WO2007013428A1 - 銅合金押出材およびその製造方法 - Google Patents

銅合金押出材およびその製造方法 Download PDF

Info

Publication number
WO2007013428A1
WO2007013428A1 PCT/JP2006/314628 JP2006314628W WO2007013428A1 WO 2007013428 A1 WO2007013428 A1 WO 2007013428A1 JP 2006314628 W JP2006314628 W JP 2006314628W WO 2007013428 A1 WO2007013428 A1 WO 2007013428A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper alloy
weight
extruded material
powder
copper
Prior art date
Application number
PCT/JP2006/314628
Other languages
English (en)
French (fr)
Inventor
Yoshiharu Kosaka
Masanori Okuyama
Akimichi Kojima
Katsuyoshi Kondoh
Original Assignee
San-Etsu Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by San-Etsu Metals Co., Ltd. filed Critical San-Etsu Metals Co., Ltd.
Priority to EP06781540A priority Critical patent/EP1918389A4/en
Priority to JP2007528465A priority patent/JP4190570B2/ja
Priority to US11/989,492 priority patent/US20090092517A1/en
Priority to CN2006800277380A priority patent/CN101233250B/zh
Publication of WO2007013428A1 publication Critical patent/WO2007013428A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/20Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by extruding
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/041Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by mechanical alloying, e.g. blending, milling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/04Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling
    • B22F2009/045Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling
    • B22F2009/046Making metallic powder or suspensions thereof using physical processes starting from solid material, e.g. by crushing, grinding or milling by other means than ball or jet milling by cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/21Copper

Definitions

  • the present invention relates to a high strength copper alloy extruded material having free machinability, and more preferably relates to a copper alloy extruded material which does not contain lead or cadmium which is harmful to the environment or human body.
  • Copper alloys are widely used in automotive parts, electronic parts, piping members (water faucet 'valves), etc., but in view of future expansion of the applicable products and expansion of the market, the machinability ( It is important to improve and improve both machinability and strength. It is important to improve the machinability of copper alloys, especially in light of productivity and low cost.
  • a copper alloy containing such lead for example, a bronze-based alloy such as JIS H5111 BC6 or a brass-based alloy such as JIS H3250-C3604 or C3771 can be used.
  • lead-free machinable copper alloy having no lead or cadmium at all for example, JP-A-2000
  • a machinability improving element to replace lead or cadmium which may adversely affect the environment or human body is selected, and when the element is added, the element is uniformly dispersed in the alloy and stable high efficiency It is desirable to develop a copper alloy that can achieve machinability and excellent mechanical properties (especially high strength). In particular, in order to achieve both the machinability and high strength of the copper alloy, it is important to uniformly disperse the element in the alloy when adding the machinability improving element to the copper alloy. .
  • An object of the present invention is to provide a copper alloy extruded material having high machinability.
  • Another object of the present invention is to provide a copper alloy extruded material in which a suitable amount of a machinability improving element is uniformly dispersed.
  • Still another object of the present invention is to provide a copper alloy extruded material in which stable high free chipping properties and excellent mechanical properties are compatible.
  • Still another object of the present invention is to provide a copper alloy member obtained by drawing or hot forging the above-mentioned extruded copper alloy material.
  • Still another object of the present invention is to provide a method for producing a copper alloy extruded material having high machinability.
  • the extruded copper alloy material according to the present invention is obtained by extruding a billet of a solidified copper alloy powder, and is characterized in that old powder grain boundaries are left inside.
  • the copper alloy extruded material when the copper alloy extruded material is 100 wt% of the entire copper alloy extruded material, in the matrix, graphite, boron nitride, molybdenum disulfide, copper sulfide and calcium fluoride force are used. It contains 0.1% to 3% by weight of at least one selected powder particle. More preferably, the extruded material of the copper alloy is selected from the group consisting of graphite, boron nitride, molybdenum disulfide, copper sulfide and fluoride, in the matrix, assuming that the entire extruded copper alloy is 100% by weight. It contains 0.3% to 1% by weight of at least one powder particle.
  • the copper alloy constituting the matrix is 77 to 88% of copper by weight
  • aluminum is 8.5% to 12%, nickel 0.5% to 5.5%, iron 2% to 5%, manganese 0.5% to 2%, and the balance having an alloy composition of zinc .
  • the copper alloy constituting the matrix is 69-80% of copper by weight and silicon Containing 1. 8 to 3.5%, and further selected from 0.3 to 3.5% tin, 1 to 3.5% aluminum, 0.20 to 0.25% phosphorus group power It has an alloy composition that contains one or more elements, and the balance also has zinc power.
  • the copper alloy constituting the matrix when the entire copper alloy constituting the matrix is 100% by weight, the copper alloy constituting the matrix is zinc in an amount of 26 to 32% by weight, An alloy composition containing 0.5-5. 5% silicon, 3-45% aluminum, 0.5-5. 5% iron, 2-45% nickel and the balance being copper Have.
  • the copper alloy constituting the matrix when the total amount of copper alloy constituting the matrix is 100% by weight, the copper alloy constituting the matrix is 55 to 65% of copper on a weight basis, It has an alloy composition that contains 0.2 to 7.5% of aluminum, 0.1 to 4% of iron, 0.5 to 5% of manganese, and the balance of zinc.
  • the copper alloy constituting the matrix when the total amount of copper alloy constituting the matrix is 100% by weight, the copper alloy constituting the matrix is 55 to 64% of copper on a weight basis, It has an alloy composition containing 0.1% to 0.7% iron, 0.2% to 2.5% tin, and the balance zinc.
  • the copper alloy constituting the matrix further comprises, on a weight basis, 0.1 to 1.5% of titanium, 0.1 to 1.5% of chromium, and 0.1 to 1.5% of cobalt.
  • Group Force May contain one or more selected elements.
  • the copper alloy constituting the matrix further contains 0.2 to 4% of bismuth, 0.20% by weight.
  • It may also contain one or more elements selected from the group consisting of: .4% tellurium, 0.20 to 0. 4% selenium, 0.20 to 0. 15% antimony. .
  • the particle diameter of the above-mentioned powder particle is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • the powder particles are distributed along the old powder grain boundaries.
  • the extruded copper alloy according to still another embodiment contains 0.3 to 4% of lead on a weight basis, assuming that the entire extruded copper alloy is 100% by weight.
  • the billet for a copper alloy extruded material according to the present invention is a billet for obtaining the copper alloy extruded material described in any of the above, and is formed by compacting a copper alloy powder. ing.
  • a copper alloy member according to the present invention is obtained by drawing or hot forging a copper alloy extruded material as described in any of the above.
  • the method for producing a copper alloy extruded material according to the present invention comprises the steps of: compacting the copper alloy powder to produce a billet of the solidified copper alloy powder; and extruding the billet to press the billet. And obtaining a material.
  • the extrusion ratio of the extrusion force is, for example, 20 or more and 500 or less.
  • the copper alloy powder is And a step of adding at least one powder particle selected from lead, boron nitride, molybdenum disulfide, copper sulfide and calcium fluoride, and mixing them.
  • the addition amount of powder particles is 0.1 to 3 parts by weight with respect to 100 parts by weight of the copper alloy powder.
  • the particle size of the powder particles to be added is, for example, 5 ⁇ m or more and 300 ⁇ m or less.
  • the billet is heated to a range of 400 ° C to 800 ° C to perform the above-mentioned extrusion.
  • FIG. 1 is a photograph showing the shapes of various chips.
  • FIG. 2 is a drawing depicting a part of the photograph of the chip of FIG.
  • FIG. 3 A photograph of the structure of a solidified billet of copper alloy powder and a billet made of copper alloy.
  • FIG. 4 This is a structure photograph obtained by adding a line indicating the old powder grain boundary to the structure photograph of Fig. 3.
  • FIG. 5 is a view schematically showing a drilling machine.
  • the present inventors propose a high strength copper alloy extruded material excellent in machinability and a method for producing the same. Specifically, graphite, boron nitride, sulfur dioxide molybdenum, copper sulfide and calcium fluoride are selected as machinability improving elements to replace lead, and at least one kind of powder particles having a medium strength of a predetermined alloy composition is selected.
  • the above object is to be achieved by adding and mixing an appropriate amount of copper alloy powder having the above and forming and solidifying the mixed powder.
  • the powder particles of both are melted together.
  • the machinability improving element particles are uniformly dispersed in the copper alloy base by extruding and solidifying and extruding, as a result, a copper alloy extruded material having excellent machinability and high strength and toughness is provided. be able to.
  • the copper alloy powder constituting the base of the copper alloy extruded material according to the present invention has a machinability modified to be described later. After mixing with the good element particles, pressure is maintained while being filled in a mold or mold to produce a billet of a solidified copper alloy powder for extrusion. The billet is subsequently heated and then immediately solidified by extrusion. As a result, in the inside of the obtained copper alloy extruded material, a structure with the old powder grain boundaries corresponding to the copper alloy powder which is the input material remaining appears. The present inventors have found that such a structural structure can be realized and controlled by hot plastic working of a solidified copper alloy powder billet at an appropriate extrusion ratio.
  • FIG. 1 is a photograph showing the shape of chips (cutting chips) obtained when cutting various types of extruded copper alloy.
  • FIG. 2 is a drawing depicting a part of the photograph of the chip of FIG. 1, and (a), (b), (c) and (d) of FIG. 2 respectively represent (a) of FIG. , (b), (c), (d).
  • extruding and solidifying the billet of the solidified copper alloy powder at an appropriate extrusion ratio is a new method of improving machinability for extruded copper alloy, which has not been seen so far. Since such old powder grain boundaries can not exist inside the extruded material obtained by using the melt-blown billet of the prior art, even if melt-blown billets of the same composition are used, as described above There is no noticeable improvement in machinability.
  • the frictional resistance (cutting resistance) between the tool and the copper alloy material at the time of cutting can be determined.
  • the size of chips can be further reduced as shown in Fig. 1 (a) and Fig. 2 (a). Therefore, if the tool life is increased and the cutting time is shortened, the effect of further improving the machinability can be realized.
  • the particle diameter of the copper alloy powder is not particularly restricted! /, But in consideration of the moldability to molds and molds, the particle diameter is about 10 m to 10 mm. What desirable.
  • the particle size of the copper alloy powder is less than 10 / z m, the powder particles enter into the gaps of the mold to cause seizing between the molds, or the problem that the filling property is lowered, and the relative surface area is Due to the increase of the friction resistance between the copper alloy powders to increase the powder formability is lowered, and problems such as cracking and breakage occur in the powder solidified billet.
  • the particle size of the copper alloy powder exceeds 10 mm, the filling rate into the mold or the mold is reduced and the compactability is reduced.
  • a method of producing a copper alloy powder a method of producing a copper alloy powder by a spraying method (atomization method) or a copper alloy ingot having a predetermined alloy composition by a melting method is fabricated and cut.
  • a method that produces relatively coarse copper alloy powder and chips by grinding machining is effective.
  • general cutting chips can also be formed.
  • At least one powder particle selected from graphite, boron nitride, molybdenum disulfide, copper sulfide, and a group force which is also a calcium fluoride force is selected as the machinability improving element particle replacing lead.
  • the mixture is mixed with the above-mentioned copper alloy powder, and then compacted to prepare a billet of the solidified powder.
  • the machinability improving element particles are present between the copper alloy powders, the machinability improving element particles added in the base material of the extruded material using such a powder solidified billet are copper. It exists along the former powder grain boundary inside the alloy extrusion material.
  • the above-mentioned machinability improving element particles do not form a solid solution in the copper alloy base but improve and improve the machinability of the copper alloy by forming particles and dispersing them. Have an effect.
  • graphite powder particles are inexpensive and advantageous in terms of economy.
  • the graphite powder may be natural graphite or artificial graphite, and may be in the form of particles, flakes or lumps in terms of shape.
  • the content of the machinability improving element particles in that is 0.1% to 3% on a weight basis. It is desirable that 0.1 Adding 1% or more of weight can reduce the above-mentioned cutting resistance and extend the tool life, and can shorten the cutting process. At the same time, cutting chips are further reduced, so cutting at the time of cutting. Processing of powder discharge is facilitated. However, even if it is added in excess of 3% by weight, the above-mentioned effect corresponding to the addition amount can not be obtained. Rather, problems arise such as a decrease in the strength and toughness of the copper alloy extruded material. In particular, the addition of machinability improving element particles By setting the addition amount to 0.3% to 1% on a weight basis, the effect of improving the machinability can be exhibited while maintaining high strength and high toughness.
  • the particle diameter of the above-mentioned machinability improving element particles By setting the particle diameter of the above-mentioned machinability improving element particles to 5 ⁇ m or more and 300 ⁇ m or less, it is possible to achieve both the above-mentioned excellent mechanical properties and free machinability in the extruded material of copper alloy. it can .
  • fine particles are aggregated by electrostatic attraction or the like to form coarse secondary particles, and the presence of such particles in the copper alloy leads to a decrease in strength or toughness. If it exceeds 300 m, the strength and toughness decrease. From the viewpoint of the mixing property with the copper alloy powder and the compactability, it is more preferable to set the particle size of the machinability improving element particle to 20 m or more and 150 m or less.
  • the copper alloy component constituting the base of the copper alloy extruded material of the present invention will be described.
  • the extruded copper alloy according to the first embodiment based on 100% by weight of the entire copper alloy constituting the matrix, 77 to 88% of copper, 8.5 to 12% of aluminum, and nickel are on a weight basis. It has an alloy composition containing 0.5 to 5.5% of iron, 2-5% of iron, 0.5 to 2% of manganese, and the balance being zinc power.
  • the addition of aluminum can improve the strength, hardness and high temperature oxidation resistance of the copper alloy. Within the copper content range of this alloy, if less than 8.5% of aluminum, these effects are sufficient, and even if it is contained over 12%, these further improvement effects are not observed, and the toughness of the copper alloy is When it falls, it causes problems.
  • addition of aluminum exceeding 4% by weight causes the Cu-A1 intermetallic compound to be coarsened, resulting in a reduction in toughness of the copper alloy extruded material.
  • the Cu-A1 intermetallic compound is fine even if it is added in excess of 4% by weight because aluminum is forced to form a solid solution in the substrate.
  • the particles are uniformly dispersed in the base material, and as a result, they contribute to the improvement of strength without any decrease in toughness.
  • crystal grains of the ⁇ phase that forms the base are recrystallized due to the processing strain accumulated in the powder base, and in the process, the Cu-Al based intermetallic compound Is a fine granular composite, so the strength is improved without causing a decrease in toughness.
  • nickel can improve the strength and hardness of the copper alloy.
  • iron also forms an Fe—Al based intermetallic compound by being present together with aluminum, thereby improving the strength, hardness and heat resistance of the copper alloy.
  • this alloy component range if the amount of added carbon is less than 2% by weight, sufficient improvement effect disappears, and if it is added more than 5% by weight, the toughness of the copper alloy extruded material may be lowered, or the surface of the extruded material. With the occurrence of 'cracks' defects
  • Manganese dissolves in the matrix to strengthen it and stabilize the alloy composition against the heat history. If the content of manganese is less than 0.5%, the above effect can not be obtained. If the content is more than 2%, the corresponding improvement effect can not be obtained. Therefore, the content of manganese is preferred. 0.5 to 2%.
  • Silicon has the effect of forming a ⁇ phase to improve the toughness of the copper alloy extruded material, as well as improving the machinability. If the amount added is less than 1.8% by weight, the above improvement effect is not sufficient, while if it is added in the range of 3.5% by weight in the present alloy component range, the toughness of the copper alloy extruded material is lowered. Invite.
  • the improvement effect of the machinability by the addition of silicon the effect is smaller than the effect by the formation of the old powder grain boundary described later and the addition effect of the machinability improving element particles such as graphite. Silicon carbide also improves strength, wear resistance, stress corrosion cracking resistance, and high temperature oxidation resistance.
  • a ⁇ phase is formed to have the effect of improving the machinability of a copper alloy extruded material. If the addition amount is less than 0.3% by weight, the improvement effect described above will not be sufficient. On the other hand, if it is added in the present alloy component range over 3.5% by weight, the toughness of the copper alloy extruded material will be lowered.
  • the effect of improving the machinability by the addition of tin is smaller than the effect of forming the old powder grain boundaries described later and the effect of adding machinability improving element particles such as graphite. It does not necessarily add in all of the copper alloy extrusion materials specified by the invention. It is not an essential element.
  • Aluminum like tin, also has the function of forming a ⁇ phase, and it is necessary to add at least 1% by weight to improve machinability. However, even if it exceeds 3.5%, no improvement effect is seen and ductility decreases.
  • Phosphorus has the effect of refining the crystal grains of the ex phase constituting the base, thereby improving the strength of the extruded copper alloy and improving the hot workability such as forging. Generation of defects and cracks in forged parts is suppressed. If the addition amount is less than 0.02% by weight, the above effect is sufficient, and even if it is added over 0.25% by weight, the effect corresponding to it is not obtained, and the extrusion property declines by force. And problems such as reduced toughness of extruded material
  • zinc is contained in an amount of 26 to 32% by weight, silicon in an amount of 0.5 to 1.5% based on 100% by weight of the entire copper alloy constituting the matrix.
  • This alloy is an alloy having improved wear resistance, and aluminum and silicon form a ⁇ phase to increase the hardness and at the same time to make an intermetallic compound with nickel and iron to increase the hardness.
  • the improvement effect is insufficient below the lower limit value of each of the additive elements, and in the alloy component range, the ductility is lowered above the upper limit value of the additive elements. Therefore, the appropriate range of the amount of addition of each element is as described above.
  • Aluminum contributes to the improvement of the wear resistance, and the reinforcing function of the matrix is exhibited by the addition of 0.2% or more. However, in the range of this alloy component, ductility decreases when it is added over 7.5%.
  • iron coexists with aluminum to form an Fe—Al based intermetallic compound to improve the strength, hardness and heat resistance of the copper alloy.
  • this alloy component range if the addition amount of iron is less than 0.1% by weight, the improvement effect is not sufficiently obtained. It causes the decrease in toughness of the material.
  • the copper alloy extruded material is a copper alloy having improved plastic formability such as forging and drawing.
  • the extruded material of the copper alloy according to the fifth embodiment contains, if necessary, 0.20% to 0.5% of phosphorus. This has the effect of improving the dezincing resistance. Below the lower limit, segregation at grain boundaries occurs if the improvement effect exceeds the upper limit sufficiently, resulting in reduced ductility.
  • the copper alloy constituting the matrix is, if necessary, 0.1 to 1.5% of titanium on a weight basis.
  • a group force consisting of 0.1 to 1.5% chromium and 0.1 to 1.5% cones also contains one or more selected elements. Each of these elements has the effect of improving the strength and hardness of the copper alloy, and the improvement effect is insufficient when the content is below the lower limit of each other, while the extrusion property decreases when the content exceeds the upper limit. This leads to a decrease in the toughness of the extruded material.
  • a copper alloy powder having the above-described alloy composition is prepared, filled into a mold or a mold, and then pressed and molded to produce a copper alloy powder solidified billet.
  • at least one machinability improvement selected from the group consisting of the above-mentioned graphite, boron nitride, molybdenum disulphide, molybdenum disulphide and calcium fluoride in copper alloy powder in advance.
  • the relative density of the billet it is necessary that the bonding strength of the copper alloy powder is such that the billet is not damaged in the transportation process.
  • the relative density is 80% or more (the porosity is 20% or less). Desirable to be pressurized.
  • the billet After heating the billet produced as described above, the billet is immediately subjected to extrusion processing to obtain a dense copper alloy extruded material. At this time, it is necessary to set the extrusion ratio to 20 or more and 500 or less in order to form the old powder grain boundary while securing the strength * toughness of the extruded material. If the extrusion ratio is less than 20, the strength and toughness will be reduced because the diffusion ′ bonding between the copper alloy powders forming the base is not sufficient. On the other hand, if the extrusion ratio is set to 500 or more, the remaining of the old powder grain boundaries will be reduced and the strength and toughness will be further improved, but the chips (cuttings) discharged during cutting are shown in FIG. 1 (d) and FIG. The continuous curling as shown in (d) results in a decrease in machinability.
  • the heating temperature of the billet is desirably controlled in the range of 400 ° C. to 800 ° C. If the temperature is less than 400 ° C., the diffusion and bonding of the copper alloy powders are not sufficient! On the other hand, when heating is carried out at more than 800 ° C., coarsening of the crystal grains constituting the copper alloy base occurs, and the tensile strength of the extruded copper alloy is lowered. In addition, cracks occur along the circumferential direction on the surface of the extruded material, which causes some problems.
  • an object of the present invention is to provide a copper alloy extruded material having excellent machinability and a method for producing the same without using lead or cadmium which is considered to have an influence on the human body or the environment.
  • European * RoHS regulations exclude the lead content in the copper alloy by up to 4% by weight! /
