WO2007015355A1 - Mram - Google Patents

Mram Download PDF

Info

Publication number
WO2007015355A1
WO2007015355A1 PCT/JP2006/313847 JP2006313847W WO2007015355A1 WO 2007015355 A1 WO2007015355 A1 WO 2007015355A1 JP 2006313847 W JP2006313847 W JP 2006313847W WO 2007015355 A1 WO2007015355 A1 WO 2007015355A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nonmagnetic
mram
ferromagnetic
magnetic
Prior art date
Application number
PCT/JP2006/313847
Other languages
English (en)
French (fr)
Inventor
Yoshiyuki Fukumoto
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007529199A priority Critical patent/JP5050853B2/ja
Publication of WO2007015355A1 publication Critical patent/WO2007015355A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1693Timing circuits or methods
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to an MRAM (Magnetic Random Access Memory).
  • the present invention relates to an MRAM that uses a magnetoresistive element that uses (Synthetic Anti-Ferromagnet) as a magnetization free layer as a memory cell.
  • a magnetoresistive element that uses (Synthetic Anti-Ferromagnet) as a magnetization free layer as a memory cell.
  • MRAM is a non-volatile memory capable of high-speed writing Z reading.
  • an MRAM includes a magnetoresistive element composed of a magnetization free layer capable of reversal of magnetization, a magnetization fixed layer with fixed magnetization, and a nonmagnetic layer interposed therebetween, as a memory cell.
  • Use as Data is stored as the orientation of the magnetic layer of the magnetic layer.
  • the magnetoresistive element exhibits a TMR (Tunnel MagnetoRegistance) effect. be called.
  • the magnetoresistive element when the nonmagnetic layer is made of a nonmagnetic conductor, the magnetoresistive element exhibits a GMR (Giant MagnetoRegistance) effect, and the magnetoresistive element thus configured has a CPP—GMR (Current Perpendicular to Plane Giant Magneto Resistive) element.
  • GMR Green MagnetoRegistance
  • CPP—GMR Current Perpendicular to Plane Giant Magneto Resistive
  • Data is written by applying an external magnetic field to the magnetic layer free layer, thereby reversing the magnetic layer of the magnetic layer free layer in a desired direction.
  • data reading uses the magnetoresistive effect exhibited by the magnetoresistive element. Regardless of whether the TMR effect or the GMR effect is used, the resistance of the magnetoresistive element changes according to the magnetization direction of the magnetization free layer. Using the change in the resistance of the magnetoresistive element, the direction of the magnetic layer of the magnetic layer, that is, the written data is determined.
  • MRAM memory cells in a write operation.
  • writing is performed using the fact that the write threshold curve for the external magnetic field of the magnetization free layer becomes a steroid curve.
  • word lines and bit lines that are orthogonal to each other are provided in the vicinity of each magnetoresistive element.
  • the penetration lines are arranged so as to extend in the easy axis and hard axis directions of the magnetization free layer of the magnetoresistive element. Then, current flows through the word line and bit line intersecting the selected memory cell, and the generated current-induced magnetic field is simultaneously applied to the memory cell.
  • the magnetic field of the magnetic free layer When the magnetic field of the free layer reaches the outside of the threshold curve (asteroid) determined by the magnitude of the magnetic anisotropy of the element, the magnetic field of the magnetic free layer is in the easy axis direction. Flip it so that it faces in one of two directions in parallel. At this time, a current is applied only to one of the corresponding word line and bit line, and the write current value is set to such a degree that the magnetic field of the non-selected memory cell is not inverted. Since there is a variation in the write magnetic field in an actual memory cell, the selective write by such a method does not have good memory cell selectivity. In the worst case, there is a case where there is no appropriate selection current margin, and there is a problem that erroneous writing is likely to occur.
  • a “toggle write method” is known (see, for example, US Pat. No. 6,545,906).
  • the toggle write method is a technology that uses SAF for the magnetic layer and performs the write operation with high selectivity by changing the direction of the write magnetic field in time series; This is a structure in which adjacent ferromagnetic layers are magnetically antiferromagnetically coupled.
  • FIG. 1 is a plan view showing a typical configuration of an MRAM that employs a toggle writing method.
  • a word line 103 and a bit line 102 orthogonal to the word line 103 are extended.
  • An MTJ element 101 used as a memory cell is provided at each position where the word line 103 and the bit line 102 intersect.
  • the MTJ element 101 typically includes a lower electrode layer 111, an antiferromagnetic layer 112, a magnetic pinned layer 113, a noria layer 114, a magnetic layer provided above the substrate 100.
  • a free layer 115 and an upper electrode layer 116 are provided. As shown in FIG.
  • the MTJ element 101 is configured so that the easy axes of the magnetization fixed layer 113 and the magnetic layer free layer 115 form an angle of 45 ° with the word line 103 and the bit line 102, that is, The MTJ element 101 is arranged such that the longitudinal direction forms an angle of 45 ° with the word line 103 and the bit line 102.
  • the magnetic free layer 115 is made of SAF. More specifically, The magnetic layer free layer 115 includes ferromagnetic layers 121 and 122 and a nonmagnetic layer 123 interposed therebetween.
  • the nonmagnetic layer 123 is configured to cause an antiferromagnetic RKKY (Rudermann, Kittel, Kasuya, Yoshida) interaction between the ferromagnetic layers 121 and 122. It is well known to those skilled in the art that by appropriately selecting the material and film thickness of the nonmagnetic layer, it is possible to antiferromagnetically couple the upper and lower ferromagnetic layers bonded by the RK KY interaction. .
  • FIG. 9 is a graph showing the dependence of the strength of the binding energy due to the RKKY interaction on the thickness of the nonmagnetic layer.
  • data is shown when the ferromagnetic layers 121 and 122 are formed of a NiFe film and the nonmagnetic layer 123 is formed of a Ru film. J in Figure 9
  • saf anti-parallel coupling energy constant which indicates the energy per unit area (anti-ferromagnetic coupling energy) by parallel or anti-parallel coupling of the magnetic layer of the ferromagnetic layer in the SAF. It was noted that the binding energy was defined as positive when the ferromagnetic layer was antiferromagnetically coupled! Binding energy constant # ⁇ by RKKY interaction is
  • the film thickness of the nonmagnetic layer As the film thickness of the nonmagnetic layer increases, it oscillates damped, and antiferromagnetic RKKY interaction appears in a certain range, and ferromagnetic RKKY interaction appears in another range. At a certain film thickness, no magnetic interaction occurs.
  • the film thickness of the nonmagnetic layer 123 is selected so that they exhibit an antiferromagnetic RKKY interaction.
  • the remanent magnetization of the free magnetization layer 115 as a whole that is, the magnetization of the free magnetic layer 115 as a whole when external magnetic force is applied
  • This condition can be satisfied, for example, by forming the two ferromagnetic layers 121 and 122 with the same material and the same magnetic volume.
  • FIG. 3 shows the magnetic field curve of a SAF composed of two ferromagnetic layer forces that develop a spin flop. Even if an external magnetic field is applied in the direction of the easy axis of the SAF, the magnetic field of the SAF remains zero if the external magnetic field is small. When the external magnetic field increases and reaches the magnetic field H, the magnetic field suddenly appears in the SAF. At this time, the two ferromagnetic layers
  • spin flop the magnetic field H generated by the spin flop
  • Hk is “anisotropic magnetic field”
  • K is “anisotropic energy”.
  • J is saf as described above, and is an “antiparallel bond energy constant”, which is positive.
  • the energy due to this antiparallel coupling is expressed as ⁇ and cos ⁇ .
  • Hj is an ⁇ anti-parallel coupling magnetic field '', and the external magnetic field value that can be resisted until the magnetic layers of the ferromagnetic layers coupled in anti-parallel arrangement by anti-parallel coupling energy become parallel arrangement. It corresponds to.
  • the antiparallel coupling magnetic field Hj is an amount obtained by converting the antiparallel coupling force of the SAF into a magnetic field.
  • the flop magnetic field H is obtained by using the above-described saturation magnetic field Hs and anisotropic magnetic field Hk.
  • FIG. 4 is a conceptual diagram illustrating the procedure of the toggle writing method
  • FIG. 5 is a graph showing waveforms of currents flowing through the word line 103 and the bit line 102 when data writing is performed by toggle writing. is there. Note that in FIG. 4, the magnetization of the ferromagnetic layers 121 and 122 of the magnetic free layer 115 is referenced by the symbols M and M, respectively.
  • Data writing by the toggle writing method is performed by the magnetic field applied to the magnetic free layer 115. This is done by rotating the direction in the plane and orienting the magnetic layers of the ferromagnetic layers 121 and 122 in the desired direction. Specifically, first, a write current is passed through the word line 103, which magnetic field H is generated in the direction perpendicular to the word line 103 Te cowpea (time t) 0 Subsequently, the word line 10
  • a write current flows through bit line 102 while a write current flows through 3 (time t)
  • Magnetic field H is generated in a certain direction (that is, a direction parallel to word line 103). In this way
  • the magnetic field force applied to the magnetic free layer 115 when a write current flows through the word line 103 and the bit line 102 is larger than the flop magnetic field H described above, and flop
  • the advantage of the toggle writing method is that, in principle, the selectivity of the memory cell is high.
  • the magnetic field inversion mode for the write current magnetic fields H and H by the bit line and word line is shown in Fig. 6.
  • toggle write inversion by spin flop is not performed. Instead, the magnetization of the magnetic layer free layer 115 is directly reversed to the magnetization of the magnetic layer fixed layer 113 in an antiparallel or parallel arrangement.
  • toggle writing it is necessary to prevent the writing magnetic field from entering such a direct inversion region. If the write magnetic field enters the direct reversal region, a forced magnetic reversal in an undesired direction of magnetization occurs and erroneous writing occurs.
  • This direct inversion region occurs due to the fact that the ferromagnetic layers 121 and 122 included in the magnetic domain free layer 115 are not magnetically equivalent. For example, it is said that the direct inversion region is generated depending on the difference in the magnetic amount of the ferromagnetic layers 121 and 122. As the amount of magnetic field in one of the ferromagnetic layers is larger, the direct inversion region in Fig. 6 is expanded and the toggle inversion region is reduced. As the direct inversion region increases, the threshold at which toggle inversion begins is shifted to the high magnetic field side. This is a problem because the write magnetic field increases and the write magnetic field margin decreases. Therefore, it is said that the difference in magnetic field between the ferromagnetic layers 121 and 122 should be made as small as possible and the direct inversion region should be reduced.
  • multilayer SAFs The following are known as conventional technologies related to the multilayer SAF.
  • the number of ferromagnetic layers contained in SAF is three or more, and the residual magnetic field of SAF is the saturation magnetic field. It is configured to be within 10%.
  • the SAF has a laminated structure of at least five layers in order to enhance stability against thermal fluctuation.
  • the multilayer SAF is composed of a plurality of magnetic layers divided by a nonmagnetic layer.
  • the sum of the magnetization amount of the even-numbered magnetic layer and the odd number The total amount of magnetic flux of the second magnetic layer is almost equal.
  • the number of the ferromagnetic layers included in the SAF of the magnetic domain free layer is an even number that is greater than or equal to several power layers, and the thickness of each ferromagnetic layer is substantially symmetric in the vertical direction.
  • a nonmagnetic layer between the first ferromagnetic layer and the second ferromagnetic layer, a third ferromagnetic layer, and a fourth strong layer are used. Even if the material and film thickness of the non-magnetic layer between the magnetic layers were set equal, the toggle writing method was rarely operated.
  • magnetization film thickness product magnetization M X effective film thickness t. It can be said that the magnetic film thickness product is the amount of magnetic flux per unit area.
  • the magnetic field of each ferromagnetic layer in the SAF of the actual device is reduced.
  • the dead layer is a region where a certain amount of magnetic flux disappears due to diffusion or the like around the interface between the ferromagnetic layer and the nonmagnetic layer.
  • This dead layer changes the magnetic volume of each ferromagnetic layer.
  • the magnetic free layer is cast in the machining process, it is difficult to machine the side surfaces completely perpendicularly. For example, when the junction side wall is inclined, even if ferromagnetic layers having the same film thickness are formed during film formation, the effective magnetic volumes of the ferromagnetic layers differ.
  • the film qualities of the ferromagnetic layers whose magnetizations are antiparallel to each other as much as possible in the remanent magnetic state.
  • the magnetic properties of the ferromagnetic layer itself such as the magnetocrystalline anisotropy field and the magnetostriction constant, are different.
  • a difference occurs in the magnetic characteristics of the ferromagnetic layers that are paired with the spin flop.
  • magnetic anisotropy is different and the magnetic energy is not equivalent, a direct inversion region is likely to occur. Furthermore, such non-uniformity of the magnetic characteristics of the ferromagnetic layer can be a cause of variations in magnetic reversal characteristics such as a flop magnetic field and a saturation magnetic field.
  • the multi-layer SAF comprising four layers (or more than that) disclosed in Japanese Patent Application Laid-Open No. 2005-86015 incorporates many of the difficulties of such multi-layer SAFs.
  • the pair of ferromagnetic layers in which the amount of magnetism is equal and the magnetization is antiparallel in the remanent magnetization state are the same as the first ferromagnetic layer and 4 It is a set of a ferromagnetic layer of the second layer, and a set of a ferromagnetic layer of the second layer and a ferromagnetic layer of the third layer.
  • the most distant ferromagnetic layers, the first ferromagnetic layer and the fourth ferromagnetic layer, must always be equivalent. Therefore, the volume difference inevitably caused by processing and the difference in magnetic properties due to different film quality are serious. This becomes even more serious when the number of ferromagnetic layers is further increased in order to increase the resistance to thermal disturbance in order to cope with even smaller MTJ. This is because the ferromagnetic layers that are required to have equivalent magnetic properties are arranged further apart and there are a plurality of layers.
  • Improving the spin-flop characteristics is important for improving the performance of an MRAM that uses a multilayer SAF as a magnetic layer free layer.
  • reducing the flop magnetic field H while maintaining a large saturation magnetic field Hs is a reduction in the write magnetic field (reversal magnetic field).
  • the write current is reduced by reducing the reversal magnetic field, which leads to higher performance of MRAM.
  • the decrease in SAF reversal magnetic field is not limited to the writing method using a current-induced magnetic field, but provides a spin-polarized current to SAF.
  • the “spin transfer method” that causes magnetic reversal by supplying power is also important because it leads to a reduction in write current.
  • a technique capable of operating an MRAM using a multilayer SAF as a magnetic free layer with a high yield is desired.
  • an object of the present invention is to provide a multilayer SAF that can improve the operation rate of the MRAM.
  • Another object of the present invention is to provide an MRAM in which defective bits are reduced by using the multilayer SAF as a magnetic free layer.
  • Still another object of the present invention is to provide a technique capable of increasing the write margin of MRAM.
  • the inventor of the present application has clarified through the experiment the essential points in operating the multilayer SAF with a high yield. That is, the antiparallel coupling through the top and bottom nonmagnetic layers in the multilayer SAF is set so that it can be solved simultaneously with the external magnetic field.
  • the distribution of the magnetic flux of each ferromagnetic layer in a multilayer SAF, which has been pointed out in the past, is not essential.
  • the uppermost and lowermost ferromagnetic layers have only one coupling with a nonmagnetic layer that exhibits antiparallel coupling. For this reason, antiparallel coupling to the uppermost and lowermost ferromagnetic layers is unstable with respect to the external magnetic field, and is most likely to be detached.
  • the MRAM according to the present invention includes a substrate and a magnetoresistive element.
  • the magnetoresistive element is interposed between a magnetization fixed layer having fixed magnetization, a magnetization free layer having reversible magnetization, and a magnetization fixed layer and a magnetic free layer, and exhibits a magnetoresistance effect.
  • a nonmagnetic layer is interposed between a magnetization fixed layer having fixed magnetization, a magnetization free layer having reversible magnetization, and a magnetization fixed layer and a magnetic free layer, and exhibits a magnetoresistance effect.
  • the free layer is composed of the 1st to Nth ferromagnetic layers (N is 4 forces, an integer greater than 6) and the 1st to Nth layers formed to develop antiferromagnetic RK KY interaction.
  • 1 non-magnetic layer The kth nonmagnetic layer (k is an integer from 1 to N ⁇ 1) of the 1st to N ⁇ 1th nonmagnetic layers is the kth ferromagnetism of the 1st to Nth ferromagnetic layers. Between the layer and the (k + 1) th ferromagnetic layer. The first nonmagnetic layer is located closest to the substrate among the first to N-1 nonmagnetic layers, and the N-1 nonmagnetic layer is the first to N-1 nonmagnetic layers. It is located farthest from the substrate.
  • the volume (magnetization volume) of the kth ferromagnetic layer is represented by V, and its magnetic field is represented by M.
  • the value obtained by dividing the volume V by the average area in the planar direction of the magnetic kk free layer is the effective film thickness t of the kth ferromagnetic layer.
  • the relative angle of the magnetic orientation of the kth ferromagnetic layer and the (k + 1) th ferromagnetic layer via the kth nonmagnetic layer is expressed as ⁇ .
  • Total anti-flatness of kth ferromagnetic layer and (k + 1) th ferromagnetic layer via kth nonmagnetic layer is expressed as ⁇ .
  • the row bond energy is given by J COS k using antiparallel bond energy constant k having a positive value.
  • M Xt and M Xt are substantially equal, and M Xt and M Xt are substantially equal, and M Xt and M Xt are substantially equal.
  • the parameter M xt 1S is the magnetic film thickness product of the k-th ferromagnetic layer.
  • N 4.
  • the effect is obtained that the number of magnetic free layers is the smallest and the write margin is increased. The effect has been demonstrated in actual devices by the inventors.
  • the present invention also provides a magnetic free layer including N ferromagnetic layers, wherein N is an odd number of 3 or more. In that case, the sum of M Xt and M Xt is M
  • the parameter M xt iS is the magnetic film thickness product of the k-th ferromagnetic layer.
  • the toggle-write type MRAM has the above-described magnetoresistive element arranged as a memory element at the intersection of the word line, the bit line orthogonal to the word line, and the word line and the bit line.
  • the direction of the easy axis of the magnetization free layer of the magnetoresistive element is set to 45 degrees with respect to the extending direction of the word line or bit line.
  • the most important point in configuring the magnetization free layer of the present invention is that the magnetic fields at which antiparallel coupling starts to be solved with respect to the external magnetic field are approximately equal for the first ferromagnetic layer and the Nth ferromagnetic layer. It is to set. That is, the external magnetic field at which the antiparallel coupling with respect to the first ferromagnetic layer begins to dissolve is substantially equal to the external magnetic field at which the antiparallel coupling with respect to the Nth ferromagnetic layer begins to dissolve.
  • J (M Xt)] Z (M Xt) are substantially equal with respect to the uppermost lowermost ferromagnetic layer and the nonmagnetic layer. More quantitatively, (J Z (M Xt)
  • the ratio of N-l Z (M Xt) ⁇ is preferably 0.8 or more and 1.2 or less.
  • the magnetic field is given by [ ⁇ 2J / (M Xt) ⁇ Hk ⁇ XHk].
  • the SAF flop magnetic field through the N-1 nonmagnetic layer is given by [ ⁇ 2J / ⁇ M Xt) -Hk ⁇ XHk].
  • the magnetic film thickness product of the uppermost ferromagnetic layer and the lowermost ferromagnetic layer may not be equivalent (M Xt ⁇ M Xt, J ⁇ J, Q [Z (M Xt)
  • One of the advantages of the multilayer SAF according to the present invention is that the magnetic film thickness product and magnetic energy of the ferromagnetic layers taking the antiparallel arrangement in the remanent magnetization state can be made equivalent. .
  • the following can be considered as the magnetic layer free layer configuration that can bring out the advantages. That is, in the case of an even number equal to or greater than N force, the k-th and k + 1-th ferromagnetic layers (k is an odd number) are set to have substantially the same magnetic film thickness product.
  • the maximum value is set. In that case, the saturation magnetic field can be further increased. More quantitatively, the antiparallel coupling energy constant of SAF through the NZ2 nonmagnetic layer and the antiparallel coupling energy constant # ⁇ of the top N-1 nonmagnetic layer are expressed by the following parameter Q [ ⁇ 1 / (M Xt) + l / (M Xt) ⁇
  • N ⁇ l Z (M)] is set to be large. Its parameter is greater than 1
  • the saturation field of the multilayer SAF magnetic free layer extends and the write margin increases. According to the inventor's experiment, the effect has been demonstrated in the range of the parameter Taka less than S4. Larger values are possible although not demonstrated.
  • At least from the first ferromagnetic layer and the second ferromagnetic layer sandwiching the first nonmagnetic layer, and from the N-1 ferromagnetic layer and the Nth ferromagnetic layer sandwiching the N-1 nonmagnetic layer If the saturation magnetic field in the SAF part It is preferable because the spin flop inside is not interrupted. The same applies to the lowermost first nonmagnetic layer. In that case, [J ⁇ 1 / (M Xt) + l / (M Xt) ⁇ ] Z [2J Z (M Xt)] is used as the parameter.
  • the antiparallel coupling energy constants other than the lowermost and uppermost nonmagnetic layers are preferably a value other than 1 and N-1).
  • is the order of the antiferromagnetic peak of the RKKY interaction of the kth nonmagnetic layer
  • the first nonmagnetic layer has a thickness in a range corresponding to the ⁇ -order antiferromagnetic peak of the RKKY interaction.
  • the first non-magnetic layer is the ⁇ -th order antiferromagnetic peak of the RKKY interaction.
  • the film thickness is in a range corresponding to If J> J, the relationship ⁇ ⁇ is satisfied,
  • the first nonmagnetic layer has a thickness of 1.8 nm to 2.5 nm.
  • the N-1 nonmagnetic layer is formed of a ruthenium layer having a thickness of 3. lnm to 3.9 nm. If J ⁇ J, the first nonmagnetic layer is 3.
  • the N-1 nonmagnetic layer is formed of a ruthenium layer having a thickness of 1.8 nm to 2.5 nm.
  • the antiparallel coupling amount of the nonmagnetic layer on the central side is further increased.
  • a further extension of the saturation magnetic field can be expected. To do so, if J> J, the second to (N-2) nonmagnetic layers
  • At least one of the nonmagnetic layers has a film thickness in a range corresponding to a lower-order antiferromagnetic peak than the N-1th nonmagnetic layer.
  • the antiparallel coupling force at the center of the magnetic free layer is more than twice as strong as the top.
  • the 2nd to 2nd N— 2
  • At least one of the nonmagnetic layers has a film thickness in a range corresponding to a lower-order antiferromagnetic peak than the first nonmagnetic layer. In that case, the anti-parallel coupling force at the center of the magnetic free layer is more than twice as strong as the bottom.
  • the nonmagnetic layer having such a strong antiparallel coupling force is desirably set as the most central layer of the magnetic free layer. That is, when N is an even number, it is desirable to set the (NZ2) nonmagnetic layer so as to have a strong antiparallel coupling force.
  • NZ2 the (NZ2) nonmagnetic layer
  • the second ( ⁇ 2) nonmagnetic layer is formed of a ruthenium layer having a thickness of 1.8 nm to 2.5 nm, and the first nonmagnetic layer or the N-1 nonmagnetic layer has a thickness of 3. lnm to 3.9 nm. It is formed of a ruthenium layer having a thickness.
  • the (NZ2) nonmagnetic layer is formed of a ruthenium layer having a thickness of 0.7 nm to l.2 nm, and the first nonmagnetic layer or the N-1 nonmagnetic layer is 1.8 nm to 2 nm. Formed with a ruthenium layer having a thickness of 5 nm.
  • the first nonmagnetic layer and the N-1 nonmagnetic layer may have different structures.
  • the thickness and crystal orientation of the first nonmagnetic layer and the N-1 nonmagnetic layer are different.
  • it is preferable that the N-1 nonmagnetic layer is thicker than the first nonmagnetic layer.
  • the crystal orientations of the first ferromagnetic layer and the N ⁇ 1 ferromagnetic layer that exist immediately below the nonmagnetic layer may be different.
  • At least one of the first ferromagnetic layer, the second ferromagnetic layer, the N-1 ferromagnetic layer, and the Nth ferromagnetic layer is composed of two layers having different constituent elements or constituent element compositions.
  • a laminated film a laminated film of a NiFe film and a CoFe film is suitable.
  • the first nonmagnetic layer and the N-1th nonmagnetic layer may have substantially the same structure.
  • the elemental composition ratios of all the parts directly in contact with the upper and lower interfaces of the first nonmagnetic layer are expressed as The antiparallel coupling force can be adjusted by setting different values.
  • at least one of the first ferromagnetic layer, the second ferromagnetic layer, the N-1 ferromagnetic layer, and the Nth ferromagnetic layer is a constituent element or a constituent element. It is a laminated film in which two or more films with different compositions are laminated.
  • the antiparallel coupling force of the first nonmagnetic layer and the N-1 nonmagnetic layer is controlled to a desired value. Thereby, it is possible to realize the magnetic domain free layer according to the present invention.
  • a laminated film a laminated film of a NiFe film and a CoFe film is suitable.
  • FIG. 1 is a plan view showing a typical configuration of an MRAM corresponding to a toggle writing method.
  • FIG. 2 is a cross-sectional view showing a typical configuration of an MTJ element incorporated in an MRAM that supports the toggle writing method.
  • Fig. 3 is a graph showing a typical magnetic field curve of a SAF expressing a spin flop.
  • FIG. 4 is a conceptual diagram showing a data writing procedure by a toggle writing method.
  • FIG. 5 is a graph showing waveforms of write currents that flow through the bit lines and the side lines when data writing is performed by the toggle writing method.
  • FIG. 6 is a graph showing the write magnetic field dependence of the write characteristics of the MRAM employing the toggle write method.
  • FIG. 7A is a cross-sectional view showing the configuration of the MTJ element of the MRAM according to the first exemplary embodiment of the present invention.
  • FIG. 7B is a cross-sectional view showing the configuration of the MTJ element of the MRAM according to the second exemplary embodiment of the present invention.
  • FIG. 7C is a cross-sectional view showing the configuration of the MTJ element of the MRAM according to the third exemplary embodiment of the present invention.
  • FIG. 8A is a cross-sectional view of an MRAM MTJ element in an actual device according to the fourth embodiment of the present invention.
  • FIG. 8B is a cross-sectional view of an actual device of a conventional MTJ element as a comparative example for the MRAM according to the fourth embodiment of the present invention.
  • FIG. 9 is a graph showing the dependence of the binding energy constant of the RKKY interaction on the thickness of the nonmagnetic layer when NiFe is a ferromagnetic layer and Ru is a nonmagnetic layer.
  • FIG. 10A is a table showing the structures of the magnetization free layers of the samples of Comparative Examples 1 to 7 and Examples 1 to 4.
  • FIG. 10B is a table showing the configuration of the magnetization free layer of the samples of Comparative Examples 1 to 7 and Examples 1 to 4.
  • FIG. 11 shows a 0.6 X 1. oval MTJ of the samples of Comparative Examples 1-7 and Examples 1-4. It is a table
  • FIG. 12 is a table showing detailed toggle writing characteristics of the oval MTJ devices of the samples of Comparative Examples 1 and 2 and Examples 2 and 4.
  • FIG. 13 shows the saturation magnetic field shown only by SAF through the first nonmagnetic layer of the samples of Comparative Examples 3-7 and Examples 1-4, and only SAF through the third nonmagnetic layer. It is the figure which compared the saturation magnetic field shown.
  • FIG. 14 shows the toggle writing operation rate of the MTJ device of 0.6 X 1.2 / zm 2 obtained from the samples of Comparative Examples 3 to 7 and Examples 1 to 4 and FIG. J / (MX t / (MX t)
  • FIG. 7A is a cross-sectional view showing the structure of the MTJ element 1A employed in the memory cell of the MRAM according to the first exemplary embodiment of the present invention.
  • the MTJ element 1A includes a lower electrode layer 11, an antiferromagnetic layer 12, a magnetic pinned layer 13, a barrier layer 14, a magnetic free layer 15A, a cap layer 16, and an upper electrode layer 17. I have.
  • the MTJ element 1A is arranged so as to correspond to a toggle writing method, for example. Specifically, similar to the MTJ element 101 of the conventional MRAM shown in FIG. 1, the MTJ element 1A has an angle of 45 ° with respect to the word line (and the bit line perpendicular thereto). It is arranged to make As a result, the easy axes of the ferromagnetic layers constituting the magnetic pinned layer 13 and the magnetic free layer 15A are oriented in a direction that forms an angle of 45 ° with respect to the word line (and the bit line perpendicular thereto). .
  • the configuration of the MTJ element 1A will be described in detail.
  • the lower electrode layer 11 is formed on a substrate 10 on which MOS transistors (not shown) are integrated, and functions as a path for providing an electrical connection to the magnetization fixed layer 13.
  • the lower electrode layer 11 is made of, for example, Ta, TaN, Ti, TiN, or Nb.
  • the antiferromagnetic layer 12 is formed of an antiferromagnetic material such as PtMn, IrMn, or NiMn, and has a role of fixing the magnetic force of the magnetic pinned layer 13.
  • the magnetic pinned layer 13 is formed of a magnetically hard ferromagnetic material such as CoFe, for example.
  • the magnetic flux of the magnetic flux fixed layer 13 is fixed by the exchange interaction in which the antiferromagnetic layer 12 acts.
  • the magnetic pinned layer 13 may be composed of the SAF described above.
  • the magnetization fixed layer 13 can be composed of two CoFe films and a Ru film inserted therebetween. In this case, the Ru film is formed so as to have a film thickness that exhibits an antiferromagnetic RKKY interaction.
  • the barrier layer 14 is often an amorphous insulator film that is thin enough to allow a tunnel current to flow.
  • the noria layer 14 is amorphous, as will be described later, it greatly affects the crystallinity of the film constituting the magnetic free layer 15A.
  • the barrier layer 14 includes, for example, alumina (AIO), magnesium oxide (MgO), zirconium oxide (ZrO), hafnium oxide (HfO), silicon oxide (SiO 2), aluminum nitride (A1N
  • the noria layer 14 need not be amorphous, for example, it may be formed of single crystal MgO having a Na C1 structure.
  • the magnetic free layer 15A is composed of SAF, which is the force of the ferromagnetic layer. More specifically, the magnetic free layer 15A includes ferromagnetic layers 21 to 24 and nonmagnetic layers 31 to 33 interposed therebetween.
  • the ferromagnetic layer 21 is formed on the noria layer 14, and the nonmagnetic layer 31 is formed on the ferromagnetic layer 21.
  • a ferromagnetic layer 22, a nonmagnetic layer 32, a ferromagnetic layer 23, a nonmagnetic layer 33, and a ferromagnetic layer 24 force are sequentially formed in this order.
  • the magnetic volume of ferromagnetic layer 21 and ferromagnetic layer 22 is almost equal to the magnetic volume of ferromagnetic layer 23 and ferromagnetic layer 24, and the magnetic volume of ferromagnetic layer 21 and ferromagnetic layer 24 is different. This is one of the important points of the present invention. In the present embodiment, it is assumed that the magnetic volume of the ferromagnetic layer 24 is smaller than that of the ferromagnetic layer 21. At this time, the antiparallel coupling energy of the nonmagnetic layer 33 must be set smaller than that of the nonmagnetic layer 31. Otherwise, the antiparallel coupling with respect to the ferromagnetic layer 21 will be released first with a low external magnetic field.
  • the magnetization free layer 15A is a ferromagnetic layer 21 on the tunnel barrier layer 14.
  • the ferromagnetic layer 24 below the cap layer 16 has the following film configuration:
  • the ferromagnetic layer 21 and the ferromagnetic layer 22 correspond to NiFe (4.8 nm) / CoFe (0.35 nm), and the ferromagnetic layer 23 and the ferromagnetic layer 24 have NiFe ( 3.3 nm) / CoF e (0. 25 nm; ⁇ NiFe (3.7 nm))
  • the ferromagnetic layer 21 and the ferromagnetic layer 22 have a magnetic film thickness product of about 4.72 Tnm.
  • the magnetic film thickness product of 23 and the ferromagnetic layer 24 is about 3.15 Tnm, and the ferromagnetic layer 21 has a magnetic film thickness product of 1.5 times that of the ferromagnetic layer 24.
  • the nonmagnetic layers 31 to 33 correspond to Ru (2. lnm), Ru (2. lnm), and Ru (3.5 nm).
  • the ferromagnetic layers 21 to 24 are composed of a plurality of materials, and the nonmagnetic layer Control by changing the interfacial material is combined with control by directly changing the thickness of the nonmagnetic layer.
  • the ferromagnetic layer is formed to have a two-layer or three-layer structure such as NiFeZCoFe, CoFeB / CoFeNi, CoFeZNiFeZCoFe, and contacts the nonmagnetic layers 31 to 33.
  • the film thickness of the layer (CoFe or CoFeNi) is controlled. This utilizes the fact that the strength of the RKKY interaction differs depending on the material in direct contact with the nonmagnetic layers 31-33.
  • a Co-rich material is much larger than a Ni-rich material. Therefore, NiFe is the main component of the ferromagnetic layer and lnm or less on the nonmagnetic layer side.
  • the lower CoFe is formed thinly.
  • the thickness of CoFe inserted at the NiFeZRu interface is large! /, And J can be increased.
  • ferromagnetic layer means a layer having the same direction of the ferromagnetic field as a whole, and is interpreted as being limited to a single ferromagnetic film. must not.
  • a laminated film composed of multiple ferromagnetic films such as NiFe / CoFe is also one ferromagnetic layer.
  • a laminated body composed of two ferromagnetic films and a nonmagnetic film interposed between them to ferromagnetically couple the two ferromagnetic films is also one ferromagnetic layer.
  • the magnetization film thickness product in the case of such a laminated film of a plurality of ferromagnetic films is defined as the sum of the magnetization film thickness products of each ferromagnetic film.
  • the film thickness of the nonmagnetic layer must be set in consideration of the crystallinity of the nonmagnetic layer.
  • the strength of the RKKY interaction depends on the material and film thickness of the nonmagnetic layer. Therefore, in order to make the strength of the antiferromagnetic RKKY interaction expressed by the nonmagnetic layer 31 and the nonmagnetic layer 33 the same, the nonmagnetic layer 31 and the nonmagnetic layer 33 are made of the same material. If it is formed so that the thicknesses are the same, it may be considered to be a cage.
  • the nonmagnetic layer 31 and the nonmagnetic layer 33 are formed with the same material and the same film thickness, the nonmagnetic layer 31
  • the strength of the RKKY interaction in which the nonmagnetic layer 33 appears is not the same. This is because the nonmagnetic layer 31 and the nonmagnetic layer 33 have different crystallinity.
  • the magnetic free layer 15A is formed on the barrier layer 14, on the ferromagnetic layer 21, the nonmagnetic layer 31, the ferromagnetic layer 22, the nonmagnetic layer 32, the ferromagnetic layer 23, the nonmagnetic layer 33, and the ferromagnetic layer 24.
  • the Ru of the nonmagnetic layer 33 formed later is HCP (hexagonal close packed) 0001> crystals than the Ru of the nonmagnetic layer 31 formed earlier. High orientation.
  • the strength of the RKKY interaction is stronger as the crystal orientation is better. 33 is more strongly expressed RKKY interaction.
  • the nonmagnetic layer 31 is formed to have a film thickness in a range corresponding to a relatively low order peak.
  • the nonmagnetic layer 33 it is preferable to form the nonmagnetic layer 33 so as to have a film thickness in a range corresponding to a relatively high-order peak.
  • the strength of the RKKY interaction expressed by the nonmagnetic layer 33 is enhanced by good crystallinity, and the strength is weakened by having a film thickness corresponding to a relatively high-order peak.
  • the noria layer 14 is amorphous AIO and is formed thereon.
  • the nonmagnetic layer 31 of the extended magnetization free layer 15A has a thickness corresponding to the second antiferromagnetic peak of the RKKY interaction (antiferromagnetic second peak), and the nonmagnetic layer 32 and 33 have a film thickness in the range corresponding to the third antiferromagnetic peak (antiferromagnetic 3rd peak)! More specifically, when the nonmagnetic layers 31 to 33 are formed of ruthenium, the nonmagnetic layer 31 is formed so that the film thickness is more than 1.8 nm and less than 2.5 nm.
  • the nonmagnetic layer 33 is formed so that its film thickness is more than 3.lnm and less than 3.9nm. Most preferably, the nonmagnetic layer 31 is formed to have a film thickness of 2. lnm corresponding to the antiferromagnetic 2nd peak, and the nonmagnetic layer 33 is formed to have a thickness of 3.5 nm corresponding to the antiferromagnetic 3rd peak. It is formed to have a film thickness. Such a combination of film thicknesses is effective for coarsely adjusting the strength of the antiferromagnetic RKKY interaction generated by the nonmagnetic layer 31 and the nonmagnetic layer 33. Therefore, in the present embodiment, the nonmagnetic layer 31 is formed of Ru (2.
  • the nonmagnetic layer 33 is formed of Ru (3.5 nm).
  • the antiferromagnetic peak applied to the nonmagnetic layer 31 is antiferromagnetic applied to the nonmagnetic layer 33. If the magnetic peaks are set higher than the first order, their antiparallel coupling forces can be adjusted to the same order.
  • the crystallinity of the upper layers is improved as to the ferromagnetic layers 21 to 24 which are not only the nonmagnetic layers 31 to 33.
  • the permalloy of the ferromagnetic layer 23 is FCC (face center cubic) compared to the ferromagnetic layer 21. 11 1> High degree of orientation. Therefore, also with respect to the ruthenium of the nonmagnetic layer 31 and the nonmagnetic layer 33 grown immediately above, the ruthenium of the nonmagnetic layer 33 has a higher HCP ratio than the nonmagnetic layer 31.
  • such a technique is not limited to the force that is particularly effective when the laminated magnetic layer is formed on the AIO noria layer as described above.
  • a microcrystalline or amorphous material may be used for the base of the magnetic free layer in order to obtain the flatness of the base.
  • preparation of a sufficient underlayer is limited due to the limitation of the film thickness. Even in such a case, the technique according to the present invention is effective.
  • the underlayer of the magnetic layer is free. Even if the crystallinity is good, it does not always grow while having a magnetic free layer force to grow on it and having a suitable crystal orientation.
  • the nonmagnetic layer which is the lowermost layer of the magnetic free layer, cannot avoid the effects of crystal growth and uneven growth on undesired crystal planes, and has undesired crystallinity and weak RKKY interaction.
  • the top non-magnetic layer grows, it is expected that the top non-magnetic layer will recover the desired crystallinity due to the ferromagnetic / non-magnetic underlayer, thereby strengthening the RKKY interaction. Is done.
  • J nonmagnetic layer 31 and 33 respectively about 0. 015ergZcm 2, I and 0. Ol lergZcm 2
  • SAF Z (M X t) Refer to equation (2)) is 810e and 860e, respectively, and they are set almost equal. According to the inventor's experiment, more quantitatively, it is desirable that the difference in Hj falls within about 20%. In other words, the parameter [TZ (MX t)] / [JZ (MX t)] corresponding to the ratio of Hj between the nonmagnetic layer 31 and the nonmagnetic layer 33 must be set to 0.8 or more and 1.2 or less. Is desirable. Also more strictly
  • the average anisotropic magnetic field Hk of the ferromagnetic layers 21 and 22 is 9.50e
  • the average anisotropic magnetic field Hk of the ferromagnetic layers 23 and 24 is 70e. in this case
  • the flop magnetic field [ ⁇ (Hj—Hk) X Hk ⁇ ] "0.5 (see Equation 4 (c)) of the nonmagnetic layers 31 and 33 is 260e and 23.50e, respectively.
  • the nonmagnetic layer 32 at the center is set so as to express the largest J as an aim to bring out additional effects.
  • the nonmagnetic layer 32 is set so as to express the largest J as an aim to bring out additional effects.
  • J of the nonmagnetic layer 32 is about 0.038 ergZcm 2 and all of the SAF
  • Nonmagnetic layer 32 It is the largest of the nonmagnetic layers. That is, Ru (2. lnm) of nonmagnetic layer 32 is NiFe (4.8 nm) / CoFe (0.35 nm) / Ru (2. Lnm) / NiFe (4.8 nm) / CoFe (0.35 nm) This is because the crystal orientation of HCP ⁇ 0001> is increasing.
  • the magnetic field from which the antiparallel coupling through the nonmagnetic layer 32 is removed is the nonmagnetic layer 31 and the nonmagnetic layer 33. Therefore, the saturation magnetic field of the magnetization free layer greatly increases (stretches). As a result, the write margin is increased.
  • the thickness of the nonmagnetic layer 32 is more than 1.8 nm and less than 2.5 nm.
  • the nonmagnetic layer 33 is formed so that its film thickness is more than 3. lnm and less than 3.9 nm.
  • the nonmagnetic layer 33 has a film thickness that exceeds 1.8 nm. It is formed to be less than 5 nm.
  • the nonmagnetic layer 31 is formed to have a film thickness of 2. lnm corresponding to the antiferromagnetic 2nd peak, and the nonmagnetic layer 33 corresponds to the antiferromagnetic 3rd peak 3 It is formed to have a film thickness of 5 nm.
  • the nonmagnetic layer 31 is formed to have a thickness of 0.9 nm corresponding to the antiferromagnetic 1st peak, and the nonmagnetic layer 33 has a thickness of 2. lnm corresponding to the antiferromagnetic 2nd peak. Formed to have.
  • the cap layer 16 is a layer for protecting the magnetic pinned layer 13, the noria layer 14, and the magnetic free layer 15A.
  • the cap layer 16 is made of Ta or Ru, for example.
  • the cap layer 16 is extremely thin enough to allow tunneling current to flow, and can be formed of A10.
  • the upper electrode layer 17 functions as a path that provides an electrical connection to the magnetic free layer 15A.
  • the upper electrode layer 17 is made of, for example, Ta, TaN, TiN, Cu, or Al.
  • FIG. 7B is a cross-sectional view showing the configuration of the MTJ element 1B according to the second embodiment of the present invention.
  • the MTJ element 1B shown in FIG. 7B is the same as the MTJ element 1A shown in FIG. 7A.
  • the magnetic free layer 15B force 4 ferromagnetic layers 21 to 24 and 3 nonmagnetic layers 31 Consisting of ⁇ 33 It has such a configuration.
  • the magnetization free layer 15B has the following film configuration from the ferromagnetic layer 21 on the tunnel barrier layer 14 to the ferromagnetic layer 24 below the cap layer 16:
  • the magnetic layer thickness product of the ferromagnetic layers 21 and 22 is the same 3.15 Tnm, and the magnetic layer thickness product of the ferromagnetic layers 23 and 24 is the same 4.72 Tnm.
  • the magnetic film thickness of the ferromagnetic layer 24 is 1.5 times as large as the magnetic film thickness.
  • the antiparallel coupling energy J of the nonmagnetic layer 31 is about 0.013 ergZcm 2
  • the antiparallel coupling energy J of the nonmagnetic layer 32 is
  • Hj related to the nonmagnetic layer 31 is set to 107 Oe
  • Hj related to the nonmagnetic layer 33 is set to have 1140e, which are almost equal.
  • the antiparallel coupling between the ferromagnetic layer 21 and the ferromagnetic layer 24 can be removed almost simultaneously, and the operation is preferably performed.
  • the ferromagnetic layers 21 and 22 and the ferromagnetic layers 23 and 24 have the same configuration and are preferable because they have close crystallinity.
  • the nonmagnetic layer 33 since the antimagnetic coupling force stronger than that of the nonmagnetic layer 31 is required for the nonmagnetic layer 33, the nonmagnetic layer 33 has a Ru (corresponding to the 2nd peak). 2. Inm). In this case, if the nonmagnetic layer 33 is replaced with Ru (2. Inm) as it is, the antiparallel coupling force becomes too strong.For example, the CoFe (0.45 nm) of the ferromagnetic layer 23 is reduced, and the ferromagnetic layer 23 is By comprising almost only NiFe, the antiparallel coupling force of the nonmagnetic layer 33 can be finely adjusted to a suitable value.
  • the nonmagnetic layer 31 and the nonmagnetic layer 33 are composed of substantially the same thickness and material, but the elemental composition ratios of all the portions that are in direct contact with the upper and lower interfaces of the nonmagnetic layer 31 and the nonmagnetic layer 33. Is different. Specifically, Ni, Fe, Cot, and other elements are in direct contact with the upper and lower interfaces of the nonmagnetic layer 31, but only Ni and Fe are present in the nonmagnetic layer 33. Compared to the nonmagnetic layer 33, the elemental composition ratio of the portion in contact with the nonmagnetic layer 31 is Co-rich. [0086] (Third embodiment)
  • the present invention can be applied even when the number of ferromagnetic layers included in the SAF constituting the magnetic free layer is different from the first and second embodiments, or when the number is not an even number but an odd number. It is possible.
  • the magnetic free layer of the MTJ element 1C 15C force 3 layers of ferromagnetic layers 21 to 23 and nonmagnetic layers 31 and 32 inserted therebetween are formed. An example will be described.
  • Examples of up to 3 membrane configurations include the following:
  • the ferromagnetic layer 21 corresponds to NiFe (4.6 nm) / CoFe (0.45 nm)
  • the ferromagnetic layer 23 corresponds to NiFe (3.7 nm)
  • the ferromagnetic layer 22 NiFe (8.4 nm) / CoFe (0.
  • Ru (2. lnm) antiferromagnetic 2nd-peak is used for nonmagnetic layer 31 with poor crystal orientation of HCP 0001>.
  • the antiparallel coupling force is roughly adjusted by using the antiferromagnetic 3rd-peak of Ru (3.5 nm) for the nonmagnetic layer 32 whose crystal orientation is slightly improved.
  • the magnetization film thickness product is about 4.72 Tnm for the ferromagnetic layer 21, about 7.9 Tnm for the ferromagnetic layer 22, and about 3.15 Tnm for the ferromagnetic layer 23. In this way, the magnetic film thickness product of the ferromagnetic layer 22 is set to be the sum of the magnetization film thickness products of the ferromagnetic layers 21 and 23.
  • N is an odd number of 3 or more
  • the Nth ferromagnetic layer which is the uppermost layer of the magnetic free layer
  • the The magnetic film thickness product of the ((1 + N) Z2) ferromagnetic layer at the center is the same as the sum of the magnetic film thickness products of the first ferromagnetic layer, which is the lower layer. May be set.
  • N is an odd number
  • the uppermost and lowermost ferromagnetic layers are always arranged in parallel in the residual magnetization state.
  • the role of canceling the magnetic film thickness product of the Nth ferromagnetic layer and the first ferromagnetic layer is assigned to the singlemost ferromagnetic layer in the multilayer SAF, so that the entire magnetization free layer Spin flop is stabilized. If N is an odd number, in the residual magnetization state The magnetic layer of the ((1 + N) Z2) ferromagnetic layer that is the central layer is always antiparallel to the magnetic layer of the Nth ferromagnetic layer and the first ferromagnetic layer.
  • this embodiment is the same as the first, second, and fourth embodiments except for the magnetization adjustment method.
  • the uppermost and lowermost ferromagnetic layers may be set so as to be simultaneously removed from the external magnetic field.
  • 1 1 1 1 2 3 t is set to be approximately equal to 530e and 560e, respectively.
  • N is an integer of 4 or 6 and the multilayer SAF is composed of N ferromagnetic layers and N ⁇ 1 nonmagnetic layers
  • the lowermost ferromagnetic layer is the first ferromagnetic layer
  • the uppermost ferromagnetic layer is the Nth ferromagnetic layer
  • the nonmagnetic layer immediately above the lowermost ferromagnetic layer is the first nonmagnetic layer
  • the uppermost strong layer is strong.
  • the nonmagnetic layer immediately below the magnetic layer is the N-1st nonmagnetic layer.
  • N-1 N- and M Xt must be equal. Furthermore, M Xt> M Xt and J> J
  • N xt is almost equal to N
  • the average anisotropic magnetic field Hk force of the first ferromagnetic layer and the second ferromagnetic layer is changed to the average anisotropic magnetic field Hk of the (N-1) ferromagnetic layer and the Nth ferromagnetic layer. If it is very different,
  • the parameters of the magnetic free layer may be controlled by changing the interface material of the magnetic layer Z nonmagnetic layer, the film thickness of the magnetic layer, and the like.
  • the third embodiment described above is more suitable than that. This is because according to the present embodiment, the most adjacent ferromagnets (the first and second ferromagnetic layers, and the N-1 and Nth ferromagnetic layers) are magnetically equivalent. This is because the ferromagnetic layers that are antiparallel to each other in the remanent magnetization state in the magnetization free layer are more magnetically equivalent.
  • J of the second to (N-2) nonmagnetic layers is the same as that of the first and N-1 nonmagnetic layers.
  • the antiparallel coupling force of the (NZ2) nonmagnetic layer is preferably the largest.
  • the thickness of each nonmagnetic layer is set so that the order of the antiferromagnetic peak of the (NZ2) nonmagnetic layer is only one smaller than the order of the N-1 nonmagnetic layer. It is preferable to set.
  • FIG. 8A a cross section of the MRAM storage bit portion 40A of the present invention is shown in FIG. 8A.
  • the MRAM storage bit portion 40A has a magnetic free layer 15D composed of six ferromagnetic layers 21 to 26 and five nonmagnetic layers 31 to 35 inserted therebetween.
  • An example of a suitable configuration from the ferromagnetic layer 21 on the tunnel barrier layer 14 to the ferromagnetic layer 26 below the cap layer 16 includes the following film configuration:
  • the side wall portion of the magnetic free layer in the MRAM storage bit portion 40A is not vertically processed but has a slope.
  • the junction area that determines the magnetoresistance is defined by the area of the interface between the tunnel barrier layer and the first ferromagnetic layer.
  • the magnetic volume difference due to processing is less likely to occur for those pairs, and the difference in magnetic properties due to crystallinity is also small.
  • the second antiferromagnetic peak of Ru2. Lnm is used and the crystallinity is good, so that the greatest antiferromagnetic coupling force can be obtained. Therefore, the saturation magnetic field of the magnetic layer is extended and the write margin is widened.
  • FIG. 8B a cross-section of an MRAM storage bit portion 40B fabricated according to the prior art is shown in FIG. 8B.
  • the MRAM storage bit section 40B has a magnetic free layer 15E composed of six ferromagnetic layers 21 to 26 and five nonmagnetic layers 31 to 35 inserted therebetween.
  • An example of a suitable film configuration from the ferromagnetic layer 21 on the tunnel noria layer 14 to the ferromagnetic layer 26 below the cap layer 16 is as follows:
  • the antiparallel coupling forces of the nonmagnetic layers 31 and 35 are substantially equal, and the magnetic film thickness areas of the ferromagnetic layers 21 to 26 are set symmetrically in the vertical direction.
  • the volume difference caused by the element processing process greatly impairs the magnetic volume equivalence.
  • a difference in magnetic properties due to crystallinity can also occur.
  • the (N-1) nonmagnetic layer is different from the first nonmagnetic layer.
  • the first nonmagnetic layer may be configured to be thicker than the (N-1) nonmagnetic layer.
  • the film thickness controllability of the nonmagnetic layer is improved, and the strict antiferromagnetic coupling energy is controlled only by the nonmagnetic film thickness. If possible, such a configuration may not be adopted.
  • the important point is the magnitude of the effective antiferromagnetic coupling force not in the film form.
  • MTJ with 8 layers of normal SAF consisting of 2 ferromagnetic layers and 1 non-magnetic layer, and 4 layers of ferromagnetic SAF and 3 layers of non-magnetic layers.
  • a plurality of inch substrates were fabricated.
  • Toggle writing was examined for 100 to 120 MTJ elements, and the flop magnetic field, saturation magnetic field, write margin and operation rate were evaluated.
  • Samples using the conventional technology and the technology of the present invention were prepared for the four-layer SAF of the magnetic free layer, and the characteristics were compared.
  • the planar shape of the MTJ element is oblong mainly 0. 6 X 1. 2 m 2.
  • an evaluation was made on an oval element with a part of 0.4 X 0.8 m 2 .
  • Al ( ⁇ nm) O means an AIO film formed by oxidizing an ⁇ (nm) Al film.
  • Substrate ZTa (20 nm) ZPtMn (20 nm) ZCoFe (2.5 nm) / Ru (0.9 nm) / CoFe (2.5 nm) / Al (0.9 nm) 0 Z magnetization free layer ZA1 (0.7 nm) 0 / Ta (100nm) o
  • FIG. 10A and FIG. 10B are tables showing the configuration of the magnetic free layer of each sample.
  • the number of ferromagnetic layers included in the magnetic layer is 2 or 4, and the material thickness of the ferromagnetic layer is fine-tuned so that the overall remanent magnetization of the magnetic layer is 0.
  • Nonmagnetic property of magnetic free layer All the layers are made of ruthenium.
  • NiFe permalloy (Ni F)
  • the magnetic free layer of the MTJ element of Comparative Example 1 is formed of SAF including two ferromagnetic layers and one nonmagnetic layer.
  • the film thickness of the nonmagnetic layer is 2. lnm corresponding to the antiferromagnetic 2nd peak.
  • the other samples are made of SAF, which includes four ferromagnetic layers and three nonmagnetic layers.
  • the first nonmagnetic layer uses 2. lnm ruthenium corresponding to the antiferromagnetic 2nd peak.
  • 2. lnm ruthenium is used, and this nonmagnetic layer has good crystal orientation and antiferromagnetic 2nd peak, so it is more than 3 times that of other nonmagnetic layers.
  • the film thickness of the third nonmagnetic layer located away from the substrate is 3.5 nm corresponding to the antiferromagnetic 3rd peak.
  • FIG. 10B shows the thickness of CoFe present at the ferromagnetic layer interface immediately below the first and third nonmagnetic layers.
  • FIG. 11 shows the operation rate, flop magnetic field, and saturation magnetic field of the 0.6 X 1.2 ⁇ toggle MRAM device using the magnetization free layers of Comparative Examples 1 to 7 and Examples 1 to 4. ing. Comparing Comparative Example 1 and Comparative Example 2, the flop magnetic field is distributed around 38 (Oe) and 37 (Oe), respectively, and the saturation magnetic field is distributed around 157 (Oe) and 570 (Oe), respectively. It was. By changing the ferromagnetic layer from two layers to four layers, the write margin is greatly increased.
  • the ratio corresponding to the write margin is as small as 4 in Comparative Example 1, but in Examples 1 to 4, the ratio is greatly increased to all 10 or more. According to the present invention, it has been demonstrated that the write margin can be remarkably improved while the toggle operation rate is high and the flop magnetic field is almost constant.
  • FIG. Fig. 12 shows the flop magnetic field of 0.6 x 1.2 m 2 elements, the standard deviation corresponding to the variation, the saturation magnetic field, the write margin, and the toggle write operation rate. Furthermore, 0.6 X 1.2 ⁇ r RX! O. 4 X 0.8 / zm The difference in the width of the direct inversion region between the two elements is shown. The direct region width was also measured with respect to the easy axis direction, similar to the flop magnetic field and saturation magnetic field.
  • the flop magnetic field variation (standard deviation ⁇ ) is 4 layers SAF magnetization free layer according to the prior art In Comparative Example 2 that is, it is 3.3 (Oe). In contrast, in Examples 2 and 4, which are the four-layer SAF magnetic free layer according to the present invention, the magnitude of the variation in the flop magnetic field is as small as 2.5 (Oe) and 2. l (Oe), respectively. .
  • these samples are applied to, for example, 1Mbit MRAM. If the writing magnetic field value is “average flop magnetic field value + 5 X ⁇ ”,
  • the writing magnetic field value is 53.5 (Oe) for the sample of Comparative Example 2, 56.5 (Oe) for the sample of Example 2, and 47.5 (Oe) for the sample of Example 4. Particularly in the sample of Example 4, since the flop magnetic field is small and the variation is small, the writing magnetic field is most reduced.
  • the variation of the flop magnetic field is small and the size of the direct inversion region is smaller than that of the multilayer SAF magnetic layer free layer according to the prior art. It is easier to reduce the direct inversion area that is difficult to influence the size.
  • Substrate ZTa (20nm) ZPtMn (20nm) ZCoFe (2.5 nm) / Ru (0.9 nm) / CoFe (
  • the Ru thickness of the first and second nonmagnetic layers is 2.5 nm, and the antiparallel coupling force is almost zero, so that the third nonmagnetic layer and the third and fourth ferromagnetic layers are formed. It is possible to evaluate the magnetization curve of only the SAF part. At this time, the crystallinity of the third nonmagnetic layer is almost the same as in Comparative Examples 3 to 6 and Examples 1 to 4.
  • FIG. 13 shows the relationship between the saturation magnetic field obtained by the above magnetic field curve force of the SAF part and the CoFe film thickness directly under each Ru nonmagnetic layer. It can be seen that the saturation magnetic field in the SAF part of the first and third nonmagnetic layers increases almost in proportion to the increase in the CoFe thickness at the ferromagnetic layer interface immediately below. The saturation magnetic field almost reflects the magnitude of the antiparallel coupling energy, and it is shown that as the CoFe thickness increases, the antiparallel coupling energy of each nonmagnetic layer increases.
  • FIG. 14 shows the relationship with cropping rate. From FIG. 14, it is clear between the toggle operation rate and the ratio Q [t;)] of all the devices in Comparative Examples 3 to 6 and Examples 1 to 4.
  • the cropping rate changes to have a peak.
  • the magnetic layer free layer configured with the multilayer SAF force will be able to toggle better. Suggests.
  • Substrate ZTa (20nm) ZPtMn (20nm) ZCoFe (2.5nm) / Ru (0.9nm) / CoFe (2.5nm) / Al (0.9nm) 0 / NiFe (4.8nm) / CoFe (0.35nm) / Ru (2.5nm ) / NiFe (4.8 nm) / CoFe (0.35 nm) / Ru (2. lnm) / NiFe (3 nm) / CoFe (0.35 nm) / Ru (3.5 nm) / Ta (10 nm).
  • the saturation magnetic field of the SAF was approximately 2550e. This saturation magnetic field value is J [1 / (M
  • Hj 2J / (M Xt) indicated by the SAF portion of the third nonmagnetic layer is in the range of 680e to 1320e, and the ratio ⁇ J [1
  • M Xt ⁇ can be set in the range of 4 or less. In this example, this By setting the antiparallel coupling force in this way, a large saturation magnetic field value, that is, a write margin is realized with a low flop magnetic field.
  • an MRAM using a multilayer SAF including three or more ferromagnetic layers as a magnetization free layer is provided.
  • the operation rate of the MRAM is improved and defective bits are reduced. Further, according to the present invention, the controllability of magnetic characteristics on an actual device is facilitated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)

Abstract

 本発明に係るMRAMは、磁気抵抗素子を有する。その磁気抵抗素子の磁化自由層は、第1~第N強磁性層(Nは4か、6以上の整数)、及び反強磁性的なRKKY相互作用を発現するように形成された第1~第N-1非磁性層とを含む。第1~第N―1非磁性層のうちの第k非磁性層(kは、1以上N-1以下の任意の整数)は、第1~第N強磁性層のうちの第k強磁性層と第(k+1)強磁性層の間に設けられる。第k強磁性層の実効膜厚をtk、磁化をMkとする。また、第k非磁性層を介した反平行結合エネルギー定数をJkとする。この時、M1×t1とM2×t2はほぼ等しく、且つ、MN-1×tN-1とMN×tNはほぼ等しい。更に、次のいずれかの関係が満たされる:「M1×t1>MN×tN、且つ、J1>JN-1」または「M1×t1<MN×tN、且つ、J1<JN-1」。

Description

明 細 書
MRAM
技術分野
[0001] 本発明は、 MRAM (Magnetic Random Access Memory)に関しており、特に、 SAF
(Synthetic Anti-Ferromagnet)を磁化自由層として使用する磁気抵抗素子をメモリセ ルとして使用する MRAMに関する。
背景技術
[0002] MRAMは、高速書き込み Z読み出しが可能な不揮発性メモリである。最も典型的 には、 MRAMは、磁化が反転可能な磁化自由層と、磁化が固定された磁化固定層 と、その間に介設された非磁性層とで構成された磁気抵抗素子を、メモリセルとして 利用する。データは、磁ィ匕自由層の磁ィ匕の向きとして記憶される。非磁性層が極めて 薄い絶縁体で構成されている場合、磁気抵抗素子は TMR (Tunnel MagnetoRegista nce)効果を示し、そのように構成された磁気抵抗素子は、しばしば、 MTJ (Magnetic Tunnel Junction)素子と呼ばれる。一方、非磁性層が非磁性の導電体で構成されて いる場合には、磁気抵抗素子は GMR (Giant MagnetoRegistance)効果を示し、その ように構成された磁気抵抗素子は、 CPP— GMR (Current Perpendicular to Plane Gi ant MagnetoResistive)素子と呼ばれる。
[0003] データの書き込みは、磁ィ匕自由層に外部磁場を印加し、これにより磁ィ匕自由層の 磁ィ匕を所望の方向に反転することによって行われる。一方、データの読み出しは、磁 気抵抗素子が示す磁気抵抗効果を利用する。 TMR効果、 GMR効果のいずれを利 用する場合でも、磁気抵抗素子の抵抗は、磁化自由層の磁化の向きに応じて変化 する。磁気抵抗素子の抵抗の変化を利用して、磁ィ匕自由層の磁ィ匕の向き、即ち、書 き込まれたデータが判別される。
[0004] MRAMの一つの課題は、書き込み動作におけるメモリセルの選択性である。最も コンベンショナルな MRAMでは、磁化自由層の外部磁場に対する書き込み閾値曲 線がァステロイド曲線となることを利用して書き込みが行われる。具体的には、各磁気 抵抗素子の近傍に互いに直交するワード線、ビット線が設けられ、且つ、これらの書 き込み線は磁気抵抗素子の磁化自由層の容易軸、困難軸方向に延伸するように配 置される。そして、選択されたメモリセルに交差するワード線、ビット線に電流が流され 、発生した電流誘起磁場が同時にメモリセルに印加される。このときの合成磁場の大 きさ力 素子のもつ磁気異方性の大きさで決定する閾値曲線 (ァステロイド)の外側に 達したとき、磁ィ匕自由層の磁ィ匕は容易軸方向に並行にて二つの向きのいずれかを 向くように反転する。このとき対応するワード線、ビット線の一方にしか電流が流され て 、な 、非選択メモリセルの磁ィ匕が反転しな 、程度の書き込み電流値が設定される 。実際のメモリセルにおいて書き込み磁場のばらつきが存在するので、このような方 式による選択書き込みはメモリセルの選択性が良好ではない。最悪の場合、適切な 選択電流値のマージンが存在しな 、場合も考えられ、誤書き込みを起こしやすくなる 問題がある。
[0005] 書き込み動作時のメモリセル選択性を向上させるための一つの方法として、「トグル 書き込み方式」が知られている(例えば、米国特許 6, 545, 906号公報参照)。トグ ル書き込み方式とは、磁ィ匕自由層に SAFを使用し、書き込み磁場の方向を時系列 で変化させる事により、選択性が高い書き込み動作を行う技術である;ここで SAFと は、複数の強磁性層を有し、隣接する強磁性層が磁気的に反強磁性的に結合した 構造体である。
[0006] 図 1は、トグル書き込み方式を採用する MRAMの典型的な構成を示す平面図であ る。 MRAMのメモリアレイには、ワード線 103と、ワード線 103に直交するビット線 10 2が延設される。メモリセルとして使用される MTJ素子 101が、ワード線 103とビット線 102が交差する位置のそれぞれに設けられる。図 2に示されるように、 MTJ素子 101 は、典型的には、基板 100の上方に設けられた下部電極層 111、反強磁性層 112、 磁ィ匕固定層 113、ノリア層 114、磁ィ匕自由層 115、及び上部電極層 116を備えてい る。図 1に示されて ヽるように、 MTJ素子 101は、磁化固定層 113と磁ィ匕自由層 115 の容易軸がワード線 103及びビット線 102と 45° の角度をなすように、即ち、 MTJ素 子 101の長手方向がワード線 103及びビット線 102と 45° の角度をなすように配置さ れる。
[0007] 図 2を再度に参照して、磁ィ匕自由層 115は、 SAFで構成される。より具体的には、 磁ィ匕自由層 115は、強磁性層 121、 122と、その間に介設された非磁性層 123とを 備えている。非磁性層 123は、強磁性層 121、 122との間に、反強磁性的な RKKY( Rudermann, Kittel, Kasuya, Yoshida)相互作用を作用させるように構成される。非磁 性層の材料及び膜厚を適切に選択することにより、上下に接合される強磁性層を RK KY相互作用によって反強磁性的に結合することができることは、当業者には周知で ある。
[0008] 図 9は、 RKKY相互作用による結合エネルギーの強さの非磁性層の膜厚に対する 依存性を示すグラフである。ここでは、強磁性層 121、 122が NiFe膜で形成され、非 磁性層 123が Ru膜で形成されているときのデータが示されている。図 9中の J は、「
saf 反平行結合エネルギー定数」であり、 SAF内の強磁性層の磁ィ匕を平行、或いは、反 平行結合させて 、る単位面積あたりのエネルギー (反強磁性結合エネルギー)を示し て ヽる。強磁性層を反強磁性的に結合させる場合に結合エネルギーが正であると定 義されて!ヽることに留意された ヽ。 RKKY相互作用による結合エネルギー定 #α は
saf
、非磁性層の膜厚の増加と共に減衰振動し、ある範囲においては反強磁性的な RK KY相互作用が発現し、他の範囲においては、強磁性的な RKKY相互作用が発現 する。ある特定の膜厚では、磁気的相互作用が全く生じなくなる。非磁性層 123の膜 厚は、それらが反強磁性的な RKKY相互作用を発現するように選択される。磁化自 由層 115全体としての残留磁化 (即ち、外部磁場力^である場合の磁ィ匕自由層 115 全体としての磁化)は可能な限り 0に近づけられる。この条件は、例えば、 2つの強磁 性層 121、 122を同一の材料で、同一の磁気的な体積を有するように形成することに よって満足され得る。
[0009] トグル書き込み方式では、 SAFの二つの強磁性体力 ほぼ等価な強磁性層で構成 された場合に、 SAFはスピンフロップを発現すると 、う性質を利用して選択的なデー タ書き込みが行われる。図 3は、スピンフロップを発現する 2層の強磁性層力 構成さ れた SAFの磁ィ匕曲線を示している。 SAFの容易軸方向に外部磁場が印加されても 、その外部磁場が小さい場合には SAFの磁ィ匕はゼロのままである。外部磁場が増加 して磁場 H に到達すると、突然、 SAFに磁ィ匕が現れる。このとき、二つの強磁性層
flop
の磁ィ匕は、それらが 180° よりも小さいある角度をなすように磁気結合し、且つ、その 合成磁ィ匕が外部磁場の方向になるように配置される。この現象が「スピンフロップ」と 呼ばれ、スピンフロップが発現する磁場 H は「フロップ磁場」と呼ばれる。スピンフロ flop
ップは、全体としての SAFの残留磁ィ匕が充分に小さい場合にのみ現れることに留意 されたい。さらに外部磁場が増加すると、やがて二つの強磁性層の磁ィヒは完全に平 行に配置される。この磁場は「飽和磁場 Hs」と呼ばれる。
[0010] 飽和磁場 Hsは、以下の式で表される:
Hs = 2J /(M-t) -2K/M = Hj-Hk
saf …(1)
Hj = 2J Z(M't) · ' · (2)
saf
Hk = 2K/M · · · (3)
[0011] ここで、 Hkは「異方性磁場」であり、 Kは「異方性エネルギー」である。 J は前述のと saf おり「反平行結合エネルギー定数」で、正値をとる。二つの強磁性層の磁ィ匕相対角度 が Θである時、この反平行結合に起因したエネルギー ίお cos Θで表される。反平 saf
行結合に起因したエネルギーは、反平行配置である Θ = 180度にぉ 、て J と最も saf 小さくなり、その場合に SAFは最も安定になる。 Hjは「反平行結合磁場」であり、反平 行結合エネルギーによって反平行配置に結合した強磁性層の磁ィ匕同士が、平行配 置となるまでに抗し得ることが可能な外部磁場値に相当する。言い換えると、反平行 結合磁場 Hjは、 SAFが有する反平行結合力を磁場に換算した量である。
[0012] また、フロップ磁場 H は、上述の飽和磁場 Hsと異方性磁場 Hkを用いることにより
、以下のように表される:
H = 2/M[KQ Zt—Κ)]0·5 - - - (4a)
flop saf
= (Hs-Hk)0 5 - - - (4b)
= [(Hj-Hk) -Hk]0 5 - - - (4c)
= [(2J /(M-t) -Hk) -Hk]° 5 - " (4d)
saf
[0013] 図 4は、トグル書き込み方法の手順を説明する概念図であり、図 5はトグル書き込み によるデータ書き込みが行われるときのワード線 103、ビット線 102に流される電流の 波形を示すグラフである。図 4において、磁ィ匕自由層 115の強磁性層 121、 122の磁 化が、それぞれ、記号 M、 Mによって参照されていることに留意されたい。
1 2
[0014] トグル書き込み方式によるデータ書き込みは、磁ィ匕自由層 115に印加される磁場の 方向を面内で回転させ、強磁性層 121、 122の磁ィ匕を所望の向きに向けることによつ て行われる。具体的には、まず、ワード線 103に書き込み電流が流され、これによつ てワード線 103に垂直な方向に磁場 H が発生する(時刻 t ) 0続いて、ワード線 10
WL 1
3に書き込み電流が流されたまま、ビット線 102に書き込み電流が流される(時刻 t )
2
。これにより、ワード線 103とビット線 102との両方に 45° の角度をなす方向に、磁場 H +H が発生する。更に続いて、ビット線に書き込み電流が流されたままワード
WL BL
線への書き込み電流の供給が停止される(時刻 t ) 0これにより、ビット線 102に垂直
3
な方向(即ち、ワード線 103に平行な方向)に磁場 H が発生する。このような手順で
Bし
ワード線 103及びビット線 102に書き込み電流が流されることにより、磁ィ匕自由層 11 5に印加される磁場が回転し、これにより、強磁性層 121、 122の磁ィ匕を 180° 回転 させることがでさる。
[0015] トグル書き込み方式では、ワード線 103及びビット線 102に書き込み電流が流され たときに磁ィ匕自由層 115に印加される磁場力 上述のフロップ磁場 H よりも大きく、 flop
飽和磁場 Hよりも小さくなければならない。そうでなければ、 SAFはスピンフロップを 示さな 、ので、トグル書き込みを行うことができな!/、。
[0016] トグル書き込み方式の利点は、原理的にメモリセルの選択性が高 、ことである。ビッ ト線とワード線による書き込み電流磁場 H 、 H に対する磁ィ匕反転モードが、図 6に
WL BL
示されている。図 6に示されているように、トグル書き込み方式によれば、ワード線 10 3又はビット線 102の一方にのみ書き込み電流が流された場合、 SAFの磁ィ匕は原理 的に反転しな 、 (No Switching)。言!、換えれば、半選択メモリセルの磁化は、原 理的に不所望に反転しない。このことは、 MRAMの書き込み選択性と信頼性を有効 に向上させる。トグル反転領域 (Toggle Switching)に対応する外部磁場が磁ィ匕 自由層 115に印加される場合、 SAFはスピンフロップを示し、トグル書き込みが行わ れる。
[0017] さら〖こ図 6〖こ示されるよう〖こ、トグル反転領域の原点側に隣接する「ダイレクト反転領 域(Direct Switching)」が存在する。ダイレクト反転モードでは、スピンフロップに よるトグル書き込み反転が行われない。その代わり、磁ィ匕自由層 115の磁化が、磁ィ匕 固定層 113の磁化に対して、反平行もしくは平行配置の 、ずれかに直接反転する。 トグル書き込みでは、このようなダイレクト反転領域に、書き込み磁場が入ることを避 けなければならない。もし書き込み磁場がダイレクト反転領域に入ると、不所望な磁 化の向きへの強制的な磁ィ匕反転が生じ、誤書き込みが発生する。
[0018] このダイレクト反転領域は、磁ィ匕自由層 115に含まれる強磁性層 121、 122が、磁 気的に等価でないことに起因して発生する。例えば、ダイレクト反転領域は、強磁性 層 121、 122の磁ィ匕量の差に依存して生じると言われている。どちらか一方の強磁性 層の磁ィ匕量が大きいほど、図 6におけるダイレクト反転領域は広がり、トグル反転領域 が減少する。ダイレクト反転領域が広がると、トグル反転が始まる閾値が高磁場側へ シフトする。これは、書き込み磁場の増大と、書き込み磁場のマージンの減少を招き 、問題である。従って、強磁性層 121、 122の磁ィ匕量の差を可能な限り小さくし、ダイ レクト反転領域を縮小しなければならな 、と言われて 、る。
[0019] ダイレクト反転領域を低減することは、トグル書き込み方式の MRAMを開発する上 で最重要課題の一つである。
[0020] さて、 SAFは様々な文献に記載されている。磁ィ匕自由層の SAFに含まれる強磁性 層の数は、 3以上であってもよい。そのような構造を有する SAFは、以下「多層 SAF」 と参照される。多層 SAFに関連する従来技術として、次のものが知られている。
[0021] 米国特許 6, 545, 906号に開示された技術によれば、 SAFに含まれる強磁性層 の数は 3以上であって、且つ、 SAFの残留磁ィ匕が飽和磁ィ匕の 10%以内となるように 構成されている。
[0022] 米国特許 6, 714, 446号に開示された構成によれば、 SAFに含まれる強磁性層 の数力 である。また、 1層目の強磁性層と 2層目の強磁性層との間の反強磁性結合 に関する飽和磁場や、 3層目の強磁性層と 4層目の強磁性層との間の反強磁性結合 に関する飽和磁場と比較して、 2層目の強磁性層と 3層目の強磁性層との間の反強 磁性結合に関する飽和磁場が小さい。
[0023] 特開 2002— 151758号に開示された技術によれば、熱揺らぎに対する安定性を 高めるために、 SAFは少なくとも 5層以上の積層構造を有している。
[0024] 特開 2005— 85951号に開示された技術によれば、多層 SAFは、非磁性層により 分割された複数層の磁性層から成る。偶数番目の磁性層の磁化量の総和と、奇数 番目の磁性層の磁ィ匕量の総和とがほぼ等しい。
[0025] 特開 2005— 86015号に開示された構成によれば、磁ィ匕自由層の SAFに含まれる 強磁性層の数力 である。また、 1層目の強磁性層と 2層目の強磁性層との間の反強 磁性的な相互作用の強さが、 3層目の強磁性層と 4層目の強磁性層との間の反強磁 性的な相互作用の強さとほぼ等しい。且つ、 1層目の強磁性層と 4層目の強磁性層 の磁ィ匕量がほぼ等しぐ 2層目の強磁性層と 3層目の強磁性層の磁ィ匕量がほぼ等し い。更に、磁ィ匕自由層の SAFに含まれる強磁性層の数力 層以上の偶数であり、各 強磁性層の膜厚が上下方向にほぼ対称である構成も開示されている。
[0026] し力しながら、発明者の実験によれば、米国特許 6, 545, 906号に従って多層 SA Fを実際に作製しても、それだけでは良好に動作することは殆ど無力つた。殆どの磁 ィ匕自由層は、全ての印加磁場に対して全くトグル動作を示さな力つた。一部動作する ような構成が得られたとしても、動作率が低い問題が存在する。また、多層 SAFの動 作マージン内の書き込み磁場が印加されたとき、一見すると良好に動作しているよう に見える素子についても、或る特定の印加磁場に対してはトグル動作を示さない場 合があることも判明した。そのような素子は不良素子である。これらは通常の 2層から なる SAFには見られなかった現象である。
[0027] また、特開 2005— 86015号に従って多層 SAFを実際に作製するために、第 1強 磁性層と第 2強磁性層の間の非磁性層と、第 3強磁性層と第 4強磁性層の間の非磁 性層の材料、膜厚が等しく設定されても、やはり、トグル書き込み方式で動作すること は少なかった。
[0028] 上述の通り、ダイレクト反転領域は、強磁性層の磁ィ匕量の差に依存して生じると言 われてきた。強磁性層の磁ィ匕量とは、その強磁性層のうち実効的に磁ィ匕が含まれる 体積 (以下、「磁気体積 V」と参照される)と、その強磁性層の磁ィ匕 Mの積で定義され る (磁化量 =磁気体積 V X磁化 M)。磁気体積 Vを磁ィ匕自由層の平均面積で割った 値は、実効的に磁ィ匕が含まれる膜厚であり、「実効膜厚 t」と参照される。強磁性層の 磁化 Mと実効膜厚 tの積は、「磁化膜厚積」と参照される (磁化膜厚積 =磁化 M X実 効膜厚 t)。磁化膜厚積は、単位面積あたりの磁ィ匕量であると言える。
[0029] ダイレクト領域を低減するために、実デバイスの SAF内の各強磁性層の磁ィ匕量を 調整する場合、同一の磁気体積を実現することは難しい。なぜならば、各強磁性層 が接する非磁性層の材料に依存して、デッドレイヤーが形成されるからである。デッド レイヤーとは、強磁性層と非磁性層との界面周辺において、拡散などによりある程度 の磁ィ匕が消失する領域である。このデッドレイヤーによって、各強磁性層の磁気体積 が異なってしまうのである。また、加工プロセスで磁ィ匕自由層をカ卩ェする際、その側 面を完全に垂直に加工することは困難である。例えば接合部側壁に傾斜が生じた場 合、成膜時にたとえ同じ膜厚を有する強磁性層が形成されたとしても、各強磁性層の 実効的な磁気体積が異なってしまう。
[0030] また、実デバイスの磁ィ匕自由層内では、残留磁ィ匕状態において、磁化が反平行を 向いている強磁性層同士の膜質を可能な限り等価にすることが望ましい。例えば強 磁性層の結晶配向性が異なると、結晶磁気異方性磁場ゃ磁歪定数など強磁性層自 身が持つ磁気特性が異なる。その結果、スピンフロップで対となる強磁性層同士の磁 気特性に差が生じてしまう。スピンフロップで対となる強磁性層同士の磁気特性、例 えば磁気異方性に差が生じ、磁気的なエネルギーが等価でなくなると、ダイレクト反 転領域が発生しやすくなる。更に、このような強磁性層の磁気特性の不均一性は、フ ロップ磁場や飽和磁場などの磁ィ匕反転特性のばらつきの発生要因となり得る。
[0031] 通常の 2つの強磁性層からなる SAFでは、実デバイスにおけるこれらの問題はまだ 深刻ではない。なぜならば、強磁性層の数は 2であり、非磁性層を介して常に隣接し ているので、これらの強磁性層同士は膜質的にも非常に近いからである。また、上述 の接合部側壁部の加工形状などによる磁気体積の差に関しても、大きな差は生じに くい。万が一磁気体積に差が生じたとしても、一方の強磁性層の膜厚を固定し、もう 一方の強磁性層の膜厚などを微調整すれば、ダイレクト反転領域を大幅に低減させ ることが可能である。
[0032] それに対して、多層 SAFでは、実デバイスにおけるこれらの問題は深刻である。な ぜならば、磁ィ匕自由層中で磁気体積を調整すべき層が 3層以上であり、その総膜厚 も厚くなるからである。本発明者らの実験によれば、多層 SAF中では最下部と最上 部でその結晶性に大きな差が生じた。特に、非磁性層の膜質とその反平行結合力に 大きな差が生じた。実際に多層 SAFを作製しょうとすると、成膜時においてすでに各 強磁性層や非磁性層の特性に差が生じてしまうことに加えて、接合部側壁部の加工 形状による磁気体積の差も生じる。さらに 2層の SAFのように、ある一層の強磁性層 の体積のみを微調整してもダイレクト領域を低減できる保障はな ヽ。実際にどの強磁 性層がどのような状態になっているの力把握することは困難である。
[0033] 特開 2005— 86015号で開示された 4層からなる、(あるいはそれ以上の層力もなる 、)多層 SAFは、このような多層 SAFの困難性を多く内包している。その文献中で指 摘されているように、残留磁化状態で、その磁気量が等しぐ且つ、磁化が反平行を 向いている強磁性層の組は、 1層目の強磁性層と 4層目の強磁性層の組と、 2層目の 強磁性層と 3層目の強磁性層の組である。しかし、このような構造では、実デバイスに おいて、 1層目の強磁性層と 4層目の強磁性層という最も離れた強磁性層同士を常 に等価にしなければならない。よって、加工により不可避に生じる体積差や、膜質が 異なることによる磁気特性の差は深刻である。このことは、さらに微小な MTJに対応 する上で、熱擾乱耐性を増すために強磁性層の層数が更に増加した時に、一層深 刻になる。なぜならば、磁気特性の等価性が要求される強磁性層同士が、さらに離 れて配置され、かつ、複数となるからである。
[0034] このように従来の多層 SAFを実デバイス化して MRAMに適応させようとすると、多 層 SAF内の強磁性層の磁気特性の差に起因したダイレクト領域の増大や反平行結 合力の制御が困難となる問題が生じる。これらは不良素子の発生による MRAMの動 作率の低下 (マイノリティビットエラーの発生)を招く。また、ダイレクト反転領域の増大 ゃフロップ磁場のばらつきの増大は、書き込み電流値の増大を招く。これらは MRA M開発の上で深刻な問題である。
[0035] トグル書き込み方式に限らず、スピンフロップ特性を向上させることは、多層 SAFを 磁ィ匕自由層として使用する MRAMの性能を向上させる上で重要である。言い換え れば、多層 SAFを磁ィ匕自由層として用いる MRAMにおいて、大きな飽和磁場 Hsを 維持しつつフロップ磁場 H を低減することは、書き込み磁場 (反転磁場)の低減と
flop
いう観点力 重要である。反転磁場の減少により書き込み電流は低減され、それは M RAMの高性能化につながる。また、 SAFの反転磁場の減少は、電流誘起磁場を用 いる書き込み方式に留まらず、 SAFにスピン偏極電流(spin-polarized current)を供 給することにより磁ィ匕反転を起こす「スピン注入 (spin transfer)方式」においても同様 に、書き込み電流の低減につながるため重要である。
[0036] 多層 SAFを磁ィ匕自由層として用いる MRAMを歩留まりよく動作させることができる ことができる技術が望まれて 、る。
発明の開示
[0037] 従って、本発明の目的は、 MRAMの動作率を向上させることができる多層 SAFを 提供することにある。また、本発明の目的は、その多層 SAFを磁ィ匕自由層として用い 、不良ビットが低減された MRAMを提供することにある。
[0038] 本発明の他の目的は、実デバイス上での磁気特性の制御性を容易にすることがで きる多層 SAFを提供することにある。また、本発明の目的は、その多層 SAFを磁ィ匕 自由層として用い、書き込み特性が向上した MRAMを提供することにある。
[0039] 本発明の更に他の目的は、 MRAMの書き込みマージンを増大させることができる 技術を提供することにある。
[0040] 本願発明者は、実験を通して、多層 SAFを歩留まりよく動作させる上で本質的に重 要な点を究明した。それは、多層 SAF中の最上部と最下部の非磁性層を介した反平 行結合を、外部磁場に対して同時に解けるように設定することである。例えば従来指 摘されてきたような、多層 SAF内の各強磁性層の磁ィ匕量などの配分は本質的な点で はない。一般に、最上層と最下層の強磁性層に関しては、反平行結合を発現する非 磁性層との結合が一つのみである。そのため、最上層と最下層の強磁性層に対する 反平行結合は、外部磁場に対して不安定であり、最も外れやすくなる。このとき、最 上層と最下層の強磁性層に対する反平行結合が同時に外れず、片方だけの反平行 結合が外れると、外れた部分の SAF強磁性層対はただちに平行配置となり、多層 S AF全体に大きな残留磁ィ匕が生じる。そして、残留磁ィ匕が大きい状態で次に弱い反 平行結合が外れたときは、もはや、スピンフロップを起こしづらい状態になっている。 本願発明者は、このことが動作率低下の原因の一つであることを究明した。最上部と 最下部の非磁性層を介した反平行結合を同時に解けるようにすればよいことがわか ると、従来構造が内包する問題を回避あるいは低減できるような新たな構造が可能と なる。 [0041] 本発明に係る MRAMは、基板と磁気抵抗素子を備える。磁気抵抗素子は、固定さ れた磁化を有する磁化固定層と、反転可能な磁化を有する磁化自由層と、磁化固定 層と磁ィ匕自由層との間に介設され磁気抵抗効果を発現する非磁性層とを備える。磁 化自由層は、第 1〜第 N強磁性層(Nは 4力、 6以上の整数)、及び反強磁性的な RK KY相互作用を発現するように形成された第 1〜第 N— 1非磁性層とを含む。第 1〜 第 N— 1非磁性層のうちの第 k非磁性層(kは、 1以上 N— 1以下の任意の整数)は、 第 1〜第 N強磁性層のうちの第 k強磁性層と第 (k+ 1)強磁性層の間に設けられる。 第 1非磁性層は、第 1〜第 N— 1非磁性層のうちで基板に最も近く位置し、且つ、第 N— 1非磁性層は、第 1〜第 N— 1非磁性層のうちで基板から最も離れて位置する。
[0042] 第 k強磁性層の体積 (磁化体積)が V、その磁ィ匕が Mと表される。その体積 Vを磁 k k k 化自由層の平面方向の平均面積で割った値が、第 k強磁性層の実効膜厚 tである。
k 第 k非磁性層を介した第 k強磁性層と第 (k+ 1)強磁性層の磁ィ匕の向きの相対角度 は Θ で表される。第 k非磁性層を介した第 k強磁性層と第 (k+1)強磁性層の全反平 k
行結合エネルギーは、正の値を持つ反平行結合エネルギー定 kを用いて、 J COS k
Θ で表される。
k
[0043] 本発明によれば、 M Xtと M Xtはほぼ等しぐ且つ、 M Xt と M Xt は
1 1 2 2 N-1 N-1 N N ほぼ等しい。更に、次のいずれかの関係が満たされる:
(A) M Xt >M Xt、且つ、 J >J
1 1 N N 1 N-1
(B) M Xt <M Xt、且つ、 J <J
1 1 N N 1 N-1
ここでパラメータ M xt 1S 第 k強磁性層の磁ィ匕膜厚積である。
k k
[0044] また、上記 N= 4であると好適である。その場合、磁ィ匕自由層の積層数が最も少なく 、かつ、書き込みマージンが増大するという効果が得られる。その効果は、発明者に よって、実デバイスにおいて実証されている。
[0045] また、本発明において、 N層の強磁性層を含む磁ィ匕自由層であって、 Nが 3以上の 奇数である磁ィ匕自由層も提供される。その場合、 M Xtと M Xt の和が M
1 1 N N (N+D/2 にほぼ等しい。更に、次のいずれかの関係が満たされる:
(A) M Xt >M Xt、且つ、 J >J
1 1 N N 1 N-1
(B) M Xt <M Xt、且つ、 J <J
1 1 N N 1 N-1 ここでパラメータ M xt iS 第 k強磁性層の磁ィ匕膜厚積である。
k k
[0046] これらの磁ィ匕自由層の残留磁ィ匕は、その飽和磁ィ匕の 10%以内であることが、スピ ンフロップ動作を実現する上で必要である。また、トグル書き込み方式の MRAMは、 ワード線と、ワード線に直交するビット線と、ワード線とビット線との交差位置に記憶素 子として配置された上述の磁気抵抗素子を有する。磁気抵抗素子の磁化自由層の 容易軸の方向は、ワード線又はビット線の延伸方向に対して 45度方向に設定される
[0047] 本発明の磁化自由層を構成する上で最も重要な点は、第 1強磁性層と、第 N強磁 性層に関して、外部磁場に対して反平行結合が解け始める磁場をほぼ等しく設定す ることである。つまり、第 1強磁性層に対する反平行結合が解け始める外部磁場は、 前記第 N強磁性層に対する反平行結合が解け始める外部磁場と実質的に等しい。
[0048] そのためには、最上部の最下部の強磁性層及び非磁性層に関して、 Jノ (M Xt ) ] Z(M Xt )がほぼ等しいことが好適である。より定量的には、 {J Z(M Xt
N-l N N 1 1 1
)}/{j
N-l Z(M Xt )}の比は、 0.8以上 1.2以下であることが望ましい。
N N
[0049] また、第 1、 2、 N— 1、 N強磁性層の全異方性磁場が大きく異なる場合は、次の通り である。第 k非磁性層を介した第 k強磁性層と第 (k+ 1)強磁性層の平均全異方性磁 場を Hkとする。この時、式 4(d)を参照して、第 1非磁性層を介した SAFのフロップ k
磁場は、 [{2J /(M Xt ) -Hk } XHk ]で与えられる。また、第 N—1非磁性層を 介した SAFのフロップ磁場は、 [{2J /{M Xt )-Hk }XHk ]で与えられ
N-l N N N-l N-l
る。 [{2J Z(M Xt )— Hk }XH ]と [{2J Z(M Xt )— Hk }XHk ]は
1 1 1 1 kl N-l N
、ほぼ等しくなるように設定される。さらに定量的には、 ΧΗ
Figure imgf000014_0001
k ]/[{2J /(M Xt )-Hk }XHk ]は、 0.8以上 1.2以下であることが
1 N-l N N N-l N-l
望ましい。
[0050] 本発明の磁化自由層の構成によれば、最上部の強磁性層と、最下部の強磁性層 の磁ィ匕膜厚積を等価にしなくても良い(M Xt≠M Xt 、J≠J 、 Q[ Z(M Xt )
1 1 N N 1 N-l 1 1 1
Z(M Xt )])。そのため、多層 SAF全体として、残留磁化状態で反平行
N-l N N
配置を取る磁性層同士の磁ィ匕膜厚積、さらには磁気エネルギーまでも等価にするこ とが可能である。このことは、実デバイスにおいて非常に有利な点である。従来技術 の特開 2005— 86015号で開示された 4層 SAFでも同様に、 Q[ / (M Xt )] = Tj
1 1 1 N
/(M Xt;)]が満たされる。しかしながら、必ず M Xt =M Xt ,J =J であ
-1 N N 1 1 N N 1 N-l るため、実デバイスにおいて、反平行配置を取る磁性層同士の磁化膜厚積、さら〖こ は磁気エネルギーまでも等価にすることが難し 、。
[0051] 本発明に係る多層 SAFの有利な点の一つは、残留磁化状態で反平行配置を取る 強磁性層同士の磁ィ匕膜厚積や磁気エネルギーを等価にすることができることである。 その有利な点をより引き出すことが可能である磁ィ匕自由層構成として、次のものが考 えられる。すなわち、 N力 以上の偶数の場合、第 kと第 k+1の強磁性層(kは奇数) は、ほぼ同じ磁ィ匕膜厚積を有するように設定される。
[0052] また、 Nが 4以上の偶数の場合、反平行結合エネルギー定 #αは、 Κ=ΝΖ2の場
k
合にもっとも大きくなるように設定されると好適である。その場合、飽和磁場をより増大 することが可能である。より定量的には、第 NZ2非磁性層を介した SAFの反平行結 合エネルギー定 と、最上部の第 N— 1非磁性層が有する反平行結合エネルギ 一定 #α は、次のパラメータ Q[ {1/(M Xt )+l/(M Xt )}
N-l N/2 N/2 N/2 N/2 + 1 N/2 + 1
]/[2J Xt
N-l Z(M )]が大きくなるように設定される。そのパラメータは、 1より大き
N N
く設定されると好適である。その比率が大きく設定されるほど、多層 SAF磁ィ匕自由層 の飽和磁場が延伸し、書き込みマージンが広がる。発明者の実験によれば、そのパ ラメ一タカ S4未満の範囲で効果が実証されている。また、実証はされていないがこれ より大きな値も可能である。少なくとも、第 1非磁性層を挟む第 1強磁性層及び第 2強 磁性層からなる SAF部と、記第 N— 1非磁性層を挟む第 N— 1強磁性層及び第 N強 磁性層からなる SAF部の飽和磁場を、第 NZ2非磁性層をはさむ第 NZ2強磁性層 と第 (NZ2+ 1)強磁性層の SAF部が外部磁場に対して外れ始める磁場よりも大きく 設定すれば、多層 SAF中のスピンフロップが途切れることがないので好適である。最 下部の第 1非磁性層に関しても同様である。その場合、上記パラメータとして、 [J { 1/(M Xt )+l/(M Xt )}]Z[2J Z(M Xt )]が用いられる。
N/2 N/2 N/2 + 1 N/2+1 1 1 1
[0053] また、全ての N— 1個の非磁性層に対してより好適には、最下層と最上層の非磁性 層以外の反平行結合エネルギー定 (kは 1、 N— 1以外の値)は、最下層と最上層
k
のそれ Ci 1また【お N-1)と比較して同等以上の大きさに設定される。そのような構成の 場合、常に最下層と最上層の強磁性層が、外部磁場に対して最初に反転しやすくな るため、安定した磁ィ匕自由層の動作が実現される。
[0054] 本発明の磁化自由層の磁気的構成を実現する上で好適な膜構成として、次が考え られる。第 k非磁性層が有する RKKY相互作用の反強磁性ピークの次数を α とする k
。第 1非磁性層は、 RKKY相互作用の第 α 次の反強磁性ピークに対応する範囲の 膜厚を有する。第 Ν— 1非磁性層は、 RKKY相互作用の第 α 次の反強磁性ピー
N-1
クに対応する範囲の膜厚を有する。 J >J の場合、 α < α の関係が満たされ、
1 N-1 1 N-1
J <J の場合、 a >a の関係が満たされる。好適には、 J >J の場合、 a
1 N-1 1 N-1 1 N-1 N-
=α +1の関係が満たされ、 J <J の場合 +1の関係が満たされる
1 1 1 N-1 1 N-1
。より具体的には、 J >J の場合、第 1非磁性層は、 1.8nm〜2. 5nmの厚さを有
1 N-1
するルテニウム層で形成され、第 N—1非磁性層は、 3. lnm〜3. 9nmの厚さを有 するルテニウム層で形成されると好適である。 J <J の場合、第 1非磁性層は、 3.
1 N-1
lnm〜3. 9nmの厚さを有するルテニウム層で形成され、第 N—1非磁性層は、 1.8 nm〜2. 5nmの厚さを有するルテニウム層で形成されると好適である。
[0055] さらに、本発明の磁化自由層では、最上部及び最下部の非磁性層の結合力と比較 して、それよりも中央部側の非磁性層の反平行結合量を強めることで、一層の飽和磁 場の延伸が期待できる。そのためには、 J >J の場合、第 2〜第 (N— 2)非磁性層
1 N-1
のうちの少なくとも一の非磁性層が、第 N— 1の非磁性層よりも低次の反強磁性ピー クに対応する範囲の膜厚を有すると好適である。その場合、磁ィ匕自由層の中心部の 反平行結合力が、最上部に対して 2倍以上強まる。 J く J の場合、第 2〜第 (N— 2
1 N-1
)非磁性層のうちの少なくとも一の非磁性層が、第 1非磁性層よりも低次の反強磁性 ピークに対応する範囲の膜厚を有すると好適である。その場合、磁ィ匕自由層の中心 部の反平行結合力が、最下部に対して 2倍以上強まる。
[0056] そのような強い反平行結合力をもつ非磁性層は、磁ィ匕自由層の最中央層に設定す ることが望ましい。つまり、 Nが偶数のときは、第 (NZ2)非磁性層を強い反平行結合 力を有するように設定することが望ましい。好適には、 J >J
1 N-1の場合、 α < α 、
1 N-1 且つ、 ひ < a の関係が満たされる。 J <J の場合、 α >α 、且つ、 α
N/2 N-1 1 N-1 1 N-1 N/ く α の関係が満たされる。更に好適には、 J >J の場合、 a +l=a の関 係が満たされ、 J <J の場合、 α + 1 = α の関係が満たされる。具体的には、
1 N- 1 N/2 1
第 (ΝΖ2)非磁性層は、 1. 8nm〜2. 5nmの厚さを有するルテニウム層で形成され 、第 1非磁性層あるいは第 N—1非磁性層は、 3. lnm〜3. 9nmの厚さを有するル テ -ゥム層で形成される。または、第 (NZ2)非磁性層は、 0. 7nm〜l . 2nmの厚さ を有するルテニウム層で形成され、第 1非磁性層あるいは第 N—1非磁性層は、 1. 8 nm〜2. 5nmの厚さを有するルテニウム層で形成される。
[0057] 本発明に係る磁ィ匕自由層において、第 1非磁性層と第 N—1非磁性層は、異なる 構造を有してもよい。例えば、第 1非磁性層と第 N— 1非磁性層の膜厚や結晶配向 性が異なっている。その場合、第 1非磁性層の膜厚よりも、第 N— 1非磁性層の膜厚 の方が厚いことが好適である。さらに、それら非磁性層の直下に存在する、第 1強磁 性層と第 N—1強磁性層の結晶配向性も異なっていてもよい。また、第 1強磁性層、 第 2強磁性層、第 N— 1強磁性層、及び、第 N強磁性層のうち少なくとも一層以上が 、構成元素、または、構成元素組成が異なる膜が 2層以上に積層された積層膜であ る。その積層膜の膜厚比率を変えることによって、第 1非磁性層及び第 N— 1非磁性 層の反平行結合力が、所望の値になるように制御される。これにより、本発明に係る 磁ィ匕自由層を実現することが可能である。そのような積層膜として、 NiFe膜および C oFe膜の積層膜が好適である。
[0058] また、第 1非磁性層と第 N—1非磁性層は、ほぼ同一の構造を有していてもよい。そ の場合は、第 1非磁性層の上下界面に直接接している全ての部分の元素構成比率 を、第 N—1非磁性層の上下界面に直接接している全ての部分の元素構成比率と異 なるように設定することで、反平行結合力を調整可能である。また、この場合において も、第 1強磁性層、第 2強磁性層、第 N—1強磁性層、及び、第 N強磁性層のうち少 なくとも一層以上が、構成元素、または、構成元素組成が異なる膜が 2層以上に積層 された積層膜である。その積層膜の膜厚比率を変えることによって、第 1非磁性層及 び第 N—1非磁性層の反平行結合力が、所望の値になるように制御される。これによ り、本発明に係る磁ィ匕自由層を実現することが可能である。そのような積層膜として、 NiFe膜および CoFe膜の積層膜が好適である。
図面の簡単な説明 [図 1]図 1は、トグル書き込み方式に対応した MRAMの典型的な構成を示す平面図 である。
[図 2]図 2は、トグル書き込み方式に対応した MRAMに組み込まれる MTJ素子の典 型的な構成を示す断面図である。
[図 3]図 3は、スピンフロップを発現する SAFの典型的な磁ィ匕曲線を示すグラフである
[図 4]図 4は、トグル書き込み方式によるデータ書き込みの手順を示す概念図である。
[図 5]図 5は、トグル書き込み方式によるデータ書き込みが行われるときにビット線、ヮ ード線に流される書き込み電流の波形を示すグラフである。
[図 6]図 6は、トグル書き込み方式が採用される MRAMの書き込み特性の書き込み 磁場値依存性を示すグラフである。
[図 7A]図 7Aは、本発明の第 1の実施形態に係る MRAMの MTJ素子の構成を示す 断面図である。
[図 7B]図 7Bは、本発明の第 2の実施形態に係る MRAMの MTJ素子の構成を示す 断面図である。
[図 7C]図 7Cは、本発明の第 3の実施形態に係る MRAMの MTJ素子の構成を示す 断面図である。
[図 8A]図 8Aは、本発明の第 4の実施形態に係る MRAMの MTJ素子の実デバイス における断面図である。
[図 8B]図 8Bは、本発明の第 4の実施形態に係る MRAMに対する、比較例としての 従来技術の MTJ素子の実デバイスにおける断面図である。
[図 9]図 9は、 NiFeを強磁性層、 Ruを非磁性層とした場合の、 RKKY相互作用の結 合エネルギー定数の、非磁性層膜厚に対する依存性を示すグラフである。
[図 10A]図 10Aは、比較例 1〜7と実施例 1〜4の試料の磁化自由層の構成を示す表 である。
[図 10B]図 10Bは、比較例 1〜7と実施例 1〜4の試料の磁化自由層の構成を示す表 である。
[図 11]図 11は、比較例 1〜7と実施例 1〜4の試料の 0. 6 X 1. の長円形 MTJ デバイスのトグル書き込み特性を示す表である。
[図 12]図 12は、比較例 1、 2と実施例 2、 4の試料の長円形 MTJデバイスの詳細なトグ ル書き込み特性を示す表である。
[図 13]図 13は比較例 3〜 7と実施例 1〜4の試料の第 1非磁性層を介した S AFのみ が示す飽和磁場、及び、第 3非磁性層を介した SAFのみが示す飽和磁場を比較し た図である。
[図 14]図 14は、比較例 3〜7と実施例 1〜4の試料と図 13から得られた、 0. 6 X 1. 2 /z m2の MTJデバイスのトグル書き込み動作率と、 [J / (M X t / (M X t )
1 1 1 3 4 4
]比率とを比較した図である。
発明を実施するための最良の形態
[0060] 以下、発明を実施するための最良の形態を説明する。本実施の形態では、本発明 の本質を明確ィ匕するため、形状磁気異方性が弱くて考慮しなくて良い単純化された 場合が想定される。より微細な素子では、強磁性層の形状磁気異方性や、強磁性層 同士の反強磁性的静磁結合による補正をしなければならないことに留意されたい。
[0061] (第 1の実施の形態)
図 7Aは、本発明の第 1の実施の形態に係る MRAMのメモリセルに採用される MT J素子 1Aの構造を示す断面図である。 MTJ素子 1Aは、下部電極層 11と、反強磁性 層 12と、磁ィ匕固定層 13と、バリア層 14と、磁ィ匕自由層 15Aと、キャップ層 16と、上部 電極層 17とを備えている。
[0062] MTJ素子 1Aは、例えば、トグル書き込み方式に対応するように配置される。具体的 には、図 1に示されている従来の MRAMの MTJ素子 101と同様に、 MTJ素子 1Aは 、その長手方向が、ワード線 (及びそれに直交するビット線)に対して 45° の角度を なすように配置される。これにより、磁ィ匕固定層 13及び磁ィ匕自由層 15Aを構成する 強磁性層の容易軸は、ワード線 (及びそれに直交するビット線)に対して 45° の角度 をなす方向に向けられる。以下では、 MTJ素子 1Aの構成について詳細に説明する
[0063] 下部電極層 11は、 MOSトランジスタ(図示されない)が集積ィ匕された基板 10の上 に形成されており、磁化固定層 13への電気的接続を提供する経路として機能する。 下部電極層 11は、例えば、 Ta、 TaN、 Ti, TiN, Nbで形成される。
[0064] 反強磁性層 12は、例えば、 PtMn、 IrMn、 NiMnのような反強磁性体で形成され、 磁ィ匕固定層 13の磁ィ匕を固定する役割を有して 、る。
[0065] 磁ィ匕固定層 13は、例えば CoFeのような磁気的にハードな強磁性体で形成される。
磁ィ匕固定層 13の磁ィ匕は、反強磁性層 12が作用する交換相互作用によって固定さ れる。磁ィ匕固定層 13は、上述の SAFによって構成されても良い。例えば、磁化固定 層 13は、 2層の CoFe膜と、その間に挿入された Ru膜とで構成され得る。この場合、 Ru膜は、反強磁性的な RKKY相互作用を発現するような膜厚を有するように形成さ れる。
[0066] バリア層 14は、トンネル電流を流す程度に薄い膜厚を有するアモルファスの絶縁体 膜であることが多い。ノリア層 14がアモルファスである場合、後述されるように、それ は磁ィ匕自由層 15Aを構成する膜の結晶性に大きな影響を及ぼす。より具体的には、 バリア層 14は、例えば、アルミナ(AIO )、酸化マグネシウム(MgO)、酸化ジルコ- ゥム(ZrO )、酸化ハフニウム(HfO )、酸化シリコン(SiO )、窒化アルミニウム(A1N
2 2 2
)などで形成される。また、ノリア層 14は、アモルファスである必要はなぐ例えば Na C1構造を有する単結晶 MgOで形成されてもょ ヽ。
[0067] 磁ィ匕自由層 15Aは、強磁性層の数力 である SAFで構成されている。より具体的 には、磁ィ匕自由層 15Aは、強磁性層 21〜24と、その間に介設されている非磁性層 3 1〜33とを備えている。強磁性層 21は、ノリア層 14の上に形成されており、非磁性 層 31は、強磁性層 21の上に形成されている。非磁性層 31の上に、強磁性層 22、非 磁性層 32、強磁性層 23、非磁性層 33、及び強磁性層 24力 この順で順次に形成さ れている。強磁性層 21と強磁性層 22の磁気体積と、強磁性層 23と強磁性層 24の磁 気体積がほぼ等しぐかつ、強磁性層 21と強磁性層 24の磁気体積が異なるようにす ることが本発明の重要なポイントの一つである。本実施形態においては、強磁性層 2 1よりも強磁性層 24の磁気体積が小さい場合が想定される。この時、非磁性層 31より も非磁性層 33の反平行結合エネルギーを小さく設定しなければならな 、。そうでな ければ、強磁性層 21に関する反平行結合が、低い外部磁場で先に外れてしまう。
[0068] 本実施の形態に係る磁化自由層 15Aは、トンネルバリア層 14上の強磁性層 21か ら、キャップ層 16下の強磁性層 24まで次のような膜構成を有する:
トンネルバリア層 ZNiFe (4. 8nm) /CoFe (0. 35nm) /Ru (2. lnm) /NiFe ( 4. 8nm) /CoFe (0. 35nm) /Ru(2. lnm) /NiFe (3. 3nm) /CoFe (0. 25n m) /Ru(3. 5nm) /NiFe (3. 7nm)Zキャップ層。
[0069] 上記の構成において、強磁性層 21と強磁性層 22は、 NiFe (4. 8nm) /CoFe (0 . 35nm)に相当し、強磁性層 23と強磁性層 24は、それぞれ NiFe (3. 3nm) /CoF e (0. 25nm;^NiFe (3. 7nm)に相当する。強磁性層 21と強磁性層 22の磁ィ匕膜厚 積は約 4. 72Tnmであり、強磁性層 23と強磁性層 24の磁ィ匕膜厚積は約 3. 15Tnm である。強磁性層 21は強磁性層 24と比較して、 1. 5倍の磁ィ匕膜厚積を有している。 また、非磁性層 31〜33は、 Ru (2. lnm)、Ru (2. lnm)、及び Ru (3. 5nm)に相 当している。
[0070] 本実施形態では、非磁性層 31〜33を介した反平行結合エネルギーを設定する手 段として、(I)強磁性層 21〜24を複数の材料で構成し、かつ、非磁性層の界面材料 を変えること〖こよる制御と、(Π)非磁性層の膜厚を直接変えることによる制御とが、組 み合わされている。
[0071] 前者に関して、具体的には、強磁性層は、 NiFeZCoFe、 CoFeB/CoFeNi, Co FeZNiFeZCoFeなどの 2層または 3層構造を有するように形成され、それらのうち 非磁性層 31〜33に接する層(CoFeや CoFeNi)の膜厚が制御される。これは、非磁 性層 31〜33と直接接する材料に依存して RKKY相互作用の強さが異なることを利 用したものである。具体的には、 Niリッチな材料よりも、 Coリッチな材料の方がより大 き が得られる。よって、 NiFeを強磁性層の主成分として、非磁性層側に lnm以
SAF
下の CoFeが薄く形成される。 NiFeZRu界面に挿入される CoFeの膜厚が大き!/、ほ ど、 J を増大させることが可能である。同様に、 CoFeNiなど合金の場合、 Niリッチ
SAF
な強磁性膜ほど J が減少する。また、 CoFe, NiFeに限らず、他の複数の元素 (非
SAF
磁性元素を含む)を含有する積層膜や合金膜で構成することも可能である。尚、本明 細書において、強磁性層とは、全体としての強磁性の磁ィ匕の向きが等しい層を意味 しており、単一の強磁性膜で構成されていると限定して解釈されてはならない。例え ば、 NiFe/CoFeのような複数の強磁性膜からなる積層膜も 1つの強磁性層である。 また、 2つの強磁性膜と、その間に介設され 2つの強磁性膜を強磁性的に結合する 非磁性膜とで構成される積層体も、 1つの強磁性層である。このような複数の強磁性 膜の積層膜の場合の磁化膜厚積は、各強磁性膜が単独で持つ磁化膜厚積の総和 で定義される。
[0072] 後者に関して、非磁性層の膜厚は、非磁性層の結晶性を考慮して設定されなけれ ばならない。図 9に示されているように、 RKKY相互作用の強さは、非磁性層の材料 及び膜厚に依存する。よって、非磁性層 31と非磁性層 33が発現する反強磁性的な RKKY相互作用の強さを同一にするためには、非磁性層 31と非磁性層 33を同一の 材料を用いて膜厚が同一になるように形成すればょ ヽと考えられるカゝもしれな ヽ。し かし、発明者の実験によると、現実に集積ィ匕された MRAMでは、非磁性層 31と非磁 性層 33が同一の材料、同一の膜厚で形成されても、非磁性層 31と非磁性層 33が発 現する RKKY相互作用の強さは同一にならない。それは、非磁性層 31と非磁性層 3 3とで結晶性が異なってくるからである。磁ィ匕自由層 15Aは、バリア層 14の上に、強 磁性層 21、非磁性層 31、強磁性層 22、非磁性層 32、強磁性層 23、非磁性層 33、 及び強磁性層 24を順次積層することによって形成されるので、先に形成される非磁 性層 31の Ruよりも、後に形成される非磁性層 33の Ruの方が HCP (hexagonal close packed)く 0001 >の結晶配向性が高い。 RKKY相互作用の強さは結晶配向性が 良好であるほど強ぐ同一の材料、同一の膜厚で非磁性層 31と非磁性層 33が形成 された場合、非磁性層 31よりも非磁性層 33の方が強 ヽ RKKY相互作用を発現する ようになってしまう。それら RKKY相互作用の強さが離れすぎな!/ヽように粗調整する ためには、むしろ、非磁性層 31を相対的に低次のピークに対応する範囲の膜厚を有 するように形成し、非磁性層 33を相対的に高次のピークに対応する範囲の膜厚を有 するように形成することが好適である。これにより、非磁性層 33が発現する RKKY相 互作用の強さが良好な結晶性によって強められる効果と、相対的に高次のピークに 対応する膜厚を有していることによって弱められる効果とがキャンセルされ、非磁性 層 31と非磁性層 33が発現する反強磁性的な RKKY相互作用の強さが離れすぎな いように粗調整できる。
[0073] 具体的には、本実施形態では、ノリア層 14がアモルファス AIOであり、その上に成 長させた磁化自由層 15Aの非磁性層 31が RKKY相互作用の第 2次の反強磁性ピ ーク (反強磁性 2ndピーク)に対応する範囲の膜厚を有しており、非磁性層 32、 33が 第 3次の反強磁性ピーク (反強磁性 3rdピーク)に対応する範囲の膜厚を有して!/、る 。より具体的には、非磁性層 31〜33がルテニウムで形成される場合には、非磁性層 31は、その膜厚が 1. 8nmを超え、 2. 5nm未満であるように形成される。非磁性層 3 3は、その膜厚が 3. lnmを超え、 3. 9nm未満であるように形成される。最も好適に は、非磁性層 31は、反強磁性 2ndピークに対応する 2. lnmの膜厚を有するように 形成され、非磁性層 33は、反強磁性 3rdピークに対応する 3. 5nmの膜厚を有する ように形成される。このような膜厚の組み合わせは、非磁性層 31と非磁性層 33が発 現する反強磁性的な RKKY相互作用の強さを、粗調整するために有効である。故に 本実施形態では、非磁性層 31が Ru (2. lnm)で形成され、非磁性層 33が Ru(3. 5 nm)で形成されている。尚、非磁性層 31が反強磁性 2ndピークに設定された場合に 限らず、大概は、非磁性層 31に適用される反強磁性ピークに対して、非磁性層 33に 適用される反強磁性ピークが、 1次だけ高次に設定されれば、それらの反平行結合 力を同じオーダーに調整ことができる。
[0074] また、図 7Aに示される積層磁ィ匕自由層において、非磁性層 31〜33のみでなぐ 強磁性層 21〜24に関しても、上層ほど結晶性が改善される。例えば、パーマロイを 強磁性層 21〜24として使用し、ルテニウムを非磁性層 31〜33として使用した場合、 強磁性層 21と比較して強磁性層 23のパーマロイは、 FCC (face center cubic)く 11 1 >配向度が高い。そのため、その直上にそれぞれ成長している非磁性層 31と非磁 性層 33のルテニウムに関しても、非磁性層 31よりも非磁性層 33のルテニウムの方が HCPく 0001 >配向度が高くなる。
[0075] 尚、このような技術は、上記のように積層磁ィ匕自由層が AIO ノリア層の上に形成さ れている場合に特に有効である力 それに限られるわけではない。例えば、トンネル ノリア層の下側に磁ィ匕自由層が配置される場合においても、下地の平坦性を求めて 、磁ィ匕自由層の下地に微結晶またはアモルファス材料を用いることもありうる。また、 膜厚の制限により、十分な下地層を準備することが制限される場合も想定される。そ のような場合にも、本発明に係る技術は有効である。また、磁ィ匕自由層の下地層の結 晶性が良好な場合であっても、その上に成長させるべき磁ィ匕自由層力 好適な結晶 配向性を有しながら成長するとは限らない。むしろ、格子整合あるいは不整合により、 不所望な結晶面への配向や凹凸成長などが生じる場合が一般的である。その場合 においても、本技術は、特に有効となる。磁ィ匕自由層の最下層の非磁性層は、不所 望な結晶面への結晶成長や凹凸成長の影響を避けがたいので、不所望な結晶性を 有し RKKY相互作用が弱まる。しかし、最上層の非磁性層が成長するまでには、強 磁性/非磁性の積層下地により、最上部の非磁性層は所望の結晶性を回復し、それ により RKKY相互作用が強まることが期待される。
[0076] 以上に説明されたように反平行結合力を調整した結果、本実施の形態において、 非磁性層 31及び 33の J は、それぞれ約 0. 015ergZcm2、 0. Ol lergZcm2とな
SAF
る。これら反平行結合力を磁場の大きさに換算した Hj ( = 2J
SAF Z(M X t):式(2)参 照)は、それぞれ 810e及び 860eであり、ほぼ等しく設定されている。発明者の実験 によれば、より定量的には、 Hjの差が 2割程度の差に収められることが望ましい。つま り、非磁性層 31と非磁性層 33の Hjの比率に相当するパラメータ [T Z(M X t ) ]/[ J Z(M X t ) ]が、 0. 8以上 1. 2以下に設定されることが望ましい。また、より厳密に
3 4 4
磁気異方性の相違まで考慮すると、強磁性層 21及び 22の平均異方性磁場 Hkは、 9. 50eであり、強磁性層 23及び 24の平均異方性磁場 Hkは 70eである。この場合
3
、非磁性層 31及び 33のフロップ磁場 [{ (Hj—Hk) X Hk}] "0. 5 (式 4 (c)参照)は、 それぞれ、 260e及び 23. 50eとなり、僅か〖こ差が広がる。この場合は、非磁性層 33 の J
SAFを若干増大させれば、より好適に動作させることが可能である。
[0077] 本実施の形態では、さらに付加的な効果を引き出す狙いとして、中央部の非磁性 層 32が最も大きい J を発現するように設定されている。非磁性層 32に関しては、そ
SAF
れ自身の材料構成や、上下に接する強磁性層界面の構成は非磁性層 31とほぼ同 等である。但し、非磁性層 32の J は、約 0. 038ergZcm2であり、 SAF中の全ての
SAF
非磁性層の中で最も大きい。それは、非磁性層 32の Ru (2. lnm)が、 NiFe (4. 8n m) /CoFe (0. 35nm) /Ru(2. lnm) /NiFe (4. 8nm) /CoFe (0. 35nm)の 下地上に形成され、その HCPく 0001 >の結晶配向性が大きくなつている為である 。非磁性層 32を介した反平行結合が外れる磁場は、非磁性層 31及び非磁性層 33 と比較して大きくなるため、磁化自由層の飽和磁場が大きく増大 (延伸)する。その結 果、書き込みマージンが拡大する。
[0078] ここで、非磁性層 32を介する反平行結合は、強ければ強 、ほどよ 、と 、うわけでは ない。なぜならば、その反平行結合があまりに強すぎると、非磁性層 32を介した強磁 性層同士がスピンフロップを起こす前に、非磁性層 31あるいは 33を介した強磁性層 同士の磁ィ匕が飽和するからである。その場合、磁ィ匕自由層全体のスピンフロップが途 切れてしまうため、書き込み不良の発生原因となる。よって、好適な反平行結合力を 得るために、非磁性層 32は、最も低い磁場でフロップする非磁性層 33よりも、一つだ け低次の反強磁性ピークを使用することが望ましい。より具体的には、非磁性層 32、 非磁性層 33がルテニウムで形成される場合には、非磁性層 32は、その膜厚が 1. 8n mを超え、 2. 5nm未満であるように形成され、非磁性層 33は、その膜厚が 3. lnm を超え、 3. 9nm未満であるように形成される。或いは、非磁性層 32は、その膜厚が 0 . 7nmを超え、 1. 2nm未満であるように形成される場合は、非磁性層 33は、その膜 厚が 1. 8nmを超え、 2. 5nm未満であるように形成される。
[0079] 最も好適には、非磁性層 31は、反強磁性 2ndピークに対応する 2. lnmの膜厚を 有するように形成され、非磁性層 33は、反強磁性 3rdピークに対応する 3. 5nmの膜 厚を有するように形成される。或いは非磁性層 31は、反強磁性 1stピークに対応する 0. 9nmの膜厚を有するように形成され、非磁性層 33は、反強磁性 2ndピークに対 応する 2. lnmの膜厚を有するように形成される。
[0080] キャップ層 16は、磁ィ匕固定層 13、ノリア層 14、及び磁ィ匕自由層 15Aを保護するた めの層である。キャップ層 16は、例えば、 Ta、 Ruで形成される。キャップ層 16は、ト ンネル電流が流れる程度に極めて薄 、A10で形成されることも可能である。
[0081] 上部電極層 17は、磁ィ匕自由層 15Aへの電気的接続を提供する経路として機能す る。上部電極層 17は、例えば、 Ta、 TaN、 TiN、 Cu、 Alで形成される。
[0082] (第 2の実施の形態)
図 7Bは、本発明の第 2の実施の形態に係る MTJ素子 1Bの構成を示す断面図であ る。図 7Bに示されている MTJ素子 1Bは、図 7Aに示されている MTJ素子 1Aと同様 に、磁ィ匕自由層 15B力 4層の強磁性層 21〜24と 3層の非磁性層 31〜33からなる ような構成を有している。
[0083] 相違点は磁ィ匕自由層中の、強磁性層 21〜24の磁気体積の設定と、非磁性層 31 〜33を介した反平行結合力の設定である。第 2の実施形態では磁化自由層 15Bは 、トンネルバリア層 14上の強磁性層 21から、キャップ層 16下の強磁性層 24まで次の ような膜構成を有する:
トンネルバリア層 ZNiFe (3nm) ZCoFe (0. 35nm) /Ru (2. Inm) /NiFe (3n m) /CoFe (0. 35nm) /Ru(2. Inm) /NiFe (4. 6nm) /CoFe (0. 45nm) /R u (3. 5nm) /NiFe (4. 6nm) /CoFe (0. 45nm) Zキャップ層。
[0084] 強磁性層 21と 22の磁ィ匕膜厚積は同じ 3. 15Tnmであり、強磁性層 23と 24の磁ィ匕 膜厚積は同じ 4. 72Tnmである。強磁性層 21と比較して、強磁性層 24の磁ィ匕膜厚 積の方が 1. 5倍ほど磁気膜厚は大きい。また、非磁性層の 31の反平行結合エネル ギー Jはおよそ 0. 013ergZcm2であり、非磁性層 32の反平行結合エネルギー Jは
1 3 およそ 0. 021ergZcm2である。このとき、非磁性層 31に関連する Hjは 107Oe、非 磁性層の 33に関する Hjは 1140eを有するように設定されており、ほぼ等しい。この 結果、強磁性層 21と強磁性層 24の反平行結合はほぼ同時に外れることが可能とな り、好適に動作する。また本実施の形態では、強磁性層 21と 22及び強磁性層 23と 2 4とは、全く同一構成を有し、さらにそれら結晶性も近いので好適である。
[0085] また、第 2の実施の形態では、非磁性層 33に関して、非磁性層 31よりも強い反平 行結合力が求められているので、非磁性層 33を 2ndピークに対応する Ru (2. Inm) としてもよい。その場合、非磁性層 33をそのまま Ru (2. Inm)で置換すると、反平行 結合力が強くなりすぎるので、例えば強磁性層 23の CoFe(0. 45nm)を減少させ、強 磁性層 23を殆ど NiFeのみで構成することにより、非磁性層 33の反平行結合力を好 適な値に微調整することができる。このとき、非磁性層 31と非磁性層 33は、ほぼ同じ 膜厚と材料で構成されるが、非磁性層 31と非磁性層 33の上下界面に直接接してい る全ての部分の元素構成比率は異なっている。具体的には、非磁性層 31の上下界 面には Ni,Fe ,Co t\、つた元素が直接接して 、るが、非磁性層 33に関しては Niと Fe のみである。非磁性層 33と比較して、非磁性層 31に接している部分の元素構成比 率は Coリッチである。 [0086] (第 3の実施の形態)
磁ィ匕自由層を構成する SAFに含まれる強磁性層の数が、第 1,第 2の実施の形態 と異なる場合や、その数が偶数ではなく奇数である場合にも、本発明は適用可能で ある。例えば、図 7Cに示されているように、 MTJ素子 1Cの磁ィ匕自由層 15C力 3層 の強磁性層 21〜23と、それらの間に挿入された非磁性層 31、 32で形成される例を 説明する。
[0087] この場合、トンネルノリア層 14上の強磁性層 21から、キャップ層 16下の強磁性層 2
3までの膜構成の一例として、次のような構成が挙げられる:
トンネルバリア層 ZNiFe (4. 6nm) /CoFe (0. 45nm) /Ru (2. lnm) /NiFe (
8. 4nm) /CoFe (0. 4nm) /Ru(3. 5nm) /NiFe (3. 7nm)Zキャップ層。
[0088] 上記の構成で、強磁性層 21は NiFe (4. 6nm) /CoFe (0. 45nm)に相当し、強 磁性層 23は NiFe (3. 7nm)に相当し、強磁性層 22は NiFe (8. 4nm) /CoFe (0.
4nm)に相当する。
[0089] また、第 1の実施の形態と同様の理由で、 HCPく 0001 >の結晶配向性の悪い非 磁性層 31に対して Ru (2. lnm)の反強磁性 2nd— peakを使用し、結晶配向性がや や改善されている非磁性層 32に対して Ru(3. 5nm)の反強磁性 3rd— peakを使用 することにより、反平行結合力が粗調整されている。磁化膜厚積は、強磁性層 21に 対しては約 4. 72Tnm、強磁性層 22に対しては約 7. 9Tnm、強磁性層 23に対して は約 3. 15Tnmである。このように、強磁性層 22の磁ィ匕膜厚積は、強磁性層 21及び 23の磁化膜厚積の和〖こなるように設定されて!、る。
[0090] また、より一般に、 N個の強磁性層(Nは 3以上の奇数)の多層 SAF磁ィ匕自由層の 場合、磁ィヒ自由層の最上層である第 N強磁性層と最下層である第 1強磁性層が持つ 磁ィ匕膜厚積の和とほぼ同じになるように、最中央部である第((1 +N) Z2)強磁性層 の磁ィ匕膜厚積が設定されればよい。その理由は、次の通りである。 Nが奇数の場合 の多層 SAFでは、常に最上部及び最下部の強磁性層が、残留磁化状態で平行配 置となる。従って、第 N強磁性層と第 1強磁性層の磁ィ匕膜厚積をキャンセルする役目 を、多層 SAF中の最も中央部の強磁性層一層に担わせることにより、磁化自由層全 体のスピンフロップが安定化される。 Nが奇数の場合、残留磁化状態において最中 央層である第((1+N)Z2)強磁性層の磁ィ匕は、必ず、第 N強磁性層及び第 1強磁 性層の磁ィ匕に対して反平行となる。また、特に N=3及び N=5の多層 SAFでは、最 中央部の磁性層によって、最上部及び最下部の強磁性層の磁ィ匕を打ち消さなけれ ば、磁ィ匕自由層全体の磁ィ匕を、残留磁ィ匕状態においてキャンセルできない。
[0091] 本実施の形態は、上記のとおり、磁化の調整方法以外は第 1、第 2、第 4の実施形 態と同じである。最上部及び最下部の強磁性層が、外部磁場に対して同時に外れる ように設定されれば良い。本実施形態に示された例では、非磁性層 31および非磁性 層 32の反平行結合エネルギー定数は、それぞれ J
Figure imgf000028_0001
J =0.014 ergZcm2程度であり、それらを磁場に換算したパラメータ J / (M Xt) J / (M X
1 1 1 2 3 t )は、それぞれ、 530e及び 560eとほぼ等しくなるように設定されている。
3
[0092] (第 4の実施の形態)
より一般的に、 Nは 4または 6以上の整数とし、多層 SAFが N層の強磁性層と N— 1 層の非磁性層とからなる場合に、本発明の動作に必要な構成を説明する。最下層の 強磁性層を第 1強磁性層、最上層の強磁性層を第 N強磁性層とし、最下層の強磁性 層の直上の非磁性層を第 1非磁性層、最上層の強磁性層直下の非磁性層を第 N— 1非磁性層とする。最低限必要な条件として、 M Xt Xt
1 1と M
2 2は等しぐ M Xt
N-1 N- と M Xtが等しいことが必要である。さらに、 M Xt >M Xtであり、且つ、 J >J
I N N 1 1 N N I N であること、あるいは、 M M
1 xtく
1 N xtで、且つ、 J <Jであることが必要である。さ
N I N
らに、パラメータ J 1Z(M xt) ]
1 1 N Z(M
N xt )とをほぼ等しくすれば、より好適に動 N
作する。
[0093] また、第 1強磁性層と第 2強磁性層の平均の異方性磁場 Hk力 第 (N— 1)強磁性 層と第 N強磁性層との平均の異方性磁場 Hk に対して大きく異なる場合は、最上
N-1
層と最下層の SAF結合部が単独に存在した場合のフロップ磁場に相当するパラメ一 タ [{2J Z(M Xt )— Hk }XHk ]と [{2J Z(M Xt )— Hk }XHk ]とが
1 1 1 1 1 N-1 N N N-1 N-1 ほぼ等しいことが必要となる。このような用件を満たすように、非磁性層の膜厚や材料
、磁性層 Z非磁性層の界面材料、磁性層の膜厚などを変更することによって、磁ィ匕 自由層の各パラメータが制御されればよい。
[0094] Nが奇数で 7層、 9層、 11層など大きい磁ィ匕自由層の場合、既出の第 3の実施形態 よりも第 4の実施形態のほうが好適である。なぜならば、本実施形態によれば、最も隣 接する強磁性同士 (第 1強磁性層と第 2強磁性層、及び第 N— 1強磁性と第 N強磁性 層)が磁気的に等価に設定され、磁化自由層内で、残留磁化状態で反平行配置をと る強磁性層同士を、磁気的により等価にしゃす ヽからである。
[0095] 第 2〜第 (N— 2)の非磁性層の J は、第 1及び第 N—1の非磁性層と比較して同
SAF
等以上に設定することが好適である。さらに、磁化自由層の飽和磁場を一層延伸さ せる上で、第 2〜第 (N— 2)の非磁性層の中に、意図的に強い反平行結合力をもつ 非磁性層を設けることが有効である。そのような非磁性層は最中央部に位置すること が望ましぐ Nが偶数の場合は第 (NZ2)非磁性層の反平行結合力がもっとも大き!ヽ ことが好適である。具体的には、第 (NZ2)非磁性層の反強磁性ピークの次数は、第 N—1非磁性層の次数と比較して一つだけ小さくなるように、各非磁性層の膜厚を設 定することが好適である。
[0096] 具体例として、本発明の MRAM記憶ビット部 40Aの断面が図 8Aに示されている。
この MRAM記憶ビット部 40Aは、 6層の強磁性層 21〜26と、それらの間に挿入され た 5層の非磁性層 31〜35で構成された磁ィ匕自由層 15Dを有する。トンネルバリア層 14上の強磁性層 21から、キャップ層 16下の強磁性層 26までの好適な形態の 1例と して次のような膜構成が挙げられる:
トンネルバリア層 ZNiFe (4nm) ZCoFe (0. 35nm) /Ru (2. lnm) /NiFe (4n m) /CoFe (0. 35nm) /Ru (3. 5nm) /NiFe (2nm) /CoFe (0. 25nm) /Ru ( 2. lnm) /NiFe (2nm) /CoFe (0. 25nm) /Ru (3. 5nm) /NiFe (3nm) /Co Fe (0. 25nm) /Ru (3. 5nm) /NiFe (3nm) /CoFe (0. 25nm)Zキャップ層。
[0097] 図 8Aに示されるように、一般に実デバイスにおいては、 MRAM記憶ビット部 40A 中の磁ィ匕自由層の側壁部は、垂直には加工されずに、傾斜を有している。このとき、 磁気抵抗を決定する接合面積は、トンネルバリア層と第 1強磁性層が接する界面の 面積で規定される。各強磁性層が全く同じ厚さに成膜された場合、各強磁性層の実 効的な磁気膜厚 t〜tは、 t >t >t >t >t >tとなる。よって、実デバイスの加工
1 6 1 2 3 4 5 6
に起因した磁気体積差を考慮して、強磁性層 21〜26の成膜時の膜厚を調整しなけ ればならない。本実施の形態によれば、非磁性層 21である Ru (2. lnm)を介した S AFの J / (M X t )と、非磁性層 25である Ru (3. 5nm)を介した SAFの J / (M X t
1 1 1 5 6 )は、ほぼ等しくなるように設定される。強磁性層の等価性が要求される組は、隣接
6
する強磁性層 21と強磁性層 22、強磁性層 23と強磁性層 24、及び強磁性層 25と強 磁性層 26である。図 8Aから明らかなように、それらの組に関しては、加工に起因した 磁気体積差は生じづらぐまた結晶性に起因した磁気特性の差も小さい。また、最中 央の非磁性層 23に関しては、 Ru2. lnmの 2nd反強磁性ピークが使用され、かつ、 結晶性も良好であるため、最も大きな反強磁性結合力が得られる。従って、磁ィ匕自由 層の飽和磁場が延伸し、書き込みマージンが広がる。
[0098] 比較として、従来技術に従って作製された MRAM記憶ビット部 40Bの断面が図 8B に示されている。この MRAM記憶ビット部 40Bは、同様に 6層の強磁性層 21〜26と 、それらの間に挿入された 5層の非磁性層 31〜35で構成された磁ィ匕自由層 15Eを 有する。トンネルノリア層 14上の強磁性層 21から、キャップ層 16下の強磁性層 26ま での好適な膜構成の一例として、次のような構成が挙げられる:
トンネルバリア層 ZNiFe (4nm) ZCoFe (0. 35nm) /Ru (2. lnm) /NiFe (2n m) /CoFe (0. 35nm) /Ru (3. 5nm) /NiFe (3nm) /CoFe (0. 25nm) /Ru ( 2. lnm) /NiFe (3nm) /CoFe (0. 25nm) /Ru (3. 5nm) /NiFe (2nm) /Co Fe (0. 35nm) /Ru (3. 5nm) /NiFe (4nm) /CoFe (0. 35nm)Zキャップ層。
[0099] 非磁性層 31と 35の反平行結合力はほぼ等しぐかつ、強磁性層 21〜26の磁ィ匕膜 厚積は上下方向に対称に設定される。しかし、成膜時にそのような磁ィ匕膜厚積となる ように形成しても、図 8Bより明らかなように、強磁性層の等価性が要求される組 (強磁 性層 21と強磁性層 26、強磁性層 22と強磁性層 25、強磁性層 23と強磁性層 24)に 関しては、素子加工プロセスにより生じる体積差によって、磁気体積の等価性が大き く損なわれる。また、それらの強磁性層が形成された SAF中の位置を考えても、結晶 性に起因した磁気特性の差も大幅に生じうる。磁気体積の差に関しては、どの層がど れだけの磁気体積を持つのカゝ把握することが難しぐ接合側壁の形状がより複雑な 場合では、磁気体積を把握することは不可能である。このように従来技術の多層 SA Fの磁気体積の差や膜質の差をキャンセルさせることは容易なことではない。
[0100] 以上、実施形態の説明において、第 1非磁性層に対して、第 (N—1)非磁性層の 膜厚が厚くなるような例が示された。第 (N—1)非磁性層に対して、第 1非磁性層の 膜厚を厚くなるように構成されてもよい。また、例えば成膜条件などを工夫するなどし て膜質の差が縮小した場合や、非磁性層の膜厚制御性を向上させ、非磁性膜厚の みによって厳密な反強磁性結合エネルギーを制御可能な場合は、このような構成が 採用されなくてもよい。重要な点は、膜形態ではなぐ実効的な反強磁性結合力の大 きさである。
[0101] 以下、様々な磁ィ匕自由層構造を有する MRAMに対する動作実験例が実施例とし て示される。
[0102] 1.フロップ磁場、飽和磁場、及び書き込みマージンの評価
2層の強磁性層と 1層の非磁性層カゝらなる通常の SAFと、 4層の強磁性層と 3層の 非磁性層からなる多層 SAFを磁ィ匕自由層とした MTJが 8インチ基板に複数作製され た。 100〜120個の MTJ素子に関して、トグル書き込みが調べられ、フロップ磁場、 飽和磁場と書き込みマージン及び動作率が評価された。磁ィ匕自由層の 4層 SAFは 従来技術と本発明の技術を用いた試料が作製され、特性が比較された。 MTJ素子 の平面形状は主に 0. 6 X 1. 2 m2の長円形である。また一部 0. 4 X 0. 8 m2の長 円形の素子についても評価を行った。
[0103] ここで、 Al( α nm) Oとは、 α (nm)の Al膜を酸化することによって形成された AIO 膜を意味している。また、基板の上に順次に形成された Ta膜、 PtMn膜、 CoFe/R uZCoFe積層体、 A1 (0. 9nm) 0膜力 それぞれ、下部電極層 11、反強磁性層 12 、磁ィ匕固定層 13、ノリア層 14に相当しており、磁ィ匕自由層の上に形成された A1 (0. 7nm) 0膜、 Ta膜が、キャップ層 16、上部電極層 17に相当していることに留意され たい。
[0104] 本実施例で作製された MTJの構成は、次の通りである:
基板 ZTa (20nm) ZPtMn(20nm) ZCoFe (2. 5nm) /Ru (0. 9nm) /CoFe ( 2. 5nm) /Al (0. 9nm) 0 Z磁化自由層 ZA1 (0. 7nm) 0 /Ta (100nm) o
[0105] 図 10A及び図 10Bは、各試料の磁ィ匕自由層の構成を示す表である。磁ィ匕自由層 に含まれる強磁性層の数は、 2または 4であり、強磁性層の材料'膜厚は、磁ィ匕自由 層の全体としての残留磁化が 0であるように微調整されている。磁ィ匕自由層の非磁性 層は、いずれも、ルテニウムで形成されている。ここで NiFeとして、パーマロイ(Ni F
81 e )が使用されている。以下では、各試料の特徴が概略的に説明される。
19
[0106] 比較例 1の MTJ素子の磁ィ匕自由層は、 2層の強磁性層と 1層の非磁性層を含む S AFで形成されている。非磁性層の膜厚は、反強磁性 2ndピークに対応する 2. lnm である。その他の試料は 、ずれも 4層の強磁性層と 3層の非磁性層を含む SAFで形 成されている。第 1非磁性層は反強磁性 2ndピークに対応する 2. lnmのルテニウム が用いられている。第 2非磁性層に関しては 2. lnmのルテニウムが用いられており、 この非磁性層は、結晶配向性が良好で且つ反強磁性 2ndピークであるため、他の非 磁性層の 3倍以上の反強磁性結合エネルギーを持つ。基板から離れて位置する第 3 非磁性層の膜厚は、反強磁性 3rdピークに対応する 3. 5nmである。
[0107] 比較例 2の磁化自由層は、全ての強磁性層の磁ィ匕膜厚積がほぼ等しぐかつ、第 1 非磁性層及び第 3非磁性層の反平行結合力はほぼ等しい。各強磁性層の磁化膜厚 積は 3. 15Tnmである。
[0108] 比較例 3〜7及び実施例 1〜4は、全て第 1強磁性層と第 2強磁性層の磁ィ匕膜厚積 がほぼ 4. 72Tnmであり等しぐ第 3強磁性層と第 4強磁性層の磁ィ匕膜厚積がほぼ 3 . 15Tnmであり等しぐかつ第 1強磁性層は第四強磁性層に対して 1. 5倍大きぃ磁 化膜厚積を持つ。比較例 3〜6および実施例 1〜2の試料では、第 1強磁性層中の N iFeZCoFeの比率を変化させて、第 1非磁性層の反平行結合エネルギーのみを変 化させている。また、比較例 7および実施例 3〜4の試料では第 3強磁性層中の NiFe ZCoFeの比率を変化させて、第 3非磁性層の反平行結合エネルギーのみを変化さ せている。いずれも CoFeの膜厚が増えるほど、その上部の非磁性層の反平行結合 力は増大する。図 10B中に第 1、第 3非磁性層直下の強磁性層界面に存在する CoF eの厚さが示されている。
[0109] 図 11には、比較例 1〜7及び実施例 1〜4の磁化自由層を用いた 0. 6 X 1. 2 μ ΐα トグル MRAMデバイスの動作率とフロップ磁場、飽和磁場が示されている。比較例 1 と比較例 2を比較すると、フロップ磁場はそれぞれ、 38 (Oe)、 37 (Oe)の周囲に分布 し、飽和磁場はそれぞれ、 157 (Oe)、 570 (Oe)の周囲に分布していた。強磁性層 を 2層から 4層にすることで、書きこみマージンが大きく増大して 、る。 [0110] 比較例 3〜6および実施例 1〜2の試料は、第 3非磁性層の反平行結合力(反平行 結合エネルギー定 )が固定され、第 1非磁性層の反平行結合力 (反平行結合ェ
3
ネルギ一定 ¾J )のみが増大していく試料に相当する。最も Jが小さい試料に対応す る比較例 3では、ごく一部の素子でダイレクト反転を示す素子が存在した力 トグル反 転を示す素子は全く存在しな力つた。比較例 4、 5と、 Jが増大していくにつれてトグ ル動作率が向上していき、実施例 1、 2の試料において、それぞれトグル動作率が 98 %及び 100%と非常に高歩留まりでトグル書き込みが行われた結果が得られた。更 に】が増加された試料である比較例 6では、トグル動作率が 65%と減少してしまった 。実施例 1の試料では、平均のフロップ磁場は 42 (Oe)、飽和磁場は 602 (Oe)であ つた。実施例 2の試料では、平均のフロップ磁場は 44 (Oe)、飽和磁場は 606 (Oe) であった。
[0111] また、比較例 5、実施例 4、実施例 3、比較例 7の試料は、第 1非磁性層の反平行結 合力が固定され、第 3非磁性層の反平行結合力のみが減少していく試料に相当する 。第 3非磁性層の反平行結合力が減少していくにつれて、トグル動作率が向上して いき、実施例 3、 4の反平行結合力において、それぞれ動作率 93%及び 100%の結 果が得られた。実施例 3の試料では、平均のフロップ磁場は 36 (Oe)、飽和磁場は 5 65 (Oe)である。実施例 4の試料では、平均のフロップ磁場は 37 (Oe)、飽和磁場は 576 (Oe)であった。書き込みマージンに相当する比率 (飽和磁場 Zフロップ磁場) は、比較例 1では 4と小さいが、実施例 1〜4では、その比率は大幅に増大し全て 10 以上となる。本発明によって、高いトグル動作率を示し、かつ、フロップ磁場をほぼ一 定としたまま、書き込みマージンの著しい向上が可能であることが実証された。
[0112] さらに比較例 1及び 2、実施例 2、実施例 4のトグル動作特性を詳細に比較した結果 力 図 12に示されている。図 12中には、 0. 6 X 1. 2 m2素子のフロップ磁場と、そ のばらつきに相当する標準偏差、飽和磁場、書き込みマージン、及びトグル書き込 み動作率が示されている。さらに 0. 6 X 1. 2 μ r RX!O. 4 X 0. 8 /z m2素子の間の ダイレクト反転領域幅の差が示されて ヽる。ダイレクト領域幅もフロップ磁場及び飽和 磁場と同様に、容易軸方向に対して測定したものである。
[0113] フロップ磁場のばらつき (標準偏差 σ )は、従来技術に係る 4層 SAF磁化自由層 である比較例 2では、 3. 3 (Oe)である。それに比べて、本発明に係る 4層 SAF磁ィ匕 自由層である実施例 2及び 4では、フロップ磁場のばらつきの大きさはそれぞれ、 2. 5 (Oe)および 2. l (Oe)と小さい。これらの試料を、例えば 1Mビット MRAMに適用 させた場合を考える。書き込み磁場値を「平均フロップ磁場値 + 5 X σ 」とすると、
flop
その書き込み磁場値は、比較例 2の試料では 53. 5 (Oe)、実施例 2の試料では 56. 5 (Oe)、実施例 4の試料では 47. 5 (Oe)となる。特に実施例 4の試料では、フロップ 磁場も小さぐばらつきも小さいため、書き込み磁場が最も低減されている。
[0114] また 0. 6 X 1. 2 μ r RX!O. 4 X 0. 8 m2素子とのダイレクト領域幅の差に関して は、 2層 SAF力も構成された通常のトグル磁ィ匕自由層力もなる比較例 1で 2. 20eとも つとも小さい。実施例 2及び 4でも、その差は、それぞれ 2. 8 (Oe)及び 3. l (Oe)と小 さい。一方、比較例 2では、その差が 5. 8 (Oe)と最も大き力つた。ダイレクト反転領域 幅が素子サイズによって変わるということは、 SAF中の各強磁性層の磁気体積の差 が素子サイズによって変わっていることを意味する。これは、例えば図 8A、図 8Bに示 されたような、加工プロセスによって生じる磁ィ匕自由層側壁部の磁気体積不均一性 などの影響と考えられる。このように、本発明に係る多層 SAF磁ィ匕自由層によれば、 従来技術に係る多層 SAF磁ィ匕自由層に比べて、フロップ磁場のばらつきも小さぐ かつ、ダイレクト反転領域の大きさも素子サイズに影響しづらぐダイレクト反転領域を より低減しやすい。
[0115] 2. RKKY相互作用による反強磁性的結合の評価
トグル書き込み特性評価の結果と、磁化自由層の反平行結合力や磁化膜厚積の 関係が調べられた。
[0116] 比較例 3〜6及び実施例 1〜4の磁ィ匕自由層の"第 1非磁性層"を介した反平行結 合力を調べるために、以下の試料が作製され、磁化曲線が評価された:
基板 ZTa (20nm) ZPtMn (20nm) ZCoFe (2. 5nm) /Ru (0. 9nm) /CoFe (
2. 5nm) /A1 (0. 9nm) 0 /NiFe/CoFe/Ru ( 2. lnm) /NiFe (4. 8nm) /C oFe (0. 35nm) /Ru (2. lnm) /Ta ( 10nm) o
[0117] 比較例 3〜6及び実施例 1〜4の磁ィ匕自由層の"第 3非磁性層"を介した反平行結 合力を調べるために、以下の試料が作製され、磁化曲線が評価された: 基板 ZTa(20nm)ZPtMn(20nm)ZCoFe(2.5nm) /Ru(0.9nm) /CoFe ( 2.5nm)/Al(0.9nm)0 /NiFe (4.8nm) /CoFe(0.35nm) /Ru(2.5nm) /NiFe (4.8nm) /CoFe(0.35nm) /Ru(2.5nm) /NiFe/CoFe/Ru(3.5 nm) /NiFe (3.7nm) /A1(0.7nm)0 /Ta(10nm)
[0118] この試料では第 1及び第 2非磁性層の Ru厚を 2.5nmとし、反平行結合力をほぼ 零とすることで、第 3非磁性層と第 3及び第 4強磁性層で構成された SAF部のみの磁 化曲線を評価できる。このとき第 3非磁性層の結晶性は、比較例 3〜6及び実施例 1 〜4とほぼ同一である。
[0119] 図 13は、上記の SAF部の磁ィ匕曲線力 得られた飽和磁場と、各 Ru非磁性層直下 の CoFe膜厚との関係を示している。第 1非磁性層及び第 3非磁性層の SAF部の飽 和磁場は、直下の強磁性層界面の CoFe厚の増大にほぼ比例して増加していること がわかる。飽和磁場は、ほぼ反平行結合エネルギーの大きさを反映しており、 CoFe 厚が増大するほど、それぞれの非磁性層の反平行結合エネルギーは増大して 、くこ とが示されている。
[0120] また、 SAF中の各強磁性層の磁ィ匕膜厚積および異方性磁場を評価するために、 以下の膜構成の積層膜が作製された:
基板7丁&(2011111)7八1(0.9nm)0 Zシード層 ZNiFeZCoFeZキャップ層 ZT a(10nm)o
この積層膜が 1 X 1cm2角にカットされた試料が作製され、磁ィ匕曲線が評価された。 上記試料において、シード層に対しては、評価対象の強磁性層によって Ru (2. In m)が用いられる力 用いられなかった。また、キャップ層に関しては、評価対象の強 磁性層によって Ru (2. lnm)か A1(0.7nm)0のいずれかが選択された。
[0121] 磁化膜厚積、異方性磁場、図 13に示された飽和磁場から、比較例 3〜6及び実施 例 1〜4の磁化自由層中の J、 J、 M Xt、 M Xtの値が求められた。各試料に関
1 3 1 1 4 4
する比率 QiZ(M Xt /(M Xt )]と、 0.6X1. 素子でのトグル動
1 1 1 3 4 4
作率との関係が、図 14に示されている。図 14より、比較例 3〜6及び実施例 1〜4全 ての素子のトグル動作率と比率 Q[ t;)]との間には、明確
1 Z(M Xt
1 1 3 Ζ(Μ X
4 4
な相関があることがわかる。全ての試料について、 J /(M Xt )ゃ】 /(M Xt )の 値が異なっていても、 [J /(M Xt /(M Xt )] = 1を中心として、トグル動
1 1 1 3 4 4
作率はピークを持つように変化する。また、比率 ϋ Z(M xt
1 1 1 )]Ζϋ Z(M xt )]
3 4 4 に対するトグル動作率は、同じ曲線上にいる。 [J /(M Xt /(M Xt )]=
1 1 1 3 4 4
1の場合、トグル動作率は 100%である。また、特に 0.8< [J Z(M Xt /(
1 1 1 3
M Xt )]<1· 2の範囲で、 100%のトグル動作率力、それに近い値が得られている
4 4
。その範囲は、実施例 1〜4に相当する範囲であり、素子特性として非常に良好であ る。これらの実験結果は、本発明の多層トグルにおいて、最下層と最上層の非磁性 層の磁場に換算した量に相当する J Z(MXt)が等しいほど、言い換えると、最下
SAF
層と最上層の強磁性層の反平行結合が、外部磁場に対して同時に外れるように設定 するほど、多層 SAF力も構成された磁ィ匕自由層が、良好にトグル動作するようになる ことを示唆している。
[0122] 最後に、実施例 1〜4の磁ィ匕自由層において大きな飽和磁場を実現している第 2非 磁性層の反平行結合力の大きさが、以下の試料を用 ヽて評価された:
基板 ZTa(20nm)ZPtMn(20nm)ZCoFe(2.5nm) /Ru(0.9nm) /CoFe ( 2.5nm)/Al(0.9nm)0 /NiFe (4.8nm) /CoFe(0.35nm) /Ru(2.5nm) /NiFe (4.8nm) /CoFe(0.35nm) /Ru(2. lnm) /NiFe (3nm) /CoFe (0. 35nm) /Ru(3.5nm)/Ta(10nm)。
この試料では第 1非磁性層の Ru厚を 2.5nmとし、反平行結合力をほぼ零とするこ とで、第 2非磁性層と第 2及び第 3強磁性層で構成された SAF部のみの磁ィ匕曲線を 評価できる。
[0123] 上記の SAFの飽和磁場はおよそ 2550eであった。この飽和磁場値は、 J [1/(M
2 2
Xt )+l/(M Xt )]に等しいので、反平行結合エネルギー定数に換算する =
2 3 3 2
0.038ergZcm2に相当する。実施例 1〜4において第 3非磁性層の SAF部が示す Hj = 2J /(M Xt )は 680e〜1320eの範囲であり、本実施例によって比率 {J [1
3 4 4 2
Z(M Xt )+l/(M Xt )]}/{2J Z(M Xt )}は 1· 9以上 3· 75以下の範囲で
2 2 3 3 3 4 4
好適に動作することが実証された。この結果から、第 2非磁性層と第 3非磁性層との 反平行結合エネルギー定数の比率、 {J
2 [1Z(M Xt
2 2 )+lZ(M Xt
3 3 )]}Z{2J
3 Ζ(
M Xt )}は 4以下の範囲で設定することが可能であることがいえる。本実施例ではこ のように反平行結合力を設定することにより、低いフロップ磁場のまま大きな飽和磁 場値、すなわち、書き込みマージンを実現している。
以上に説明されたように、本発明によれば、 3層以上の強磁性層を含む多層 SAF を磁化自由層として使用する MRAMが提供される。その MRAMの動作率が向上し 、不良ビットが低減される。また、本発明によれば、実デバイス上での磁気特性の制 御性が容易になる。また、本発明によれば、 MRAMの書き込み特性を改善し、書き 込み電流値を低減することが可能となる。更に、本発明によれば、 MRAMの書き込 みマージンを増大させることが可能となる。

Claims

請求の範囲
基板と、
磁気抵抗素子と
を具備し、
前記磁気抵抗素子は、
固定された磁ィ匕を有する磁ィ匕固定層と、
反転可能な磁化を有する磁化自由層と、
前記磁化固定層と前記磁化自由層との間に介設された非磁性層と
を有し、
前記磁ィ匕自由層は、
第 1〜第 N強磁性層(Nは 4、または 6以上の整数)と、
反強磁性的な RKKY相互作用を発現するように形成された第 1〜第 N— 1非磁性 層と
を含み、
前記第 1〜第 N— 1非磁性層のうちの第 k非磁性層(kは、 1以上 N— 1以下の整数) は、前記第 1〜第 N強磁性層のうちの第 k強磁性層と第 (k+ 1)強磁性層の間に設け られ、
前記第 1非磁性層は、前記第 1〜第 N— 1非磁性層のうちで前記基板に最も近く位 置し、且つ、前記第 N— 1非磁性層は、前記第 1〜第 N—1非磁性層のうちで前記基 板カゝら最も離れて位置し、
前記第 k強磁性層の体積、磁化及び実効膜厚が、それぞれ V、 M及び tで表され
k k k
、ここで、前記実効膜厚 tは、前記体積 Vを前記磁化自由層の平面方向の平均面
k k
積で割った値であり、
前記第 k強磁性層の磁化の向きと前記第 (k+ 1)強磁性層の磁ィ匕の向きの相対角 度が、 Θ
kで表され、
前記第 k非磁性層を介した前記第 k強磁性層と前記第 (k+ 1)強磁性層の反平行 結合エネルギーが、反平行結合エネルギー定数 Tを用いて、 J cos Θ で表されるとき M Xtと M Xtは実質的に等しぐ
1 1 2 2
M Xt と M Xt は実質的に等しぐ
N-l N-l N N
また、下記のいずれかの関係:
M xt >M xt、且つ、 J >J 、または、
1 1 N N 1 N-l
M Xt <M Xt、且つ、 J <J
1 1 N N 1 N-l
が満たされる
MRAM。
[2] 前記 Nは 4である請求の範囲 1に記載の MRAM。
[3] 基板と、
磁気抵抗素子と
を具備し、
前記磁気抵抗素子は、
固定された磁ィ匕を有する磁ィ匕固定層と、
反転可能な磁化を有する磁化自由層と、
前記磁化固定層と前記磁化自由層との間に介設された非磁性層と
を有し、
前記磁ィ匕自由層は、
第 1〜第 N強磁性層(Nは 3以上の奇数)と、
反強磁性的な RKKY相互作用を発現するように形成された第 1〜第 N— 1非磁性 層と
を含み、
前記第 1〜第 N— 1非磁性層のうちの第 k非磁性層(kは、 1以上 N— 1以下の整数) は、前記第 1〜第 N強磁性層のうちの第 k強磁性層と第 (k+ 1)強磁性層の間に設け られ、
前記第 1非磁性層は、前記第 1〜第 N— 1非磁性層のうちで前記基板に最も近く位 置し、且つ、前記第 N— 1非磁性層は、前記第 1〜第 N—1非磁性層のうちで前記基 板カゝら最も離れて位置し、
前記第 k強磁性層の体積、磁化及び実効膜厚が、それぞれ V、 M及び tで表され 、ここで、前記実効膜厚 tは、前記体積 Vを前記磁化自由層の平面方向の平均面
k k
積で割った値であり、
前記第 k強磁性層の磁化の向きと前記第 (k+ 1)強磁性層の磁ィ匕の向きの相対角 度が、 Θ で表され、
k
前記第 k非磁性層を介した前記第 k強磁性層と前記第 (k+ 1)強磁性層の反平行 結合エネルギーが、反平行結合エネルギー定 #αを用いて、 j cos Θ で表されるとき
k k k
M X tと M X t の和は、 M に実質的に等しぐ
1 1 N N (N + D/2
また、下記のいずれかの関係:
M x t >M x t、且つ、 J >J 、または、
1 1 N N 1 N- l
M X t < M X t、且つ、 J <J
1 1 N N 1 N- l
が満たされる
MRAM。
[4] 請求の範囲 1乃至 3のいずれかに記載の MRAMであって、
前記磁化自由層の残留磁ィ匕は飽和磁場の 10%以内である
MRAM。
[5] 請求の範囲 1乃至 4のいずれかに記載の MRAMであって、
ワード線と、
前記ワード線に直交するビット線と、
前記ワード線と前記ビット線との交差点に設けられ、前記磁気抵抗素子を含む記憶 素子
とを更に具備し、
前記磁気抵抗素子の前記磁化自由層の容易軸方向は、前記ワード線又は前記ビ ット線の延伸方向に対して 45度の角をなす
MRAM。
[6] 請求の範囲 1又は 2に記載の MRAMであって、
前記第 1強磁性層に対する反平行結合が解け始める外部磁場は、前記第 N強磁 性層に対する反平行結合が解け始める外部磁場と実質的に等しい MRAM。
[7] 請求の範囲 3に記載の MRAMであって、
前記第 1強磁性層に対する反平行結合が解け始める外部磁場は、前記第 N強磁 性層に対する反平行結合が解け始める外部磁場と実質的に等しい
MRAM。
[8] 請求の範囲 6又は 7に記載の MRAMであって、
J /(M Xt ) ]
1 1 1 N-1 Z(M Xt )とは実質的に等しい
N N
MRAM。
[9] 請求の範囲 8に記載の MRAMであって、
{J /(M Xt )}/{j Z(M Xt )}は 0.8以上 1. 2以下である
1 1 1 N-1 N N
MRAM。
[10] 請求の範囲 6又は 7に記載の MRAMであって、
前記第 k非磁性層を介した第 k強磁性層と第 (k+ 1)強磁性層の平均全異方性磁 場力 Hkで表されるとき、
k
[{2J Z(M Xt )— Hk }XHk ]と [{2J /(M Xt )— Hk }XHk ]とは
1 1 1 1 1 N-1 N N N-1 N— 1 実質的に等しい
MRAM。
[11] 請求の範囲 10に記載の MRAMであって、
[{2J /(M Xt )-Hk }XHk ]/[{2J Z(M Xt )— Hk }XHk ]は 0
1 1 1 1 1 N-1 N N N-1 N-1
. 8以上 1. 2以下である
MRAM。
[12] 請求の範囲 6に記載の MRAMであって、
前記 Nが偶数であり、
前記 kが 1以上の奇数であり、
前記第 k強磁性層と前記第 k+ 1強磁性層は、実質的に同じ磁気体積を有する MRAM。
[13] 請求の範囲 6に記載の MRAMであって、
前記 Nは 4以上の偶数であり、 前記反平行結合エネルギー定 は、 k = NZ2の場合に最も大きくなる
k
MRAM。
[14] 請求の範囲 13に記載の MRAMであって、
次の関係:
[J {1/(M Xt )+l/(M Xt )}]/[2J /(M Xt )]<4
N/2 N/2 N/2 N/2 + 1 N/2 + 1 N_l N N が満たされる
MRAM。
[15] 請求の範囲 13又は 14に記載の MRAMであって、
前記第 1非磁性層を挟む前記第 1強磁性層及び前記第 2強磁性層からなる SAFと 、前記第 N— 1非磁性層を挟む前記第 N— 1強磁性層及び前記第 N強磁性層からな る SAFが示す飽和磁場は、
前記第 NZ2強磁性層と前記第 NZ2 + 1強磁性層との間の反平行結合が解け始 める外部磁場よりも大きい
MRAM。
[16] 請求の範囲 6又は 7に記載の MRAMであって、
前記反平行結合エネルギー定 (前記 kは 1、 N- 1以外)は、 Jまた【お と比較
k 1 N-1 して同等以上の大きさである
MRAM。
[17] 請求の範囲 6又は 7に記載の MRAMであって、
前記第 k非磁性層に関する RKKY相互作用の反強磁性ピークの次数が aで表さ
k れ、
前記第 1非磁性層は、第 α 次の反強磁性ピークに対応する範囲の膜厚を有し、 前記第 Ν— 1非磁性層は、第 α 次の反強磁性ピークに対応する範囲の膜厚を
N-1
有し、
J >J の場合、 a < a の関係が満たされ、
1 N-1 1 N-1
J <J の場合、 a >a の関係が満たされる
1 N-1 1 N-1
MRAM。
[18] 請求の範囲 17に記載の MRAMであって、 J >J の場合、 a = a + 1の関係が満たされ、
1 N- l N- l 1
J <J の場合、 α = α + 1の関係が満たされる
1 N- l 1 N- 1
MRAM。
[19] 請求の範囲 18に記載の MRAMであって、
J >J
1 N- 1の場合、
前記第 1非磁性層は、 1. 8ηπ!〜 2. 5nmの厚さを有するルテニウム層で形成され、 前記第 N—1非磁性層は、 3. Inn!〜 3. 9nmの厚さを有するルテニウム層で形成 され、
J く J
1 N- 1の場合、
前記第 1非磁性層は、 3. Inn!〜 3. 9nmの厚さを有するルテニウム層で形成され、 前記第 N—1非磁性層は、 1. 8nm〜2. 5nmの厚さを有するルテニウム層で形成 される
MRAM。
[20] 請求の範囲 17乃至 19の!、ずれかに記載の MRAMであって、
J >J
1 N- 1の場合、
前記第 2〜第 N— 2非磁性層のうちの少なくとも一の非磁性層は、前記第 N— 1非 磁性層よりも低次の反強磁性ピークに対応する範囲の膜厚を有し、
J く J
1 N- 1の場合、
前記第 2〜第 N— 2非磁性層のうちの少なくとも一の非磁性層は、前記第 1非磁性 層よりも低次の反強磁性ピークに対応する範囲の膜厚を有する
MRAM。
[21] 請求の範囲 6に記載の MRAMであって、
前記 Nは偶数であり、
前記第 k非磁性層に関する RKKY相互作用の反強磁性ピークの次数が aで表さ
k れ、
前記第 1非磁性層は、第 a 次の反強磁性ピークに対応する範囲の膜厚を有し、 前記第 N— 1非磁性層は、第 a 次の反強磁性ピークに対応する範囲の膜厚を
N- 1
有し、 J >J の場合、 a < a 、且つ、 a < a の関係が満たされ、
1 N-l 1 N-l N/2 N-l
J <J の場合、 a >a 、且つ、 < a の関係が満たされる
1 N-l 1 N-l N/2 1
MRAM。
[22] 請求の範囲 21に記載の MRAMであって、
J >J の
1 N-l 場合、 a +l=a の
N/2 N-l 関係が満たされ、
J <J の場合、 a +l=a の関係が満たされる
1 N-l N/2 1
MRAM。
[23] 請求の範囲 22に記載の MRAMであって、
前記第 (NZ2)非磁性層は、 1.8ηπ!〜 2.5nmの厚さを有するルテニウム層で形 成され、
前記第 1非磁性層あるいは前記第 N— 1非磁性層は、 3. Inn!〜 3.9nmの厚さを 有するルテニウム層で形成されて 、る
MRAM。
[24] 請求の範囲 22に記載の MRAMであって、
前記第 (NZ2)非磁性層は、 0.7ηπ!〜 1.2nmの厚さを有するルテニウム層で形 成され、
前記第 1非磁性層あるいは前記第 N— 1非磁性層は、 1.8nm〜2.5nmの厚さを 有するルテニウム層で形成されて 、る
MRAM。
[25] 請求の範囲 1乃至 11のいずれかに記載の MRAMであって、
前記第 1非磁性層と前記第 N— 1非磁性層は異なる構造を有する
MRAM。
[26] 請求の範囲 25に記載の MRAMであって、
前記第 1非磁性層の膜厚と前記第 N— 1非磁性層の膜厚とが異なる
MRAM。
[27] 請求の範囲 25に記載の MRAMであって、
前記第 1非磁性層の結晶配向性と前記第 N— 1非磁性層の結晶配向性とが異なる MRAM。
[28] 請求の範囲 27に記載の MRAMであって、
前記第 1非磁性層の結晶配向性よりも、前記第 N— 1非磁性層の結晶配向性の方 が高ぐ且つ、前記第 1非磁性層よりも、前記第 N— 1非磁性層の膜厚の方が厚い MRAM。
[29] 請求の範囲 27に記載の MRAMであって、
前記第 1強磁性層の結晶配向性と前記第 N— 1強磁性層の結晶配向性とが異なる MRAM。
[30] 請求の範囲 25に記載の MRAMであって、
前記第 1強磁性層、前記第 2強磁性層、前記第 N— 1強磁性層、及び、前記第 N 強磁性層のうち少なくとも一層が、積層膜から構成されている
MRAM。
[31] 請求の範囲 30に記載の MRAMであって、
前記積層膜は、 NiFe膜と CoFe膜を含む
MRAM。
[32] 請求の範囲 1乃至 11のいずれかに記載の MRAMであって、
前記第 1非磁性層と前記第 N— 1非磁性層は実質的に同一の構造を有し、且つ、 前記第 1非磁性層の上下界面に直接接している全ての部分の元素構成比率は、前 記第 N— 1非磁性層の上下界面に直接接している全ての部分の元素構成比率と異 なる
MRAM。
[33] 請求の範囲 32に記載の MRAMであって、
前記第 1強磁性層、前記第 2強磁性層、前記第 N— 1強磁性層、及び、前記第 N 強磁性層のうち少なくとも一層が、積層膜から構成されている
MRAM。
[34] 請求の範囲 33に記載の MRAMであって、
前記積層膜は、 NiFe膜と CoFe膜を含む
MRAM。
PCT/JP2006/313847 2005-08-02 2006-07-12 Mram WO2007015355A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007529199A JP5050853B2 (ja) 2005-08-02 2006-07-12 Mram

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-223625 2005-08-02
JP2005223625 2005-08-02

Publications (1)

Publication Number Publication Date
WO2007015355A1 true WO2007015355A1 (ja) 2007-02-08

Family

ID=37708634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313847 WO2007015355A1 (ja) 2005-08-02 2006-07-12 Mram

Country Status (2)

Country Link
JP (1) JP5050853B2 (ja)
WO (1) WO2007015355A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060079A (ja) * 2007-08-30 2009-03-19 Tdk Corp 磁界検出素子
JP2010123967A (ja) * 2008-11-19 2010-06-03 Headway Technologies Inc フリー層およびその形成方法、磁気抵抗効果素子
JP2013048210A (ja) * 2011-07-22 2013-03-07 Toshiba Corp 磁気抵抗素子
WO2013190924A1 (ja) * 2012-06-21 2013-12-27 日本電気株式会社 半導体装置及びその製造方法
US9780298B2 (en) 2010-09-16 2017-10-03 Kabushiki Kaisha Toshiba Magnetoresistive element
JP2018098305A (ja) * 2016-12-09 2018-06-21 国立研究開発法人物質・材料研究機構 高感度面直通電巨大磁気抵抗素子用積層膜、高感度面直通電巨大磁気抵抗素子、及びその用途
WO2024190466A1 (ja) * 2023-03-13 2024-09-19 ソニーセミコンダクタソリューションズ株式会社 記憶素子、記憶装置及び電子機器
JP7555484B2 (ja) 2020-09-18 2024-09-24 アレグロ・マイクロシステムズ・リミテッド・ライアビリティ・カンパニー ヒステリシス応答を低減した2次元磁気センサ用磁気抵抗素子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002151758A (ja) * 2000-11-09 2002-05-24 Hitachi Ltd 強磁性トンネル磁気抵抗効果素子、磁気メモリ及び磁気抵抗効果型ヘッド
JP2002204010A (ja) * 2000-08-21 2002-07-19 Matsushita Electric Ind Co Ltd 磁気抵抗素子
JP2003298023A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 磁気メモリ及び磁気メモリ装置
JP2005505889A (ja) * 2001-10-16 2005-02-24 モトローラ・インコーポレイテッド スケーラブルな磁気抵抗ランダム・アクセス記憶素子に書き込むための方法
JP2005086015A (ja) * 2003-09-09 2005-03-31 Sony Corp 磁気記憶素子及び磁気メモリ
JP2005142508A (ja) * 2003-11-10 2005-06-02 Sony Corp 磁気記憶素子及び磁気メモリ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204010A (ja) * 2000-08-21 2002-07-19 Matsushita Electric Ind Co Ltd 磁気抵抗素子
JP2002151758A (ja) * 2000-11-09 2002-05-24 Hitachi Ltd 強磁性トンネル磁気抵抗効果素子、磁気メモリ及び磁気抵抗効果型ヘッド
JP2005505889A (ja) * 2001-10-16 2005-02-24 モトローラ・インコーポレイテッド スケーラブルな磁気抵抗ランダム・アクセス記憶素子に書き込むための方法
JP2003298023A (ja) * 2002-03-29 2003-10-17 Toshiba Corp 磁気メモリ及び磁気メモリ装置
JP2005086015A (ja) * 2003-09-09 2005-03-31 Sony Corp 磁気記憶素子及び磁気メモリ
JP2005142508A (ja) * 2003-11-10 2005-06-02 Sony Corp 磁気記憶素子及び磁気メモリ

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009060079A (ja) * 2007-08-30 2009-03-19 Tdk Corp 磁界検出素子
JP2010123967A (ja) * 2008-11-19 2010-06-03 Headway Technologies Inc フリー層およびその形成方法、磁気抵抗効果素子
US9780298B2 (en) 2010-09-16 2017-10-03 Kabushiki Kaisha Toshiba Magnetoresistive element
JP2013048210A (ja) * 2011-07-22 2013-03-07 Toshiba Corp 磁気抵抗素子
US9178133B2 (en) 2011-07-22 2015-11-03 Kabushiki Kaisha Toshiba Magnetoresistive element using specific underlayer material
US9640752B2 (en) 2011-07-22 2017-05-02 Kabushiki Kaisha Toshiba Magnetoresistive element
WO2013190924A1 (ja) * 2012-06-21 2013-12-27 日本電気株式会社 半導体装置及びその製造方法
JPWO2013190924A1 (ja) * 2012-06-21 2016-05-26 日本電気株式会社 半導体装置及びその製造方法
US9406869B2 (en) 2012-06-21 2016-08-02 Nec Corporation Semiconductor device
JP2018098305A (ja) * 2016-12-09 2018-06-21 国立研究開発法人物質・材料研究機構 高感度面直通電巨大磁気抵抗素子用積層膜、高感度面直通電巨大磁気抵抗素子、及びその用途
JP7555484B2 (ja) 2020-09-18 2024-09-24 アレグロ・マイクロシステムズ・リミテッド・ライアビリティ・カンパニー ヒステリシス応答を低減した2次元磁気センサ用磁気抵抗素子
WO2024190466A1 (ja) * 2023-03-13 2024-09-19 ソニーセミコンダクタソリューションズ株式会社 記憶素子、記憶装置及び電子機器

Also Published As

Publication number Publication date
JPWO2007015355A1 (ja) 2009-02-19
JP5050853B2 (ja) 2012-10-17

Similar Documents

Publication Publication Date Title
US20210135096A1 (en) Magnetoresistive stacks with an unpinned, fixed synthetic anti-ferromagnetic structure and methods of manufacturing thereof
JP4877575B2 (ja) 磁気ランダムアクセスメモリ
EP2673807B1 (en) Magnetic element with improved out-of-plane anisotropy for spintronic applications
US8866207B2 (en) Magnetic stacks with perpendicular magnetic anisotropy for spin momentum transfer magnetoresistive random access memory
JP5077802B2 (ja) 積層強磁性構造体、及び、mtj素子
US8098514B2 (en) Magnetoresistive element and magnetic memory
US7605437B2 (en) Spin-transfer MRAM structure and methods
JP6038451B2 (ja) スピントランスファトルクメモリ用の挿入層を有する磁性層を提供するための方法及びシステム
EP1625589B1 (en) Magnetoelectronics information device having a compound magnetic free layer
JP3863536B2 (ja) 磁気ランダムアクセスメモリ及びその磁気ランダムアクセスメモリのデータ書き込み方法
US20130005052A1 (en) Magnetic tunnel junction with iron dusting layer between free layer and tunnel barrier
US20130059168A1 (en) Magnetoresistance Device
SG175482A1 (en) Multi-bit cell magnetic memory with perpendicular magnetization and spin torque switching
JP2009094520A (ja) スピントランスファー型mtj−mramセルおよびその形成方法
JP5050853B2 (ja) Mram
JP6567272B2 (ja) 磁性多層スタック
JP5051538B2 (ja) Mram
JP2008306002A (ja) 磁気抵抗素子及びそれを用いた磁気ランダムアクセスメモリ
KR102486320B1 (ko) 기판 상에 배치되고 자기 소자에 사용할 수 있는 자기 접합 및 이를 포함하는 자기 메모리 및 이를 제공하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007529199

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781017

Country of ref document: EP

Kind code of ref document: A1