving indium tin oxide using an acid from the waste liquid crystal display in a state where the waste liquid crystal display is contained in a bag.
- the waste liquid crystal display contained in the bag is washed and neutralized, and then dried.
- the invention according to claim 10 further relates to an apparatus for recovering indium from a waste liquid crystal display, wherein a crusher for crushing a waste liquid crystal display containing indium tin oxide and an acid for the crushed waste liquid crystal display are used. And an indium dissolution apparatus for obtaining an indium compound-containing solution by dissolving indium tin oxide, and an indium dissolution apparatus obtained by the indium dissolution apparatus. An indium compound-containing solution is introduced, and the ionic valence tendency is larger than that of the indium.
- the metal precipitation reaction is performed by adding metal particles having metal power to deposit indium or an indium alloy on the surface of the metal particles.
- a separation reactor for separating the separated solid indium or indium alloy from the liquid component a separation reactor for separating the deposited indium or indium alloy from the liquid, and a separating means for separating the separated indium or indium alloy from the liquid component. It is characterized by comprising.
- the invention according to claim 11 is the apparatus for recovering indium from the waste liquid crystal display according to claim 10, wherein the metal particles having a metal force having a larger ionic tendency than indium are zinc particles or aluminum particles. It is characterized by being.
- the invention described in claim 12 is the indium recovery device for waste liquid crystal display power according to claim 10 or 11, wherein the means for peeling off the indium or indium alloy deposited on the metal particles includes: It is a means for vibrating metal particles by ultrasonic waves, or a means for stirring metal particles with an electromagnet and causing them to collide with each other.
- the invention according to claim 13 is an indium compound-containing solution obtained by an indium dissolution apparatus in addition to the indium recovery apparatus from the waste liquid crystal display according to any one of claims 10 to 12. And flowing metal particles having a higher ionic valence than the impurity metals other than indium in the indium compound-containing solution to cause the metal particles to flow, and allowing the impurity metals to flow on the surface of the metal particles.
- An impurity removing reactor having means for separating and removing the precipitated impurity metal by peeling off the metal particle force is provided on the upstream side of the recovery reactor.
- the means for separating the impurity metal deposited on the metal particles from the metal particles by ultrasonic waves It is a means for vibrating particles, or a means for stirring metal particles with an electromagnet and causing them to collide with each other.
- the invention described in claim 15 is characterized in that in the indium recovery apparatus having the power for waste liquid crystal display according to claim 13 or 14, the impurity metal is tin.
- the apparatus for recovering indium from the waste liquid crystal display described in claims 13 to 15 has a higher ionic tendency than the impurity metal!
- the metal particles are iron particles.
- the invention described in claim 17 is the apparatus for recovering indium from the waste liquid crystal display according to claim 16, wherein the alkali is added to the indium-containing solution after removing the impurity metal, and iron is precipitated as a hydroxide. It is characterized by having a precipitation removing device for removing.
- the present invention provides a solution containing an indium compound by crushing a waste liquid crystal display (waste LCD) containing indium tin oxide, and dissolving the crushed waste LCD force using an acid to dissolve indium tin oxide. And flowing into the recovery reactor, adding metal particles having a metal force having a larger ionic valence than indium (In) into the recovery reactor, causing the metal particles to flow, and In or In alloy contained in the contained solution is deposited on the surface of the metal particles, and then the deposited In or In alloy is also peeled off by the peeling means, and the peeled solid In or In alloy is peeled off.
- waste LCD waste liquid crystal display
- the waste LCD force can dissolve ITO easily and efficiently, and the ionization tendency is used to recover In from the solution in which In is dissolved.
- the combination of the cementation reaction and the stripping technology that is, the use of metal particles increases the total surface area of the metal for the metal deposition reaction, improves the deposition reaction rate, and increases the growth of the deposited metal to some extent. Peeling with a peeling means always exposes a new metal surface and maintains the reaction rate, so the recovery rate of In from waste LCD is significantly higher than conventional dry and wet methods. If it can be improved, it has a positive effect.
- an indium compound in which waste LCD power indium oxide is dissolved Metals other than In contained in the containing solution such as tin A metal having a higher ionic tendency than the impurity metal such as (Sn), for example, metal particles such as iron (Fe) is added and fluidized, and the impurity metal such as Sn contained in the waste liquid is added to the iron or the like.
- the waste liquid can be supplied to the recovery reactor in a state where impurity metals other than In such as Sn are removed in advance, the purity of In recovered in the recovery reactor is further improved. There is an effect of doing.
- the waste LCD is stored in the bag and subjected to In elution with acid, neutralization with washing, and drying, the fine waste LCD crushed in the waste LCD crushing process is knocked out. It is possible to perform consistent processing while it is housed inside, and to simplify processing as a whole. In addition, since it is not necessary to handle fine waste LCD pieces that accept the waste LCD crushing process power as powder, there is an effect that it will not be difficult to handle.
- FIG. 1 is a schematic block diagram of an In recovery device for waste LCD power as one embodiment.
- FIG. 2 is a schematic front view of an impurity removal reactor or a recovery reactor in the In recovery apparatus.
- FIG. 3 is a schematic front view of an impurity removal reactor or a recovery reactor according to another embodiment.
- FIG. 4 is a schematic front view of an impurity removal reactor or a recovery reactor according to another embodiment.
- FIG. 5 is a schematic plan view of a slide board provided with an electromagnet used in the embodiment of FIG.
- FIG. 6 is a schematic block diagram showing an In recovery apparatus according to another embodiment.
- FIG. 7 is a schematic sectional view of an elution treatment apparatus in the same apparatus.
- FIG. 8 is a schematic explanatory diagram of an apparatus used in the examples.
- the waste LCD force indium recovery device of this embodiment is composed of an indium dissolution device (hereinafter also referred to as an In dissolution device) 1 that dissolves ITO using hydrochloric acid as well as the waste LCD force.
- Impurity removing reactor 2 for adding iron particles (Fe particles) to the indium compound-containing solution dissolved in dissolving apparatus 1 to remove impurity metals other than In, and for removing the impurities
- Precipitation removal device 3 that precipitates and removes the Fe particles in the waste liquid from which impurity metals have been removed in reactor 2 as iron (Fe) hydroxide
- precipitation removal device 3 removes the precipitate of Fe hydroxide.
- a recovery reactor 4 for recovering the generated waste liquid power In.
- the In dissolution apparatus 1 is for obtaining an indium compound-containing solution by dissolving In with crushed waste LCD and hydrochloric acid (hydrochloric acid aqueous solution).
- the indium compound-containing solution is prepared so that the In content is 100 to 300 mgZL.
- This indium compound-containing solution is prepared so that the concentration of hydrochloric acid is 20% and the pH of hydrochloric acid is 1.5.
- the impurity removal reactor 2 is for removing Sn, which is an impurity, from the indium compound-containing solution, and includes a vertically long reactor body 5 as shown in FIG.
- the reactor main body 5 includes a reactor upper part 6, a reactor intermediate part 7, and a reactor lower part 8, which are connected via connecting parts 9 and 10, respectively.
- Reactor upper part 6, reactor intermediate part 7, and reactor lower part 8 are each formed to have the same width, but the cross-sectional area of reactor upper part 6 is formed to be larger than the cross-sectional area of reactor intermediate part 7.
- the cross-sectional area is larger than the cross-sectional area of the lower reactor 8.
- the connecting portions 9 and 10 are formed in a tapered shape that is wide upward.
- a substantially conical inflow chamber 11 for inflow of an indium compound-containing solution to be processed is provided below the reactor lower part 8, and an inflow pipe 12 is provided at the lower part thereof. Yes.
- the inflow pipe 12 is provided with a check valve.
- an upper chamber 13 is provided on the upper side of the upper part 6 of the reactor, and a discharge pipe 14 is provided on the side to deposit Sn, which is an impurity metal, on metal particles (Fe particles) and discharge it. It is.
- the upper chamber 13 is a part for discharging Sn together with Fe particles by such an exhaust pipe 14, and based on the difference in ionization tendency with Sn to be removed as impurities, it is a so-called cementation. It is also the part where Fe particles are added to cause the reaction (metal precipitation reaction). Actually, the cementation reaction between Fe and Sn occurs in the entire reactor body 1.
- Fe particles are used as the metal particles to be input as described above.
- the average particle diameter of Fe particles is preferably 0.1 to 8 mm, but in this embodiment, an average particle diameter of about 3 mm is used.
- the average particle diameter is measured by an image analysis method or a WIS Z 8801 screening test method.
- the precipitation removing apparatus 3 is for removing the Fe particles as a hydroxide by precipitation. Hydroxide precipitation is removed by adding an alkali (alkaline solution) such as sodium hydroxide. The pH of the waste liquid in the sediment removal device 3 is adjusted to 8-9.
- the recovery reactor 4 is for recovering the indium compound-containing solution force In after removing Sn, which is an impurity, and precipitating and removing Fe as a hydroxide, as described above. It has the same construction power as the reactor 2 for removal. That is, as shown in FIG. 2, the reactor main body 5 is configured such that the reactor upper part 6, the reactor intermediate part 7, and the reactor lower part 8 are connected through the connection parts 9 and 10. In the recovery reactor 4, the pH is adjusted to 1.5 or lower.
- the inflow chamber 11, the inflow pipe 12, the upper chamber 13, the discharge pipe 14, and the ultrasonic oscillators 15a, 15b, 15c are the reactor upper part 6, the reactor intermediate part 7, and The point provided at the lower part 8 of the reactor is the same as the reactor 2 for removing impurities.
- this indium compound-containing solution is supplied to the impurity removing reactor 2.
- the indium compound-containing solution supplied to the impurity removing reactor 2 flows into the reactor body 5 from the inflow pipe 12 of the impurity removing reactor 2 through the inflow chamber 11.
- the gold used to cause a cementation reaction from the upper chamber 13. Add metal particles (Fe particles).
- the indium compound-containing solution that has flowed in rises in the vertical direction, while the indium compound-containing solution and the Fe particles introduced from the upper chamber 13 flow so as to form a fluidized bed. State.
- the standard electrode potential of Fe 2+ is smaller than that of Sn 2+ .
- the ionization tendency of Fe is larger than Sn.
- Fe having a high ionization tendency becomes Fe 2+ (reaction opposite to the above equation (1)) and is eluted in the indium compound-containing solution, together with the indium compound.
- Sn 2+ becomes Sn and precipitates on the surface of Fe particles.
- the ultrasonic oscillators 15a, 15b, 15c are operated.
- the ultrasonic waves oscillated from the ultrasonic oscillators 15a, 15b, and 15c generate vibration force and stirring force on the Fe particles on which the Sn is deposited.
- Sn that has been deposited is forcibly separated from the Fe particles.
- the Sn thus peeled is discharged from the upper chamber 13 through the discharge pipe 14 to the outside of the reactor body 5, and as a result, removed from the indium compound-containing solution.
- the metal (Fe) used for removing the impurity metal is in the form of particles, for example, compared with a case where an iron lump or the like is input,
- the surface area of the metal (Fe) for causing the cementation reaction is increased, and the speed of the Sn precipitation reaction is improved.
- the forced separation by ultrasonic vibration as described above always exposes a new metal surface (the surface of Fe particles) and maintains the reaction rate.
- the cross-sectional area of the reactor body 5 is formed so as to increase discontinuously with upward force in the present embodiment.
- the counter-flow velocity gradually decreases, so that the metal particles whose particle size has decreased due to the cementation reaction as described above will inadvertently overflow at the top of the reactor body 5 where the cross-sectional area increases. The possibility of being held in the reactor body 5 without increasing becomes high.
- the indium compound-containing solution flows into the lower side force of the reactor main body 5 and passes through the reactor main body 5, a target metal such as Sn is deposited on the metal particles made of Fe by a cementation reaction. Therefore, the concentration of the impurity metal in the indium compound-containing solution decreases as the force toward the top of the reactor body 5 increases.
- finer metal particles exist in the upper part of the reactor body 5 and the upward flow velocity of the indium compound-containing solution gradually decreases, so that the number of metal particles is increased. It is recognized that the total surface area of the metal particles increases toward the top of the reactor body 5. As a result, the reaction rate of the cementation reaction (impurity metal impurity extraction efficiency) is improved, so that the impurity metals Ni and Sn are also added to the upper part of the reactor body 5 where the impurity metal concentration is lower. It is possible to remove the waste liquid efficiently.
- the indium compound-containing solution from which Sn has been removed is supplied to the precipitation removing device 3.
- An alkali (alkaline solution) such as sodium hydroxide is added to the precipitation removing device 3.
- the indium compound-containing solution after precipitation and removal of Fe hydroxide is adjusted to pHl. 5 or lower and indium hydroxide is redissolved, and then supplied to the recovery reactor 4.
- the indium compound-containing solution supplied to the recovery reactor 4 flows into the reactor body 5 from the inflow pipe 12 through the inflow chamber 11 as in the case of the impurity removal reactor 2.
- metal particles Zn particles or A1 particles
- for causing a cementation reaction are introduced from the upper chamber 13.
- the indium compound-containing solution that has flowed in rises and the metal particles introduced from the upper chamber 13 become a fluid state.
- the standard electrode potential force S of Zn 2+ or Al 3+ is smaller than that of In 3+ .
- the ionization tendency of Zn or A1 is larger than that of In. Therefore, Zn or A1 with a large ionization tendency becomes Zn 2+ or Al 3+ (reaction opposite to the above formulas (4) and (5)) in the fluidized state as described above.
- solution In 3+ is dissolved in and contained in the indium compound-containing solution, and In 3+ becomes In and precipitates on the surface of Zn or A1 particles.
- the ultrasonic oscillators 15a, 15b, and 15c are operated.
- the ultrasonic waves oscillated from the ultrasonic oscillators 15a, 15b, and 15c are vibrated and stirred on the Zn or A1 particles on which the In is precipitated.
- a force is applied, so that the precipitated In is forcibly separated from the Zn or A1 particles.
- the In peeled in this way is discharged from the upper chamber 13 through the discharge pipe 14 to the outside of the reactor main body 5, whereby In is recovered as a valuable metal.
- the particulate Zn is used as Zn or A1 in the same manner as in the case of iron in the impurity removal reactor 2, a metal for causing a cementation reaction is used.
- the surface area increases and the rate of In precipitation reaction increases.
- the surface of new Zn or A1 particles can always be exposed and the reaction rate can be maintained by forced peeling by ultrasonic vibration as described above. .
- the particle size of Zn or A1 introduced into the upper chamber 13 is as follows. It will inevitably decrease over time. As a result, the indium compound-containing solution normally moves up in the reactor main body 5 at almost the same upward flow rate, so that the particle size decreases and becomes smaller toward the upper part. Particles may inadvertently overflow from the reactor body 5.
- the indium compound is contained in the reactor body 5.
- the upward flow velocity of the solution gradually decreases. Therefore, the metal particles whose particle size has been reduced by the cementation reaction or the like as described above are not suitable for the upper part of the reactor body 5 where the cross-sectional area increases. The possibility of being held in the reactor body 5 without overflowing is increased.
- the indium compound-containing solution also flows in the lower side force of the reactor main body 5, and when passing through the reactor main body 5, the target In is deposited on Zn or A1 particles by a cementation reaction. Therefore, the concentration of In in the indium compound-containing solution decreases as the force toward the top of the reactor body 5 increases.
- finer Zn or A1 particles are present in the upper part of the reactor body 5 and the upward flow rate of the indium compound-containing solution gradually decreases.
- the total surface area of Zn or A1 particles increases toward the top of the reactor body 5.
- the reaction speed of the cementation reaction In precipitation efficiency
- the recovery target In is contained in the indium compound even in the upper part of the reactor body 5 where the In concentration is lower. This makes it possible to efficiently recover from the solution.
- the present embodiment is different from the first embodiment in the structure of the reactor main body 5 of the impurity removing reactor 2 and the recovery reactor 4. That is, in the present embodiment, as shown in FIG. 3, the entire peripheral surface of the reactor body 5 is formed to be tapered upward, so that the cross-sectional area of the reactor body 5 continuously increases upward. It is configured. This is different from the case of the first embodiment in which the cross-sectional area of the reactor body 5 discontinuously increases upward.
- the ultrasonic oscillators 15a, 15b, 15c are provided in three places from the upper part to the lower part of the reactor main body 5 in common with the first embodiment. Therefore, in the present embodiment, as in the first embodiment, Sn which is an impurity metal to be removed, which is deposited on the metal particles by the ultrasonic waves oscillated from the ultrasonic oscillators 15a, 15b, 15c. Alternatively, it is possible to forcibly peel In, which is the metal to be collected.
- the cross-sectional area is configured to increase upward, and in common with Embodiment 1, So this implementation Even in the form, a fine metal particle having a reduced particle size is retained at the upper part of the reactor body 5 to prevent inadvertent overflow and a reactor with a low concentration of the target metal. The effect is that the target metal can be efficiently removed or recovered at the upper part of the main body 5.
- the slide board 17 having the electromagnet 16 as shown in FIG. 5 is connected to the guide rail 18 provided on the side of the reactor body 5 having a rectangular horizontal section as shown in FIG. It can be moved up and down. As shown in FIG. 5, the slide board 17 has a space portion 19 in the center, and is disposed so as to surround the reactor body 5 by inserting the reactor body 5 into the space portion 19.
- the metal particles used in the present embodiment are iron or the like that is a magnetic material.
- the metal particles in the reactor main body 5 are stirred, and a large number of metal particles collide with each other.
- Metal particle force The deposited metal is forcibly separated.
- Metal Particle Force Precipitation Although the means for separating the metal is different, in this embodiment as well, the deposited metal is preferably peeled from the metal particle to suitably remove the impurity metal or recover In which is a valuable metal. it can.
- the apparatus for recovering indium from the waste LCD of this embodiment includes an elution treatment device 25, a washing neutralization treatment device 26, and a drying treatment 27.
- the elution treatment apparatus 25 includes an elution treatment container 22 such as an FRP tank.
- the elution processing container 22 is formed to have a size capable of storing a waste LCD accommodated in a bag 21 made of a resin or cloth such as a flexible container bag.
- a perforated plate 23 and a perforated plate support 24 are provided below the elution processing container 22.
- the bag 21 is made of the perforated plate 2 Configured to be held on 3!
- the waste LCD crushed by a crusher or the like is circulated through the hydrochloric acid solution for In dissolution extraction while being contained in the bag 21, and the waste LCD force is also reduced when the hydrochloric acid solution passes through the waste LCD layer 28. In is dissolved and extracted. In other words, the waste LCD force is also dissolved in indium tin oxide using hydrochloric acid to obtain an indium compound-containing solution.
- the waste LCD after the dissolution and extraction treatment is moved to the next cleaning neutralization treatment device 26 while being accommodated in the bag 21 as it is, and is accommodated in the cleaning neutralization treatment device 26.
- Wash neutralization treatment The movement from the elution treatment device 25 to the washing neutralization treatment device 26 is performed using a hoist or the like.
- the circulation process may be performed in a downward flow or an upward flow.
- the waste LCD that has been washed and neutralized is moved to the drying device 27 while being stored and held in the bag.
- the drying processing device 27 can perform the drying processing by a drying method such as sun drying without using such a drying processing device 27.
- the waste LCD after the drying process is held in the bag 21 as it is, and transported to the tile factory, glass factory, etc. as recycled raw materials.
- the processing can be simplified by performing the consistent processing while the fine waste LCD crushed in the waste LCD crushing step is stored in the bag 21 as described above.
- the processing since it is not necessary to handle the fine waste LCD pieces that have been accepted as waste LCD crushing process as powder, handling does not become difficult.
- the bag 21 only needs to have a mesh (porosity) that does not allow the waste LCD to fall off, and a cloth is sufficient.
- the entire noggle is porous enough to allow the hydrochloric acid solution to pass through! /, Or the bottom of the nod 21 may be formed to be porous.
- the present invention is not limited to In being a simple metal, but an alloy of In and other metals, that is, The present invention can also be applied to the case where an In alloy is deposited on metal particles and the deposited In alloy is separated from the metal particles.
- hydrochloric acid is used as the acid for dissolving ITO as the waste LCD force.
- the type of this acid is not limited to hydrochloric acid.
- sulfuric acid, nitric acid or the like may be used. It is also possible to use a mixed acid or the like.
- the force that provides the above-described preferable effect by providing the impurity removal reactor 2 as described above is provided in the present invention.
- the metal particles added to the force recovery reactor described in the case of collecting In by adding Zn or A1 particles are not limited to the Zn or A1 particles of the embodiment. In short, the ionization tendency is larger than In, metal is used!
- the particle size of the metal particles is about 3 mm, but the particle size of the metal particles is not limited to the embodiment, and is preferably 0.1 to 8 mm. If it is less than 1 mm, the cementation reaction is not always performed favorably, and the deposited metal peeled off from the metal particles cannot be easily recovered! / If exceeded, the number of metal particles that can be held in the reactor body decreases, and as a result, the total surface area of the metal particles may decrease and the efficiency of the precipitation reaction may decrease, and valuable metals or impurity metals for recovery purposes may be reduced. This is because other metals may be deposited on the metal particles.
- the cross-sectional area of the reactor main body 5 is formed so as to increase toward the top, the force with which the above preferable effect is obtained is as described above.
- the formation of the main body 5 is not an essential condition for the present invention.
- the means for separating the deposited metal from the metal particles may be other means than the means using the ultrasonic wave in the first and second embodiments and the means using the electromagnet in the third embodiment.
- FIG. 8 28 is the waste LCD layer described in FIG. 7, 29 is a tube pump, 30 is hydrochloric acid, 31 is a resin container, and 32 is a mesh tank. From analysis, the waste LCD contained 400 mgZkg of In. In the elution process, the waste LCD24kg is held in a cotton bag, and the bag is placed in a 100L resin container as shown in Fig. 8. It was put in a container 31, 14 L of hydrochloric acid was added, and circulation treatment was performed at room temperature using a tube pump 29.
- the lid of the 100L resin container is equipped with a gasket, and a tube pump with a lid that can seal between the 100L resin container and the lid 29
- the insertion part and the extraction part used were sealed with a caulking agent.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Environmental & Geological Engineering (AREA)
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Optics & Photonics (AREA)
- General Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Processing Of Solid Wastes (AREA)
- Removal Of Specific Substances (AREA)
Abstract
This invention provides a method and apparatus for recovering In in the form of an alloy or a metal simple substance as a valuable material from waste LCD. In the In recovery method and apparatus, there is no need to recover In as indium hydroxide, and In can be recovered as a valuable metal. Accordingly, unlike the case of indium hydroxide, the recovery does not suffer from poor handling, and In can easily be recovered through a filter or the like with significantly improved In recovery. The In recovery method is characterized by comprising crushing waste LCD containing indium tin oxide, dissolving indium tin oxide from the crushed waste LCD with an acid to give an indium compound-containing solution, allowing the solution to flow into a reactor for recovery and, further, adding particles of a metal having a larger ionization tendency than In into the reactor for recovery, fluidizing the metal particles, precipitating In or an In alloy contained in the indium compound-containing solution onto the surface of the metal particles, then separating the precipitated In or In alloy from the metal particles by separation means, and separating and recovering the separated solid In or In alloy from the liquid component.
Description
明 細 書 Specification
廃棄液晶ディスプレイからのインジウムの回収方法とその装置 Method and apparatus for recovering indium from waste liquid crystal display
技術分野 Technical field
[0001] 本発明は、廃棄液晶ディスプレイからのインジウムの回収方法とその装置、さらに詳 しくは、廃棄された液晶テレビ、携帯電話、携帯ゲーム機等、或いは生産過程で不良 品として排出される液晶ディスプレイ(以下、廃 LCDともいう)から有価物であるインジ ゥム (In)を合金或いは金属単体として回収する方法とその装置に関する。 [0001] The present invention relates to a method and apparatus for recovering indium from a discarded liquid crystal display, and more specifically, a discarded liquid crystal television, a mobile phone, a portable game machine, etc., or a liquid crystal discharged as a defective product in a production process. The present invention relates to a method and apparatus for recovering valuable indium (In) from a display (hereinafter also referred to as “waste LCD”) as an alloy or a single metal.
背景技術 Background art
[0002] 液晶ディスプレイ(以下、 LCDとも!/、う)には透明電極として酸化インジウムスズ (IT O)膜が使用されている。 ITO膜は主としてスパッタリングにより成膜されるが、そのタ 一ゲットには Inが使用されている。 Inは亜鉛精製過程で得られる希少金属であり、近 年その枯渴が危惧されて 、る。廃 LCD中には 300mgZL程度の Inが含有されてお り、 Inの枯渴化に伴い、リサイクル過程で Inを回収することが要望されている。 [0002] An indium tin oxide (ITO) film is used as a transparent electrode in a liquid crystal display (hereinafter also referred to as LCD!). The ITO film is mainly formed by sputtering, but In is used as the target. In is a rare metal obtained during the zinc refining process, and its death has been feared in recent years. Waste LCD contains about 300mgZL of In, and with the Withering of In, it is required to collect In during the recycling process.
[0003] このような要望に応ずるベぐ廃 LCD中の Inを回収することが試みられており、この ような技術として、たとえば下記非特許文献 1記載の発明がある。この発明は流動床 LCD処理システムに関するもので、その流動床 LCD処理システムは、流動層処理 部、サイクロン、冷却器、高温バグフィルタ、触媒流動層、及び水洗浄塔で構成され ており、流動層処理部で流動媒体のシリコンサンドにより機械的に剥離された Inが流 動媒体中に蓄積される。しかし、この処理システムを用いる方法では、廃 LCD中の約 60%が流動媒体中に蓄積し、残りはバグフィルタで捕集されるので、インジウム回収 率は全体で約 60%であり、その回収率が 60%程度と低いものであった。 [0003] Attempts have been made to collect In in waste LCDs that meet such demands. For example, there is an invention described in Non-Patent Document 1 below. The present invention relates to a fluidized bed LCD processing system, and the fluidized bed LCD processing system comprises a fluidized bed processing section, a cyclone, a cooler, a high temperature bag filter, a catalyst fluidized bed, and a water washing tower. In, which is mechanically separated by the silicon sand of the fluid medium in the processing section, is accumulated in the fluid medium. However, in the method using this processing system, about 60% of the waste LCD accumulates in the fluid medium and the rest is collected by the bag filter, so the indium recovery rate is about 60% overall, and the recovery is The rate was as low as about 60%.
[0004] 非特許文献 1 :月刊ディスプレイ 2002年 4月号 P36〜46 [0004] Non-Patent Document 1: Monthly Display April 2002 P36-46
[0005] 上記のような乾式処理の低い回収率を高くするため、湿式処理による方法も開発さ れている。たとえば下記特許文献 1は、 ITOを硝酸や塩酸等の酸に溶解させ、 Sn等 の不純物を沈殿除去した後に、アンモニアを添カ卩して中和し、水酸化インジウムとし て回収する方法である。 [0005] In order to increase the low recovery rate of the dry process as described above, a method using a wet process has also been developed. For example, Patent Document 1 below is a method in which ITO is dissolved in an acid such as nitric acid or hydrochloric acid, impurities such as Sn are precipitated and removed, neutralized by adding ammonia, and recovered as indium hydroxide. .
[0006] 特許文献 1 :日本国特開 2000— 128531号公報
[0007] しかし、上記のような湿式処理の方法によると、処理によって得られた水酸化インジ ゥムのろ過性が悪く操作に長時間を有し、また中和等によって得られる水酸化インジ ゥムの性質が変化するという問題点がある。 [0006] Patent Document 1: Japanese Patent Application Laid-Open No. 2000-128531 However, according to the wet processing method as described above, the filterability of indium hydroxide obtained by the treatment is poor, the operation takes a long time, and the indium hydroxide obtained by neutralization or the like is used. There is a problem that the nature of the system changes.
発明の開示 Disclosure of the invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0008] 本発明は、このような問題を解決するためになされたもので、従来のように水酸化ィ ンジゥムの状態で回収する必要がなぐ Inを有価金属として回収することができるの で、回収時において水酸化インジウムの場合のようなハンドリングの悪さもなぐフィル ターなどで容易に回収することができ、し力も Inの回収率が著しく良好となる Inの回 収方法と装置を提供することを課題とする。 [0008] The present invention has been made to solve such a problem, and it is possible to recover In as a valuable metal, which does not need to be recovered in the state of hydroxide hydroxide as in the prior art. To provide an In recovery method and apparatus that can be easily recovered with a filter that does not have poor handling as in the case of indium hydroxide at the time of recovery, and the recovery rate of In is remarkably good. Is an issue.
課題を解決するための手段 Means for solving the problem
[0009] 本発明は、このような課題を解決するためになされたもので、廃 LCDからの Inの回 収方法に係る請求項 1記載の発明は、酸化インジウムスズを含有する廃棄液晶ディ スプレイを破砕し、破砕した廃棄液晶ディスプレイ力も酸を用いて酸化インジウムスズ を溶解させて、インジウム化合物含有溶液を得、回収用リアクター内に流入するととも に、該回収用リアクター内にインジウムよりもイオン価傾向の大きい金属力もなる金属 粒子を添加し、該金属粒子を流動させ、前記インジウム化合物含有溶液中に含有さ れるインジウム又はインジウム合金を前記金属粒子の表面に析出させ、その後、剥離 手段によって前記金属粒子力 前記析出したインジウム又はインジウム合金を剥離し て、剥離した固形状のインジウム又はインジウム合金を液分力 分離して回収するこ とを特徴とする。 [0009] The present invention has been made to solve such a problem, and the invention according to claim 1 relating to a method for recovering In from waste LCD includes a waste liquid crystal display containing indium tin oxide. The crushed waste liquid crystal display also uses acid to dissolve indium tin oxide to obtain an indium compound-containing solution, which flows into the recovery reactor and has an ionic value higher than that of indium in the recovery reactor. Metal particles that also have a strong metal force are added, the metal particles are flowed, and indium or an indium alloy contained in the indium compound-containing solution is deposited on the surface of the metal particles, and then the metal is separated by a peeling means. Particle force The deposited indium or indium alloy is peeled off, and the peeled solid indium or indium alloy is liquidized. It is characterized by separating the components and collecting them.
[0010] また請求項 2記載の発明は、請求項 1記載の廃棄液晶ディスプレイからのインジゥ ムの回収方法において、インジウムよりもイオン価傾向の大きい金属力 なる金属粒 子が亜鉛粒子又はアルミニウム粒子であることを特徴とする。さらに請求項 3記載の 発明は、請求項 1又は 2記載の廃棄液晶ディスプレイからのインジウムの回収方法に ぉ 、て、金属粒子に析出したインジウム又はインジウム合金を前記金属粒子力 剥 離する手段が、超音波によって金属粒子を振動させる手段、又は電磁石によって金 属粒子を攪拌し相互に衝突させる手段であることを特徴とする。
[0011] さらに請求項 4記載の発明は、請求項 1乃至 3のいずれかに記載の廃棄液晶ディス プレイからのインジウムの回収方法にぉ 、て、廃棄液晶ディスプレイから酸化インジゥ ムスズを溶解させたインジウム化合物含有溶液を回収用リアクター内に流入する前に 、該インジウム化合物含有溶液を不純物除去用リアクター内に流入させ、該インジゥ ム化合物含有溶液中のインジウム以外の不純物金属よりもイオン価傾向の大き!、金 属からなる金属粒子を前記不純物除去用リアクター内に添加して該金属粒子を流動 させ、前記不純物金属を前記金属粒子の表面に析出させ、その後、剥離手段によつ て前記金属粒子力 前記析出した不純物金属を剥離して除去することを特徴とする [0010] The invention according to claim 2 is the method for recovering indium from the waste liquid crystal display according to claim 1, wherein the metal particles having a metal force having a larger ionic tendency than indium are zinc particles or aluminum particles. It is characterized by being. Further, the invention of claim 3 is the method for recovering indium from the waste liquid crystal display according to claim 1 or 2, wherein the means for peeling off the indium or indium alloy deposited on the metal particles by the metal particle force, It is a means for vibrating metal particles by ultrasonic waves, or a means for stirring metal particles by an electromagnet and causing them to collide with each other. [0011] Further, the invention of claim 4 is an indium in which indium tin oxide is dissolved from the waste liquid crystal display by using the method for recovering indium from the waste liquid crystal display according to any of claims 1 to 3. Before flowing the compound-containing solution into the recovery reactor, the indium compound-containing solution is allowed to flow into the impurity removal reactor, and the ionic valence tendency is larger than that of impurity metals other than indium in the indium compound-containing solution! Then, metal particles made of metal are added into the impurity removal reactor to cause the metal particles to flow, and the impurity metal is deposited on the surface of the metal particles, and then the metal particle force is separated by a peeling means. Peeling and removing the deposited impurity metal
[0012] さらに請求項 5記載の発明は、請求項 4記載の廃棄液晶ディスプレイ力 のインジゥ ムの回収方法において、金属粒子に析出した不純物金属を前記金属粒子から剥離 する手段が、超音波によって金属粒子を振動させる手段、又は電磁石によって金属 粒子を攪拌し相互に衝突させる手段であることを特徴とする。さらに請求項 6記載の 発明は、請求項 4又は 5記載の廃棄液晶ディスプレイからのインジウムの回収方法に おいて、不純物金属がスズであることを特徴とする。さらに請求項 7記載の発明は、請 求項 4乃至 6記載の廃棄液晶ディスプレイからのインジウムの回収方法にぉ 、て、不 純物金属よりもイオン価傾向の大きい金属からなる金属粒子が鉄粒子であることを特 徴とする。さらに請求項 8記載の発明は、請求項 7記載の廃棄液晶ディスプレイから のインジウムの回収方法において、不純物金属を除去した後のインジウム化合物含 有溶液にアルカリを添加して、鉄を水酸化物として沈殿除去することを特徴とする。 さらに請求項 9記載の発明は、廃棄液晶ディスプレイをバッグに収容したままの状 態で、該廃棄液晶ディスプレイ力ゝら酸を用いて酸化インジウムスズを溶解させて、イン ジゥム化合物含有溶液を得る一方で、前記バッグに収容された廃棄液晶ディスプレ ィを洗浄中和処理し、その後乾燥処理を行うことを特徴とする。 [0012] Furthermore, the invention according to claim 5 is the method for recovering indium of waste liquid crystal display power according to claim 4, wherein the means for separating the impurity metal deposited on the metal particles from the metal particles by ultrasonic waves It is a means for vibrating particles, or a means for stirring metal particles with an electromagnet and causing them to collide with each other. Furthermore, the invention described in claim 6 is characterized in that in the method for recovering indium from the waste liquid crystal display according to claim 4 or 5, the impurity metal is tin. Further, according to the seventh aspect of the present invention, in the method for recovering indium from the waste liquid crystal display according to any one of the fourth to sixth aspects, the metal particles made of a metal having a higher ionic tendency than an impurity metal are iron particles. It is a feature. Furthermore, the invention according to claim 8 is the method for recovering indium from the waste liquid crystal display according to claim 7, wherein an alkali is added to the solution containing the indium compound after removing the impurity metal, and iron is used as a hydroxide. It is characterized by removing the precipitate. Further, the invention according to claim 9 is a method in which an indium compound-containing solution is obtained by dissolving indium tin oxide using an acid from the waste liquid crystal display in a state where the waste liquid crystal display is contained in a bag. The waste liquid crystal display contained in the bag is washed and neutralized, and then dried.
[0013] さらに廃棄液晶ディスプレイからのインジウムの回収装置に係る請求項 10記載の発 明は、酸化インジウムスズを含有する廃棄液晶ディスプレイを破砕する破砕機と、破 砕した廃棄液晶ディスプレイに酸を用いて酸化インジウムスズを溶解させてインジゥ ム化合物含有溶液を得るインジウム溶解装置と、該インジウム溶解装置で得られたィ
ンジゥム化合物含有溶液を流入するとともに、前記インジウムよりもイオン価傾向の大 き!、金属力 なる金属粒子を添加して、インジウム又はインジウム合金を前記金属粒 子の表面に析出させる金属析出反応を行なうための回収用リアクターと、前記析出し たインジウム又はインジウム合金を回収すベぐ前記金属粒子力 剥離させるための 剥離手段と、剥離した固体状のインジウム又はインジウム合金を液分から分離する分 離手段を具備することを特徴とする。 [0013] The invention according to claim 10 further relates to an apparatus for recovering indium from a waste liquid crystal display, wherein a crusher for crushing a waste liquid crystal display containing indium tin oxide and an acid for the crushed waste liquid crystal display are used. And an indium dissolution apparatus for obtaining an indium compound-containing solution by dissolving indium tin oxide, and an indium dissolution apparatus obtained by the indium dissolution apparatus. An indium compound-containing solution is introduced, and the ionic valence tendency is larger than that of the indium. The metal precipitation reaction is performed by adding metal particles having metal power to deposit indium or an indium alloy on the surface of the metal particles. A separation reactor for separating the separated solid indium or indium alloy from the liquid component, a separation reactor for separating the deposited indium or indium alloy from the liquid, and a separating means for separating the separated indium or indium alloy from the liquid component. It is characterized by comprising.
[0014] さらに請求項 11記載の発明は、請求項 10記載の廃棄液晶ディスプレイからのイン ジゥムの回収装置において、インジウムよりもイオン価傾向の大きい金属力 なる金 属粒子が亜鉛粒子又はアルミニウム粒子であることを特徴とする。さらに請求項 12記 載の発明は、請求項 10又は 11記載の廃棄液晶ディスプレイ力ものインジウムの回収 装置にお 、て、金属粒子に析出したインジウム又はインジウム合金を前記金属粒子 力 剥離する手段が、超音波によって金属粒子を振動させる手段、又は電磁石によ つて金属粒子を攪拌し相互に衝突させる手段であることを特徴とする。 [0014] Further, the invention according to claim 11 is the apparatus for recovering indium from the waste liquid crystal display according to claim 10, wherein the metal particles having a metal force having a larger ionic tendency than indium are zinc particles or aluminum particles. It is characterized by being. Further, the invention described in claim 12 is the indium recovery device for waste liquid crystal display power according to claim 10 or 11, wherein the means for peeling off the indium or indium alloy deposited on the metal particles includes: It is a means for vibrating metal particles by ultrasonic waves, or a means for stirring metal particles with an electromagnet and causing them to collide with each other.
[0015] さらに、請求項 13記載の発明は、請求項 10乃至 12のいずれかに記載の廃棄液晶 ディスプレイからのインジウムの回収装置にぉ 、て、インジウム溶解装置で得られたィ ンジゥム化合物含有溶液を流入させて該インジウム化合物含有溶液中のインジウム 以外の不純物金属よりもイオン価傾向の大きい金属力 なる金属粒子を添カ卩して該 金属粒子を流動させ、前記不純物金属を前記金属粒子の表面に析出させ、前記析 出した不純物金属を前記金属粒子力 剥離して除去する手段を具備する不純物除 去用リアクターが、回収用リアクターの前段側に設けられていることを特徴とする。 [0015] Further, the invention according to claim 13 is an indium compound-containing solution obtained by an indium dissolution apparatus in addition to the indium recovery apparatus from the waste liquid crystal display according to any one of claims 10 to 12. And flowing metal particles having a higher ionic valence than the impurity metals other than indium in the indium compound-containing solution to cause the metal particles to flow, and allowing the impurity metals to flow on the surface of the metal particles. An impurity removing reactor having means for separating and removing the precipitated impurity metal by peeling off the metal particle force is provided on the upstream side of the recovery reactor.
[0016] さらに請求項 14記載の発明は、請求項 13記載の廃棄液晶ディスプレイからのイン ジゥムの回収装置において、金属粒子に析出した不純物金属を前記金属粒子から 剥離する手段が、超音波によって金属粒子を振動させる手段、又は電磁石によって 金属粒子を攪拌し相互に衝突させる手段であることを特徴とする。さらに請求項 15記 載の発明は、請求項 13又は 14記載の廃棄液晶ディスプレイ力ものインジウムの回収 装置において、不純物金属がスズであることを特徴とする。 [0016] Further, in the invention according to claim 14, in the apparatus for recovering indium from the waste liquid crystal display according to claim 13, the means for separating the impurity metal deposited on the metal particles from the metal particles by ultrasonic waves It is a means for vibrating particles, or a means for stirring metal particles with an electromagnet and causing them to collide with each other. Furthermore, the invention described in claim 15 is characterized in that in the indium recovery apparatus having the power for waste liquid crystal display according to claim 13 or 14, the impurity metal is tin.
[0017] さらに請求項 16記載の発明は、請求項 13乃至 15記載の廃棄液晶ディスプレイか らのインジウムの回収装置にぉ 、て、不純物金属よりもイオン価傾向の大き!/、金属か
らなる金属粒子が鉄粒子であることを特徴とする。さらに請求項 17記載の発明は、請 求項 16記載の廃棄液晶ディスプレイからのインジウムの回収装置において、不純物 金属を除去した後のインジウム含有溶液にアルカリを添加して、鉄を水酸化物として 沈殿除去する沈殿除去装置が具備されていることを特徴とする。 [0017] Further, in the invention described in claim 16, the apparatus for recovering indium from the waste liquid crystal display described in claims 13 to 15 has a higher ionic tendency than the impurity metal! The metal particles are iron particles. Further, the invention described in claim 17 is the apparatus for recovering indium from the waste liquid crystal display according to claim 16, wherein the alkali is added to the indium-containing solution after removing the impurity metal, and iron is precipitated as a hydroxide. It is characterized by having a precipitation removing device for removing.
発明の効果 The invention's effect
[0018] 本発明は、上述のように、酸化インジウムスズを含有する廃棄液晶ディスプレイ (廃 LCD)を破砕し、破砕した廃 LCD力も酸を用いて酸化インジウムスズを溶解させて、 インジウム化合物含有溶液を得、回収用リアクター内に流入するとともに、該回収用リ アクター内にインジウム (In)よりもイオン価傾向の大きい金属力 なる金属粒子を添 加し、該金属粒子を流動させ、前記インジウム化合物含有溶液中に含有される In又 は In合金を前記金属粒子の表面に析出させ、その後、剥離手段によって前記金属 粒子力も前記析出した In又は In合金を剥離して、剥離した固形状の In又は In合金を 液分力 分離して回収する方法であるため、廃 LCD力 容易且つ効率よく ITOを溶 解させることができ、 Inが溶解した液からの Inの回収にイオン化傾向を利用したセメ ンテーシヨン反応と剥離技術とを組み合わせ、すなわち、金属粒子を用いることで金 属析出反応のための金属の総表面積が増加し、析出反応速度が向上し、またある程 度成長した析出金属を剥離手段で剥離させることで常に新しい金属表面を露出させ 反応速度を維持することができるので、従来の乾式及び湿式の 、ずれの方法と比べ ても、廃 LCD中からの Inの回収率を著しく向上させることができると 、う効果がある。 ちなみに、本発明においては、廃液中からの In回収率について 80%以上の高い回 収率を得ることができた。 [0018] As described above, the present invention provides a solution containing an indium compound by crushing a waste liquid crystal display (waste LCD) containing indium tin oxide, and dissolving the crushed waste LCD force using an acid to dissolve indium tin oxide. And flowing into the recovery reactor, adding metal particles having a metal force having a larger ionic valence than indium (In) into the recovery reactor, causing the metal particles to flow, and In or In alloy contained in the contained solution is deposited on the surface of the metal particles, and then the deposited In or In alloy is also peeled off by the peeling means, and the peeled solid In or In alloy is peeled off. Since the In alloy is separated and collected by liquid force, the waste LCD force can dissolve ITO easily and efficiently, and the ionization tendency is used to recover In from the solution in which In is dissolved. In other words, the combination of the cementation reaction and the stripping technology, that is, the use of metal particles increases the total surface area of the metal for the metal deposition reaction, improves the deposition reaction rate, and increases the growth of the deposited metal to some extent. Peeling with a peeling means always exposes a new metal surface and maintains the reaction rate, so the recovery rate of In from waste LCD is significantly higher than conventional dry and wet methods. If it can be improved, it has a positive effect. Incidentally, in the present invention, it was possible to obtain a high recovery rate of 80% or more with respect to the In recovery rate from the waste liquid.
[0019] また、従来の湿式法のように水酸化インジウムの状態で回収する必要がなぐ Inを 有価金属として回収することができるので、回収時において水酸化インジウムの場合 のようなハンドリングの悪さもなぐフィルターなどで容易に回収することができるという 効果がある。 [0019] In addition, since it is possible to recover In as a valuable metal that does not need to be recovered in the state of indium hydroxide as in the conventional wet method, the handling is not as good as in the case of indium hydroxide at the time of recovery. There is an effect that it can be easily collected with a filter.
[0020] さらに、回収用リアクターの前段側に、該回収用リアクターと同様の金属析出反応を 生じさせる不純物除去用リアクターを設けた場合には、廃 LCD力 酸化インジウムス ズを溶解させたインジウム化合物含有溶液に含有される In以外の金属、たとえばスズ
(Sn)のような不純物金属よりもイオン価傾向の大きい金属、たとえば鉄 (Fe)等の金 属粒子を添加して流動させ、前記廃液中に含有される Sn等の不純物金属を前記鉄 等の金属粒子の表面に析出させ、その後、剥離手段によって前記金属粒子から前 記析出した不純物金属を剥離することによって、不純物金属である Sn等を好適に除 去することができる。 [0020] Further, when a reactor for removing impurities that causes the same metal deposition reaction as that of the recovery reactor is provided on the front side of the recovery reactor, an indium compound in which waste LCD power indium oxide is dissolved Metals other than In contained in the containing solution, such as tin A metal having a higher ionic tendency than the impurity metal such as (Sn), for example, metal particles such as iron (Fe) is added and fluidized, and the impurity metal such as Sn contained in the waste liquid is added to the iron or the like. By depositing on the surface of the metal particles and then separating the impurity metal deposited from the metal particles by a stripping means, the impurity metal such as Sn can be suitably removed.
[0021] 従って、廃液力 Sn等の In以外の不純物金属を予め除去した状態で、その廃液を 回収用リアクターへ供給することができるので、回収用リアクターで回収される Inの純 度が一層向上するという効果がある。ちなみに、このような不純物除去用リアクターを 回収用リアクターの前段側に設けることで、 95%以上の高い純度の Inを回収すること ができた。 [0021] Accordingly, since the waste liquid can be supplied to the recovery reactor in a state where impurity metals other than In such as Sn are removed in advance, the purity of In recovered in the recovery reactor is further improved. There is an effect of doing. By the way, by installing such a reactor for removing impurities at the front side of the recovery reactor, it was possible to recover 95% or more highly purified In.
[0022] また、このような不純物除去用リアクターを用いて不純物金属を除去した場合、上 記鉄等の添加した金属のイオンが溶出することとなるが、その後段の沈澱除去装置 でアルカリを添加して鉄等の金属を水酸ィ匕物として沈殿させることで、回収用リアクタ 一へ廃液が供給される前に、鉄等の水酸ィ匕物を予め除去することができる。この場合 、 pHが高くなると水酸化インジウムが沈殿として生成するおそれがあるが、沈殿物生 成速度は水酸ィ匕鉄の方が圧倒的に早いことから沈殿除去装置での滞留時間制御に よって、水酸化インジウムを生じさせず、 Inをほとんどロスすることなく次の回収用リア クタ一へ供給することが可能となる。また、 Inの一部が水酸化インジウムとして溶液中 に存在したとしても、次の回収用リアクターで pHを調整することで、水酸化インジウム が再度溶解することとなるため、 Inの回収率を低下させることがない。 [0022] Further, when the impurity metal is removed using such a reactor for removing impurities, ions of the added metal such as iron are eluted, but an alkali is added by a subsequent precipitation removing apparatus. Then, by precipitating a metal such as iron as a hydroxide, the hydroxide such as iron can be removed in advance before the waste liquid is supplied to the recovery reactor 1. In this case, there is a risk that indium hydroxide is formed as a precipitate when the pH is high. However, the rate of precipitate formation is overwhelmingly faster with hydroxide and ferrous iron. Thus, indium hydroxide is not generated, and it is possible to supply the next recovery reactor with almost no loss of In. Even if a part of In is present in the solution as indium hydroxide, indium hydroxide is dissolved again by adjusting the pH in the next reactor for recovery, so the In recovery rate is reduced. I will not let you.
さらに、廃 LCDをバッグに収容したままの状態で、酸による In溶出処理、洗浄中和 処理、乾燥処理を行った場合には、廃 LCD破砕工程で破砕された微細な廃 LCDを ノ ッグ内に収容したまま一貫処理を行うことができ、全体として処理を簡素化できると V、う効果がある。また廃 LCD破砕工程力も受け入れた微細な廃 LCD片を粉体として 取り扱う必要がな 、ので、ノ、ンドリングが困難になることもな ヽと 、う効果がある。 In addition, if the waste LCD is stored in the bag and subjected to In elution with acid, neutralization with washing, and drying, the fine waste LCD crushed in the waste LCD crushing process is knocked out. It is possible to perform consistent processing while it is housed inside, and to simplify processing as a whole. In addition, since it is not necessary to handle fine waste LCD pieces that accept the waste LCD crushing process power as powder, there is an effect that it will not be difficult to handle.
[0023] 以上のように、本発明によって、回収率の高 、In回収方法を提供することができる ので、将来家電リサイクル法で LCDの回収リサイクルが義務づけられるようになった 場合でも、液晶テレビのリサイクル工場でのリサイクル過程における In回収方法として
、本発明を適用することができるという実益がある。 [0023] As described above, according to the present invention, it is possible to provide an In recovery method with a high recovery rate. Therefore, even when LCD recovery and recycling is required under the Home Appliance Recycling Law in the future, As an In recovery method in the recycling process at a recycling plant There is an actual advantage that the present invention can be applied.
図面の簡単な説明 Brief Description of Drawings
[0024] [図 1]一実施形態としての廃 LCD力 の In回収装置の概略ブロック図。 FIG. 1 is a schematic block diagram of an In recovery device for waste LCD power as one embodiment.
[図 2]同 In回収装置における不純物除去用リアクター又は回収用リアクターの概略正 面図。 FIG. 2 is a schematic front view of an impurity removal reactor or a recovery reactor in the In recovery apparatus.
[図 3]他実施形態の不純物除去用リアクター又は回収用リアクターの概略正面図。 FIG. 3 is a schematic front view of an impurity removal reactor or a recovery reactor according to another embodiment.
[図 4]他実施形態の不純物除去用リアクター又は回収用リアクターの概略正面図。 FIG. 4 is a schematic front view of an impurity removal reactor or a recovery reactor according to another embodiment.
[図 5]図 4の実施形態に使用される電磁石を具備したスライドボードの概略平面図。 FIG. 5 is a schematic plan view of a slide board provided with an electromagnet used in the embodiment of FIG.
[図 6]他実施形態の In回収装置を示す概略ブロック図。 FIG. 6 is a schematic block diagram showing an In recovery apparatus according to another embodiment.
[図 7]同装置における溶出処理装置の概略断面図。 FIG. 7 is a schematic sectional view of an elution treatment apparatus in the same apparatus.
[図 8]実施例に用いる装置の概略説明図。 FIG. 8 is a schematic explanatory diagram of an apparatus used in the examples.
符号の説明 Explanation of symbols
[0025] 2…不純物除去用リアクター 3…沈殿除去装置 [0025] 2 ... Reactor removal reactor 3 ... Precipitation removal device
4…回収用リアクター 4 ... Recovery reactor
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、本発明の実施形態について図面に従って説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0027] (実施形態 1) [Embodiment 1]
本実施形態の廃 LCD力 のインジウムの回収装置は、図 1に示すように、廃 LCD 力も ITOを塩酸を用いて溶解させるインジウム溶解装置(以下、 In溶解装置とも 、う) 1と、該 In溶解装置 1で溶解された Inを含有するインジウム化合物含有溶液中に鉄粒 子 (Fe粒子)を添加して In以外の不純物金属を除去するための不純物除去用リアク ター 2と、該不純物除去用リアクター 2で不純物金属が除去された廃液中の前記 Fe 粒子を鉄 (Fe)の水酸化物として沈殿除去する沈殿除去装置 3と、該沈殿除去装置 3 で Feの水酸ィ匕物が沈殿除去された廃液力 Inを回収するための回収用リアクター 4 とを具備するものである。尚、 In溶解装置 1の前段には、図示しないが、廃 LCDを破 砕する破砕機が設けられている。尚、本発明において破砕とは、廃 LCDを砕くことを 意味し、その砕かれた破砕片の大きさは問うものではなぐたとえば一般に粉みじん に細力べ砕くことを意味すると認識されている粉砕のような状態も含むものである。
[0028] In溶解装置 1は、破砕された廃 LCDカゝら塩酸 (塩酸水溶液)によって Inを溶解させ て、インジウム化合物含有溶液を得るためのものである。インジウム化合物含有溶液 は In含有量が 100〜300mgZLとなるように調製されている。また、このインジウム化 合物含有溶液は、塩酸の濃度 20%、塩酸の pHl. 5となるように調製されている。 As shown in FIG. 1, the waste LCD force indium recovery device of this embodiment is composed of an indium dissolution device (hereinafter also referred to as an In dissolution device) 1 that dissolves ITO using hydrochloric acid as well as the waste LCD force. Impurity removing reactor 2 for adding iron particles (Fe particles) to the indium compound-containing solution dissolved in dissolving apparatus 1 to remove impurity metals other than In, and for removing the impurities Precipitation removal device 3 that precipitates and removes the Fe particles in the waste liquid from which impurity metals have been removed in reactor 2 as iron (Fe) hydroxide, and precipitation removal device 3 removes the precipitate of Fe hydroxide. And a recovery reactor 4 for recovering the generated waste liquid power In. Although not shown, a crusher for crushing the waste LCD is provided in the front stage of the In melting apparatus 1. In the present invention, crushing means crushing the waste LCD, and the size of the crushed pieces is not questionable. For example, crushing is generally recognized as meaning crushing into fine dust. Such a state is also included. [0028] The In dissolution apparatus 1 is for obtaining an indium compound-containing solution by dissolving In with crushed waste LCD and hydrochloric acid (hydrochloric acid aqueous solution). The indium compound-containing solution is prepared so that the In content is 100 to 300 mgZL. This indium compound-containing solution is prepared so that the concentration of hydrochloric acid is 20% and the pH of hydrochloric acid is 1.5.
[0029] 不純物除去用リアクター 2は、上記インジウム化合物含有溶液から、不純物である S nを除去するためのもので、図 2に示すように縦長のリアクター本体 5を具備して構成 されている。このリアクター本体 5は、同図に示すように、リアクター上部 6、リアクター 中間部 7、及びリアクター下部 8からなり、それぞれ連設部 9、 10を介して連設されて いる。リアクター上部 6、リアクター中間部 7、及びリアクター下部 8のそれぞれは同幅 に形成されているが、リアクター上部 6の断面積はリアクター中間部 7の断面積より大 きく形成され、リアクター中間部 7の断面積はリアクター下部 8の断面積より大きく形成 されている。この結果、全体としてリアクター本体 5の断面積が上方に向かって不連 続的に増加するように構成されている。尚、連設部 9、 10は、上向きに幅広なテーパ 状に形成されている。 [0029] The impurity removal reactor 2 is for removing Sn, which is an impurity, from the indium compound-containing solution, and includes a vertically long reactor body 5 as shown in FIG. As shown in the figure, the reactor main body 5 includes a reactor upper part 6, a reactor intermediate part 7, and a reactor lower part 8, which are connected via connecting parts 9 and 10, respectively. Reactor upper part 6, reactor intermediate part 7, and reactor lower part 8 are each formed to have the same width, but the cross-sectional area of reactor upper part 6 is formed to be larger than the cross-sectional area of reactor intermediate part 7. The cross-sectional area is larger than the cross-sectional area of the lower reactor 8. As a result, the cross-sectional area of the reactor body 5 as a whole is configured to discontinuously increase upward. The connecting portions 9 and 10 are formed in a tapered shape that is wide upward.
[0030] リアクター下部 8の下側には、処理対象であるインジウム化合物含有溶液を流入す るための略円錐形の流入用チャンバ一 11が設けられ、さらにその下部に流入管 12 が設けられている。流入管 12には、図示しないが、逆止弁が設けられている。またリ アクター上部 6の上側には、上部チャンバ一 13が設けられ、その側部に、不純物金 属である Snを金属粒子 (Fe粒子)に析出させて排出するための排出管 14が設けら れている。上部チャンバ一 13は、このような排出管 14によって Snを Fe粒子とともに 排出するための部分であるとともに、不純物として除去する Snとのイオン化傾向の相 違に基づ 、て 、わゆるセメンテーシヨン反応 (金属析出反応)を生じさせるための Fe 粒子を投入する部分でもある。実際には、 Feと Snとのセメンテーシヨン反応は、前記 リアクター本体 1の全体で生じることとなる。 [0030] A substantially conical inflow chamber 11 for inflow of an indium compound-containing solution to be processed is provided below the reactor lower part 8, and an inflow pipe 12 is provided at the lower part thereof. Yes. Although not shown, the inflow pipe 12 is provided with a check valve. In addition, an upper chamber 13 is provided on the upper side of the upper part 6 of the reactor, and a discharge pipe 14 is provided on the side to deposit Sn, which is an impurity metal, on metal particles (Fe particles) and discharge it. It is. The upper chamber 13 is a part for discharging Sn together with Fe particles by such an exhaust pipe 14, and based on the difference in ionization tendency with Sn to be removed as impurities, it is a so-called cementation. It is also the part where Fe particles are added to cause the reaction (metal precipitation reaction). Actually, the cementation reaction between Fe and Sn occurs in the entire reactor body 1.
[0031] そして、流入管 12から流入されたインジウム化合物含有溶液が排出管 14に至るま での間に、その廃液が垂直方向に上昇しつつ Fe粒子による流動床を形成するように 構成されている。さらに、インジウム化合物含有溶液中に含有されている不純物金属 であって、前記セメンテーシヨン反応により前記 Fe粒子に析出する Snを剥離させる
剥離手段としての超音波発振体 15a、 15b、 15cが、リアクター上部 6、リアクター中 間部 7、及びリアクター下部 8にそれぞれ設けられている。 [0031] Then, while the indium compound-containing solution flowing from the inflow pipe 12 reaches the discharge pipe 14, the waste liquid rises in the vertical direction and forms a fluidized bed of Fe particles. Yes. Further, it is an impurity metal contained in the indium compound-containing solution, and the Sn precipitated on the Fe particles by the cementation reaction is peeled off. Ultrasonic oscillators 15a, 15b, and 15c as peeling means are provided in the reactor upper part 6, the reactor middle part 7, and the reactor lower part 8, respectively.
[0032] 本実施形態では、投入する金属粒子として上述のように Fe粒子が用いられる。 Fe 粒子の平均粒径は、 0. l〜8mmの金属粒子を用いることが好ましいが、本実施形 態では平均粒径が約 3mmのものが用いられる。尚、平均粒径は、画像解析法あるい WIS Z 8801ふるい分け試験法等により測定される。 In the present embodiment, Fe particles are used as the metal particles to be input as described above. The average particle diameter of Fe particles is preferably 0.1 to 8 mm, but in this embodiment, an average particle diameter of about 3 mm is used. The average particle diameter is measured by an image analysis method or a WIS Z 8801 screening test method.
沈殿除去装置 3は、前記 Fe粒子を水酸化物として沈殿除去するためのものである 。水酸化物の沈殿除去は、水酸ィ匕ナトリウム等のアルカリ(アルカリ溶液)を添加する ことによってなされる。この沈殿除去装置 3内の廃液の pHは 8〜9に調製される。 The precipitation removing apparatus 3 is for removing the Fe particles as a hydroxide by precipitation. Hydroxide precipitation is removed by adding an alkali (alkaline solution) such as sodium hydroxide. The pH of the waste liquid in the sediment removal device 3 is adjusted to 8-9.
[0033] 回収用リアクター 4は、上記のように不純物である Snを除去し、 Feを水酸ィ匕物として 沈殿除去した後のインジウム化合物含有溶液力 Inを回収するためのもので、上記 不純物除去用リアクター 2と同様の構成力もなる。すなわち、図 2に示すように連設部 9、 10を介してリアクター上部 6、リアクター中間部 7、リアクター下部 8が連設されて構 成されたリアクター本体 5を具備したものである。この回収用リアクター 4内では、 pH は 1. 5以下に調整される。 [0033] The recovery reactor 4 is for recovering the indium compound-containing solution force In after removing Sn, which is an impurity, and precipitating and removing Fe as a hydroxide, as described above. It has the same construction power as the reactor 2 for removal. That is, as shown in FIG. 2, the reactor main body 5 is configured such that the reactor upper part 6, the reactor intermediate part 7, and the reactor lower part 8 are connected through the connection parts 9 and 10. In the recovery reactor 4, the pH is adjusted to 1.5 or lower.
[0034] 流入用チャンバ一 11、流入管 12、上部チャンバ一 13、排出管 14が設けられてい る点、及び超音波発振体 15a、 15b、 15cが、リアクター上部 6、リアクター中間部 7、 及びリアクター下部 8にそれぞれ設けられている点も、不純物除去用リアクター 2と同 様である。 [0034] The inflow chamber 11, the inflow pipe 12, the upper chamber 13, the discharge pipe 14, and the ultrasonic oscillators 15a, 15b, 15c are the reactor upper part 6, the reactor intermediate part 7, and The point provided at the lower part 8 of the reactor is the same as the reactor 2 for removing impurities.
[0035] そして、このような構成からなる廃 LCDからの Inの回収装置によって廃 LCDから In を回収する方法につ!ヽて説明すると、先ず廃 LCDを破砕機(図示せず)で破砕し、 破砕された廃 LCDを In溶解装置 1へ供給する。この In溶解装置 1には塩酸 (塩酸水 溶液)を添カ卩し、その塩酸によって廃 LCD力 Inが溶出され、 In含有量 100〜300 mgZLのインジウム化合物含有溶液が前記 In溶解装置 1内に得られる。 [0035] A method for recovering In from waste LCD using the In recovery device for waste LCD having such a configuration will now be described. First, the waste LCD is crushed by a crusher (not shown). Supply the crushed waste LCD to the In dissolution apparatus 1. Hydrochloric acid (hydrochloric acid solution) is added to the In dissolution apparatus 1, and the waste LCD power In is eluted by the hydrochloric acid, and an indium compound-containing solution having an In content of 100 to 300 mgZL is contained in the In dissolution apparatus 1. can get.
[0036] 次に、このインジウム化合物含有溶液を不純物除去用リアクター 2へ供給する。不 純物除去用リアクター 2へ供給されたインジウム化合物含有溶液は、不純物除去用リ アクター 2の流入管 12から流入用チャンバ一 11を介してリアクター本体 5内に流入す る。その一方で、上部チャンバ一 13からセメンテーシヨン反応を生じさせるための金
属粒子 (Fe粒子)を投入する。リアクター本体 5内においては、流入されたインジウム 化合物含有溶液が垂直方向に上昇する一方で、そのインジウム化合物含有溶液と、 上部チャンバ一 13から投入された Fe粒子とが流動床を形成するように流動状態とな る。 Next, this indium compound-containing solution is supplied to the impurity removing reactor 2. The indium compound-containing solution supplied to the impurity removing reactor 2 flows into the reactor body 5 from the inflow pipe 12 of the impurity removing reactor 2 through the inflow chamber 11. On the other hand, the gold used to cause a cementation reaction from the upper chamber 13. Add metal particles (Fe particles). In the reactor main body 5, the indium compound-containing solution that has flowed in rises in the vertical direction, while the indium compound-containing solution and the Fe particles introduced from the upper chamber 13 flow so as to form a fluidized bed. State.
[0037] そしてインジウム化合物含有溶液中に含有されて!、る In以外の不純物金属、すな わち Snと、投入された金属粒子である Feとのイオン化傾向の相違に基づぐいわゆ るセメンテーシヨン反応を生じさせる。これをより詳細に説明すると、各金属イオンの 還元反応は次式のとおりであり、各金属イオンの標準電極電位 (E° )をそれぞれに 示している。 [0037] And contained in the solution containing the indium compound! Based on the difference in ionization tendency between the impurity metal other than In, that is, Sn and the input metal particle Fe. Causes a cementation reaction. To explain this in more detail, the reduction reaction of each metal ion is as follows, and the standard electrode potential (E °) of each metal ion is shown.
[0038] Fe2+ + 2e→Fe …ひ) 0. 44V [0038] Fe 2+ + 2e → Fe… hi) 0.44V
Sn2+ + 2e→Sn - -- (2) —0. 14V Sn 2+ + 2e → Sn--(2) —0.14V
[0039] 上記(1)、(2)からも明らかように、 Sn2+に比べて、 Fe2+の標準電極電位が小さい 。換言すれば、 Snに比べて、 Feのイオン化傾向が大きいことになる。そのため、上記 のような流動状態となった状態で、イオン化傾向の大きい Feが Fe2+となって (上記(1 )式と逆の反応)インジウム化合物含有溶液中に溶出し、それとともにインジウム化合 物含有溶液中に含有されて 、た Sn2+が Snとなって、 Feの粒子の表面上に析出する As is clear from the above (1) and (2), the standard electrode potential of Fe 2+ is smaller than that of Sn 2+ . In other words, the ionization tendency of Fe is larger than Sn. For this reason, in the fluidized state as described above, Fe having a high ionization tendency becomes Fe 2+ (reaction opposite to the above equation (1)) and is eluted in the indium compound-containing solution, together with the indium compound. Sn 2+ becomes Sn and precipitates on the surface of Fe particles.
[0040] そして、このようなセメンテーシヨン反応によって Snを Fe粒子の表面上に析出させ た後、超音波発振体 15a、 15b、 15cを作動させる。この超音波発振体 15a、 15b、 1 5cを作動させることによって、該超音波発振体 15a、 15b、 15cから発振される超音 波が、前記 Snを析出した Fe粒子に振動力及び攪拌力を付与し、それによつて析出 していた Snが Fe粒子から強制的に剥離されることとなる。 [0040] Then, after precipitation of Sn on the surface of the Fe particles by such a cementation reaction, the ultrasonic oscillators 15a, 15b, 15c are operated. By operating the ultrasonic oscillators 15a, 15b, and 15c, the ultrasonic waves oscillated from the ultrasonic oscillators 15a, 15b, and 15c generate vibration force and stirring force on the Fe particles on which the Sn is deposited. As a result, Sn that has been deposited is forcibly separated from the Fe particles.
[0041] このようにして剥離された Snは、上部チャンバ一 13から排出管 14を経てリアクター 本体 5の外部に排出され、結果的にインジウム化合物含有溶液から除去されることと なるのである。この場合において、本実施形態では、不純物金属を除去させるために 投入される金属 (Fe)として粒子状のものを用いているので、たとえば鉄の塊等を投 入するような場合に比べると、セメンテーシヨン反応を生じさせるための金属 (Fe)の 表面積が増加し、 Snの析出反応の速度が向上することとなる。そして、ある程度成長
した金属の析出が認められた後に、上記のような超音波の振動による強制的な剥離 によって、常に新しい金属表面 (Fe粒子の表面)を露出させ、反応速度を維持するこ とがでさる。 [0041] The Sn thus peeled is discharged from the upper chamber 13 through the discharge pipe 14 to the outside of the reactor body 5, and as a result, removed from the indium compound-containing solution. In this case, in the present embodiment, since the metal (Fe) used for removing the impurity metal is in the form of particles, for example, compared with a case where an iron lump or the like is input, The surface area of the metal (Fe) for causing the cementation reaction is increased, and the speed of the Sn precipitation reaction is improved. And some growth After the deposition of the observed metal is observed, the forced separation by ultrasonic vibration as described above always exposes a new metal surface (the surface of Fe particles) and maintains the reaction rate.
[0042] また、 Feからなる金属粒子はリアクター本体 5内で流動し、上記のようなセメンテ一 シヨン反応によって Fe2+が溶出するので、上部チャンバ一 13に投入された金属粒子 の投入初期時における粒径は、時間の経過とともにどうしても減少することになる。こ の結果、本来であれば廃液がほぼ同じ上向流の速度でリアクター本体 5内を上昇す るので、上部に向力うほど粒径が減少して小さくなつた金属粒子がリアクター本体 5か ら不用意に溢流するおそれがある。 [0042] In addition, since the Fe metal particles flow in the reactor body 5 and Fe 2+ is eluted by the above-described cementation reaction, the metal particles charged into the upper chamber 13 are initially charged. The particle size in inevitably decreases with time. As a result, the waste liquid normally rises in the reactor main body 5 at the same upward flow speed, so that the metal particles that have become smaller and smaller in size as the force is applied to the upper part are larger. There is a risk of inadvertent overflow.
[0043] し力しながら、本実施形態においては、リアクター本体 5の断面積が上方へ向力 ほ ど不連続的に大きくなるように形成されているため、リアクター本体 5内での廃液の上 向流の速度は徐々に減少し、従って上記のようにセメンテーシヨン反応等により粒径 が減少した金属粒子は、断面積が増加していくリアクター本体 5の上部において、不 用意に溢流することなくリアクター本体 5内に保持される可能性が高くなる。 [0043] However, in this embodiment, the cross-sectional area of the reactor body 5 is formed so as to increase discontinuously with upward force in the present embodiment. The counter-flow velocity gradually decreases, so that the metal particles whose particle size has decreased due to the cementation reaction as described above will inadvertently overflow at the top of the reactor body 5 where the cross-sectional area increases. The possibility of being held in the reactor body 5 without increasing becomes high.
[0044] また、インジウム化合物含有溶液はリアクター本体 5の下部側力 流入し、リアクタ 一本体 5内を通過する際に、セメンテーション反応により Feからなる金属粒子に対象 となる Sn等の金属を析出させることから、リアクター本体 5の上部へ向力 ほど、イン ジゥム化合物含有溶液中の不純物金属の濃度が低下する。 [0044] Further, when the indium compound-containing solution flows into the lower side force of the reactor main body 5 and passes through the reactor main body 5, a target metal such as Sn is deposited on the metal particles made of Fe by a cementation reaction. Therefore, the concentration of the impurity metal in the indium compound-containing solution decreases as the force toward the top of the reactor body 5 increases.
[0045] し力しながら、本実施形態では、リアクター本体 5の上部ほど微細な金属粒子が存 在し、またインジウム化合物含有溶液の上向流の速度が徐々に減少することで金属 粒子の数が増加すると認められることから、リアクター本体 5の上部ほど金属粒子の 総表面積は大きくなる。この結果、セメンテーシヨン反応の反応速度 (不純物金属析 出の効率)が向上することから、不純物金属の濃度がより低濃度となるリアクター本体 5の上部においても、不純物金属である Ni、 Snを廃液中力 効率よく除去することが 可能となるのである。 However, in the present embodiment, finer metal particles exist in the upper part of the reactor body 5 and the upward flow velocity of the indium compound-containing solution gradually decreases, so that the number of metal particles is increased. It is recognized that the total surface area of the metal particles increases toward the top of the reactor body 5. As a result, the reaction rate of the cementation reaction (impurity metal impurity extraction efficiency) is improved, so that the impurity metals Ni and Sn are also added to the upper part of the reactor body 5 where the impurity metal concentration is lower. It is possible to remove the waste liquid efficiently.
[0046] 次に、 Snが除去されたインジウム化合物含有溶液を沈殿除去装置 3に供給する。 Next, the indium compound-containing solution from which Sn has been removed is supplied to the precipitation removing device 3.
この沈殿除去装置 3には、水酸ィ匕ナトリウム等のアルカリ(アルカリ溶液)が添加される 。これによつて、 Feの水酸ィ匕物及び水酸化インジウムの固形物が生ずることとなる。
すなわち、前記不純物除去用リアクター 2においては、セメンテーシヨン反応により Fe の粒子に Snが析出して除去される一方で、 Feのイオン (Fe2+)がインジウム化合物 含有溶液中に溶出する。従って、その Fe2+も、後段の回収用リアクター 4ヘインジゥ ム化合物含有溶液が供給される前に、予めインジウム化合物含有溶液中から除去し ておく必要がある。そこで、上記のようなアルカリが添加されることによって Feの水酸 化物及び水酸化インジウムの固形物が生じる力 Feの水酸化物は水酸化インジウム より圧倒的に沈殿物生成速度が速いので、凝集沈殿槽のような沈殿除去装置 3にお ける被処理液の滞留時間等を制御することにより、沈殿除去装置 3でその Feの水酸 化物が容易に除去されることとなるのである。 An alkali (alkaline solution) such as sodium hydroxide is added to the precipitation removing device 3. This results in Fe hydroxide and indium hydroxide solids. That is, in the reactor 2 for removing impurities, Sn is precipitated and removed from Fe particles by the cementation reaction, while Fe ions (Fe 2+ ) are eluted in the indium compound-containing solution. Therefore, the Fe 2+ is also before recovery reactor 4 Heinjiu beam compound-containing solution in the subsequent stage is supplied, it is necessary to remove from the pre-indium compound-containing solution. Therefore, the addition of an alkali as described above will produce a solid product of Fe hydroxide and indium hydroxide. Fe hydroxide has an overwhelmingly faster precipitate formation rate than indium hydroxide. By controlling the residence time of the liquid to be treated in the precipitation removing device 3 such as a precipitation tank, the Fe hydroxide is easily removed by the precipitation removing device 3.
[0047] 次に、 Feの水酸ィ匕物を沈澱除去した後のインジウム化合物含有溶液を、 pHl. 5 以下に調整して水酸化インジウムを再溶解した後、回収用リアクター 4へ供給する。 回収用リアクター 4へ供給されたインジウム化合物含有溶液は、不純物除去用リアク ター 2の場合と同様に、流入管 12から流入用チャンバ一 11を介してリアクター本体 5 内に流入する。その一方で、上部チャンバ一 13からセメンテーシヨン反応を生じさせ るための金属粒子 (Zn粒子又は A1粒子)を投入する。不純物除去用リアクター 2の場 合と同様に、リアクター本体 5内では、流入されたインジウム化合物含有溶液が上昇 して上部チャンバ一 13から投入された金属粒子が流動状態となる。 [0047] Next, the indium compound-containing solution after precipitation and removal of Fe hydroxide is adjusted to pHl. 5 or lower and indium hydroxide is redissolved, and then supplied to the recovery reactor 4. The indium compound-containing solution supplied to the recovery reactor 4 flows into the reactor body 5 from the inflow pipe 12 through the inflow chamber 11 as in the case of the impurity removal reactor 2. On the other hand, metal particles (Zn particles or A1 particles) for causing a cementation reaction are introduced from the upper chamber 13. As in the case of the impurity removing reactor 2, in the reactor body 5, the indium compound-containing solution that has flowed in rises and the metal particles introduced from the upper chamber 13 become a fluid state.
[0048] そして回収の対象であるインジウム化合物含有溶液中の Inと、投入された金属粒 子である Zn又は A1とのイオン化傾向の相違に基づぐいわゆるセメンテーシヨン反応 を生じさせる。各金属イオンの還元反応は次式のとおりであり、各金属イオンの標準 電極電位 (E° )をそれぞれに示して ヽる。 [0048] Then, a so-called cementation reaction is caused based on the difference in ionization tendency between In in the indium compound-containing solution to be collected and Zn or A1 as the charged metal particles. The reduction reaction of each metal ion is as follows, and the standard electrode potential (E °) of each metal ion is indicated for each.
[0049] In3+ + 3e→In - -- (3) 0. 34V [0049] In 3+ + 3e → In--(3) 0. 34V
Zn2+ + 2e→Zn · '· (4) —0. 76V Zn 2+ + 2e → Zn · '· (4) —0. 76V
Al3+ + 3e→Al - -- (5) —1. 66V Al 3+ + 3e → Al--(5) —1.66V
[0050] 上記(3)〜(5)からも明ら力 うに、 In3+に比べて、 Zn2+又は Al3+の標準電極電位 力 S小さい。換言すれば、 Inに比べて Zn又は A1のイオン化傾向が大きいことになる。 そのため、上記のような流動状態となった状態で、イオン化傾向の大きい Zn又は A1 が Zn2+又は Al3+となって(上記 (4)、 (5)式と逆の反応)インジウム化合物含有溶液
中に溶出し、それとともにインジウム化合物含有溶液中に含有されて 、た In3+が Inと なって、 Zn又は A1の粒子の表面上に析出する。 [0050] As apparent from the above (3) to (5), the standard electrode potential force S of Zn 2+ or Al 3+ is smaller than that of In 3+ . In other words, the ionization tendency of Zn or A1 is larger than that of In. Therefore, Zn or A1 with a large ionization tendency becomes Zn 2+ or Al 3+ (reaction opposite to the above formulas (4) and (5)) in the fluidized state as described above. solution In 3+ is dissolved in and contained in the indium compound-containing solution, and In 3+ becomes In and precipitates on the surface of Zn or A1 particles.
[0051] そして、このようなセメンテーシヨン反応によって Inを Zn又は A1粒子の表面上に析 出させた後、超音波発振体 15a、 15b、 15cを作動させる。この超音波発振体 15a、 1 5b、 15cを作動させることによって、該前記超音波発振体 15a、 15b、 15cから発振さ れる超音波が、前記 Inを析出した Zn又は A1粒子に振動力及び攪拌力を付与し、そ れによって析出していた Inが Zn又は A1粒子から強制的に剥離されることとなる。 [0051] After causing In to be deposited on the surface of the Zn or A1 particles by such a cementation reaction, the ultrasonic oscillators 15a, 15b, and 15c are operated. By operating the ultrasonic oscillators 15a, 15b, and 15c, the ultrasonic waves oscillated from the ultrasonic oscillators 15a, 15b, and 15c are vibrated and stirred on the Zn or A1 particles on which the In is precipitated. A force is applied, so that the precipitated In is forcibly separated from the Zn or A1 particles.
[0052] このようにして剥離された Inは、上部チャンバ一 13から排出管 14を経てリアクター 本体 5の外部に排出され、それによつて Inが有価金属として回収されることとなるので ある。この場合において、本実施形態では、投入される Zn又は A1として上記不純物 除去用リアクター 2の鉄の場合と同様に粒子状のものを用いているので、セメンテ一 シヨン反応を生じさせるための金属の表面積が増加し、 Inの析出反応の速度が向上 することとなる。 [0052] The In peeled in this way is discharged from the upper chamber 13 through the discharge pipe 14 to the outside of the reactor main body 5, whereby In is recovered as a valuable metal. In this case, in this embodiment, since the particulate Zn is used as Zn or A1 in the same manner as in the case of iron in the impurity removal reactor 2, a metal for causing a cementation reaction is used. The surface area increases and the rate of In precipitation reaction increases.
そして、ある程度成長した金属の析出が認められた後に、上記のような超音波の振動 による強制的な剥離によって、常に新しい Zn又は A1の粒子の表面を露出させ、反応 速度を維持することができる。 Then, after the deposition of some grown metal is observed, the surface of new Zn or A1 particles can always be exposed and the reaction rate can be maintained by forced peeling by ultrasonic vibration as described above. .
[0053] また、セメンテーシヨン反応によって Zn又は A1の粒子力も Zn2+又は Al3+が溶出す るので、上部チャンバ一 13に投入された Zn又は A1の粒子の投入初期時における粒 径は、時間の経過とともにどうしても減少することになる。この結果、本来であればイン ジゥム化合物含有溶液がほぼ同じ上向流の速度でリアクター本体 5内を上昇するの で、上部に向力うほど粒径が減少して小さくなつた Zn又は A1の粒子がリアクター本体 5から不用意に溢流するおそれがある。 [0053] In addition, since Zn 2+ or Al 3+ is also eluted by the cementation reaction, the particle size of Zn or A1 introduced into the upper chamber 13 is as follows. It will inevitably decrease over time. As a result, the indium compound-containing solution normally moves up in the reactor main body 5 at almost the same upward flow rate, so that the particle size decreases and becomes smaller toward the upper part. Particles may inadvertently overflow from the reactor body 5.
[0054] し力しながら、本実施形態においては、リアクター本体 5の断面積が上方へ向力 ほ ど不連続的に大きくなるように形成されているため、リアクター本体 5内でのインジウム 化合物含有溶液の上向流の速度は徐々に減少し、従って上記のようにセメンテーシ ヨン反応等により粒径が減少した金属粒子は、断面積が増加していくリアクター本体 5の上部にお 、て、不用意に溢流することなくリアクター本体 5内に保持される可能性 が高くなる。
[0055] また、インジウム化合物含有溶液はリアクター本体 5の下部側力も流入し、リアクタ 一本体 5内を通過する際に、セメンテーシヨン反応により Zn又は A1の粒子に対象とな る Inを析出させることから、リアクター本体 5の上部へ向力うほど、インジウム化合物含 有溶液中の Inの濃度が低下する。 However, in this embodiment, since the cross-sectional area of the reactor body 5 is formed so as to increase discontinuously as the upward force is increased in this embodiment, the indium compound is contained in the reactor body 5. The upward flow velocity of the solution gradually decreases. Therefore, the metal particles whose particle size has been reduced by the cementation reaction or the like as described above are not suitable for the upper part of the reactor body 5 where the cross-sectional area increases. The possibility of being held in the reactor body 5 without overflowing is increased. [0055] Further, the indium compound-containing solution also flows in the lower side force of the reactor main body 5, and when passing through the reactor main body 5, the target In is deposited on Zn or A1 particles by a cementation reaction. Therefore, the concentration of In in the indium compound-containing solution decreases as the force toward the top of the reactor body 5 increases.
[0056] し力しながら、本実施形態では、リアクター本体 5の上部ほど微細な Zn又は A1の粒 子が存在し、またインジウム化合物含有溶液の上向流の速度が徐々に減少すること で Zn又は A1粒子の数が増加すると認められることから、リアクター本体 5の上部ほど Zn又は A1粒子の総表面積は大きくなる。この結果、セメンテーシヨン反応の反応速 度 (In析出の効率)が向上することから、 Inの濃度がより低濃度となるリアクター本体 5 の上部においても、回収対象物である Inをインジウム化合物含有溶液中から効率よく 回収することが可能となるのである。 However, in the present embodiment, finer Zn or A1 particles are present in the upper part of the reactor body 5 and the upward flow rate of the indium compound-containing solution gradually decreases. Alternatively, since it is recognized that the number of A1 particles increases, the total surface area of Zn or A1 particles increases toward the top of the reactor body 5. As a result, the reaction speed of the cementation reaction (In precipitation efficiency) is improved, so that the recovery target In is contained in the indium compound even in the upper part of the reactor body 5 where the In concentration is lower. This makes it possible to efficiently recover from the solution.
[0057] (実施形態 2) [Embodiment 2]
本実施形態は、不純物除去用リアクター 2及び回収用リアクター 4のリアクター本体 5の構造が上記実施形態 1と相違する。すなわち、本実施形態では、図 3に示すよう にリアクター本体 5の周面全体が上向きにテーパ状となるように形成され、リアクター 本体 5の断面積が連続的に上方に向力つて増加するように構成されている。この点で 、リアクター本体 5の断面積が不連続的に上方に向力つて増加している実施形態 1の 場合と相違している。 The present embodiment is different from the first embodiment in the structure of the reactor main body 5 of the impurity removing reactor 2 and the recovery reactor 4. That is, in the present embodiment, as shown in FIG. 3, the entire peripheral surface of the reactor body 5 is formed to be tapered upward, so that the cross-sectional area of the reactor body 5 continuously increases upward. It is configured. This is different from the case of the first embodiment in which the cross-sectional area of the reactor body 5 discontinuously increases upward.
不連続的ではなぐ断面積が連続的に上方に向力つて増加するように構成されて いるので、本実施形態においては実施形態 1のようにリアクター上部 6、リアクター中 間部 7、リアクター下部 8のように区分して構成されては 、な 、。 Since the cross-sectional area that is not discontinuous is configured to continuously increase upward, the reactor upper part 6, the reactor middle part 7, and the reactor lower part 8 as in Example 1 in this embodiment. If it is divided and organized like
[0058] しかし、超音波発振体 15a、 15b、 15cが、リアクター本体 5の上部から下部にかけ ての 3箇所に設けられている点は実施形態 1と共通している。従って、本実施形態に おいても、実施形態 1と同様に、超音波発振体 15a、 15b、 15cから発振される超音 波によって、金属粒子に析出している除去すべき不純物金属である Sn又は回収対 象金属である Inを強制的に剥離することができる効果が得られる。 However, the ultrasonic oscillators 15a, 15b, 15c are provided in three places from the upper part to the lower part of the reactor main body 5 in common with the first embodiment. Therefore, in the present embodiment, as in the first embodiment, Sn which is an impurity metal to be removed, which is deposited on the metal particles by the ultrasonic waves oscillated from the ultrasonic oscillators 15a, 15b, 15c. Alternatively, it is possible to forcibly peel In, which is the metal to be collected.
[0059] また、不連続的である力連続的であるかの相違はあるものの、断面積が上方に向か つて増加するように構成されて 、る点では実施形態 1とは共通して 、るので、本実施
形態にお 、ても、粒径が減少した微細な金属粒子をリアクター本体 5の上部で保持し 、不用意に溢流するのを防止する効果、及び対象金属の濃度が低濃度であるリアク ター本体 5の上部において対象金属を効率よく除去又は回収処理できる効果が生じ ることとなるのである。 [0059] In addition, although there is a difference between discontinuous and force continuous, the cross-sectional area is configured to increase upward, and in common with Embodiment 1, So this implementation Even in the form, a fine metal particle having a reduced particle size is retained at the upper part of the reactor body 5 to prevent inadvertent overflow and a reactor with a low concentration of the target metal. The effect is that the target metal can be efficiently removed or recovered at the upper part of the main body 5.
[0060] (実施形態 3) [0060] (Embodiment 3)
本実施形態では、析出金属を金属粒子から剥離する手段として、上記実施形態 1 及び 2の超音波発振体によって発振される超音波で振動させる手段に代えて、電磁 石を用いて攪拌する手段を採用している。すなわち、本実施形態においては、図 5に 示すような電磁石 16を具備したスライドボード 17が、図 4に示すように水平断面が長 方形のリアクター本体 5の側方に設けられたガイドレール 18に昇降自在に装着され ている。スライドボード 17は、図 5に示すように中央に空間部 19を有し、その空間部 1 9内にリアクター本体 5を挿入して該リアクター本体 5を包囲するように配設されている 。尚、本実施形態で用いられる金属粒子は、磁性体である鉄等である。 In this embodiment, as means for peeling the deposited metal from the metal particles, instead of the means for vibrating with ultrasonic waves oscillated by the ultrasonic oscillators of Embodiments 1 and 2, a means for stirring using magnetite is used. Adopted. That is, in this embodiment, the slide board 17 having the electromagnet 16 as shown in FIG. 5 is connected to the guide rail 18 provided on the side of the reactor body 5 having a rectangular horizontal section as shown in FIG. It can be moved up and down. As shown in FIG. 5, the slide board 17 has a space portion 19 in the center, and is disposed so as to surround the reactor body 5 by inserting the reactor body 5 into the space portion 19. The metal particles used in the present embodiment are iron or the like that is a magnetic material.
[0061] そして、図 4の矢印 20で示すように、上下に交互に移動させることによって、リアクタ 一本体 5内の金属粒子を攪拌するとともに、多数の金属粒子を相互に衝突させ、そ れによって金属粒子力 析出金属を強制的に剥離するのである。金属粒子力 析出 金属を剥離する手段が異なるものの、本実施形態においても、析出金属を金属粒子 から好適に剥離して不純物金属の除去又は有価金属である Inの回収を好適に行な うことができる。 [0061] Then, as indicated by arrows 20 in FIG. 4, by alternately moving up and down, the metal particles in the reactor main body 5 are stirred, and a large number of metal particles collide with each other. Metal particle force The deposited metal is forcibly separated. Metal Particle Force Precipitation Although the means for separating the metal is different, in this embodiment as well, the deposited metal is preferably peeled from the metal particle to suitably remove the impurity metal or recover In which is a valuable metal. it can.
[0062] (実施形態 4) [0062] (Embodiment 4)
本実施形態では、廃 LCDをバッグに入れたまま、酸による In溶出処理、洗浄中和 処理、乾燥処理を行う場合について説明する。本実施形態の廃 LCDからのインジゥ ムの回収装置では、図 6に示すように、溶出処理装置 25、洗浄中和処理装置 26、及 び乾燥処理 27が具備されている。溶出処理装置 25は、図 7に示すように、 FRP製タ ンク等の溶出処理容器 22を具備している。この溶出処理容器 22は、廃 LCDをフレ キシブルコンテナーバッグのような榭脂製、布製等のバッグ 21内に収容したものを収 納しうるような大きさに形成されている。また、前記溶出処理容器 22の下部には多孔 板 23及び多孔板支持体 24が設けられている。そして前記バッグ 21は、この多孔板 2
3上で保持されるように構成されて!、る。 In the present embodiment, a case will be described in which an In elution treatment with acid, a washing neutralization treatment, and a drying treatment are performed while the waste LCD is placed in a bag. As shown in FIG. 6, the apparatus for recovering indium from the waste LCD of this embodiment includes an elution treatment device 25, a washing neutralization treatment device 26, and a drying treatment 27. As shown in FIG. 7, the elution treatment apparatus 25 includes an elution treatment container 22 such as an FRP tank. The elution processing container 22 is formed to have a size capable of storing a waste LCD accommodated in a bag 21 made of a resin or cloth such as a flexible container bag. A perforated plate 23 and a perforated plate support 24 are provided below the elution processing container 22. The bag 21 is made of the perforated plate 2 Configured to be held on 3!
そして、破砕機等によって破砕された廃 LCDが、前記バッグ 21内に収容された状態 で In溶解抽出用の塩酸溶液を循環処理し、塩酸溶液が廃 LCD層 28を通過する際 に廃 LCD力も Inを溶解抽出させる。つまり、廃 LCD力も塩酸を用いて酸化インジウム スズを溶解させて、インジウム化合物含有溶液を得る。 Then, the waste LCD crushed by a crusher or the like is circulated through the hydrochloric acid solution for In dissolution extraction while being contained in the bag 21, and the waste LCD force is also reduced when the hydrochloric acid solution passes through the waste LCD layer 28. In is dissolved and extracted. In other words, the waste LCD force is also dissolved in indium tin oxide using hydrochloric acid to obtain an indium compound-containing solution.
[0063] その一方で、溶解抽出処理後の廃 LCDはそのままバッグ 21内に収容された状態で 、次の洗浄中和用処理装置 26へ移動させ、該洗浄中和用処理装置 26内に収容し て洗浄中和処理を行う。前記溶出処理装置 25から洗浄中和用処理装置 26への移 動は、ホイスト等を利用して行う。 In溶解処理と同様に洗浄処理時は水で、中和処理 時はアルカリ性溶液で循環処理する。この場合の循環処理の通液方向は、下向流で 行なってもよぐ上向流で行なってもよい。洗浄中和処理が終了した廃 LCDはそのま まバッグ内に収納し保持させた状態で、乾燥処理装置 27へ移動させる。この乾燥処 理装置 27は、たとえば気流乾燥によって乾燥処理がなされる力 このような乾燥処理 装置 27を用いずに、たとえば天日乾燥等の乾燥方法により乾燥処理することも可能 である。乾燥処理終了後の廃 LCDはそのままバッグ 21内に保持された状態で、タイ ル工場、硝子工場等へリサイクル原料として運送される。 [0063] On the other hand, the waste LCD after the dissolution and extraction treatment is moved to the next cleaning neutralization treatment device 26 while being accommodated in the bag 21 as it is, and is accommodated in the cleaning neutralization treatment device 26. Wash neutralization treatment. The movement from the elution treatment device 25 to the washing neutralization treatment device 26 is performed using a hoist or the like. As with the In dissolution treatment, circulate with water during washing and with an alkaline solution during neutralization. In this case, the circulation process may be performed in a downward flow or an upward flow. The waste LCD that has been washed and neutralized is moved to the drying device 27 while being stored and held in the bag. For example, the drying processing device 27 can perform the drying processing by a drying method such as sun drying without using such a drying processing device 27. The waste LCD after the drying process is held in the bag 21 as it is, and transported to the tile factory, glass factory, etc. as recycled raw materials.
[0064] 本実施形態においては、廃 LCD破砕工程で破砕された微細な廃 LCDを上記のよ うなバッグ 21内に収容したまま一貫処理を行うことで処理を簡素化できる。また廃 LC D破砕工程力 受け入れた微細な廃 LCD片を粉体として取り扱う必要がないので、 ハンドリングが困難になることもない。 [0064] In this embodiment, the processing can be simplified by performing the consistent processing while the fine waste LCD crushed in the waste LCD crushing step is stored in the bag 21 as described above. In addition, since it is not necessary to handle the fine waste LCD pieces that have been accepted as waste LCD crushing process as powder, handling does not become difficult.
[0065] 尚、バッグ 21は廃 LCDが抜け落ちない程度のメッシュ(多孔性)を有していればよく 、布製のようなもので十分である。ノ ッグ全体が塩酸溶液が通過できる程度の多孔性 を有して!/、てもよ 、他、ノ ッグ 21の底面部のみ多孔性を有して形成されて 、てもよ ヽ 。いずれの場合でも、溶出処理容器 22内の多孔板 23上にバッグ 21を設置すること で、ノ ッグ 21内の廃 LCDの自重でバッグと溶出処理容器 22の壁面が密着すること で、塩酸溶液は廃 LCD層を通過してバッグ 21の底面部より多孔板 23を介して溶出 処理容器 22の底部へ移動することから、循環処理により廃 LCDより Inを溶解抽出処 理することが可能となる。
[0066] (その他の実施形態) [0065] The bag 21 only needs to have a mesh (porosity) that does not allow the waste LCD to fall off, and a cloth is sufficient. The entire noggle is porous enough to allow the hydrochloric acid solution to pass through! /, Or the bottom of the nod 21 may be formed to be porous. In any case, by installing the bag 21 on the perforated plate 23 in the elution treatment container 22, the bag and the wall surface of the elution treatment container 22 are brought into close contact with the dead weight of the waste LCD in the nodule 21, so that hydrochloric acid Since the solution passes through the waste LCD layer and moves from the bottom of the bag 21 to the bottom of the elution container 22 through the porous plate 23, it is possible to dissolve and extract In from the waste LCD by circulation processing. Become. [0066] (Other Embodiments)
尚、上記実施形態では、廃 LCDカゝら塩酸を用いて ITOを溶解させて得られたイン ジゥム化合物含有溶液中に含有されて 、る In以外の不純物金属として Snを除去す る場合について説明したが、 Sn以外の金属を除去することも可能である。その場合 には、 Fe以外の金属粒子を添加することも可能である。 In the above embodiment, the case where Sn is removed as an impurity metal other than In contained in an indium compound-containing solution obtained by dissolving ITO using hydrochloric acid from waste LCD column is described. However, metals other than Sn can be removed. In that case, metal particles other than Fe can be added.
また、該実施形態では、金属粒子に Inを析出させ、その析出した Inを金属粒子力 剥離する場合について説明したが、金属単体である Inに限らず、 Inと他の金属との 合金、すなわち In合金を金属粒子に析出させ、その析出した In合金を金属粒子から 剥離する場合に本発明を適用することも可能である。 Further, in the embodiment, the case where In is precipitated on metal particles and the precipitated In is peeled off by metal particle force has been described. However, the present invention is not limited to In being a simple metal, but an alloy of In and other metals, that is, The present invention can also be applied to the case where an In alloy is deposited on metal particles and the deposited In alloy is separated from the metal particles.
[0067] また、上記実施形態では、廃 LCD力も ITOを溶解させる酸として塩酸を用いたが、 この酸の種類は塩酸に限定されるものではなぐたとえば硫酸、硝酸等を用いてもよ ぐ或いは混酸等を用いることも可能である。 [0067] In the above embodiment, hydrochloric acid is used as the acid for dissolving ITO as the waste LCD force. However, the type of this acid is not limited to hydrochloric acid. For example, sulfuric acid, nitric acid or the like may be used. It is also possible to use a mixed acid or the like.
[0068] さらに、上記実施形態では、上記のような不純物除去用リアクター 2を設けることで 上述のような好ましい効果が得られた力 このような不純物除去用リアクター 2を設け ることは本発明に必須の条件ではない。さらに、上記実施形態では、 Zn又は A1の粒 子を添加して Inを回収する場合について説明した力 回収用リアクターに添加される 金属粒子は、該実施形態の Zn又は A1の粒子に限定されず、要は Inよりもイオン化傾 向の大き 、金属が用いられて!/、ればよ!/、。 [0068] Further, in the above embodiment, the force that provides the above-described preferable effect by providing the impurity removal reactor 2 as described above is provided in the present invention. This is not a requirement. Furthermore, in the above embodiment, the metal particles added to the force recovery reactor described in the case of collecting In by adding Zn or A1 particles are not limited to the Zn or A1 particles of the embodiment. In short, the ionization tendency is larger than In, metal is used!
[0069] また、該実施形態では、金属粒子の粒径を約 3mmとしてが、金属粒子の粒径は該 実施形態に限定されるものではなぐ 0. l〜8mmであることが好ましい。 0. 1mm未 満であると、セメンテーシヨン反応が必ずしも好適に行なわれるとは限らず、また金属 粒子から剥離した析出金属の回収が容易に行なえな!/、可能性があり、また 8mmを 超えると、リアクター本体内で保持しうる金属粒子の数が減少し、結果的に金属粒子 の総表面積が減少して析出反応の効率が低下するおそれがあり、また回収目的の 有価金属又は不純物金属以外の金属が金属粒子に析出するおそれがあるからであ る。 [0069] In this embodiment, the particle size of the metal particles is about 3 mm, but the particle size of the metal particles is not limited to the embodiment, and is preferably 0.1 to 8 mm. If it is less than 1 mm, the cementation reaction is not always performed favorably, and the deposited metal peeled off from the metal particles cannot be easily recovered! / If exceeded, the number of metal particles that can be held in the reactor body decreases, and as a result, the total surface area of the metal particles may decrease and the efficiency of the precipitation reaction may decrease, and valuable metals or impurity metals for recovery purposes may be reduced. This is because other metals may be deposited on the metal particles.
[0070] さらに、上記実施形態 1、 2では、リアクター本体 5の断面積が上部に向力うほど大き くなるように形成したため、上記のような好ましい効果が得られた力 このようにリアク
ター本体 5を形成することは本発明に必須の条件ではない。さらに、金属粒子から析 出金属を剥離する手段も、上記実施形態 1、 2の超音波による手段や実施形態 3の 電磁石による手段に限定されるものではなぐそれ以外の手段であってもよい。 実施例 [0070] Furthermore, in Embodiments 1 and 2, since the cross-sectional area of the reactor main body 5 is formed so as to increase toward the top, the force with which the above preferable effect is obtained is as described above. The formation of the main body 5 is not an essential condition for the present invention. Further, the means for separating the deposited metal from the metal particles may be other means than the means using the ultrasonic wave in the first and second embodiments and the means using the electromagnet in the third embodiment. Example
[0071] 1%、 3%、 10%の塩酸溶液を使用し、図 8のような装置にて In回収処理のための I n溶解抽出処理を行った。図 8において、 28は、図 7においても説明した廃 LCD層、 29はチューブポンプ、 30は塩酸、 31は榭脂容器、 32はメッシュ籠をそれぞれ示す。 分析より廃 LCDは 400mgZkgの Inを含有して 、た。溶出処理は廃 LCD24kgを綿 製バッグに保持し、そのバッグを図 8のように 100L榭脂容器内に設置したメッシュ籠 32上に置かれた底面に多数の孔が空 、て 、る榭脂容器 31に入れ、塩酸 14Lを投 入し、チューブポンプ 29を用いて室温にて循環処理を行った。溶出処理の間に水分 が蒸発して塩酸濃度、量が変化しないよう、 100L榭脂容器のフタにはガスケットが具 備され、 100L榭脂容器とフタの間をシール可能なフタのチューブポンプ 29の挿入' 取り出し部は、コーキング剤でシールしたものを用いた。 [0071] The 1%, 3%, and 10% hydrochloric acid solutions were used, and the In dissolution extraction process for the In recovery process was performed in an apparatus as shown in FIG. In FIG. 8, 28 is the waste LCD layer described in FIG. 7, 29 is a tube pump, 30 is hydrochloric acid, 31 is a resin container, and 32 is a mesh tank. From analysis, the waste LCD contained 400 mgZkg of In. In the elution process, the waste LCD24kg is held in a cotton bag, and the bag is placed in a 100L resin container as shown in Fig. 8. It was put in a container 31, 14 L of hydrochloric acid was added, and circulation treatment was performed at room temperature using a tube pump 29. To prevent moisture from evaporating and the concentration and amount of hydrochloric acid from changing during the elution process, the lid of the 100L resin container is equipped with a gasket, and a tube pump with a lid that can seal between the 100L resin container and the lid 29 The insertion part and the extraction part used were sealed with a caulking agent.
[0072] 試験結果を表 1に示す。 [0072] The test results are shown in Table 1.
[0073] [表 1] [0073] [Table 1]
[0074] 表 1からも明らかなように、いずれの処理においても 24時間の溶出処理により 98% 以上と十分な In回収率が得られた。尚、回収率は廃 LCD重量と In含有率及び処理 後の塩酸中 In濃度、塩酸量より算出した。
[0074] As is clear from Table 1, in any treatment, a sufficient In recovery rate of 98% or more was obtained by the elution treatment for 24 hours. The recovery rate was calculated from the waste LCD weight and In content, the In concentration in hydrochloric acid after treatment, and the amount of hydrochloric acid.
Claims
[1] 酸化インジウムスズを含有する廃棄液晶ディスプレイを破砕し、破砕した廃棄液晶 ディスプレイ力ゝら酸を用いて酸化インジウムスズを溶解させて、インジウム化合物含有 溶液を得、回収用リアクター内に流入するとともに、該回収用リアクター内にインジゥ ムよりもイオン価傾向の大き 、金属力 なる金属粒子を添加し、該金属粒子を流動さ せ、前記インジウム化合物含有溶液中に含有されるインジウム又はインジウム合金を 前記金属粒子の表面に析出させ、その後、剥離手段によって前記金属粒子から前 記析出したインジウム又はインジウム合金を剥離して、剥離した固形状のインジウム 又はインジウム合金を液分から分離して回収することを特徴とする廃棄液晶ディスプ レイからのインジウムの回収方法。 [1] Crushing the waste liquid crystal display containing indium tin oxide, dissolving the crushed waste liquid crystal display with acid, and dissolving the indium tin oxide with an acid to obtain an indium compound-containing solution, which flows into the recovery reactor In addition, in the recovery reactor, metal particles having a larger ionic tendency than indium and metal power are added, the metal particles are fluidized, and indium or an indium alloy contained in the indium compound-containing solution is added. Precipitating on the surface of the metal particles, and then separating the indium or indium alloy deposited from the metal particles by a peeling means, and separating and recovering the separated solid indium or indium alloy from the liquid. A method for recovering indium from a waste liquid crystal display.
[2] インジウムよりもイオン価傾向の大きい金属力もなる金属粒子が亜鉛粒子又はアル ミニゥム粒子である請求項 1記載の廃棄液晶ディスプレイからのインジウムの回収方 法。 [2] The method for recovering indium from a waste liquid crystal display according to [1], wherein the metal particles having a metal force having a higher ionic tendency than indium are zinc particles or aluminum particles.
[3] 金属粒子に析出したインジウム又はインジウム合金を前記金属粒子力 剥離する 手段が、超音波によって金属粒子を振動させる手段、又は電磁石によって金属粒子 を攪拌し相互に衝突させる手段である請求項 1又は 2記載の廃棄液晶ディスプレイか らのインジウムの回収方法。 [3] The means for peeling off the indium or indium alloy deposited on the metal particles is a means for vibrating the metal particles by ultrasonic waves, or a means for stirring the metal particles with an electromagnet and causing them to collide with each other. Or a method for recovering indium from the waste liquid crystal display according to 2 above.
[4] 廃棄液晶ディスプレイカゝら酸化インジウムスズを溶解させたインジウム化合物含有 溶液を回収用リアクター内に流入する前に、該インジウム化合物含有溶液を不純物 除去用リアクター内に流入させ、該インジウム化合物含有溶液中のインジウム以外の 不純物金属よりもイオン価傾向の大きい金属からなる金属粒子を前記不純物除去用 リアクター内に添加して該金属粒子を流動させ、前記不純物金属を前記金属粒子の 表面に析出させ、その後、剥離手段によって前記金属粒子から前記析出した不純物 金属を剥離して除去する請求項 1乃至 3のいずれかに記載の廃棄液晶ディスプレイ 力 のインジウムの回収方法。 [4] Before the indium compound-containing solution in which indium tin oxide is dissolved, such as the waste liquid crystal display, flows into the recovery reactor, the indium compound-containing solution is allowed to flow into the impurity removal reactor to contain the indium compound. Metal particles made of a metal having an ionic tendency greater than that of an impurity metal other than indium in the solution are added to the impurity removal reactor to cause the metal particles to flow, and the impurity metal is deposited on the surface of the metal particles. 4. The method for recovering indium of waste liquid crystal display power according to claim 1, wherein the deposited impurity metal is peeled off and removed from the metal particles by a peeling means.
[5] 金属粒子に析出した不純物金属を前記金属粒子から剥離する手段が、超音波に よって金属粒子を振動させる手段、又は電磁石によって金属粒子を攪拌し相互に衝 突させる手段である請求項 4記載の廃棄液晶ディスプレイからのインジウムの回収方
法。 [5] The means for separating the impurity metal deposited on the metal particles from the metal particles is a means for vibrating the metal particles by ultrasonic waves, or a means for stirring the metal particles with an electromagnet and causing them to collide with each other. How to recover indium from waste liquid crystal displays Law.
[6] 不純物金属がスズである請求項 4又は 5記載の廃棄液晶ディスプレイからのインジ ゥムの回収方法。 6. The method for recovering indium from a waste liquid crystal display according to claim 4 or 5, wherein the impurity metal is tin.
[7] 不純物金属よりもイオン価傾向の大きい金属力 なる金属粒子が鉄粒子である請 求項 4乃至 6記載の廃棄液晶ディスプレイからのインジウムの回収方法。 [7] The method for recovering indium from a waste liquid crystal display according to any one of claims 4 to 6, wherein the metal particles having a higher ionic tendency than the impurity metal are iron particles.
[8] 不純物金属を除去した後のインジウム化合物含有溶液にアルカリを添加して、鉄を 水酸ィ匕物として沈殿除去する請求項 7記載の廃棄液晶ディスプレイ力 のインジウム の回収方法。 [8] The method for recovering indium with waste liquid crystal display power according to [7], wherein an alkali is added to the indium compound-containing solution after removing the impurity metal, and iron is precipitated and removed as a hydroxide.
[9] 酸化インジウムスズを含有する廃棄液晶ディスプレイを破砕し、破砕した廃棄液晶 ディスプレイをバッグに収容したままの状態で、該廃棄液晶ディスプレイから酸を用い て酸化インジウムスズを溶解させて、インジウム化合物含有溶液を得る一方で、前記 バッグに収容された廃棄液晶ディスプレイを洗浄中和処理し、その後乾燥処理を行う ことを特徴とする廃棄液晶ディスプレイからのインジウムの回収方法。 [9] A waste liquid crystal display containing indium tin oxide is crushed, and the crushed waste liquid crystal display is stored in a bag, and indium tin oxide is dissolved from the waste liquid crystal display using an acid to form an indium compound. A method for recovering indium from a waste liquid crystal display, wherein the waste liquid crystal display contained in the bag is washed and neutralized, and then dried.
[10] 酸化インジウムスズを含有する廃棄液晶ディスプレイを破砕する破砕機と、破砕し た廃棄液晶ディスプレイに酸を用いて酸化インジウムスズを溶解させてインジウム化 合物含有溶液を得るインジウム溶解装置と、該インジウム溶解装置で得られたインジ ゥム化合物含有溶液を流入するとともに、前記インジウムよりもイオン価傾向の大きい 金属からなる金属粒子を添加して、インジウム又はインジウム合金を前記金属粒子の 表面に析出させる金属析出反応を行なうための回収用リアクターと、前記析出したィ ンジゥム又はインジウム合金を回収すベぐ前記金属粒子力 剥離させるための剥離 手段と、剥離した固体状のインジウム又はインジウム合金を液分から分離する分離手 段を具備することを特徴とする廃棄液晶ディスプレイからのインジウムの回収装置。 [10] A crusher for crushing a waste liquid crystal display containing indium tin oxide, an indium dissolution apparatus for dissolving the indium tin oxide using an acid in the crushed waste liquid crystal display to obtain an indium compound-containing solution, The indium compound-containing solution obtained by the indium melting apparatus flows in, and metal particles made of a metal having a larger ionic tendency than the indium are added to deposit indium or an indium alloy on the surface of the metal particles. A recovery reactor for performing a metal precipitation reaction to be performed; a stripping means for stripping the deposited particle or indium alloy; and a stripping means for stripping the separated metal indium or indium alloy; From a waste liquid crystal display characterized by having a separating means for separating Recovery unit of indium.
[11] インジウムよりもイオン価傾向の大きい金属力 なる金属粒子が亜鉛粒子又はアル ミニゥム粒子である請求項 10記載の廃棄液晶ディスプレイからのインジウムの回収装 置。 [11] The apparatus for recovering indium from a waste liquid crystal display according to [10], wherein the metal particles having a higher ionic tendency than indium are zinc particles or aluminum particles.
[12] 金属粒子に析出したインジウム又はインジウム合金を前記金属粒子力 剥離する 手段が、超音波によって金属粒子を振動させる手段、又は電磁石によって金属粒子 を攪拌し相互に衝突させる手段である請求項 10又は 11記載の廃棄液晶ディスプレ
ィからのインジウムの回収装置。 12. The means for peeling off indium or an indium alloy deposited on metal particles is a means for vibrating metal particles by ultrasonic waves, or a means for stirring metal particles with an electromagnet and causing them to collide with each other. Or 11 waste liquid crystal display Indium recovery equipment.
[13] インジウム溶解装置で得られたインジウム化合物含有溶液を流入させて該インジゥ ム化合物含有溶液中のインジウム以外の不純物金属よりもイオン価傾向の大き!、金 属からなる金属粒子を添加して該金属粒子を流動させ、前記不純物金属を前記金 属粒子の表面に析出させ、前記析出した不純物金属を前記金属粒子から剥離して 除去する手段を具備する不純物除去用リアクターが、回収用リアクターの前段側に 設けられている請求項 10乃至 12のいずれかに記載の廃棄液晶ディスプレイからの インジウムの回収装置。 [13] An indium compound-containing solution obtained by an indium melting apparatus is allowed to flow in, and an ionic valence tendency is larger than impurity metals other than indium in the indium compound-containing solution, and metal particles made of metal are added. An impurity removal reactor comprising means for flowing the metal particles, precipitating the impurity metals on the surfaces of the metal particles, and separating and removing the precipitated impurity metals from the metal particles is a recovery reactor. The apparatus for recovering indium from a waste liquid crystal display according to any one of claims 10 to 12, provided on the front side.
[14] 金属粒子に析出した不純物金属を前記金属粒子から剥離する手段が、超音波に よって金属粒子を振動させる手段、又は電磁石によって金属粒子を攪拌し相互に衝 突させる手段である請求項 13記載の廃棄液晶ディスプレイからのインジウムの回収 装置。 14. The means for separating the impurity metal deposited on the metal particles from the metal particles is a means for vibrating the metal particles by ultrasonic waves, or a means for stirring the metal particles with an electromagnet and causing them to collide with each other. A device for recovering indium from the described liquid crystal display.
[15] 不純物金属がスズである請求項 13又は 14記載の廃棄液晶ディスプレイからのイン ジゥムの回収装置。 15. The apparatus for recovering indium from a waste liquid crystal display according to claim 13 or 14, wherein the impurity metal is tin.
[16] 不純物金属よりもイオン価傾向の大き 、金属力 なる金属粒子が鉄粒子である請 求項 13乃至 15記載の廃棄液晶ディスプレイからのインジウムの回収装置。 [16] The apparatus for recovering indium from a waste liquid crystal display according to any one of claims 13 to 15, wherein the metal particles having a higher ionic tendency than the impurity metal and having a metallic force are iron particles.
[17] 不純物金属を除去した後のインジウム含有溶液にアルカリを添加して、鉄を水酸化 物として沈殿除去する沈殿除去装置が具備されている請求項 16記載の廃棄液晶デ イスプレイからのインジウムの回収装置。
[17] The apparatus for removing indium from a waste liquid crystal display according to claim 16, further comprising a precipitation removing device for adding an alkali to the indium-containing solution after removing the impurity metal to precipitate and remove iron as a hydroxide. Recovery device.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007529217A JPWO2007015392A1 (en) | 2005-08-04 | 2006-07-25 | Method and apparatus for recovering indium from waste liquid crystal display |
US11/997,884 US20100101367A1 (en) | 2005-08-04 | 2006-07-25 | Method and apparatus for recovering indium from waste liquid crystal displays |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005-226920 | 2005-08-04 | ||
JP2005226920 | 2005-08-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007015392A1 true WO2007015392A1 (en) | 2007-02-08 |
Family
ID=37708671
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2006/314626 WO2007015392A1 (en) | 2005-08-04 | 2006-07-25 | Method and apparatus for recovering indium from waste liquid crystal display |
Country Status (6)
Country | Link |
---|---|
US (1) | US20100101367A1 (en) |
JP (1) | JPWO2007015392A1 (en) |
KR (1) | KR20080031661A (en) |
CN (1) | CN100554454C (en) |
TW (1) | TWI385255B (en) |
WO (1) | WO2007015392A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270342A (en) * | 2006-03-06 | 2007-10-18 | Kobelco Eco-Solutions Co Ltd | Process for recovery of indium and equipment therefor |
JP2008208396A (en) * | 2007-02-23 | 2008-09-11 | Kobelco Eco-Solutions Co Ltd | Method for collecting indium, and apparatus therefor |
JP2009155717A (en) * | 2007-12-28 | 2009-07-16 | Dowa Eco-System Co Ltd | Method for recovering indium |
JP2009191309A (en) * | 2008-02-14 | 2009-08-27 | Sumitomo Metal Mining Co Ltd | Method for collecting crude indium |
JP2014040639A (en) * | 2012-08-23 | 2014-03-06 | Sumitomo Electric Ind Ltd | Method for manufacturing a metal |
WO2015128581A1 (en) | 2014-02-27 | 2015-09-03 | Centre National De La Recherche Scientifique (Cnrs) | Process for treating a support, one face of which is at least partially covered with an indium tin oxide (ito) layer - associated device |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5068772B2 (en) * | 2007-01-23 | 2012-11-07 | シャープ株式会社 | Method for recovering indium from an etching waste solution containing indium and ferric chloride |
CN101690936B (en) * | 2009-10-16 | 2011-06-15 | 清华大学 | Resourceful treatment method of waste thin film transistor liquid crystal monitor |
FI122676B (en) * | 2010-10-12 | 2012-05-15 | Outotec Oyj | Method for treating a solution containing zinc sulphate |
KR101308972B1 (en) * | 2011-05-31 | 2013-09-16 | 강릉원주대학교산학협력단 | Adsorbent having selective adsorption and preparing method of the same and recovery method of indium from wasted portabel device using the adsorbent |
KR101289987B1 (en) * | 2011-06-29 | 2013-07-26 | 엘지디스플레이 주식회사 | Method for recovering valuable metal in lcd waste glass |
CN103157646B (en) * | 2011-12-14 | 2015-08-19 | 格林美股份有限公司 | A kind of integrated conduct method of waste liquid crystal display |
SG11201403228RA (en) * | 2011-12-15 | 2014-07-30 | Advanced Tech Materials | Apparatus and method for stripping solder metals during the recycling of waste electrical and electronic equipment |
JP5713946B2 (en) * | 2012-03-27 | 2015-05-07 | 三菱電機株式会社 | Method for recovering metal component in oxide semiconductor |
CN103331295B (en) * | 2012-04-24 | 2015-05-20 | 合肥工业大学 | Industrialized recovery method and apparatus of waste liquid crystal display glass panel |
CN102925696B (en) * | 2012-10-29 | 2014-04-02 | 四川长虹电器股份有限公司 | Comprehensive recycling method of waste plasma screen |
CN103103356B (en) * | 2012-11-09 | 2014-12-10 | 柳州百韧特先进材料有限公司 | Process for recovering crude indium and tin from ITO (indium tin oxide) waste target |
HK1177382A2 (en) * | 2012-12-21 | 2013-08-23 | Li Tong H K Telecom Company Ltd | A system and method for processing objects having chemical contaminates |
CN103436692B (en) * | 2013-09-02 | 2016-01-20 | 沈阳隆基电磁科技股份有限公司 | A kind of electromagnetic oscillation treatment unit and method |
CN103602815B (en) * | 2013-11-06 | 2015-12-09 | 四川长虹电器股份有限公司 | The method of recovery indium from waste liquid crystal display |
FR3025806B1 (en) * | 2014-09-15 | 2019-09-06 | Bigarren Bizi | PROCESS FOR PROCESSING AND EXTRACTING ELECTRONIC WASTE FOR RECOVERING COMPONENTS INCLUDED IN SUCH WASTE |
CN104498721A (en) * | 2015-01-08 | 2015-04-08 | 中国科学院城市环境研究所 | Innocent treatment method and system for liquid crystal panel |
CN106011481A (en) * | 2016-06-30 | 2016-10-12 | 华南理工大学 | Method for recovering indium (In) from waste liquid crystal displays |
DE102020100243B4 (en) | 2020-01-08 | 2023-06-22 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Process for processing glass-plastic-metal composite materials |
TWI748686B (en) * | 2020-10-14 | 2021-12-01 | 遠東科技大學 | Method and device for separating oxide film from surface of indium-bismuth alloy |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55141530A (en) * | 1979-04-21 | 1980-11-05 | Fujisash Co | Reducing method of heavy metal ion |
JPS5831049A (en) * | 1981-08-18 | 1983-02-23 | Sumitomo Metal Mining Co Ltd | Collecting method of high purity indium from sulfuric acid acidic solution containing indium |
JPS6056031A (en) * | 1983-09-05 | 1985-04-01 | Dowa Mining Co Ltd | Method for recovering ge, ga and in from substance containing trace of ge, ga and in |
JPH08199866A (en) * | 1995-01-27 | 1996-08-06 | Kojima Press Co Ltd | Outside door handle for vehicle |
JPH09268334A (en) * | 1996-04-04 | 1997-10-14 | Mitsui Mining & Smelting Co Ltd | Method for recovering indium |
WO1998050304A1 (en) * | 1997-05-08 | 1998-11-12 | Mitsubishi Chemical Corporation | Method for treating selenium-containing solution |
JPH11269570A (en) * | 1998-03-20 | 1999-10-05 | Dowa Mining Co Ltd | Collection of indium from indium inclusion |
EP1119014A1 (en) * | 1998-09-09 | 2001-07-25 | Canon Kabushiki Kaisha | Image display, method for disassembling the same, and method for recovering part |
JP2001348632A (en) * | 2000-06-09 | 2001-12-18 | Nikko Materials Co Ltd | Method for recovering indium |
JP2002069544A (en) * | 2000-08-28 | 2002-03-08 | Nikko Materials Co Ltd | Method for recovering indium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4054513A (en) * | 1973-07-10 | 1977-10-18 | English Clays Lovering Pochin & Company Limited | Magnetic separation, method and apparatus |
JP3173404B2 (en) * | 1997-01-22 | 2001-06-04 | 三菱マテリアル株式会社 | How to recover indium |
-
2006
- 2006-07-25 US US11/997,884 patent/US20100101367A1/en not_active Abandoned
- 2006-07-25 WO PCT/JP2006/314626 patent/WO2007015392A1/en active Application Filing
- 2006-07-25 CN CNB2006800070686A patent/CN100554454C/en not_active Expired - Fee Related
- 2006-07-25 JP JP2007529217A patent/JPWO2007015392A1/en active Pending
- 2006-07-25 KR KR20077018087A patent/KR20080031661A/en not_active Application Discontinuation
- 2006-08-03 TW TW95128432A patent/TWI385255B/en not_active IP Right Cessation
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55141530A (en) * | 1979-04-21 | 1980-11-05 | Fujisash Co | Reducing method of heavy metal ion |
JPS5831049A (en) * | 1981-08-18 | 1983-02-23 | Sumitomo Metal Mining Co Ltd | Collecting method of high purity indium from sulfuric acid acidic solution containing indium |
JPS6056031A (en) * | 1983-09-05 | 1985-04-01 | Dowa Mining Co Ltd | Method for recovering ge, ga and in from substance containing trace of ge, ga and in |
JPH08199866A (en) * | 1995-01-27 | 1996-08-06 | Kojima Press Co Ltd | Outside door handle for vehicle |
JPH09268334A (en) * | 1996-04-04 | 1997-10-14 | Mitsui Mining & Smelting Co Ltd | Method for recovering indium |
WO1998050304A1 (en) * | 1997-05-08 | 1998-11-12 | Mitsubishi Chemical Corporation | Method for treating selenium-containing solution |
JPH11269570A (en) * | 1998-03-20 | 1999-10-05 | Dowa Mining Co Ltd | Collection of indium from indium inclusion |
EP1119014A1 (en) * | 1998-09-09 | 2001-07-25 | Canon Kabushiki Kaisha | Image display, method for disassembling the same, and method for recovering part |
JP2001348632A (en) * | 2000-06-09 | 2001-12-18 | Nikko Materials Co Ltd | Method for recovering indium |
JP2002069544A (en) * | 2000-08-28 | 2002-03-08 | Nikko Materials Co Ltd | Method for recovering indium |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007270342A (en) * | 2006-03-06 | 2007-10-18 | Kobelco Eco-Solutions Co Ltd | Process for recovery of indium and equipment therefor |
JP2008208396A (en) * | 2007-02-23 | 2008-09-11 | Kobelco Eco-Solutions Co Ltd | Method for collecting indium, and apparatus therefor |
JP2009155717A (en) * | 2007-12-28 | 2009-07-16 | Dowa Eco-System Co Ltd | Method for recovering indium |
JP2009191309A (en) * | 2008-02-14 | 2009-08-27 | Sumitomo Metal Mining Co Ltd | Method for collecting crude indium |
JP2014040639A (en) * | 2012-08-23 | 2014-03-06 | Sumitomo Electric Ind Ltd | Method for manufacturing a metal |
WO2015128581A1 (en) | 2014-02-27 | 2015-09-03 | Centre National De La Recherche Scientifique (Cnrs) | Process for treating a support, one face of which is at least partially covered with an indium tin oxide (ito) layer - associated device |
Also Published As
Publication number | Publication date |
---|---|
TWI385255B (en) | 2013-02-11 |
KR20080031661A (en) | 2008-04-10 |
US20100101367A1 (en) | 2010-04-29 |
CN100554454C (en) | 2009-10-28 |
JPWO2007015392A1 (en) | 2009-02-19 |
CN101133172A (en) | 2008-02-27 |
TW200712219A (en) | 2007-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2007015392A1 (en) | Method and apparatus for recovering indium from waste liquid crystal display | |
CN109647853A (en) | A kind of aluminium ash harmless resource utilization total system and its processing method | |
CN103882240A (en) | Method and equipment for extracting gold and silver from smelting slag | |
JP2013544964A (en) | The present application is an application number 201010506134.2 filed with the Chinese Patent Office on October 12, 2010, entitled “Method and facility for recovering precious metal from precious metal electronic waste”. The priority of the Chinese patent application "" is hereby incorporated by reference in its entirety. | |
CN100436612C (en) | Tech. of recovering old silver platinum noble metals from antimony-smelting waste slag | |
WO2007004664A1 (en) | Process for recovery of metals and equipment therefor | |
CN101994008A (en) | New process for separating zinc and cobalt from nickel and cobalt slag produced by zinc smelting and purification | |
CN107557570A (en) | Method for comprehensively recovering valuable metals from cyanidation tailings | |
CN100401577C (en) | Method of recovering cobalt from lithium ion battery and cobalt recovering system | |
CN207845730U (en) | A kind of wet method carries cobalt device | |
KR20180130528A (en) | Treatment of cathode ray tube at end of life | |
CN102002597A (en) | Method for comprehensively recovering valuable metals from low-grade tellurium slag | |
CN104611567A (en) | Method for treating copper-lead anode mud with alkaline process | |
JP2007270342A (en) | Process for recovery of indium and equipment therefor | |
WO2021037032A1 (en) | Method for recovery of copper from metal concentrate powder of waste circuit board | |
US705698A (en) | Cyanid process of working gold, silver, or other ores. | |
CN101589164B (en) | Method and apparatus for collection of indium from etching waste solution containing indium and ferric chloride | |
CN101589163B (en) | Method and apparatus for collection of indium from etching waste solution containing indium and ferric chloride | |
JP6156160B2 (en) | Slurry process of metal sulfide | |
CN110541076A (en) | reactor for leaching metals in solid waste and leaching method | |
CN104451157A (en) | Comprehensive recovery method for lead smelting high-cadmium ash and zinc electrolysis wastewater | |
CN109136553A (en) | A kind of your liquid impurity-removing method of indirect heap leaching of gold ores technique | |
CN114427035B (en) | Synergistic extraction and harmless treatment method for valuable components of zinc smelting high-sulfur slag and application thereof | |
JP2008208396A (en) | Method for collecting indium, and apparatus therefor | |
JP2008093633A (en) | Metal recovering method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200680007068.6 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007529217 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1020077018087 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 06781538 Country of ref document: EP Kind code of ref document: A1 |