  • the copper alloy extruded material according to the present invention is made compatible with this. OK. That is, the extruded copper alloy according to one embodiment of the present invention may contain 0.3 to 4% of lead on a weight basis, assuming that the total extruded copper alloy is 100% by weight. As mentioned above, the inclusion of lead can achieve excellent free-cutting performance.
  • the addition amount of lead 0.3% by weight or more.
  • the addition of more than 4% by weight is not preferable from the viewpoint of the previous RoHS regulation and the decrease in strength of the extruded material.
  • lead is not necessarily an additive element required.
  • Example 1 corresponds to the copper alloy extruded material according to the first embodiment described above.
  • a truss-made copper alloy ingot having the composition shown in Table 1 is prepared, and powder (length: 0.5 to 4 mm) collected by cutting is used as a starting material, and this is used in a mold attached to a press.
  • powder length: 0.5 to 4 mm
  • a cylindrical powder-solidified billet with a diameter of 59.8 mm ⁇ and a total length of 98 mm was produced.
  • This billet is heated and held at 650 to 720 ° C. for 30 minutes in a nitrogen gas atmosphere, and immediately filled into an extrusion container with an inner diameter of 60 ⁇ and extrusion of a diameter of 9.8 ⁇ under conditions of an extrusion ratio of 37.5 The material was made.
  • the cutting conditions were as follows.
  • Example 2 corresponds to the copper alloy extruded material according to the second embodiment described above.
  • a gold-plated copper alloy ingot having a composition shown in Table 2 was prepared, and powder (length: 0.5 to 4.5 mm) collected by cutting was used as a starting material, and this was mounted on a press.
  • powder length: 0.5 to 4.5 mm
  • Hold the billet in a nitrogen gas atmosphere for 30 minutes at 660 to 725 ° C The mixture was immediately filled into an extrusion container with an inner diameter of 60 ⁇ , and an extruded material of a diameter of 9. 8 ⁇ was produced under the conditions of an extrusion ratio of 37.5.
  • a tensile test piece with a diameter of 3.5 mm and a parallel part of 20 mm was collected from the extruded material produced as described above, and a tensile test was conducted at room temperature under the conditions of strain rate of 5 ⁇ 10 — 4 Z seconds. In addition, a cutting test was conducted to compare the shapes of generated chips.
  • the cutting conditions were as follows.
  • Sample Nos. 10 to 21 a brass alloy extruded material having high strength and high toughness (high elongation value) is obtained by having an appropriate alloy component.
  • sample No. 22 has a low Si content of 0.8% by weight and strength decreases compared to other copper alloys
  • sample No. 23 has an A1 content of 0.5% by weight The strength was reduced compared to other copper alloys due to the small size.
  • Example 3 corresponds to the copper alloy extruded material according to the third embodiment described above.
  • a forged copper alloy ingot having the composition shown in Table 3 is prepared, and powder (length 1. to 4. 8 mm) collected by cutting is used as a starting material, and this is mounted on a press.
  • powder length 1. to 4. 8 mm collected by cutting
  • a cylindrical powder-solidified billet with a diameter of 59.8 mm ⁇ and a total length of 98 mm was produced.
  • Hold the billet in a nitrogen gas atmosphere at 640 to 705 ° C for 30 minutes The mixture was immediately filled into an extrusion container with an inner diameter of 60 ⁇ , and an extruded material of a diameter of 9. 8 ⁇ was produced under the conditions of an extrusion ratio of 37.5.
  • the cutting conditions were as follows.
  • Samples No. 25 to 29 it is possible to obtain a brass alloy extruded material having high strength and high toughness (high elongation value) by having appropriate alloy components.
  • the strength is increased by containing 0.8% by weight of Co.
  • sample No. 30 contained A3 at 3.3% by weight, and the Si content was high at 1.6% by weight, so that although the strength increased, a marked decrease in elongation occurred, and the sample In the case of No. 31, since the Si content was as low as 0.3% by weight, the strength was reduced compared to other copper alloys.
  • Example 4 corresponds to the copper alloy extruded material according to the fourth embodiment described above.
  • a structured copper alloy ingot having the composition shown in Table 4 is prepared, and a powder (length 0.5 to 4.2 mm) collected by cutting is used as a starting material, and this is mounted on a press.
  • a cylindrical powder-solidified billet with a diameter of 59.8 mm ⁇ and a total length of 98 mm was produced.
  • This billet is heated and held at 660 to 725 ° C. for 30 minutes in a nitrogen gas atmosphere and immediately filled into an extrusion container with an inner diameter of 60 ⁇ and extrusion of a diameter of 9.8 ⁇ under conditions of an extrusion ratio of 37.5.
  • the material was made.
  • the cutting conditions were as follows.
  • the V and the displacement are also excellent in dischargeability ( It is a chip having b) and showed good cutting properties.
  • Example 5 corresponds to the copper alloy extruded material according to the fifth embodiment described above.
  • a structured copper alloy ingot having the composition shown in Table 5 is prepared, and powder (length: 0.7 to 3.9 mm) collected by cutting is used as a starting material, and this is mounted on a press.
  • powder length: 0.7 to 3.9 mm
  • This billet is heated and held at 640-700 ° C for 30 minutes in a nitrogen gas atmosphere
  • the mixture was immediately filled into a container for extrusion having an inner diameter of 60 ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ , and an extruded material having a diameter of 9. 8 ⁇ ⁇ ⁇ was produced under the conditions of an extrusion ratio of 37.5.
  • a tensile test piece with a diameter of 3.5 mm and a parallel portion of 20 mm was collected from the extruded material produced as described above, and a tensile test was performed at room temperature under conditions of strain rate of 5 ⁇ 10 4 Z seconds. . In addition, a cutting test was conducted to compare the shapes of generated chips.
  • the cutting conditions were as follows.
  • sample Nos. 42 to 50 a brass alloy extruded material having high strength and high toughness (high elongation value) is obtained by having appropriate alloy components.
  • sample No. 51 contained a small amount of only 0.2% by weight of Sn as an element other than Cu and Z n, so that the strength decreased compared to other copper alloys.
  • FIG. 3 shows metal photographs of Sample No. 42 and Sample No. 52.
  • the copper alloy powder solidified billet according to the present invention of (a) (Sample No. 42)
  • old powder grain boundaries are observed in the base material of the extruded material as shown by the arrows.
  • the twill copper alloy billet of (b) is used (Sample No. 52)
  • the old powder grain boundaries as seen in (a) are not observed.
  • FIG. 4 is a photograph of the structure of FIG. 3 with a line indicating old powder grain boundaries added.
  • a powder (0.5 to 4 mm in length) collected by cutting from a copper alloy ingot made by truss making is used as a starting material, and this is filled in a die mounted on a press and pressurized to solidify the diameter. 5 9.
  • a cylindrical powder solidified billet of 8 mm in diameter and 98 mm in total length was produced. This billet is heated and held at 680 ° C. for 30 minutes in a nitrogen gas atmosphere, and immediately filled into a container for extrusion with an inner diameter of 60 ⁇ and extruded material of a diameter of 9.8 ⁇ under conditions of an extrusion ratio of 37.5. Was made.
  • the extruded material produced as described above was pickled and then drawn at a normal temperature under a reduction ratio of 4.5%. Then, tensile test pieces with a diameter of 3.5 mm and a parallel part of 20 mm were collected from the obtained material, and a tensile test was conducted at room temperature under conditions of strain rate of 5 X 10 4 Z seconds. In addition, the tissue observation of each material with an optical microscope was performed together.
  • the cutting conditions were as follows.
  • Table 6 shows the results of tensile test and Vickers hardness measurement and the surface properties of the drawn material.
  • the mechanical properties of the material after extrusion-drawing processing are not significantly different between the two.
  • the copper obtained by the manufacturing process proposed in the present invention It was also confirmed that the copper alloy extruded material using the alloy powder had sufficient mechanical properties.
  • the copper alloy powder (length: 0.5 to 4 mm) used in Example 6 is used as a starting material, and natural graphite particles having an average particle size of 65 m are added thereto and mixed, and then similarly added to the mold. Filled in diameter 59. 8mm
  • a cylindrical powder solidified billet with a total length of 98 mm was produced.
  • This billet is heated and held at 680 ° C. for 30 minutes in a nitrogen gas atmosphere, and immediately after that, the billet is filled into an extrusion container with an inner diameter of 60 ⁇ ⁇ ⁇ and the diameter of 9. 8 ⁇ 8 ⁇ under an extrusion ratio of 37.5.
  • An extruded material was produced.
  • Table 7 shows the addition amount of graphite particles.
  • the machinability was evaluated by a drill cutting test method.
  • a hole of 5 mm in depth is cut in a copper alloy extruded material with a constant load (in this case, a weight of 58 kg is applied) applied to the drill.
  • the time required to do this is compared, and the shorter the time, the better the machinability.
  • reference numeral 1 indicates a sample (copper alloy extruded material), 2 indicates a drill, 3 indicates a weight, 4 indicates a string, 10 indicates a drilling machine, and 11 indicates a handle. ing.
  • Pb-containing twill copper alloy billet 31.1 d Comparative example [0127] As comparative materials, Cu: 82.5%, Al: 9.3%, Mn: 0.9%, Ni; l. 7%, Fe: 3.2%, Pb; l. 6 based on weight. %, Zn: A copper alloy extruded material obtained by extruding a lead-added copper-made copper alloy billet having the composition of the balance under the same conditions was used.
  • a Pb-containing structure is obtained by containing the graphite particles in an appropriate range.
  • the machinability is superior to that of an extruded material using a copper alloy ingot, and the machinability also improves with the increase of the content of graphite particles.
  • any tuck copper alloy ingot was used, it was continuous curling cutting (d), but the copper alloy powder according to the present invention In the extruded material using the body solidified billet and the copper alloy powder solidified billet containing graphite particles, it was a fine scrap with a good dischargeability, and a granular chip (a or b).
  • the extruded material has good tensile strength and machinability (shape a or b).
  • the tensile strength of the extruded material is further improved.
  • the extrusion ratio is less than 8, since the bondability between the copper alloy powders constituting the base of the extruded material is not sufficient, the tensile strength of the extruded material is lowered.
  • the extrusion ratio exceeds 500, the bonding between the copper alloy powder significantly progresses due to the strong plastic working during extrusion, and as a result, the old powder grain boundary which is the feature of the copper alloy extruded material according to the present invention Will not remain in the substrate, and chips (chips) will continuously curl (shape c or d). As a result, problems arise when the machinability of the extruded material is reduced.
  • Example 9 Using the copper alloy powder (length: 0.8 to 3 mm) used in Example 9 as a starting material, the powder is filled into a die mounted on a press and solidified by pressing, to obtain a diameter of 59. A cylindrical powder-solidified billet of 8 mm in diameter and 98 mm in total length was produced. This billet is heated and maintained at each temperature shown in Table 10 for 30 minutes in a nitrogen gas atmosphere, immediately filled into an extrusion container with an inner diameter of 60 mm ⁇ 5, and the diameter is 9.8 mm under the conditions of an extrusion ratio of 37.5. An extruded material of ⁇ was produced.
  • the extruded material was confirmed to have good mechanical properties by heating and extruding the copper alloy powder solidified billet in an appropriate temperature range defined by the present invention.
  • the heating temperature force is lower than 00 ° C.
  • the bonding between the powders during extrusion is sufficiently sufficient to generate pores in the inside of the material, resulting in the deterioration of the mechanical properties.
  • the temperature exceeds 850 ° C., the copper crystal grains constituting the base of the extruded copper alloy coarsen and grow. This causes a decrease in the strength and hardness of the extruded material.
  • Si As a component belonging to the copper alloy extruded material according to the third embodiment, Si; 0.8%, A1 on a weight basis
  • each additive particle is boron nitride; 32 ⁇ m, molybdenum disulfide; 42 ⁇ m, calcium fluoride; 26 / z m.
  • Each mixed powder was filled in a die fitted to a press and solidified under pressure to produce a cylindrical powder solidified billet with a diameter of 59.8 mm ⁇ and a total length of 98 mm. This billet is heated and held at 650 ° C. for 30 minutes in a nitrogen gas atmosphere, and immediately filled into an extrusion container with an inner diameter of 60 mm ⁇ and extruded with a diameter of 8.5 ⁇ ⁇ under an extrusion ratio of 49.8. The material was made.
  • a tensile test piece with a diameter of 3.5 mm and a parallel portion of 20 mm was collected from the extruded material produced as described above, and a tensile test was conducted at room temperature under conditions of strain rate of 5 ⁇ 10 4 Z seconds. . Further, in the same manner as in Example 6, a cutting test was conducted to compare the shapes of generated cutting chips.
  • the cutting conditions were as follows.
  • Table 11 shows the tensile test results and the shape of chips.
  • the machinability improvement specified by the present invention By dispersing an appropriate amount of the element particles in the base material of the extruded copper alloy, cutting waste can be reduced without deteriorating the mechanical properties, and machinability can be improved. Can. If it is added in excess of 3% by weight, problems may occur if the tensile strength and elongation of the extruded copper alloy are lowered, as in the case of graphite powder particles.
  • the present inventors confirmed that the same effect can be obtained even when two or more types of each of the machinability improving element particles are mixed with the copper alloy powder, including the graphite powder. doing.
  • Cu As components belonging to the extruded copper alloy according to the fourth embodiment, Cu: 61. 4%, Al: 3.4%, Mn: 3.2%, Fe: 2.1%, Pb on a weight basis.
  • Each copper alloy powder was filled in a die fitted to a press and solidified by pressing, to produce a cylindrical powder-solidified billet with a diameter of 59.8 mm ⁇ and a total length of 100 mm.
  • This billet is heated and held at 660 ° C. for 30 minutes in a nitrogen gas atmosphere, and immediately filled into an extrusion container with an inner diameter of 60 ⁇ and extruded material of a diameter of 9.8 ⁇ under conditions of an extrusion ratio of 37.5. Was produced.
  • forged billet of the same dimension is extracted by machining from a forged copper alloy ingot having the same composition as the above, and this is extruded under the same conditions to produce an extruded material of diameter 9. 8 ⁇ . did.
  • Example 6 The same cutting test as in Example 6 and the drill cutting test in Example 8 were carried out for each of the extruded materials produced as described above. In the former test, the shape of the generated cutting chips was evaluated, and in the latter test, the time required to cover a 5 mm deep hole in a copper alloy extruded material was evaluated. The results are shown in Table 12.
  • the cutting waste has excellent dischargeability as a discontinuous and fine chip. Indicated. Moreover, as a result of adding an appropriate amount of graphite powder to copper alloy powder, cutting chips are discharged in a discontinuous shape as finer chips, and it has been possible to shorten the processing time in the drill cutting test. .
  • This billet The mixture is heated and held at 700 ° C for 30 minutes in a nitrogen gas atmosphere, and immediately filled into an extrusion container with an inner diameter of 60 mm ⁇ , and the extruded material with a diameter of 9. 8 ⁇ ⁇ under conditions of an extrusion ratio of 37.5. Made.
  • a steel billet having the same dimensions is extracted by machining from a continuous steel copper alloy ingot having the same composition as described above, and this is extruded under the same conditions.
  • the extruded material produced as described above is pickled and then drawn at a room temperature reduction rate of 15.3% at room temperature, and then annealed at 510 ° C for 4.5 hours, It is drawn from the material obtained by drawing at 6% reduction rate, then annealing at 510 ° C. for 4.5 hours, and finally drawing out at 13.5% reduction rate.
  • a tensile test piece with a parallel part of 20 mm was collected, and a tensile test was performed at room temperature under the conditions of strain rate of 5 ⁇ 10 4 Z seconds.
  • the machinability was evaluated by the drill cutting test method. Here we used a 1.5 kg weight. The test results are shown in Table 13. The material by the melting process is worn away by the tool during 10 times of drill test and the processing time is gradually increased. The powder solidified process material with the addition of graphite by the same component has the machining time constant and the drill wear is observed. Absent. In addition, it was confirmed that the mechanical properties were not inferior to the melting process materials.
  • Powder (average particle diameter: 70 ⁇ m) collected by atomizing a molten metal having a composition of 4%, Fe: 0.1%, Sn: 0.2%, and the balance being zinc power
  • natural graphite particles having an average particle diameter were added to this and mixed, and the mixture was similarly filled in a mold to prepare a cylindrical powder solidified billet having a diameter of 59.8 mm and a total length of 98 mm.
  • This billet is heated and held at 700 ° C. for 30 minutes in a nitrogen gas atmosphere, and immediately filled into an extrusion container with an inner diameter of 60 ⁇ and extruded material of a diameter of 9.8 ⁇ 8 ⁇ under conditions of an extrusion ratio of 37.5. Made.
  • a steel billet having the same dimensions is extracted by machining from a continuous steel copper alloy ingot having the same composition as described above, and this is extruded under the same conditions to obtain a diameter of 9. 8 mm.
  • An extruded material of ⁇ was produced.
  • a copper alloy ingot having a composition in which Cu: 61. 1%, Fe: 0.1%, Sn: 0.2%, lead 3.00%, and the balance also has a dumbbell effect on a weight basis
  • the same size of billet billet was machined and extruded under the same conditions to produce an extruded material with a diameter of 9.8 mm ⁇ .
  • the extruded material prepared as described above is pickled and then drawn at room temperature under a reduction ratio of 26%, then annealed at 460 ° C. for 4.5 hours, and finally 13.
  • a tensile test piece with a diameter of 3.5 mm, and a parallel part of 20 mm is collected from the material obtained by drawing at a reduction rate of 5%, and tension is applied at room temperature under conditions of strain rate 5 X 10 _ 4 / s. The test was done.
  • Table 14 shows the relationship between the amount of carbon added to the graphite and the mechanical properties.
  • the machinability was evaluated by the drill cutting test method. Since this material is relatively soft as the material of Example 8 does, the weight of 1. Okg was used here. The test results are shown in Table 15. From these results, the extruded material strength by billet solidified by adding graphite to brass atomized powder is obtained, and the brass material obtained is considered to have the best machinability among metal materials. It has been confirmed that machinability and mechanical properties can be obtained without any deterioration compared to brass.
  • the machinability was evaluated by the drill cutting test method. Here, I used an Okg weight. The results of these tests are shown in Table 16. By adding copper sulfide to the addition of graphite, it was confirmed that the machinability can be further improved without losing the mechanical properties.
  • the remaining part is a zinc-alloy-made composition having a composition that also has zinc power, and this is subjected to high-speed cutting with mineral cutting oil and collected from powder (length 0.5 to 8 mm) As a raw material, it was stirred in an alkaline immersion degreaser bath heated to 60 ° C., washed with water and drained and dried to confirm that the oil was completely removed.
  • This raw material is applied to a crusher and the powder having an average particle diameter of 100 IX m is mounted on a hydrostatic pressure machine and pressurized to solidify to solidify a cylindrical powder having a diameter of 59.8 mm ⁇ and a total length of 120 mm.
  • a billet was made. This billet is heated and held at 640 to 700 ° C. for 30 minutes in a nitrogen gas atmosphere, and immediately filled into a container for extrusion with an inner diameter of 60 ⁇ ⁇ ⁇ , and the mixture is extruded under an extrusion ratio of 37.5. An extruded material was produced.
  • forged billet of the same size is machined out of a forged copper alloy ingot having the same composition as above, and extruded under the same conditions to obtain a diameter of 9. 8 ⁇ . An extruded material was produced.
  • the extruded material produced as described above is subjected to a drawing process under conditions of a surface area reduction rate of 26% at normal temperature, and then annealed at 460 ° C for 4.5 hours, and finally 13. 5% of reduction of area extraction Shin machining diameter of a material obtained by performing 3. 5 mm [Phi, the collected specimens of the parallel portion 20 mm, tensile at room temperature at a strain rate of 5 X 10- 4 sec conditions The test was done.
  • the machinability was evaluated by the drill cutting test method. Here, I used an Okg weight. The results of these tests are shown in Table 17. Completely remove the cutting oil adhering to the chip surface After removal, the brass alloy material obtained by using this as the input material via the compacting and extrusion process has excellent mechanical properties and machinability.
  • This raw material is crushed by using a powder having an average particle diameter of 100 ⁇ m as a starting material, and 0.3% of natural graphite particles having an average particle diameter of 50 m is added thereto and mixed with hydrostatic pressure.
  • a cylindrical powder-solidified billet with a diameter of 59.8 mm ⁇ and a total length of 120 mm was produced by attaching to a press and solidifying under pressure. This billet is heated and held at 640 to 700 ° C. for 30 minutes in a nitrogen gas atmosphere, and immediately filled into an extrusion container with an inner diameter of 60 ⁇ and extruded at a diameter of 9.8 ⁇ under conditions of an extrusion ratio of 37.5. The material was made.
  • the extruded material produced as described above is pickled and then drawn at room temperature under a reduction ratio of 26%, then annealed at 460 ° C. for 4.5 hours, and finally 13.
  • a tensile test specimen with a diameter of 3.5 mm, and a parallel part of 20 mm is collected from the material obtained by drawing at a reduction rate of 5%, and tension is applied at room temperature under conditions of strain rate 5 X 10 _ 4 Z seconds. The test was done.
  • the present invention can be advantageously used for a copper alloy extruded material that requires stable high machinability and excellent mechanical properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)

Abstract

銅合金押出材は、銅合金粉末固化体ビレットを押出し加工して得られるものであって、内部に旧粉末粒界を残存させている。  

Description

明 細 書
銅合金押出材およびその製造方法
技術分野
[0001] 本発明は、快削性を有する高強度銅合金押出材に関するものであり、より好ましく は、環境や人体に有害な鉛やカドミウムを含有しな 、銅合金押出材に関するもので ある。
背景技術
[0002] 銅合金は、自動車部品、電子部品、配管部材 (水栓金具'バルブ)などに幅広く使 用されているが、今後の適用製品の拡張や市場拡大を考えると、その被削性 (機械 加工性)と強度の双方を改善'向上させることが重要な課題である。特に、生産性'低 コストィ匕を考えると、銅合金の被削性改善は重要である。
[0003] 一般的に、銅合金の被削性を改善させるのに、鉛の添加が有効であることが知られ ている。そのような鉛を含む銅合金として、例えば、 JIS H5111 BC6等の青銅系 合金や、 JIS H3250— C3604, C3771等の黄銅系合金などがある。
[0004] しカゝしながら、人体や環境に悪影響のある鉛やカドミウムを含む銅合金を製造する 過程で、合金の溶解 ·铸造時に発生する金属蒸気中の鉛'力ドミゥム成分を作業者が 吸弓 Iすることや、水栓金具 ·バルブなどにそれらの銅合金を用 、た場合に飲料水との 接触により鉛成分が溶出して人体に吸飲するといつた危険性が潜んでいる。
[0005] このような使用過程にぉ 、て銅合金力 鉛やカドミウムが溶出することを抑制するた めに、 ί列え ίま、、特開 2000— 96268号公報ゃ特開 2000— 96269号公報【こお!ヽて は、表面の鉛を事前に除去する方法を提案している。し力しながら、使用過程で表層 部分の摩耗 ·損傷などによって鉛が表面に出現する可能性もあるため、このような方 法では、鉛溶出現象を完全に抑制することはできな 、。
[0006] 他方、鉛やカドミウムを一切含有しな 、無鉛快削性銅合金力 例えば、特開 2000
119775号公報に記載されている。この公報には、引張強さ 600〜800MPa程度 を有する銅合金が提案されているが、添加元素である珪素(Si)は γ相を出現させる ことで銅合金の被削性を改善する力 素地の銅や鉛に比べて硬質であるために JIS H3250-C3604, C3771等の鉛含有黄銅系合金に比べると、切削抵抗が大きくな り、また工具寿命が短くなるなどの問題がある。
[0007] 被削性 '切削性を向上させる方法として、例えば、「銅と銅合金、第 42卷、 1号、 p.
223- 228, 2003年」において、黒鉛粉末粒子を黄銅合金に添加することについて 研究報告がある。ここでは、 3重量%の黒鉛粉末粒子を黄銅合金の溶湯に添加し、 攪拌した後に金型に铸造し、それを押出して黄銅合金押出材を作製している。本論 文にお 、ても紹介されて 、るように、黒鉛の比重が銅合金の約 1/6以下と小さ 、た め、溶解時に十分に攪拌しても铸造時には黒鉛粒子が浮遊'偏析する。そのため、 铸造インゴット材において局所的に黒船粒子が存在する部分と、黒鉛粒子が全く存 在しない領域が混在する。その結果、このようなインゴットを用いて作製した押出材の 断面にお ヽても年輪状に黒鉛粒子が分散し、黄銅合金の被削性 (切削屑の形状)も 場所によって大きく異なるといった問題が報告されている。また黒鉛粒子の偏析 '凝 集によって表層部分に欠陥 (空孔)が多数存在し、それらが黄銅材の機械的特性を 低下させる。
[0008] 環境や人体に悪影響を及ぼすおそれのある鉛やカドミウムに替わる被削性向上元 素を選定し、その元素を添加した際にその元素が合金中に均一に分散して安定した 高快削性と優れた機械的特性 (特に高強度)とを実現することのできる銅合金の開発 が望まれる。特に、銅合金の快削性と高強度化とを両立させるには、被削性向上元 素を銅合金中に添加する際に、その元素を合金中に均一に分散させることが重要で ある。
発明の開示
[0009] 本発明の目的は、高快削性を有する銅合金押出材を提供することである。
[0010] 本発明の他の目的は、適量の被削性向上元素を均一に分散させた銅合金押出材 を提供することである。
[0011] 本発明のさらに他の目的は、安定した高快削性と優れた機械的特性とを両立させ た銅合金押出材を提供することである。
[0012] 本発明のさらに他の目的は、鉛やカドミウムを含有しない高快削性銅合金押出材を 提供することである。 [0013] 本発明のさらに他の目的は、上記の銅合金押出材を得るための銅合金押出材用ビ レットを提供することである。
[0014] 本発明のさらに他の目的は、上記の銅合金押出材を引き抜き加工あるいは熱間鍛 造加工して得られた銅合金部材を提供することである。
[0015] 本発明のさらに他の目的は、高快削性を有する銅合金押出材を製造するための方 法を提供することである。
[0016] 本発明に従った銅合金押出材は、銅合金粉末固化体ビレットを押出し加工して得 られるものであって、内部に旧粉末粒界を残存させて 、ることを特徴とする。
[0017] 一つの実施形態では、銅合金押出材は、銅合金押出材全体を 100重量%とした場 合、マトリクス中に、黒鉛、窒化ホウ素、二硫化モリブデン、硫化銅およびフッ化カル シゥム力 なる群力 選ばれた少なくとも 1種の粉末粒子を重量基準で 0. 1%〜3% 含有する。より好ましくは、銅合金押出材は、銅合金押出材全体を 100重量%とした 場合、マトリクス中に、黒鉛、窒化ホウ素、二硫化モリブデン、硫化銅およびフッ化力 ルシゥム力 なる群力 選ばれた少なくとも 1種の粉末粒子を重量基準で 0. 3%〜1 %含有する。
[0018] 一つの実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 100 重量%とした場合、マトリクスを構成する銅合金は、重量基準で銅を 77〜88%、アル ミニゥムを 8. 5〜12%、ニッケルを 0. 5〜5. 5%、鉄を 2〜5%、マンガンを 0. 5〜2 %含有し、残部が亜鉛からなる合金組成を有して ヽる。
[0019] 他の実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 100重 量%とした場合、マトリクスを構成する銅合金は、重量基準で銅を 69〜80%および シリコンを 1. 8〜3. 5%含有し、さらに 0. 3〜3. 5%の錫、 1〜3. 5%のアルミニウム 、 0. 02-0. 25%の燐力 なる群力 選択された 1種以上の元素を含有し、残部が 亜鉛力もなる合金組成を有して 、る。
[0020] さらに他の実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 10 0重量%とした場合、マトリクスを構成する銅合金は、重量基準で亜鉛を 26〜32%、 シリコンを 0. 5〜1. 5%、アルミニウムを 3〜4. 5%、鉄を 0. 5〜1. 5%、ニッケルを 2 〜4. 5%含有し、残部が銅からなる合金組成を有している。 [0021] さらに他の実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 10 0重量%とした場合、マトリクスを構成する銅合金は、重量基準で銅を 55〜65%、ァ ルミ-ゥムを 0. 2〜7. 5%、鉄を 0. 1〜4%、マンガンを 0. 5〜5%含有し、残部力亜 鉛力 なる合金組成を有して 、る。
[0022] さらに他の実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 10 0重量%とした場合、マトリクスを構成する銅合金は、重量基準で銅を 55〜64%、鉄 を 0. 1〜0. 7%、錫を 0. 2〜2. 5%含有し、残部が亜鉛からなる合金組成を有して いる。
[0023] マトリクスを構成する銅合金は、さらに、重量基準で 0. 1〜1. 5%のチタン、 0. 1〜 1. 5%のクロム、 0. 1〜1. 5%のコバルトからなる群力 選択された 1種以上の元素 を含有してもよい。
[0024] マトリクスを構成する銅合金は、さらに、重量基準で 0. 02〜4%のビスマス、 0. 02
〜0. 4%のテルル、 0. 02〜0. 4%のセレン、 0. 02〜0. 15%のアンチモンカもな る群から選択された 1種以上の元素を含有してもよ ヽ。
[0025] 上記の粉末粒子の粒子径は、例えば、 5 μ m以上 300 μ m以下である。好ましくは
、粉末粒子は、旧粉末粒界に沿って分布している。
[0026] さらに他の実施形態に係る銅合金押出材は、銅合金押出材全体を 100重量%とし た場合、重量基準で鉛を 0. 3〜4%含有する。
[0027] この発明に従った銅合金押出材用ビレットは、上記のいずれかに記載の銅合金押 出材を得るためのビレットであって、銅合金粉末を圧粉成形することによって成形さ れている。
[0028] この発明に従った銅合金部材は、上記のいずれかに記載の銅合金押出材を引き 抜き加工あるいは熱間鍛造カ卩ェして得られたものである。
[0029] この発明に従った銅合金押出材の製造方法は、銅合金粉末を圧粉成形して銅合 金粉末固化体ビレットを作製する工程と、このビレットに対して押出し加工を施して押 出材を得る工程とを備える。
[0030] 上記方法において、押出し力卩ェの押出比は、例えば、 20以上 500以下である。
[0031] 一つの実施形態に係る方法では、上記の圧粉成形に先立ち、銅合金粉末に、黒 鉛、窒化ホウ素、二硫ィ匕モリブデン、硫化銅およびフッ化カルシウム力 なる群力 選 ばれた少なくとも一種の粉末粒子を添加し、それらを混合する工程を備える。この場 合、好ましくは、銅合金粉末 100重量部に対して、粉末粒子の添加量が 0. 1〜3重 量部である。
[0032] 添加する粉末粒子の粒子径は、例えば、 5 μ m以上 300 μ m以下である。
[0033] 上記の方法は、例えば、ビレットを 400°C〜800°Cの範囲に加熱して上記の押出し 加工を行う。
[0034] 上述した各構成の技術的意義および作用効果等については、以下に詳細に説明 する。
図面の簡単な説明
[0035] [図 1]各種の切粉の形状を示す写真である。
[図 2]図 1の切粉の写真の一部を描写した図である。
[図 3]銅合金粉体固化ビレットおよび铸造製銅合金ビレットの組織写真である。
[図 4]図 3の組織写真に旧粉末粒界を示す線を書き加えた組織写真である。
[図 5]ボール盤を模式的に示す図である。
発明を実施するための最良の形態
[0036] 本発明者らは、被削性に優れた高強度銅合金押出材とその製造方法を提案するも のである。具体的には、鉛に替わる被削性改善元素として黒鉛、窒化ホウ素、二硫ィ匕 モリブデン、硫化銅およびフッ化カルシウムを選定し、この中力 少なくとも 1種類の 粉末粒子を、所定の合金組成を有する銅合金粉末に適正量だけ添加'混合し、その 混合粉末を成形固化'押出することで上記の目的を達成しょうとするものである。特に 、従来技術の課題であった、溶解'铸造工程における低比重の被削性改善元素粒 子と銅合金との偏析'分離の問題を解決する方法として、両者の粉体粒子同士を溶 かすことなぐ成形固化 ·押出することで被削性改善元素粒子が銅合金素地中に均 一に分散し、その結果、優れた被削性と高い強度'靱性を兼ね備えた銅合金押出材 を提供することができる。
[0037] 本発明の詳細、および好ましい実施形態の詳細は、以下の通りである。
[0038] 本発明による銅合金押出材の素地を構成する銅合金粉末を、後述する被削性改 善元素粒子と混合した後、金型やモールドに充填した状態で加圧保持することで押 出用銅合金粉末固化体ビレットを作製する。このビレットを引き続いて加熱した後、直 ちに押出加工によって緻密固化する。その結果、得られた銅合金押出材の内部には 、投入原料である銅合金粉末に対応する旧粉末粒界が残存した組織構造が現われ る。このような組織構造は、銅合金粉末固化体ビレットを適正な押出比のもとで熱間 塑性加工することで実現 '制御できることを本発明者らは見出した。
[0039] 図 1は、各種の銅合金押出材を切削加工したときに得られた切粉 (切削屑)の形状 を示す写真である。また、図 2は、図 1の切粉の写真の一部を描写した図面であり、図 2の(a) , (b) , (c) , (d)は、それぞれ、図 1の(a) , (b) , (c) , (d)に対応している。
[0040] 従来の溶解'铸造ビレットを用いて得られる銅合金押出材を切削加工した場合、切 粉 (切削屑)は、図 1 (d)および図 2 (d)に示すように連続的なカール状の形状を有す るようになる。それに対して、上記のような旧粉末粒界を素地中に残存させることで、 高い強度と靱性 (伸び)を維持しながらも、切削加工における切粉 (切削屑)の形状が 、図 1 (d)および図 2 (d)に示すような連続的なカール状を有するものではなぐ図 1 ( b)および図 2 (b)に示すような比較的短い片状切削屑となる。このような片状切削屑 は、切削加工時に排出処理し易ぐ著しい被削性改善の効果を発現できる。すなわ ち、銅合金粉末固化体ビレットを適正な押出比で押出し固化することは、従来には見 られない、銅合金押出材に対する新しい被削性改善方法である。従来技術である溶 解'铸造ビレットを用いて得られる押出材の内部においては、このような旧粉末粒界 は存在し得ないため、同一組成の溶解'铸造ビレットを用いても、上記のような顕著な 被削性の改善効果は認められな 、。
[0041] さらに、後述する被削性改善元素粒子を本発明の銅合金押出材の素地中に均一 に分散させることで、切削加工時の工具と銅合金素材間の摩擦抵抗 (切削抵抗)を 低減させ、同時に図 1 (a)および図 2 (a)に示すように切削屑の寸法をさらに小さくで きる。従って、工具寿命を長くし、切削時間を短くするといつた更なる被削性改善効 果を発現し得るものとなる。
[0042] 銅合金粉末の粒子径に関しては、特に制約はな!/、が、金型やモールドへの充填性 や圧粉成形性などを考慮すると、粒子径は 10 m以上 10mm以下程度であることが 望ましい。銅合金粉末の粒子径が 10 /z mを下回ると、粉末粒子が金型の隙間に入り 込んで金型同士の焼付きを誘発したり、充填性が低下するといつた問題、さらに比表 面積が増加するために銅合金粉末間での摩擦抵抗の増大によって圧粉成形性が低 下して粉末固化体ビレットに亀裂や欠損が生じるなどの問題が生じる。一方、銅合金 粉末の粒子径が 10mmを超えると、金型やモールド内への充填率の低下や圧粉成 形性の低下を生じる。
[0043] 銅合金粉末の製造方法につ!ヽては、噴霧法 (アトマイズ法)によって銅合金粉末を 製造する方法や、溶解铸造法によって所定の合金組成を有する銅合金インゴットを 作製し、切削 ·粉砕機械加工によって比較的粗大な銅合金粉体や切削屑を製造す る方法などが有効である。もちろん一般の切削屑も成形可能である。
[0044] 本発明では、鉛に替わる被削性改善元素粒子として、黒鉛、窒化ホウ素、二硫化モ リブデン、硫化銅およびフッ化カルシウム力もなる群力も選ばれた少なくとも 1種の粉 末粒子を選定し、上記の銅合金粉末と混合した後、圧粉成形して粉体固化体ビレツ トを作製する。この場合、被削性改善元素粒子は銅合金粉末同士の間に存在するこ とから、このような粉体固化体ビレットを用いた押出材の素地において、添加した被削 性改善元素粒子は銅合金押出材内部の旧粉末粒界に沿って存在する。
[0045] 上記の被削性改善元素粒子は、いずれも、鉛と同様に、銅合金素地には固溶せず 、粒状をなして分散することで銅合金の被削性を改善'向上させる効果を有する。な かでも、黒鉛粉末粒子は安価であり、経済性の面において有利である。黒鉛粉末は 、天然黒鉛であっても人工黒鉛であってもよぐまた形状に関しては、粒状または鱗 片状または塊状などでもよ 、。
[0046] 上記の被削性改善元素粒子を含む銅合金押出材全体を 100重量%とした場合、 その中での被削性改善元素粒子の含有量は重量基準で 0. 1%〜3%であることが 望ましい。 0. 1%重量以上加えると、上記の切削抵抗を低減させ、また工具寿命を 延ばすといった効果や切削加工の短縮といった効果が得られ、同時に切削屑がさら に小さくなるのでカ卩ェ時の切粉の排出処理が容易になる。ただし、 3重量%を超えて 添加しても、その添加量に見合う上記の効果は得られない。むしろ、銅合金押出材 の強度ゃ靱性の低下を招くといった問題が生じる。特に、被削性改善元素粒子の添 加量を重量基準で 0. 3%〜1%とすることで、高強度 ·高靱性を維持しつつ、被削性 を向上させる効果を発現できる。
[0047] 上記の被削性改善元素粒子の粒子径を 5 μ m以上 300 μ m以下とすることで、銅 合金押出材において、上記の優れた機械的特性と快削性を両立させることができる 。 5 mよりも小さい場合、静電引力などによって微細な粒子が凝集して粗大な 2次 粒子を形成し、それが銅合金中に存在することで強度ゃ靱性の低下を招く。 300 mを超えると強度'靱性を低下させる。銅合金粉末との混合性や圧粉成形性の観点 から、被削性改善元素粒子の粒子径を 20 m以上 150 m以下にすることがより好 ましい。
[0048] 本発明の銅合金押出材の素地を構成する銅合金成分について説明する。
[0049] 第 1実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 100重量 %とした場合、重量基準で銅を 77〜88%、アルミニウムを 8. 5〜12%、ニッケルを 0 . 5〜5. 5%、鉄を 2〜5%、マンガンを 0. 5〜2%含有し、残部が亜鉛力もなる合金 組成を有している。
[0050] アルミニウムの添加により、銅合金の強度、硬度、耐高温酸化性を改善できる。本 合金の銅成分範囲では、アルミニウム 8. 5%未満ではこれらの効果は十分でなぐ他 方、 12%を超えて含有してもこれらの更なる改善効果は認められず、銅合金の靱性 が低下するといつた問題が生じる。なお、溶解'铸造ビレットを用いた場合、 4重量% を超えるアルミニウムを添加すると、 Cu— A1系金属間化合物が粗大化し、力えって 銅合金押出材の靱性低下を招く。しカゝしながら、噴霧法により作製した銅合金粉末を 用いた場合、アルミニウムが素地中に強制固溶するために、 4重量%を超えて添加し ても Cu— A1系金属間化合物は微細な粒状を呈して素地中に均一分散し、その結果 、靱性低下を伴うことなぐ強度向上に寄与する。また、铸造インゴットから切削加工 によって銅合金粉末を作製した場合、粉末素地に蓄積された加工歪により、素地を 形成する α相の結晶粒が再結晶し、その過程で Cu—Al系金属間化合物が微細な 粒状ィ匕合物となるために、靱性の低下を招くことなく強度が向上する。
[0051] ニッケルの添カ卩により、銅合金の強度と硬度を向上できる。ニッケルはアルミニウム と共に存在することで、 Ni— A1系金属間化合物を形成し、上記の特性を向上させる 力 0. 5重量%未満では十分な改善効果はなぐ 5. 5重量%を超えて添加すると、 力えって銅合金押出材の靱性低下を招く。
[0052] 鉄も、ニッケルと同様、アルミニウムと共に存在することで Fe—Al系金属間化合物 を形成し、銅合金の強度、硬度、耐熱性を向上させる。本合金成分範囲では、添カロ 量が 2重量%未満であれば十分な改善効果はなぐ 5重量%を超えて添加すると、か えって銅合金押出材の靱性低下を招いたり、押出材の表面に亀裂'欠陥の発生を伴
[0053] マンガンは素地に固溶して、これを強化し熱履歴に対して合金組成を安定化する 作用がある。マンガンの含有量が 0. 5%未満では上記作用による効果が得られず、 また 2%を超えて含有してもそれに見合った改善効果が得られな 、ので、好ま 、マ ンガンの含有量は 0. 5〜2%である。
[0054] 第 2実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 100重量 %とした場合、重量基準で銅を 69〜80%およびシリコンを 1. 8〜3. 5%含有し、さら に 0. 3〜3. 50/0の錫、 1〜3. 50/0のァノレミニゥム、 0. 02〜0. 250/0の憐力らなる群力 ら選択された 1種以上の成分を含有し、残部が亜鉛からなる合金組成を有して ヽる。
[0055] シリコンは、 γ相を形成して銅合金押出材の靱性を改善する効果を有すると共に、 被削性を改善する。その添加量が 1. 8重量%未満であれば、上記の改善効果は十 分ではなぐ他方、本合金成分範囲では 3. 5重量%を超えて添加すると、銅合金押 出材の靱性低下を招く。なお、シリコンの添カ卩による被削性の改善効果に関しては、 後述する旧粉末粒界の形成による効果や、黒鉛などの被削性改善元素粒子の添カロ 効果に比べると小さいものである力 シリコンの添カ卩は、強度、耐摩耗性、耐応力腐 蝕割れ性、耐高温酸化性も改善する。
[0056] 錫に関しても、シリコンと同様、 γ相を形成して銅合金押出材の切削性の改善効果 がある。その添加量が 0. 3重量%未満であれば、上記の改善効果は十分ではなぐ 他方、本合金成分範囲では 3. 5重量%を超えて添加すると、銅合金押出材の靱性 低下を招く。なお、錫の添カ卩による被削性の改善効果に関しては、後述する旧粉末 粒界の形成による効果や、黒鉛などの被削性改善元素粒子の添加効果に比べると 小さいものであり、本発明が規定する銅合金押出材の全てにおいて必ずしも添加す べき必須元素ではない。
[0057] アルミニウムも、錫と同様に、 γ相を形成させる機能があり、被削性を改善するには 少なくとも 1重量%添加する必要がある。しかし、 3. 5%を超えて添加しても改善効果 が見られず、延性が低下する。
[0058] 燐は、素地を構成する ex相の結晶粒微細化の効果を有しており、それにより銅合金 押出材の強度が向上すると共に、鍛造などの熱間加工性が改善されることで鍛造部 品における欠陥 ·亀裂などの発生が抑制される。その添加量が 0. 02重量%未満で あれば上記の効果は十分でなぐまた 0. 25重量%を超えて添加しても、それに見合 つた効果は得られず、力えって押出性の低下や押出材の靱性低下などの問題を招く
[0059] 第 3実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 100重量 %とした場合、重量基準で亜鉛を 26〜32%、シリコンを 0. 5〜1. 5%、アルミニウム を 3〜4. 50/0、鉄を 0. 5〜1. 50/0、ニッゲノレを 2〜4. 50/0含有し、残咅力 S銅力らなる 合金組成を有している。
[0060] この合金は、耐摩耗性を改善した合金であり、アルミニウムとシリコンは γ相を形成 して硬さを増すと同時にニッケルや鉄と金属間化合物を作り固さを増す。本合金成分 範囲では、添加元素のそれぞれの下限値以下では、改善効果が不十分で、本合金 成分範囲では、添加元素の上限値以上では延性を低下させてしまう。したがって、各 元素の添カ卩量の適正範囲は上述の通りである。
[0061] 第 4実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 100重量 %とした場合、重量基準で銅を 55〜65%、アルミニウムを 0. 2〜7. 5%、鉄を 0. 1 〜4%、マンガンを 0. 5〜5%含有し、残部が亜鉛力もなる合金組成を有している。
[0062] アルミニウムは、耐摩耗性改善に寄与し、マトリックスの強化機能は 0. 2%以上の添 カロ〖こより発揮される。しかし、本合金成分範囲では、 7. 5%を超えて添加すると延性 が低下する。
[0063] また、鉄はアルミニウムと共に共存することで Fe—Al系金属間化合物を形成し、銅 合金の強度、硬度、耐熱性を向上させる。本合金成分範囲において、鉄の添加量が 0. 1重量%未満では十分な改善効果がなぐ 4重量%を超えて添加すると銅合金押 出材の靭性低下を招く。
[0064] さらにマンガンは、マトリックス中に均一に晶出し、合金の耐摩耗性を改善させる。 0 . 5重量%未満ではその効果がなぐ 5重量%を超えると改善効果に変化がなくなる。
[0065] 第 5実施形態に係る銅合金押出材は、マトリクスを構成する銅合金全体を 100重量 %とした場合、重量基準で銅を 55〜64%、鉄を 0. 1〜0. 7%、錫を 0. 2〜2. 5% 含有し、残部が亜鉛からなる合金組成を有して ヽる。
[0066] この銅合金押出材は、鍛造加工や引き抜き加工などの塑性加工性を向上した銅合 金である。第 5実施形態に係る銅合金押出材には、必要に応じて燐を 0. 02〜0. 5 %含有する。これは耐脱亜鉛性を向上させる効果がある。下限値を下回ると改善効 果が十分でなぐ上限値を超えると粒界への偏析を生じ、延性が低下する。
[0067] 上記の第 1実施形態から第 5実施形態に係る銅合金押出材においては、マトリクス を構成する銅合金が、必要に応じて、重量基準で 0. 1〜1. 5%のチタン、 0. 1〜1. 5%のクロム、 0. 1〜1. 5%のコノ レトからなる群力も選択された 1種以上の元素をさ らに含有する。これらの元素はいずれも、銅合金の強度や硬度を向上させる効果が あり、それぞれの下限値を下回ると改善効果が十分でなぐ他方、上限値を超えて添 加すると押出性の低下や銅合金押出材の靱性低下を招く。
[0068] さらに、上記の第 1実施形態〜第 5実施形態に係る銅合金押出材においては、マト リクスを構成する銅合金力 必要に応じて、重量基準で 0. 02〜4%のビスマス、 0. 0 2〜0. 4%のテルル、 0. 02〜0. 4%のセレン、 0. 02〜0. 15%のアンチモンカもな る群から選択された 1種以上の元素を含有する。これらの元素はいずれも、銅合金の 被削性を改善する効果があり、それぞれの下限値を下回ると改善効果が十分でなく 、他方、上限値を超えて添加すると熱間加工性の低下を招く。
[0069] 次に、本発明に従った銅合金押出材の製造方法について説明する。
[0070] 上述の合金組成を有する銅合金粉末を準備し、これを金型あるいはモールドに充 填した後、加圧'成形することで銅合金粉末固化体ビレットを作製する。その際、必要 に応じて事前に、銅合金粉末に前記の黒鉛、窒化ホウ素、二硫ィ匕モリブデン、硫ィ匕 銅およびフッ化カルシウム力 なる群力 選ばれた少なくとも 1種の被削性改善元素 粒子を添加'混合する。混合は、ボールミルや V型混合機などを用いて乾式で行う。 雰囲気については、特に管理 ·制御する必要はなぐ大気中で行ってもよい。またビ レットの相対密度に関しては、搬送過程でビレットが損傷しない程度の銅合金粉末同 士の結合力が必要であり、例えば、相対密度が 80%以上 (空孔率が 20%以下)とな るように加圧することが望ま 、。
[0071] 上記のようにして作製したビレットを加熱した後、直ちに押出加工を施して緻密な銅 合金押出材を得る。このとき、押出材の強度 *靱性を確保しながら、前記の旧粉末粒 界を形成するために、押出比を 20以上 500以下とする必要がある。押出比が 20未 満の場合には、素地を形成する銅合金粉末同士の拡散 '結合が十分でないために、 強度ゃ靱性の低下を招く。一方、押出比を 500以上にすると、旧粉末粒界の残存が 少なくなり、強度ゃ靱性はさらに向上するが、切削加工時に排出される切粉 (切削屑 )が図 1 (d)および図 2 (d)のような連続したカール状となり、被削性の低下を招く。
[0072] また、ビレットの加熱温度は、 400°C〜800°Cの範囲に管理することが望ましい。 40 0°C未満であれば、銅合金粉末同士の拡散 ·結合が十分でな!、ために強度ゃ靱性 の低下を招く。一方、 800°Cを越えて加熱すると、銅合金の素地を構成する結晶粒 の粗大化が生じて、銅合金押出材の引張耐力の低下を招く。また押出材の表面に円 周方向に沿った亀裂が発生するといつた問題が生じる。
[0073] なお、本発明の一つの目的は、人体や環境への影響があるとされる鉛やカドミウム を使用せずに、優れた被削性を有する銅合金押出材とその製造方法を提供すること にある。一方、欧州 *RoHS規制では銅合金中の鉛含有量は 4重量%までは適用除 外となって!/ヽるので、本発明に従った銅合金押出材をこれに対応するようにしてもよ い。すなわち、本発明の一つの実施形態に係る銅合金押出材は、銅合金押出材全 体を 100重量%とした場合、重量基準で鉛を 0. 3〜4%含有してもよい。前述の通り 、鉛を含むことで優れた快削性を実現できる。その有効な効果を得るには、鉛の添加 量を 0. 3重量%以上にすることが好ましい。他方、 4重量%を越えての添カ卩は、先の RoHS規制ならびに押出材の強度低下の観点より好ましくない。なお、本発明の多く の実施形態に係る銅合金押出材にお!、ては、鉛は必ずしも必要となる添加元素では ない。
実施例 1 [0074] この実施例 1は、前述した第 1実施形態に係る銅合金押出材に対応するものである
[0075] 表 1に示す組成を有する铸造製銅合金インゴットを準備し、切削加工によって採取 した粉体 (長さ 0. 5〜4mm)を出発原料とし、これをプレス機に装着した金型に充填し て加圧'固化することで直径 59. 8mm Φ ,全長 98mmの円柱状粉体固化ビレットを 作製した。このビレットを窒素ガス雰囲気中で 650〜720°Cにて 30分間加熱保持し、 終了後、直ちに内径 60πιπιΦの押出用コンテナに充填して押出比 37. 5の条件下 で直径 9. 8πιπιΦの押出素材を作製した。
[0076] [表 1]
Figure imgf000016_0001
上記のようにして得た押出素材から、直径 3. 5mm 平行部 20mmの引張試験 片を採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。また切削試 験を行い、発生する切削屑の形状を比較した。表 1における切粉形状の記号は、図 1 および図 2の記号に対応している。すなわち、 aは、図 1 (a)および図 2 (a)に示す切 粉形状であることを意味し、 bは、図 1 (b)および図 2 (b)に示す形状であることを意味 し、 cは、図 1 (c)および図 2 (c)に示す形状であることを意味し、 dは図 1 (d)および図 2 (d)に示す形状であることを意味している。後述する表 2、表 3、表 4、表 5、表 6、表 7、表 8、表 9、表 11においても、同様である。
[0078] なお、切削条件は次の通りであった。
素材の切削速度: 25mZ分
切り込み量: 1. 25mm
送り量: 0. 05mmZ回転
切削工具 (刃具)の材質:超硬
切削油:油性使用
上記のように銅合金粉体を固化したビレットを押出加工して得られた銅合金押出材 においては、いずれも排出性に優れた形状 (aあるいは b)を有する切粉であり,良好 な切削性を示した。
[0079] また試料 No. 1〜7では、適正な合金成分を有することで高強度かつ高靭性 (高い 伸び値)を有する黄銅合金押出材が得られている。ただし、 No. 8では A1含有量が 6 . 5重量%と少ないために他の銅合金に比べて強度の減少が生じており、また No. 9 では A1含有量が 12. 5重量%と多いために強度は増加するものの伸びの顕著な低 下が生じた。
実施例 2
[0080] この実施例 2は、前述した第 2実施形態に係る銅合金押出材に対応するものである
[0081] 表 2に示す組成を有する铸造製銅合金インゴットを準備し、切削加工によって採取 した粉体 (長さ 0. 8〜4. 5mm)を出発原料とし、これをプレス機に装着した金型に充 填して加圧'固化することで直径 59. 8mm Φ ,全長 98mmの円柱状粉体固化ビレツ トを作製した。このビレットを窒素ガス雰囲気中で 660〜725°Cにて 30分間加熱保持 し、終了後、直ちに内径 60πιπιΦの押出用コンテナに充填して押出比 37. 5の条件 下で直径 9. 8πιπιΦの押出素材を作製した。
[表 2]
Figure imgf000019_0001
[0083] 上記のように作製した押出素材から、直径 3. 5mm Φ ,平行部 20mmの引張試験 片を採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。また切削試 験を行い、発生する切削屑の形状を比較した。
[0084] なお、切削条件は次の通りであった。
素材の切削速度: 25mZ分
切り込み量: 1. 25mm
送り量: 0. 05mmZ回転
切削工具 (刃具)の材質:超硬
切削油:油性使用
上記のように銅合金粉体を固化したビレットを押出加工して得られた銅合金押出材 (試料 No. 10〜23)においては、いずれも排出性に優れた形状 (b)を有する切粉で あり、良好な切削'性を示した。
[0085] 一方、铸造製銅合金インゴットを用いて同一条件下で押出加工によって作製した 銅合金押出材 (試料 No. 24)においては、機械的特性は優れているものの、切削試 験において連続したカール状の切粉 (形状 d)が発生し、被削性の問題が確認された
[0086] また、試料 No. 10〜21では、適正な合金成分を有することで高強度かつ高靭性( 高い伸び値)を有する黄銅合金押出材が得られている。ただし、試料 No. 22では Si 含有量が 0. 8重量%と少ないために他の銅合金に比べて強度の減少が生じており、 また試料 No. 23は A1含有量が 0. 5重量%と少ないために他の銅合金に比べて強 度の減少が見られた。
実施例 3
[0087] この実施例 3は、前述した第 3実施形態に係る銅合金押出材に対応するものである
[0088] 表 3に示す組成を有する铸造製銅合金インゴットを準備し、切削加工によって採取 した粉体 (長さ 1. 1〜4. 8mm)を出発原料とし、これをプレス機に装着した金型に充 填して加圧'固化することで直径 59. 8mm Φ ,全長 98mmの円柱状粉体固化ビレツ トを作製した。このビレットを窒素ガス雰囲気中で 640〜705°Cにて 30分間加熱保持 し、終了後、直ちに内径 60πιπιΦの押出用コンテナに充填して押出比 37. 5の条件 下で直径 9. 8πιπιΦの押出素材を作製した。
[表 3]
Figure imgf000022_0001
上記のようにして得た押出素材から、直径 3.5mm Φ,平行部 20mmの引張試験 片を採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。また切削試 験を行い、発生する切削屑の形状を比較した。
[0091] なお、切削条件は次の通りであった。
素材の切削速度: 25mZ分
切り込み量: 1. 25mm
送り量: 0. 05mmZ回転
切削工具 (刃具)の材質:超硬
切削油:油性使用
上記のように、銅合金粉体を固化したビレットを押出加工して得られた銅合金押出 材においては、いずれも排出性に優れた形状 (b)を有する切粉であり、良好な切削 性を示した。
[0092] 試料 No. 25〜29では、適正な合金成分を有することで高強度かつ高靭性 (高い 伸び値)を有する黄銅合金押出材が得られている。特に、試料 No. 25では、 Coを 0 . 8重量%含有することで強度が増加することを確認した。ただし、試料 No. 30では A1を 3. 3重量%含有した上に、 Si含有量が 1. 6重量%と多いために、強度は増加 するものの伸びの顕著な低下が生じており、また試料 No. 31では Si含有量が 0. 3 重量%と少ないために他の銅合金に比べて強度の減少が見られた。
実施例 4
[0093] この実施例 4は、前述した第 4実施形態に係る銅合金押出材に対応するものである
[0094] 表 4に示す組成を有する铸造製銅合金インゴットを準備し、切削加工によって採取 した粉体 (長さ 0. 5〜4. 2mm)を出発原料とし、これをプレス機に装着した金型に充 填して加圧'固化することで直径 59. 8mm Φ ,全長 98mmの円柱状粉体固化ビレツ トを作製した。このビレットを窒素ガス雰囲気中で 660〜725°Cにて 30分間加熱保持 し、終了後、直ちに内径 60πιπιΦの押出用コンテナに充填して押出比 37. 5の条件 下で直径 9. 8πιπιΦの押出素材を作製した。
[0095] [表 4]
Figure imgf000024_0001
上記のようにして作製した押出素材から、直径 3.5mm Φ,平行部 20mmの引張 試験片を採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。また切 削試験を行い、発生する切削屑の形状を比較した。
[0097] なお、切削条件は次の通りであった。
素材の切削速度: 25mZ分
切り込み量: 1. 25mm
送り量: 0. 05mmZ回転
切削工具 (刃具)の材質:超硬
切削油:油性使用
上記のように、銅合金粉体を固化したビレットを押出加工して得られた銅合金押出 材 (試料 No. 32〜40)にお 、ては、 V、ずれも排出性に優れた形状 (b)を有する切粉 であり、良好な切削'性を示した。
[0098] 一方、铸造製銅合金インゴットを用いて同一条件下で押出加工によって作製した 銅合金押出材 (試料 No. 41)においては、機械的特性は優れているものの、切削試 験において連続したカール状の切粉 (形状 d)が発生し、被削性の問題が確認された
[0099] また、試料 No. 32〜39では、適正な合金成分を有することで高強度かつ高靭性( 高い伸び値)を有する黄銅合金押出材が得られている。特に、試料 No. 35および試 料 No. 37では、 Tiを 0. 1〜0. 3重量%含有することで、押出材の強度が増加するこ とを確認した。ただし、試料 No. 40では A1含有量が 0. 3重量%、 Mn含有量が 1重 量%、 Fe含有量が 0. 4重量%とそれぞれ少ないために他の銅合金に比べて強度の 減少が生じた。
実施例 5
[0100] この実施例 5は、前述した第 5実施形態に係る銅合金押出材に対応するものである
[0101] 表 5に示す組成を有する铸造製銅合金インゴットを準備し、切削加工によって採取 した粉体 (長さ 0. 7〜3. 9mm)を出発原料とし、これをプレス機に装着した金型に充 填して加圧'固化することで直径 59. 8mm Φ ,全長 98mmの円柱状粉体固化ビレツ トを作製した。このビレットを窒素ガス雰囲気中で 640〜700°Cにて 30分間加熱保持 し、終了後、直ちに内径 60ιηπιΦの押出用コンテナに充填して押出比 37. 5の条件 下で直径 9. 8πιπιΦの押出素材を作製した。
[表 5]
Figure imgf000027_0001
[0103] 上記のようにして作製した押出素材から、直径 3. 5mm Φ ,平行部 20mmの引張 試験片を採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。また切 削試験を行い、発生する切削屑の形状を比較した。
[0104] なお、切削条件は次の通りであった。
素材の切削速度: 25mZ分
切り込み量: 1. 25mm
送り量: 0. 05mmZ回転
切削工具 (刃具)の材質:超硬
切削油:油性使用
上記のように、銅合金粉体を固化したビレットを押出加工して得られた銅合金押出 材においては、いずれも排出性に優れた形状 (b)を有する切粉であり、良好な切削 性を示した。
[0105] 試料 No. 42〜50では、適正な合金成分を有することで高強度かつ高靭性 (高い 伸び値)を有する黄銅合金押出材が得られている。ただし、試料 No. 51では Cuと Z n以外の元素として Snのみを 0. 2重量%と少量含むために、他の銅合金に比べて強 度の減少が生じた。
[0106] ところで、铸造製銅合金インゴットを用いて同一条件下で押出加工によって作製し た銅合金押出材 (試料 No. 52)においては、機械的性質は問題ないものの、切削試 験において連続したカール状の切粉 (形状 d)が発生し、被削性の問題が確認された
[0107] 図 3に試料 No. 42と試料 No. 52の金属写真を示す。(a)の本発明による銅合金 粉体固化ビレットを用いた場合 (試料 No. 42)には、矢印で示すように押出材の素地 に旧粉末粒界が観察される。一方、(b)の铸造製銅合金ビレットを用いた場合 (試料 No. 52)には、(a)で見られたような旧粉末粒界は観察されない。図 4は、図 3の組織 写真上に旧粉末粒界を示す線を加えた組織写真である。
実施例 6
[0108] 前述した第 1実施形態に係る銅合金押出材に属する成分として、重量基準で Cu; 8 2. 5%, Al; 9. 3%, Mn;0. 9%, Ni; l. 7%, Fe ; 3. 2%, Zn;残部の組成を有す る铸造製銅合金インゴットより、切削加工によって採取した粉体 (長さ 0. 5〜4mm)を 出発原料とし、これをプレス機に装着した金型に充填して加圧'固化することで直径 5 9. 8mm Φ ,全長 98mmの円柱状粉体固化ビレットを作製した。このビレットを窒素ガ ス雰囲気中で 680°Cにて 30分間加熱保持し、終了後、直ちに内径 60πιπιΦの押出 用コンテナに充填して押出比 37. 5の条件下で直径 9. 8πιπιΦの押出素材を作製し た。
[0109] なお、比較として、上記と同じ組成を有する铸造製銅合金インゴットより同一寸法の 铸造ビレットを機械加工によって採取し、これを同一条件下で押出加工を行い、直径 9. 8πιπιΦの押出素材を作製した。
[0110] 上記のようにして作製した押出素材を酸洗いの後に常温で減面率 4. 5%の条件下 で抽伸加工を行った。そして、得られた素材から直径 3. 5mm 平行部 20mmの 引張試験片を採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。ま た光学顕微鏡による各素材の組織観察を併せて行なった。
[0111] さらに抽伸加工素材を用いて切削試験を行い、発生する切削屑の形状を比較した
[0112] なお、切削条件は次の通りであった。
素材の切削速度: 25mZ分
切り込み量: 1. 25mm
送り量: 0. 05mmZ回転
切削工具 (刃具)の材質:超硬
切削油:油性使用
表 6に引張試験およびビッカース硬さ測定の結果ならびに抽伸加工素材の表面性 状を記載した。銅合金粉体固化ビレットと铸造製銅合金ビレットを用いた場合の押出 -抽伸加工後の素材の機械的特性において、両者間での顕著な差異はなぐ本発明 で提案する製造プロセスにより得られる銅合金粉体を用いた銅合金押出材において も十分な機械的特性を有することを確認した。
[0113] [表 6] 引^強さ (MPa) 0.2%耐カ (MPa) 伸び(%) ピツカ一ス硬さ 切削) Hの形状 備考 嗣合金粉体固化ビレット 762 61 1 22 162 良好 b 本発明例 錶造製銅合金ビレット 767 597 21 162 d 比較例
[0114] 銅合金粉体固化ビレットと铸造製銅合金ビレットを用いて得られた押出'抽伸加工 素材について切削試験で排出された切削屑を観察した結果、本発明による銅合金 粉体固化ビレットから作製した銅合金押出材では、切削屑は分断した排出性ならび に取り扱 、性に優れた不連続で比較的小さ 、形状 (aあるいは bに相当)であった。こ れに対して従来の铸造製銅合金ビレットを用いた押出材では、切粉は連続したカー ル状を呈しており、排出が困難な形状を有する切削屑(dに相当)であった。
[0115] 以上の結果より、本発明による銅合金粉体固化ビレットから作製した銅合金押出材 では、機械的特性を低下させることなぐ良好な切削性を有することが確認できた。 実施例 7
[0116] 実施例 6で用いた銅合金粉体 (長さ 0. 5〜4mm)を出発原料とし、これに平均粒径 65 mの天然黒鉛粒子を添加'混合した後、同様に金型に充填して直径 59. 8mm
Φ、全長 98mmの円柱状粉体固化ビレットを作製した。このビレットを窒素ガス雰囲 気中で 680°Cにて 30分間加熱保持し、終了後、直ちに内径 60πιπιΦの押出用コン テナに充填して押出比 37. 5の条件下で直径 9. 8πιπιΦの押出素材を作製した。
[0117] なお、比較として、上記と同じ組成を有する铸造製銅合金インゴットより同一寸法の 铸造ビレットを機械加工によって採取し、これを同一条件下で押出加工を行い、直径 9. 8πιπιΦの押出素材を作製した。
[0118] 表 7に、黒鉛粒子の添加量を示す。
[0119] [表 7] 黒鉛添加量 (重量%) 引張強さ (MPa) 伸び (%) 素材の外観 備考
0 762 22 良好 b 本発明例
0.1 753 23 同上 a 本発明例
0.2 - 741 20 同上 a 本発明例
0.4 724 19 同上 a 本発明例
0.8 フ 02 17 同上 a 本発明例
1.4 685 16 同上 a 本発明例
2.2 652 14 同上 a 本発明例
2.8 631 12 同上 a 本発明例
3.2 563 7 ササクレ状態 a 本発明例
3.6 542 5 ササクレ状態 a 本発明例 錶造製銅合金ビレット 767 21 良好 d 比較例 [0120] 各素材にっ 、て、実施例 6と同一条件下で引張試験および切削試験を行った。そ の結果を表 7に併せて示す。
[0121] 本発明が規定する、黒鉛粒子を添加'混合した銅合金粉体を圧粉固化したビレット から作製した銅合金押出材では、適正範囲の黒鉛粒子を含有することで、機械的特 性を顕著に低下させることなぐより微細な排出性に優れた切削屑が得られることが 確認でき、黒鉛粒子の添カ卩による切削性向上を検証した。
[0122] なお、 3重量%を超える黒鉛粒子の添加においては、押出素材の表面にササタレ 状の亀裂ならびに円周方向の割れが確認されており、多量の黒鉛粒子の添加によつ て銅合金粉体同士の結合性が著しく低下し、その結果、上述のような素材欠陥が発 生して強度低下を招いた。
実施例 8
[0123] 実施例 7で作製した銅合金押出材につ ヽて、ドリル切削試験法による被削性の評 価を行った。ドリル切削試験法とは、図 5の模式図に示すように、ドリルに一定荷重 (こ こでは 2. 58kgの錘を負荷)をかけた状態で銅合金押出材に深さ 5mmの穴をカロェ するのに要する時間を比較し、その時間が短いほど、被削性が良好であることを意味 する。
[0124] 図 5において、参照番号 1は試料 (銅合金押出材)を示し、 2はドリルを示し、 3は錘 を示し、 4は紐を示し、 10はボール盤を示し、 11はハンドルを示している。
[0125] なお、直径 4. 5πιπιΦの高速度鋼製ドリルを用い、ドリルの回転数を 400rpm、切り 込み量を 5mmとして乾式条件下 (切削油なし)で切削試験を行った。その結果を表 8 に示す。
[0126] [表 8] 黒鉛添加量 (重量%) 備考
0 31.7 b 本発明例
0.1 29.7 a 本発明例
0.2 26.4 a 本発明例
0.4 24.1 a 本発明例
0.8 23.1 a 本発明例
1.4 20.3 a 本発明例
2.2 18.6 a 本発明例
2.8 15.6 a 本発明例
Pb含有錶造製銅合金ビレット 31.1 d 比較例 [0127] 比較素材として、重量基準で Cu; 82. 5%, Al; 9. 3%, Mn;0. 9%, Ni; l. 7%, Fe ; 3. 2%, Pb ; l. 6%, Zn;残部の組成を有する鉛添加铸造製銅合金ビレットを同 一条件で押出して得られた銅合金押出材を用いた。
[0128] 本発明が規定する、黒鉛粒子を添加 '混合した銅合金粉体を圧粉固化したビレット から作製した銅合金押出材では、適正範囲の黒鉛粒子を含有することで、 Pb含有铸 造製銅合金インゴットを用いた押出材よりも優れた被削性を有しており、し力もその被 削性は黒鉛粒子の含有量の増加と共に向上する。さらに、切削屑 (切粉)の形状に 関しても、いずれの铸造製銅合金インゴットを用いた場合も、連続したカール状の切 削屑(d)であったが、本発明による銅合金粉体固化ビレットおよび黒鉛粒子含有銅 合金粉体固化ビレットを用いた押出材では、排出性の良好な細力 、粒状の切粉 (aあ るいは b)であった。
実施例 9
[0129] 第 2実施形態に係る銅合金押出材に属する成分として、重量基準で Cu; 75. 1%, Si; 2. 6%, Sn; l. 1%, Al; l. 2%, P ;0. 1%, Te ;0. 05%, Ti;0. 05%, Zn;残 部からなる組成を有する铸造製銅合金インゴットより、切削加工によって採取した粉 体 (長さ 0. 8〜3mm)を出発原料とし、これをプレス機に装着した金型に充填してカロ 圧'固化することで直径 59. 8mm Φ ,全長 98mmの円柱状粉体固化ビレットを作製 した。このビレットを窒素ガス雰囲気中で 700°Cにて 30分間加熱保持し、終了後、直 ちに内径 60mm Φの押出用コンテナに充填して表 9に示す穴径を有するダイスを用 いて作製した。なお、同表中の押出比 rは、 r= (コンテナ内径 Zダイス穴径) 2として求 めた。
[0130] 各押出材について、実施例 6と同一条件下で引張試験および切削試験を行った。
その結果を表 9に併せて示す。
[0131] [表 9] 押出比 r 引張強さ (MPa) 伸び(%) 素材の外観 切削屑の形状
20 9.0 365 22 良好 a
17 12.5 402 27 良好 a
15 16.0 441 29 良好 b
12 25.0 530 37 良好 b
8 56.3 541 33 良好 b
6.5 85.2 558 35 良好 b
5.5 1 19.0 564 33 良好 b
4.0 225.0 579 31 良好 b
2.5 576.0 582 30 良好 d
[0132] 本発明が規定する適正な押出比を用いて銅合金粉体固化ビレットを押出加工した 場合、押出素材が良好な引張強さと被削性 (形状 aあるいは b)を有する。特に、押出 比を 20以上にすることで、押出材の引張強さはさらに向上する。
[0133] 一方、押出比を 8未満とすると、押出材の素地を構成する銅合金粉末同士の結合 性が十分でないため、押出材の引張強さの低下を招く。一方、押出比が 500を超え ると、押出時の強塑性加工によって銅合金粉体同士の結合が顕著に進行し、その結 果、本発明による銅合金押出材の特徴である旧粉末粒界が素地中に残存しなくなり 、切削屑(切粉)が連続的にカール状 (形状 cあるいは d)を呈するようになる。その結 果、押出素材の被削性が低下するといつた問題が生じる。なお、押出比が 120を超 えても、高い機械的特性と優れた被削性を両立することが可能であるが、押出に際し て高い負荷圧力が必要となるために、大型押出装置が必要となり、またダイスの摩耗 損傷と!/、つた経済性の課題も伴う場合がある。
実施例 10
[0134] 実施例 9で用いた銅合金粉体 (長さ 0. 8〜3mm)を出発原料とし、これをプレス機 に装着した金型に充填して加圧'固化することで直径 59. 8mm Φ ,全長 98mmの円 柱状粉体固化ビレットを作製した。このビレットを窒素ガス雰囲気中で表 10に示す各 温度で 30分間加熱保持し、終了後、直ちに内径 60mm<5の押出用コンテナに充填 して押出比 37. 5の条件下で直径 9. 8mm Φの押出素材を作製した。
[0135] 各押出材について、実施例 6と同一条件下で引張試験を行った。その結果を表 10 に併せて示す。
[0136] [表 10] ビレット加熱温度 (°c) 引張強さ (MPa) 伸び(%) 素材の外観
480 552 32 良好
600 545 33 良好
720 536 35 良好
800 519 37 良好
880 463 48 良好
380 324 1 1 良好
[0137] 本発明が規定する、適正な温度範囲で銅合金粉体固化ビレットを加熱して押出す ることで、押出素材は良好な機械的特性を有することを確認した。
[0138] 一方、加熱温度力 00°Cを下回る場合、押出時における粉体同士の結合性が十 分でなぐ素材の内部に空孔が発生して機械的特性の低下を招く。また 850°Cを超 えると、銅合金押出材の素地を構成する銅結晶粒が粗大 ·成長するために押出材の 強度や硬度の低下を招く。
実施例 11
[0139] 第 3実施形態に係る銅合金押出材に属する成分として、重量基準で Si;0. 8%, A1
; 3. 1%, Ni; 2. 8%, Fe ; l. 1%, Co ;0. 6%, Zn; 27. 1%, Cu;残部力もなる組 成を有する铸造製銅合金インゴットより、切削加工によって採取した粉体 (長さ 0. 4〜 4. 5mm)を出発原料とし、これに表 11に示す被削性改善元素粒子を添加'混合す る。混合処理にお!、ては回転ボールミルを用いて乾式条件で行った。
[0140] なお、各添加粒子の平均粒径は、窒化ホウ素; 32 μ m,二硫化モリブデン; 42 μ m ,フッ化カルシウム;26 /z mである。各混合粉体をプレス機に装着した金型に充填し て加圧'固化することで直径 59. 8mm Φ ,全長 98mmの円柱状粉体固化ビレットを 作製した。このビレットを窒素ガス雰囲気中で 650°Cにて 30分間加熱保持し、終了 後、直ちに内径 60mm Φの押出用コンテナに充填して押出比 49. 8の条件下で直 径 8. 5πιπιΦの押出素材を作製した。
[0141] [表 11] 伸び(%) 素材の外観 窒化ホウ素 0 691 1 1 良好 b
0.8 683 10 良好 a
1.5 672 9 良好 a
3.5 412 4 一部ササクレ a 二硫化モリブデン 0.8 685 10 良好 a
1.5 676 9 良好 a
2.1 663 8 良好 a
3.5 434 4 一部ササクレ a フッ化カルシウム 0.8 680 10 良好 a
1.5 668 9 良好 a
2.1 661 8 良好 a
3.5 401 4 一部ササクレ a
[0142] 上記のようにして作製した押出素材から、直径 3. 5mm Φ ,平行部 20mmの引張 試験片を採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。また実 施例 6と同様に、切削試験を行い、発生する切削屑の形状を比較した。
[0143] なお、切削条件は次の通りであった。
素材の切削速度: 25mZ分
切り込み量: 1. 25mm
送り量: 0. 05mmZ回転
切削工具 (刃具)の材質:超硬
切削油:油性使用
表 11に引張試験結果および切削屑の形状を示す。本発明が規定する被削性改善 元素粒子を適正量、銅合金押出材の素地中に分散させることで、機械的特性を低下 させることなく、切削屑を小さくでき、被削性を向上することができる。し力しながら、 3 重量%を超えて添加すると、黒鉛粉末粒子の場合と同様、銅合金押出材の引張強さ や伸びが低下するといつた問題が生じる。
[0144] なお、黒鉛粉末を含めて、各切削性改善元素粒子を 2種類以上、銅合金粉末と混 合して使用した場合においても、同様の効果が得られることを本発明者らは確認して いる。
実施例 12
[0145] 第 4実施形態に係る銅合金押出材に属する成分として、重量基準で Cu; 61. 4%, Al; 3. 4%, Mn; 3. 2%, Fe ; 2. 1%, Pb ;0. 9%, Zn;残部からなる組成を有する 铸造製銅合金インゴットより、切削加工によって採取した粉体 (長さ 0. 7〜3. 6mm) を出発原料とし、これに黒鉛粉末 (平均粒子径; 43 m)を 0. 2重量%および 0. 5重 量%をそれぞれ添加'混合した粉体を準備する。各銅合金粉体をプレス機に装着し た金型に充填して加圧'固化することで直径 59. 8mm Φ ,全長 100mmの円柱状粉 体固化ビレットを作製した。このビレットを窒素ガス雰囲気中で 660°Cにて 30分間加 熱保持し、終了後、直ちに内径 60πιπιΦの押出用コンテナに充填して押出比 37. 5 の条件下で直径 9. 8πιπιΦの押出素材を作製した。なお、比較として、上記と同じ組 成を有する铸造製銅合金インゴットより同一寸法の铸造ビレットを機械加工によって 採取し、これを同一条件下で押出加工を行い、直径 9. 8πιπιΦの押出素材を作製し た。
[0146] 上記のようにして作製した各押出素材について、実施例 6と同様の切削試験および 実施例 8のドリル切削試験を行った。前者の試験では、発生する切削屑の形状を、後 者の試験では、銅合金押出材に深さ 5mmの穴をカ卩ェするのに要する時間をそれぞ れ評価した。その結果を表 12に示す。
[0147] [表 12]
Figure imgf000036_0001
[0148] 従来の鉛添加铸造銅合金ビレットを用いた場合に比べて、同一組成の粉体固化ビ レットを用いた方が、切削屑は、不連続で微細な切粉として優れた排出性を示した。 また銅合金粉体に、適正量の黒鉛粉末を添加した結果、切削屑はより微細な切粉と して不連続形状で排出され、しかもドリル切削試験での加工時間を短縮することがで きた。
実施例 13
[0149] 前述した第 2実施形態に係る銅合金押出材に属する成分として、重量基準で Cu; 7 5. 4%, Si; 3. 1%, P ;0. 11%,残部が亜鉛力もなる組成を有する溶湯をアトマイズ 加工することによって採取した粉体 (平均粒子径; 70 m)を出発原料とし、これに平 均粒径 50 mの天然黒鉛粒子を重量基準 0. 5%添加'混合した後、金型に充填し て直径 59. 8mm φ、全長 98mmの円柱状粉体固化ビレットを作製した。このビレット を窒素ガス雰囲気中で 700°Cにて 30分間加熱保持し、終了後、直ちに内径 60mm Φの押出用コンテナに充填して押出比 37. 5の条件下で直径 9. 8πιπιΦの押出素 材を作製した。
[0150] なお、比較材として、上記と同じ組成を有する連続铸造製銅合金インゴットより同一 寸法の铸造ビレットを機械加工によって採取し、これを同一条件下で押出加工を行 い、直径 9. 8πιπιΦの押出素材を作製した。
[0151] 上記のように作製した押出素材を酸洗いの後に常温で減面率 15. 3%の条件下で 抽伸加工を行ない、その後 510°Cで 4. 5時間焼鈍して、さらに 12. 6%の減面率で 抽伸加工を行ない、その後 510°Cで 4. 5時間焼鈍して、最後に 13. 5%の減面率で 抽伸を行なって得られた素材から直径 3. 5mm Φ ,平行部 20mmの引張試験片を 採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。
[0152] さらに、ドリル切削試験法による被削性の評価を行なった。ここでは 1. 5kgの錘を 使用した。この試験結果を表 13に示す。溶解製法による材料は、 10回のドリル試験 の間に工具が磨耗して加工時間が徐々に増大した力 同一成分による黒鉛添加の 粉体固化製法材は加工時間が一定でドリルの磨耗が見られない。また、機械的性質 も溶解製法材と遜色のな ヽことが確認された。
[0153] [表 13]
固化ビレツト
(黒鉛含有量 0. 5wt% 錄造ビレツト
)
引張強さ [MPa
656 672
機械的性質 ]
伸び [%] 10 9
加工 No.① 11. 3 11. 0
② 14. 1 16. 0
③ 15. 3 21. 0
④ 18. 1 25. 8
⑤ 17. 5 30. 2
加工時間 [秒]
⑥ 18. 3 32. 3
⑦ 18. 3 46. 0
⑧ 18. 6 48. 7
⑨ 17. 9 58. 8
⑩ 18. 1 59. 2 実施例 14
[0154] 前述した第 5実施形態に係る銅合金押出材に属する成分として、重量基準で Cu; 6
1. 4%, Fe ; 0. 1%, Sn ; 0. 2%,残部が亜鉛力 なる組成を有する溶湯をアトマイ ズカ卩ェすることによって採取した粉体 (平均粒子径; 70 μ m)を出発原料とし、これに 平均粒径 の天然黒鉛粒子を添加'混合した後、同様に金型に充填して直径 59. 8mm φ、全長 98mmの円柱状粉体固化ビレットを作製した。このビレットを窒素 ガス雰囲気中で 700°Cにて 30分間加熱保持し、終了後、直ちに内径 60πιπιΦの押 出用コンテナに充填して押出比 37. 5の条件下で直径 9. 8πιπιΦの押出素材を作 製した。
[0155] なお、比較材として、上記と同じ組成を有する連続铸造製銅合金インゴットより同一 寸法の铸造ビレットを機械加工によって採取し、これを同一条件下で押出加工を行 い、直径 9. 8mm Φの押出素材を作製した。比較材としてさらに、重量基準で Cu; 6 1. 1%, Fe ; 0. 1%, Sn ; 0. 2%,鉛 3. 0%,残部が亜鈴力もなる組成を有する铸造 製銅合金インゴットより同一寸法の铸造ビレットを機械加工により採取し、同一条件下 で押出加工を行い、直径 9. 8mm Φの押出素材を作製した。 [0156] 上記のように作製した押出素材を酸洗いの後に常温で減面率 26%の条件下で抽 伸加工を行ない、その後 460°Cで 4. 5時間焼鈍して、最後に 13. 5%の減面率で抽 伸加工を行なって得られた素材から直径 3. 5mm Φ ,平行部 20mmの引張試験片 を採取し、歪速度 5 X 10_4/秒の条件で常温にて引張試験を行った。黒鉛の添カロ 量と機械的性質の関係を表 14に示す。
[0157] さらに、ドリル切削試験法による被削性の評価を行なった。本材料は実施例 8の材 料と異なり素地が比較的柔らかいので、ここでは 1. Okgの錘を使用した。この試験結 果を表 15に示す。これらの結果から、黄銅アトマイズ粉に黒鉛添加して固化したビレ ットによる押出材力 得られる黄銅材は、金属材料の中で最も切削性が良いとされる 溶解製法ビレットによる鈴入りの快削黄銅材と比べて、全く遜色のな 、切削性と機械 的性質が得られることが確認できた。
[0158] [表 14]
Figure imgf000039_0001
[0159] [表 15] 黒鉛含有量 鉛含有
平均加工時間 [秒]
[wt%] 量 [wt%]
一 - 加工出来ず
0. 05 一 加工出来ず
固化ビレツ ト 0. 5 - 28. 0
0. 8 一 20. 4
1. 2 - 14. 2
一 一 加工出来ず
铸造ビレツ ト
- 3. 0 13. 6 実施例 15
[0160] 前述した第 5実施形態に係る銅合金押出材に属する成分として、重量基準で Cu; 6 1. 4%, Fe ; 0. 1%, Sn ; 0. 2%,残部が亜鉛力もなる組成を有する溶湯をアトマイ ズカ卩ェすることによって採取した粉体 (平均粒子径; 70 m)を出発原料とし、これに 平均粒径 50 mの天然黒鉛粒子を重量基準で 0. 5%,平均粒径 50 mの硫化銅 粉末を重量基準で 1. 25%添加'混合した後、同様に金型に充填して直径 59. 8m ιη φ、全長 98mmの円柱状粉体固化ビレットを作製した。このビレットを窒素ガス雰 囲気中で 700°Cにて 30分間加熱保持し、終了後、直ちに内径 60πιπιΦの押出用コ ンテナに充填して押出比 37. 5の条件下で直径 9. 8πιπιΦの押出素材を作製した。
[0161] 比較材として,重量基準で Cu ; 61. 4%, Fe ; 0. 1%, Sn; 0. 2%,残部が亜鉛か らなる組成を有する溶湯をアトマイズ加工することによって採取した粉体 (平均粒子 径; 70 m)を出発原料とし、これに平均粒径 50 μ mの天然黒鉛粒子を重量基準で 0. 5%添加'混合した後同様に固化ビレットを作製し、同一条件下で押出加工を行 い、直径 9. 8πιπιΦの押出素材を作製した。
[0162] 上記のように作製した押出素材を酸洗 、の後に常温で減面率 26%の条件下で抽 伸加工を行ない、その後 460°Cで 4. 5時間焼鈍して、最後に 13. 5%の減面率で抽 伸加工を行なって得られた素材から直径 3. 5mm Φ ,平行部 20mmの引張試験片 を採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。
[0163] さらに、ドリル切削試験法による被削性の評価を行なった。ここでは 1. Okgの錘を 使用した。これらの試験結果を表 16に示す。黒鉛添加にカ卩えて硫化銅を添加するこ とで、機械的性質を損なわずに切削性をさらに向上できることを確認した。
[0164] [表 16] 含有量 [wt%] 機械的性質 平均加工時間 [秒 黒鉛 硫化銅 引張強さ [MPa] 伸び ]
0. 5 ― 452 32 28. 4
0. 5 0. 3 451 31 24. 3
0. 5 0. 6 452 30 24. 0
0. 5 0. 9 450 29 23. 7
0. 5 1. 25 448 31 23. 3
0. 5 1. 7 442 28 23. 2 実施例 16
[0165] 前述した第 5実施形態に係る銅合金押出材に属する成分として、重量基準で Cu ; 6 1. 4%, Fe ; 0. 1 %, Sn ; 0. 2%, Pb ; 3. 0%、残部が亜鉛力もなる組成を有する铸 造製銅合金インゴットを準備し、これを鉱物切削油による高速切削加工を行なって採 取した粉体 (長さ 0. 5〜8. 9mm)を出発原料とし、これを 60°Cに加温されたアルカリ 性浸漬用脱脂剤浴中で攪拌し、水洗、水切り乾燥を行なって油分が完全に除去され たことを確認した。
[0166] この原料を粉砕機にかけて平均粒径を 100 IX mにした粉体を静水圧加圧機に装着 して加圧'固化することで直径 59. 8mm Φ ,全長 120mmの円柱状粉体固化ビレット を作製した。このビレットを窒素ガス雰囲気中で 640〜700°Cにて 30分間加熱保持 し、終了後、直ちに内径 60πιπι Φの押出用コンテナに充填して押出比 37. 5の条件 下で直径 9. 8πιπιΦの押出素材を作製した。
[0167] なお、比較材として、上記と同じ組成を有する铸造製銅合金インゴットより同一寸法 の铸造ビレットを機械加工によって採取し、これを同一条件下で押出加工を行い、直 径 9. 8πιπιΦの押出素材を作製した。
[0168] 上記のように作製した押出素材を酸洗いの後に常温で減面率 26%の条件下で抽 伸加工を行ない、その後 460°Cで 4. 5時間焼鈍して、最後に 13. 5%の減面率で抽 伸加工を行なって得られた素材から直径 3. 5mm Φ ,平行部 20mmの引張試験片 を採取し、歪速度 5 X 10— 4 秒の条件で常温にて引張試験を行った。
[0169] さらに、ドリル切削試験法による被削性の評価を行なった。ここでは 1. Okgの錘を 使用した。これらの試験結果を表 17に示す。切粉表面に付着した切削油を完全除 去した後,これを投入原料として圧粉 ·押出工程を経由することで得られた黄銅合金 素材は,優れた機械的特性と快削性を有している.
[0170] [表 17]
Figure imgf000042_0001
実施例 17
[0171] 前述した第 5実施形態に係る銅合金押出材に属する成分として、重量基準で Cu; 6 1. 4%, Fe ; 0. 1%, Sn ; 0. 2%, Pb ; 3. 0%,残部が亜鉛からなる組成を有する铸 造製銅合金インゴットを準備し、これを鉱物切削油による高速切削加工を行なって採 取した粉体 (長さ 0. 5〜8. 9mm)を出発原料とし、これを 60°Cに加温されたアルカリ 性浸漬用脱脂剤浴中で攪拌し、水洗、水切り乾燥を行なって油分が完全に除去され たことを確認した。
[0172] この原料を粉砕機にかけて平均粒径を 100 μ mにした粉体を出発原料とし、これに 平均粒径 50 mの天然黒鉛粒子を 0. 3%添加'混合した後、静水圧加圧機に装着 して加圧'固化することで直径 59. 8mm Φ ,全長 120mmの円柱状粉体固化ビレット を作製した。このビレットを窒素ガス雰囲気中で 640〜700°Cにて 30分間加熱保持 し、終了後、直ちに内径 60πιπιΦの押出用コンテナに充填して押出比 37. 5の条件 下で直径 9. 8πιπιΦの押出素材を作製した。
[0173] 上記のように作製した押出素材を酸洗いの後に常温で減面率 26%の条件下で抽 伸加工を行ない、その後 460°Cで 4. 5時間焼鈍して、最後に 13. 5%の減面率で抽 伸加工を行なって得られた素材から直径 3. 5mm Φ ,平行部 20mmの引張試験片 を採取し、歪速度 5 X 10_4Z秒の条件で常温にて引張試験を行った。
[0174] さらに、ドリル切削試験法による被削性の評価を行なった。ここでは 1. Okgの錘を 使用した。これらの試験結果を表 18に示す。切粉表面に付着した切削油を完全除 去した後、所定量の黒鉛粒子を添加して圧粉 ·押出工程を経由することで得られた 黄銅合金素材は,優れた機械的特性と快削性を有して!/ヽる。 [0175] [表 18]
Figure imgf000043_0001
[0176] 以上、図面を参照してこの発明の実施形態を説明した力 この発明は、図示した実 施形態のものに限定されない。図示した実施形態に対して、この発明と同一の範囲 内において、あるいは均等の範囲内において、種々の修正や変形をカ卩えることが可 能である。
産業上の利用可能性
[0177] 本発明は、安定した高快削性と優れた機械的特性とが要求される銅合金押出材に 有利に利用され得る。

Claims

請求の範囲
[1] 銅合金粉末固化体ビレットを押出し加工して得られるものであって、内部に旧粉末粒 界を残存させていることを特徴とする、銅合金押出材。
[2] 銅合金押出材全体を 100重量%とした場合、マトリクス中に、黒鉛、窒化ホウ素、二 硫ィ匕モリブデン、硫化銅およびフッ化カルシウム力もなる群力も選ばれた少なくとも 1 種の粉末粒子を重量基準で 0. 1%〜3%含有する、請求項 1に記載の銅合金押出 材。
[3] 銅合金押出材全体を 100重量%とした場合、マトリクス中に、黒鉛、窒化ホウ素、二 硫ィ匕モリブデン、硫化銅およびフッ化カルシウム力もなる群力も選ばれた少なくとも 1 種の粉末粒子を重量基準で 0. 3%〜1%含有する、請求項 1に記載の銅合金押出 材。
[4] マトリクスを構成する銅合金全体を 100重量%とした場合、マトリクスを構成する銅合 金は、重量基準で銅を 77〜88%、アルミニウムを 8. 5〜12%、ニッケルを 0. 5〜5.
5%、鉄を 2〜5%、マンガンを 0. 5〜2%含有し、残部が亜鉛力もなる合金組成を有 している、請求項 1に記載の銅合金押出材。
[5] マトリクスを構成する銅合金全体を 100重量%とした場合、マトリクスを構成する銅合 金は、重量基準で銅を 69〜80%およびシリコンを 1. 8〜3. 5%含有し、さらに 0. 3
〜3. 50/0の錫、 1〜3. 50/0の ノレミニクム、 0. 02〜0. 250/0の憐力らなる群力ら選択 された 1種以上の元素を含有し、残部が亜鉛カゝらなる合金組成を有している、請求項
1に記載の銅合金押出材。
[6] マトリクスを構成する銅合金全体を 100重量%とした場合、マトリクスを構成する銅合 金は、重量基準で亜鉛を 26〜32%、シリコンを 0. 5〜1. 5%、アルミニウムを 3〜4.
5%、鉄を 0. 5〜1. 5%、ニッケルを 2〜4. 5%含有し、残部が銅からなる合金組成 を有している、請求項 1に記載の銅合金押出材。
[7] マトリクスを構成する銅合金全体を 100重量%とした場合、マトリクスを構成する銅合 金は、重量基準で銅を 55〜65%、アルミニウムを 0. 2〜7. 5%、鉄を 0. 1〜4%、マ ンガンを 0. 5〜5%含有し、残部が亜鉛力もなる合金組成を有している、請求項 1に 記載の銅合金押出材。
[8] マトリクスを構成する銅合金全体を 100重量%とした場合、マトリクスを構成する銅合 金は、重量基準で銅を 55〜64%、鉄を 0. 1〜0. 7%、錫を 0. 2〜2. 5%含有し、 残部が亜鉛カゝらなる合金組成を有して ヽる、請求項 1に記載の銅合金押出材。
[9] マトリクスを構成する銅合金は、重量基準で 0. 1〜1. 5%のチタン、 0. 1〜1. 5%の クロム、 0. 1〜1. 5%のコバルトからなる群力 選択された 1種以上の元素を含有す る、請求項 1に記載の銅合金押出材。
[10] マトリクスを構成する銅合金は、さらに、重量基準で 0. 02〜4%のビスマス、 0. 02〜 0. 4%のテルル、 0. 02〜0. 4%のセレン、 0. 02〜0. 15%のアンチモンカもなる 群から選択された 1種以上の元素を含有する、請求項 1に記載の銅合金押出材。
[11] 前記粉末粒子の粒子径が 5 μ m以上 300 μ m以下である、請求項 2に記載の銅合金 押出材。
[12] 前記粉末粒子が、旧粉末粒界に沿って分布している、請求項 2に記載の銅合金押出 材。
[13] 銅合金押出材全体を 100重量%とした場合、重量基準で鉛を 0. 3〜4%含有する、 請求項 1に記載の銅合金押出材。
[14] 請求項 1に記載の銅合金押出材を得るためのビレットであって、銅合金粉末を圧粉 成形することによって成形されている、銅合金押出材用ビレット。
[15] 請求項 1に記載の銅合金押出材を引き抜き加工あるいは熱間鍛造加工して得られた
、銅合金部材。
[16] 銅合金粉末を圧粉成形して銅合金粉末固化体ビレットを作製する工程と、前記ビレ ットに対して押出し加工を施して押出材を得る工程とを備えた、銅合金押出材の製造 方法。
[17] 前記押出し力卩ェの押出比が 20以上 500以下である、請求項 16に記載の銅合金押 出材の製造方法。
[18] 前記圧粉成形に先立ち、銅合金粉末に、黒鉛、窒化ホウ素、二硫ィ匕モリブデン、硫 ィ匕銅およびフッ化カルシウム力 なる群力 選ばれた少なくとも 1種の粉末粒子を添 加し、それらを混合する工程を備える、請求項 16に記載の銅合金押出材の製造方 法。
[19] 前記銅合金粉末 100重量部に対して、前記粉末粒子の添加量が 0. 1〜3重量部で ある、請求項 18に記載の銅合金押出材の製造方法。
[20] 前記粉末粒子の粒子径が 5 μ m以上 300 μ m以下である、請求項 18に記載の銅合 金押出材の製造方法。
[21] 前記ビレットを 400°C〜800°Cの範囲に加熱して前記押出し加工を行う、請求項 16 に記載の銅合金押出材の製造方法。
PCT/JP2006/314628 2005-07-28 2006-07-25 銅合金押出材およびその製造方法 WO2007013428A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06781540A EP1918389A4 (en) 2005-07-28 2006-07-25 EXTRUDED COPPER ALLOY MATERIAL AND METHOD OF MANUFACTURING THEREOF
JP2007528465A JP4190570B2 (ja) 2005-07-28 2006-07-25 無鉛快削性銅合金押出材
US11/989,492 US20090092517A1 (en) 2005-07-28 2006-07-25 Copper Alloy Extruded Material and Its Manufacturing Method
CN2006800277380A CN101233250B (zh) 2005-07-28 2006-07-25 铜合金挤压材及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005219151 2005-07-28
JP2005-219151 2005-07-28

Publications (1)

Publication Number Publication Date
WO2007013428A1 true WO2007013428A1 (ja) 2007-02-01

Family

ID=37683324

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314628 WO2007013428A1 (ja) 2005-07-28 2006-07-25 銅合金押出材およびその製造方法

Country Status (6)

Country Link
US (1) US20090092517A1 (ja)
EP (1) EP1918389A4 (ja)
JP (1) JP4190570B2 (ja)
KR (1) KR100982611B1 (ja)
CN (1) CN101233250B (ja)
WO (1) WO2007013428A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275582A1 (en) * 2008-05-07 2011-01-19 Japan Science and Technology Agency Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material
JP2011179121A (ja) * 2010-03-02 2011-09-15 Xiamen Lota Internatl Co Ltd 環境に優しいマンガン黄銅合金およびそれらの製造方法
JP2017511841A (ja) * 2014-02-04 2017-04-27 オットー フックス カーゲー 潤滑剤適合性銅合金
JP2019516868A (ja) * 2016-05-18 2019-06-20 アルマグ・ソシエタ・ペル・アチオニAlmag S.P.A. 無鉛または低鉛含有量の真鍮ビレットの製造方法およびこれにより得られるビレット
IT202000004480A1 (it) * 2020-03-03 2021-09-03 A L M A G S P A Azienda Lavorazioni Metallurgiche E Affini Gnutti Processo per l’ottenimento di una billetta di ottone a ridotto tenore di piombo e billetta così ottenuta
JP2022059922A (ja) * 2020-10-02 2022-04-14 大豊工業株式会社 すべり軸受用銅合金およびすべり軸受
WO2022124280A1 (ja) * 2020-12-11 2022-06-16 国立大学法人豊橋技術科学大学 棒状または管状の高強度銅合金およびその製造方法

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5326114B2 (ja) 2009-04-24 2013-10-30 サンエツ金属株式会社 高強度銅合金
US9050651B2 (en) * 2011-06-14 2015-06-09 Ingot Metal Company Limited Method for producing lead-free copper—bismuth alloys and ingots useful for same
CN103045902B (zh) * 2013-01-16 2015-03-04 苏州金仓合金新材料有限公司 一种采用硅铝元素抑制铅溶出的黄铜合金棒及制备方法
CN103100715B (zh) * 2013-01-18 2017-06-06 中南大学 一种二次电子发射用铍铜板带的加工方法
CN103114220B (zh) * 2013-02-01 2015-01-21 路达(厦门)工业有限公司 一种热成型性能优异的无铅易切削耐蚀黄铜合金
CN105102157A (zh) * 2013-03-25 2015-11-25 新日铁住金株式会社 铜合金粉末、铜合金烧结体和高速铁道用制动衬片
CN103184364B (zh) * 2013-04-10 2015-05-13 苏州天兼新材料科技有限公司 一种含硅与铝的铜基合金管及其制备方法
CN103305720B (zh) * 2013-06-25 2015-02-11 开平市中铝实业有限公司 一种合金汽车轴承
ES2596512T3 (es) 2014-04-03 2017-01-10 Otto Fuchs Kg Aleación de bronce de aluminio, procedimiento de producción y producto de bronce de aluminio
CN104976597A (zh) * 2014-04-10 2015-10-14 株式会社唻迪克世 利用机械合金化方法的led照明灯散热结构体及其制造方法
DE102014106933A1 (de) 2014-05-16 2015-11-19 Otto Fuchs Kg Sondermessinglegierung und Legierungsprodukt
US10151663B2 (en) 2015-09-15 2018-12-11 Emerson Climate Technologies, Inc. Leak detector sensor systems using tag-sensitized refrigerants
CN105349824A (zh) * 2015-11-15 2016-02-24 丹阳市德源精密工具有限公司 新型铜合金模具材料
DE202016102693U1 (de) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Sondermessinglegierung sowie Sondermessinglegierungsprodukt
DE202016102696U1 (de) 2016-05-20 2017-08-29 Otto Fuchs - Kommanditgesellschaft - Sondermessinglegierung sowie Sondermessinglegierungsprodukt
US10974317B2 (en) 2016-07-22 2021-04-13 Emerson Climate Technologies, Inc. Controlled-dispersion of solid lubricious particles in a metallic alloy matrix
CN106392383B (zh) * 2016-11-16 2018-07-27 广东省焊接技术研究所(广东省中乌研究院) 一种铝基药芯焊丝及其制备方法
CN106756214B (zh) * 2016-12-13 2018-04-10 荣成远海滑动轴承有限公司 一种减摩铜基双金属轴承材料及其制作方法
CN108441672A (zh) * 2018-03-06 2018-08-24 浙江灿根智能科技有限公司 一种大型铜合金衬套的铸造方法
CN109382509A (zh) * 2018-09-25 2019-02-26 罗源县凤山镇企业服务中心 一种用于含油轴承的铜锡局部合金粉末的制备方法
CN109351959B (zh) * 2018-09-25 2021-01-01 罗源县凤山镇企业服务中心 一种半扩散铜锡合金粉末的制备方法
CN109128140B (zh) * 2018-09-25 2021-01-01 罗源县凤山镇企业服务中心 一种铜锡合金含油轴承的制备方法
CN109468490A (zh) * 2019-01-07 2019-03-15 贵溪红石金属有限公司 一种异型铜排生产工艺
CN109930017A (zh) * 2019-04-15 2019-06-25 中北大学 一种高强度铜合金的制备方法
US11427891B2 (en) 2019-07-24 2022-08-30 Nibco Inc. Low silicon copper alloy piping components and articles
CN111560533B (zh) * 2020-05-23 2021-05-04 湖南大学 一种高导热氮化硼/铜复合材料及其制备方法
CN112981168B (zh) * 2021-02-04 2022-04-01 合肥工业大学 一种由粉末热锻的铜基受电弓滑板材料及其制备方法
CN115404369B (zh) * 2022-08-31 2023-07-07 宁波金田铜业(集团)股份有限公司 一种锡磷青铜线材的制备方法
CN117418128B (zh) * 2023-10-18 2024-07-05 中南大学 一种杀菌铜合金材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634031A (ja) * 1986-06-23 1988-01-09 Sumitomo Electric Ind Ltd 耐摩耗性合金の製造法
JPH0488137A (ja) * 1990-07-31 1992-03-23 Chuetsu Gokin Chuko Kk 耐摩耗性・耐焼付性銅合金系複合材料
JPH0748665A (ja) * 1993-08-05 1995-02-21 Chuetsu Gokin Chuko Kk 溶射被膜を施した摺動材
JP2000096269A (ja) 1999-08-06 2000-04-04 Toto Ltd 鉛含有銅合金の鉛溶出低減処理方法及び鉛含有銅合金製水道用器具
JP2000096268A (ja) 1999-08-06 2000-04-04 Toto Ltd 鉛含有銅合金の鉛溶出低減処理方法及び鉛含有銅合金製水道用器具
JP2000119775A (ja) * 1998-10-12 2000-04-25 Sanbo Copper Alloy Co Ltd 無鉛快削性銅合金
JP2002534635A (ja) * 1999-01-08 2002-10-15 エムエーエヌ・ビー・アンド・ダブリュ・ディーゼル・エーエス 往復動ピストンエンジン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2697743B2 (ja) * 1989-05-29 1998-01-14 富士通株式会社 樹脂封止型半導体装置
US5089354A (en) * 1990-12-11 1992-02-18 Chuetsu Metal Works, Co., Ltd. Wear-resistant, anti-seizing copper alloy composite materials
US6974509B2 (en) * 2000-09-07 2005-12-13 Kitz Corporation Brass
US6837915B2 (en) * 2002-09-20 2005-01-04 Scm Metal Products, Inc. High density, metal-based materials having low coefficients of friction and wear rates
DE10308779B8 (de) * 2003-02-28 2012-07-05 Wieland-Werke Ag Bleifreie Kupferlegierung und deren Verwendung
CN100336927C (zh) * 2003-12-12 2007-09-12 上海第一铜棒厂 低铜高速切削合金材料
CN1291051C (zh) * 2004-01-15 2006-12-20 宁波博威集团有限公司 无铅易切削锑黄铜合金

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634031A (ja) * 1986-06-23 1988-01-09 Sumitomo Electric Ind Ltd 耐摩耗性合金の製造法
JPH0488137A (ja) * 1990-07-31 1992-03-23 Chuetsu Gokin Chuko Kk 耐摩耗性・耐焼付性銅合金系複合材料
JPH0748665A (ja) * 1993-08-05 1995-02-21 Chuetsu Gokin Chuko Kk 溶射被膜を施した摺動材
JP2000119775A (ja) * 1998-10-12 2000-04-25 Sanbo Copper Alloy Co Ltd 無鉛快削性銅合金
JP2002534635A (ja) * 1999-01-08 2002-10-15 エムエーエヌ・ビー・アンド・ダブリュ・ディーゼル・エーエス 往復動ピストンエンジン
JP2000096269A (ja) 1999-08-06 2000-04-04 Toto Ltd 鉛含有銅合金の鉛溶出低減処理方法及び鉛含有銅合金製水道用器具
JP2000096268A (ja) 1999-08-06 2000-04-04 Toto Ltd 鉛含有銅合金の鉛溶出低減処理方法及び鉛含有銅合金製水道用器具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1918389A4

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2275582A1 (en) * 2008-05-07 2011-01-19 Japan Science and Technology Agency Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material
EP2275582A4 (en) * 2008-05-07 2014-08-20 Japan Science & Tech Agency MEASURING ALLOY POWDER, EXTRUDED MEASUREMENT ALLOY MATERIAL, AND METHOD FOR PRODUCING THE EXTRUDED MEASUREMENT ALLOY MATERIAL
JP2011179121A (ja) * 2010-03-02 2011-09-15 Xiamen Lota Internatl Co Ltd 環境に優しいマンガン黄銅合金およびそれらの製造方法
JP2017511841A (ja) * 2014-02-04 2017-04-27 オットー フックス カーゲー 潤滑剤適合性銅合金
JP2019516868A (ja) * 2016-05-18 2019-06-20 アルマグ・ソシエタ・ペル・アチオニAlmag S.P.A. 無鉛または低鉛含有量の真鍮ビレットの製造方法およびこれにより得られるビレット
JP2021185265A (ja) * 2016-05-18 2021-12-09 アルマグ・ソシエタ・ペル・アチオニAlmag S.P.A. 無鉛または低鉛含有量の真鍮ビレットの製造方法およびこれにより得られるビレット
US11679436B2 (en) 2016-05-18 2023-06-20 Almag S.P.A. Method for manufacturing a lead-free or low lead content brass billet and billet thus obtained
IT202000004480A1 (it) * 2020-03-03 2021-09-03 A L M A G S P A Azienda Lavorazioni Metallurgiche E Affini Gnutti Processo per l’ottenimento di una billetta di ottone a ridotto tenore di piombo e billetta così ottenuta
JP2022059922A (ja) * 2020-10-02 2022-04-14 大豊工業株式会社 すべり軸受用銅合金およびすべり軸受
JP7455039B2 (ja) 2020-10-02 2024-03-25 大豊工業株式会社 すべり軸受用銅合金およびすべり軸受
WO2022124280A1 (ja) * 2020-12-11 2022-06-16 国立大学法人豊橋技術科学大学 棒状または管状の高強度銅合金およびその製造方法

Also Published As

Publication number Publication date
CN101233250B (zh) 2010-11-24
KR20080043737A (ko) 2008-05-19
US20090092517A1 (en) 2009-04-09
EP1918389A1 (en) 2008-05-07
JP4190570B2 (ja) 2008-12-03
EP1918389A4 (en) 2010-06-23
KR100982611B1 (ko) 2010-09-15
CN101233250A (zh) 2008-07-30
JPWO2007013428A1 (ja) 2009-02-05

Similar Documents

Publication Publication Date Title
WO2007013428A1 (ja) 銅合金押出材およびその製造方法
JP6534687B2 (ja) 高張力黄銅合金及び合金製品
JP5326114B2 (ja) 高強度銅合金
CN111655878B (zh) 不含有铅和铋的易切割无铅铜合金
EP3042971B1 (en) Lead-free high-sulphur easy-cutting alloy containing manganese and copper and preparation method therefor
US4857267A (en) Aluminum base bearing alloy and method of producing same
WO2020261636A1 (ja) 快削性銅合金鋳物、及び、快削性銅合金鋳物の製造方法
CN1993486A (zh) 铜合金铸件及其铸造方法
JPH08253826A (ja) 焼結摩擦材およびそれに用いられる複合銅合金粉末とそれらの製造方法
JP2020183580A (ja) 多層滑り軸受けエレメント
JP2014531516A (ja) 快削性無鉛銅合金及びその製造方法
Subramanian et al. Investigations on tribo-mechanical behaviour of Al-Si10-Mg/sugarcane bagasse ash/SiC hybrid composites
JP6799305B1 (ja) 快削性銅合金鋳物、及び、快削性銅合金鋳物の製造方法
EP2275582A1 (en) Brass alloy powder, brass alloy extruded material and method for producing the brass alloy extruded material
JP6359523B2 (ja) アンチモン−変性低−鉛銅合金
KR20190029532A (ko) 구리-니켈-주석 합금, 그의 제조 방법 및 용도
JP2010106363A (ja) 時効析出型銅合金、銅合金材料、銅合金部品および銅合金材料の製造方法
JP2008075183A (ja) 高強度高靭性金属及びその製造方法
Dwivedi et al. Machining of LM13 and LM28 cast aluminium alloys: Part I
JP2006022896A (ja) 複層軸受材料およびその製造方法
WO2020136772A1 (ja) 鋳造用青銅合金及びその青銅合金を用いた摺動部材
CN101942582A (zh) 低铅黄铜合金及其物品的制备方法
JP2006022380A (ja) マグネシウム基複合粉末、マグネシウム基合金素材およびそれらの製造方法
JP4640162B2 (ja) 粉末冶金用鉄基混合粉および鉄基焼結体
JP5504863B2 (ja) 粉末冶金用混合粉および切削性に優れた金属粉末製焼結体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680027738.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528465

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077029613

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006781540

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11989492

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE