CN1058299C - Ag and Au extracting and Sb, Bi, Cu and Pb recovering process from lead slime - Google Patents

Ag and Au extracting and Sb, Bi, Cu and Pb recovering process from lead slime Download PDF

Info

Publication number
CN1058299C
CN1058299C CN97111023A CN97111023A CN1058299C CN 1058299 C CN1058299 C CN 1058299C CN 97111023 A CN97111023 A CN 97111023A CN 97111023 A CN97111023 A CN 97111023A CN 1058299 C CN1058299 C CN 1058299C
Authority
CN
China
Prior art keywords
temperature
silver
lead
solution
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN97111023A
Other languages
Chinese (zh)
Other versions
CN1199780A (en
Inventor
杨才
周杨霁
贺小昆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Precious Metals
Original Assignee
Kunming Institute of Precious Metals
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Precious Metals filed Critical Kunming Institute of Precious Metals
Priority to CN97111023A priority Critical patent/CN1058299C/en
Publication of CN1199780A publication Critical patent/CN1199780A/en
Application granted granted Critical
Publication of CN1058299C publication Critical patent/CN1058299C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

The present invention relates to an Au and Ag extracting process and a Sb, Bi, Cu and Pb recovering process from lead anode slime. The present invention comprises the steps of the acid mixing leaching of hydrochloric acid and sulphuric acid, antimony precipitation by hydrolysis, bismuth precipitation by hydrolysis, copper precipitation by neutralization displacement, deleading by immersing salt, silver chloride displacement, lead precipitation, smelting silver electrolysis and dissolution aurum electrolysis. The direct yield of Au is larger than or equal to 99%, and the direct yield of Ag is larger than or equal to 98%. The adding yield of Sb and Bi is larger than 90%, and the adding yield of Cu is larger than 65%.

Description

Extract gold and silver and reclaim antimony, bismuth, copper, plumbous method from lead anode slurry
Extract gold and silver and reclaim antimony, bismuth, copper, plumbous method from lead anode slurry.The invention relates to precious metals metallurgy.
Lead anode slurry is to extract gold and silver, particularly one of Yin main raw material, the silver-colored output of China more than 1/2nd from lead anode slurry.Lead anode slurry main component mobility scale (%): Au 0.002-0.8, Ag 0.1-25, Cu 0.5-10, Bi 1-20, As 0.5-27, Sb 0.1-43, S 0.1-2.13, Te 0.1-0.74.The lead anode slurry traditional treatment method is a thermal process, reclaims gold through retailoring-oxidation blowing-electrum electrolysis De Yin-silver anode slime.The advantage of pyrogenic process is strong to material adaptability, and industrial scale is big, and equipment is simple.To be a part of gold and silver overstock at intermediate product shortcoming, so the gold and silver direct yield is low, and gold is nearly 93%, silver-colored 85-88%, and antimony, bismuth, copper, lead also disperse simultaneously, and the rate of recovery is low.It is (%): Au 0.10 that one factory's lead anode slurry composition is arranged, and Ag 10.09, and Pb 15.96, and Sb 32.69, and Bi 1.99, Cu 8.85, and As 0.36, and Fe 0.16, and Ca 0.70, Mg 0.034, and SiO2 22.48, belongs to the low high silicon lead anode slurry of arsenic, and high and low metal ratio is about 1: 5.8.Originally adopt pyrogenic attack.
Purpose of the present invention is at above-mentioned factory lead anode slurry, and the plumbous anode mud of wet processing is explored in research, obtain rich silver-colored slag, gold and silver direct yield height (Au 99%, and Ag 98%), simultaneously can comprehensively reclaim antimony, bismuth, copper, lead, its rate of recovery antimony, bismuth>80%, copper) 65% method.Method provided by the present invention, comprise that the hydrochloric acid+sulphuric acid nitration mixture leaches (or sodium-chlor+sulfuric acid medium leaches), antimony is sunk in hydrolysis, bismuth is sunk in hydrolysis, the heavy copper of neutralization displacement, salt soaks and takes off lead, the displacement silver chloride, heavy plumbous, the electrolysis of melting silver gets silver-colored, the golden several steps of aqua regia dissolution gold reduction, its method steps is: 1, with lead anode slurry at HCl 2-4mol/L-+H2SO4 2mol/L (or NaCl 3.5-4.5mol/L+H2SO4 2-4mol/L) medium, temperature 80-90 ℃, weight of material gram number is 1 with the ratio of liquid volume milliliter number: the 6-10 condition, agitation leach 2-4h, antimony, bismuth, copper changes solution over to, solid-liquid separation; 2 is normal temperature with 1 step gained leach liquor in temperature, stir to add tap water to volume dilution to 2 times, and adding a small amount of 10-20% (weight ratio) NaOH solution, to adjust the solution pH value is 1-1.5 condition hydrolysis antimony, finishes solid-liquid separation to the SbOCl precipitation; 3, with the heavy antimony mother liquor of 2 step gained, be normal temperature, under the agitation condition, add 10-20% (weight ratio) NaOH solution and adjust the solution pH value to 3.5-4.0 hydrolysis bismuth in temperature, complete to the BiOCl precipitation, solid-liquid separation; 4, with the heavy bismuth mother liquor of 3 step gained, be normal temperature in temperature, agitation condition adds 10-20% (weight ratio) NaOH solution down, adjusts solution PH to 6.5-7.0, and is complete to Cu (OH) 2 precipitations; Or be normal temperature in temperature, under the agitation condition, press Cu: Fe=1: 1-1.2 (weight ratio) adds iron replacement copper, reaction 1-2h, solid-liquid separation in solution; 5, with 1 step gained leached mud, at PH 2-4, temperature is nearly 80 ℃, and slag weight in grams number is 1 with the ratio of liquor capacity milliliter number: the 13-18 condition is the NaCl solution of 150-200g/L with concentration, agitation leach 2 h make lead be converted into lead chloride fully and leach solid-liquid separation; 6,5 step gained are soaked plumbous liquid, at temperature 60-70 ℃, under the agitation condition, by every 1m 3Solution adding lead powder 2-4kg (or iron powder 4-6kg) displacement is dissolved in soaks silver chloride in the plumbous liquid, reaction 1-2h, solid-liquid separation; Be normal temperature then in temperature, under the agitation condition, with in the lime [Ca (OH) 2 or CaO] and displacement liquid to PH be 9-11, make lead and heavy metal ion and sulfate radical precipitation, solid-liquid separation, heavy plumbous mother liquor is adjusted back PH to 2-4 with hydrochloric acid, can return 5 step initial application; 7,5 step gained are soaked lead skim and 6 step gained and replace silver-colored slag merging, at temperature 1050-1100 ℃, add yellow soda ash and SODIUMNITRATE and carry out melting, slag: yellow soda ash: SODIUMNITRATE=1: 1.2-2.5: 0.05-0.1 (weight ratio), time 10-60min, melting obtains containing the thick silver ingot of gold, and thick silver obtains fine silver with traditional electrolytic refining process; 8, with the resultant electrorefining of silver anode sludge of 7 steps, add aqua regia dissolution, silver anode slime is 1 with the amount of chloroazotic acid than (weight ratio): 3-4.Gradation adds, and self-heating or later stage heating, stirring make the gold dissolving fully, silver stays in slag with the silver chloride form, filtering separation, filtrate catch up with nitre, catch up with acid after, at boiling temperature, add solid oxalic acid reduction gold, the amount that oxalic acid adds is than being H2C2O4: Au=1-3: 1, and time 4-6h, sponge bronze boil with 3mol/L HCl and wash, wash with water again to neutrality, obtain proof gold.
Advantage of the present invention is: 1, flow process is based on hydrometallurgy, the combination of pyrogenic process wet method, reasonable flowsheet structure; 2, gold and silver direct yield height: Au 〉=99%, Ag 〉=98%, antimony, bismuth, copper, good (rate of recovery Sb, the Bi) 90% of plumbous comprehensive utilization degree, Cu65%); 3, take off plumbous displacement and reclaim silver and mother liquor regeneration technology, take off plumbous efficient height (>97%), silver loss little (displacement mother liquor argentiferous 0.011-0.0044g/l) can realize taking off the closed circuit operation of splicer's preface solution, helps environment protection; 4, method applicability is strong, and equipment is simple, easily realizes industrialization.
Embodiment 1, lead anode slurry 1578.35Kg, major ingredient (%), Au 0.0085-0.0102, Ag 22.416, and Pb 14.27, and Bi 0.046, and Cu 9.78, and Sb 30.11.Adopt HCl 3mol/L+H2SO4 1mol/L medium, temperature 80-85 ℃, plumbous mud weight (Kg): liquid volume (L)=1: 10, agitation leach 2h, solid-liquid separation, leach liquor is by the heavy antimony of the listed hydrolysis antimony of 2 steps condition; Because the lead anode slurry bismuth-containing is very low will not to be reclaimed, heavy antimony mother liquor directly gets the blister copper powder with the heavy copper of waste iron filing displacement; Acid leaching residue is in 80 ℃, with 200g/L NaCI solution, press slag weight (Kg): liquid volume (L)=1: 15, plumbous 2h is soaked in stirring, solid-liquid separation, soak plumbous liquid under 60 ℃ of temperature, reclaim small amount of silver with the listed plumbous displacement chlorination silver bar spare of 6 steps, the displacement mother liquor is heavy plumbous through lime, return behind the technical hydrochloric acid readjustment PH and soak plumbous multiplexingly, soak lead skim by ratio of components: slag: Na2CO3: NaNO3=1: 1100 ℃ of 1.5: 0.1 (weight ratio), temperature, carry out melting and obtain dore bullion bar 389.08kg, grade: Au 408-471g/t, Ag 91.28-95.39%; The rate of recovery: Au>99%, Ag 99%; The byproduct grade of output, antimony slag Sb 39.36-59.76%, blister copper powder Cu 31.59%, lead skim Pb 31.17-42.72%.
Embodiment 2 lead anode slurry 1000g, main component is (%): Au 0.133, and Ag 10.946, and Pb 12.40, and Bi 5.78, and Cu 2.29, and Sb 42.38.Adopt NaCl 4.3mol/L+H2SO4 4mol/L medium, 80 ℃ of temperature, plumbous mud weight (g): liquid volume (ml)=1: 8, agitation leach 2h, solid-liquid separation, leach liquor is pressed 2 steps, 3 steps, the heavy antimony of the listed condition hydrolysis of 4 steps, heavy bismuth of hydrolysis and the heavy copper of iron replacement, leached mud NaCl 200g/L solution, temperature 80-85 ℃, press slag weight (g): liquid volume (ml)=1: 15, stir and soak plumbous 2h, solid-liquid separation; Soak plumbous liquid under agitation condition, add the 2.2g lead powder by every 1L, under 65 ℃ of temperature, replacement(metathesis)reaction 2h, solid-liquid separation is soaked lead skim 236.5g, add yellow soda ash 425g, SODIUMNITRATE 12g is in 1100 ℃ of temperature melting 10min, obtain thick silver ingot 110g, grade Au 1.214%, and Ag 97.29%, adds silver content 0.58g among the silver-colored slag 18g of plumbous displacement, the rate of recovery: Au 99.86%, Ag 98.35%; Output byproduct antimony slag 805g contains Sb 50.11%, the rate of recovery 95.28%, and bismuth slag 199g contains Bi 59.50%, the rate of recovery 99%; Blister copper powder 19.5g contains Cu 80.07%, the rate of recovery 68.16%, lead skim 122.9g, Pb grade 29.89%.

Claims (1)

1, extract gold from lead anode slurry, the method for silver and recovery antimony, bismuth, copper, lead is characterized in that:
1.1 with lead anode slurry at HCl 2-4mol/+H 2SO 42-4mol/L, or NaCl 3.5-4.5mol/L+H 2SO 4The 2-4mol/L medium, temperature 80-90 ℃, weight of material gram number is 1 with the ratio of liquid volume milliliter number: the 6-10 condition, agitation leach 2h, antimony, bismuth, copper change solution over to, solid-liquid separation;
1.2 is normal temperature with 1.1 gained leach liquors in temperature, under the agitation condition, adds tap water with volume dilution to 2 times, and adding a small amount of 10-20%NaOH (weight ratio), to adjust the solution pH value be 1-1.5 condition hydrolysis antimony, finishes solid-liquid separation to the SbOCl precipitation;
1.3, be normal temperature in temperature with the heavy antimony mother liquor of 1.2 gained, under the agitation condition, add 10-20%NaOH (weight ratio) solution, adjust the solution pH value to 3.5-4.0 hydrolysis bismuth, complete to the BiOCl precipitation, solid-liquid separation;
1.4, be normal temperature in temperature with 1.3 gained mother liquor of precipitation of ammonium, under the agitation condition, add 10-20%NaCl (weight ratio) solution, adjust solution PH to 6.5-7.0, complete to Cu (OH) 2 precipitations; Or be normal temperature in temperature, under the agitation condition, press Cu: Fe=1: 1-1.2 (weight ratio) adds iron replacement copper in solution, reaction 1-2h, solid-liquid separation;
1.5 with 1.1 gained leached muds, at pH value=2-4, nearly 80 ℃ of temperature, slag weight in grams number is 1 with the ratio of liquid volume milliliter: the 13-18 condition, the NaCl solution stirring leaching 2h with 150-200g/L makes lead be converted into lead chloride fully and leaches solid-liquid separation;
1.6 1.5 gained are soaked plumbous liquid, at temperature 60-70 ℃, under the agitation condition, by every 1m 3Solution adds lead powder 2-4kg, or iron powder 4-6kg, and displacement is dissolved in the silver chloride that soaks in the plumbous liquid, reaction 1-2h, solid-liquid separation; Be normal temperature then in temperature, under the agitation condition, with among Ca (OH) 2 or the CaO and plumbous displacement liquid to PH be 9-11, make lead and heavy metal ion and sulfate radical precipitate solid-liquid separation; Heavy plumbous mother liquor to 2-4, can return 1.5 operation initial application with technical hydrochloric acid readjustment pH value;
1.7 1.5 gained are soaked lead skim and 1.6 gained replaces silver-colored slag and merges, at temperature 1050-1100 ℃, add yellow soda ash and SODIUMNITRATE and carry out melting, slag: yellow soda ash: SODIUMNITRATE=1: 1.2-2.5: 0.05-0.1 (weight ratio), time 10-60min, melting gets the thick silver ingot of alloy, and thick silver obtains fine silver with traditional electrolytic refining process;
1.8 with the 1.7 gained electrorefining of silver anode sludge, add aqua regia dissolution, silver anode slime is 1 with the amount of chloroazotic acid than (weight ratio): 3-4, gradation adds, and self-heating or later stage heating are stirred, make the gold dissolving fully, silver stays in slag filtering separation with the silver chloride form, filtrate catches up with nitre, catch up with acid after, at boiling temperature, add solid oxalic acid reduction gold, the amount that oxalic acid adds is H2C2O4: Au=1-3: 1, and time 4-6h, sponge bronze boil with 3mol/L HCl and wash, wash with water again to neutrality, obtain proof gold.
CN97111023A 1997-05-15 1997-05-15 Ag and Au extracting and Sb, Bi, Cu and Pb recovering process from lead slime Expired - Fee Related CN1058299C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN97111023A CN1058299C (en) 1997-05-15 1997-05-15 Ag and Au extracting and Sb, Bi, Cu and Pb recovering process from lead slime

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN97111023A CN1058299C (en) 1997-05-15 1997-05-15 Ag and Au extracting and Sb, Bi, Cu and Pb recovering process from lead slime

Publications (2)

Publication Number Publication Date
CN1199780A CN1199780A (en) 1998-11-25
CN1058299C true CN1058299C (en) 2000-11-08

Family

ID=5171605

Family Applications (1)

Application Number Title Priority Date Filing Date
CN97111023A Expired - Fee Related CN1058299C (en) 1997-05-15 1997-05-15 Ag and Au extracting and Sb, Bi, Cu and Pb recovering process from lead slime

Country Status (1)

Country Link
CN (1) CN1058299C (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894387A (en) * 2015-05-25 2015-09-09 铜陵有色金属集团股份有限公司 Technological method for extracting antimony and bismuth from rare and noble metallurgical slag

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1094984C (en) * 1999-08-13 2002-11-27 龙口市金裕黄金有限公司 Process for extracting gold and silver by removing impurities with acid and alkali
CN101358298B (en) * 2008-09-25 2010-06-02 昆明理工大学 Desilverization method during bismuth refining procedure
CA2760345A1 (en) * 2009-04-24 2010-10-28 Precious Metals Recovery Pty Ltd Extraction of gold from cathode associated gold concentrates
CN102041387A (en) * 2009-10-09 2011-05-04 郑雅杰 Method for enriching gold and silver by floating anode mud and recycling antimony and bismuth
CN101831551B (en) * 2010-05-21 2012-08-29 葫芦岛锌业股份有限公司 Method for recovering gold, silver, bismuth, stibium and copper from lead anode mud
CN102205987A (en) * 2010-12-17 2011-10-05 何侠 Method for preparing silver chloride and aluminum chloride by using ethylene oxidation method in presence of waste silver catalyst
CN102912143B (en) * 2012-11-13 2014-03-12 云南天浩稀贵金属股份有限公司 Method for comprehensively treating indium-containing lead anode slime through whole wet process
CN102994766B (en) * 2012-12-12 2014-06-04 四会市鸿明贵金属有限公司 Method for comprehensively recovering valuable metal from copper tellurium slag
CN103146928B (en) * 2013-04-02 2015-03-11 深圳市中金岭南有色金属股份有限公司韶关冶炼厂 Method for processing anode mud with high Ag, Bi and Pb by using full wet method
CN103451435B (en) * 2013-09-02 2016-02-10 浙江触捷光电科技有限公司 A kind of from wire mark silver slurry process the method for Footwall drift silver in waste
CN103526042B (en) * 2013-10-25 2015-10-28 北京矿冶研究总院 Method for extracting gold and silver from gold concentrate
CN103757420B (en) * 2014-01-20 2016-09-21 北京矿冶研究总院 Method for recovering lead and silver from zinc leaching residues
CN104561558B (en) * 2015-01-19 2017-08-04 北京矿冶研究总院 Method for treating selenium-containing mercury acid mud
CN105886769B (en) * 2015-01-26 2018-11-13 昆明冶金高等专科学校 A kind of method that nitric acid dissolves more metal alloy material collection noble metals
CN105420508A (en) * 2015-12-09 2016-03-23 永兴县灿阳贵金属有限责任公司 Method for extracting lead and bismuth from precious metal smelting waste residues
CN105734299B (en) * 2016-04-28 2017-12-26 中南大学 A kind of method of oxygen pressure treatment tin anode mud comprehensively recovering valuable metal
CN106939377A (en) * 2017-04-27 2017-07-11 中南大学 A kind of chlorination of sulfur acid lead materials takes off the method that lead liquid is recycled
CN107058748B (en) * 2017-06-09 2018-05-22 烟台市金奥环保科技有限公司 A kind of method for recycling gold and silver in high antimony aqua regia residue
CN109055981A (en) * 2018-07-27 2018-12-21 郴州雄风环保科技有限公司 A kind of lead anode slurry wash water impurity removal process
CN110983062B (en) * 2020-01-10 2021-06-22 山东黄金矿业科技有限公司选冶实验室分公司 Comprehensive recovery method for preferentially extracting copper in wet smelting of copper-containing bismuth material
CN112378899A (en) * 2020-10-27 2021-02-19 西北矿冶研究院 Method for determining gold in crude lead sample by low-temperature separation ICP-AES (inductively coupled plasma-atomic emission Spectrometry) method
CN114807618B (en) * 2022-06-27 2022-11-01 长沙华时捷环保科技发展股份有限公司 Comprehensive recovery process for valuable metals in gold ore high-temperature chlorination roasting flue gas washing liquid

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152621A (en) * 1995-12-18 1997-06-25 昆明贵金属研究所 Method for extracting silver and gold in difficult infusion independent silver mine by flotating silver concentrate ore

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1152621A (en) * 1995-12-18 1997-06-25 昆明贵金属研究所 Method for extracting silver and gold in difficult infusion independent silver mine by flotating silver concentrate ore

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104894387A (en) * 2015-05-25 2015-09-09 铜陵有色金属集团股份有限公司 Technological method for extracting antimony and bismuth from rare and noble metallurgical slag

Also Published As

Publication number Publication date
CN1199780A (en) 1998-11-25

Similar Documents

Publication Publication Date Title
CN1058299C (en) Ag and Au extracting and Sb, Bi, Cu and Pb recovering process from lead slime
CN102586627B (en) Method for recovering bismuth from bismuth slag
CN101831551A (en) Method for recovering gold, silver, bismuth, stibium and copper from lead anode mud
WO2003078670A1 (en) Method for separating platinum group element
WO2009146647A1 (en) Method of extracting te and bismuth oxide and recovering byproduct
CN108384959B (en) A kind of preparation method of electrolytic zinc
EP2147128B1 (en) Process for producing pure metallic indium from zinc oxide and/or solution containing the metal
CN101109043A (en) Method for processing cunico
CN102061395B (en) Smelting and separating method of noble lead
CN1948522A (en) Metho of recovering valuable metal in gold silver smelting furance waste lining brick
CN104911366A (en) Method for recovering valuable metals from silver-bismuth slag through using aqua regia
CN109706322A (en) The extracting method of silver, lead, tin in a kind of silver separating residues
CN101994013A (en) Copper scum smelting process
CN113528850B (en) Method for purifying gold by controlling potential
CN1062175A (en) Produce the method for Silver Nitrate, recovery copper, lead, antimony by lead anode slurry
JPH0791599B2 (en) Valuable metal separation method
CN105886785A (en) Method for preparing high-purity silver powder from silver-rich residue containing high selenium and tellurium
CN108034825B (en) The method that wet process extracts gold and silver from the earth of positive pole
CN103334013A (en) Novel leaching process of extracting precious metals such as gold, silver and the like from silver separating residues
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
CN1208479C (en) Noble metalregeneration recovering method for electronic waste material
CN100366767C (en) Method for the recovery of metals using chloride leaching and extraction
CN1042957C (en) Method for extracting silver and gold in difficult infusion independent silver mine by flotating silver concentrate ore
CN1046142C (en) Method for smelting sodium sulfate from refined complex antimony ore
CN1265003C (en) Method for chloridizing roasting and ammonia extraction of silver and manganese products for manganese silver finished ore

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee