WO1998050304A1 - Method for treating selenium-containing solution - Google Patents

Method for treating selenium-containing solution Download PDF

Info

Publication number
WO1998050304A1
WO1998050304A1 PCT/JP1998/002033 JP9802033W WO9850304A1 WO 1998050304 A1 WO1998050304 A1 WO 1998050304A1 JP 9802033 W JP9802033 W JP 9802033W WO 9850304 A1 WO9850304 A1 WO 9850304A1
Authority
WO
WIPO (PCT)
Prior art keywords
selenium
iron
treating
solution
metal
Prior art date
Application number
PCT/JP1998/002033
Other languages
French (fr)
Japanese (ja)
Inventor
Junya Watanabe
Katsuhiko Yano
Koji Kusabe
Tatsuya Sakurai
Original Assignee
Mitsubishi Chemical Corporation
Kawasaki Kasei Chemicals Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation, Kawasaki Kasei Chemicals Ltd. filed Critical Mitsubishi Chemical Corporation
Publication of WO1998050304A1 publication Critical patent/WO1998050304A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/5236Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using inorganic agents

Definitions

  • the present invention relates to a method for treating a selenium-containing solution and efficiently reducing the selenium concentration in the solution or recovering selenium.
  • Selenium and selenium compounds are used in a variety of manufacturing industries, such as glass decolorizing agents, photocopier photoconductors, rectifiers, semiconductor materials, battery materials, and electrolytic coloring agents for metals such as aluminum.
  • the wastewater discharged from the manufacturing process usually contains a relatively high concentration of selenium.
  • Selenium is also present in wastewater from selenium refinery factories and selenium compound manufacturing factories.
  • selenium has been found to be present in the wastewater discharged from thermal power plants. Since selenium is a very toxic environmental pollutant, its amount in the effluent is strictly regulated, and in recent years its allowable amount has been stricter, and the effluent standard has been set at 0.1 to 0.1 mg / l. It has been.
  • a neutralization coagulation precipitation method As a method of recovering selenium, generally, a neutralization coagulation precipitation method, an iron hydroxide precipitation method, a funilite precipitation method, an ion exchange membrane method, an activated carbon adsorption method and the like are known.
  • these methods require special equipment and equipment for the combined use of multiple treatment methods in order to efficiently remove selenium. Disadvantageous.
  • the present inventors have conducted intensive studies with the aim of solving the above problems and providing a method for efficiently removing and recovering selenium in wastewater, and as a result, when depositing selenium on the surface of an iron-based metal,
  • the selenium concentration can be effectively reduced in a short period of time by removing the selenium compound after removing compounds that exhibit a buffering action near neutrality among the compounds other than selenium in the wastewater. They have found that they can be reduced, and have arrived at the present invention based on this finding. Disclosure of the invention
  • the gist of the present invention is that a solution containing selenium and another metal inorganic acid salt is allowed to flow through a packed bed of an iron-based metal to deposit selenium on the surface of the iron-based metal.
  • the present invention relates to a method for treating a selenium-containing solution by contacting with a ferrous metal at a temperature of not less than ° C.
  • the pH value of the solution containing selenium and another metal inorganic acid is adjusted to 3 to 7; Being a sulfate of lithium earth metal; flowing a solution containing selenium and other metal inorganic acid in an upward flow through a bed of iron-based metal;
  • a solution containing another metal inorganic acid salt is brought into contact with a packed layer of an iron-based metal, the solution is maintained while maintaining the PH value of the solution in the packed layer at 3 to 7; selenium and other metals Adjusting the pH value of the solution containing the inorganic acid salt to 3 to 7 and contacting the pH-adjusted solution with the packed bed of iron-based metal a plurality of times;
  • an acid is added to the packed bed to maintain the PH value of the solution in the bed at 3 to 7.
  • a solution containing selenium and other metal inorganic acid salts and a dilute acid are added to a reaction vessel containing an iron-based metal, and the pH value is adjusted to 3 to 7
  • This is a method for treating a selenium-containing solution by subjecting it to a contact reaction at a temperature of 30 ° C or higher while stirring while maintaining the temperature.
  • the iron-based metal is fibrous, porous, fine plate-like, granular, or powdery; the iron-based metal is fibrous; The ferrous metal is fibrous by a cutting method; the ferrous metal is fibrous with a diameter of 0.1 to 0.3 mm; the ferrous metal is steel wool; The iron-based metal must be porous; the iron-based metal must be iron having a surface area of at least 0.001 m 2 Zg; and the iron-based metal has an iron surface area of 0.0 per column volume. 0.1 m 2 Zm 1 or more iron; This is a method in which the amount of iron-based metal supported on the column is from 0.01 gZm 1 to 3 gZm 1.
  • Preferred treatment solutions for the method of the present invention include a solution containing selenium and another metal inorganic acid salt containing a sulfate ion having a concentration of 100 times or more the selenium concentration;
  • the solution containing a metal inorganic acid salt of (a) contains a weak acid strong base salt, a strong acid weak base salt, a weak acid weak base salt and / or a metal complex salt; a weak acid strong base salt, a strong acid weak base salt, a weak acid weak base salt and
  • the Z or metal complex salt may be an ammonium salt, a carbonate, a phosphate, a borate, a carboxylate, an aluminum complex, a copper complex, a cobalt complex and a Z or iron complex.
  • the present invention provides a solution containing selenium and another metal inorganic acid salt at a temperature of 30 ° C. or more, and flows through a packed layer of an iron-based metal to precipitate selenium on the surface of the iron-based metal.
  • a method of treating a selenium-containing solution comprising a step of incinerating or recovering selenium deposited on the surface of the iron-based metal by incineration or stripping treatment. Contact or ultrasonic treatment; regenerating the iron-based metal by contact with a dilute acid or ultrasonic treatment.
  • a solution containing selenium and other metal inorganic acid salts is used.
  • the present invention also provides a treatment method comprising a step of recovering and recovering the solution and a step of increasing the solution temperature in accordance with the decrease in the selenium recovery ability in the step, decreasing the pH value of the solution, and decreasing the flow rate of the solution or solution. Included in the method.
  • a buffer action from the solution to near neutrality is obtained.
  • the treating agent having the ability to reduce and remove the selenium compound from neutral to acidic side is an iron-based metal; and the compound having a buffering action near neutral is a boron compound and Z or an aluminum compound; a compound exhibiting a buffering action near neutrality; a boron compound; removing a compound having a buffering action near neutrality using a boric acid selective resin; boric acid
  • the selective resin is a glucamine-type chelating resin; the compound having a buffering action near neutrality is an aluminum compound, which includes a method comprising removing the aluminum compound by coagulation and precipitation; is there.
  • FIG. 1 is a diagram illustrating a N a 2 S 0 4 a (NH 4) 2 SC titration curve.
  • the selenium-containing solution to be treated in the present invention is mainly a decolorizing agent for glass, copying Wastewater from various factories such as photoconductors, rectifiers, semiconductor materials, battery materials, aluminum, etc., wastewater from selenium refineries, selenium compound manufacturing plants, or thermal power plants
  • the selenium contained therein exists as various selenium compounds depending on the source of the wastewater.
  • the selenium concentration in the solution also differs depending on the type of wastewater, but for example, wastewater from thermal power plants usually contains 0.2 to 5 pp
  • these wastewaters usually contain inorganic salts of metals other than selenium.
  • alkali metals such as sodium sulfate, magnesium sulfate, sodium chloride, magnesium chloride, etc.
  • sulfuric acid of alkaline earth metals Heavy metal salts such as salts, chlorides, copper, chromium, and nickel are contained together with selenium, and it is effective to apply a solution containing these salts to the treatment method of the present invention.
  • the solution containing selenium and other metal inorganic salts which is the treatment liquid of the method of the present invention, is a solution containing sulfate ions having a concentration of 100 times or more the selenium concentration, and other metal inorganic acid salts other than selenium. Is preferably a sulfate of an alkaline metal or an alkaline earth metal.
  • the solution containing a metal inorganic acid salt other than selenium may be a weak acid strong base salt, a strong acid weak base salt, or a weak acid weak base.
  • the solution containing the salt and Z or metal complex salts i.e., preferably has an acid dissociation constant is a solution containing a substance that is in the range of 1 0- 2 ⁇ 1 0- 1 ⁇ .
  • the weak acid strong base salt, strong acid weak base salt, weak acid weak base salt and / or metal complex salt include ammonium salt, carbonate, phosphate, borate, carboxylate, aluminum complex, copper complex, cobalt complex and It is preferred that the compound is either ⁇ or an iron complex salt.
  • a solution containing the above-mentioned selenium and other metal inorganic acid salts is powerful, and is effective even when the solution contains a compound having a buffering action near neutrality.
  • Compounds having an action generally include a weak acid strong base salt, a strong acid weak base salt, a weak acid weak base salt, a complex compound, or a metal ion compound forming a hydroxide. I can do it.
  • a compound ranging acid dissociation constant of 1 0 2 to 1 0 1 2 Anmoniumu salts, carbonates, phosphates, borates, carboxylates, aluminum complex salts, copper complex , Cobalt complex salts, iron complex salts, and metal hydroxides such as aluminum hydroxide.
  • a selenium-containing solution in which such a substance is present causes a decrease in selenium removal ability due to contact with an iron-based metal.
  • a step of removing these buffer components is performed by removing selenium as described later. By performing the removal step sequentially or simultaneously, a decrease in the selenium removal ability can be prevented.
  • the amount of the buffer component contained in the selenium-containing solution is preferably as small as possible, but is not particularly limited, and is preferably 100 ppm or less, more preferably 10 ppm or less.
  • the pH of the solution increases due to the presence of the buffer component during contact with the iron-based metal, As a result, it is considered that the pH exceeds the neutral to acidic pH range at which the selenium compound can be optimally removed.
  • the pH value of the selenium-containing solution to be treated by the method of the present invention is usually adjusted in the range of 2 to 10, preferably 3 to 7, and particularly preferably 3 to 4.
  • the lower the pH the faster the removal of selenium by iron; therefore, the lower the pH, the better the reaction rate.However, when the pH is low, the reaction between iron and protons elutes iron ions. In addition to this, the amount of acid added for pH adjustment also increases. For this reason, a pH lower than 2 is not practical. On the other hand, when the pH exceeds 10, the reactivity decreases, and the effect of the present invention is not achieved, which is not preferable.
  • the pH is adjusted by using an acid or an alkali.
  • an acid an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like is used.
  • an alkali sodium hydroxide, hydroxide hydroxide And the like.
  • an iron-based metal is used for precipitating selenium.
  • the iron-based metal includes pure metal iron and alloyed iron containing other metals such as chromium and manganese. is there.
  • Specific examples of iron-based metals include electrolytic iron, low-carbon steel, medium-carbon steel, high-carbon steel, mild steel, mild steel, alloy steel, pig iron, gray iron, rimmed steel, capped steel, semi-killed steel, Examples include killed steel, clad steel, crude steel, and ingots.
  • these ferrous metals can be used as molded products formed into a desired shape, but they are hot-rolled products, cold-rolled products, compressed products, extruded products, drawn products. , Plastic work, curtain, steel, etc.
  • the shape of the iron-based metal used in the present invention is not particularly limited. However, in the treatment method of the present invention, selenium in the solution is precipitated on the surface of the iron-based metal by a catalytic reduction reaction with the selenium-containing solution to be treated. It is desirable to have a shape having as large a contact surface area as possible, and further, a shape capable of easily forming a homogeneous packed bed when filled in a treatment tower is preferred. Specifically, a steel fibrous wire rod such as steel wool, a plate-like strip, a powdery substance, a granular substance, a fine chip, and the like are cited, and a steel wool is preferable.
  • Plates have the drawback that it is difficult to pack them into columns and the surface area is small.
  • the particle size is reduced, there is a problem of consolidation in the column. If the particle size is increased, the surface area cannot be increased. Further, there is a problem that the weight of the whole apparatus is increased because iron is filled most densely in the form of particles or powder.
  • the fibrous material is easily used for adjusting the surface area and the filling density, and is optimally used.
  • the fibrous iron iron having a small fiber diameter is suitable.
  • the preferred fiber diameter is from 0 to 3 mm.
  • Examples of the method for processing the fibrous iron-based metal include a drawing method, a melt spinning method, and a cutting method. (Takeo Nakagawa et al., Textile Society Journal, Vol. 39, No. 4, pp. 121-127, 1983), but among them, those manufactured by the cutting method are preferable.
  • the cutting method refers to cutting a metal block with a knife and discharging fine chips to obtain a desired shape.
  • a fiber that uses these chips as fibers is a fibrous metal obtained by the cutting method. is there.
  • a wire cutting method is a method for constantly cutting fibers having a finer cross section, and a typical example is the production of steel wool by the wire cutting method. This steel wool is most suitable for the selenium removal of the present invention.
  • the iron porous body can be manufactured by a sintering method, a plating method, a foaming method, a pressure forming method, or the like, and can be used with no particular limitation on the pore diameter, the pore shape, and the like.
  • the surface area of the iron-based metal it is preferable that the surface area is not less than 0.001 lm 2 Zg regardless of the shape of the iron. Since the reaction between iron and selenium proceeds from the iron surface, if the surface area of iron is small, the reaction rate is low and selenium cannot be removed efficiently. For the same reason, the surface area of the iron-based metal per column volume is also limited, and is preferably 0.001 m 2 Zm 1 or more per column volume.
  • the amount of iron carried on the column is limited in terms of equipment.
  • the specific gravity of iron is 7.86 g / cm 3, which is much higher than the specific gravity of a carrier such as ordinary ion exchange resin, which is around 1.
  • special equipment that is different from equipment that normally carries ion exchange resins is required. Therefore, it is practical to reduce the amount of charge to the column. If the supported amount is too low, the selenium removability will be reduced. Therefore, it is preferably from 0.01 g / ml to 3 g Zml, more preferably from 0.05 g Zm 1 in terms of column volume. Not less than 1 g / m 1.
  • a packed bed formed by filling a treatment tower with an iron-based metal having an appropriate shape such as a fibrous, porous, granular, or powdery material is coated with selenium and other metal salts.
  • the treatment solution is brought into contact by passing water to precipitate selenium on the surface of a metal such as iron.At this time, the contact treatment needs to be performed at 30 ° C or higher, and preferably 45 to 9 ° C. It is performed in a temperature range of 0 ° C. If the contact temperature is lower than 30 ° C, the reduction reaction of selenium with iron hardly proceeds, and it is difficult to recover and remove selenium from the solution. Further, it is not desirable to raise the temperature to an unnecessarily high temperature in terms of operability and economy, and in some cases, it may be affected by other components coexisting in the waste liquid.
  • the contact temperature can be controlled by heating the solution to be treated to a predetermined temperature and supplying it to the packed tower. May be maintained.
  • Flow of the solution to be treated into the packed tower may be either a downward flow or an upward flow, but in order to make sufficient contact with the iron metal, the solution is passed upward from the bottom of the packed tower. Is preferred.
  • temperature, pH, and SV are factors that determine the reaction rate of selenium removal.
  • a method of adjusting the pH of a solution containing selenium and other metal inorganic acid salts and adding the solution to a column filled with an iron-based metal can be mentioned.
  • an iron-based metal is brought into contact with an acidic solution, the metal is consumed over time, and the PH value gradually rises, exceeding the range of 3 to 7, which is a pH at which selenium can be optimally removed.
  • the concentration or flow rate of the iron-based metal in the column the pH value in the column is maintained in the range of 3 to 7 in which selenium can be optimally removed, and selenium removal is performed in that state. It is preferred to do so.
  • the operating conditions vary depending on the composition of the solution containing selenium and other metal inorganic acid salts and the buffering action. Conditions may be appropriately selected according to the conditions.
  • a solution containing a metal inorganic acid salt other than selenium is a solution containing a weak acid strong base salt, a strong acid weak base salt, a weak acid weak base salt and Z or a metal complex salt, that is, an acid.
  • dissociation constant is 1 0 2 to 1 0 - If a solution containing a substance that is in the range of 1 Y is often necessary to control the p H value occurs. In such a case, the consumption of metallic iron by acid increases even near neutrality, and the pH value often rises to 7 or more. In the region where the pH value is 7 or more, selenium is not removed, and only metallic iron is consumed, which is not economical.
  • the selenium and other selenium obtained in the primary treatment Readjust the pH value of the solution containing the metal inorganic acid salt to 3 to 7 and repeat the process consisting of pH adjustment of the solution and contact treatment several times so that it comes into contact with the iron-based metal layer. Thus, a desired value can be achieved. Usually, the operation just repeat the process two or three times.
  • the column used for the primary treatment may be used, or may be added to another new column.
  • a method in which the solution is passed while adding an acid to the ⁇ layer column can be used.
  • the acid can be added from the upper part of the packed bed together with the selenium-containing solution.
  • a column in which the solution can be added from the middle of the packed bed as a packed bed, and add the acid from the middle of the column. Is preferred.
  • the concentration and amount of the acid to be added are most preferably controlled so that the pH value in the column is in the range of 3 to 7.
  • the acid can be added continuously or intermittently.
  • the contact treatment with an iron-based metal can be performed not only by a column method using a packed bed of an iron-based metal but also by a batch method.
  • a reaction vessel capable of stirring the iron-based metal is used, and a solution containing selenium and other metal inorganic acid salts and a dilute acid are added, and the mixture is stirred at a temperature of 30 ° C or more, so that p during the contact treatment is reduced. What is necessary is just to make it contact with ferrous metal, keeping H in the range of 3-7.
  • the treatment can be performed by continuously discharging the treatment solution after the contact treatment from the reaction vessel while continuously supplying the solution containing selenium or the like and the acid to the reaction vessel.
  • the removal of selenium by the catalytic reduction reaction of selenium with iron is promoted by oxygen dissolved in the liquid to be treated, so that the contact treatment between a metal such as iron and the liquid to be treated is carried out by air. It is preferably performed in an oxygen-containing atmosphere such as
  • a flue gas desulfurization wastewater of a coal-fired power plant which is a wastewater containing selenium and a buffer component.
  • a flue gas desulfurization wastewater of a coal-fired power plant which is a wastewater containing selenium and a buffer component.
  • thermal Nuclear Power Vol. 35, No. 10, (1984), p. 1083, shows an example of water quality of flue gas desulfurization effluent of a coal-fired power plant.
  • F there is a S 0 4, C and Ca, Mg, Al, and B exist.
  • Al and B are substances that may have a buffering effect near neutrality.
  • No. (1984), p. 1083 shows that A1 is present at 100 to 800 ppm and B is present at 10 to 130 ppm. This amount is sufficient to exhibit a buffering effect near neutrality, indicating that this component hinders the removal of selenium compounds from flue gas desulfurization effluent by contact with the selenium removing agent. The inventors have found out.
  • the boron compound is usually present in a solution in the form of a borate.
  • a boric acid selective resin As a boric acid-selective resin, a glucamine-type chelating resin is commercially available. With this resin, boric acid can be selectively removed even in the presence of several thousand ppm of coexisting salt.
  • a specific example is Diaion CRB02 manufactured by Mitsubishi Chemical Corporation.
  • the contact method with the boric acid-selective resin may be a batch method or a column method, but is usually used in a column method.
  • the contact be made at a pH of about 4 to 12, and the contact be made at a normal temperature and a flow rate of about SV1 to about 50.
  • removal of the aluminum compound removal by a chelating resin, removal by coagulation and precipitation, etc. can be considered, but removal by coagulation and precipitation is effective.
  • the aluminum compound may be neutralized with an acid or an alkali, and the aluminum compound may be precipitated as a hydroxide, followed by solid-liquid separation.
  • the solution obtained above is then subjected to a step of removing a selenium compound.
  • the selenium compound is removed by contacting the selenium compound with a treating agent capable of reducing and removing the selenium compound from the neutral to acidic side.
  • Treatment agents capable of reducing and removing selenium compounds from the neutral to acidic side include iron-based metals, reducing agents such as hydrazine, thiourea, borohydride compounds, anthrahydroquinone, and resins carrying them.
  • Other metals such as zinc and copper, and reducing salts such as copper (I) and Fe (II) salts.
  • the type of ferrous metal and contact method It can be used without any particular limitation.
  • a ram method in which the ⁇ ⁇ of the solution obtained in the previous step is adjusted as necessary and added to a column filled with an iron-based metal as described above Can be adopted.
  • Selenium deposited on the surface of a metal such as iron by the method of the present invention can be recovered as metallic selenium by burning it.
  • the method of incineration is not particularly limited, and any type of selenium can be easily recovered from the incineration residue such as a rotary incinerator such as a single kiln and a crucible-type incinerator. But it can be adopted. Further, a method in which a dilute acid is brought into contact with a metal surface on which selenium is deposited, and the separated selenium is recovered as a solid can also be adopted. In this case, 0.01 to 6 mL of hydrochloric acid may be passed through the column to separate solid selenium that separates with the dissolution of iron from the column.
  • Other methods include the separation of selenium coming off by ultrasonically treating the metal on which selenium is deposited, and the separation of selenium coming off by passing hot water through the metal on which selenium is deposited.
  • a transmission frequency of 20 to 100 ° and a processing time of 1 to 30 minutes are preferably used. The higher the temperature, the more effective it is, but it can be used without particular limitation. Since the adsorption power of selenium on the metal surface is not strong, a method of separating selenium by some physical action is also used without limitation.
  • the reactivity of selenium-containing wastewater decreases
  • the reactivity can be changed over time to prevent the decrease in reactivity.
  • the reaction conditions at the stage where the reactivity decreases, that is, at the stage where the leaked selenium concentration increases, raise the temperature after treatment, lower the pH of the processing solution, or lower the SV.
  • the reactivity can be increased to the same level as before the decrease in reactivity.
  • Changing these conditions is more effective when used in combination, which can extend the life of the iron-based metal and increase the amount of processing solution per weight of the iron-based metal.
  • decreasing the pH also has the effect of regenerating the iron-based metal.Therefore, the selenium is removed while temporarily reducing the pH and regenerating the iron-based metal. The method of returning can also be adopted.
  • iron ions are eluted in the liquid after the treatment.
  • a method of removing as a precipitate by adding an alkali a method of removing with a chelating resin, a method of removing with an ion exchange membrane, a method of removing with manganese sand, and the like can be used. Also, by making the pH of the selenium-containing solution relatively high, elution of iron ions can be suppressed.
  • a method of separating selenium that separates by sonicating the metal on which selenium is deposited a method of separating selenium that separates by passing hot water through the metal on which selenium is deposited, etc. Is mentioned. Since selenium does not have a strong adsorptive power on the metal surface, a method of separating selenium by some physical action is also used without limitation.
  • the treatment method of the present invention may be used in combination with conventional methods such as neutralization precipitation method for recovering selenium, iron hydroxide precipitation method, ferrite precipitation method, ion exchange membrane treatment method, and activated carbon adsorption method, if necessary. Can be implemented.
  • neutralization precipitation method for recovering selenium iron hydroxide precipitation method, ferrite precipitation method, ion exchange membrane treatment method, and activated carbon adsorption method, if necessary.
  • ICP emission method ICP emission spectroscopy
  • Example 1 was repeated except that the temperature of the jacket was maintained at 80 ° C. As a result, the concentration of selenium in the solution after passing 10 B.V. was 0.7 ppm.
  • Example 1 was repeated except that the temperature of the jacket was maintained at 20 ° C. As a result, the concentration of selenium in the solution after passing 10 B.V. was 5. Oppm, and selenium in the solution was hardly removed.
  • Example 3 was repeated in the same manner as in Example 3 except that the diameter of the steel wool was changed to 00.04 mni (iron surface area: 0.013 m 2 / g-iron, per iron column volume: 0.0013 m 2 / m 1, iron Column carrying amount: 0.1 lOgZm 1). The concentration of selenium in the solution after passing 20 BV was 0.1 lOppm.
  • Example 3 was carried out in the same manner as in Example 3, except that iron wool having a fiber diameter of 0.5 (0.5 mm metal wire : manufactured by Mitsuwa Chemicals Co., Ltd.) was used instead of steel wool (surface area of iron: 0.001 m 2). / g-iron, per iron column volume: 0.0001 m 2 Zm 1, iron force Ram loading: 0.1 lOgZm 1). The concentration of selenium in the solution after passing through 2 O BV was 0.47 ppm.
  • the filtered components were placed in a 100 ml eggplant type flask equipped with a Dimroth condenser, 5 ml of concentrated nitric acid was added, and the mixture was reacted at 90 ° C. for 30 minutes with stirring to dissolve all solid components. Cooling water at 5 ° C was passed through the Jimroth condenser. After cooling, the reaction solution was diluted to 50 ml and the selenium and iron concentrations were measured. The selenium concentration was 14.9 ppm and the iron concentration was 11.2 ppm.
  • Example 8 About one sixth of the weight of the steel wool after the passage of the selenium solution carried out in Example 8 was removed, placed in a 100 ml Erlenmeyer flask, further added with 50 ml of INHC1, and shaken at 50 spm for 30 minutes. At this time, a reddish brown solid component was released from the steel wool. The iron component was magnetically separated from this liquid, and the remaining precipitated component was filtered through a 0.45 zm nitrocellulose membrane filter. The selenium concentration in the filtrate was 0.1 ppm or less, and the iron concentration was 1580 ⁇ 1.
  • the filtered components were placed in a 100 ml eggplant-shaped flask equipped with a Dimroth condenser, 5 ml of concentrated nitric acid was added, and the mixture was reacted at 90 ° C. for 30 minutes with stirring to dissolve all solid components. Cooling water at 5 ° C was supplied to the Jimroth condenser. After cooling, the reaction solution was diluted to 50 ml and the selenium and iron concentrations were measured. The selenium concentration was 42.7 ppm and the iron concentration was 3.6 ppm.
  • Example 8 About one sixth of the weight of the steel wool after passing the selenium solution carried out in Example 8 was removed, put into a 100 ml Erlenmeyer flask, and further added with 50 ml of demineralized water. The treatment was performed at a frequency of 46 KHZ) for 30 minutes. At this time, a brown solid component was released from the steel wool. The iron component was magnetically separated from this solution, and the remaining precipitated component was filtered through a 0.45 ⁇ m nitrocellulose membrane filter. The selenium concentration in the filtrate was less than 0.1 ppm and the iron concentration was less than 0.1 ppm.
  • the filtered components were placed in a 100-ml eggplant type flask with a Dimroth condenser, 5 ml of concentrated nitric acid was added, and the mixture was reacted at 90 ° C for 30 minutes with stirring to dissolve all solid components. Cooling water at 5 ° C was passed through the Jimroth condenser. After cooling, the reaction solution was diluted to 50 ml and the selenium and iron concentrations were measured. The selenium concentration was 20.6 ppm and the iron concentration was 76.8 ppm.
  • Example 8 About 1/6 of the weight of the steel wool after the passage of the selenium solution carried out in Example 8 was removed, put into a 100 ml Erlenmeyer flask, and further added with 50 ml of 0.001N HC1, and added with 50 spm for 30 minutes. Shake. At this time, no solid components were released from the steel wool. The iron component was magnetically separated from this solution, and the remaining precipitated component was filtered through a 0.45 / 1-nitrocellulose membrane filter. In this filtrate The selenium concentration was less than 0.1 ppm and the iron concentration was 37.6 ppm.
  • Example 11 As the primary treatment, the same method as in Example 11 was performed.
  • the outlet liquid (selenium concentration: 0.25 ppm) was adjusted to pH 4 with hydrochloric acid, and used as a secondary treatment liquid to be added to the column.
  • the liquid was passed through the same column again in the same manner as in Example 11.
  • the selenium concentration in the solution after passing through 20 B.V. was 0.08 ppm.
  • the pH at this time was 6.3.
  • Example 11 The columns used in 1 were connected in series in two stages, and 50 mM phosphate buffer (solution containing selenium) containing 0.50 ppm (converted to selenium) of sodium selenate adjusted to pH 4 was added to the column. The liquid was passed upward at a flow rate of 50 m 1 / hour. The temperature of the jacket was maintained at 50 ° C during the passage. The concentration and pH of selenium in the solution after passing through 20 BV were 0.25 ppm, pH 6.5 at the outlet of the first column, and 0.21 ppm, pH 7.25 at the outlet of the second column. It was eight.
  • Example 11 The columns used in Example 1 were connected in series in three stages, and 50 mM phosphate buffer (solution containing selenium) containing 0.50 ppm (converted to selenium) of sodium selenate adjusted to pH 4 was added to the column. The liquid was passed upward at a flow rate of 50 m 1 Zhour. The temperature of the jacket was maintained at 50 ° C during the passage. The concentration of selenium in the solution after passing through 20 BV and the selenium concentration at the outlet of the first-stage column were 0.25 ppm, pH 6.5, and the second-stage column. The selenium concentration at the outlet was 0.21 ppm, pH 7.7, and the selenium concentration at the third outlet was 0.21 ppm, pH 8.1.
  • Example 13 at the inlet of the second-stage column, 0.5N Zhour of 0.1N HC1 was continuously added in addition to the treatment solution. 20
  • the selenium concentration and pH of the solution after passing through the solution were 0.25 ppm, pH 6.3 at the outlet of the first column and 0.09 ppm, pH 6.6 at the outlet of the second column.
  • the selenium concentration and pH of the solution after passing through the solution were 0.25 ppm, pH 6.3 at the outlet of the first column and 0.09 ppm, pH 6.6 at the outlet of the second column.
  • Example 15 the same method as in Example 15 was carried out except that the pH in the reactor was maintained at pH 9 to 10 by appropriately adding 0.1 IN HC1 and 0.1 IN NaOH. .
  • One liter of solution was processed and its selenium concentration was 0.50 ppm.
  • the boron concentration in the solution after the passage was less than 1 ppm.
  • This solution is adjusted to pH 3 with hydrochloric acid, placed in a 300 ml square flask, and 0.20 g of steel wool (00.04 substitute: trade name: Bonstar: manufactured by Nippon Steel Wool Co., Ltd.) is added.
  • the solution is heated to 50 ° C in a water bath.
  • the mixture was heated and reacted under stirring.
  • the selenium concentration at a reaction time of 4 hours was 3.0 ppm, and the selenium concentration at a reaction time of 6 hours was 0.3 ⁇ ).
  • Selenium concentration was measured by the ICP emission method.
  • the pH of this solution was adjusted to 4 with hydrochloric acid, and steel wool (0.04 mm: trade name Bonstar: manufactured by Nippon Steel Wool Co., Ltd.) l. Og-filled jacketed column (inner diameter 11 difficult, high
  • the selenium concentration at the time of passing 500 ml of liquid was 0.1 ppm.
  • 04 mm Trade name: Bonstar: manufactured by Nippon Steel Wool Co., Ltd. l
  • the selenium concentration at the time of passing through 500 ml was 0.13 ppm.
  • wastewater containing other inorganic acid salts such as a compound having a buffering action near neutrality, such as an alkali metal sulfate and a boron compound, together with selenium in a solution is efficiently treated by a simple treatment operation. Processing to reduce selenium concentration.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A method for the disposal of waste water containing selenium and inorganic acid salts having a buffering action around a neutral region, such as alkali metal sulphates and boron compounds, in a simple treatment manner with good efficiency and for effectively reducing the concentration of selenium in the waste water in a short time. The method for treating a selenium-containing solution comprises passing a solution containing selenium and inorganic acid salts of other metals through a packed bed of an iron-base metal to precipitate selenium on the surface of the iron-base metal, wherein the solution is brought into contact with the iron-base metal at a temperature of 30 °C or above preferably at a pH ranging from 3 to 7 and, if necessary, the compounds having buffer action around a neutral region and contained in the waste water is removed before the contact of the solution with the iron-base metal.

Description

明 細 書 セレン含有溶液の処理方法 技術分野  Description Processing method of selenium-containing solution
本発明は、 セレンを含有する溶液を処理し、 該溶液中のセレン濃度を効率的に 低減或いはセレンを回収する方法に関するものである。 背景技術  The present invention relates to a method for treating a selenium-containing solution and efficiently reducing the selenium concentration in the solution or recovering selenium. Background art
セレン及びセレン化合物は、 ガラスの脱色剤、 複写機の感光体、 整流器、 半導 体材料、 電池材料、 アルミニウム等の金属の電解着色剤等、 種々の製造工業分野 で使用されており、 これらの製造工程から排出される排水は比較的高濃度のセレ ンを含有していることが常々である。 又、 セレンの精鍊工場やセレン化合物の製 造工場の排水中にもセレンが存在している。 さらに、 火力発電所から排出される 排水にもセレンが含有していることが見出されている。 セレンは非常に毒性の強 い環境汚染物質であるため、 その排出水中における量は厳しく規制され、 近年そ の許容量はより厳しく設定され、 排水基準は 0 . 1〜0 . O l m g / 1とされて いる。  Selenium and selenium compounds are used in a variety of manufacturing industries, such as glass decolorizing agents, photocopier photoconductors, rectifiers, semiconductor materials, battery materials, and electrolytic coloring agents for metals such as aluminum. The wastewater discharged from the manufacturing process usually contains a relatively high concentration of selenium. Selenium is also present in wastewater from selenium refinery factories and selenium compound manufacturing factories. Furthermore, selenium has been found to be present in the wastewater discharged from thermal power plants. Since selenium is a very toxic environmental pollutant, its amount in the effluent is strictly regulated, and in recent years its allowable amount has been stricter, and the effluent standard has been set at 0.1 to 0.1 mg / l. It has been.
セレンの回収処理方法としては、 一般的には中和凝集沈澱法、 水酸化鉄沈澱法、 フニライ ト沈澱法、 イオン交換膜法、 活性炭吸着法等が知られている。 しかしな がら、 これらの方法ではセレンを効率的に除くためには特別の設備や、 複数の処 理法を併用するための設備を必要とするので、 設備コストや操作費用の増大を招 き経済的に不利である。  As a method of recovering selenium, generally, a neutralization coagulation precipitation method, an iron hydroxide precipitation method, a funilite precipitation method, an ion exchange membrane method, an activated carbon adsorption method and the like are known. However, these methods require special equipment and equipment for the combined use of multiple treatment methods in order to efficiently remove selenium. Disadvantageous.
排水に鉄や鉄系金属を添加し、 その鉄や鉄系金属表面にセレンを析出させる方 法 (米国特許第 4, 405, 464号公報、 特開平 7- 2502号公報参照) が知られている。 しかしながら、 この鉄金属を利用する方法は、 セレン化合物の除去に有効な手段 であるが、 多量の排水を非常に低い基準濃度にまで下げるためには、 長時間を必 要とするのみならず、 多重量の鉄金属の取り扱いも困難であった。 とりわけ、 セ レン以外の共存塩が多量に存在する系では、 反応速度が低下する等の問題が生じ ており、 共存塩成分をすベて除去することが対策として考えられるが、 共存塩が 多量に存在する揚合、 全共存塩量を少なくすることは、 現実的でない。 A method is known in which iron or an iron-based metal is added to wastewater and selenium is precipitated on the surface of the iron or iron-based metal (see US Pat. No. 4,405,464 and JP-A-7-2502). I have. However, while this method of using ferrous metal is an effective means for removing selenium compounds, it takes not only a long time to reduce a large amount of wastewater to a very low standard concentration, but also a long time. Handling heavy iron metal was also difficult. In particular, in a system containing a large amount of coexisting salts other than selenium, problems such as a decrease in the reaction rate may occur. As a countermeasure, it is conceivable to remove all the coexisting salt components, but it is not realistic to reduce the total coexisting salt amount when the coexisting salt is present in a large amount.
セレン化合物含有廃液のなかでも、 特に共存塩が多量に含まれている系として は、 石炭火力発電所の排煙脱硫排水が挙げられる。 石炭火力発電所の排水中には、 火力原子力発電 35巻 10号 (1984年) 1083頁に示されているように、 種々の共存ィ ォンが存在していることが知られているが、 これらの共存ィオンのうちどの成分 の寄与が大きいのかは未だ知られていない。  Among the selenium compound-containing waste liquids, one of the systems containing a large amount of coexisting salts is flue gas desulfurization wastewater from coal-fired power plants. It is known that various types of coexistence exist in the wastewater of coal-fired power plants, as shown on page 1083 of Vol. 35 No. 10 (1984) of Thermal Power Nuclear Power. It is not yet known which component of these coexistences has a large contribution.
石炭火力発電所の排煙脱硫排水等、 共存塩が多量に存在する場合においては、 さらに効率的にセレン化合物を除去する方法がもとめられている。  When large amounts of coexisting salts are present, such as in the flue gas desulfurization effluent of coal-fired power plants, there is a need for a method to remove selenium compounds more efficiently.
一方、 セレン含有溶液に還元性の鉄化合物を添加した後、 p Hを調節して金属 捕集剤を加えることによりセレンを回収する方法 (特開平 9- 59007号公報参照) なども知られているが、 この方法では、 処理の工程に応じて都度 p H調整を必要 とするので、 操作が煩雑であり多量の排水処理法としては適していない。  On the other hand, a method is also known in which a reducing iron compound is added to a selenium-containing solution, the pH is adjusted, and a metal-collecting agent is added to recover selenium (see JP-A-9-59007). However, in this method, pH adjustment is required each time depending on the treatment process, so the operation is complicated and is not suitable as a large-scale wastewater treatment method.
本発明者らは、 上記の問題を解決し排水中のセレンを効率良く除去、 回収する 為の方法を提供することを目的として鋭意検討した結果、 鉄系金属の表面にセレ ンを析出させる際の条件を制御することにより、 場合によっては排水中のセレン 以外の化合物のうち、 中性付近に緩衝作用を示す化合物を除去した後に、 セレン 化合物を除くことにより短時間で効果的にセレン濃度を低減し得ることを見出し、 この知見に基づいて本発明に到達した。 発明の開示  The present inventors have conducted intensive studies with the aim of solving the above problems and providing a method for efficiently removing and recovering selenium in wastewater, and as a result, when depositing selenium on the surface of an iron-based metal, In some cases, the selenium concentration can be effectively reduced in a short period of time by removing the selenium compound after removing compounds that exhibit a buffering action near neutrality among the compounds other than selenium in the wastewater. They have found that they can be reduced, and have arrived at the present invention based on this finding. Disclosure of the invention
本発明の要旨は、 セレン及び他の金属無機酸塩を含有する溶液を、 鉄系金属の 充塡層を流通させて、 該鉄系金属の表面にセレンを析出させるに当たり、 該溶液 を 3 0 °C以上の温度において鉄系金属と接触させることよりなるセレン含有溶液 の処理方法に存する。  The gist of the present invention is that a solution containing selenium and another metal inorganic acid salt is allowed to flow through a packed bed of an iron-based metal to deposit selenium on the surface of the iron-based metal. The present invention relates to a method for treating a selenium-containing solution by contacting with a ferrous metal at a temperature of not less than ° C.
本発明の好ましい態様は、 上記処理方法において、 セレン及び他の金属無機酸 塩を含有する溶液の P H値を 3〜 7に調整すること ;他の金属無機酸塩が、 アル 力リ金属及びアル力リ土類金属の硫酸塩であること ;セレン及び他の金属無機酸 塩を含有する溶液を、 鉄系金属の充塡層を上向流で流通させること ; セレン及び 他の金属無機酸塩を含有する溶液を鉄系金属の充塡層と接触させる際、 充塡層内 の該溶液の P H値を 3〜7に保持しながら接触させること ; セレン及び他の金属 無機酸塩を含有する溶液の P H値を 3〜 7に調整すること及び該 p H調整後の溶 液を鉄系金属の充填層に接触させることよりなる工程を複数回繰り返すこと ;セ レン及び他の金属無機酸塩を含有する溶液を、 鉄系金属の充塡層に流通させる際、 該充塡層に酸を添加し層内における溶液の P H値を 3〜 7に保持することからな る方法であり、 又、 別の態様としては、 鉄系金属を収容した反応缶に、 セレン及 び他の金属無機酸塩を含有する溶液と希酸を添加し、 p H値を 3〜7に保持しな がら撹拌下、 3 0 °C以上の温度において接触反応させることよりなるセレン含有 溶液の処理方法である。 In a preferred aspect of the present invention, in the above treatment method, the pH value of the solution containing selenium and another metal inorganic acid is adjusted to 3 to 7; Being a sulfate of lithium earth metal; flowing a solution containing selenium and other metal inorganic acid in an upward flow through a bed of iron-based metal; When a solution containing another metal inorganic acid salt is brought into contact with a packed layer of an iron-based metal, the solution is maintained while maintaining the PH value of the solution in the packed layer at 3 to 7; selenium and other metals Adjusting the pH value of the solution containing the inorganic acid salt to 3 to 7 and contacting the pH-adjusted solution with the packed bed of iron-based metal a plurality of times; When a solution containing another metal inorganic acid salt is passed through a packed bed of iron-based metal, an acid is added to the packed bed to maintain the PH value of the solution in the bed at 3 to 7. In another embodiment, a solution containing selenium and other metal inorganic acid salts and a dilute acid are added to a reaction vessel containing an iron-based metal, and the pH value is adjusted to 3 to 7 This is a method for treating a selenium-containing solution by subjecting it to a contact reaction at a temperature of 30 ° C or higher while stirring while maintaining the temperature.
本発明の他の好ましい態様としては、 上記処理方法において鉄系金属は、 繊維 状、 多孔体、 微細片板状、 粒状或いは粉状であること ;鉄系金属は、 繊維状であ ること ;鉄系金属が、 切削法により繊維状とされたものであること ;鉄系金属 が、 直径 0 1〜0 . 3 mmの繊維状であること ;鉄系金属が、 スチールウー ルであること ;鉄系金属は、 多孔性であること ;鉄系金属は、 表面積が 0 . 0 0 1 m 2Z g以上の鉄であること ;鉄系金属は、 カラム容積あたりの鉄の表面積が 0 . 0 0 0 1 m2Zm 1以上の鉄であること ;鉄系金属は、 カラムへの担持量が 0 . 0 1 gZm l以上 3 gZm 1以下であることからなる方法である。 In another preferred embodiment of the present invention, in the above-mentioned treatment method, the iron-based metal is fibrous, porous, fine plate-like, granular, or powdery; the iron-based metal is fibrous; The ferrous metal is fibrous by a cutting method; the ferrous metal is fibrous with a diameter of 0.1 to 0.3 mm; the ferrous metal is steel wool; The iron-based metal must be porous; the iron-based metal must be iron having a surface area of at least 0.001 m 2 Zg; and the iron-based metal has an iron surface area of 0.0 per column volume. 0.1 m 2 Zm 1 or more iron; This is a method in which the amount of iron-based metal supported on the column is from 0.01 gZm 1 to 3 gZm 1.
本発明方法が対象とする好適な処理溶液としては、 セレン及び他の金属無機酸 塩を含有する溶液が、 セレン濃度の 1 0 0倍以上の硫酸イオンを含有する溶液で あること ; セレン及び他の金属無機酸塩を含有する溶液が、 弱酸強塩基塩、 強酸 弱塩基塩、 弱酸弱塩基塩および/または金属錯塩を含むこと ;弱酸強塩基塩、 強 酸弱塩基塩、 弱酸弱塩基塩および Zまたは金属錯塩が、 アンモニゥム塩、 炭酸塩、 リン酸塩、 ホウ酸塩、 カルボン酸塩、 アルミニウム錯^、 銅錯塩、 コバルト錯塩 および Zまたは鉄錯塩であることが挙げられる。  Preferred treatment solutions for the method of the present invention include a solution containing selenium and another metal inorganic acid salt containing a sulfate ion having a concentration of 100 times or more the selenium concentration; The solution containing a metal inorganic acid salt of (a) contains a weak acid strong base salt, a strong acid weak base salt, a weak acid weak base salt and / or a metal complex salt; a weak acid strong base salt, a strong acid weak base salt, a weak acid weak base salt and The Z or metal complex salt may be an ammonium salt, a carbonate, a phosphate, a borate, a carboxylate, an aluminum complex, a copper complex, a cobalt complex and a Z or iron complex.
本発明は、 セレン及び他の金属無機酸塩を含有する溶液を 3 0 °C以上の温度に おいて、 鉄系金属の充塡層を流通させて該鉄系金属の表面にセレンを析出させる 工程及び該鉄系金属の表面に析出しだセレンを焼却或いは剥離処理に付し回収す る工程からなるセレン含有溶液の処理方法を包含し、 該方法は剥離処理が希酸と の接触または超音波処理であること ;希酸との接触または超音波処理により鉄系 金属の再生が行われることよりなる方法であり、 更に、 セレン及び他の金属無機 酸塩を含有する溶液を 3 0 °C以上の温度において鉄系金属の充塡層を流通させて 該鉄系金属の表面にセレンを析出させる工程、 該鉄系金属の表面に析出したセレ ンを焼却或いは剥離処理に付し回収する工程及び該工程におけるセレン回収能の 低下に応じて溶液温度を上昇させる、 溶液の p H値を低下させる及びノまたは溶 液の通液速度を低下させる工程からなる処理方法も本発明方法に含まれる。 The present invention provides a solution containing selenium and another metal inorganic acid salt at a temperature of 30 ° C. or more, and flows through a packed layer of an iron-based metal to precipitate selenium on the surface of the iron-based metal. A method of treating a selenium-containing solution, comprising a step of incinerating or recovering selenium deposited on the surface of the iron-based metal by incineration or stripping treatment. Contact or ultrasonic treatment; regenerating the iron-based metal by contact with a dilute acid or ultrasonic treatment. In addition, a solution containing selenium and other metal inorganic acid salts is used. A step of flowing a packed bed of iron-based metal at a temperature of 30 ° C. or more to precipitate selenium on the surface of the iron-based metal, and subjecting selenium deposited on the surface of the iron-based metal to incineration or peeling treatment The present invention also provides a treatment method comprising a step of recovering and recovering the solution and a step of increasing the solution temperature in accordance with the decrease in the selenium recovery ability in the step, decreasing the pH value of the solution, and decreasing the flow rate of the solution or solution. Included in the method.
本発明の他の好ましい態様は、 セレン化合物を含有する溶液であって、 かつ、 中性付近に緩衝作用を示す化合物を含有する溶液を処理するに当たり、 該溶液か ら中性付近に緩衝作用を示す化合物を除去する工程と、 該溶液を中性から酸性側 でセレン化合物を還元、 除去する能力を有する処理剤と接触させてセレン化合物 を除去する工程とを含む処理方法であり、 該処理方法は、 中性付近に緩衝作用を 示す化合物を除去する工程の後、 中性から酸性側でセレン化合物を還元、 除去す る能力を有する鉄系金属からなる処理剤と接触させてセレン化合物を除去するェ 程を行うこと ;中性から酸性側でセレン化合物を還元、 除去する能力を有する処 理剤が、 鉄系金属であること ;中性付近に緩衝作用を示す化合物が、 ホウ素化合 物及び Z又はアルミニウム化合物であること ;中性付近に緩衝作用を示す化合物 力 ホウ素化合物であること ;中性付近に緩衝作用を示す化合物の除去を、 ホウ 酸選択性樹脂を用いて行うこと ;ホウ酸選択性樹脂が、 グルカミン型キレ一ト樹 脂であること ;中性付近に緩衝作用を示す化合物がアルミニウム化合物であって、 該アルミニゥム化合物を凝集沈澱処理により除去することからなる方法を含むも のである。 図面の簡単な説明  In another preferred embodiment of the present invention, when a solution containing a selenium compound and containing a compound exhibiting a buffer action near neutrality is treated, a buffer action from the solution to near neutrality is obtained. A process for removing the compound represented by the formula: and contacting the solution with a treating agent capable of reducing and removing the selenium compound from neutral to acidic side to remove the selenium compound. Removes the selenium compound by contacting it with a treatment agent composed of an iron-based metal that has the ability to reduce and remove the selenium compound from the neutral to the acidic side after the step of removing the compound exhibiting a buffering action near neutrality The treating agent having the ability to reduce and remove the selenium compound from neutral to acidic side is an iron-based metal; and the compound having a buffering action near neutral is a boron compound and Z or an aluminum compound; a compound exhibiting a buffering action near neutrality; a boron compound; removing a compound having a buffering action near neutrality using a boric acid selective resin; boric acid The selective resin is a glucamine-type chelating resin; the compound having a buffering action near neutrality is an aluminum compound, which includes a method comprising removing the aluminum compound by coagulation and precipitation; is there. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 N a 2 S 0 4と(N H 4 ) 2 S C の滴定曲線を示す図である。 発明を実施するための最良の形態 FIG. 1 is a diagram illustrating a N a 2 S 0 4 a (NH 4) 2 SC titration curve. BEST MODE FOR CARRYING OUT THE INVENTION
以下本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明で処理されるセレン含有溶液としては、 主としてガラスの脱色剤、 複写 機の感光体、 整流器、 半導体材料、 電池材料、 アルミニウムなどの種々の製造ェ 場の排水、 セレンの精鍊業ゃセレン化合物の製造工場の排水、 或いは火力発電所 の排水を対象とするが、 その中に含有されているセレンは、 排水の出所源により 種々のセレン化合物として存在しており、 例えばセレン酸、 二酸化セレン、 三酸 化セレン、 亜セレン酸、 四塩化セレン、 セレン化ソーダ、 セレン化カリウム、 フ エロセン、 セレン化銅、 セレン化ニッケル等のセレン化合物、 亜セレン酸ナトリ ゥム、 亜セレン酸カリウム、 亜セレン酸バリウム等の亜セレン酸塩、 セレン酸ナ トリウム、 セレン酸カリウム、 セレン酸バリウム等のセレン酸塩等が挙げられる。 溶液中のセレン濃度もその排水の種類より相違するが、 例えば火力発電所からの 排水中には、 通常、 0 . 2〜5 p p m (セレンとして) 含有されている。 The selenium-containing solution to be treated in the present invention is mainly a decolorizing agent for glass, copying Wastewater from various factories such as photoconductors, rectifiers, semiconductor materials, battery materials, aluminum, etc., wastewater from selenium refineries, selenium compound manufacturing plants, or thermal power plants The selenium contained therein exists as various selenium compounds depending on the source of the wastewater.For example, selenic acid, selenium dioxide, selenium trioxide, selenous acid, selenium tetrachloride, sodium selenide, selenide Selenium compounds such as potassium, ferrocene, copper selenide, nickel selenide, sodium selenite, potassium selenite, potassium selenite, barium selenite, etc., sodium selenate, potassium selenite, selenium Selenates such as barium acid; The selenium concentration in the solution also differs depending on the type of wastewater, but for example, wastewater from thermal power plants usually contains 0.2 to 5 ppm (as selenium).
また、 これらの排水中には、 通常セレン以外の他の金属の無機酸塩が含有され ており、 例えば硫酸ナトリウム、 硫酸マグネシウム、 塩化ナトリウム、 塩化マグ ネシゥム等のアルカリ金属、 アルカリ土類金属の硫酸塩、 塩化物、 銅、 クロム、 ニッケル等の重金属塩がセレンと共に含有されているが、 これらの塩を含む溶液 を本発明の処理方法に適用するのが効果的である。 特に、 本発明方法の処理液で あるセレン及び他の金属無機塩類を含有する溶液は、 セレン濃度の 1 0 0倍以上 の硫酸イオンを含有する溶液であり、 セレン以外の他の金属無機酸塩が、 アル力 リ金属及びアル力リ土類金属の硫酸塩であることが好ましい。  In addition, these wastewaters usually contain inorganic salts of metals other than selenium. For example, alkali metals such as sodium sulfate, magnesium sulfate, sodium chloride, magnesium chloride, etc., and sulfuric acid of alkaline earth metals Heavy metal salts such as salts, chlorides, copper, chromium, and nickel are contained together with selenium, and it is effective to apply a solution containing these salts to the treatment method of the present invention. In particular, the solution containing selenium and other metal inorganic salts, which is the treatment liquid of the method of the present invention, is a solution containing sulfate ions having a concentration of 100 times or more the selenium concentration, and other metal inorganic acid salts other than selenium. Is preferably a sulfate of an alkaline metal or an alkaline earth metal.
また、 以下で述べる p H値を一定範囲に制御する方法をとる場合は、 とくにセ レン以外の他の金属無機酸塩を含有する溶液が、 弱酸強塩基塩、 強酸弱塩基塩、 弱酸弱塩基塩および Zまたは金属錯塩を含む溶液、 即ち、 酸解離定数が 1 0— 2〜 1 0—1 ϋの範囲にあるような物質を含む溶液であることが好ましい。 弱酸強塩基 塩、 強酸弱塩基塩、 弱酸弱塩基塩および/または金属錯塩としては、 アンモニゥ ム塩、 炭酸塩、 リン酸塩、 ホウ酸塩、 カルボン酸塩、 アルミニウム錯塩、 銅錯塩、 コバルト錯塩および Ζまたは鉄錯塩のいずれかであることが好ましい。 When the pH value described below is controlled within a certain range, the solution containing a metal inorganic acid salt other than selenium may be a weak acid strong base salt, a strong acid weak base salt, or a weak acid weak base. the solution containing the salt and Z or metal complex salts, i.e., preferably has an acid dissociation constant is a solution containing a substance that is in the range of 1 0- 2 ~ 1 0- 1 ϋ . Examples of the weak acid strong base salt, strong acid weak base salt, weak acid weak base salt and / or metal complex salt include ammonium salt, carbonate, phosphate, borate, carboxylate, aluminum complex, copper complex, cobalt complex and It is preferred that the compound is either Ζ or an iron complex salt.
更に、 本発明においては、 上記セレン及び他の金属無機酸塩類を含有する溶液 力く、 溶液中に中性付近に緩衝作用を示す化合物を含有している場合も有効である 中性付近に緩衝作用を示す化合物としては、 一般には弱酸強塩基塩、 強酸弱塩基 塩、 弱酸弱塩基塩、 錯化合物あるいは水酸化物を形成する金属イオン化合物が挙 げられる。 具体的には、 酸解離定数が 1 0— 2〜 1 0— 1 2 の範囲の化合物であり、 アンモニゥム塩、 炭酸塩、 リン酸塩、 ホウ酸塩、 カルボン酸塩、 アルミニウム錯 塩、 銅錯塩、 コバルト錯塩、 鉄錯塩、 水酸化アルミニウムなどの金属水酸化物等 が挙げられる。 このような物質が存在するセレン含有溶液では、 鉄系金属との接 触によるセレン除去能の低下をもたらすが、 本発明においては、 後述するように これらの緩衝成分を除去する工程を、 セレンを除去する工程と順次或いは同時に 行うことにより、 セレン除去能の低下を阻止し得るのである。 Furthermore, in the present invention, a solution containing the above-mentioned selenium and other metal inorganic acid salts is powerful, and is effective even when the solution contains a compound having a buffering action near neutrality. Compounds having an action generally include a weak acid strong base salt, a strong acid weak base salt, a weak acid weak base salt, a complex compound, or a metal ion compound forming a hydroxide. I can do it. Specifically, a compound ranging acid dissociation constant of 1 0 2 to 1 0 1 2, Anmoniumu salts, carbonates, phosphates, borates, carboxylates, aluminum complex salts, copper complex , Cobalt complex salts, iron complex salts, and metal hydroxides such as aluminum hydroxide. A selenium-containing solution in which such a substance is present causes a decrease in selenium removal ability due to contact with an iron-based metal.In the present invention, however, a step of removing these buffer components is performed by removing selenium as described later. By performing the removal step sequentially or simultaneously, a decrease in the selenium removal ability can be prevented.
セレン含有溶液に含まれる緩衝成分量は、 少なければ少ないほど好ましいが、 特に規定されるものではなく、 好ましくは 1 0 0 p p m以下、 さらに好ましくは 1 0 p p m以下であればよい。  The amount of the buffer component contained in the selenium-containing solution is preferably as small as possible, but is not particularly limited, and is preferably 100 ppm or less, more preferably 10 ppm or less.
このように緩衝成分の存在により、 以下の工程におけるセレン除去の効率が低 下する原因は明らかではないが、 鉄系金属との接触時において、 緩衝成分の存在 により溶液の p Hが上昇し、 その結果、 セレン化合物を最適に除去できる中性〜 酸性側の p H範囲を越えてしまうためであると考えられる。  Although it is not clear why the presence of the buffer component reduces the efficiency of selenium removal in the following steps, the pH of the solution increases due to the presence of the buffer component during contact with the iron-based metal, As a result, it is considered that the pH exceeds the neutral to acidic pH range at which the selenium compound can be optimally removed.
本発明方法で処理されるセレン含有溶液の p H値は、 通常 2〜 1 0の範囲に調 整するのがよく、 好ましくは 3〜7, 特に好ましくは 3〜4である。 鉄によるセ レンの除去速度は、 p Hが低いほど速くなるので、 反応速度の観点では p Hは低 いほどよいが、 p Hが低くなると鉄とプロ トンとの反応により、 鉄イオンの溶出 が多くなることに加えて、 p H調整のために加えられる酸も多量となる。 このた め、 2より低い p Hは実用的でない。 一方、 p Hが 1 0を越えると反応性が低下 し本発明の効果が達成されず好ましくない。  The pH value of the selenium-containing solution to be treated by the method of the present invention is usually adjusted in the range of 2 to 10, preferably 3 to 7, and particularly preferably 3 to 4. The lower the pH, the faster the removal of selenium by iron; therefore, the lower the pH, the better the reaction rate.However, when the pH is low, the reaction between iron and protons elutes iron ions. In addition to this, the amount of acid added for pH adjustment also increases. For this reason, a pH lower than 2 is not practical. On the other hand, when the pH exceeds 10, the reactivity decreases, and the effect of the present invention is not achieved, which is not preferable.
p Hの調整は、 酸或いはアルカリを用いて行われるカ'、 酸としては塩酸、 硫酸、 硝酸、 リン酸等の無機酸が用いられ、 アル力リとしては、 水酸化ナトリウム、 水 酸化力リウム等のアル力リ金属水酸化物が挙げられる。  The pH is adjusted by using an acid or an alkali. As the acid, an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid or the like is used. As the alkali, sodium hydroxide, hydroxide hydroxide And the like.
本発明では、 セレンを析出させるために鉄系金属を使用するが、 ここで鉄系金 属とは、 純粋な金属鉄及びクロム、 マンガン等の他の金属を含む合金鉄も包含す るものである。 鉄系金属としては、 具体的には、 電解鉄、 低炭素鋼、 中炭素鋼、 高炭素鋼、 極軟鋼、 軟鋼、 合金鋼、 銑鉄、 铸鉄、 リムド鋼、 キャップド鋼、 セミ キルド鋼、 キルド鋼、 クラッ ド鋼、 粗鋼、 鋼塊等が挙げられる。 本発明ではこれらの鉄系金属を所望の形状に成形加工した成型品として使用す ることができるが、 それらは熱間圧延品、 冷間圧延品、 圧縮品、 押出加工品、 引 抜加工品、 塑性加工品、 緞造品、 铸鋼品等のいずれでも良い。 In the present invention, an iron-based metal is used for precipitating selenium. Here, the iron-based metal includes pure metal iron and alloyed iron containing other metals such as chromium and manganese. is there. Specific examples of iron-based metals include electrolytic iron, low-carbon steel, medium-carbon steel, high-carbon steel, mild steel, mild steel, alloy steel, pig iron, gray iron, rimmed steel, capped steel, semi-killed steel, Examples include killed steel, clad steel, crude steel, and ingots. In the present invention, these ferrous metals can be used as molded products formed into a desired shape, but they are hot-rolled products, cold-rolled products, compressed products, extruded products, drawn products. , Plastic work, curtain, steel, etc.
本発明で使用される鉄系金属の形状は特に制限されないが、 本発明の処理方法 では、 処理されるセレン含有溶液との接触還元反応により溶液中のセレンを鉄系 金属の表面に析出させるので、 出来るだけ接触表面積が多い形状が望ましく、 更 に、 処理塔に充塡した場合、 容易に均質な充填層を形成することのできる形状が 好ましい。 具体的には、 スチール ' ウール等の細い繊維状の線材、 板状細片、 紛 状体、 粒状体、 微粒チップ等が挙げられる力く、 スチール ·ウールが好ましい。 板状のものはカラムへの充填が困難であり、 また、 表面積が小さくなる欠点を 有する。 また、 粒状及び粉状のものは粒子径を小さくするとカラム内で圧密化の 問題が生じ粒子径を大きくすると表面積がかせげない。 さらに、 粒状、 粉状のも のでは鉄が最密に充塡されるため装置全体の重量が大きくなる問題がある。  The shape of the iron-based metal used in the present invention is not particularly limited. However, in the treatment method of the present invention, selenium in the solution is precipitated on the surface of the iron-based metal by a catalytic reduction reaction with the selenium-containing solution to be treated. It is desirable to have a shape having as large a contact surface area as possible, and further, a shape capable of easily forming a homogeneous packed bed when filled in a treatment tower is preferred. Specifically, a steel fibrous wire rod such as steel wool, a plate-like strip, a powdery substance, a granular substance, a fine chip, and the like are cited, and a steel wool is preferable. Plates have the drawback that it is difficult to pack them into columns and the surface area is small. In the case of granular and powdery materials, if the particle size is reduced, there is a problem of consolidation in the column. If the particle size is increased, the surface area cannot be increased. Further, there is a problem that the weight of the whole apparatus is increased because iron is filled most densely in the form of particles or powder.
ここで、 繊維状のものが、 表面積、 充塡密度の調整が容易で、 最適に用いられ る。 繊維状の鉄としては、 繊維径が小さいものが適している。 好ましい繊維径は、 直径 0 1〜 3 mmである。  Here, the fibrous material is easily used for adjusting the surface area and the filling density, and is optimally used. As the fibrous iron, iron having a small fiber diameter is suitable. The preferred fiber diameter is from 0 to 3 mm.
繊維状の鉄系金属の加工方法としては、 例えば、 引き抜き法、 溶融紡糸法、 切 削法等の方法が用いられる (中川威雄ら、 繊維学会誌、 39巻、 4号、 121〜127頁、 1983年) が、 この中でも切削法により製造されたものが好ましい。  Examples of the method for processing the fibrous iron-based metal include a drawing method, a melt spinning method, and a cutting method. (Takeo Nakagawa et al., Textile Society Journal, Vol. 39, No. 4, pp. 121-127, 1983), but among them, those manufactured by the cutting method are preferable.
これは、 切削法を用いることにより繊維径がより小さいものが製造できること、 及び切削法により得られる繊維状金属の表面の形態がセレンの吸着に適している ことによると思われる。  This seems to be due to the fact that a smaller fiber diameter can be manufactured by using the cutting method, and that the surface morphology of the fibrous metal obtained by the cutting method is suitable for selenium adsorption.
ここで、 切削法とは、 金属ブロックを刃物で削り出し、 細かい切屑を排出しな がら所望形状を得るものであるが、 この切屑を繊維として利用したものが切削法 により得られる繊維状金属である。 より微細な断面を持つ繊維を定常的に削り出 す方法としてワイヤ切削法があり、 その代表的なものとしてはワイヤ切削法によ るスチールウールの製造が挙げられる。 このスチールウールが本発明のセレン除 去に最も適している。  Here, the cutting method refers to cutting a metal block with a knife and discharging fine chips to obtain a desired shape.A fiber that uses these chips as fibers is a fibrous metal obtained by the cutting method. is there. A wire cutting method is a method for constantly cutting fibers having a finer cross section, and a typical example is the production of steel wool by the wire cutting method. This steel wool is most suitable for the selenium removal of the present invention.
また、 鉄の形状に関わらず、 多孔性のものが表面積を高くする上で有利であり、 充塡密度も制御できるため、 好適に用いられる。 鉄多孔質体に関しては、 焼結法、 メツキ法、 発泡法、 加圧铸造法等により製造することができ、 空孔径、 空孔形態 等に特に制限なく使用できる。 Also, regardless of the shape of the iron, a porous material is advantageous in increasing the surface area, Since the filling density can be controlled, it is preferably used. The iron porous body can be manufactured by a sintering method, a plating method, a foaming method, a pressure forming method, or the like, and can be used with no particular limitation on the pore diameter, the pore shape, and the like.
鉄系金属の表面積に関しては、 鉄の形状によらず 0 . 0 0 l m 2Z g以上であ ることが好ましい。 鉄とセレンとの反応は鉄表面から進行していくため、 鉄の表 面積が小さくなると、 反応速度が小さくなりセレンが効率よく除去できない。 また、 同様の理由でカラム容積あたりの鉄系金属の表面積も制限され、 カラム 容積あたり 0 . 0 0 0 1 m 2Zm 1以上であることが好ましい。 Regarding the surface area of the iron-based metal, it is preferable that the surface area is not less than 0.001 lm 2 Zg regardless of the shape of the iron. Since the reaction between iron and selenium proceeds from the iron surface, if the surface area of iron is small, the reaction rate is low and selenium cannot be removed efficiently. For the same reason, the surface area of the iron-based metal per column volume is also limited, and is preferably 0.001 m 2 Zm 1 or more per column volume.
また、 カラムへの鉄の担持量は設備上の面で制限を受ける。 鉄の比重は 7. 86 g ノ c m 3であり、 通常のイオン交換樹脂等の担体の比重が 1前後であるのと比較 して非常に大きい。 このため、 通常のイオン交換樹脂等を担持する設備とは異な る特別の設備が必要である。 よって、 カラムへの充塡量は、 低くするのが実用的 である。 担持量をあまりに低くするとセレンの除去性が低下するので、 カラム容 積換算で 0 . 0 1 g /m l以上 3 g Zm l以下であることが好ましく、 より好ま しくは 0 . 0 5 g Zm 1以上 1 g /m 1以下である。 In addition, the amount of iron carried on the column is limited in terms of equipment. The specific gravity of iron is 7.86 g / cm 3, which is much higher than the specific gravity of a carrier such as ordinary ion exchange resin, which is around 1. For this reason, special equipment that is different from equipment that normally carries ion exchange resins is required. Therefore, it is practical to reduce the amount of charge to the column. If the supported amount is too low, the selenium removability will be reduced. Therefore, it is preferably from 0.01 g / ml to 3 g Zml, more preferably from 0.05 g Zm 1 in terms of column volume. Not less than 1 g / m 1.
本発明方法では、 繊維状、 多孔体、 粒状、 粉状等の適当な形状の鉄系金属を処 理塔に充填して形成された充塡層に、 セレン及び他の金属塩を含有する被処理溶 液を通水することによって接触させ、 セレンを鉄等の金属の表面に析出させるが、 その際、 接触処理を 3 0 °C以上で行うことが必要であり、 好ましくは 4 5〜9 0 °Cの温度範囲において実施される。 接触温度が 3 0 °Cより低いと鉄によるセレン の還元反応が殆ど進行せず、 溶液中からセレンを回収 ·除去することが困難であ る。 また、 温度を必要以上に高温にすることは操作性、 経済性の面で好ましくな く、 場合によっては廃液中に共存する他の成分の影響を受けることもあるので望 ましくない。  According to the method of the present invention, a packed bed formed by filling a treatment tower with an iron-based metal having an appropriate shape such as a fibrous, porous, granular, or powdery material is coated with selenium and other metal salts. The treatment solution is brought into contact by passing water to precipitate selenium on the surface of a metal such as iron.At this time, the contact treatment needs to be performed at 30 ° C or higher, and preferably 45 to 9 ° C. It is performed in a temperature range of 0 ° C. If the contact temperature is lower than 30 ° C, the reduction reaction of selenium with iron hardly proceeds, and it is difficult to recover and remove selenium from the solution. Further, it is not desirable to raise the temperature to an unnecessarily high temperature in terms of operability and economy, and in some cases, it may be affected by other components coexisting in the waste liquid.
接触温度は、 外部からの加熱により充塡塔内の温度を所定の範囲に維持するこ とにより制御しても、 被処理溶液を所定の温度に加温して充塡塔に供給すること により維持しても良い。  Even if the contact temperature is controlled by maintaining the temperature inside the packed tower within a predetermined range by external heating, the contact temperature can be controlled by heating the solution to be treated to a predetermined temperature and supplying it to the packed tower. May be maintained.
被処理溶液の充塡塔への通液は、 下向流、 上向流のいずれでも良いが、 鉄金属 との接触を十分行うのには、 充塡塔の下部より上向流で通液するのが好ましい。 被処理溶液の通液速度は、 充塡塔の規模、 鉄系金属の種類、 温度等の処理条件 等によっても異なる力 通常、 S V (空間速度、 単位: h— ' ) = 2〜 1 0の範囲 で操作される。 Flow of the solution to be treated into the packed tower may be either a downward flow or an upward flow, but in order to make sufficient contact with the iron metal, the solution is passed upward from the bottom of the packed tower. Is preferred. The flow rate of the solution to be treated depends on the size of the packed tower, the type of iron-based metal, the processing conditions such as temperature, etc. Normally, SV (space velocity, unit: h— ') = 2 to 10 Operated on a range.
本発明方法において、 セレン除去の反応速度を決定するファクタ一として、 温 度、 p H、 S Vが挙げられる。 個々の条件に関しては既に述べたが、 反応速度を 向上させるには、 温度は高いほどよく、 p Hは低いほどよく、 S Vは低いほどよ い。 し力、し、 これらのファクタ一を反応速度を向上させるために、 上記のように 設定することは経済性の観点ではマイナスの方向である。 温度を上げ、 p Hを下 げるのはそれに必要なコス卜の増加を招き、 S Vを下げることは単位時間当たり の処理量が減少するため、 より大きな設備を必要とする。 このため、 セレン含有 溶液中のセレンの濃度、 無機塩量、 処理後の溶液中のセレン濃度の設定値等によ り、 運転条件を選ぶことになる。  In the method of the present invention, temperature, pH, and SV are factors that determine the reaction rate of selenium removal. As already mentioned for the individual conditions, the higher the temperature, the lower the pH, the better and the lower the SV, the better the reaction rate. Setting these factors to improve the reaction speed as described above is a negative direction in terms of economy. Increasing the temperature and lowering the pH will increase the cost required for it, and lowering the SV will require more equipment as the throughput per unit time will decrease. For this reason, the operating conditions are selected according to the selenium concentration in the selenium-containing solution, the amount of the inorganic salt, the set value of the selenium concentration in the solution after the treatment, and the like.
セレン及び他の金属無機酸塩を含有する溶液の p Hを接触層内において 3から 7の間に保った状態で鉄系金属と接触させるための方法としては、 一般的に原液 の p Hを 3〜4とし、 繊維径 1 0 ~ 1 0 0〃mの繊維状金属を充塡密度 0 . 0 1 〜 0 . 5 g /m 1程度に充填したカラムに S V = 1〜 1 0程度で通液すればよ い。 原液組成によりこの条件で p Hを 3〜 7の範囲に保てない場合、 流速を上げ るか、 鉄の充塡量或いは鉄の単位容積あたりの表面積を下げればよい。  As a method for bringing the pH of a solution containing selenium and another metal inorganic acid salt into contact with an iron-based metal while maintaining the pH in the contact layer at 3 to 7, generally, the pH of a stock solution is used. 3 to 4 and passed through a column packed with fibrous metal with a fiber diameter of 100 to 100 μm to a packing density of about 0.01 to 0.5 g / m1 at SV = about 1 to 10 Just liquid. If the pH cannot be kept in the range of 3 to 7 under these conditions due to the composition of the stock solution, the flow rate may be increased, or the iron filling amount or the surface area per unit volume of iron may be reduced.
本発明方法を実施する一方法として、 セレン及び他の金属無機酸塩を含有する 溶液の p Hを調整し、 これを鉄系金属を充填したカラムに添加する方法を挙げる ことができる。 しかして、 一般に鉄系金属と酸性溶液を接触させると経時的にプ 口トンが消費され、 P H値は徐々に上昇し、 セレンを最適に除去できる p Hであ る 3〜7の範囲を超える場合がある。 この場合、 溶液の流速や鉄系金属の充塡密 度を変えないでカラムの充塡層高を高くしてもセレンは除去されず、 いたずらに 鉄系金属が消費されるだけである。 それ故、 カラム内部の鉄系金属の濃度、 ある いは流速を変えることによって、 カラム内の p H値をセレンを最適に除去できる 3〜 7の範囲に維持し、 その状態でセレンの除去を行うのが好ましい。  As one method of carrying out the method of the present invention, a method of adjusting the pH of a solution containing selenium and other metal inorganic acid salts and adding the solution to a column filled with an iron-based metal can be mentioned. However, in general, when an iron-based metal is brought into contact with an acidic solution, the metal is consumed over time, and the PH value gradually rises, exceeding the range of 3 to 7, which is a pH at which selenium can be optimally removed. There are cases. In this case, even if the packed bed height of the column is increased without changing the flow rate of the solution or the packing density of the iron-based metal, selenium is not removed, and the iron-based metal is simply consumed unnecessarily. Therefore, by changing the concentration or flow rate of the iron-based metal in the column, the pH value in the column is maintained in the range of 3 to 7 in which selenium can be optimally removed, and selenium removal is performed in that state. It is preferred to do so.
また、 金属鉄はセレン含有溶液と接触してまず F e (I I)に酸化されるが、 接触 層内の p Hが 7を超える領域では水酸化鉄( 1 1 )の沈澱が生成し、 この沈澱物が力 ラム法処理の障害となる。 従って、 この点においても p H値を 7以下に制御する ことが好ましい。 In addition, metallic iron is first oxidized to Fe (II) upon contact with the selenium-containing solution, but in the region where the pH exceeds 7 in the contact layer, a precipitate of iron hydroxide (11) is formed. Precipitate is power An obstacle to Ram processing. Therefore, in this regard, it is preferable to control the pH value to 7 or less.
力ラム法において、 接触層内での p Hの上昇を抑え好適な範囲に維持するのに は、 溶液の流速を上げるか、 あるいは充塡している鉄系金属の量を減じる、 換言 すれば、 充填している鉄系金属の表面積を少なくすればよい。 この方法によれば、 消費される鉄系金属の量を抑制しながらセレンを除去することができるため、 鉄 系金属量あたりのセレン含有溶液の処理量は大きくなり効率的である。  In the force ram method, increasing the flow rate of the solution or reducing the amount of the ferrous metal charged, in other words, reducing the pH increase in the contact layer and maintaining the pH in a suitable range, in other words, However, the surface area of the ferrous metal that is being filled may be reduced. According to this method, selenium can be removed while suppressing the amount of iron-based metal consumed, so that the processing amount of the selenium-containing solution per iron-based metal amount is large and efficient.
カラム法において、 この方法により p H値を 3〜7に制御する場合、 セレン及 び他の金属無機酸塩を含有する溶液の組成、 緩衝作用によつて操作条件は変化す るので、 原液組成に応じて適宜条件を選択すればよい。  In the column method, when the pH value is controlled to 3 to 7 by this method, the operating conditions vary depending on the composition of the solution containing selenium and other metal inorganic acid salts and the buffering action. Conditions may be appropriately selected according to the conditions.
とくに、 上記で述べたように、 セレン以外の他の金属無機酸塩を含有する溶液 が、 弱酸強塩基塩、 強酸弱塩基塩、 弱酸弱塩基塩および Zまたは金属錯塩を含む 溶液、 すなわち、 酸解離定数が 1 0— 2〜 1 0 - 1 ϋの範囲にあるような物質を含む 溶液である場合は、 p H値を制御する必要が生じる場合が多い。 このような場合 は、 中性付近でも金属鉄の酸による消費が多くなり、 p H値が 7以上に上昇する ことが多い。 p H値が 7以上の領域では、 セレンは除去されず、 金属鉄のみが消 費されるため、 経済的でない。 よって、 このような緩衝作用を示す物質が存在す る場合は、 特に上記のような p H値を 3〜7に制御する必要がある。 これは、 弱 酸強塩基塩、 強酸弱塩基塩、 弱酸弱塩基塩および Ζまたは金属錯塩を含む溶液の p H挙動が強酸強塩基塩の場合と異なるためである。 第 1図に代表的な強酸強塩 基塩型 [N a 2 S 0 4]と強酸弱塩基塩型 [(N H 4) 2 S 0 Jの滴定曲線の慨形を示す。 本発明においては、 セレン以外の他の金属無機酸塩を含有する溶液が、 第 1図の 強酸弱塩基塩型の滴定曲線と同様な挙動を示すものが、 好ましいといえる。 なお、 火力発電所からの排水はこのような挙動を示す場合が多い。 In particular, as described above, a solution containing a metal inorganic acid salt other than selenium is a solution containing a weak acid strong base salt, a strong acid weak base salt, a weak acid weak base salt and Z or a metal complex salt, that is, an acid. dissociation constant is 1 0 2 to 1 0 - If a solution containing a substance that is in the range of 1 Y is often necessary to control the p H value occurs. In such a case, the consumption of metallic iron by acid increases even near neutrality, and the pH value often rises to 7 or more. In the region where the pH value is 7 or more, selenium is not removed, and only metallic iron is consumed, which is not economical. Therefore, when a substance having such a buffering action is present, it is particularly necessary to control the pH value to 3 to 7 as described above. This is because the pH behavior of a solution containing a weak acid strong base salt, a strong acid weak base salt, a weak acid weak base salt and Ζ or a metal complex salt is different from that of a strong acid strong base salt. In Figure 1 shows the慨形typical strong strong salt Motoshio type [N a 2 S 0 4] with a strong acid weak base salt form [(NH 4) 2 S 0 J titration curve. In the present invention, it is preferable that a solution containing a metal inorganic acid salt other than selenium behaves similarly to the titration curve of the strong acid weak base salt type shown in FIG. Note that wastewater from thermal power plants often exhibits such behavior.
セレン及び他の金属無機酸塩を含有する溶液の鉄系金属による処理が 1回の力 ラム処理で所定のセレン濃度まで低減できなかつた場合は、 その一次処理で得ら れたセレン及び他の金属無機酸塩を含有する溶液の p H値を 3〜 7に再調整し、 鉄系金属の充塡層に接触させる如く、 溶液の p H調整と接触処理とからなる工程 を複数回繰り返すことにより所望値を達成することができる。 通常は、 該操作ェ 程を 2ないし 3回繰り返せばよい。 ここで、 一次処理水の P H調整をし、 再び充 塡層カラムに添加する際、 一次処理に用いたカラムを用いてもよいし、 新しい別 のカラムに添加してもよい。 If the treatment with the ferrous metal in the solution containing selenium and other metal inorganic acid salts cannot reduce the selenium concentration to the specified selenium concentration by one ram treatment, the selenium and other selenium obtained in the primary treatment Readjust the pH value of the solution containing the metal inorganic acid salt to 3 to 7 and repeat the process consisting of pH adjustment of the solution and contact treatment several times so that it comes into contact with the iron-based metal layer. Thus, a desired value can be achieved. Usually, the operation Just repeat the process two or three times. Here, when the pH of the primary treatment water is adjusted and added to the packed bed column again, the column used for the primary treatment may be used, or may be added to another new column.
単独のカラムを用いて、 鉄系金属の充塡層と複数回の接触処理をしたのと同様 の効果を得るには、 鉄系金属の充塡層において、 セレン含有溶液を流通させる際、 充塡層カラムに酸を添加しつつ通液する方法を用いることができる。 この場合、 酸は、 セレン含有溶液と共に充塡層上部より添加することもできるが、 充填層力 ラムとして充填層途中より溶液を添加できる形態のカラムを用い、 カラム途中よ り酸を添加するのが好ましい。 カラムにその酸を添加する部分の個数に制限はな いが通常 1から 1 0程度が適当である。 添加する酸の濃度、 量に関しては、 カラ ム内の p H値が 3〜 7の範囲になるように制御するのが最も好ましい。 酸の添加 は、 連続的にも間歇的にも行うことができる。  To obtain the same effect as performing a contact treatment with an iron-based metal packed bed multiple times using a single column, it is necessary to fill the iron-based metal packed bed with a selenium-containing solution when flowing it. A method in which the solution is passed while adding an acid to the 通 layer column can be used. In this case, the acid can be added from the upper part of the packed bed together with the selenium-containing solution.However, use a column in which the solution can be added from the middle of the packed bed as a packed bed, and add the acid from the middle of the column. Is preferred. There is no limitation on the number of portions to which the acid is added to the column, but usually 1 to 10 is appropriate. The concentration and amount of the acid to be added are most preferably controlled so that the pH value in the column is in the range of 3 to 7. The acid can be added continuously or intermittently.
鉄系金属との接触処理は、 鉄系金属の充塡層を用いたカラム法による処理だけ でなく、 バッチ法処理も用いることができる。 この場合、 鉄系金属を撹拌できる 反応缶を用い、 セレン及び他の金属無機酸塩を含有する溶液及び希酸を添加し 3 0 °C以上の温度で撹拌することにより、 接触処理の間 p Hを 3〜7の範囲内に 保った状態で鉄系金属と接触させればよい。 その場合、 セレン等含有溶液と酸を 反応缶に連続的に供給しながら、 接触処理後の処理溶液を反応缶より連続的に排 出することにより行うことも出来る。  The contact treatment with an iron-based metal can be performed not only by a column method using a packed bed of an iron-based metal but also by a batch method. In this case, a reaction vessel capable of stirring the iron-based metal is used, and a solution containing selenium and other metal inorganic acid salts and a dilute acid are added, and the mixture is stirred at a temperature of 30 ° C or more, so that p during the contact treatment is reduced. What is necessary is just to make it contact with ferrous metal, keeping H in the range of 3-7. In this case, the treatment can be performed by continuously discharging the treatment solution after the contact treatment from the reaction vessel while continuously supplying the solution containing selenium or the like and the acid to the reaction vessel.
また、 本発明方法においては、 鉄によるセレンの接触還元反応によるセレンの 除去は、 被処理液中に溶存する酸素により促進されるので、 鉄等の金属と被処理 液との接触処理は、 空気等の含酸素雰囲気下で行うのが好ましい。  Further, in the method of the present invention, the removal of selenium by the catalytic reduction reaction of selenium with iron is promoted by oxygen dissolved in the liquid to be treated, so that the contact treatment between a metal such as iron and the liquid to be treated is carried out by air. It is preferably performed in an oxygen-containing atmosphere such as
更に、 本発明方法における好ましい処理溶液として、 セレンと緩衝成分を含有 する排水である石炭火力発電所の排煙脱硫排水が挙げられる。 一般に、 このよう な排水を鉄系金属と接触させてセレン化合物を処理する場合、 他の緩衝成分を含 まない排水に比べ、 処理が困難となる。 火力原子力発電 35巻 10号 (1984年) 1083 頁には、 石炭火力発電所の排煙脱硫排水の水質例が示されている。 これによると、 F、 S 0 4、 Cし Ca、 Mg、 Al、 Bが存在するとされている。 ここで、 中性付近に 緩衝作用を示す可能性のある物質として、 Al、 Bがあり、 火力原子力発電 35巻 10 号 ( 1984年) 1083頁には、 A1は 100〜800ppm、 Bは 10〜130ppm存在することが示 されている。 この量は、 中性付近で緩衝作用を示すのに十分な量であり、 この成 分がセレン除去剤との接触による排煙脱硫排水からのセレン化合物の除去を阻害 していることを、 本発明者等は見出したのである。 Further, as a preferred treatment solution in the method of the present invention, there is a flue gas desulfurization wastewater of a coal-fired power plant, which is a wastewater containing selenium and a buffer component. Generally, when such effluent is brought into contact with an iron-based metal to treat a selenium compound, it is more difficult to treat the selenium compound than effluent containing no other buffer components. Thermal Nuclear Power, Vol. 35, No. 10, (1984), p. 1083, shows an example of water quality of flue gas desulfurization effluent of a coal-fired power plant. According to this, F, there is a S 0 4, C and Ca, Mg, Al, and B exist. Here, Al and B are substances that may have a buffering effect near neutrality. No. (1984), p. 1083, shows that A1 is present at 100 to 800 ppm and B is present at 10 to 130 ppm. This amount is sufficient to exhibit a buffering effect near neutrality, indicating that this component hinders the removal of selenium compounds from flue gas desulfurization effluent by contact with the selenium removing agent. The inventors have found out.
そして、 本発明者らは、 セレンを含有する排水中から、 中性付近に緩衝作用を 示し、 一般に廃液中に含まれる物質である、 ホウ素化合物及び/またはアルミ二 ゥム化合物を除去した後、 中性から酸性側でセレン化合物を還元、 除去する能力 を有する処理剤、 即ち、 鉄系金属と接触させることで効率的にセレン化合物を除 去できる方法を確立した。  Then, after removing a boron compound and / or an aluminum compound, which exhibit a buffering action near neutrality from the wastewater containing selenium and are generally contained in the waste liquid, We have established a treatment agent that has the ability to reduce and remove selenium compounds from the neutral to acidic side, that is, a method that can efficiently remove selenium compounds by contact with iron-based metals.
ここで、 ホウ素化合物にかんしては、 通常ホウ酸塩の形で溶液中に存在してい る。 このホウ素化合物の除去には、 ホウ酸選択性樹脂との接触が効果的である。 ホウ酸選択性樹脂としては、 グルカミン型のキレート樹脂が市販されており、 こ の樹脂により、 数千 ppmの共存塩存在下においてもホウ酸を選択的に除去できる。 具体的には、 三菱化学 (株) 製ダイヤイオン CRB02 が挙げられる。 ホウ酸選択性 樹脂との接触方法は、 バッチ法でもカラム法でもよいが、 通常カラム法で用いら れる。 通常時の p H、 温度、 流速ともに特に制限はないが、 p Hは 4 〜12付近で 接触させるのが好ましく、 温度は常温、 流速は S V二 1 〜50程度で接触される。 また、 アルミニウム化合物の除去に関しては、 キレート樹脂による除去、 凝集 沈澱による除去等が考えられるが、 凝集沈澱による除去が効果的である。 凝集沈 澱法では、 酸又はアルカリにより中和し、 アルミニウム化合物を水酸化物として 沈澱させ、 固液分離すればよい。  Here, the boron compound is usually present in a solution in the form of a borate. For removing the boron compound, contact with a boric acid selective resin is effective. As a boric acid-selective resin, a glucamine-type chelating resin is commercially available. With this resin, boric acid can be selectively removed even in the presence of several thousand ppm of coexisting salt. A specific example is Diaion CRB02 manufactured by Mitsubishi Chemical Corporation. The contact method with the boric acid-selective resin may be a batch method or a column method, but is usually used in a column method. There are no particular restrictions on the pH, temperature, and flow rate during normal operation, but it is preferable that the contact be made at a pH of about 4 to 12, and the contact be made at a normal temperature and a flow rate of about SV1 to about 50. As for the removal of the aluminum compound, removal by a chelating resin, removal by coagulation and precipitation, etc. can be considered, but removal by coagulation and precipitation is effective. In the coagulation sedimentation method, the aluminum compound may be neutralized with an acid or an alkali, and the aluminum compound may be precipitated as a hydroxide, followed by solid-liquid separation.
上記で得られた溶液を、 続いて、 セレン化合物を除去する工程に供する。 本発 明においては、 中性から酸性側でセレン化合物を還元、 除去する能力を有する処 理剤と接触させることによりセレン化合物を除去する。 中性から酸性側でセレン 化合物を還元、 除去する能力を有する処理剤としては、 鉄系金属のほか、 ヒドラ ジン、 チォ尿素、 水素化ホウ素化合物、 アントラヒドロキノンのような還元剤及 びその担持樹脂、 亜鉛、 銅等の他の金属、 銅(I )塩、 Fe( I I)塩などの還元性塩が 挙げられる力 本発明においては鉄系金属を用いるのが好ましい。  The solution obtained above is then subjected to a step of removing a selenium compound. In the present invention, the selenium compound is removed by contacting the selenium compound with a treating agent capable of reducing and removing the selenium compound from the neutral to acidic side. Treatment agents capable of reducing and removing selenium compounds from the neutral to acidic side include iron-based metals, reducing agents such as hydrazine, thiourea, borohydride compounds, anthrahydroquinone, and resins carrying them. Other metals such as zinc and copper, and reducing salts such as copper (I) and Fe (II) salts. In the present invention, it is preferable to use an iron-based metal.
鉄系金属との接触を行う場合、 本工程においては、 鉄系金属の種類、 接触方法 等特に制限なく用いることができ、 例えば、 前の工程で得られた溶液の ρ Ήを必 要に応じて調整し、 これを前述の如き鉄系金属を充填したカラムに添加する力ラ ム法を採用することができる。 When contacting with ferrous metal, in this process, the type of ferrous metal and contact method It can be used without any particular limitation.For example, a ram method in which the ρ の of the solution obtained in the previous step is adjusted as necessary and added to a column filled with an iron-based metal as described above Can be adopted.
本発明方法によって、 鉄等の金属表面に析出したセレンは、 それを焼却するこ とにより金属セレンとして回収することができる。 この焼却方法は特に限定され るものではなく、 口一タリ一キルンのような回転焼却炉、 るつぼ型の焼却炉等の 焼却残さからセレンが回収しやすいものであれば、 どのような形式のものでも採 用することができる。 また、 希酸を、 セレンの析出した金属表面と接触させ、 剝 離してくるセレンを固体として回収する方法も採用することができる。 この場合、 カラム操作で 0 . 0 1〜6 Νの塩酸を通液し、 鉄の溶解とともに剝離してくる固 体のセレンをカラム内から分離すればよい。  Selenium deposited on the surface of a metal such as iron by the method of the present invention can be recovered as metallic selenium by burning it. The method of incineration is not particularly limited, and any type of selenium can be easily recovered from the incineration residue such as a rotary incinerator such as a single kiln and a crucible-type incinerator. But it can be adopted. Further, a method in which a dilute acid is brought into contact with a metal surface on which selenium is deposited, and the separated selenium is recovered as a solid can also be adopted. In this case, 0.01 to 6 mL of hydrochloric acid may be passed through the column to separate solid selenium that separates with the dissolution of iron from the column.
また、 セレンを吸着した金属をカラムから取り出し、 0. 01〜6Νの HC 1とバッチ 法で接触させて、 鉄の溶解とともに剥離してくる固体のセレンを分離、 回収する 方法も採用することができる。 ここで、 鉄成分を酸で完全に溶解させれば、 セレ ンのみを純度の高い単体として回収することができるが、 鉄成分の一部を溶解さ せるだけで、 固体のセレンが剝離し、 それを回収することができる。 一般に、 鉄 成分の 1重量%以上を溶解させれば、 固体のセレンを剝離、 回収することができ る。 剥離される固体セレンは粉状であるため、 鉄系金属と固体セレンの分離は、 両者の混合物から繊維状等の塊状の鉄を分離すればよく、 また磁気分離法も用 ヽ ることができる。  It is also possible to adopt a method in which the selenium-adsorbed metal is removed from the column and brought into contact with HC1 in a range of 0.01 to 6Ν by a batch method to separate and recover solid selenium that is exfoliated with the dissolution of iron. it can. Here, if the iron component is completely dissolved with an acid, only selenium can be recovered as a high-purity element, but only by dissolving a part of the iron component, solid selenium is separated, It can be recovered. In general, solid selenium can be separated and recovered by dissolving 1% by weight or more of the iron component. Since solid selenium to be exfoliated is in powder form, iron-based metal and solid selenium can be separated only by separating fibrous or other massive iron from a mixture of both, and a magnetic separation method can also be used. .
その他、 セレンを析出した金属を超音波処理することにより剝離してくるセレ ンを分離する方法、 セレンの析出した金属に熱水を通液することにより剝離して くるセレンを分離する方法等が挙げられる。 超音波処理においては、 特に制限は ないが、 発信周波数 20〜100ΚΗζ、 処理時間 1〜30分が好ましく用いられる。 温度 は高いほど効果的であるが特に制限なく用いられる。 セレンの金属表面への吸着 力は強くないため、 何らかの物理的な作用によりセレンを剝離する方法も制限な く用いられる。  Other methods include the separation of selenium coming off by ultrasonically treating the metal on which selenium is deposited, and the separation of selenium coming off by passing hot water through the metal on which selenium is deposited. No. Although there is no particular limitation in the ultrasonic treatment, a transmission frequency of 20 to 100 ° and a processing time of 1 to 30 minutes are preferably used. The higher the temperature, the more effective it is, but it can be used without particular limitation. Since the adsorption power of selenium on the metal surface is not strong, a method of separating selenium by some physical action is also used without limitation.
セレン含有廃液の処理に用いられる鉄系金属は、 反応性が徐々に低下していく ことがわかっている。 これは、 反応が表面反応により起こっているため、 固体セ レンの鉄系金属表面への析出、 鉄酸化物の鉄系金属表面への生成により、 鉄系金 属の表面が不活性な反応物で覆われるためである。 よって、 セレンを吸着した鉄 系金属を希酸との接触、 あるいは超音波処理等により固体セレンを剝離すること により、 鉄系金属の反応性は高くなる。 従って、 希酸との接触、 超音波処理等の セレンの回収方法は、 同時に鉄系金属の再生の効果も併せ持つ。 特に希酸との接 触は、 鉄系金属の再生に有効である。 It has been found that the reactivity of iron-based metals used in the treatment of wastewater containing selenium gradually decreases. This is because solid reactions occur because the reaction is This is because the surface of the iron-based metal is covered with an inert reactant due to the precipitation of ren on the iron-based metal surface and the formation of iron oxide on the iron-based metal surface. Therefore, the reactivity of the iron-based metal is increased by contacting the selenium-adsorbed iron-based metal with a dilute acid or separating the solid selenium by ultrasonic treatment or the like. Therefore, selenium recovery methods such as contact with dilute acid and ultrasonic treatment also have the effect of regenerating ferrous metals. In particular, contact with dilute acid is effective for regenerating ferrous metals.
また、 セレン含有排水の処理において、 反応性が低下してきた場合、 反応条件 を経時的に変えることにより反応性の低下を防ぐことができる。 反応条件に関し て、 反応性が低下した段階、 つまり漏出してくるセレン濃度が高くなつてきた段 階で、 処理後の温度を上げる、 あるいは処理液の p Hを下げる、 あるいは SVを下 げることで反応性が低下する前と同じレベルまで反応性を上げることができる。 これらの条件の変更は組み合わせて用いるとより効果的で、 これにより鉄系金属 の寿命を延ばし、 鉄系金属重量当たりの処理液量を上げることが出来る。 また、 この際、 p Hを低下させていくと鉄系金属の再生の効果もあるので、 一時 p Hを 低く し鉄系金属を再生しつつセレンを除去し、 その後またもとの p Hに戻すとい う方法も採用することができる。  In addition, when the reactivity of selenium-containing wastewater decreases, the reactivity can be changed over time to prevent the decrease in reactivity. Regarding the reaction conditions, at the stage where the reactivity decreases, that is, at the stage where the leaked selenium concentration increases, raise the temperature after treatment, lower the pH of the processing solution, or lower the SV. Thus, the reactivity can be increased to the same level as before the decrease in reactivity. Changing these conditions is more effective when used in combination, which can extend the life of the iron-based metal and increase the amount of processing solution per weight of the iron-based metal. At this time, decreasing the pH also has the effect of regenerating the iron-based metal.Therefore, the selenium is removed while temporarily reducing the pH and regenerating the iron-based metal. The method of returning can also be adopted.
本発明の方法において、 処理後の液に鉄イオンが溶出する。 鉄イオンの溶出が 問題になる場合は、 アルカリ添加により沈澱として除去する方法、 キレート樹脂 により除去する方法、 イオン交換膜により除去する方法、 マンガン砂により除去 する方法等を用いることができる。 また、 セレン含有溶液の p Hを比較的高くす ることにより、 鉄イオンの溶出を抑えることもできる。  In the method of the present invention, iron ions are eluted in the liquid after the treatment. When elution of iron ions becomes a problem, a method of removing as a precipitate by adding an alkali, a method of removing with a chelating resin, a method of removing with an ion exchange membrane, a method of removing with manganese sand, and the like can be used. Also, by making the pH of the selenium-containing solution relatively high, elution of iron ions can be suppressed.
その他、 セレンの析出した金属を超音波処理する事により、 剝離してくるセレ ンを分離する方法、 セレンの析出した金属に熱水を通液することにより剝離して くるセレンを分離する方法等が挙げられる。 セレンの金属表面への吸着力は強く ないため、 何らかの物理的な作用によりセレンを剝離する方法も制限なく用いら れる。  In addition, a method of separating selenium that separates by sonicating the metal on which selenium is deposited, a method of separating selenium that separates by passing hot water through the metal on which selenium is deposited, etc. Is mentioned. Since selenium does not have a strong adsorptive power on the metal surface, a method of separating selenium by some physical action is also used without limitation.
本発明の処理方法は、 従来のセレン回収のための中和沈澱法、 水酸化鉄沈澱法、 フェライ ト沈澱法、 イオン交換膜処理法、 活性炭吸着法等の方法と必要に応じ併 用して実施することができる。 実施例 The treatment method of the present invention may be used in combination with conventional methods such as neutralization precipitation method for recovering selenium, iron hydroxide precipitation method, ferrite precipitation method, ion exchange membrane treatment method, and activated carbon adsorption method, if necessary. Can be implemented. Example
以下、 実施例および比較例を示し、 本発明を具体的に説明するが、 本発明はそ の要旨を越えない限り、 以下の実施例に限定されるものではない。  Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples as long as the gist is not exceeded.
実施例 1  Example 1
スチールウール (00.04mm:商品名ボンスター: 日本スチールウール(株)製) Steel wool (00.04mm: Product name Bonstar: Nippon Steel Wool Co., Ltd.)
1. 6 5 gをジャケッ ト付きのガラス製カラム (内径 1 1 mm, 高さ 1 2 0 mm, カラム容積 1 2m l ) につめ (鉄の表面積: 0.0127m2/ g-鉄、 鉄のカラム容積 あたり : 0.00175m2Zm 1, 鉄のカラム担持量: 0.133 gZm 1 )、 p H 4に調整 した硫酸ナトリウム 3 0 0 0 p p m (硫酸換算)及びセレン酸ナトリウム 5 p pm (セレン換算) を含む溶液を、 該カラムに上向流で、 流速 SV= 5で通液した。 通液の間ジャケッ 卜の温度は 5 0°Cに維持した。 1 0 B. V. (Bed Volume)通液後 の溶液中のセレンの濃度は、 3. 2 p pmであった。 1.65 g packed into a glass column with a jacket (inner diameter 11 mm, height 120 mm, column volume 12 ml) (iron surface area: 0.0127 m 2 / g-iron, iron column Per volume: 0.00175m 2 Zm 1, iron column loading: 0.133 gZm 1), containing 300 ppm of sodium sulfate (converted to sulfuric acid) adjusted to pH 4 and 5 ppm of sodium selenate (converted to selenium) The solution was passed through the column in an upward flow at a flow rate of SV = 5. The temperature of the jacket was maintained at 50 ° C during the passage. After passing through 10 BV (Bed Volume), the concentration of selenium in the solution was 3.2 ppm.
セレン濃度の測定は、 I C P (Inductively coupled plasma)発光分光分析法 (以下、 "I CP発光法" という) により行った。  The selenium concentration was measured by ICP (Inductively coupled plasma) emission spectroscopy (hereinafter, referred to as "ICP emission method").
実施例 2  Example 2
実施例 1において、 ジャケッ 卜の温度を 8 0°Cに維持した以外は同様にして おこなった。 その結果、 1 0 B. V. 通液後の溶液中のセレンの濃度は、 0. 7 p p mであった。  Example 1 was repeated except that the temperature of the jacket was maintained at 80 ° C. As a result, the concentration of selenium in the solution after passing 10 B.V. was 0.7 ppm.
比較例 1  Comparative Example 1
実施例 1において、 ジャケッ トの温度を 2 0°Cに維持した以外は同様にしてお こなった。 その結果、 1 0 B. V. 通液後の溶液中のセレンの濃度は、 5. O p p mであり、 溶液中のセレンは殆んど除去されなかった。  Example 1 was repeated except that the temperature of the jacket was maintained at 20 ° C. As a result, the concentration of selenium in the solution after passing 10 B.V. was 5. Oppm, and selenium in the solution was hardly removed.
実施例 3  Example 3
スチールウール (00.025mm:商品名ボンスター: 日本スチールウール(株)製) 1. 0 gをジャケッ ト付きのガラスカラム (内径 1 1 mm, 高さ 1 0 0 mm, 力 ラム容積 1 0m l ) に充填し(鉄の表面積: 0.021m2/g-鉄、 鉄のカラム容積あ たり : 0.0021m2ノ m 1, 鉄のカラム担持量: 0.10 gZm 1 )、 pH 4に調整した 硫酸ナトリウム 5 0 0 0 p p m (硫酸換算)及びセレン酸ナトリウム 5 p pm (セレン換算)を含む溶液を、 該カラムに上向流で、 流速 SV=2で通液した。 通液の 間ジャケッ 卜の温度は 5 0°Cに維持した。 2 0 B. V. 通液後の溶液中のセレン の濃度は、 0. 0 1 P pm以下であった。 セレン濃度の測定は、 I CP発光法に より行った。 1.0 g of steel wool (00.025 mm: trade name: Bonstar: manufactured by Nippon Steel Wool Co., Ltd.) into a glass column with a jacket (inner diameter 11 mm, height 100 mm, force ram volume 10 ml) Sodium sulphate packed (surface area of iron: 0.021 m 2 / g-iron, iron column volume: 0.0021 m 2 nom 1, iron column loading: 0.10 gZm 1), and adjusted to pH 4 A solution containing 0 ppm (in terms of sulfuric acid) and 5 ppm of sodium selenate (in terms of selenium) was passed through the column in an upward flow at a flow rate of SV = 2. Permeate During this time, the temperature of the jacket was maintained at 50 ° C. The concentration of selenium in the solution after passing the solution through 20 BV was 0.01 Ppm or less. The measurement of the selenium concentration was performed by the ICP emission method.
実施例 4  Example 4
実施例 3において、 スチールウールの径を、 00.04mniとした以外は、 同様にし て行った (鉄の表面積: 0.013m2/ g-鉄、 鉄のカラム容積あたり : 0.0013m2/ m 1 , 鉄のカラム担持量: 0. lOgZm 1 ) 。 2 0 B. V. 通液後の溶液中のセレ ンの濃度は、 0. lOp pmであった。 Example 3 was repeated in the same manner as in Example 3 except that the diameter of the steel wool was changed to 00.04 mni (iron surface area: 0.013 m 2 / g-iron, per iron column volume: 0.0013 m 2 / m 1, iron Column carrying amount: 0.1 lOgZm 1). The concentration of selenium in the solution after passing 20 BV was 0.1 lOppm.
実施例 5  Example 5
実施例 3において、 スチールウールの代わりに繊維径 0.5誦 の鉄線 (0.5 mm metal wire :三津和化学薬品 (株) 製) を用いた以外は、 同様にして行った (鉄 の表面積: 0.001m2/ g-鉄、 鉄のカラム容積あたり : 0.0001m2Zm 1, 鉄の力 ラム担持量: 0. lOgZm 1 ) 。 2 O B. V. 通液後の溶液中のセレンの濃度は、 0.47 p pmであった。 Example 3 was carried out in the same manner as in Example 3, except that iron wool having a fiber diameter of 0.5 (0.5 mm metal wire : manufactured by Mitsuwa Chemicals Co., Ltd.) was used instead of steel wool (surface area of iron: 0.001 m 2). / g-iron, per iron column volume: 0.0001 m 2 Zm 1, iron force Ram loading: 0.1 lOgZm 1). The concentration of selenium in the solution after passing through 2 O BV was 0.47 ppm.
実施例 6  Example 6
スチールウール (00.04匪、 商品名ボンスター : 日本スチールウール(株)製) 1.50gをジャケッ ト付きのガラスカラム(内径 llmm、 高さ 120mm、 カラム容積 12ml) につめ (鉄の表面積: 0.0127m2/g-鉄、 鉄のカラム容積あたり : 0.00158m2/ml、 鉄のカラム担持量: 0.125g/ml) pH4に調整した硫酸ナトリウム 5000ppm (硫酸換 算) 及びセレン酸ナトリウム 0.5ppm (セレン換算) を含む溶液を、 該カラムに上 向流で、 流速 SV=5で通液した。 通液の間、 ジャケッ 卜の温度は 80°Cに維持した。 この試験において 800B.V.まで通液した。 更に、 処理液の pHを 3に下げて、 100B.V. 通液し、 その後処理液の pHを 4としてさらに 100B.V.通液した。 サンプリングは、 100B.V.ごとに行い、 その溶液に関しては、 ICP発光法で、 セレン及び鉄濃度を定 量した。 結果を表 1に示す。 1.50 g of steel wool (trade name: Bonstar, manufactured by Nippon Steel Wool Co., Ltd.) packed in a glass column (inside diameter llmm, height 120 mm, column volume 12 ml) with a jacket (iron surface area: 0.0127 m 2 / g-iron, per iron column volume: 0.00158 m 2 / ml, iron column loading: 0.125 g / ml) 5000 ppm of sodium sulfate (sulfate conversion) adjusted to pH 4 and 0.5 ppm of sodium selenate (selenium conversion) The containing solution was passed through the column in an upward flow at a flow rate of SV = 5. During the passage, the temperature of the jacket was maintained at 80 ° C. In this test, liquid was passed up to 800 BV. Further, the pH of the treatment liquid was lowered to 3, and 100 B.V. was passed. Thereafter, the pH of the treatment liquid was set to 4, and 100 B.V. was further passed. Sampling was performed every 100 BV, and the selenium and iron concentrations of the solution were determined by the ICP emission method. Table 1 shows the results.
800B.V.まで通液した後、 pHを 3に低下させることによりセレンのリークが低下 し、 その後また pHを 4に戻してもセレンのリークは低下したままであった。 表 1 After passing the solution to 800 B.V., the leak of selenium was reduced by lowering the pH to 3, and then the leak of selenium remained lowered even when the pH was returned to 4. table 1
S e F e  S e Fe
B. V. p HC ini t. ) P P m P P m  B. V. p HC ini t.) P P m P P m
原液 一 0. 05 ―  Undiluted solution 0.15 ―
100 4 0. 03 2. 84  100 4 0.03 2.84
200 4 0. 03 2. 23  200 4 0.03 2.23
300 4 0. 03 2. 87  300 4 0.03 2.87
400 4 0. 07 2. 22  400 4 0.07 2.22
500 4 0. 11 2. 72  500 4 0.11 2.72
600 4 0. 08 2. 40  600 4 0.08 2.40
700 4 0. 09 2. 39  700 4 0.09 2.39
800 4 0. 13 2. 39  800 4 0.13 2.39
900 3 0. 01 35. 0  900 3 0.01 35. 0
1000 4 0. 03 2. 98 実施例 7  1000 4 0.03 2.98 Example 7
スチールウール (0 0. 04腿、 商品名ボンスター : 日本スチールウール(株)製) 1. 50gをジャケッ ト付きのガラスカラム(内径 l lmm、 高さ 120ππη、 カラム容積 12ml) につめ (鉄の表面積: 0. 0127m2Zg-鉄、 鉄のカラム容積あたり : 0. 00158m2/ml、 鉄のカラム担持量: 0. 125g/ml)、 pH3に調整した硫酸ナトリウム 5000ppm (硫酸換 算) 及びセレン酸ナトリウム 0. 5ppm (セレン換算) を含む溶液を、 該カラムに上 向流で、 流速 SV=5で通液した。 通液の間、 ジャケッ 卜の温度は 80°Cに維持した。 この試験において 500B. V.まで通液した。 サンプリングは、 100B. V.ごとに行い、 その溶液に関しては、 ICP発光法で、 セレン及び鉄濃度を定量した。 結果を表 2 に不 o 表 2 Steel wool (0.04 thigh, trade name: Bonstar: manufactured by Nippon Steel Wool Co., Ltd.) 1. Pack 50 g into a glass column with a jacket (inner diameter l lmm, height 120ππη, column volume 12 ml) (iron surface area) : 0.0127m 2 Zg-iron, per iron column volume: 0.00158m 2 / ml, iron column loading: 0.125g / ml), 5000ppm sodium sulfate adjusted to pH3 (sulfuric acid conversion) and selenic acid A solution containing 0.5 ppm of sodium (in terms of selenium) was passed through the column in an upward flow at a flow rate of SV = 5. During the passage, the temperature of the jacket was maintained at 80 ° C. In this test, the liquid was passed up to 500 BV. Sampling was performed every 100 BV, and the selenium and iron concentrations of the solution were quantified by ICP emission method. The results are not shown in Table 2. Table 2
S e F e  S e Fe
B. V. p H( ini t.リ P P m P P m  B. V. p H (init.P P m P P m
原液 一 0. 50 一  Undiluted solution 0.50
100 4 < 0. 01 27. 3  100 4 <0.01 01 27.3
200 4 0. 01 28. 4  200 4 0.01 28. 4
300 4 0. 01 29. 8  300 4 0.01 29.8
400 4 0. 01 29. 5  400 4 0.01 29.5
500 4 0. 01 34. 0 実施例 8  500 4 0.01 34.0 Example 8
スチールウール (0 0. 04mm、 商品名ボンスター : 日本スチールウール(株)製) 1. 50gをジャケッ ト付きのガラスカラム(内径 l lirau 高さ 120mm、 カラム容積 12ml) につめ (鉄の表面積: 0. 0127m2 Zg-鉄、 鉄のカラム容積あたり : 0. 00158m2/ml、 鉄のカラム担持量: 0. 125g/ml) 、 pH4に調整した硫酸ナトリウム lOOppm (硫酸換 算) 及びセレン酸ナトリウム 5ppm (セレン換算) を含む溶液を、 該カラムに上向 流で、 流速 SV=5で通液した。 通液の間、 ジャケッ 卜の温度は 50°Cに維持した。 こ の試験において 2000B. V.まで通液した。 2000B. V.通液後の溶液中のセレン濃度は 0. 37ppmであった。 なお、 セレン濃度の定量は ICP発光法により行った。 Steel wool (0.04 mm, trade name: Bonstar: manufactured by Nippon Steel Wool Co., Ltd.) 1. Place 50 g into a glass column with a jacket (inner diameter lirau height 120 mm, column volume 12 ml) (iron surface area: 0 0127m 2 Zg-iron, per iron column volume: 0.00158m 2 / ml, iron column loading: 0.125g / ml), pH 4 adjusted sodium sulfate lOOppm (sulfuric acid conversion) and sodium selenate 5ppm A solution containing (in terms of selenium) was passed through the column at an upward flow rate at a flow rate of SV = 5. During the passage, the temperature of the jacket was maintained at 50 ° C. In this test, liquid was passed up to 2000 BV. The selenium concentration in the solution after passing through 2000 B.V. was 0.37 ppm. The selenium concentration was determined by the ICP emission method.
この試験後のスチールウールの約 6分の 1の重量の部分を摘出し、 100ml三角 フラスコに入れ、 更に 0. 01N HC1 50mlを加え、 30分間 50spmで振盪した。 このと き、 スチールウールより赤掲色の固体成分が遊離してきた。 この液より鉄成分を 磁気分離し、 残りの沈澱成分に関して、 0. 45〃 mニトロセルロースメンブレンフ ィルターで濾過した。 この濾液中のセレン濃度は 0. lppm以下、 鉄濃度は 256ppmで あった。 また、 濾過された成分に関して、 ジムロートコンデンサのついた 100ml ナス型フラスコに入れ、 濃硝酸 5mlを加え撹拌下 90°Cで 30分間反応させ、 固体成 分をすベて溶解させた。 ジムロートコンデンサには 5°Cの冷却水を流した。 反応 液を冷却後 50mlに希釈し、 セレン、 鉄濃度を測定したところ、 セレン濃度は 14. 9 ppm、 鉄濃度は 11. 2ppmであった。 実施例 9 After the test, a part of the steel wool having a weight of about 1/6 was extracted, placed in a 100 ml Erlenmeyer flask, further added with 50 ml of 0.01N HC1, and shaken at 50 spm for 30 minutes. At this time, red solid components were released from the steel wool. The iron component was magnetically separated from this solution, and the remaining precipitated component was filtered through a 0.45 μm nitrocellulose membrane filter. The selenium concentration in this filtrate was 0.1 ppm or less, and the iron concentration was 256 ppm. The filtered components were placed in a 100 ml eggplant type flask equipped with a Dimroth condenser, 5 ml of concentrated nitric acid was added, and the mixture was reacted at 90 ° C. for 30 minutes with stirring to dissolve all solid components. Cooling water at 5 ° C was passed through the Jimroth condenser. After cooling, the reaction solution was diluted to 50 ml and the selenium and iron concentrations were measured. The selenium concentration was 14.9 ppm and the iron concentration was 11.2 ppm. Example 9
実施例 8において実施したセレン溶液を通液後のスチールウールに関して約 6 分の 1の重量の部分を摘出し、 100ml三角フラスコに入れ、 さらに IN HC1 50mlを 加え、 30分間 50spmで振盪した。 このとき、 スチールウールより赤褐色の固体成 分が遊離してきた。 この液より鉄成分を磁気分離し、 残りの沈澱成分に関して、 0. 45 z m二トロセルロースメンブレンフィルターで濾過した。 この濾液中のセレ ン濃度は 0. Ippm以下、 鉄濃度は 1580ΡΡΠ1であった。 また、 濾過された成分に関し て、 ジムロートコンデンサのついた 100mlナス型フラスコに入れ、 濃硝酸 5mlを加 え撹拌下 90°Cで 30分間反応させ、 固体成分をすベて溶解させた。 ジムロートコン デンサには 5°Cの冷却水を流した。 反応液を冷却後 50mlに希釈し、 セレン、 鉄濃 度を測定したところ、 セレン濃度は 42. 7ppm、 鉄濃度は 3. 6ppmであった。  About one sixth of the weight of the steel wool after the passage of the selenium solution carried out in Example 8 was removed, placed in a 100 ml Erlenmeyer flask, further added with 50 ml of INHC1, and shaken at 50 spm for 30 minutes. At this time, a reddish brown solid component was released from the steel wool. The iron component was magnetically separated from this liquid, and the remaining precipitated component was filtered through a 0.45 zm nitrocellulose membrane filter. The selenium concentration in the filtrate was 0.1 ppm or less, and the iron concentration was 1580ΡΡΠ1. The filtered components were placed in a 100 ml eggplant-shaped flask equipped with a Dimroth condenser, 5 ml of concentrated nitric acid was added, and the mixture was reacted at 90 ° C. for 30 minutes with stirring to dissolve all solid components. Cooling water at 5 ° C was supplied to the Jimroth condenser. After cooling, the reaction solution was diluted to 50 ml and the selenium and iron concentrations were measured. The selenium concentration was 42.7 ppm and the iron concentration was 3.6 ppm.
実施例 1 0  Example 10
実施例 8において実施したセレン溶液を通液後のスチールウールに関して約 6 分の 1の重量の部分を摘出し、 100ml三角フラスコに入れ、 さらに脱塩水 50mlを 加えたものを、 超音波洗浄器 (周波数 46KHZ)で 30分間処理した。 このとき、 スチ ールウールより褐色の固体成分が遊離してきた。 この液より鉄成分を磁気分離し、 残りの沈澱成分に関して、 0. 45〃m二トロセルロースメンブレンフィルターで濾 過した。 この濾液中のセレン濃度は 0. Ippm以下、 鉄濃度は 0. Ippm以下であった。 また、 濾過された成分に関して、 ジムロートコンデンサのついた 100mlナス型フ ラスコに入れ、 濃硝酸 5mlを加え撹拌下 90°Cで 30分間反応させ、 固体成分をすベ て溶解させた。 ジムロートコンデンサには 5°Cの冷却水を流した。 反応液を冷却 後 50mlに希釈し、 セレン、 鉄濃度を測定したところ、 セレン濃度は 20. 6ppm、 鉄 濃度は 76. 8ppmであった。  About one sixth of the weight of the steel wool after passing the selenium solution carried out in Example 8 was removed, put into a 100 ml Erlenmeyer flask, and further added with 50 ml of demineralized water. The treatment was performed at a frequency of 46 KHZ) for 30 minutes. At this time, a brown solid component was released from the steel wool. The iron component was magnetically separated from this solution, and the remaining precipitated component was filtered through a 0.45 μm nitrocellulose membrane filter. The selenium concentration in the filtrate was less than 0.1 ppm and the iron concentration was less than 0.1 ppm. The filtered components were placed in a 100-ml eggplant type flask with a Dimroth condenser, 5 ml of concentrated nitric acid was added, and the mixture was reacted at 90 ° C for 30 minutes with stirring to dissolve all solid components. Cooling water at 5 ° C was passed through the Jimroth condenser. After cooling, the reaction solution was diluted to 50 ml and the selenium and iron concentrations were measured. The selenium concentration was 20.6 ppm and the iron concentration was 76.8 ppm.
比較例 2  Comparative Example 2
実施例 8において実施したセレン溶液を通液後のスチールウールに関して約 6 分の 1の重量の部分を摘出し、 100ml三角フラスコに入れ、 さらに 0. 001N HC 1 50 mlを加え、 30分間 50spmで振盪した。 このとき、 スチールウールより遊離してく る固体成分はなかった。 この液より鉄成分を磁気分離し、 残りの沈澱成分に関し て、 0. 45 / Π1ニトロセルロースメンブレンフィルターで濾過した。 この濾液中の セレン濃度は 0. lppm以下、 鉄濃度は 37.6ppmであった。 About 1/6 of the weight of the steel wool after the passage of the selenium solution carried out in Example 8 was removed, put into a 100 ml Erlenmeyer flask, and further added with 50 ml of 0.001N HC1, and added with 50 spm for 30 minutes. Shake. At this time, no solid components were released from the steel wool. The iron component was magnetically separated from this solution, and the remaining precipitated component was filtered through a 0.45 / 1-nitrocellulose membrane filter. In this filtrate The selenium concentration was less than 0.1 ppm and the iron concentration was 37.6 ppm.
実施例 1 1  Example 1 1
スチールウール (00.04mm:商品名ボンスター : 日本スチールウール(株)製) 1. 0 gをジャケッ ト付きのガラスカラム (内径 1 1 mm, 高さ 1 0 0 mm, 力 ラム容積 1 0 m l ) に充填し (鉄の表面積: 0.0068m2Zg-鉄、 鉄のカラム容積 あたり : 0.00063m2Zmし 鉄のカラム担持量: 0.05 g /m 1 ) 、 p H 4に調整 したセレン酸ナトリウム 0.50p pm (セレン換算) を含む 50mMリン酸緩衝液 (セレン含有溶液) を、 該カラムに上向流で、 流速 50m 1 /hourで通液した。 通 液の間ジャケッ トの温度は 5 0°Cに維持した。 2 0 B. V. 通液後の溶液中のセ レンの濃度は、 0.25p pmであった。 また、 この時の pHは 6. 5であった。 実施例 1 2 1.0 g of steel wool (00.04 mm: product name: Bonstar: manufactured by Nippon Steel Wool Co., Ltd.) into a glass column with a jacket (inner diameter 11 mm, height 100 mm, force ram volume 10 ml) Filled (surface area of iron: 0.0068m 2 Zg-iron, per column volume of iron: 0.00063m 2 Zm, column loading of iron: 0.05 g / m 1), and adjusted to pH 4 with sodium selenate 0.50ppm A 50 mM phosphate buffer (selenium-containing solution) containing (in terms of selenium) was passed through the column in an upward flow at a flow rate of 50 ml / hour. The jacket temperature was maintained at 50 ° C during the flow. The concentration of selenium in the solution after passing 20 BV was 0.25 ppm. The pH at this time was 6.5. Example 1 2
一次処理として、 実施例 1 1 と同様の方法を行った。 この出口液 (セレン濃度 0.25p pm) を塩酸で pH 4に調整し、 二次処理としてこれをカラムに添加する 液とし、 実施例 1 1 と同じ方法で再度同じカラムに通液した。 2 0B.V.通液後の 溶液中のセレン濃度は 0.08p pmであった。 また、 この時の pHは 6. 3であつ た。  As the primary treatment, the same method as in Example 11 was performed. The outlet liquid (selenium concentration: 0.25 ppm) was adjusted to pH 4 with hydrochloric acid, and used as a secondary treatment liquid to be added to the column. The liquid was passed through the same column again in the same manner as in Example 11. The selenium concentration in the solution after passing through 20 B.V. was 0.08 ppm. The pH at this time was 6.3.
実施例 1 3  Example 13
実施例 1 1で用いたカラムを 2段直列に連結し、 pH 4に調整したセレン酸ナ トリウム 0.50 p p m (セレン換算) を含む 5 0 mMリン酸緩衝液 (セレン含有溶 液) を、 該カラムに上向流で、 流速 50m 1 /hourで通液した。 通液の間ジャケッ 卜の温度は 5 0 °Cに維持した。 2 0 B. V. 通液後の溶液中のセレンの濃度、 pHは、 一段目カラム出口でセレン濃度 0.25p pm、 p H 6. 5、 二段目カラム 出口でセレン濃度 0.21 p pm、 p H 7. 8であった。  Example 11 The columns used in 1 were connected in series in two stages, and 50 mM phosphate buffer (solution containing selenium) containing 0.50 ppm (converted to selenium) of sodium selenate adjusted to pH 4 was added to the column. The liquid was passed upward at a flow rate of 50 m 1 / hour. The temperature of the jacket was maintained at 50 ° C during the passage. The concentration and pH of selenium in the solution after passing through 20 BV were 0.25 ppm, pH 6.5 at the outlet of the first column, and 0.21 ppm, pH 7.25 at the outlet of the second column. It was eight.
比較例 3  Comparative Example 3
実施例 1 1で用いたカラムを 3段直列に連結し、 pH 4に調整したセレン酸ナ トリウム 0.50 p p m (セレン換算) を含む 5 0 mMリン酸緩衝液 (セレン含有溶 液) を、 該カラムに上向流で、 流速 50m 1 Zhourで通液した。 通液の間ジャケッ 卜の温度は 5 0 °Cに維持した。 2 0 B. V. 通液後の溶液中のセレンの濃度、 pHは、 一段目カラム出口でセレン濃度 0.25p pm、 p H 6. 5、 二段目カラム 出口でセレン濃度 0.21 p pm、 p H 7. 7、 三段目出口でセレン濃度 0.21 p p m、 p H 8. 1であった。 Example 11 The columns used in Example 1 were connected in series in three stages, and 50 mM phosphate buffer (solution containing selenium) containing 0.50 ppm (converted to selenium) of sodium selenate adjusted to pH 4 was added to the column. The liquid was passed upward at a flow rate of 50 m 1 Zhour. The temperature of the jacket was maintained at 50 ° C during the passage. The concentration of selenium in the solution after passing through 20 BV and the selenium concentration at the outlet of the first-stage column were 0.25 ppm, pH 6.5, and the second-stage column. The selenium concentration at the outlet was 0.21 ppm, pH 7.7, and the selenium concentration at the third outlet was 0.21 ppm, pH 8.1.
実施例 1 4  Example 14
実施例 13において、 二段目カラム入口で、 処理液に加えて 0.1N HC1を 0.5m l Zhourを添加し続けた。 2 0B.V.通液後の溶液中のセレン濃度、 pHは、 一段目 カラム出口でセレン濃度 0.25p pm、 pH6.3、 二段目カラム出口でセレン濃度 0.09p pm, pH6.6であった。  In Example 13, at the inlet of the second-stage column, 0.5N Zhour of 0.1N HC1 was continuously added in addition to the treatment solution. 20 The selenium concentration and pH of the solution after passing through the solution were 0.25 ppm, pH 6.3 at the outlet of the first column and 0.09 ppm, pH 6.6 at the outlet of the second column. Was.
実施例 1 5  Example 15
100m 1四ッロフラスコにスチールウール (00.04mm:商品名ボンスター : 日 本スチールウール (株) 製) 1. 0 g、 蒸留水 5 0 m 1を加え、 5 0。Cの水浴中 5 0 r pmで撹拌した。 ここにセレン酸ナトリウム 5 0 p pm (セレン換算) 硫酸ナトリウム l O O O p pm (硫酸換算) 混合液を 5 0 m l /hourで添加し、 同じく 5 0 m 1 Zhourで反応液を系外に除去した。 ここで、 反応器内の pHを、 適宜 0.1N HC1を添加することによって 4〜6の範囲に保った。 1 リットル溶液を処 理し、 そのセレン濃度は 0.06p pmであった。  50 g of steel wool (00.04 mm, trade name: Bonstar: manufactured by Japan Steel Wool Co., Ltd.) was added to a 100-m1 square flask, and 50 g of distilled water was added. Stirred at 50 rpm in C water bath. Sodium selenate 50 ppm (converted to selenium) Sodium sulfate l OOOppm (converted to sulfuric acid) A mixed solution was added at 50 ml / hour, and the reaction solution was removed outside the system at 50 ml / hour. . Here, the pH in the reactor was kept in the range of 4 to 6 by adding 0.1N HCl as appropriate. One liter of solution was processed and its selenium concentration was 0.06 ppm.
比較例 4  Comparative Example 4
実施例 15において、 反応器内の p Hを 0. IN HC1及び 0. IN NaOHを適宜添加する ことにより、 pH値 9〜1 0に保った以外は、 実施例 15と同様の方法を行った。 1 リ トル溶液を処理し、 そのセレン濃度は 0.50 p pmであった。  In Example 15, the same method as in Example 15 was carried out except that the pH in the reactor was maintained at pH 9 to 10 by appropriately adding 0.1 IN HC1 and 0.1 IN NaOH. . One liter of solution was processed and its selenium concentration was 0.50 ppm.
実施例 1 6  Example 16
セレン酸ナトリウム lOppm (セレン換算) 、 四ホウ酸ナトリウム 500ppm (ホウ素 換算) を含有する溶液 200ml(pH7に調整)をホウ酸選択性樹脂 ダイヤイオン CRB02 200 ml of a solution containing sodium selenate lOppm (converted to selenium) and 500 ppm (converted to boron) of sodium tetraborate were adjusted to boric acid-selective resin Diaion CRB02
(三菱化学 (株) 製) 100mlを充填したカラム (内径 26誦) に SV=2で通液した。 通液後の溶液中のホウ素濃度は lppm以下であった。 この溶液を塩酸で pHを 3に調 整し、 300ml四ッロフラスコに入れ、 さらにスチールウール (00.04讓 :商品名 ボンスター: 日本スチールウール (株) 製) 0.20gを加え、 水浴中で 50°Cに加熱 し、 撹拌下反応させた。 反応時間 4時間でのセレン濃度は、 3.0ppm、 反応時間 6時間でのセレン濃度は 0.3ΡΡΠ)であった。 セレン濃度は、 ICP発光法により測定 した。 実施例 1 7 The solution was passed through a column packed with 100 ml (manufactured by Mitsubishi Chemical Corporation) (internal diameter 26) at SV = 2. The boron concentration in the solution after the passage was less than 1 ppm. This solution is adjusted to pH 3 with hydrochloric acid, placed in a 300 ml square flask, and 0.20 g of steel wool (00.04 substitute: trade name: Bonstar: manufactured by Nippon Steel Wool Co., Ltd.) is added. The solution is heated to 50 ° C in a water bath. The mixture was heated and reacted under stirring. The selenium concentration at a reaction time of 4 hours was 3.0 ppm, and the selenium concentration at a reaction time of 6 hours was 0.3ΡΡΠ). Selenium concentration was measured by the ICP emission method. Example 17
セレン酸ナトリウム lOppm (セレン換算) 、 四ホウ酸ナトリウム 500ppm (ホウ素 換算) を含有する溶液 200mlを塩酸で pHを 3に調整し、 300ml四ッロフラスコに入 れ、 さらにスチールウール (0 0. 04mm:商品名ボンスター : 日本スチールウール (株) 製) 0. 20gを加え、 水浴中で 50°Cに加熱し、 撹拌下反応させた。 反応時間 4時間でのセレン濃度は、 7. 8ppmであった。 セレン濃度は、 ICP 発光法により測 200 ml of a solution containing sodium selenate lOppm (converted into selenium) and 500 ppm (converted into boron) sodium tetraborate is adjusted to pH 3 with hydrochloric acid, placed in a 300-ml square flask, and further filled with steel wool (0.04 mm: product). 0.20 g) was added, and the mixture was heated to 50 ° C. in a water bath and reacted under stirring. The selenium concentration at a reaction time of 4 hours was 7.8 ppm. Selenium concentration is measured by ICP emission method.
XEし 7 XE 7
実施例 1 8  Example 18
セレン酸ナトリゥム 0. 5ppm (セレン換算) 、 硫酸ナトリウム 5000ppm (硫酸ィォ ン換算) 、 ホウ酸 250ppm (ホウ素換算) を含有する溶液 500ml (pH7に調整) をホ ゥ酸選択性樹脂 ダイヤイオン CRB02 (三菱化学 (株) 製) 500mlを充塡したカラ ム (内径 45mm) に SV=1で通液した。 通液後の溶液中のホウ素濃度は lOppm以下で あった。 この溶液を塩酸で pHを 4に調整し、 スチールウール (0 0. 04mm :商品名 ボンスター : 日本スチールウール (株) 製) l. Ogを充塡したジャケッ ト付きカラ ム (内径 11難、 高さ 100mm、 カラム容積 10ml) に上向流で SV=2で通液した。 通液 の間、 ジャケッ 卜の温度は 50°Cとした。 500ml通液時のセレン濃度は、 0. lppmで あった。  500 ml (adjusted to pH7) of a solution containing 0.5 ppm of sodium selenate (converted to selenium), 5000 ppm of sodium sulfate (converted to ionic sulfate), and 250 ppm (converted to boron) of boric acid was added to the boric acid-selective resin Diaion CRB02 ( The liquid was passed through a column (45 mm inside diameter) filled with 500 ml at SV = 1 (manufactured by Mitsubishi Chemical Corporation). The boron concentration in the solution after passing was less than 10 ppm. The pH of this solution was adjusted to 4 with hydrochloric acid, and steel wool (0.04 mm: trade name Bonstar: manufactured by Nippon Steel Wool Co., Ltd.) l. Og-filled jacketed column (inner diameter 11 difficult, high The solution was passed through an upward flow at a flow rate of SV = 2 through a column with a length of 100 mm and a column volume of 10 ml). During the passage, the temperature of the jacket was 50 ° C. The selenium concentration at the time of passing 500 ml of liquid was 0.1 ppm.
実施例 1 9  Example 19
セレン酸ナトリゥム 0. 5ppm (セレン換算) 、 硫酸ナトリゥム 5000ppm (硫酸ィォ ン換算) 、 ホウ酸 250ppm (ホウ素換算) を含有する溶液 500mlを塩酸で pHを 4に調 整し、 スチールウール (0 0. 04mm:商品名ボンスター: 日本スチールウール(株) 製) l. Ogを充填したジャケッ ト付きカラム (内径 l lnrau 高さ 100mm、 カラム容積 10ml ) に上向流で SV=2で通液した。 通液の間、 ジャケッ 卜の温度は 50°Cとした。 500ml通液時のセレン濃度は、 0. 13ppmであった。  Adjust the pH to 4 with hydrochloric acid in 500 ml of a solution containing 0.5 ppm of sodium selenate (converted into selenium), 5000 ppm of sodium sulfate (converted into ion sulfate), and 250 ppm of boric acid (converted to boron). 04 mm: Trade name: Bonstar: manufactured by Nippon Steel Wool Co., Ltd. l The liquid was passed upward through a column with a jacket filled with Og (inner diameter l lnrau, height 100 mm, column volume 10 ml) at SV = 2. During the passage, the temperature of the jacket was 50 ° C. The selenium concentration at the time of passing through 500 ml was 0.13 ppm.
産業上の利用可能性 Industrial applicability
本発明方法によれば 溶液中にセレンと共にアルカリ金属硫酸塩、 ホウ素化合 物等の中性付近で緩衝作用を示す化合物等の他の無機酸塩類を含有する排水を、 簡単な処理操作により効率良く処理し、 セレン濃度を低減する事が出来る。  According to the method of the present invention, wastewater containing other inorganic acid salts such as a compound having a buffering action near neutrality, such as an alkali metal sulfate and a boron compound, together with selenium in a solution is efficiently treated by a simple treatment operation. Processing to reduce selenium concentration.

Claims

請 求 の 範 囲 The scope of the claims
1 . セレン及び他の金属無機酸塩を含有する溶液を、 鉄系金属の充塡層を流通 させ、 該鉄系金属の表面にセレンを析出させるに当たり、 該溶液を 3 0 °C以上の 温度において鉄系金属と接触させることを特徴とするセレン含有溶液の処理方法。1. A solution containing selenium and another metal inorganic acid salt is allowed to flow through a packed bed of iron-based metal to deposit selenium on the surface of the iron-based metal. 3. The method for treating a selenium-containing solution according to claim 1, wherein
2 . セレン及び他の金属無機酸塩を含有する溶液の p H値を 3〜7に調整する ことを特徴とする請求の範囲第 1項記載のセレン含有溶液の処理方法。 2. The method for treating a selenium-containing solution according to claim 1, wherein the pH value of the solution containing selenium and another metal inorganic acid salt is adjusted to 3 to 7.
3 . 他の金属無機酸塩が、 アルカリ金属及びアルカリ土類金属の硫酸塩である ことを特徴とする請求の範囲第 1項記載のセレン含有溶液の処理方法。  3. The method for treating a selenium-containing solution according to claim 1, wherein the other metal inorganic acid salt is a sulfate of an alkali metal and an alkaline earth metal.
4 . セレン及び他の金属無機酸塩を含有する溶液は、 鉄系金属の充塡層を上向 流で流通させることを特徴とする請求の範囲第 1項記載のセレン含有溶液の処理 方法。  4. The method for treating a selenium-containing solution according to claim 1, wherein the solution containing selenium and another metal inorganic acid salt is allowed to flow in an upward direction through a packed bed of an iron-based metal.
5 . セレン及び他の金属無機酸塩を含有する溶液を鉄系金属の充塡層と接触さ せる際、 充塡層内の該溶液の P H値を 3〜 7に保持しながら接触させることを特 徴とする請求の範囲第 1項記載のセレン含有溶液の処理方法。  5. When contacting a solution containing selenium and other metal inorganic acid salts with a bed of iron-based metal, contact the solution while maintaining the PH value of the solution in the bed between 3 and 7. The method for treating a selenium-containing solution according to claim 1, which is characterized in that:
6 . セレン及び他の金属無機酸塩を含有する溶液の p H値を 3〜7に調整する こと及び該 P H調整後の溶液を鉄系金属の充塡層に接触させることよりなる工程 を複数回繰り返すことを特徴とする請求の範囲第 1項記載のセレン含有溶液の処 理方法。  6. A plurality of steps consisting of adjusting the pH value of the solution containing selenium and other metal inorganic acid salts to 3 to 7 and bringing the solution after the pH adjustment into contact with the iron-based metal packed layer. 2. The method for treating a selenium-containing solution according to claim 1, wherein the method is repeated twice.
7 . セレン及び他の金属無機酸塩を含有する溶液を、 鉄系金属の充塡層に流通 させる際、 該充塡層に酸を添加し層内における溶液の p H値を 3〜 7に保持する ことを特徴とする請求の範囲第 1項記載のセレン含有溶液の処理方法。  7. When a solution containing selenium and other metal inorganic acid salts is allowed to flow through the iron-based metal packed bed, an acid is added to the packed bed to adjust the pH value of the solution in the bed to 3 to 7. 2. The method for treating a selenium-containing solution according to claim 1, wherein the selenium-containing solution is retained.
8 . 鉄系金属を収容した反応缶に、 セレン及び他の金属無機酸塩を含有する溶 液と希酸を添加し、 p H値を 3〜7に保持しながら撹拌下、 3 0 °C以上の温度に おいて接触反応させることを特徴とするセレン含有溶液の処理方法。  8. Add a solution containing selenium and other metal inorganic acid salts and dilute acid to a reaction vessel containing an iron-based metal, and stir at 30 ° C while maintaining the pH value at 3 to 7. A method for treating a selenium-containing solution, wherein the reaction is carried out at the above temperature.
9 . 鉄系金属は、 繊維状、 多孔体、 微細片板状、 粒状或いは粉状であることを 特徴とする請求の範囲第 1項記載のセレン含有溶液の処理方法。  9. The method for treating a selenium-containing solution according to claim 1, wherein the iron-based metal is in a fibrous form, a porous body, a fine plate-like form, a granular form, or a powdery form.
1 0 . 鉄系金属は、 繊維状であることを特徴とする請求の範囲第 9項記載のセ レン含有溶液の処理方法。 10. The method for treating a selenium-containing solution according to claim 9, wherein the iron-based metal is fibrous.
1 1. 鉄系金属が、 切削法により繊維状とされたものであることを特徴とする 請求の範囲第 9項記載のセレン含有溶液の処理方法。 1 1. The method for treating a selenium-containing solution according to claim 9, wherein the ferrous metal is formed into a fibrous form by a cutting method.
1 2. 鉄系金属が、 直径 0. 0 1〜 3 mmの繊維状であることを特徴とす る請求の範囲第 9項記載のセレン含有溶液の処理方法。  12. The method for treating a selenium-containing solution according to claim 9, wherein the ferrous metal is fibrous having a diameter of 0.01 to 3 mm.
1 3. 鉄系金属が、 スチールウールであることを特徴とする請求の範囲第 1項 記載のセレン含有溶液の処理方法。  1 3. The method for treating a selenium-containing solution according to claim 1, wherein the iron-based metal is steel wool.
1 4. 鉄系金属は、 多孔性であることを特徴とする請求の範囲第 9項記載のセ レン含有溶液の処理方法。  14. The method for treating a selenium-containing solution according to claim 9, wherein the iron-based metal is porous.
1 5. 鉄系金属は、 表面積が 0. 0 0 1 m2/g以上の鉄であることを特徴と する請求の範囲第 1項記載のセレン含有溶液の処理方法。 1 5. The method for treating a selenium-containing solution according to claim 1, wherein the iron-based metal is iron having a surface area of 0.001 m 2 / g or more.
1 6. 鉄系金属は、 カラム容積あたりの鉄の表面積が 0. 0 0 0 1 m2Zml 以上の鉄であることを特徴とする請求の範囲第 1項記載のセレン含有溶液の処理 方法。 1 6. The method for treating a selenium-containing solution according to claim 1, wherein the iron-based metal is iron having a surface area of iron of 0.001 m 2 Zml or more per column volume.
1 7. 鉄系金属は、 カラムへの担持量が 0. 0 1 g/m 1以上 3 gZm 1以下 であることを特徴とする請求の範囲第 1項記載のセレン含有溶液の処理方法。 17. The method for treating a selenium-containing solution according to claim 1, wherein the amount of the iron-based metal loaded on the column is from 0.01 g / m1 to 3 gZm1.
1 8. セレン及び他の金属無機酸塩を含有する溶液が、 セレン濃度の 1 0 0倍 以上の硫酸ィォンを含有する溶液であることを特徴とする請求の範囲第 1項記載 のセレン含有溶液の処理方法。 1 8. The selenium-containing solution according to claim 1, wherein the solution containing selenium and other metal inorganic acid salt is a solution containing 100% or more of selenium sulfate of selenium concentration. Processing method.
1 9. セレン及び他の金属無機酸塩を含有する溶液が、 弱酸強塩基塩、 強酸弱 塩基塩、 弱酸弱塩基塩および Zまたは金属錯塩を含むことを特徴とする請求の範 囲第 1項記載のセレン含有溶液の処理方法。  19. The solution according to claim 1, wherein the solution containing selenium and another metal inorganic acid salt contains a weakly acidic strong base salt, a strongly acidic weakly basic salt, a weakly acidic weakly basic salt and Z or a metal complex salt. A method for treating a selenium-containing solution as described in the above.
2 0. 弱酸強塩基塩、 強酸弱塩基塩、 弱酸弱塩基塩および Zまたは金属錯塩が、 アンモニゥム塩、 炭酸塩、 リン酸塩、 ホウ酸塩、 カルボン酸塩、 アルミニウム錯 塩、 銅錯塩、 コバルト錯塩および Zまたは鉄錯塩であることを特徴とする請求の 範囲第 1 9項記載のセレン含有溶液の処理方法。  20. Weak acid strong base, strong acid weak base, weak acid weak base and Z or metal complex, ammonium salt, carbonate, phosphate, borate, carboxylate, aluminum complex, copper complex, cobalt The method for treating a selenium-containing solution according to claim 19, which is a complex salt and a Z or iron complex salt.
2 1. セレン及び他の金属無機酸塩を含有する溶液を 3 0 °C以上の温度におい て、 鉄系金属の充塡層を流通させて該鉄系金属の表面にセレンを析出させる工程 及び該鉄系金属の表面に析出したセレンを焼却或いは剝離処理に付し回収するェ 程からなることを特徴とするセレン含有溶液の処理方法。 2 1. a step of passing a solution containing selenium and another metal inorganic acid salt at a temperature of 30 ° C. or more through a packed bed of iron-based metal to precipitate selenium on the surface of the iron-based metal; and A method for treating a selenium-containing solution, comprising the step of incinerating or separating selenium deposited on the surface of the iron-based metal and recovering it.
2 2 . 剝離処理が希酸との接触または超音波処理であることを特徴とする請求 の範囲第 2 1項記載のセレン含有溶液の処理方法。 22. The method for treating a selenium-containing solution according to claim 21, wherein the separation treatment is contact with a dilute acid or ultrasonic treatment.
2 3 . 希酸との接触または超音波処理により鉄系金属の再生が行われることを 特徴とする請求の範囲第 2 1項記載のセレン含有溶液の処理方法。  23. The method for treating a selenium-containing solution according to claim 21, wherein the ferrous metal is regenerated by contact with a dilute acid or ultrasonic treatment.
2 4 . セレン及び他の金属無機酸塩を含有する溶液を 3 0 °C以上の温度におい て鉄系金属の充塡層を流通させて該鉄系金属の表面にセレンを析出させる工程、 該鉄系金属の表面に析出したセレンを焼却或いは剝離処理に付し回収する工程、 及び該工程におけるセレン回収能の低下に応じて溶液温度を上昇させる、 溶液の p H値を低下させる及び Zまたは溶液の通液速度を低下させる工程からなること を特徴とするセレン含有溶液の処理方法。 24. a step of flowing a solution containing selenium and another metal inorganic acid salt through a packed bed of iron-based metal at a temperature of 30 ° C. or higher to precipitate selenium on the surface of the iron-based metal; A step of incinerating or separating selenium precipitated on the surface of the iron-based metal and recovering the same, and raising the solution temperature in accordance with a decrease in the selenium recovery capacity in the step, lowering the pH value of the solution, and A method for treating a selenium-containing solution, which comprises a step of reducing the flow rate of the solution.
2 5 . セレン化合物を含有する溶液であって、 かつ、 中性付近に緩衝作用を示 す化合物を含有する溶液を処理するに当たり、 該溶液から中性付近に緩衝作用を 示す化合物を除去する工程と、 該溶液を中性から酸性側でセレン化合物を還元、 除去する能力を有する処理剤と接触させてセレン化合物を除去する工程とを含む ことを特徴とするセレン含有溶液の処理方法。  25. In treating a solution containing a selenium compound and containing a compound having a buffer action near neutral, a step of removing the compound having a buffer action near neutral from the solution And removing the selenium compound by contacting the solution with a treating agent capable of reducing and removing the selenium compound on the neutral to acidic side.
2 6 . 中性付近に緩衝作用を示す化合物を除去する工程の後、 中性から酸性側 でセレン化合物を還元、 除去する能力を有する鉄系金属からなる処理剤と接触さ せてセレン化合物を除去する工程を行うことを特徴とする請求の範囲第 2 5項記 載のセレン含有溶液の処理方法。  26. After the step of removing the compound exhibiting a buffering action near neutrality, the selenium compound is brought into contact with a treating agent composed of an iron-based metal having the ability to reduce and remove the selenium compound from neutral to acidic side. The method for treating a selenium-containing solution according to claim 25, wherein a step of removing is performed.
2 7 . 中性から酸性側でセレン化合物を還元、 除去する能力を有する処理剤が、 鉄系金属であることを特徴とする請求の範囲第 2 5項記載のセレン含有溶液の処 理方法。  27. The method for treating a selenium-containing solution according to claim 25, wherein the treating agent capable of reducing and removing a selenium compound from a neutral to an acidic side is an iron-based metal.
2 8 . 中性付近に緩衝作用を示す化合物が、 ホウ素化合物及び/又はアルミ二 ゥム化合物であることを特徴とする請求の範囲第 2 5項記載のセレン含有溶液の 処理方法。  28. The method for treating a selenium-containing solution according to claim 25, wherein the compound having a buffer action near neutrality is a boron compound and / or an aluminum compound.
2 9 . 中性付近に緩衝作用を示す化合物が、 ホウ素化合物であることを特徴と する請求の範囲第 2 5項記載のセレン含有溶液の処理方法。  29. The method for treating a selenium-containing solution according to claim 25, wherein the compound having a buffering action near neutrality is a boron compound.
3 0 . 中性付近に緩衝作用を示す化合物の除去を、 ホウ酸選択性樹脂を用いて 行うことを特徴とする請求の範囲第 2 9項記載のセレン含有溶液の処理方法。 30. The method for treating a selenium-containing solution according to claim 29, wherein the compound exhibiting a buffering action near neutrality is removed using a boric acid-selective resin.
3 1 . ホウ酸選択性樹脂が、 グルカミン型キレート樹脂であることを特徴とす る請求の範囲第 3 0項記載のセレン含有溶液の処理方法。 31. The method for treating a selenium-containing solution according to claim 30, wherein the boric acid-selective resin is a glucamine-type chelate resin.
3 2 . 中性付近に緩衝作用を示す化合物がアルミニウム化合物であって、 該ァ ルミニゥム化合物を凝集沈澱処理により除去することを特徴とする請求の範囲第 2 5項記載のセレン含有溶液の処理方法。  32. The method for treating a selenium-containing solution according to claim 25, wherein the compound having a buffering action near neutrality is an aluminum compound, and the aluminum compound is removed by coagulation precipitation. .
PCT/JP1998/002033 1997-05-08 1998-05-07 Method for treating selenium-containing solution WO1998050304A1 (en)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP13299397 1997-05-08
JP9/132993 1997-05-08
JP18211697 1997-07-08
JP9/182116 1997-07-08
JP9/299599 1997-10-17
JP29959997 1997-10-17
JP9/296872 1997-10-29
JP29687297 1997-10-29
JP9/321021 1997-11-21
JP32102197 1997-11-21

Publications (1)

Publication Number Publication Date
WO1998050304A1 true WO1998050304A1 (en) 1998-11-12

Family

ID=27527333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002033 WO1998050304A1 (en) 1997-05-08 1998-05-07 Method for treating selenium-containing solution

Country Status (1)

Country Link
WO (1) WO1998050304A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004664A1 (en) * 2005-07-06 2007-01-11 Kobelco Eco-Solutions Co., Ltd. Process for recovery of metals and equipment therefor
WO2007015392A1 (en) * 2005-08-04 2007-02-08 Kobelco Eco-Solutions Co., Ltd. Method and apparatus for recovering indium from waste liquid crystal display
JP2007039788A (en) * 2005-07-06 2007-02-15 Kobelco Eco-Solutions Co Ltd Process for recovery of metals and equipment therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072502A (en) * 1993-05-20 1995-01-06 Daiwa Kasei Kenkyusho:Kk Method for treating selenium-containing waste fluid
JPH0959007A (en) * 1995-08-21 1997-03-04 Miyoshi Oil & Fat Co Ltd Recovery of selenium from selenium-containing solution

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072502A (en) * 1993-05-20 1995-01-06 Daiwa Kasei Kenkyusho:Kk Method for treating selenium-containing waste fluid
JPH0959007A (en) * 1995-08-21 1997-03-04 Miyoshi Oil & Fat Co Ltd Recovery of selenium from selenium-containing solution

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004664A1 (en) * 2005-07-06 2007-01-11 Kobelco Eco-Solutions Co., Ltd. Process for recovery of metals and equipment therefor
JP2007039788A (en) * 2005-07-06 2007-02-15 Kobelco Eco-Solutions Co Ltd Process for recovery of metals and equipment therefor
WO2007015392A1 (en) * 2005-08-04 2007-02-08 Kobelco Eco-Solutions Co., Ltd. Method and apparatus for recovering indium from waste liquid crystal display

Similar Documents

Publication Publication Date Title
US5200082A (en) Method for removing toxic substances from industrial and agricultural waste water
KR101653129B1 (en) Method of treating coal gasification wastewater
EP2512997B1 (en) Method for removing selenate from an aqueous fluid
US6177015B1 (en) Process for reducing the concentration of dissolved metals and metalloids in an aqueous solution
EP0140444B1 (en) A process for removing of heavy metals from water in particular from waste water
JPS5929317B2 (en) Wastewater treatment method
JPS5919757B2 (en) Wastewater treatment method
EP0097478A2 (en) Process for removal and recovery of mercury from waste water
CA2064124C (en) Process for the detoxification of cyanide-containing aqueous solutions
EP0166557B1 (en) Process for waste treatment
HUT77892A (en) Anaeorobic method for removing of sulfur compounds from waste waters
US3802910A (en) Recovery of mercury from mercurous bearing liquids
JPH11207364A (en) Treatment of selenium-containing solution
JP3385137B2 (en) Treatment of flue gas desulfurization wastewater
USH1852H (en) Waste treatment of metal plating solutions
WO1998050304A1 (en) Method for treating selenium-containing solution
US4256587A (en) Siliceous adsorbent for heavy metals
US4744825A (en) Removal and recovery of silver from waste stream
JPS6339693A (en) Method for treating waste water containing cyanogen
US5676846A (en) Process for the detoxification of effluents containing free or complexed cyanides
CA1087132A (en) Method for coalescing mercury particles
JPH11207365A (en) Treatment of selenium-containing waste water
JP4132851B2 (en) Method for treating wastewater containing fluorine and hydrogen peroxide
AU2001261912B2 (en) Treatment of effluent
JP2000117109A (en) Method for regenerating catalyst by washing

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase