JPS5831049A - Collecting method of high purity indium from sulfuric acid acidic solution containing indium - Google Patents

Collecting method of high purity indium from sulfuric acid acidic solution containing indium

Info

Publication number
JPS5831049A
JPS5831049A JP56128241A JP12824181A JPS5831049A JP S5831049 A JPS5831049 A JP S5831049A JP 56128241 A JP56128241 A JP 56128241A JP 12824181 A JP12824181 A JP 12824181A JP S5831049 A JPS5831049 A JP S5831049A
Authority
JP
Japan
Prior art keywords
indium
aqueous solution
added
cementation
sulfuric acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56128241A
Other languages
Japanese (ja)
Inventor
Hiroshi Kusuhashi
楠橋 寛
Kazuo Ikeda
和夫 池田
Chiaki Minami
千秋 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP56128241A priority Critical patent/JPS5831049A/en
Publication of JPS5831049A publication Critical patent/JPS5831049A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To collect In of high purity with high efficiency by use of a comparatively simple device, by adding NH4Cl to coarse In obtained by cementation from a sulfuric acid acidic solution containing In, heating and melting it, and separating the dross. CONSTITUTION:To a sulfuric acid acidic solution containing In, alkali is added, its pH is set to 0.5-1.2, and to In in this solution, Zn-Cd alloy powder of 1- 1.3 equivalent or Zn powder of high purity is added, by which cementation is executed. As a result, coarse In obtained by deposition and separation is melted in thick hydrochloric acid, cementation is executed by soaking an In plate into said hydrochloric acid, a precious metal is deposited and separated from the In, and after that, deposit containing In is obtained by executing the same cementation as the process in which said coarse In has been obtained, it is melted by alkali, and coarse In is obtained. Subsequently, NH4Cl being >=2wt% by external division is added to said coarse In, it is heated and melted, generated dross is separated, and In of purity being >= about 99.99wt% is obtained with actual yield being >= about 85%.

Description

【発明の詳細な説明】 本発明はインジウムを含有する製錬中間物から、インジ
ウムを回収する方法に関し、さらに詳しくは、亜鉛、鉛
、カドミウム、タリウム、ニッケル、錫、アンチモン等
と共にインジウムを含有する製錬中間物中のインジウム
を、硫酸水溶液で浸出した水溶液よシ効率良く高純度の
インジウムを回収する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering indium from a smelting intermediate containing indium, and more specifically, a method for recovering indium from a smelting intermediate containing indium. The present invention relates to a method for efficiently recovering high-purity indium from a smelting intermediate from an aqueous solution leached with an aqueous sulfuric acid solution.

本来インジウムには、その回収を目的とする鉱石は存在
せず1通常亜鉛鉱に微量含まれていて、カドミウムを回
収する際に発生する鉛源中亜鉛の電解時の残渣等からイ
ンジウムを回収することが行われている。
Originally, there is no ore for the purpose of recovering indium.1 It is usually contained in trace amounts in zinc ores, and indium is recovered from the residue etc. from the electrolysis of zinc in the lead source that is generated when recovering cadmium. things are being done.

上記のインジウム原料からインジウムを回収する従来の
方法としては、原料が鉛源の場合には、先ず第1の方法
として鉛源を硫酸水溶液で浸出し、得られたインジウム
を含む水溶液を水酸化アルカリで中和し、インジウムを
沈殿させた後水溶液と分離し、次いでこの沈殿を硫酸水
溶液に再溶解し、粗硫酸インジウムの水溶液としたのち
これに金属カドミウムの粉末を添加してセメンチージョ
ンを行い粗インジウムを析出させる。得られるスポンジ
状の粗インジウムを分離して硫酸水蓄液で溶解するかt
九は750C程度で硫酸焙焼後水抽出を行い不溶解装液
分を分離してこれを硫酸水溶液で溶解し、次いでこの水
溶液にアルカリを加えてpH4〜4.5として沈殿を生
成させ、分離した沈殿を再度硫酸水溶液に溶解し、これ
を電解法で処理してインジウムを回収する方法がある。
The conventional method for recovering indium from the above-mentioned indium raw materials is, when the raw material is a lead source, the first method is to leach the lead source with a sulfuric acid aqueous solution, and the resulting indium-containing aqueous solution is leached with an alkali hydroxide solution. After neutralizing with water and precipitating indium, it is separated from the aqueous solution, and then this precipitate is redissolved in an aqueous sulfuric acid solution to form an aqueous solution of crude indium sulfate, and cadmium metal powder is added to this to perform cementation. Precipitate crude indium. The resulting sponge-like crude indium is separated and dissolved in a sulfuric acid solution.
9, perform water extraction after roasting with sulfuric acid at about 750C, separate the undissolved liquid and dissolve it in an aqueous sulfuric acid solution, then add alkali to this aqueous solution to adjust the pH to 4 to 4.5 to form a precipitate, and separate. There is a method of recovering indium by dissolving the precipitate again in an aqueous sulfuric acid solution and treating it with an electrolytic method.

第2の方法として鉛源を硫酸水溶液で浸出した水溶液に
硫化物を添加して、所謂硫化処理し、生成し九硫化物を
r別して分離し圧水溶液に水酸化アルカリを添加して中
和し、生成する沈殿を分離したのちこの沈殿を塩酸水溶
液で溶解して再びこれに硫化物を添加して硫化処理を行
い、得られる硫化物をf別した水溶液をpH調整したの
ち、以下館1の方法と同様にセメンチージョン、酸溶解
、アルカリ添加、沈殿分離、硫酸溶解、および電解採取
して高純度のインジウムを得る方法等が提案されている
The second method is to add sulfide to an aqueous solution in which a lead source is leached with an aqueous sulfuric acid solution to carry out a so-called sulfurization treatment, to separate the produced nonasulfides, and to neutralize them by adding alkali hydroxide to the pressurized aqueous solution. After separating the formed precipitate, this precipitate was dissolved in an aqueous solution of hydrochloric acid, and sulfide was added thereto again for sulfurization treatment. Similar methods have been proposed, including cementation, acid dissolution, alkali addition, precipitation separation, sulfuric acid dissolution, and electrowinning to obtain high-purity indium.

また原料が亜鉛湿式製錬の残渣の場合には、第3の方法
上して、これを鉛溶鉱炉に入れて熱処理するとインジウ
ムは鉛と銀とに移行する。この鏝をヒューミングして、
その際発生するダストを上記と同様鉛溶鉱炉で処理する
・鉛分は酸化するとドロス中にインジウムが濃縮される
のでとのドロスを電気炉で還元処理し、インジウムを含
む鉛をベンツ法で電解するとインジウムは陽極泥中に残
る。この陽極泥を硫酸焙焼法によシ処理してから水で抽
出し、その不溶解残渣を硫酸水溶液で溶解した水溶液に
亜鉛の粉末を添加してスポンジ状インジウムを析出させ
る。こうして得られたインジウムをさらに電解精製して
高純度のインジウムとする方法である。
If the raw material is a residue from zinc hydrometallurgical smelting, in the third method, when the raw material is placed in a lead blast furnace and heat treated, indium is converted into lead and silver. Fuming this trowel,
The dust generated at this time is treated in a lead blast furnace as described above. When the lead content is oxidized, indium is concentrated in the dross, so the dross is reduced in an electric furnace, and the lead containing indium is electrolyzed by the Benz method. Indium remains in the anode mud. This anode mud is treated by a sulfuric acid roasting method and then extracted with water, and the insoluble residue is dissolved in an aqueous sulfuric acid solution, and zinc powder is added to an aqueous solution to precipitate sponge-like indium. In this method, the indium thus obtained is further electrolytically refined to obtain highly pure indium.

第4の方法として、インジウムを含むNi!#湿式製錬
の残渣を硫酸水溶液で浸出した水溶液を前記第2の方法
と同様にして硫化処理を行ったのちそのP液をトリブチ
ルホスフェートを用いて溶媒抽出し、−それを水で逆抽
出し圧水溶液を必要によりpH調整したのち亜鉛の粉末
を添加してセメ/チージョンを行い、スポンジ状のイン
ジウムをえ、次いで上記インジウムを水酸化アルカリと
共に溶融して粗インジウムとし、以下第1の方法と同様
に電解採取する方法等が提案されている。
As a fourth method, Ni! containing indium! # An aqueous solution obtained by leaching the hydrometallurgical residue with an aqueous sulfuric acid solution is subjected to sulfurization treatment in the same manner as in the second method, and then the P solution is subjected to solvent extraction using tributyl phosphate, and then back-extracted with water. After adjusting the pH of the pressurized water solution as necessary, zinc powder is added and cementation/cheeseing is performed to obtain sponge-like indium.Then, the above indium is melted with alkali hydroxide to obtain crude indium, and the following is the first method. Similarly, a method of electrowinning has been proposed.

しかしながらこれらの回収方法は、何れも高純度のイン
ジウムを得るためには好ましくない硫化処理や電解法ま
たは溶媒抽出法を採用しており、゛大きな設備や複線な
操作を必要とするなどの欠点があり、簡謳にして確実に
高純度のインジウムを回収する方法が切望されていた。
However, all of these recovery methods employ undesirable sulfurization, electrolysis, or solvent extraction methods to obtain high-purity indium, and have disadvantages such as the need for large equipment and double-track operations. There was a strong need for a simple and reliable method to recover high-purity indium.

本発明の目的は上記の欠点を解消し、比較的簡易な装置
を使用して確実に高純度のインジウムを回収する方法を
提供することにある。すなわちインジウムを含む酸性水
溶液に1アルカリを加えてpH0,5〜1.2に調整し
、これにインジウム量に対し1.0〜1.3当量の亜鉛
−カドンウム合金ま九は亜鉛の粉末を添加してセメ/チ
ージョンし、次に得られた粗インジウムを例えば塩酸に
溶解したpH1以下の水溶液中にインジウムの板を投入
してインジウムより貴な金属を析出させて分離し、さら
にこの水溶液をpH0,5〜1.2に調整したのちイン
ジウム量に対し0.9〜1.1当量の亜鉛−カドミウム
または亜鉛の粉末を加えてセメンチージョンを行い得ら
れ九粗インジウムを水酸化ナトリウムと共に溶融してド
ロス分を除去し、次に粗インジクムをその11か、90
0〜1050Cで加熱し九のちこのインジウム量に対し
外割りで2重量%以上好ましくは2〜5重量%の塩化ア
ンモニウムを加えドロツシングして高純度(99,99
重量%以上)のインジウムを回収する方法である。
An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for reliably recovering high-purity indium using a relatively simple device. That is, an alkali is added to an acidic aqueous solution containing indium to adjust the pH to 0.5 to 1.2, and a zinc-cadonium alloy or zinc powder is added to this in an amount of 1.0 to 1.3 equivalents based on the amount of indium. Then, the crude indium obtained is poured into an aqueous solution of pH 1 or less dissolved in hydrochloric acid to precipitate and separate metals nobler than indium. , 5 to 1.2, add 0.9 to 1.1 equivalents of zinc-cadmium or zinc powder to the amount of indium, perform cementation, and melt the crude indium with sodium hydroxide. to remove dross, then add crude indicum to 11 or 90
After heating at 0 to 1050C, add 2% by weight or more, preferably 2 to 5% by weight of ammonium chloride, based on the amount of indium, and dross to obtain high purity (99,99%).
This is a method for recovering indium (more than % by weight).

前記り九セメンテーシlン時のpHを0.5〜1.2の
範囲とするのはこれ以外で社効率的なセメンテ−ジョン
が行れないからであり、セメンチージョンに使用する第
1工程と第3工程の亜鉛とカドミウムまたは亜鉛の添加
量をそれぞれ1.0〜1.3当量および0.9〜1.1
当量と規定し九のは前者は1.0以下ではインジウムの
収率が悪くなるからであり、1.3以上では同じく純度
が低下するからである。
The reason why the pH during the above-mentioned cementation is set in the range of 0.5 to 1.2 is that efficient cementation cannot be performed otherwise. and the amounts of zinc and cadmium or zinc added in the third step were 1.0 to 1.3 equivalents and 0.9 to 1.1 equivalents, respectively.
The reason why the former is defined as equivalent is that if the former is less than 1.0, the yield of indium will be poor, and if it is more than 1.3, the purity will similarly be reduced.

後者の添加の下限を0.9としたのは得られるインジウ
ムの純度を良くするためであシ、同じく上限を1.1に
制限したのも同様の理由である0次に、と\でいう逆セ
メンチージョン(不純分を析出させる)時のpHを1.
0以下とするのは効率的に不純物を除去するためであり
41に制限するものではない。・またpH1lll整に
使用するアルカリとしては爾後の操作に支障がない限り
特に制限されないが水酸化アルカリが好ましい。
The lower limit of the latter addition was set at 0.9 to improve the purity of the obtained indium, and the upper limit was also set at 1.1 for the same reason. The pH during reverse cementation (precipitating impurities) is 1.
The reason why it is set to 0 or less is to efficiently remove impurities, and it is not limited to 41. -Also, the alkali used to adjust the pH is not particularly limited as long as it does not interfere with subsequent operations, but alkali hydroxide is preferred.

セメンチージョンとアルカリ溶融処理を経た粗インジウ
ムを所定の温度で加熱するか或いはそのt−次の工程に
移すかの選択はカドミウム等の不純物が多い場合には加
熱処理が必要であシ、少ない場合にはこの処理を必要と
しないという理由による。処理温度は900〜1050
 Cが適当である。
The choice of whether to heat the crude indium that has undergone cementation and alkaline melting treatment to a predetermined temperature or to move it to the next step is that if there are a lot of impurities such as cadmium, heat treatment is necessary, and the amount of heat treatment is small. This is because in some cases, this processing is not necessary. Processing temperature is 900-1050
C is appropriate.

これ以下では不純物の分離が悪く、これ以上になるとイ
ンジウムの収率が低下する。
If it is less than this, the separation of impurities will be poor, and if it is more than this, the yield of indium will decrease.

最終のニーで添加する塩化アンモニウムの量はインジウ
ムに対し外割りで2重量%以上、好ましく#i2〜5重
量%の範囲である。これ以下の添加量では不純物の除去
が充分でなく、これ以上添加しても特にインジウムの品
質は向上せず却って収率の低下を来すおそれがある。
The amount of ammonium chloride added in the final knee is 2% by weight or more based on indium, preferably in the range of #i2 to 5% by weight. If the amount added is less than this, the removal of impurities will not be sufficient, and if it is added more than this, the quality of indium will not particularly improve and the yield may actually decrease.

以下本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明の出発原料としては、インジウムを含有するあら
ゆる中間物について適用することができるが、ここでは
カドミウムの製錬(Cd溶解炉)に際して副生ずるンー
ダ鍜を原料とした場合について説明する。
As the starting material of the present invention, any intermediate containing indium can be used, but here, a case will be described in which the raw material is powder, which is a by-product during cadmium smelting (Cd melting furnace).

一例として第1表に示したソーダ優を水とともに回転ド
ラムに入れ処理するとインジウムは容易に溶解して水溶
液として残渣と分離されるが、このインジウムを含有す
る水溶液は暫ら〈静置すると水酸化物様の懸濁物が生成
するので、この澱物を通常の濾過器で分離すると第2表
に示す組成のものが得られる〇 嬉1表 第2表 第2表の澱物をレバルプし、酸を添加してpHヲ3.5
〜5.0に調整するとインジウムは水酸化物となって沈
殿し、 Cd、 Zn%pbの大部分は浸出によって分
離させることができる。
As an example, when the soda water shown in Table 1 is placed in a rotating drum with water and treated, indium easily dissolves and is separated from the residue as an aqueous solution. A suspension similar to a solid substance is formed, so if this sediment is separated using an ordinary filter, the composition shown in Table 2 will be obtained. Add acid to pH 3.5
When adjusted to ~5.0, indium becomes hydroxide and precipitates, and most of Cd, Zn%PB can be separated by leaching.

ここで得られ九沈殿を水溶液と分離し、インジウムに対
し当量また嬬少過剰の1+1の硫酸に溶解し、不溶解残
渣を分離する。。この時の残渣には金属状のCd、Zn
がかな)の量存在する場合が多く、これらが浸出液中の
インジウムとセメンチージョンを起すので、との残渣と
の分離はできるだけ短時間に行うのがよい。なお、上記
セメンチー7ヨンを防ぐためには水溶液のpHを0.1
〜1.5の範囲で行うのが好ましい。こうして得られた
硫酸浸出液の組成は下記実施例の第3表に示したような
濃度組成を示し、Ip濃度は8.5 t/を程度である
The nine precipitates obtained here are separated from the aqueous solution, dissolved in 1+1 sulfuric acid in an equivalent amount or a slight excess of indium, and the undissolved residue is separated. . The residue at this time contains metallic Cd, Zn
In many cases, there is a large amount of indium present in the leachate, which causes cementation with indium in the leachate, so it is best to separate the indium from the residue as quickly as possible. In addition, in order to prevent the above-mentioned cementation, the pH of the aqueous solution should be adjusted to 0.1.
It is preferable to carry out in the range of -1.5. The composition of the sulfuric acid leachate thus obtained had a concentration composition as shown in Table 3 of Examples below, and the Ip concentration was about 8.5 t/.

この浸出液に必要に°より少量のアルカリを加えてpH
0,5〜1.2、好ましくはpH1,0としたのちZn
 −Cd合金の粉末またはJIS規格の最純亜鉛地金和
尚の粉末をインジウム量に対し1.0〜1.3幽量添加
してセメンチージョンを行う。純度の悪い亜鉛、特にp
b等を含有するものを使用すると、析出するインジウム
の純度に影醤するので好ましくない0次に得られたイン
ジウムを充分に浸出し得る量の鉱酸、好ましくは淡塩酸
で溶解し、次いでpHを1.0以下に調整し、その水溶
液に純度の良いインジウム板を浸漬して浄液する。イン
ジウム板の投入量はその表面積が5d/水溶液(t)以
上が好ましく、浸漬時間は数時間、好ましくは10時間
以上が必要である。
Add a small amount of alkali to this leachate as necessary to adjust the pH.
After setting the pH to 0.5 to 1.2, preferably 1.0, Zn
Cementition is performed by adding 1.0 to 1.3 of -Cd alloy powder or JIS standard purest zinc ingot powder to the amount of indium. Zinc with poor purity, especially p
It is undesirable to use a material containing b, etc., as it will affect the purity of the precipitated indium.The indium obtained in the 0th order is dissolved in an amount of mineral acid, preferably dilute hydrochloric acid, in an amount sufficient to leach out the indium obtained. is adjusted to 1.0 or less, and a high purity indium plate is immersed in the aqueous solution to purify the solution. The amount of indium plate added is preferably such that its surface area is 5 d/aqueous solution (t) or more, and the immersion time is several hours, preferably 10 hours or more.

こ\で析出するインジウムより責な金nut、通常のr
過器を用いて分離し、水溶液は必要によりアルカリを加
えてpHを0.5〜1.2の範囲に調整したのちZn 
−Cd合金の粉末または亜鉛粉末をインジウム量に対し
0.9〜tl壱量添加して再度セメンチージョンを行い
スポンジ状インジウムを析出せしめる。
Gold nut, which is more dangerous than indium precipitated here, is normal r
Zn
-Cd alloy powder or zinc powder is added in an amount of 0.9 to 1 tl based on the amount of indium, and cementation is performed again to precipitate sponge-like indium.

このよう・にして得られたインジウムは水酸化ナトリウ
ムの所定量を添加して加熱溶融し亜鉛等をドロスとして
除去して粗インジウムとする。
The indium thus obtained is heated and melted by adding a predetermined amount of sodium hydroxide, and zinc and the like are removed as dross to obtain crude indium.

このようにして得られるインジウムはCd等の混入が少
ない場合社そのま\、比較的多い場合には上部開放型の
ルツボ勢管使用して温度1000〜1050C1常圧で
蒸溜操作を行ってCd等を蒸発分離する。この際発生す
る排気はバッグフィルター等で吸引処理する。次に最終
の工程である塩化アンモニウム添加のドロツシングを行
うのであるが、この場合の塩化アンモニウムの添加量は
インジウムに対して外割りで2重量%程度としこれを数
回反復して、不純分を塩化ドロスとして除去する。こグ
に支障のない300〜400C程度でよい。
Indium obtained in this way can be used as is if there is a small amount of Cd etc., but if it is relatively large, it can be distilled using an open-top crucible tube at a temperature of 1000-1050 C1 and normal pressure. is separated by evaporation. The exhaust gas generated at this time is sucked out using a bag filter, etc. Next, the final step of adding ammonium chloride is carried out. In this case, the amount of ammonium chloride added is approximately 2% by weight based on indium, and this process is repeated several times to remove impurities. Removed as chlorinated dross. It can be heated at about 300 to 400C, which will not cause any problems to the gear.

以上述べた工程に従えば、原料中に極く少量存在してい
るインジウムを85N以上の実収率で純度99.99重
量%以上の金属として回収することができ、コスト的に
も安い方法であるからインジウムを含有するあらゆる製
錬中間物、或いは粗インジウムの精製等に応用すること
もできる。
By following the process described above, it is possible to recover indium, which is present in a very small amount in the raw material, as a metal with a purity of 99.99% by weight or more at an actual yield of 85N or more, and it is also a low-cost method. It can also be applied to all smelting intermediates containing indium, or to the purification of crude indium.

以下本発明の実施を次の実施例によって説明する。The implementation of the present invention will now be described with reference to the following examples.

実施例 インジウム2,0重量%、カドiクム66.7重量%、
亜鉛10.0重量%、鉛0,05重量%、タリウム0.
5重1%を含有する製錬中間物100Kf(乾11 )
 K 20tの水を加え、さらに1+1の硫酸をpH5
,0となるまで加えて1時間軽く攪拌したのち4時間静
置して上澄液を除去し、残渣に1+1の硫酸を水溶液の
pHが1.0となるまで加えフィルタープレスで1過洗
渉し第3表に示す組成の水溶液230 tを得た。
Example Indium 2.0% by weight, Cadium cum 66.7% by weight,
Zinc 10.0% by weight, lead 0.05% by weight, thallium 0.
Smelting intermediate 100Kf (dry 11) containing 5wt 1%
K Add 20t of water and add 1+1 sulfuric acid to pH 5.
, stirred gently for 1 hour, left to stand for 4 hours, removed the supernatant, added 1+1 sulfuric acid to the residue until the pH of the aqueous solution reached 1.0, and washed with a filter press for 1 hour. 230 tons of an aqueous solution having the composition shown in Table 3 was obtained.

第3表 上記の水溶液に亜鉛の精溜工場で得られたZn−Cd合
金の粉末を骸水溶液中のインジウムに対し1.2轟量添
加し24時間靜装置、スポンジ状インジウム2.1に4
(乾燥)を得た。その品位は第4表に示す通りである。
Table 3: To the above aqueous solution, 1.2 tons of Zn-Cd alloy powder obtained at a zinc distillation factory was added to the indium in the aqueous solution, and in a quiet device for 24 hours, the sponge-like indium was 2.1 to 4.
(dry) was obtained. Its quality is shown in Table 4.

第4表 第4表に示した粗インジクムに濃塩酸を加えて溶解し、
In濃度180 t/l、 pH1以下のものをえ、こ
れに表面積が2004のインジウム板を投入し、ゆるく
攪拌しながら24時間放置した。析出した金属分は1別
し、r液は50重量%の水酸化ナトリウム水溶液を添加
してpH1,0に調整し九のち、前工程で使用したのと
同じ合金粉末をインジウム量に対し1. OW量添加し
て攪拌後24時間靜曾し、第5表に示す組成O相インジ
ウム1.9しを得た。
Table 4 The crude indicum shown in Table 4 was dissolved by adding concentrated hydrochloric acid,
An indium plate having an In concentration of 180 t/l and a pH of 1 or less was prepared, and an indium plate having a surface area of 200 mm was added thereto, and the mixture was left for 24 hours with gentle stirring. The precipitated metal content was separated by 1, and the R liquid was adjusted to pH 1.0 by adding 50% by weight aqueous sodium hydroxide solution.After that, the same alloy powder used in the previous step was mixed with 1.0% of the indium content. After adding an amount of OW and stirring, the mixture was allowed to stand still for 24 hours to obtain O-phase indium having a composition of 1.9 as shown in Table 5.

第5表 このスポンジ状のインジウムを充分水洗し、さらに油圧
プレスで脱水し良後フレーク状水酸化ナトリウムをイン
ジウム量に対し外割りで5重1%加え、加熱溶融し生成
した錘弁を除去して1.8にの粗インジウムを得た。そ
の品位を鮪6表に示す。
Table 5 This sponge-like indium was thoroughly washed with water, further dehydrated using a hydraulic press, and then flaky sodium hydroxide was added to the indium at a ratio of 5 weights and 1% to the amount of indium, and the weight valves formed by heating and melting were removed. 1.8% crude indium was obtained. The quality of the tuna is shown in Table 6.

第6表 上記粗インジウムを上S開放型のルツボに入れ1000
 t:’で5時間常圧で処理し、不純分を蒸発させて除
去した。iられた蒸溜イ/ジクムの品位は第7表に示す
通りであった。
Table 6: Put the above crude indium into a crucible with an open top S.
The mixture was treated at normal pressure for 5 hours at t:' to evaporate and remove impurities. The quality of the distilled I/Zicum was as shown in Table 7.

第7表 次に、この蒸溜インジウムを350Cで溶解し、これに
塩化アンモニウムを外割夛で2重量%添加しドロスを生
成せしめてそれを除去し、さらに同量の塩化アンモニウ
ムを加えてドロッシングし、純度99.99以上の精製
インジウム1.7kを得た。
Table 7 Next, this distilled indium was dissolved at 350C, 2% by weight of ammonium chloride was added thereto to generate dross, which was removed, and the same amount of ammonium chloride was added to dross. , 1.7k of purified indium with a purity of 99.99 or higher was obtained.

インジウムの製錬中間物からの収率は85%であった。The yield of indium from the smelting intermediate was 85%.

その組成を第8表に示す。Its composition is shown in Table 8.

第8表 上記実施例から明らかなように、本発明法によれば極め
て純分の高い、インジウムを高収率で回収することがで
きる。
Table 8 As is clear from the above examples, according to the method of the present invention, extremely pure indium can be recovered at a high yield.

特許出願人:住友金属鉱山株式会社 代理人:弁理士海津保三 同   :弁理士 平 山 −幸Patent applicant: Sumitomo Metal Mining Co., Ltd. Agent: Patent attorney Yasuzo Kaizu Same: Patent attorney Hirayama - Sachi

Claims (1)

【特許請求の範囲】[Claims] インジウムを含む硫酸酸性水溶液から高純度インジウム
を回収する方法において、上記水溶液にアルカリを加え
てpH0,5〜1.2とし、この水溶液中のインジウム
に対し1〜1.3蟲量の亜鉛−カドオウム合金粉末また
は純度の良い亜鉛粉末を加えてセメンチージョンを行い
粗インジウムを析出させて分離する第1工程と、上記第
1工程で得られた粗インジウムを鉱酸水溶液に溶解した
のち該水溶液中にインジウム板を投入してセメンチージ
ョンを行い生成した金属分を分離してインジウムを含む
水溶液、を得る第2工程と、上記第2工程で得られた水
溶液にアルカリを加えてp)10.5〜1.2に調整し
たのち該水溶液中のインジウムに対し0.9〜1.1当
量の亜鉛−カドミウム合金の粉末または純度の良い亜鉛
粉末を加えてセメンチージョンを行いインジウムを含む
析出物を分離する第3工程と、上記第3工程で得られ九
析出物をアル、力1F溶融し生成し九鏝を分離して粗イ
ンジウムを得る第4工程と、上記第4工程で得た粗イン
ジウムをそのi−tか或いは900〜1051Vに加熱
したのち外割りで2重量%以上の塩化アンモニウムを添
加して加熱溶融し、生成し九ドロスを分離して高純度イ
ンジウムを回収する第5工程とからなることを特徴とす
る上記方法。
In a method for recovering high-purity indium from an acidic sulfuric acid aqueous solution containing indium, an alkali is added to the aqueous solution to adjust the pH to 0.5 to 1.2, and zinc-cadmium is added in an amount of 1 to 1.3 times the indium in the aqueous solution. A first step in which alloy powder or zinc powder with good purity is added and cementation is performed to precipitate and separate crude indium, and the crude indium obtained in the first step is dissolved in a mineral acid aqueous solution and then dissolved in the aqueous solution. a second step in which an indium plate is added to perform cementation and the generated metal is separated to obtain an indium-containing aqueous solution, and an alkali is added to the aqueous solution obtained in the second step p) 10. 5 to 1.2, add 0.9 to 1.1 equivalents of zinc-cadmium alloy powder or zinc powder of good purity to the indium in the aqueous solution and perform cementation to form a precipitate containing indium. a third step of separating the nine precipitates obtained in the third step, a fourth step of melting the nine precipitates obtained in the above third step to obtain crude indium, and separating the nine precipitates to obtain crude indium; The fifth step is to heat indium to its i-t or 900 to 1051V, add ammonium chloride of 2% by weight or more, heat and melt it, separate the resulting dross, and recover high-purity indium. The above method, characterized in that it consists of.
JP56128241A 1981-08-18 1981-08-18 Collecting method of high purity indium from sulfuric acid acidic solution containing indium Pending JPS5831049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56128241A JPS5831049A (en) 1981-08-18 1981-08-18 Collecting method of high purity indium from sulfuric acid acidic solution containing indium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56128241A JPS5831049A (en) 1981-08-18 1981-08-18 Collecting method of high purity indium from sulfuric acid acidic solution containing indium

Publications (1)

Publication Number Publication Date
JPS5831049A true JPS5831049A (en) 1983-02-23

Family

ID=14979981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56128241A Pending JPS5831049A (en) 1981-08-18 1981-08-18 Collecting method of high purity indium from sulfuric acid acidic solution containing indium

Country Status (1)

Country Link
JP (1) JPS5831049A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015392A1 (en) * 2005-08-04 2007-02-08 Kobelco Eco-Solutions Co., Ltd. Method and apparatus for recovering indium from waste liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007015392A1 (en) * 2005-08-04 2007-02-08 Kobelco Eco-Solutions Co., Ltd. Method and apparatus for recovering indium from waste liquid crystal display

Similar Documents

Publication Publication Date Title
JP2552136B2 (en) Nickel separation method from copper in autoclave
WO2003078670A1 (en) Method for separating platinum group element
JPS604892B2 (en) How to recover metal from copper refining anode slime
JP3052535B2 (en) Treatment of smelting intermediates
CN106222421A (en) Gold mud treatment method
US4662938A (en) Recovery of silver and gold
CN113528850B (en) Method for purifying gold by controlling potential
JP2010138490A (en) Method of recovering zinc
US5961691A (en) Recovery of lead and others metals from smelter flue dusts
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
JP2008297608A (en) Method for separating/recovering tin
CN117568624A (en) Bismuth purification method
US3440155A (en) Extraction and recovery of metals from ores,concentrates and residues
US5939042A (en) Tellurium extraction from copper electrorefining slimes
JP2001279344A (en) Method for recovering tin
JPH04191340A (en) Production of high purity tin
JPH0781172B2 (en) Silver refining ore mud purification method
JP3548097B2 (en) Separation and recovery method of bismuth and copper etc. from treatment object containing cuprous oxide and bismuth
JPS5831049A (en) Collecting method of high purity indium from sulfuric acid acidic solution containing indium
JPH027377B2 (en)
US1284910A (en) Process for recovering metals from ores.
JP2953095B2 (en) Treatment method of copper removal dross
JPH0475291B2 (en)
RU2779554C1 (en) Method for producing refined silver from intermediate products of precious metal production containing silver in the form of chloride
JP7423467B2 (en) Ruthenium recovery method