WO2007013391A1 - インターフェロン誘導分子ips-1 - Google Patents

インターフェロン誘導分子ips-1 Download PDF

Info

Publication number
WO2007013391A1
WO2007013391A1 PCT/JP2006/314562 JP2006314562W WO2007013391A1 WO 2007013391 A1 WO2007013391 A1 WO 2007013391A1 JP 2006314562 W JP2006314562 W JP 2006314562W WO 2007013391 A1 WO2007013391 A1 WO 2007013391A1
Authority
WO
WIPO (PCT)
Prior art keywords
ips
protein
seq
amino acid
acid sequence
Prior art date
Application number
PCT/JP2006/314562
Other languages
English (en)
French (fr)
Inventor
Shizuo Akira
Taro Kawai
Original Assignee
Japan Science And Technology Agency
Osaka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Agency, Osaka University filed Critical Japan Science And Technology Agency
Publication of WO2007013391A1 publication Critical patent/WO2007013391A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4702Regulators; Modulating activity
    • C07K14/4705Regulators; Modulating activity stimulating, promoting or activating activity
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/52Cytokines; Lymphokines; Interferons
    • C07K14/555Interferons [IFN]
    • C07K14/565IFN-beta

Definitions

  • the present invention relates to a type I interferon-inducing molecule IPS-1, a IPS-1 gene encoding the same, a transformant capable of expressing the IPS-1 gene, and the like.
  • the present invention also provides a method for activating a type I IFN promoter using a recombinant protein expressed in a host cell transformed with a type I interferon-inducing molecule IPS-1 and a DNA encoding the same, IPS—This is related to the method of use as a model animal in which the antiviral response function of one knockout non-human animal has been lost.
  • PRR pathogen-associated molecular patterns
  • PRR cellular expression receptor
  • DCs rod-shaped cells
  • I IFN pro-inflammatory site force-in and type I IFN
  • Double-stranded (ds) RNA produced during viral replication is recognized as PAMP by the Toll-like receptor (TLR) (see, for example, Non-Patent Document 4).
  • TLR3 Toll-like receptor
  • Trif also known as TICAM1
  • Trif recruits TBK1 (also known as NAK or T2K) and related IKKi (IKK ⁇ ) protein kinases to catalyze and translocate the transcription factors IRF3 and IRF7 (see, for example, Non-Patent Document 7).
  • TBK1 also known as NAK or T2K
  • IKK ⁇ IKKi protein kinases
  • Trif also collects TNF receptor binding factor (TRAF6) and protein 1 (RIP1) that interacts with the receptor by direct interaction, and then confers the NF- ⁇ family of transcription factors via ⁇ -dependent phosphate It is activated and destroys NF- ⁇ inhibitory molecules (I ⁇ Bs) by the proteasome (see, for example, Non-Patent Documents 9 and 10). These transcription factors work together to Stimulates the promoter of the gene encoding type IFN, leading to antiviral biodefense. Recognized by viral single-stranded RNA and DNA forces TLR7 and TLR9, respectively, and demonstrated to induce IFNa by plasmacytoid DCs (see, for example, Non-Patent Documents 11-13).
  • TNF receptor binding factor TNF receptor binding factor
  • RIP1 protein 1
  • TLR3 Unlike TLR3, these TLRs share MyD88 as a major adapter (see, for example, Non-Patent Document 14). Following ligand stimulation, MyD88 forms a signal complex with IRAKI, TRAF6 and IRF7 (see, for example, Non-Patent Documents 15 to 17). IRAKI acts as an IRF kinase that stimulates the nuclear translocation of IRF7 and the expression of IFN ⁇ (see, for example, Non-Patent Document 17).
  • Viral dsRNA is thought to activate cells via a TLR-independent intracellular sensor (see, for example, Non-Patent Documents 18 and 19).
  • DCs and fibroblasts that are deficient in TLR3 secrete type I IFN after introduction of dsRNA into the cell (see, for example, Non-Patent Document 20).
  • Trif is not essential, but TBK1 and IRF3 are essential (see, for example, Non-Patent Documents 20 to 22), and TLR3-dependent pathways and TLR3-independent pathways converge to TBK1. Show.
  • RIG-I has been identified as a new class of PRR that senses intracellular dsRNA and acts as a class (see, for example, Non-Patent Document 23).
  • RIG-I is a DExDZHbox RNA helicase with two domain (CARD) -like modules that recruit caspases.
  • the helicase domain is thought to be involved in dsRNA recognition, and CARD is essential for the initiation of downstream signaling leading to activation of IRF3, IRF7 and NF- ⁇ (eg, non-patent literature). 23).
  • RIG-I-deficient mice did not consistently produce type I IFNs against vesicular stomatitis virus (VSV), Newcastle disease virus (NDV) and Sendai virus (SeV) infection (eg, non-patented) (Ref. 24). Furthermore, the activity of IRF3 and NF- ⁇ B in response to viral infection was impaired in RIG-I deficient cells. RIG-I is therefore essential for the in vivo antiviral response. Mda-5Z Helicard has a structure similar to RIG-I and is involved in mediating antiviral responses (see, for example, Non-Patent Documents 25 and 26). Together, these helicases constitute a new family of intracellular sensors that sense viral infections.
  • Fas-related death domain (FADD) deficient cells impair production of type I IFNs in response to intracellular dsRNA stimulation.
  • FADD-deficient cells are thought to be susceptible to viral infection (see, for example, Non-Patent Document 27).
  • RIP 1 is essential for IFN induction mediated by dsRNA in cells (for example, see Non-Patent Document 27).
  • Non-patent document 1 Annu Rev Immunol. 20, 197-216, 2002
  • Non-Patent Document 2 Annu Rev Immunol. 21,335-376, 2003
  • Non-Patent Document 3 Nat Rev Immunol. 4, 499-511, 2004
  • Non-Patent Document 4 Nature 413, 732-738. (2001).
  • Non-Patent Document 5 J Immunol. 169, 6668-6672, 2002
  • Non-Patent Document 6 Nat Immunol. 4, 161-167, 2003
  • Non-Patent Document 7 Science 300, 1148-1151,2003; 8.
  • Non Patent Literature 8 Nat Immunol. 4, 491-496, 2003
  • Non-Patent Document 9 J Immunol. 171, 4304-4310, 2003;
  • Non-Patent Document 10 Nat Immunol 5, 503-507, 2004
  • Non-Patent Document 11 Science 303, 1526-1529, 2004
  • Non-Patent Document 12 Science 303, 1529-1531, 2004
  • Non-Patent Document 13 J Immunol. 170, 3059-3064, 2003
  • Non-Patent Document 14 Int Immunol. 14, 1225-1231, 2002
  • Non-Patent Document 15 Nat Immunol. 5, 1061-1068, 2004
  • Non-Patent Document 16 Proc Natl Acad Sci USA. 101, 15416-15421, 2004
  • Non-Patent Document 17 J Exp Med. 201, 915-923, 2005
  • Non-Patent Document 18 Science 301, 640-643, 2003
  • Non-Patent Document 19 Nat Immunol. 4, 1223-1229, 2003
  • Non-Patent Document 20 J Exp Med. 199, 1641-1650, 2004
  • Non-Patent Document 21 J Exp Med. 199, 1651-1658, 2004
  • Non-Patent Document 22 Proc Natl Acad Sci USA 101, 233-238, 2004
  • Non-Patent Document 23 Nat Immunol. 5, 730-737, 2004
  • Non-Patent Document 24 Immunity (2005) in press
  • Non-Patent Document 25 Curr Biol. 12, 838-843, 2002
  • Non-Patent Document 26 Proc Natl Acad Sci USA. 101, 17264-17269, 2004
  • Non-Patent Document 27 Nature 432, 401-405, 2004
  • An object of the present invention is to provide a novel signaling molecule that induces the production of type I IFN such as 13-interferon (IFN ⁇ ) and its gene.
  • type I IFN such as 13-interferon (IFN ⁇ ) and its gene.
  • IPS-1 a novel molecule named IPS-1 by high-throughput screening of a type I IFN inducer. Overexpression of IPS-1 produced type I IFN and IFN-inducible genes via activation of IRF3, IRF7 and NF-kB and induced an antiviral response. TBK1 and IKKi were essential for IPS-1 mediated type I IFN promoter activity. Furthermore, IPS-1 expression stimulated the endogenous promoter of the type I IFN gene. IPS-1 consists of two domains: an N-terminal CARD-like domain that associates with RIG-I and a C-terminal effector domain that recruits FADD and RIP1. Knockdown of IPS 1 by siRNA reduced the antiviral response to viral stimulation and viral infection. Therefore, IPS-1 is considered to be a novel adapter protein that mediates RIG-I-dependent antiviral responses.
  • RIG-I has been considered to be a TLR3-independent intracellular sensor that senses viral dsRNA (see Nat Immunol. 5, 730-737, 2004).
  • RIG-I-deficient mice are impaired in induction of type I IFN after infection with V SV, NDV, and SeV (see Immunity, 2005), and RIG-I is the only in vivo sensor to detect these viruses showed that.
  • the Mda5Z helicard an analog of RIG-I, is also involved in virus recognition (Proc Natl Acad Sci US A. 101, 17264-17269, 2004) 0 RF3, IRF7 and NF—required for initiation of downstream signaling leading to activation of ⁇ B It has two CARD-like modules.
  • RIG-I and Mda5 / Helicard were suggested to use signaling adapters containing similar CARD-like modules. It is very interesting to find that IPS-1 has a CARD-like domain homologous to MdaZ helicade and RIG-I that mediates the interaction with these proteins.
  • IPS—l is a cell that is deficient in TBK-1 and IKKi, and IF ⁇ ⁇ And did not activate the IFN j8 promoter.
  • IPS-1 can act as an adapter that binds RIG-I and Mda5 / Helicard to downstream molecules that activate TBK1 and IKKi.
  • RIG-IAC Overexpression of RIG-IAC leads to constitutive activation of the IFN ⁇ promoter, but it has been previously reported that full-length RIG-I does not activate the promoter (Nat Immunol. 5, 730- 737, 2004). This observation suggests that the C-terminal region of RIG-I has a regulatory function that prevents interaction with downstream effector molecules. IPS-1 always binds to RIG-IAC Full length RIG-I doesn't bind. Thus, IPS-1 does not bind to RIG-I in the unstimulated state, but after stimulation it is thought to form a complex with RIG-I and initiate signal transduction.
  • FADD and RIP1 which were originally identified as signaling molecules of the TNF receptor family of death receptors, have been shown to participate in functions mediated by intracellular dsRNA (Nature 432, 401-405, 2004).
  • IPS-1 was not directly associated with TBK1, but its C-terminal region appears to interact with FADD and RIP1.
  • IPS-1 recruits FADD and RIP1 via the C-terminal effector domain during viral infection and induces TBK1 and IKKi-dependent IRF3 phosphorylation.
  • the activity of NF- ⁇ B in response to IPS-1 overexpression or viral infection was normal in TBK1 and IKKi-deficient cells.
  • human RIG-I has been implicated in IRF3 activity induced by hepatitis C virus (HCV) RNA (J Virol. 79, 2689-2699, 2005; J Virol. 79, 3969-3978, 2005).
  • HCV NS3Z4 protease is involved in the suppression of IRF3 phosphorylation and blocks RNA-induced IFN production.
  • Paramyxovirus V protein has been shown to associate with Mda-5, block downstream signaling and inhibit IFN induction (Proc Natl Acad Sci US A. 101, 17264-17269 , 2004). It can therefore be antagonized by targeting IPS-1 mediated signaling pathways to prevent many viral protein degradation or recruitment of downstream signaling molecules such as FADD or RIP1 .
  • LM Listeria monocytogenes
  • the present invention relates to (l) (a) a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 or (b) one or several amino acids deleted in the amino acid sequence shown in SEQ ID NO: 2, A DNA encoding a protein having a substituted or added amino acid sequence and having IPS-1 activity; or (2) an amino acid sequence having at least 90% homology with the amino acid sequence shown in SEQ ID NO: 2 DNA encoding a protein having IPS-1 activity and (3) a base sequence represented by SEQ ID NO: 1 or a complementary sequence thereof, and (4) a base represented by SEQ ID NO: 1.
  • a protein consisting of a base sequence in which one or several bases are deleted, substituted or added in the sequence, and having IPS-1 activity (5) DNA that encodes a protein that hybridizes with the DNA described in (2) above under stringent conditions and that has a protein with IPS-1 activity. ”).
  • the present invention also relates to (6) a protein consisting of the amino acid sequence shown in SEQ ID NO: 2 and (7) one or several amino acids deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2.
  • the protein described in any one of (6) to (8) above, which is a recombinant protein (collectively, these proteins are referred to as “the present protein” and ⁇ I have a habit).
  • the present invention also provides (10) a fusion protein or fusion peptide in which the protein according to any one of (6) to (9) above is bound to a marker protein and Z or a peptide tag, 11) A recombinant vector comprising the DNA of any one of (1) to (5) and capable of expressing IPS-1, or (12) the recombinant plasmid vector described in (11) above ( 13 ) the recombinant vector according to (11) or (12) above, wherein the reporter gene is capable of expressing a reporter gene; and (14) the reporter gene is a firefly luciferase gene.
  • the present invention relates to a transformant expressing 1.
  • the present invention also provides (16) a transformant transformed with a recombinant vector having an IPS-1 gene, and (17) the transformant is derived from a mammalian cell.
  • the present invention relates to the IPS-1 knockout non-human animal according to (22) above, which is a mouse.
  • the present invention provides (24) (a) a DNA encoding a protein consisting of the amino acid sequence represented by SEQ ID NO: 2, and (b) one or several amino acids deleted in the amino acid sequence represented by SEQ ID NO: 2, A DNA encoding a protein having a substituted or added amino acid sequence and having IPS-1 activity; (c) consisting of an amino acid sequence having at least 90% homology with the amino acid sequence shown in SEQ ID NO: 2, And a DNA encoding a protein having IPS-1 activity, (d) a DNA comprising the base sequence shown in SEQ ID NO: 1, and (e) one or several bases in the base sequence shown in SEQ ID NO: 1.
  • DNA consisting of a deleted, substituted or added nucleotide sequence and encoding a protein having IPS-1 activity
  • a method of using the DNA according to any one of (25) (a) SEQ ID NO: 2 and (B) the amino acid sequence shown in SEQ ID NO: 2, in which one or several amino acids are deleted, substituted or added, and have IPS-1 activity
  • the method of activating the promoter, (26) the protein is (a) DNA encoding a protein comprising the amino acid sequence shown in SEQ ID NO: 2, (b) the protein shown in SEQ ID NO: 2.
  • DNA encoding a protein having an IPS-1 activity consisting of an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the nonacid sequence
  • amino acid shown in SEQ ID NO: 2 DNA encoding a protein having at least 90% homology with the sequence and having an IPS 1 activity
  • DNA consisting of the base sequence shown in SEQ ID NO: 1 (e) SEQ ID NO: (F) SEQ ID NO: 1 consisting of a base sequence in which one or several bases have been deleted, substituted or added in the base sequence shown in Fig.
  • a host cell transformed with the DNA according to any one of the following: a DNA that hybridizes with a DNA comprising a base sequence under stringent conditions and that encodes a protein having IPS-1 activity;
  • a DNA that hybridizes with a DNA comprising a base sequence under stringent conditions and that encodes a protein having IPS-1 activity The method of use described in (27) above, characterized by being expressed recombinant protein, or (29) IPS-1 knockout non-human in which the function of the IPS-1 gene is deleted on the chromosome
  • the present invention relates to a method for use as a model animal in which an antiviral response function is lost.
  • FIG. 1 shows the identification results of the IFN
  • A A portion of the human placenta, spleen, or PBL cDNA expression library was subdivided into a pool of up to 100 cDNA complexes (complexity). Plasmid DNA from each pool is transfected into HEK293 cells with a reporter construct of the IFN promoter, Analyzed by Dentsu Atsei. Pools were considered positive when activation was more than 5-fold over average activity. The identification example of a positive pool is shown.
  • B In order to isolate a single clone involved in IFN
  • the vigorous plasmid was transfected into HEK293 cells with a reporter construct of the IFN jS promoter, and the promoter activation ability was analyzed by reporter assembly.
  • a positive clone (clone 3) was sequenced and characterized by BLAST search.
  • FIG. 2 is a diagram relating to the structure and expression of IPS-1.
  • A Schematic diagram of a clone isolated by screening.
  • B shows the predicted amino acid sequence of human IPS-1.
  • C is a schematic view of tHPS-1. The N-terminal CARD-like domain of IPS-1 is shown as a black square.
  • D shows the alignment of CAR D-like domains of human IPS-1, human Mda5, mouse Mda5, human RIG-I and mouse RIG-I. Amino acid residues conserved in at least three molecules are shown in red.
  • e shows the expression of human IPS-1 RNA in various human tissues. Radiolabeled HI HPS-1 probe was hybridized in a multi-tissue northern (MTN) blot.
  • MTN multi-tissue northern
  • FIG. 3 is a diagram showing IRF3 activation and induction of IFN-inducible genes by IPS-1
  • the expression plasmid encoding IPS-1 was transiently transfected with a reporter construct encoding IFN ⁇ , IP-10, RANTES, and ISRE promoters. 36 hours after transfection, the promoter activity of the cells was analyzed with a reporter gene assay. Similar results were obtained in three independent experiments.
  • HEK293 cells were treated with lng (lanes 2, 7), lOng (lanes 3, 8), lOOng (lanes 4, 9), or 1 ⁇ g (lanes 5, 10) Flag—IPS-1 and control ( Lanes 1-5), or 5 ng of Flag-IPS-7 (lane 6-: L0) were co-transformed transiently with IFN a 4 (left) or IFN a 6 (right) promoter reporter plasmid. 36 hours after transfection, the promoter activity of the cells was analyzed by reporter gene assembly. Similar results were obtained in three independent experiments.
  • HEK293 cells were transiently transfected with FLAG-labeled IPS-1 and Myc-labeled IRF3 (top) or Myc-labeled IRF7 (bottom) in a predetermined combination. After 36 hours, the cell lysate was immunoprecipitated with anti-Myc antibody or anti-FLAG antibody (IP), and then immunoplotted with anti-FLAG antibody or anti-Myc antibody (WB).
  • MEF cells derived from wild-type (WT) or TBK1 and IKKi double-deficient mice (TBKlZlKKi KO) were treated with FL AG- IPS-1 or Flag- TBK1 and IFN ⁇ or IFN a promoter plasmid as indicated.
  • FIG. 4 shows that IPS-1 induces an antiviral response.
  • HEK293 cells were transiently transfected with control or Flag-IPS-1. Total RNA was prepared 24 hours after transfection, and expression of IFN jS (Ilhb), IP-10 (CxcllO), GAR G16 (Ifitl) or GAPDH (Gapdh) was analyzed by RT-PCR.
  • B HEK2 93 cells were transiently transfected with lOOng FLAG—IPS-1 and lOOng Myc—IRF7 in a predetermined combination. After 24 hours, the IFN o concentration of the cell supernatant was measured by ELISA. N. D. represents not detected.
  • FIG. 5 shows NF-1 activation and IL-8 induction by IPS-1.
  • a In HEK293 cells, lng (lane 2), 10 ng (lane 3), lOOng (lane 4) or 1 g (lane 5) plasmid encoding Flag-IPS-1 was transferred to ELAM1 promoter plasmid and transients. Transfetted. 36 hours after transfection, the promoter activity of the cells was analyzed by reporter gene assembly. Similar results were obtained in three independent experiments.
  • B In HEK293 cells, a plasmid encoding lOOng Flag-IPS-1 and 100 ng of IKK ⁇ KN-encoding plasmid was transiently transfected in a predetermined combination.
  • HE K293 cells were transiently transfected with plasmids encoding lOOng Flag-IPS-1FL ⁇ IPS-IN or IPS-1C and ELAM1 promoter plasmid. 36 hours after transfer, the promoter activity of the cells was analyzed by reporter gene assembly. Similar results were obtained in three independent experiments.
  • D 500 ng of IPS-1 expression plasmid was transiently transfected into HEK293 cells. After 24 hours, the IL-8 concentration of the culture supernatant was measured by ELISA. Data are expressed as the mean deviation of 3 samples from a representative experiment of 3 independent experiments.
  • F1ag-IPS-1 was transiently transfected with ELAM1 promoter plasmid into MEF cells derived from wild type (WT) or TBK1 and IKKi double-deficient mice (TBKlZlKKiKO). 36 hours after transfection, the promoter activity of the cells was analyzed by reporter gene assay. Similar results were obtained in three independent experiments.
  • FIG. 6 A diagram showing that IPS-1 meets RIG-I, FADD and RIP-1.
  • IP coimmunoprecipitated
  • IB immunoblotted with anti-Flag antibody or anti-Myc antibody
  • (B) Myk-IPS-1, Flag-FADD, Flag-RIP1, or Flag-TBK1 was transiently transferred to HEK293 Itoda vesicles in a predetermined combination. After 36 hours, the cell lysate was co-immunoprecipitated (IP) with anti-Myc antibody or anti-Flag antibody, and then immunoplotted (IB) with anti-Flag antibody or anti-Myc antibody. The asterisk indicates the Flag- RIP1 protein.
  • HEK293 cells consist of 50 ng (lanes 2, 3 and 4) of expression plasmid encoding Flag-IPS-1 and 50 ng (lanes).
  • Flag-FADD DED from 3) or lOOng (lane 4) was transiently transfected with the IFN j8 promoter plasmid. The total amount of DNA was kept constant by supplementation with empty vector. 36 hours after transfection, the promoter activity of the cells was analyzed by reporter gene assembly.
  • FIG. 7 shows knockdown of IPS-1 expression by siRNA.
  • EK293 cells Transfect EK293 cells with IPS—l (Ips—1-1—, Ips—1-2—2) targeting siRNA, and after 2 days, the cells can be transferred to RT—using Ips-1 or Gapdh specific primers.
  • HEK293 cells treated with NA were transiently transfected with the IFN ⁇ promoter plasmid. Twenty-four hours after transfection, 5 gZml of cells (lanes 2, 6, 10)
  • HEK293 cells treated with siRNA were stimulated with 10 ⁇ g Zml of poly (I: C) for 3 hours, and the expression of Ilhb, CxcllO or Gapdh in the cells was analyzed by RT-PCR.
  • E HEK293 cells treated with siRNA were infected with VSVmt or NDV. After 24 hours, IFN o; production of the culture supernatant was analyzed by ELISA. Similar results were obtained in three independent experiments.
  • Figure 8a shows the structure of the mouse IPS-1 genome (black: coding region, white: noncoding region), and Figure 8b shows that the target gene is missing. It is a figure which shows the result of having used the Southern plot method for confirmation. Southern plots were performed by electrophoresis of genomic DNA derived from mouse tail digested with EcoRI, transferred to a filter, and hybridized using the probe shown in Fig. 8a. Fig. 8c shows the result of Northern plot analysis to confirm the occurrence of inactivation of IPS-1 gene. Northern blots were extracted from RNA from wild-type (+ Z +) and IPS-deficient (one Z—) mouse embryo-derived fibroblasts (MEF), then electrophoresed and filled.
  • FIG. 8d shows the results of Western blotting to confirm that IPS-1 expression is lost even at the protein level.
  • wild-type (+ Z +), IPS-1 deficient (-Z-) MEF strength was also adjusted for lysate, immunoprecipitated with anti-IPS-1 antibody, developed on SDS-PAGE, and used as a filter. After transcription, the results were plotted by anti-IPS-1 antibody (d in Fig. 8d).
  • the figure below is a control experiment showing that the same amount of protein is used in all samples. In this experiment, whole cell lysates (WCL) were blotted with anti-ERK1Z2 antibody. I went (IB).
  • Figure 9 shows the experimental results on the reactivity to RNA viruses in IPS-1-deficient mice.
  • Figure 9a shows wild-type (+ Z +), IPS1-deficient (one Z) MEF 1 Cytokines (IFN a, IFN) in the culture supernatant after 24 hours of infection with the single-stranded RNA viruses-Eukatsuru disease virus (NDV), vesicular stomatitis virus (V SV), and Sendai virus (SeV)
  • FIG. 8 is a graph showing the results of measuring the
  • Figure 9b shows wild type (+ Z +), IPS 1 deficient (-Z) MEFs infected with NDV, VSV, and SeV, and RNA was recovered from the cells after the time shown in the figure, and IFN ⁇
  • FIG. 4 shows the results of examination of gene expression by Northern blotting using probes complementary to each mRNA of IFNa, IP-10, RANTES, and IL-6 (SEQ ID NOs: 28 to 32).
  • C in Fig. 9 shows infection of celiac myocarditis virus (EMCV) in peritoneal macrophages of wild-type (+ Z +) and IPS1-deficient (one-Z) mice, and the site force in the culture supernatant after 24 hours.
  • FIG. 6 is a diagram showing the results of measuring the in (IFN «, IFN
  • Figure 9d shows EMCV infection of wild type (+ Z +), IPS-1-deficient (-Z-) mouse abdominal macrophages, and after the time shown in the figure, RNA was recovered from the cells. It is a figure which shows the result of having examined the expression of the shown gene by RT-PCR method.
  • Figure 10 shows the experimental results of reactivity to poly I: C in IPS-1-deficient mice, where a in Fig. 10 indicates wild type (+ Z +), IPS-1 deficient type (one Z) MEF Is a diagram showing the results of measurement of the cyto force-in (IFN ⁇ , IFN
  • Figure 10b shows wild type (+ Z +), IPS-1 deficient (one Z) MEF stimulated with poly IC, and RNA was recovered from the cells after the time shown in the figure, and IFN j8, IFN ⁇ , FIG.
  • FIG. 4 shows the results of examination of gene expression by Northern blotting using probes complementary to each mRNA of IP-10 and IL-6 (SEQ ID NOs: 33 to 36).
  • C in Fig. 10 shows the cytodynamic force (IFN ⁇ , IFN) in serum obtained by intravenous injection of poly IC into heterozygous (+ Z +) and IPS-1 deficient (-Z-) mice.
  • FIG. 8 is a graph showing the results of measuring the
  • Figure 11 shows the results of an experiment on NDV infection-responsive signal transduction pathway analysis in IPS-1-deficient mice.
  • Figure 11a shows wild type (+ Z +) and IPS-1 deficient type
  • Fig. 1 shows the results of examining NF-kB activity by EMSA after extracting Z-) MEF with NDV and extracting nucleoprotein after the time indicated in the figure.
  • B in FIG. 11 is a diagram showing the results of examining dimer (dimer) formation, which is an index of IRF3 activation. Wild-type (+ Z +), IPS-1 deficient (one Z) MEFs were infected with NDV, and lysates were adjusted after the indicated time. The prepared lysate was developed on NativePAGE, transferred to a filter, and the filter was plotted with an anti-IRF3 antibody to examine dimer formation.
  • the DNA of the present invention includes (A) DNA encoding the protein IPS-1 having the amino acid sequence shown in SEQ ID NO: 2; (B) In the amino acid sequence shown in SEQ ID NO: 2, one or several DNA encoding a protein having an IPS-1 activity with amino acid deletion, substitution or addition; (C) at least 90% homology with the amino acid sequence shown in SEQ ID NO: 2 DNA encoding a protein having amino acid sequence ability and IPS-1 activity; (D) IPS-1 gene DNA consisting of the nucleotide sequence shown in SEQ ID NO: 1 or its complementary sequence ability; (E) SEQ ID NO: 1 In the nucleotide sequence shown, DNA that also has a nucleotide sequence ability in which one or several bases are deleted, substituted or added, and encodes a protein having IPS-1 activity; or (F) shown in SEQ ID NO: 1.
  • Base sequence DNA that encodes a protein that has been hybridized under stringent conditions and has IPS-1 activity; and is not particularly limited, and the protein of the present invention includes (A ) A tamper that also has the amino acid sequence shown in SEQ ID NO: 2. IPS-1; (B) In the amino acid sequence shown in SEQ ID NO: 2, one or several amino acids have been deleted, substituted, or added, and have IPS-1 activity. Or (C) a protein having at least 90% homology with the amino acid sequence shown in SEQ ID NO: 2 and having IPS-1 activity;
  • “having IPS-1 activity” means having a function of activating the type I IFN promoter.
  • amino acid sequence in which one or several amino acids are deleted, substituted or added is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to: LO, and further preferably Means an amino acid sequence in which any number of 1 to 5 amino acids have been deleted, substituted or added.
  • base sequence in which one or several bases are deleted, substituted or added is, for example, 1 to 20, preferably 1 to 15, more preferably 1 to: LO, and still more preferably. It means a base sequence in which any number of 1 to 5 bases is deleted, substituted or added.
  • DNA consisting of a base sequence in which one or several bases are deleted, substituted or added is known to those skilled in the art such as chemical synthesis, genetic engineering techniques, mutagenesis, etc. It can also be produced by any method. Specifically, the DNA consisting of the base sequence shown in SEQ ID NO: 1 is mutated using a method of contacting with a drug that is a mutagen, a method of irradiating with ultraviolet rays, a genetic engineering method, etc. Mutant DNA can be obtained by introducing. Site-directed mutagenesis, which is one of the genetic engineering methods, is a technique that can introduce a specific mutation at a specific position.
  • amino acid sequence having at least 90% homology with the amino acid sequence shown in SEQ ID NO: 2 means that the homology with the amino acid sequence shown in SEQ ID NO: 2 is 90% or more. Although not particularly limited, it is preferably 95% or more, more preferably 98% or more. It means that there is.
  • DNA that can be hybridized under stringent conditions refers to a condition in which a so-called specific hybrid is formed and a non-specific hybrid is not formed. Specifically, 50 to 70 This is a condition where DNAs having a homology of at least% are hybridized to each other, the homology is lower than that, and DNAs are not hybridized! /, Or conditions for washing a normal Southern hybridization 65.
  • C 1 X SSC, 0. 1 0/0 SDS, also ⁇ or 0. 1 X SSC, mention may be made of the conditions for Haiburidizu at a salt concentration corresponding to 0. 1% SDS.
  • the method for obtaining and preparing the IPS-1 gene DNA of the present invention is not particularly limited, and the nucleotide sequence or amino acid sequence information shown in SEQ ID NO: 1 or SEQ ID NO: 2 disclosed in the present specification. Based on the above, prepare appropriate probes and primers, and use them to screen the cDNA library where the gene is predicted to exist, or to isolate the gene of interest, or by chemical synthesis according to conventional methods Can be prepared.
  • a cDNA library is prepared according to a conventional method from heart and skeletal muscle in which a large amount of IPS-lmRNA of the present invention is expressed, and then, from this library, an appropriate property specific to the gene of the present invention is prepared.
  • the gene of the present invention can be obtained by selecting a desired clone using a simple probe.
  • separation of total RNA of these cells or tissues, separation and purification of mRNA, acquisition of cDNA and cloning thereof can be performed according to conventional methods.
  • Examples of the method for screening the gene of the present invention from a cDNA library include methods commonly used by those skilled in the art, such as the method described in the Examples, the i-throughput screening method, the method described in Molecular Cloning 2nd edition, and the like. be able to.
  • mutant gene or homologous gene of the present invention consisting of the base sequence shown in any one of (B) to (F) above has the base sequence shown in SEQ ID NO: 1 or a part thereof.
  • the DNA fragment can be isolated from other organisms by screening the DNA homolog under appropriate conditions. In addition, it can be prepared by the above-described method for producing mutant DNA.
  • the method for obtaining and preparing the protein of the present invention is not particularly limited. However, it may be either a chemically synthesized protein or a recombinant protein produced by gene recombination technology.
  • the protein of the present invention can be obtained by appropriately combining methods for isolating and purifying proteins such as cells or tissue that express such proteins.
  • the chemical synthesis method such as Fmoc method (fluorenylmethyloxycarbonyl method), tBoc method (t-ptyloxycarbonyl method), etc. Proteins can be synthesized.
  • the protein of the present invention can be synthesized using various commercially available peptide synthesizers.
  • the protein of the present invention can be prepared by introducing DNA encoding the protein into a suitable expression system.
  • preparation by a gene recombination technique that can be prepared in a large amount by a relatively easy operation is preferable.
  • the protein of the present invention is prepared by gene recombination technology, in order to recover and purify the protein from the cell culture, ammonium sulfate or ethanol precipitation, acid extraction, key-on Alternatively, a known method including cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxyapatite chromatography and lectin chromatography, preferably high performance liquid chromatography is used.
  • the column used for the affinity chromatography is, for example, a column in which an antibody such as a monoclonal antibody against the protein of the present invention is bound, or a normal peptide tag added to the protein of the present invention. By using a column in which a substance having an affinity for this peptide tag is bound, purified products of these proteins can be obtained.
  • a protein comprising an amino acid sequence having the property is appropriately prepared or obtained by a person skilled in the art based on the information of the base sequence shown in SEQ ID NO: 1 showing an example of the base sequence encoding the amino acid sequence shown in SEQ ID NO: 2.
  • a homolog of the DNA is screened under appropriate conditions from a non-human organism. Can be isolated. After cloning the full-length DNA of this homolog DNA, the protein encoded by the homolog DNA can be produced by inserting it into an expression vector and expressing it in a suitable host.
  • the fusion peptide of the present invention may be any peptide as long as the protein of the present invention is bound to a marker protein and Z or a peptide tag.
  • the marker protein is not particularly limited as long as it is a conventionally known marker protein, for example, an enzyme such as alkaline phosphatase or HRP, an Fc region of an antibody, or a fluorescent substance such as GFP.
  • peptide tags in the present invention peptide tags known in the art such as epitope tags such as HA, FLAG and Myc, and affinity tags such as GST, maltose binding protein, pyotin ⁇ ⁇ peptide and oligohistidine Can be specifically exemplified.
  • a powerful fusion protein can be prepared by a conventional method, and the purification of the peptide of the present invention using the affinity between Ni-NTA and His tag, the detection of the peptide of the present invention, and the peptide of the present invention It is also useful for quantification of antibodies and other research reagents in this field.
  • the recombinant vector of the present invention is not particularly limited as long as it contains the gene of the present invention and can express IPS-1, and the recombinant vector of the present invention is not limited.
  • Preferred expression vectors are those that can replicate autonomously in the host cell, or those that can be integrated into the host cell chromosome, and a promoter at a position where the gene of the present invention can be expressed, Those containing a control sequence such as an enhancer or a terminator can be preferably used.
  • Examples of the above expression vector include pCMV6-XL3 (OriGene Technologies Inc.), EGFP-CI (Clontech), pGBT-9 (Clontech), pcDNAI (Funakoshi), pcDM8 (Funakoshi). PAGE107 (Cytotechnology, 3,133, 1990), pCDM 8 (Nature, 329, 840, 1987), pcDNAlZAmP (Invitrogen), pREP4 (Invitrogen), pAGE103 (J.Blochem., 101, 1307) 1987), pAGE210 and the like.
  • promoters examples include cytomegalovirus (human CMV) IE (im mediate early) gene promoters, SV40 early promoters, retroviral promoters, metamouthonein promoters, heat shock promoters, SRa promoters, and the like.
  • a reporter gene such as a gene encoding a fluorescent protein can be fused downstream of the promoter.
  • Fluorescent proteins include green fluorescent protein (GFP), red fluorescent protein (CFP), blue fluorescent protein (BFP), yellow fluorescent protein (Yellow Fluorescence Protein). Protein (YFP)) and luciferase can be displayed.
  • the transformant of the present invention is not particularly limited as long as the recombinant vector of the present invention is introduced into a host cell and expresses IPS-1, and is not limited. Although transformed plants (cells, tissues, individuals), transformed bacteria, and transformed animals (cells, tissues, individuals) can be mentioned, transformed animal cells are preferred.
  • the established host cells transformed by genetic engineering include HEK293 cells, MEF cells, Vero cells, Hela cells, CHO cells, WI38 cells, BHK cells, COS-7 cells, MDCK cells, C127 cells. HKG cells, human kidney cell lines and the like.
  • CHO—K1 Choinese nomster ovary cells: ATCC CCL61
  • BHK hamster kidney cells: ATCC CCL10
  • COS—7 CV—1 Origin
  • Vero cells African green monkey kidney cells: ATCC CCL81
  • mouse myeloma cells X63-Ag8-653; P3U1
  • human lymphoblasts IM-9, ATCCCCL159
  • parent cells for producing human human hybridomas and these Examples include dhfr-deficient strains, HGPRT-deficient strains, and wabain resistant strains.
  • Methods for introducing recombinant vectors into animal cells include, for example, many standard laboratory markers such as Davis et al. (BASIC METHODS IN MOLE CULAR BIOLOGY, 1986) and Sambrook et al.
  • a recombinant gene transfer vector and a baculovirus are co-introduced into the insect cell to obtain the recombinant virus in the insect cell culture supernatant, and then the recombinant virus is further used. It can infect insect cells and express proteins (eg, Baculovirus Expression Vectors, A Laboratory Manual; and Current 'Frotocols'in' Molecular ⁇ ⁇ Biology, Bio / Technology, 6, 47 ( 1988)).
  • the baculovirus for example, an autographa californica nuclear polyhedrosis virus or the like that is a virus that infects a stag beetle insect can be used.
  • Insect cells include Spodoptera fru giperda ovary cells Sf9, Sf21 (Baculovirus Expression, Vectors, A Laboratory, Ma-Uual, Wichi, Yichi, Freeman, and Campa-1 (W.H. Freeman and Company) ⁇ New York, (1992)], HiFive (manufactured by Invitrogen), which is a nest cell of Tnchoplusia ni, and the like can be used.
  • Examples of a method for co-introducing a recombinant gene introduction vector into insect cells and the above-mentioned viral mouth virus for preparing a recombinant virus include the calcium phosphate method and the lipofussion method.
  • bacterial host cells used to produce transformed bacteria include the genus Escherichia, the genus Corynebacterium, the genus Brevibacterium, Bacillus J, Microbacterium, Serratia, Pseudomonas, Agrobacterium, Arthrobacter, Erwinia And microorganisms belonging to the genera Methylobacterium, Rhodobacter, Streptomyces, Zymomonas, etc.
  • methods for introducing a recombinant vector into a bacterial host examples thereof include a method using calcium ions and a protoplast method.
  • Examples of the antibody recognizing the protein of the present invention such as IPS-1 or a partial polypeptide thereof include monoclonal antibodies, polyclonal antibodies, chimeric antibodies, single chain antibodies, humanized antibodies and the like. Specific antibodies, which are prepared by a conventional method using the above-mentioned protein of the present invention such as IPS-1 or a partial polypeptide thereof as an antigen. The power that can be produced Among them, monoclonal antibodies are more preferred in terms of their specificity.
  • An antibody that specifically binds to the protein of the present invention such as IPS-1 or a partial polypeptide thereof such as a strong monoclonal antibody is, for example, a mutation or deletion of the protein of the present invention such as IPS-1. This is useful for diagnosing diseases caused by the disease and clarifying molecular mechanisms such as IPS-1.
  • An antibody against the protein of the present invention such as IPS-1 or a partial polypeptide thereof can be obtained by subjecting an animal (preferably a non-human) to the protein of the present invention such as IPS-1 or the like using a conventional protocol.
  • an animal preferably a non-human
  • the hybridoma method (Nature 256, 495-497), which results in antibodies produced by continuous cell line cultures, is produced by administering fragments containing partial polypeptides or epitopes.
  • the anti-human IPS-1 monoclonal antibody can be produced by culturing a hybridoma producing an anti-human IPS-1 monoclonal antibody in vivo or in vitro by a conventional method.
  • a hybridoma producing an anti-human IPS-1 monoclonal antibody in vivo or in vitro by a conventional method.
  • it in an in vivo system, it can be obtained by culturing in the abdominal cavity of a rodent, preferably a mouse or rat, and in an in vitro system, it can be obtained by culturing in an animal cell culture medium.
  • the culture medium for culturing Hypridoma in an in vitro system include cell culture media such as RPMI1640 or MEM containing antibiotics such as streptomycin and penicillin.
  • Anti-human IPS-1 monoclonal antibody-producing hybridomas for example, immunize BALBZc mice using human IPS-1 and spleen cells of the immunized mice and mouse NS-1 cells (ATCC TIB-18), Anti-HIS HPS-1 monoclonal antibody-producing hyperpridoma can be produced by cell fusion using conventional methods and screening using immunofluorescent staining patterns.
  • a method for separating and purifying such monoclonal antibodies a method generally used for protein purification can be used as a method generally used for protein purification can be used. Any method can be specifically exemplified by liquid chromatography such as utility chromatography.
  • a method for preparing a single-chain antibody (US Patent No. 4,946,778) can be applied in order to produce a single-chain antibody against the above-mentioned human IPS-1 of the present invention.
  • transgenic mice or other mammals are used, and clones expressing human IPS-1 are isolated and identified using the above-mentioned antibodies.
  • the polypeptide can also be purified by affinity chromatography.
  • An antibody against HCHP-1 is useful for clarifying the molecular mechanism of human IPS-1.
  • antibodies such as the above-mentioned anti-human IPS-1 monoclonal antibody include, for example, fluorescent substances such as FITC (fluorescein isocyanate) or tetramethylrhodamine isocyanate, 125 ⁇ , 3 2 P, 14 C, Fusion fused with radioisotopes such as 35 S or 3 H, labeled with enzymes such as alkaline phosphatase, peroxidase, / 3-galatatosidase or phycoerythrin, and fluorescent proteins such as Darin fluorescent protein (GFP)
  • the functional analysis of the human IPS-1 can be performed.
  • the immunological measurement method include RIA method, ELISA method, fluorescent antibody method, plaque method, spot method, hemagglutination method, Octaguchi-one method and the like.
  • the function of the IPS-1 gene is lost on the chromosome and the function of expressing IPS-1 expressed in the wild type is lost! / If it is a non-human animal, there is no particular limitation.
  • Preferred examples of the IPS-1 knockout non-human animal of the present invention include rodents such as mice and rats, particularly IPS-1 knockout mice in which the function of the IPS-1 gene is lost on the chromosome.
  • IPS-1 knockout mice use gene fragments obtained by PCR and other methods to screen the IPS-1 gene, and use the screened IPS-1 gene as a virus vector or plasmid.
  • IPS-1 can be subcloned using a vector or the like and identified by restriction enzyme mapping and DNA sequencing.
  • all or part of the gene encoding IPS-1 is replaced with a pMCl neo gene cassette, etc., and the diphtheria toxin A fragment (DT-A) gene or simple herpesvirus
  • a target vector is prepared by introducing a gene such as a thymidine kinase (HS V-tk) gene.
  • This prepared targeting vector is linearized, introduced into ES cells by the electroporation method (electroporation), etc., and subjected to homologous recombination.
  • G418 and Select ES cells that have undergone homologous recombination with antibiotics such as ganciclovir (GANC).
  • GANC ganciclovir
  • the confirmed ES cell clone is microinjected into the blastocyst of the mouse, and the blastocyst that returns is returned to the temporary parent mouse to produce a chimeric mouse.
  • a heterozygous mouse F1 mouse: + Z-
  • an IPS-1 knockout mouse can be obtained by crossing this heterozygous mouse. Can be produced.
  • RNA is isolated from the mouse obtained by the above-mentioned method and then Northern. There are methods such as blotting, and the presence or absence of IPS-1 expression in this mouse by Western blotting. IPS-1 knockout mice are useful for examining the effects of IPS-1 at the molecular level.
  • a method for activating the type I IFN promoter of the present invention a method for activating the type I IFN promoter using a recombinant protein expressed in a host cell transformed with the present protein or the present DNA is used.
  • a method for activating the type I IFN promoter using a recombinant protein expressed in a host cell transformed with the present protein or the present DNA is used.
  • the type I IFN it is also possible to screen for a compound that inhibits (or enhances) the promoter activation function.
  • IPS-1 is a molecule involved in the production of various site force-ins such as interferon a , it is useful for gene therapy for diseases requiring interferon ⁇ , such as viral infections.
  • the antisense strand of a gene such as IPS-1 can be used for gene therapy for SLE (systemic lupus erythematosus), which is thought to be caused by overproduction of plasmacytoid rod-like interferon a. Can be used. It can also be used in genetic studies for the treatment of viral infections and innate immune diseases.
  • SLE systemic lupus erythematosus
  • the present invention also relates to a method of using the present DNA for producing a protein having IPS-1 activity.
  • the form of use in the production of a protein having IPS-1 activity is not particularly limited, but the protein having IPS-1 activity, which is expressed as a recombinant protein by culturing host cells transformed with the present DNA, is used.
  • a method used for production can be preferably exemplified.
  • the present invention also relates to a method of using the present protein for the production of type I IFN.
  • the type of use in the production of type I IFN is not particularly limited, but preferred examples include a method for activating the type I IFN promoter using the present protein and the method used for the production of type I interferon, etc. it can.
  • the function of the IPS-1 gene is deleted on the chromosome.
  • human animals are used as model animals that have lost the antiviral response function due to the activity of type I IFN promoter, and the antiviral response function due to the activity of type I IFN promoter has been lost.
  • cytokines for example, interferon ⁇ , NDV, vesicular stomatitis virus: VSV, Sendai virus: SeV, and encephalomyocarditis virus: EMCV).
  • the above IPS-1 knockout non-human animal loses its antiviral response function due to the activity of the type I IFN promoter, so if the virus grows more actively in the mouse! / have. Therefore, the IPS-1 knockout mouse can be used as a model mouse for virus infection, and this mouse is expected to be applied to the development of antiviral drugs. In addition, even if it is a virus that is difficult to culture in vitro due to a virus response function such as interferon, the antiviral response function such as interferon is suppressed by applying this mouse-derived cell.
  • the present inventors have identified a molecule that activates the IFN ⁇ promoter by an expression cloning strategy.
  • a portion of the cDNA library cloned into the expression plasmid was subdivided into pools of 100 cDNAs, and each DNA pool was transfected into HEK293 cells along with the IFN ⁇ promoter Luc reporter plasmid. Pools that showed more than 5-fold activity compared to average activity were considered positive (Fig. La).
  • Primary screening of human placenta, spleen and peripheral blood leukocyte (PBL) cDNA libraries yielded 28 positive pools. From each positive pool, a single clone involved in IFN
  • This clone also has an open reading frame power of 540 amino acids ( Figures 2a and 2b), and homology search revealed a region similar to the CARD of the Mda-5Z helicard at the N-terminus (identical). 27%) ( Figure 2c). Comparative analysis showed homology with the CARD of the powerful protein force RIG-I ( Figure 2d). However, no similarities were found between profitable proteins and other CARD-containing proteins. Therefore, a large domain having a conserved sequence of GWXXXF () XAL ( ⁇ is hydrophobic) was named CARD-like domain (CLD). The C-terminal non-CLD region was not similar to other known proteins or domains. Based on the activity of the IFN ⁇ promoter, this protein was named IPS-1 as the IFN ⁇ promoter stimulator.
  • IPS human IPS-1
  • Fig. 2e The expression of human IPS-1 was examined by multifilament and woven Northern blot (Fig. 2e).
  • IFN ⁇ promoter activity was increased by wild-type MEFs transfected with IPS-1 expression plasmid. TBKlZlKKi double-deficient MEFs showed no activity (Fig. 3d).
  • overexpression of TBK1 activated the promoter in both wild-type and TBKlZlKKi double-deficient MEFs.
  • the expression of TBK1 is the ability to activate the IFN «4 promoter in TBKlZlKKi double-deficient cells.
  • the expression of IPS-1 is not activated, and TBK1 and IFN promoter activation is dependent on IPS-1-dependent activation. IKKi was shown to be essential ( Figure 3d).
  • the present inventors produced two IPS-1 deletion mutants, IPS-1N encoding only the N-terminal CLD and IPS-1C containing only the C-terminal non-CLD region.
  • the overexpression of IPS-IN was weaker than the full-length overexpression of the IFN
  • the expression of IPS-1C did not activate the promoter (Fig. 3e), indicating that the entire structure is required for IPS-1 mediated IFN ⁇ promoter activity.
  • HEV293 cells transfected with control or IPS-1 were infected with VSV, and the virus titer was measured 24 hours after infection. Viral titers were significantly reduced in IPS 1 expressing cells compared to control cells (FIG. 4c). These results suggested that expression of IPS-1 alone was sufficient to confer an antiviral response, probably by producing antiviral site force-ins such as type I IFN.
  • IPS-1 activates NF- ⁇ B.
  • ⁇ 293 cells were transfected with IPS-1 transiently with the ELAM1 promoter Luc construct.
  • the expression of IPS-1 led to NF- ⁇ activity in a dose-dependent manner (Fig. 5a).
  • this activation was inhibited by the co-expression of catalytic negative IKK j8 (K44A) (Fig. 5b).
  • IPS-IN nor IPS-1C activated NF- ⁇ ( Figure 5c).
  • IL-8 production was observed.
  • IPS-1 also activates the endogenous NF- ⁇ B promoter ( Figure 5d). Unlike IFNa and IFN ⁇ promoter activity, overexpression of IPS-1 induced ELAM1 activation in TBKlZlKKi double-deficient MEF (Fig. 5e). Furthermore, NF- ⁇ and IFN promoter activation by IPS-1 continued to be observed in TRAF6-deficient MEFs. These results indicate that IPS-5NF- ⁇ B activation is independent of the forces TRAF6 and TBKlZlKKi, which are IKK jS dependent.
  • IPS-1 forms a complex with RIG-I, Mda5, FADD and RIPl.
  • HEK293 cells are transferred to Myc-IPS-1 with Flag-Mda5, Flag-Mda5AC, Flag-RIG-I or Flag-RIG-IAC, and cell-soluble lysate is immunoprecipitated with anti-Myc antibody. did. Co-immunoprecipitation was observed in cells expressing both Myc-IPS-1 and Flag-RIG-I ⁇ C (FIG. 6a). Furthermore, although weak, an association was observed between Myc-IPS-l and Flag-Mda5 ⁇ C (Fig. 6a). Similar associations were observed when IPS—1 CLD was expressed (data shown! /, Na! /,). These results indicated that the IPS-1 CLD associates with the RIG-I and Mda-5 N-terminal CARD containing regions.
  • siRNA oligos were used to reduce the endogenous expression of IPS-1 and to investigate the physiological function of IPS-1.
  • Three double-stranded 21-mer RNAs targeting different parts of human IPS-lmRNA were prepared.
  • IPS-1 knockdown in Hela cells was quantified by two siRNA (Ips—1-1, Ips-1-2) force RT-PCR. Induced ( Figure 7a). Decreased expression of IPS-1 by vigorous siRNA lasted for 7 days (data not shown). Therefore, two powerful siRNAs were used for the new analysis.
  • IPS 1 is essential for RIG-I-dependent signaling. It is not essential for Trif-dependent signaling.
  • IPS-1 is essential for both antiviral responses to viral infection and for dsRNA stimulation.
  • IPS chi-mouses were born at the expected Mendelian ratio, were fertile, grew up healthy, and did not show any abnormalities until the age of 10 weeks.
  • Southern Plot analysis was performed to confirm that the homozygote (one Z) lacks the function of the IPS-1 gene.
  • the genomic DNA extracted from the tail of the mouse was confirmed by Southern plotting using EcoRI-digested gene fragments and the radiolabeled mouse genome-derived probe (SEQ ID NO: 27) shown below.
  • SEQ ID NO: 27 the radiolabeled mouse genome-derived probe shown below.
  • the wild type (+ Z +) has a single 11.3 kb band force.
  • the homozygote (— Z) has 7. Okb band force.
  • the heterozygote (+ Z) has both bands. (See Figure 8b).
  • IPS 1-deficient mice lose responsiveness to each RNA virus and can be used as virus-infected mouse models.
  • each IPS 1-deficient (one Z) mouse was reactivity of each IPS 1-deficient (one Z) mouse to each RNA virus, specifically -Eucasian disease virus (NDV), vesicular stomatitis virus (VSV), and Sendai virus (SeV) was examined.
  • wild type (+ Z +), and IPS-1 deficient (one Z) M EF are single-stranded RNA viruses-Eukatsul disease virus (NDV), vesicular stomatitis virus (VSV), and Sendai virus (SeV) was infected, and the cytodynamic in (IFN a, IFN
  • the probes are shown in the following (1) to (5).
  • ⁇ -actin was used as a positive control, and the probe described in Hemmi H et al., J. Exp. Med., 199: 1641-1650, 2004 was used. The results are shown in Fig. 9b.
  • IPS 1-deficient mice have suppressed production of various site force-in (IFN a, IFN ⁇ , IP-10, RANTES, IL 6) by the above viruses (NDV, VSV and SeV). It was confirmed that
  • peritoneal macrophages of wild-type (+ Z +), IPS-1 deficient (one Z) mice were infected with encephalomyocarditis virus (EMCV), and the cytodynamic force in the culture supernatant after 24 hours (IF Na, IFN
  • EMCV was infected to the peritoneal macrophage of wild type (+ Z +) and IPS-1 deficient type (-Z-) mice. After 0, 6, and 9 hours, RNA was collected from the cells, and IFN j8 The gene expression of IFNa, IP-10, RNATES, and IL-6 was examined by RT-PCR.
  • ⁇ -actin As a positive control, ⁇ -actin was used. The result is shown in Fig. 9d. From Fig. 9 c and d, it was confirmed that IPS-1 deficient mice were able to suppress the production of various site force-in (I FN a, IFN ⁇ , IP-10, RANTES, IL-6) by EMCV.
  • IPS-1-deficient mice have lost the antiviral response function due to the activation of the type I IFN promoter, and the property that the virus proliferates more actively in the mice. have. Therefore, it became clear that IPS-1-deficient (one Z-) mice can be used as model mice for virus infection.
  • IPS-1 deficient (-Z-) mice were administered poly i: c, and various site force levels (IFN a, IFN jS, IP-10, And IL 6) production was examined.
  • IFN a site force levels
  • IFN jS site force levels
  • IFN jS site force levels
  • IFN jS site force levels
  • IPS-1 deficient mice produced various types of site force-in (IFN ⁇ , IFN j8, IP-10, IL 6) induced by poly I: C. was confirmed to be suppressed. These results support that IPS-1 deficient (one Z) mouse force can be used as a model mouse for virus infection.
  • the present inventors analyzed the signal transduction pathway of the viral infection response in IPS-1-deficient (1-Z-) mice.
  • wild type (+ Z +), IPS-1 deficient type (one Z) MF was infected with NDV, and after 0, 10, 20 hours, nucleoprotein was extracted, and NF-kB activation was activated by EMSA method. investigated. Expression of NF- ⁇ B observed in IPS-1 wild type (+ Z +) It was not observed in IPS-1 deficient type (one Z) (a in FIG. 11).
  • wild type (+ Z +), IPS 1 deficient (one Z) MEFs were infected with NDV, and lysates were adjusted 0, 6, and 8 hours later.
  • the prepared lysate was developed on NativePAGE, transferred to a filter, and the filter was blotted with an anti-IRF3 antibody to examine dimer formation.
  • IRF3 anti-IRF3 antibody to examine dimer formation.
  • dimer formation was not observed in the IPS 1 deficient type (one Z-) (b in FIG. 11).
  • IPS-1 NDV infection response signal transduction can produce type I IFNs or express IFN-inducible genes via NF-kappa or IRF 3 activity It was suggested that this induces an antiviral response. [0065] [Materials and Methods]
  • E. coli DH5 a was transformed with plasmid DNA cloned from human placenta, spleen or PBL cDNA library into pCMV6-XL3 (OriGen Technologies Inc.), and LB at a density of up to 100 colonies per plate. Agar ampicillin plates were seeded. -After incubation, replica plates were prepared using a nitrocellulose filter membrane. Colonies on the primary transformation plate were curbed and plasmid DNA was prepared using QIAprep 8 Miniprep Kit (QIAGEN) and used as a cDNA pool.
  • QIAprep 8 Miniprep Kit QIAGEN
  • IPS-l-pCMV6-XL3 obtained by screening as a template
  • PCR [from IPS-1, IPS-lN (aa 1-117) and IPS-1C (aa 118-540) was amplified and pFLAG- Ligated to CMV2 (Sigma) or pEF-BOS, each flag labeled
  • Human IRF3 and IRF7 were obtained by RT-PCR and ligated to pEF-BOS.
  • IKK jS K44A, TBK1 and Trif constructs have been described in the literature (J Immunol. 171, 4304-4310, 2003).
  • Human F ADD DED (aa 1-85) amplified by RT-PCR was amplified by RT-PCT and ligated to pFLAG-CMV2.
  • Human RIG-I, RIG-lAC (aa 1-604), Mda5, Mda5 ⁇ C (a. A 1-575) and RIP1 amplified by RT-PCT were ligated to pFLAG-CMV6 (Sigma).
  • the luciferase reporter constructs for IFN ⁇ , IFNa4, IFNa6 and ELAM1 have been described in the literature (Nat Immunol. 5, 1061-1068, 2004).
  • ISRE—Luc was obtained from Stratagene. IP-10-Luc and RANTES-Luc were provided by DT Golenbock (University of Massachusetts School of Medicine, MA).
  • HEK293 cells, Hela cells, and MEF cells are placed in a 10% incubator with 5% CO.
  • the cells were cultured in DMEM supplemented with% FCS.
  • MEK cells derived from TBKlZlKKi double-deficient mice were prepared as described in the literature (J Exp Med. 199, 1641-1650, 2004) 0 poly (I: C) (Amersham Bioscience) Fugene (Roche) And transferred to HEK293 cells.
  • Anti-Flag antibody (M2) beads and HRP-conjugated anti-Flag antibody (M2) were purchased from Sigma.
  • Anti-Myc antibody (9E10) agarose and HRP-conjugated anti-Myc antibody (9E10) were purchased from Santa Cruz.
  • VSV and VSV mutants were provided by Dr. T. Abe and Dr. Y. Matsuura (Osaka University). NDV was provided by Dr. T. Fujita (Tokyo Metropolitan Institute of Clinical Medicine).
  • HEK293 cells transiently transfected with FLAG-IPS-1 or FLAG-IRF7, or cells infected with virus were cultured for 24 hours.
  • the supernatant cytosolic IFNa was measured by ELISA (PBL Bio Lab.) According to the manufacturer's instructions.
  • E LISA of IL-8 was performed as described in the literature (J Immunol. 174, 2273-2279, 2005) 0
  • the virus yield of the culture supernatant collected from HEK293 cells infected with VSV was measured. BHK cells infected with serial dilutions of the recovered virus were covered with DMEM containing 1.0% low-melting agarose. Plaques were counted after 24 hours incubation
  • the 32 P-labeled full-length human IPS-1 probe was hybridized with a human multiple tissue northern blot (manufactured by CLONTECH), washed, and visualized by autoradiography.
  • total RNA was isolated using Trizol reagent (Invitrogen) and reverse transcribed using Superscript III reverse transcriptase (Invitrogen) according to the manufacturer's instructions. PCR was performed continuously using the following primers.
  • RNA interference A double-stranded RN A duplex consisting of a peptide was synthesized by Dharmacon research. RNA RNA oligonucleotides used to target HPS-1 are as follows.
  • HEK293 cells or Hela cells were seeded in 60 mm dishes (5 ⁇ 10 5 ) 12 hours before transfection.
  • ⁇ siRNA was transfected into HEK293 cells or Hela cells, respectively, using Lipofecta mine 2000 or 01igofectamine (Invitrogen) according to the manufacturer's instructions. Cells were used for new experiments 48 hours after transfection.
  • IPS-lmRNA knockdown was confirmed with primers of 5, -ATGCCGTTTGCTGAAGAC-3 '(SEQ ID NO: 15) and 5,-CTAGT GCAGACGCCGCCG-3' (SEQ ID NO: 16).
  • IPS-lambda mice by gene targeting Te Ing.
  • Targeting Te Ing vector for preparing the IPS gamma lambda mice pMCl- neo (Stratagene Co.) force in the neomycin ⁇ gene, replacing Ekuson 1 and Ekuson 2, Le Bae scan virus to simply as a negative selection marker
  • HSV-TT thymidine kinase
  • F1 mice were produced by crossing the chimeric mice thus obtained. Inheritance of F1 mice When the type was analyzed by PCR and Southern plotting, germline mutation introduction (germ-1ine) was confirmed, and heterozygous mice (IPS-mice) were produced.
  • IP S- mice IPS-1 gene homo-deficient mice
  • IPS-1 and IPS-1 gene that induces the production of type I IFN such as IFN ⁇ , and a drug targeting IPS-1 function Is therapeutically useful for controlling viral infections.
  • the present DNA of the present invention can be expressed in a method for producing a protein having IPS-1 activity, or in a host cell transformed with the DNA encoding IPS-1 or IPS-1 of the present invention.
  • the methods for activating the type I IFN promoter using the recombinant protein and the method for using the protein of the present invention for the production of the type I IFN are various sites including IPS-1 and IFN- ⁇ . It can provide therapeutic targets for specific regulation of force-in production and can be applied to the treatment of viral infections and innate immunity diseases.
  • type I interferon or the like can be produced by activating the type I IFN promoter. Furthermore, it can be used for screening for compounds that inhibit (or enhance) the activation function of the type I IFN promoter.
  • the method of using the IPS-1 knockout non-human animal of the present invention as a model animal in which the antiviral response function has been lost it is possible to artificially create a state in which the antiviral response function does not work. It is also possible to elucidate the virus response function in vivo, elucidate the mechanism of RNAi action, elucidate the treatment method of viral infections, and screen antiviral drugs.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

β-インターフェロン(IFNβ)等のI型IFNの産生を誘導する新規なシグナル伝達分子を及びその遺伝子を提供するものである。I型IFN誘導物質のハイスループットスクリーニングにより、新規分子IPS-1を同定した。IPS-1の過剰発現は、IRF3、IRF7及びNF-kBの活性化を介して、I型IFN及びIFN誘導性遺伝子を産生して、抗ウイルス応答を誘導した。TBK1及びIKKiは、IPS-1が媒介するI型IFNプロモーター活性化に必須であった。IPS-1の発現は、I型IFN遺伝子の内因性プロモーターを刺激した。IPS-1は、RIG-Iと会合するN末端CARD様ドメインと、FADD及びRIP1をリクルートするC末端エフェクタードメインとの2つのドメインからなる。IPS-1は、RIG-I依存性抗ウイルス応答を媒介する新規アダプタータンパク質であると考えられる。

Description

明 細 書
インターフェロン誘導分子 IPS - 1
技術分野
[0001] 本発明は、 I型インターフェロン誘導分子 IPS— 1及びそれをコードする IPS— 1遺 伝子、 IPS— 1遺伝子を発現することができる形質転換体等に関する。
[0002] また本発明は、 I型インターフェロン誘導分子 IPS— 1及びそれをコードする DNAで 形質転換した宿主細胞で発現させた組換えタンパク質を用いた I型 IFNプロモータ 一を活性化する方法や、 IPS— 1ノックアウト非ヒト動物の抗ウィルス応答機能が喪失 したモデル動物としての使用方法等に関する。
背景技術
[0003] ウィルスやバクテリア等の微生物病原体に対する自然免疫応答は、細胞発現型認 識レセプター (PRR)が、病原体関連分子パターン (PAMP)と呼ばれる侵入病原体 の特異構造を認識することによって惹起される (例えば、非特許文献 1及び 2参照)。 PAMPを認識すると、 PRRは、細胞内シグナル伝達経路を活性化し、炎症誘発性サ イト力イン及び I型 IFNの誘導と共に、適応免疫の発達に関与する榭状細胞 (DC)の 成熟を導く(例えば、非特許文献 3参照)。その中で、ウィルス感染後の I型 IFN及び I FN誘導性遺伝子の産生は、抗ウィルス自然免疫応答の中核をなしている。ウィルス の複製中に産生された二本鎖(ds) RNAは、トール様レセプター (TLR)によって PA MPとして認識される(例えば、非特許文献 4参照)。 dsRNAの TLR3への会合は、 アダプター分子 Trif (TICAM1としても知られている)のリクルートを導く(例えば、非 特許文献 5及び 6参照)。 Trifは、その後 TBK1 (NAK又は T2Kとしても知られてい る)、及び関連 IKKi (IKK ε )プロテインキナーゼをリクルートし、転写因子 IRF3及び IRF7を触媒し、核に移動させる(例えば、非特許文献 7及び 8参照)。 Trifは、 TNF レセプター結合因子 (TRAF6)及びレセプターと相互作用するタンパク質 1 (RIP1) も、直接相互作用によって集め、その後、 ΙΚΚ 依存性リン酸ィ匕を介して転写因子 の NF— κ Βファミリーを活性化し、 NF- κ Β阻害分子(I κ Bs)をプロテアソームによ つて破壊する(例えば、非特許文献 9及び 10参照)。これらの転写因子は協調して、 I 型 IFNをコードする遺伝子のプロモーターを刺激し、その結果抗ウィルス生体防御を 導く。ウィルス性一重鎖 RNA及び DNA力 TLR7及び TLR9によってそれぞれ認識 され、形質細胞様 DCによって IFN aを誘導することが立証された (例えば、非特許 文献 11〜13参照)。 TLR3と異なり、これらの TLRは、 MyD88を主要なアダプター として共有している(例えば、非特許文献 14参照)。リガンド刺激に続き、 MyD88は 、 IRAKI , TRAF6及び IRF7とシグナル複合体を形成する(例えば、非特許文献 1 5〜17参照)。 IRAKIは、 IRF7の核転移及び、 IFN αの発現を刺激する IRFキナ ーゼとして作用する (例えば、非特許文献 17参照)。
ウィルス性 dsRNAは、 TLR非依存性細胞内センサーを介して細胞を活性ィ匕すると 考えられている(例えば、非特許文献 18及び 19参照)。 TLR3が欠損している DC及 び繊維芽細胞は、細胞内への dsRNA導入後も、 I型 IFNを分泌する(例えば、非特 許文献 20参照)。この分泌には、 Trifは必須でないが、 TBK1及び IRF3は必須であ り(例えば、非特許文献 20〜22参照)、 TLR3依存性経路も、 TLR3非依存性経路 も、 TBK1に収束することを示している。最近、 RIG— Iは、細胞内 dsRNAを感知す る PRRの新 、クラスとして作用する分子として同定された (例えば、非特許文献 23 参照)。 RIG— Iは、カスパーゼをリクルートするドメイン(CARD)様モジュールを 2個 有する DExDZHbox型 RNAヘリカーゼである。ヘリカーゼドメインは、 dsRNAの認 識に関与していると考えられ、 CARDは、 IRF3、 IRF7及び NF— κ Βの活性化を導 くダウンストリームシグナル伝達の開始に必須である(例えば、非特許文献 23参照)。 RIG— I欠損マウスは、水疱性口内炎ウィルス (VSV)、ニューカッスル病ウィルス(N DV)及びセンダイウィルス (SeV)の感染に対して、一貫して I型 IFNを産生しなかつ た (例えば、非特許文献 24参照)。さらに、ウィルス感染に応答した IRF3及び NF— κ Bの活性ィ匕は、 RIG— I欠損細胞で障害されていた。したがって、 RIG— Iは、イン ビボの抗ウィルス応答に必須である。 Mda— 5Zヘリカード(Helicard)は、 RIG— Iに 類似した構造を有し、抗ウィルス応答の媒介に関与している (例えば、非特許文献 2 5及び 26参照)。これらのへリカーゼは共同で、ウィルス感染を感知する細胞内セン サ一の新たなファミリーを構成している。さらに最近、 Fas関連デスドメイン (FADD) 欠損細胞で、細胞内 dsRNA刺激に応答した I型 IFNの産生が障害されることが立証 され、 FADD欠損細胞は、ウィルス感染に対し感受性があると考えられている(例え ば、非特許文献 27参照)。さらに、細胞内で dsRNAが媒介する IFN誘導には、 RIP 1が必須である(例えば、非特許文献 27参照)。 FADD及び RIP 1がシグナル伝達複 合体を形成することが立証されたので、これらの観察結果は、 FADD及び RIP1が、 dsRNA依存性のシグナル伝達の主要な構成要素であることを示唆して 、る。しかし 、 RIG— Iによる dsRNAの認識力 どのように FADDZRIP1依存性及び TBK1依存 性の I型 IFN誘導を導くのか明らかでなかった。
非特許文献 1: Annu Rev Immunol.20, 197-216, 2002
非特許文献 2 :Annu Rev Immunol. 21,335-376, 2003
非特許文献 3 : Nat Rev Immunol. 4, 499-511, 2004
非特許文献 4: Nature 413, 732-738. (2001).
非特許文献 5 : J Immunol. 169, 6668-6672, 2002
非特許文献 6 : Nat Immunol. 4, 161-167, 2003
非特許文献 7 : Science 300, 1148-1151,2003; 8.
非特許文献 8 : Nat Immunol. 4, 491-496, 2003
非特許文献 9 : J Immunol. 171, 4304-4310, 2003;
非特許文献 10 : Nat Immunol 5, 503-507, 2004
非特許文献 11 : Science 303, 1526-1529, 2004
非特許文献 12 : Science 303, 1529-1531,2004
非特許文献 13 : J Immunol. 170, 3059-3064, 2003
非特許文献 14: Int Immunol. 14, 1225-1231, 2002
非特許文献 15 : Nat Immunol. 5, 1061-1068, 2004
非特許文献 16 : Proc Natl Acad Sci USA. 101, 15416-15421, 2004
非特許文献 17 : J Exp Med. 201, 915-923, 2005
非特許文献 18 : Science 301, 640-643, 2003
非特許文献 19 : Nat Immunol. 4, 1223-1229, 2003
非特許文献 20 : J Exp Med. 199, 1641-1650, 2004
非特許文献 21 :J Exp Med. 199, 1651-1658, 2004 非特許文献 22 : Proc Natl Acad Sci USA 101, 233-238, 2004
非特許文献 23 : Nat Immunol. 5, 730-737, 2004
非特許文献 24: Immunity (2005) in press
非特許文献 25 : Curr Biol. 12, 838-843, 2002
非特許文献 26 : Proc Natl Acad Sci USA. 101, 17264-17269, 2004
非特許文献 27 : Nature 432, 401-405, 2004
発明の開示
発明が解決しょうとする課題
[0006] 本発明の課題は、 13—インターフェロン (IFN β )等の I型 IFNの産生を誘導する新 規なシグナル伝達分子及びその遺伝子を提供することにある。
課題を解決するための手段
[0007] 本発明者らは、 I型 IFN誘導物質のハイスループットスクリーニングにより、 IPS— 1 と命名した新規分子を同定した。 IPS— 1の過剰発現は、 IRF3、 IRF7及び NF— kB の活性化を介して、 I型 IFN及び IFN誘導性遺伝子を産生して、抗ウィルス応答を誘 導した。 TBK1及び IKKiは、 IPS— 1が媒介する I型 IFNプロモーター活性ィ匕に必須 であった。さらに、 IPS— 1の発現は、 I型 IFN遺伝子の内因性プロモーターを刺激し た。 IPS— 1は、 RIG— Iと会合する N末端 CARD様ドメインと、 FADD及び RIP1をリ クルートする C末端エフェクタードメインとの 2つのドメインからなる。 siRNAによる IPS 1のノックダウンにより、 dsRNA刺激に対する抗ウィルス応答とウィルス感染が減少 した。したがって、 IPS— 1は、 RIG— I依存性抗ウィルス応答を媒介する新規ァダプ タータンパク質であると考えられる。
[0008] また、 RIG— Iは、ウィルス性 dsRNAを感知する TLR3非依存性の細胞内センサー であるとされてきた(Nat Immunol. 5, 730-737, 2004参照)。 RIG— I欠損マウスは、 V SV、 NDV、及び SeV感染後に I型 IFNの誘導が障害され(Immunity, 2005参照)、 R IG—Iがこれらのウィルスを感知する唯一のインビボのセンサーであることを示した。
RIG— Iの類縁体である、 Mda5Zヘリカードは、ウィルス認識にも関与している(Proc Natl Acad Sci U S A. 101, 17264-17269, 2004) 0 RIG— Iも Mda5/ヘリカードも、 I RF3、 IRF7及び NF— κ Bの活性化を導くダウンストリームシグナル伝達の開始に必 須である、 CARD様モジュールを 2個有している。 RIG— I及び Mda5/ヘリカードは 、類似した CARD様モジュールを含むシグナル伝達アダプターを用いることが示唆さ れた。 IPS— 1が、これらのタンパク質との相互作用を媒介する、 MdaZヘリカード及 び RIG— Iと相同性のある CARD様ドメインを有することを見い出したことは、非常に 興味深い。 TBK1及び IKKiの両方が欠損している細胞は、細胞内 dsRNA刺激ゃゥ ィルス感染に応答して、 IRF3活性化も、 IFN β産生もしなかった (J Exp Med. 199, 1641-1650, 2004; J Exp Med. 199, 1651-1658, 2004; Proc Natl Acad Sci US A 101 , 233-238, 2004) oさらに、 IPS— lは、 TBK— 1及び IKKiが欠損している細胞で、 IF Ν α及び IFN j8プロモーターを活性化しなかった。したがって、 IPS— 1は、 RIG— I と Mda5/ヘリカードとを、 TBK1及び IKKiを活性ィ匕するダウンストリーム分子に結 合するアダプタ一として作用しうる。 RIG— IACの過剰発現は、 IFN βプロモーター の恒常的な活性化を導くが、全長 RIG -Iがプロモーターを活性ィ匕しないことは、以 前に報告されている(Nat Immunol. 5, 730-737, 2004)。この観察結果は、 RIG—Iの C末端領域が、ダウンストリームエフェクター分子との相互作用を防止する制御機能 を有することを示唆している。 IPS— 1は、常に RIG— IACと結合する力 全長 RIG —Iとは結合しない。したがって、 IPS— 1は、刺激されていない状態では、 RIG— Iと 結合しないが、刺激後は、 RIG— Iと複合体を形成し、シグナル伝達を開始すると考 えられる。
最近、本来デスレセプターの TNFレセプターファミリーのシグナル伝達分子として 同定されている FADD及び RIP1が、細胞内 dsRNAが媒介する機能に参画すること が示された(Nature 432, 401-405, 2004)。免疫共沈澱分析で、 IPS— 1は TBK1と 直接会合しなカゝつたが、その C末端領域は、 FADD及び RIP1と相互作用するようで ある。これらの観察結果は、 IPS— 1はウィルス感染時に C末端エフェクタードメインを 介して FADD及び RIP1をリクルートし、 TBK1及び IKKi依存性 IRF3リン酸化を惹 起することを示唆した。一方、 IPS— 1の過剰発現又はウィルス感染に応答した NF— κ Bの活性ィ匕は、 TBK1及び IKKi欠損細胞で、正常であった。同時に、発現が NF κ B依存性である IL 6のウィルス誘導力 これらの細胞で観察された。反対に、 F ADD欠損細胞は、ウィルス感染時に、 IL 6を産生せず(Nature 432, 401-405, 200 4)、 FADDの過剰発現は、 TBKlZlKKi二重欠損細胞においても、 NF— κ Βプロ モーターを活性ィ匕した (非公開データ)。したがって、 RIG— I依存性の NF— κ B活 性化は、 TBK1とは独立して、 IPS— 1と F ADDのダウンストリームで起こりうる力 IK Κ β活性ィ匕を導く分子メカニズムは明らかになっていない。
[0010] 多くのウィルス力 IFN誘導を拮抗する特異的タンパク質をコードするようである。
例えば、ヒト RIG— Iは、 C型肝炎ウィルス (HCV) RNAが誘導する IRF3活性ィ匕に関 与している(J Virol. 79, 2689-2699, 2005; J Virol. 79, 3969-3978, 2005)。しかし、 H CVの NS3Z4プロテアーゼは IRF3リン酸化の抑制に関与し、 RNAが誘導する IFN 産生をブロックする。パラミキソウィルスの Vタンパク質は、 Mda— 5と会合し、ダウンス トリームのシグナル伝達をブロックし、 IFN誘導を阻害することが示されている(Proc N atl Acad Sci U S A. 101 , 17264-17269, 2004)。したがって、多くのウィルスタンパク 質力 分解又は FADD又は RIP1等のダウンストリームシグナル伝達分子のリクルー トを防止するために、 IPS— 1が媒介するシグナル伝達経路を標的にすることによつ て拮抗しうる。さらに、細胞内へのグラム陽性菌、リステリア菌 (LM)の感染が、 TBK 1依存的に、そして TLR非依存的に I型 IFNを誘導するようである (J Immunol. 173, 7416-7425, 2004; Jlmmunol. 174, 1602-1607, 2005)。 LMに応答した IFN誘導を惹 起する細胞質レセプターはまだ同定されていないが、 IPS— 1は、この細胞内バクテ リアによって IFN誘導に関与している可能性がある。 IPS— 1が、新たに同定された 細胞質 PRRの RIG— I及び Mda5Zヘリカードファミリーのダウンストリームで、抗ウイ ルス自然免疫応答を誘導するアダプター分子として作用することを明らかにした。
[0011] すなわち本発明は、(l) (a)配列番号 2に示されるアミノ酸配列からなるタンパク質又 は (b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列カゝらなり、かつ IPS - 1活性を有するタンパク質; をコードする DNAや、(2)配列番号 2に示されるアミノ酸配列と少なくとも 90%以上 の相同性を有するアミノ酸配列からなり、かつ IPS— 1活性を有するタンパク質をコー ドする DNAや、 (3)配列番号 1に示される塩基配列若しくはその相補的配列力 な る DNAや、(4)配列番号 1に示される塩基配列において、 1若しくは数個の塩基が 欠失、置換若しくは付加された塩基配列からなり、かつ IPS— 1活性を有するタンパク 質をコードする DNAや、(5)前記(2)記載の DNAとストリンジェントな条件下でハイ ブリダィズし、かつ IPS— 1活性を有するタンパク質をコードする DNA (これら DNAを 総称して「本件 DNA」と 、うことがある)に関する。
[0012] また本発明は、(6)配列番号 2に示されるアミノ酸配列からなるタンパク質や、 (7) 配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、置換 若しくは付加されたアミノ酸配列力もなり、かつ IPS— 1活性を有するタンパク質や、( 8)配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するァミノ 酸配列からなり、かつ IPS— 1活性を有するタンパク質や、(9)組換えタンパク質であ ることを特徴とする前記(6)〜(8)の ヽずれか記載のタンパク質に関する(これらタン ノ ク質を総称して「本件タンパク質」と ヽぅことがある)。
[0013] また本発明は、(10)前記(6)〜(9)のいずれか記載のタンパク質と、マーカータン ノ ク質及び Z又はペプチドタグとを結合させた融合タンパク質又は融合ペプチドや、 (11)前記(1)〜(5)の!、ずれか記載の DNAを含み、かつ IPS— 1を発現することが できる組換えベクターや、( 12)組換えプラスミドベクターである前記(11)記載の組換 えベクターや、(13)さらに、レポーター遺伝子を発現することができることを特徴とす る前記(11)又は(12)記載の組換えベクターや、(14)レポーター遺伝子が、ホタル ルシフェラーゼ遺伝子であることを特徴とする前記(11)又は(12)記載の組換えべク ターや、( 15)前記(11)〜( 14)のいずれか記載の組換えベクターが導入され、かつ IPS— 1を発現する形質転換体に関する。
[0014] 本発明はまた、(16) IPS— 1遺伝子を有する組換えベクターによって形質転換され た形質転換体や、(17)形質転換体が、哺乳類細胞由来であることを特徴とする前記 (15)又は(16)記載の形質転換体や、(18)哺乳類細胞が、 HEK293細胞、 Hela 細胞又は MEF細胞である前記(17)に記載の形質転換体や、 (19)前記(6)〜(9) の!、ずれか記載のタンパク質又はその部分ポリペプチドを認識する抗体や、(20)モ ノクローナル抗体であることを特徴とする前記(19)記載の抗体や、(21) IPS— 1遺 伝子の機能が染色体上で欠損し、野生型にぉ 、て発現される IPS— 1を発現する機 能が失われて 、ることを特徴とする IPS - 1ノックアウト非ヒト動物や、(22)げっ歯類 動物であることを特徴とする前記(21)記載の IPS— 1ノックアウト非ヒト動物や、(23) げっ歯類動物力 マウスであることを特徴とする前記(22)記載の IPS— 1ノックアウト 非ヒト動物に関する。
さらに本発明は、(24) (a)配列番号 2に示されるアミノ酸配列からなるタンパク質を コードする DNA、 (b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個の アミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ IPS— 1活性を 有するタンパク質をコードする DNA、 (c)配列番号 2に示されるアミノ酸配列と少なく とも 90%以上の相同性を有するアミノ酸配列からなり、かつ IPS— 1活性を有するタ ンパク質をコードする DNA、 (d)配列番号 1に示される塩基配列からなる DNA、 (e) 配列番号 1に示される塩基配列において、 1若しくは数個の塩基が欠失、置換若しく は付加された塩基配列からなり、かつ IPS— 1活性を有するタンパク質をコードする D NA、 (f)配列番号 1に示される塩基配列力 なる DNAとストリンジ ントな条件下で ハイブリダィズし、かつ IPS— 1活性を有するタンパク質をコードする DNA;のいずれ か記載の DNAを、 IPS— 1活性を有するタンパク質の製造に使用する方法や、 (25) (a)配列番号 2に示されるアミノ酸配列からなるタンパク質、 (b)配列番号 2に示される アミノ酸配列において、 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたァ ミノ酸配列力 なり、かつ IPS— 1活性を有するタンパク質、(c)配列番号 2に示される アミノ酸配列と少なくとも 90%以上の相同性を有するアミノ酸配列力 なり、かつ IPS 1活性を有するタンパク質;の 、ずれか記載のタンパク質を用いて、 I型 IFNプロモ 一ターを活性化する方法や、(26)タンパク質が、(a)配列番号 2に示されるアミノ酸 配列からなるタンパク質をコードする DNA、 (b)配列番号 2に示されるアミノ酸配列に おいて、 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列から なり、かつ IPS— 1活性を有するタンパク質をコードする DNA、 (c)配列番号 2に示さ れるアミノ酸配列と少なくとも 90%以上の相同性を有するアミノ酸配列力 なり、かつ I PS 1活性を有するタンパク質をコードする DNA、 (d)配列番号 1に示される塩基配 列からなる DNA、 (e)配列番号 1に示される塩基配列において、 1若しくは数個の塩 基が欠失、置換若しくは付加された塩基配列からなり、かつ IPS— 1活性を有するタ ンパク質をコードする DNA、 (f)配列番号 1に示される塩基配列からなる DNAとストリ ンジェントな条件下でノヽイブリダィズし、かつ IPS— 1活性を有するタンパク質をコード する DNA;の ヽずれか記載 DNAで形質転換した宿主細胞で発現させた組換えタン ノ ク質であることを特徴とする上記(25)記載の IFN βプロモーターを活性ィ匕する方 法や、(27) (a)配列番号 2に示されるアミノ酸配列からなるタンパク質、(b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、置換若しくは付 カロされたアミノ酸配列力もなり、かつ IPS— 1活性を有するタンパク質、(c)配列番号 2 に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するアミノ酸配列力 なり 、かつ IPS— 1活性を有するタンパク質;のいずれか記載のタンパク質を、 I型 IFNの 製造に使用する方法や、(28)タンパク質が、(a)配列番号 2に示されるアミノ酸配列 力もなるタンパク質をコードする DNA、(b)配列番号 2に示されるアミノ酸配列におい て、 1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、 かつ IPS— 1活性を有するタンパク質をコードする DNA、(c)配列番号 2に示される アミノ酸配列と少なくとも 90%以上の相同性を有するアミノ酸配列力 なり、かつ IPS - 1活性を有するタンパク質をコードする DNA、 (d)配列番号 1に示される塩基配列 力もなる DNA、(e)配列番号 1に示される塩基配列において、 1若しくは数個の塩基 が欠失、置換若しくは付加された塩基配列からなり、かつ IPS— 1活性を有するタン パク質をコードする DNA、(f)配列番号 1に示される塩基配列からなる DNAとストリン ジェントな条件下でハイブリダィズし、かつ IPS— 1活性を有するタンパク質をコード する DNA;の ヽずれか記載の DNAで形質転換した宿主細胞で発現させた組換えタ ンパク質であることを特徴とする上記(27)記載の使用する方法や、(29) IPS— 1遺 伝子の機能を染色体上で欠損させた IPS— 1ノックアウト非ヒト動物の、 I型 IFNプロ モーターの活性ィ匕による抗ウィルス応答機能が喪失したモデル動物としての使用方 法や、(30)非ヒト動物力 マウスであることを特徴とする上記(29)記載の抗ウィルス 応答機能が喪失したモデル動物としての使用方法に関する。
図面の簡単な説明
[図 1]IFN |8プロモーターのァクチべ一ターの同定結果を示す図である。(a)ヒト胎盤 、脾臓、又は PBLの cDNA発現ライブラリーの一部を、 100個までの cDNA複合体( complexity)のプールに細分した。各プールからのプラスミド DNAを、 HEK293細胞 に、 IFN プロモーターのレポーターコンストラクトとトランスフエタトし、レポーター遺 伝子アツセィで分析した。平均的な活性より、活性化が 5倍以上のときに、プールを 陽性とした。陽性プールの同定例を示す。(b) IFN |8活性ィ匕に関与する単一のクロ 一ンを単離するために、(a)で示すプール 34のレプリカプレート由来のコロニーを選 択し、プラスミドを回収した。力かるプラスミドを、 HEK293細胞に IFN jSプロモータ 一のレポーターコンストラクトとトランスフエタトし、レポーターアツセィでプロモーター 活性化能を分析した。陽性クローン (クローン 3)をシークェンシングし、 BLASTサー チにより特徴づけた。
[図 2]IPS— 1の構造と発現に関する図である。(a)スクリーニングによって単離したク ローンの概略図である。(b)ヒト IPS— 1の予測されるアミノ酸配列を示す図である。 (c ) tHPS— 1の概略図である。 IPS— 1の N末端 CARD様ドメインを、黒い四角で示し た。 (d)ヒト IPS— 1、ヒト Mda5、マウス Mda5、ヒト RIG— I及びマウス RIG— Iの CAR D様ドメインのァライメントを示す図である。少なくとも 3つの分子で保存されたアミノ酸 残基を赤で示した。 (e)各種ヒト組織におけるヒト IPS - 1RNAの発現を示す図である 。ラジオ標識したヒ HPS— 1プローブを、多組織ノーザン(MTN)ブロットでハイブリ ダイズした。
[図 3]IRF3の活性化、及び IPS— 1による IFN誘導性遺伝子の誘導を示す図である
。(a) HEK293細胞に、 lng (レーン 2)、 lOng (レーン 3)、 lOOng (レーン 4)の Flag
— IPS— 1をコードする発現プラスミドを、 IFN β、 IP— 10、 RANTES、 ISREの各プ 口モーターをコードするレポーターコンストラクトとトランジェントにトランスフエタトした。 トランスフエクシヨンの 36時間後、細胞のプロモーター活性を、レポーター遺伝子アツ セィで分析した。独立した 3度の実験で、同様の結果を得た。(b) HEK293細胞に、 lng (レーン 2、 7)、 lOng (レーン 3、 8)、 lOOng (レーン 4、 9)、又は 1 μ g (レーン 5、 10)の Flag— IPS - 1及びコントロール(レーン 1〜5)、又は 5ngの Flag— IPS - 7 ( レーン 6〜: L0)を、 IFN a 4 (左)又は IFN a 6 (右)プロモーターレポータープラスミド とトランジェントにコトランスフエタトした。トランスフエクシヨンの 36時間後、細胞のプロ モーター活性を、レポーター遺伝子アツセィにより分析した。独立した 3度の実験で、 同様の結果を得た。(c) HEK293細胞に、 FLAG標識 IPS— 1及び Myc標識 IRF3 (上)又は Myc標識 IRF7 (下)を所定の組合せでトランジェントにトランスフエタトした。 36時間後、細胞可溶化液を、抗 Myc抗体又は抗 FLAG抗体 (IP)で免疫沈降し、そ の後、抗 FLAG抗体又は抗 Myc抗体 (WB)で免疫プロットした。 (d)野生型 (WT)又 は TBK1及び IKKi二重欠損マウス(TBKlZlKKi KO)由来の MEF細胞に、 FL AG— IPS— 1又は Flag— TBK1を、 IFN β又は IFN aプロモータープラスミドと指 示どおりにトランジェントにトランスフエタトした。トランスフエクシヨンの 36時間後、細胞 のプロモーター活性を、レポーター遺伝子アツセィにより分析した。独立した 3度の実 験で、同様の結果を得た。(e) IPS— 1欠失変異体の概略図(上)。 HEK293細胞に 、 lOng (レーン 2)又は lOOng (レーン 3、 5、 7)の Flag— IPS— 1FL (レーン 2、 3)、 I PS— IN (レーン 4、 5)又は IPS— 1C (レーン 6、 7)をコードする発現プラスミドを、 IF N βプロモータープラスミドとトランジェントにトランスフエタトした。トランスフエクシヨン の 36時間後、細胞のプロモーター活性を、レポーター遺伝子アツセィにより分析した 。独立した 3度の実験で、同様の結果を得た。
[図 4]IPS— 1が、抗ウィルス応答を誘導することを示す図である。(a) HEK293細胞 に、コントロール又は Flag— IPS— 1をトランジェントにトランスフエタトした。全 RNAを 、トランスフエクシヨンの 24時間後に調製し、 IFN jS (Ilhb)、 IP— 10 (CxcllO)、 GAR G16 (Ifitl)又は GAPDH (Gapdh)の発現を、 RT—PCRにより分析した。(b) HEK2 93細胞に、 lOOngの FLAG— IPS— 1と lOOngの Myc— IRF7を所定の組合せでト ランジェントにトランスフエタトした。 24時間後、細胞上清の IFN o;濃度を ELISAで測 定した。 N. D.は、検出されず、を表す。データは、独立した 3度の実験のうち、代表 的な実験の 3個のサンプル平均値士標準偏差として表す。(c)コントロール又は Flag — IPS— 1をトランスフエタトした HEK293細胞に、 VSV (moi= l . 0、 0. 1)を感染し た。 24時間後、ウィルス力価を測定した。
[図 5]IPS— 1による NF— κ Β活性化及び IL— 8誘導を示す図である。 (a) HEK293 細胞に、 lng (レーン 2)、 10ng (レーン 3)、 lOOng (レーン 4)又は 1 g (レーン 5)の Flag— IPS— 1をコードするプラスミドを、 ELAM1プロモータープラスミドとトランジェ ントにトランスフエタトした。トランスフエクシヨンの 36時間後、細胞のプロモーター活性 を、レポーター遺伝子アツセィにより分析した。独立した 3度の実験で、同様の結果を 得た。(b) HEK293細胞に、 lOOngの Flag— IPS— 1をコードするプラスミドと、 100 ngの IKK β KNをコードするプラスミドとを所定の組合せでトランジェントにトランスフ ェタトした。トランスフエクシヨンの 36時間後、細胞のプロモーター活性を、レポーター 遺伝子アツセィにより分析した。独立した 3度の実験で、同様の結果を得た。 (c) HE K293細胞を、 lOOngの Flag— IPS— 1FLゝ IPS— IN又は IPS— 1Cをコードするプ ラスミドを、 ELAM1プロモータープラスミドとトランジェントにトランスフエタトした。トラ ンスフエクシヨンの 36時間後、細胞のプロモーター活性を、レポーター遺伝子アツセ ィにより分析した。独立した 3度の実験で、同様の結果を得た。(d) HEK293細胞に 、 500ngの IPS— 1の発現プラスミドをトランジェントにトランスフエタトした。 24時間後 、培養上清の IL— 8濃度を、 ELISAで測定した。データは、独立した 3度の実験のう ち、代表的な実験の 3個のサンプル平均値士標準偏差として表す。(e)野生型 (WT )又は TBK1及び IKKi二重欠損マウス(TBKlZlKKiKO)由来の MEF細胞に、 F1 ag— IPS— 1を、 ELAM1プロモータープラスミドとトランジェントにトランスフエタトした 。トランスフエクシヨンの 36時間後、細胞のプロモーター活性を、レポーター遺伝子ァ ッセィにより分析した。独立した 3度の実験で、同様の結果を得た。
[図 6]IPS— 1が RIG— I、 FADD及び RIP 1と会合することを示す図である。 (a) HEK 293細胞 100万個に、 Myc— IPS— 1、 Flag— Mda5全長(FL)ゝ Flag— Mda5AC 、 Flag— RIG— IGFL又は Flag— RIG— IACをコードするプラスミドを所定の組合 せでトランジェントにトランスフエタトした。 36時間後、細胞可溶化液を抗 Myc抗体又 は抗 Flag抗体で免疫共沈降 (IP)し、その後、抗 Flag抗体又は抗 Myc抗体で免疫 ブロット(IB)した。(b) HEK293糸田胞に、 Myc— IPS— 1、 Flag -FADD, Flag— R IP1又は Flag— TBK1を所定の組合せでトランジェントにトランスフエタトした。 36時 間後、細胞可溶化液を抗 Myc抗体又は抗 Flag抗体で免疫共沈降 (IP)し、その後、 抗 Flag抗体又は抗 Myc抗体で免疫プロット(IB)した。米印は、 Flag— RIP1タンパ ク質を示す。(c) HEK293細胞に、 Flag— FADD、 Myc— IPS— 1FLゝ Myc -IPS - IN又は Myc— IPS— 1Cを所定の組合せでトランジェントにトランスフエタトした。 3 6時間後、細胞可溶化液を抗 Myc抗体又は抗 Flag抗体で共免疫沈降 (IP)し、その 後、抗 Flag抗体又は抗 Myc抗体で免疫プロット (IB)した。(d) HEK293細胞は、 50 ng (レーン 2、 3、 4)の Flag— IPS— 1をコードする発現プラスミド及び、 50ng (レーン 3)又は lOOng (レーン 4)の Flag— FADD DEDを、 IFN j8プロモータープラスミド とトランジェントにトランスフエタトした。 DNAの全量を、空ベクターの補充により一定 に維持した。トランスフエクシヨンの 36時間後、細胞のプロモーター活性を、レポータ 一遺伝子アツセィにより分析した。
[図 7]siRNAによる IPS - 1発現のノックダウンを示す図である。 (a) HeLa細胞又は H
EK293細胞に、 siRNAをターゲットする IPS— l (Ips— 1— 1、 Ips— 1— 2)をトラン スフエタトし、 2日後に細胞を、 Ips— 1又は Gapdhの特異的プライマーを用いて RT—
PCRで分析し、 siRNAが媒介する内因性 Ips— lmRNAの減少を確認した。(b) siR
NAで処理した HEK293細胞に、 IFN βプロモータープラスミドをトランジェントにトラ ンスフエタトした。トランスフエクシヨンの 24時間後、細胞を 5 gZml (レーン 2、 6、 10
)、 10 gZml (レーン 3、 7、 11)、又は 20 gZml (レーン 4、 8、 12)のポリ(I : C)で 刺激した。 18時間後、細胞可溶ィ匕液のルシフ ラーゼ活性を測定した。データは、 独立した 3度の実験のうち、代表的な実験の 3個のサンプル平均値士標準偏差として 表す。 (c) siRNAで処理した HEK293細胞に、 RIG— IAC又は Trif及び IFN βプ 口モータープラスミドをトランジェントにコトランスフエタトした。 36時間後、細胞可溶ィ匕 液のルシフェラーゼ活性を分析した。独立した 3度の実験で、同様の結果を得た。 (d ) siRNAで処理した HEK293細胞を、 10 μ gZmlのポリ(I: C)で 3時間刺激し、細 胞における Ilhb、 CxcllO又は Gapdhの発現を RT—PCRにより分析した。(e) siRNA で処理した HEK293細胞に、 VSVmt又は NDVを感染した。 24時間後、培養上清 の IFN o;産生を ELISAで分析した。独立した 3度の実験で、同様の結果を得た。
[図 8]図 8の aはマウス IPS— 1ゲノムの構造(黒:コーディング領域、白:ノンコーディン グ領域)を示す図であり、図 8の bは、 目的遺伝子が欠損していることを確認するため にサザンプロット法に供試した結果を示す図である。サザンプロットは、 EcoRIで消化 したマウステール由来のゲノム DNAを電気泳動後、フィルターに転写し、図 8の aで 示したプローブを用いてハイブリダィズすることにより行った。図 8の cは、 IPS— 1遺 伝子の不活性ィ匕が生起していることを確認するためのノーザンプロット分析の結果を 示す図である。ノーザンブロットは、野生型( + Z + )及び IPS欠損型(一 Z—)のマウ ス胎児由来線維芽細胞 (MEF)から、 RNAを抽出後、電気泳動にて展開し、フィル ターに転写し、フィルターを全長 IPS— 1プローブ及び j8— actinプローブを用いて ハイブリダィズすることにより行った。図 8の dは、 IPS— 1の発現がタンパクレベルでも 消失していることを確認するためのウェスタンブロットの結果を示す図である。ゥエスタ ンブロットは、野生型( + Z + )、IPS— 1欠損型(-Z-) MEF力もライセートを調整 し、抗 IPS— 1抗体で免疫沈降を行い、 SDS— PAGEにて展開させ、フィルターに転 写後、抗 IPS— 1抗体でプロットすることにより行った(図 8の d上図)。また、図下はど のサンプルでも同じ量のタンパク質を用いていることを示すコントロール実験であり、 この実験では全可溶化物(Whole cell lysates : WCL)を抗 ERK1Z2抗体でブ ロットすること〖こより行った (IB)。
[図 9]IPS— 1欠損マウスにおける各 RNAウィルスに対する反応性に関する実験結果 を示す図であり、図 9の aは、野生型( + Z + )、 IPS 1欠損型(一 Z ) MEFに 1本 鎖 RNAウィルスである-ユーカツスル病ウィルス (NDV)、水疱性口内炎ウィルス (V SV)、及びセンダイウィルス(SeV)を感染させ、 24時間後の培養上清中のサイトカイ ン (IFN a , IFN |8 , IL— 6)濃度をエライザ法により測定した結果を示す図である。 なお、アスタリスクは検出感度以下を示す。図 9の bは、野生型( + Z + )、 IPS 1欠 損型(― Z ) MEFに NDV、 VSV、 SeVを感染させ、図に示した時間後に細胞から RNAを回収し、 IFN β、 IFN a、 IP— 10、 RANTES、 IL— 6の各 mRNAに相補的 なプローブ (配列番号 28〜32)を用いて遺伝子発現をノーザンブロット法にて検討し た結果を示す図である。図 9の cは、野生型( + Z + )、 IPS 1欠損型(一 Z )マウ スの腹腔マクロファージに脳心筋炎ウィルス (EMCV)を感染させ、 24時間後の培養 上清中のサイト力イン (IFN «、 IFN |8、 IL 6)濃度をエライザ法により測定した結果 を示す図である。図 9の dは、野生型(+Z+)、IPS— 1欠損型(-Z-)マウスの腹 腔マクロファージに EMCVを感染させ、図で示した時間後、細胞より RNAを回収し、 図で示した遺伝子の発現を RT—PCR法により検討した結果を示す図である。
[図 10]IPS— 1欠損マウスにおけるポリ I: Cに対する反応性に関する実験結果を示す 図であり、図 10の aは、野生型( + Z + )、IPS— 1欠損型(一 Z ) MEFを図で示し た濃度のポリ I : Cで刺激し、 24時間後の培養上清中のサイト力イン (IFN α、 IFN |8、 IL 6)濃度をエライザ法により測定した結果を示す図である。なお、アスタリスクは検 出感度以下を示す。図 10の bは、野生型( + Z + )、 IPS— 1欠損型(一 Z ) MEF をポリ ICで刺激した、図に示した時間後に細胞から RNAを回収し、 IFN j8、 IFN α、 IP— 10、 IL—6の各 mRNAに相補的なプローブ(配列番号 33〜36)を用いて遺伝 子発現をノーザンブロット法にて検討した結果を示す図である。図 10の cは、ヘテロ 型(+Z+)、 IPS— 1欠損型(-Z-)マウスにポリ ICを静脈内注射し、計時的に採 取した血清中におけるサイト力イン (IFN α、 IFN |8、 IL 6)濃度をエライザ法により 測定した結果を示す図である。
[図 11]IPS— 1欠損マウスにおける NDV感染応答性シグナル伝達経路の解析に関 する実験結果を示す図であり、図 11の aは、野生型( + Z + )、IPS— 1欠損型(一 Z ―) MEFに NDVを感染させ、図で示した時間後に核タンパク質を抽出し、 NF-kB の活性ィ匕を EMSA法により検討した結果を示す図である。図 11の bは、 IRF3の活性 化の指標であるダイマー(二量体)形成を検討した結果を示す図である。野生型( + Z + )、 IPS— 1欠損型(一 Z ) MEFに NDVを感染させ、図で示した時間後にライ セートを調整した。調整したライセートを NativePAGEで展開後、フィルターに転写 し、フィルターを抗 IRF3抗体でプロットし、ダイマー(二量体)形成を検討した。
発明を実施するための最良の形態
本発明の DNAとしては、(A)配列番号 2に示されるアミノ酸配列力もなるタンパク質 IPS— 1をコードする DNA; (B)配列番号 2に示されるアミノ酸配列において、 1若し くは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ IPS - 1活性を有するタンパク質をコードする DNA; (C)配列番号 2に示されるアミノ酸配 列と少なくとも 90%以上の相同性を有するアミノ酸配列力 なり、かつ IPS— 1活性を 有するタンパク質をコードする DNA; (D)配列番号 1に示される塩基配列若しくはそ の相補的配列力 なる IPS— 1遺伝子 DNA; (E)配列番号 1に示される塩基配列に おいて、 1若しくは数個の塩基が欠失、置換若しくは付加された塩基配列力もなり、 かつ IPS— 1活性を有するタンパク質をコードする DNA;又は (F)配列番号 1に示さ れる塩基配列とストリンジェントな条件下でノヽイブリダィズし、かつ IPS— 1活性を有す るタンパク質をコードする DNA;の何れかの DNAであれば特に制限されず、また、 本発明のタンパク質としては、(A)配列番号 2に示されるアミノ酸配列力もなるタンパ ク質 IPS— 1 ; (B)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミ ノ酸が欠失、置換若しくは付加されたアミノ酸配列力もなり、かつ IPS— 1活性を有す るタンパク質;又は (C)配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相 同性を有するアミノ酸配列力 なり、かつ IPS - 1活性を有するタンパク質;の何れか のタンパク質であれば特に制限されず、ここで「IPS— 1活性を有する」とは、 I型 IFN プロモーターを活性ィ匕する機能を有することを意味する。
[0018] 上記「1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列」とは 、例えば 1〜20個、好ましくは 1〜15個、より好ましくは 1〜: LO個、さらに好ましくは 1 〜5個の任意の数のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列を意味す る。また、上記「1若しくは数個の塩基が欠失、置換若しくは付加された塩基配列」と は、例えば 1〜20個、好ましくは 1〜15個、より好ましくは 1〜: LO個、さらに好ましくは 1〜5個の任意の数の塩基が欠失、置換若しくは付加された塩基配列を意味する。
[0019] 例えば、これら 1若しくは数個の塩基が欠失、置換若しくは付加された塩基配列か らなる DNA (変異 DNA)は、化学合成、遺伝子工学的手法、突然変異誘発などの 当業者に既知の任意の方法により作製することもできる。具体的には、配列番号 1に 示される塩基配列からなる DNAに対し、変異原となる薬剤と接触作用させる方法、 紫外線を照射する方法、遺伝子工学的な手法等を用いて、これら DNAに変異を導 入することにより、変異 DNAを取得することができる。遺伝子工学的手法の一つであ る部位特異的変異誘発法は特定の位置に特定の変異を導入できる手法であること 力ら 用であり、 Molecular Cloning: A laboratory Mannuai, 2nd Ed.,し old Spring Ha rbor Laboratory, Cold Spring Harbor, NY., 1989.以後 "モレキュラークロー-ング第 2 fe と略す)、 Current Protocols in Molecular Biology, Supplement l〜38,John Wiley & Sons (1987-1997)等に記載の方法に準じて行うことができる。この変異 DNAを適 切な発現系を用いて発現させることにより、 1若しくは数個のアミノ酸が欠失、置換若 しくは付加されたアミノ酸配列力もなるタンパク質を得ることができる。
[0020] 上記「配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するァ ミノ酸配列」とは、配列番号 2に示されるアミノ酸配列との相同性が 90%以上であれ ば特に制限されるものではないが、好ましくは 95%以上、より好ましくは 98%以上で あることを意味する。
[0021] 上記「ストリンジェントな条件下でノヽイブリダィズする DNA」とは、 、わゆる特異的な ハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいい、具体的 には、 50〜70%以上の相同性を有する DNA同士がハイブリダィズし、それより相同 性が低 、DNA同士がハイブリダィズしな!/、条件あるいは通常のサザンハイブリダィ ゼーシヨンの洗 ヽの条件である 65。C、 1 X SSC、 0. 10/0SDS、又 ίま 0. 1 X SSC、 0. 1%SDSに相当する塩濃度でハイブリダィズする条件を挙げることができる。
[0022] 本発明の IPS— 1遺伝子 DNAの取得方法や調製方法は特に限定されるものでな ぐ本明細書中に開示した配列番号 1又は配列番号 2に示される塩基配列又はアミノ 酸配列情報に基づいて適当なプローブやプライマーを調製し、それらを用いて当該 遺伝子が存在することが予測される cDNAライブラリーをスクリーニングすることにより 目的の遺伝子を単離したり、あるいは、常法に従って化学合成により調製することが できる。
[0023] 具体的には、本発明の IPS— lmRNAが多く発現する心臓及び骨格筋より、常法 に従って cDNAライブラリーを調製し、次いで、このライブラリーから、本発明の遺伝 子に特有の適当なプローブを用いて所望クローンを選抜することにより、本発明の遺 伝子を取得することができる。また、これらの細胞又は組織力もの全 RNAの分離、 m RNAの分離や精製、 cDNAの取得とそのクローユングなどはいずれも常法に従って 実施することができる。本発明の遺伝子を cDNAライブラリーからスクリーニングする 方法は、例えば、実施例記載のノ、イスループットスクリーニング方法や、モレキュラー クロー-ング第 2版に記載の方法等、当業者により常用される方法を挙げることがで きる。
[0024] また、上記 (B)〜 (F)の 、ずれかに示される塩基配列からなる本発明の変異遺伝 子又は相同遺伝子としては、配列番号 1に示される塩基配列又はその一部を有する DNA断片を利用し、他の生物体等より、該 DNAのホモログを適当な条件下でスクリ 一-ングすることにより単離することができる。その他、前述の変異 DNAの作製方法 により調製することちできる。
[0025] 本発明のタンパク質の取得'調製方法は特に限定されず、天然由来のタンパク質 でも、化学合成したタンパク質でも、遺伝子組換え技術により作製した組み換えタン ノ ク質の何れでもよい。天然由来のタンパク質を取得する場合には、かかるタンパク 質を発現している細胞又は組織力ゝらタンパク質の単離 ·精製方法を適宜組み合わせ ることにより、本発明のタンパク質を取得することができる。化学合成によりタンパク質 を調製する場合には、例えば、 Fmoc法 (フルォレニルメチルォキシカルボ-ル法)、 tB oc法 (t—プチルォキシカルボニル法)等の化学合成法に従って本発明のタンパク質 を合成することができる。また、各種の市販のペプチド合成機を利用して本発明のタ ンパク質を合成することもできる。遺伝子組換え技術によりタンパク質を調製する場合 には、該タンパク質をコードする DNAを好適な発現系に導入することにより本発明の タンパク質を調製することができる。これらの中でも、比較的容易な操作でかつ大量 に調製することが可能な遺伝子組換え技術による調製が好ましい。
[0026] 例えば、遺伝子組換え技術によって、本発明のタンパク質を調製する場合、かかる タンパク質を細胞培養物から回収し精製するには、硫酸アンモ-ゥムまたはエタノー ル沈殿、酸抽出、ァ-オンまたはカチオン交換クロマトグラフィー、ホスホセルロース クロマトグラフィー、疎水性相互作用クロマトグラフィー、ァフィユティークロマトグラフィ 一、ハイドロキシアパタイトクロマトグラフィーおよびレクチンクロマトグラフィーを含め た公知の方法、好ましくは、高速液体クロマトグラフィーが用いられる。特に、了フィニ ティークロマトグラフィーに用いるカラムとしては、例えば、本発明のタンパク質に対す るモノクローナル抗体等の抗体を結合させたカラムや、上記本発明のタンパク質に通 常のペプチドタグを付加した場合は、このペプチドタグに親和性のある物質を結合し たカラムを用いることにより、これらのタンパク質の精製物を得ることができる。
[0027] さらに、配列番号 2に示されるアミノ酸配列において 1若しくは数個のアミノ酸が欠 失、置換若しくは付加されたアミノ酸配列からなるタンパク質、又は配列番号 2に示さ れるアミノ酸配列と 90%以上の相同性を有するアミノ酸配列からなるタンパク質は、 配列番号 2に示されるアミノ酸配列をコードする塩基配列の一例を示す配列番号 1に 示される塩基配列の情報に基づいて当業者であれば適宜調製又は取得することが できる。例えば、配列番号 1に示される塩基配列又はその一部を有する DNAをプロ ーブとしてヒト以外の生物より、該 DNAのホモログを適当な条件下でスクリーニング することにより単離することができる。このホモログ DNAの全長 DNAをクローニング 後、発現ベクターに組み込み適当な宿主で発現させることにより、該ホモログ DNAに よりコードされるタンパク質を製造することがでさる。
[0028] 本発明の融合ペプチドとしては、上記本発明のタンパク質とマーカータンパク質及 び Z又はペプチドタグとが結合して 、るものであればどのようなものでもよ 、。マーカ 一タンパク質としては、従来知られているマーカータンパク質であれば特に制限され るものではなぐ例えば、アルカリフォスファターゼ、 HRP等の酵素、抗体の Fc領域、 GFP等の蛍光物質などを具体的に挙げることができ、また本発明におけるペプチド タグとしては、 HA、 FLAG, Myc等のェピトープタグや、 GST、マルトース結合タン パク質、ピオチンィ匕ペプチド、オリゴヒスチジン等の親和性タグなどの従来知られてい るペプチドタグを具体的に例示することができる。力かる融合タンパク質は、常法によ り作製することができ、 Ni— NTAと Hisタグの親和性を利用した本発明のペプチドの 精製や、本発明のペプチドの検出や、本発明のペプチドに対する抗体の定量や、そ の他当該分野の研究用試薬としても有用である。
[0029] 本発明の組換えベクターとしては、前記本発明の遺伝子を含み、かつ IPS— 1を発 現することができる組換えベクターであれば特に制限されず、本発明の組換えべクタ 一は、本発明の遺伝子を発現ベクター、好ましくは発現プラスミドベクターに適切にィ ンテグレイトすることにより構築することができる。力かる発現ベクターとしては、宿主 細胞にぉ 、て自立複製可能であるものや、あるいは宿主細胞の染色体中へ組込み 可能であるものが好ましぐまた、本発明の遺伝子を発現できる位置にプロモーター 、ェンハンサー、ターミネータ一等の制御配列を含有しているものを好適に使用する ことができる。
[0030] 上記発現ベクターとして、例えば、 pCMV6-XL3 (OriGene Technologies Inc.社 製)、 EGFP- CI (Clontech社製)、 pGBT— 9(Clontech社製)、 pcDNAI (フナコシ社 製)、 pcDM8 (フナコシ社製)、 pAGE107 (Cytotechnology, 3,133, 1990)、 pCDM 8 (Nature, 329, 840, 1987)、 pcDNAlZAmP (Invitrogen社製)、 pREP4 (Invitroge n社製)、 pAGE103 (J.Blochem., 101, 1307,1987)、 pAGE210等を例示することが できる。また、プロモーターとしては、例えば、サイトメガロウィルス(ヒト CMV)の IE (im mediate early)遺伝子のプロモーター、 SV40の初期プロモーター、レトロウイルスの プロモーター、メタ口チォネインプロモーター、ヒートショックプロモーター、 SR aプロ モーター等を挙げることができる。さらに、プロモーターの下流に蛍光蛋白質をコード する遺伝子等のレポーター遺伝子を融合することができる。蛍光蛋白質としては、緑 色蛍光蛋白質(Green Fluorescence Protein (GFP) )、赤色蛍光蛋白質(Cyan Fluor escence Protein (CFP) )、青色蛍光蛋白質(Blue Fluorescence Protein (BFP) )、黄 色蛍光蛋白質(Yellow Fluorescence Protein (YFP) )、ルシフェラーゼ(luciferase)を ί列示することができる。
[0031] また、本発明の形質転換体としては、上記本発明の組換えベクターが宿主細胞に 導入され、かつ IPS— 1を発現する形質転換体であれば特に制限されず、形質転換 酵母、形質転換植物 (細胞、組織、個体)、形質転換細菌、形質転換動物 (細胞、組 織、個体)を挙げることができるが、形質転換動物細胞が好ましい。
[0032] 遺伝子工学により形質転換される株化された宿主細胞としては、 HEK293細胞、 MEF細胞、 Vero細胞、 Hela細胞、 CHO細胞、 WI38細胞、 BHK細胞、 COS— 7 細胞、 MDCK細胞、 C127細胞、 HKG細胞、ヒト腎細胞株等が挙げられる。具体的 には、 CHO— K1 (チャイニーズノヽムスター卵巣細胞: ATCC CCL61)、 BHK (ハム スター腎細胞: ATCC CCL10)、 COS— 7 (CV—1 Origin, SV— 40細胞: ATCC CRL1651)、 Vero細胞(アフリカミドリザル腎細胞: ATCC CCL81)等があり、更に はマウスミエローマ細胞(X63— Ag8 -653 ; P3U1)、ヒトリンパ芽球細胞(IM— 9, ATCCCCL159)、ヒトヒトハイブリドーマ作製用親細胞、ならびにこれらの dhfr欠損 株、 HGPRT欠損株、ゥァバイン耐性株等を例示することができる。動物細胞への組 み換えベクターの導入方法としては、例えば、 Davisら(BASIC METHODS IN MOLE CULAR BIOLOGY, 1986)及び Sambrookら(モレキュラークローユング第 2版)などの 多くの標準的な実験室マ-ユアルに記載される方法、例えば、リン酸カルシウムトラン スフエクシヨン、 DEAE—デキストラン媒介トランスフエクシヨン、トランスべクシヨン (tran svection)、マイクロインジェクション、カチオン性脂質媒介トランスフエクシヨン、エレクト 口ポレーシヨン、开質導入、スクレープローデイング(scrape loading),弾丸導入 (ballis tic introduction),感染等により行うことができる。 [0033] 昆虫細胞を宿主として用いる場合には、組換え遺伝子導入ベクターおよびバキュ口 ウィルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウィルスを得た後、 さらに組換えウィルスを昆虫細胞に感染させ、タンパク質を発現させることができる( 例 ば、 Baculovirus Expression Vectors, A Laboratory Manual;及びカレント 'フ—ロト コールズ'イン'モレキュラ^ ~ ·バイオロジー、 Bio/Technology, 6, 47(1988)等に記載) 。バキュロウィルスとしては、例えば、ョトウガ科昆虫に感染するウィルスであるアウト グラファ 'カリフオル-力'ヌクレア一'ポリへドロシス'ウィルス (Autographa californica n uclear polyhedrosis virus)等を用いることができる。昆虫細胞としては、 Spodoptera fru giperdaの卵巣細胞である Sf9、 Sf21〔バキュロウィルス'エクスプレッション 'ベクター ズ、ァ 'ラボラトリ一'マ-ユアル、ダブリュ一'ェイチ 'フリーマン 'アンド'カンパ-一 (W . H. Freeman and Company) ^ニュ' ~~ョ ~~ク (New York)、 (1992)]、 Tnchoplusia niの卵 巣細胞である HiFive (インビトロジェン社製)等を用いることができる。組換えウィルス を調製するための、昆虫細胞への組換え遺伝子導入ベクターと上記バキュ口ウィル スの共導入方法としては、例えば、リン酸カルシウム法又はリポフエクシヨン法等を挙 げることができる。
[0034] 形質転換細菌の作製に用いられる細菌の宿主細胞の具体例としては、エッシェリヒ ァ(Escherichia)属、コリネバタテリゥム(Corynebacterium)属、ブレビバタテリゥム(Bre vibacterium)属、ノ チラス (Bacillus J属、ミクロノくクテリゥム (Microbacterium)属、セラ チア(Serratia)属、シユードモナス(Pseudomonas)属、ァグロバタテリゥム(Agrobacteri um)属、アースロバクタ一(Arthrobacter)属、エルゥ-ァ(Erwinia)属、メチロバクテリ ゥム(Methylobacterium)属、ロドパクター(Rhodobacter)属、ストレプトミセス(Strepto myces)属、ザィモモナス(Zymomonas)属等に属する微生物を挙げることができる。細 菌宿主へ組換えベクターを導入する方法としては、例えば、カルシウムイオンを用い る方法やプロトプラスト法等を挙げることができる。
[0035] IPS— 1等の前記本発明のタンパク質又はその部分ポリペプチドを認識する抗体と しては、モノクローナル抗体、ポリクローナル抗体、キメラ抗体、一本鎖抗体、ヒト化抗 体等の免疫特異的な抗体を具体的に挙げることができ、これらは上記 IPS— 1等の 前記本発明のタンパク質又はその部分ポリペプチドを抗原として用いて常法により作 製することができる力 その中でもモノクローナル抗体がその特異性の点でより好まし V、。力かるモノクローナル抗体等の IPS - 1等の前記本発明のタンパク質又はその部 分ポリペプチドに特異的に結合する抗体は、例えば、 IPS— 1等の前記本発明のタン パク質の変異又は欠失に起因する疾病の診断や IPS— 1等の分子機構を明らかに する上で有用である。
[0036] IPS— 1等の前記本発明のタンパク質又はその部分ポリペプチドに対する抗体は、 慣用のプロトコールを用いて、動物 (好ましくはヒト以外)に該 IPS— 1等の前記本発 明のタンパク質又はその部分ポリペプチド若しくはェピトープを含む断片を投与する ことにより産生され、例えばモノクローナル抗体の調製には、連続細胞系の培養物に より産生される抗体をもたらす、ハイプリドーマ法(Nature 256, 495-497, 1975)、トリ ォーマ法、ヒト B細胞ハイプリドーマ法(Immunology Today 4, 72, 1983)及び EBV— ハイプリドーマ法(MONOCLONAL ANTIBODIES AND CANCER THERAPY, pp.77 -96, Alan R.Liss, Inc., 1985)など任意の方法を用いることができる。以下に IPS— 1 等の前記本発明のタンパク質又はその部分ポリペプチドとして、ヒ HPS— 1を例に挙 げて IPS— 1に対して特異的に結合するマウスのモノクローナル抗体、すなわち抗ヒト IPS - 1モノクローナル抗体の作製方法を説明する。
[0037] 上記抗ヒト IPS— 1モノクローナル抗体は、抗ヒト IPS— 1モノクローナル抗体産生ハ イブリドーマをインビボ又はインビトロで常法により培養することにより生産することが できる。例えば、インビボ系においては、齧歯動物、好ましくはマウス又はラットの腹 腔内で培養することにより、またインビトロ系においては、動物細胞培養用培地で培 養することにより得ることができる。インビトロ系でハイプリドーマを培養するための培 地としては、ストレプトマイシンやペニシリン等の抗生物質を含む RPMI1640又は M EM等の細胞培養培地を例示することができる。抗ヒト IPS— 1モノクローナル抗体産 生ハイブリドーマは、例えば、ヒト IPS— 1を用いて BALBZcマウスを免疫し、免疫さ れたマウスの脾臓細胞とマウス NS— 1細胞 (ATCC TIB— 18)とを、常法により細 胞融合させ、免疫蛍光染色パターンによりスクリーニングすることにより、抗ヒ HPS— 1モノクローナル抗体産生ハイプリドーマを作出することができる。また、かかるモノク ローナル抗体の分離'精製方法としては、タンパク質の精製に一般的に用いられる方 法であればどのような方法でもよぐァフィユティークロマトグラフィー等の液体クロマト グラフィーを具体的に例示することができる。
[0038] また、本発明の上記ヒト IPS— 1に対する一本鎖抗体をつくるためには、一本鎖抗 体の調製法 (米国特許第 4,946,778号)を適用することができる。また、ヒト化抗体を発 現させるために、トランスジエニックマウス又は他の哺乳動物等を利用したり、上記抗 体を用いて、そのヒト IPS— 1を発現するクローンを単離'同定したり、ァフィ-ティーク 口マトグラフィ一でそのポリペプチドを精製することもできる。ヒ HPS— 1に対する抗体 は、ヒト IPS— 1の分子機構を明らかにする上で有用である。
[0039] また上記抗ヒト IPS— 1モノクローナル抗体等の抗体に、例えば、 FITC (フルォレセ インイソシァネート)又はテトラメチルローダミンイソシァネート等の蛍光物質や、 125ι、 3 2P、 14C、 35S又は3 H等のラジオアイソトープや、アルカリホスファターゼ、ペルォキシ ダーゼ、 /3—ガラタトシダーゼ又はフィコエリトリン等の酵素で標識したものや、ダリー ン蛍光タンパク質 (GFP)等の蛍光発光タンパク質などを融合させた融合タンパク質 を用いることによって、上記ヒト IPS— 1の機能解析を行うことができる。また免疫学的 測定方法としては、 RIA法、 ELISA法、蛍光抗体法、プラーク法、スポット法、血球 凝集反応法、ォクタ口-一法等の方法を挙げることができる。
[0040] 本発明の IPS— 1ノックアウト非ヒト動物としては、 IPS— 1遺伝子の機能が染色体上 で欠損し、野生型にぉ 、て発現される IPS— 1を発現する機能が失われて!/、る非ヒト 動物であれば特に制限されるものではない。本発明の IPS— 1ノックアウト非ヒト動物 としては、マウスやラット等のげつ歯類、特に、 IPS— 1遺伝子の機能が染色体上で欠 損した IPS— 1ノックアウトマウスを好適に挙げることができ、 IPS— 1ノックアウトマウス は、マウス遺伝子ライブラリ一力も PCR等の方法により得られた遺伝子断片を用い、 I PS— 1遺伝子をスクリーニングし、スクリーニングされた IPS— 1遺伝子を、ウィルスべ クタ一やプラスミドベクター等を用いてサブクローンし、制限酵素マッピング及び DN Aシーケンシングにより特定することができる。次に、この IPS— 1をコードする遺伝子 の全部又は一部を pMClネオ遺伝子カセット等に置換し、 3'末端側にジフテリアトキ シン Aフラグメント(DT— A)遺伝子や単純へルぺスウィルスのチミジンキナーゼ(HS V-tk)遺伝子等の遺伝子を導入することによって、ターゲットベクターを作製する。 この作製されたターゲテイングベクターを線状ィ匕し、エレクト口ポレーシヨン (電気穿孔 )法等によって ES細胞に導入し、相同的組換えを行い、その相同的組換え体の中か ら、 G418やガンシクロビア (GANC)等の抗生物質により相同的組換えを起こした E S細胞を選択する。また、この選択された ES細胞が目的とする組換え体かどうかをサ ザンブロット法等により確認することが好まし 、。その確認された ES細胞のクローンを マウスの胚盤胞中にマイクロインジェクションし、カゝかる胚盤胞を仮親のマウスに戻し 、キメラマウスを作製する。このキメラマウスを野生型マウスと交雑させると、ヘテロ接 合体マウス (F1マウス: + Z-)を得ることができ、また、このへテロ接合体マウスを交 雑させることによって、 IPS— 1ノックアウトマウスを作製することができる。また、 IPS— 1ノックアウトマウスにぉ 、て、 IPS— 1がノックアウトされて!/、るかどうかを確認する方 法としては、例えば、上記の方法により得られたマウスから RNAを単離してノーザン ブロット法等により調べたり、またこのマウスにおける IPS— 1の発現の有無をゥエスタ ンブロット法等により調べる方法がある。 IPS— 1ノックアウトマウスは、分子レベルで の IPS— 1の作用を調べる上で有用である。
本発明の I型 IFNプロモーターを活性ィ匕する方法としては、本件タンパク質又は本 件 DNAで形質転換した宿主細胞で発現させた組換えタンパク質を用いて、 I型 IFN プロモーターを活性ィ匕する方法であれば特に制限されず、例えば、上記本件タンパ ク質又は組換えタンパク質を用いて I型 IFNプロモーターを活性ィ匕させ、 I型インター フ ロン等を製造することも可能である。また、被験物質が存在する細胞内で I型 IFN プロモーターを活性化させ、該プロモーターの活性ィ匕の程度を、被験物質を投与し て 、な 、場合と比較 ·評価することにより、 I型 IFNプロモーター活性化機能を阻害( 又は増強)する化合物をスクリーニングすることも可能である。さらに、 IPS— 1は、ィ ンターフェロン aをはじめとする各種サイト力インの産生に関与する分子であることか ら、インターフ ロン αが必要とされる疾病、例えば、ウィルス感染症の遺伝子治療に 使用することができ、 IPS— 1等の遺伝子のアンチセンス鎖は、形質細胞様榭状細胞 力 のインターフェロン aの過剰産生が病態と考えられている SLE (全身性エリテマト 一デス)の遺伝子治療に使用することができる。また、ウィルス感染や自然免疫疾患 の治療への遺伝子レベルでの研究において使用することも可能である。 [0042] また、本発明は、本件 DNAを IPS— 1活性を有するタンパク質の製造に使用する 方法に関する。 IPS— 1活性を有するタンパク質の製造における使用形態は特に制 限されないが、本件 DNAで形質転換した宿主細胞を培養することにより、組換えタ ンパク質として発現させる、 IPS— 1活性を有するタンパク質の製造に使用する方法 などを好適に例示することができる。また、本発明は、本件タンパク質を I型 IFNの製 造に使用する方法にも関する。 I型 IFNの製造における使用形態は特に制限されな いが、本件タンパク質を用いて I型 IFNプロモーターを活性化させる、 I型インターフエ ロン等の製造に使用する方法などを好適に例示することができる。
[0043] 本発明の I型 IFNプロモーターの活性ィ匕による抗ウィルス応答機能が喪失したモデ ル動物としての使用方法としては、 IPS— 1遺伝子の機能を染色体上で欠損させた I PS 1ノックアウト非ヒト動物を I型 IFNプロモーターの活性ィ匕による抗ウィルス応答 機能が喪失したモデル動物として使用する方法であれば特に制限されず、 I型 IFN プロモーターの活性ィ匕による抗ウィルス応答機能が喪失したとは、各種ウィルス (例 えば、ニューカッスル病ウィルス: NDV、水疱性口内炎ウィルス: VSV、センダイウイ ルス: SeV、及び脳心筋炎ウィルス: EMCV等の RNAウィルス)の感染に対する各 種サイトカイン(例えば、インターフェロン α、インターフェロン j8、 IP— 10、 RANTE S及び IL— 6など)による抗ウィルス応答機能が喪失していることをいい、上記 IPS— 1ノックアウト非ヒト動物は、 I型 IFNプロモーターの活性ィ匕による抗ウィルス応答機能 が喪失して 、ることから、マウス内にぉ 、てウィルスがより活発に増殖すると!/、う性質 を有している。従って、 IPS— 1ノックアウトマウスは、ウィルス感染のモデルマウスとし て利用することができ、このマウスを用いて抗ウィルス薬の開発などへの応用が期待 される。また、インターフェロン等のウィルス応答機能により、 in vitroでは培養が難 しいとされているウィルスであっても、このマウス由来の細胞を適用すれば、インター フエロン等の抗ウィルス応答機能が抑制されているため、培養することが可能であり、 培養可能になれば、ウィルスのライフサイクルや感染メカニズムの理解、長鎖 dsRNA による RNAiの作用メカニズムの解明、さら〖こはそのウィルスに対する薬剤開発への 応用が期待される。
[0044] 以下、実施例により本発明をより具体的に説明するが、本発明の技術的範囲はこ れらの例示に限定されるものではない。
実施例 1
[0045] (IPS— 1の同定)
本発明者らは、発現クローユングストラテジーにより、 IFN βプロモーターを活性ィ匕 する分子を同定した。発現プラスミドにクローユングした cDNAライブラリーの一部を 、 100個の cDNAのプールに細分し、各 DNAプールを、 IFN βプロモーター Lucレ ポタープラスミドと共に HEK293細胞にトランスフエタトした。平均的活性と比較して、 5倍以上の活性を示すプールを陽性とした (図 la)。ヒトの胎盤、脾臓、抹消血白血球 (PBL)の各 cDNAライブラリーの一次スクリーニングにより、 28の陽性プールを得た 。各陽性プールから、 IFN |8プロモーター活性ィ匕に関与する単一のクローンを単離 した(図 lb)。
[0046] 2400個のプールをスクリーニングした結果、合計 15のクローンを同定した。 IRF7 のクローン 6個、 IRF3のクローン 3個、 IRF1のクローン 2個及び IRF8のクローン 1個 を含む、 12個のクローンはプロモーターを活性ィ匕することがすでに報告されている( 表 1)。この他に、本発明者らは、新規 IFN誘導物質としてジンクフィンガータンパク質 CXXC5及びプロテインキナーゼ Cdc42bpbを同定した。さらに、本発明者らは、約 8 00倍の活性ィ匕を誘導する新規分子を単離した。このクローンは、 540個のアミノ酸の オープンリーディングフレーム力もなり(図 2a、 2b)、相同性検索により、 N末端に Md a— 5Zヘリカードの CARDに類似した領域が明ら力となった(同一性 27%) (図 2c) 。比較分析により、力かるタンパク質力 RIG— Iの CARDとも相同性を有することが 示された(図 2d)。しかし、カゝかるタンパク質と他の CARD含有タンパク質との類似性 は見い出せなかった。そこで、 GWXXXF () XAL ( φは、疎水性)の保存配列を有す るカゝかるドメインを CARD様ドメイン (CLD)と命名した。 C末端の非 CLD領域は、他 の既知のタンパク質又はドメインと類似性はなかった。 IFN βプロモーターの活性ィ匕 能に基づき、このタンパク質を IFN βプロモーター刺激剤一 1として IPS— 1と命名し た。
ヒト IPS— 1の発現を、多糸且織ノーザンブロットによって調べた(図 2e)。 IPS— lmR NAは、心臓及び骨格筋で多く発現したが、脳、胎盤、肺、肝臓、腎臓及び脾臓では わず力し力発現しなかった
[表 1]
('d I' b b
実施例 2
(IPS 1は、 I型 IFNプロモーターを活性化する。 )
HEK293細胞内での Flag標識 IPS— 1発現プラスミドの過剰発現は、 IFN βプロ モーターを用量依存的に活性ィ匕した(図 3a)。同様に、 IPS— 1の過剰発現は、 IRF ファミリーによって制御されている IP— 10 RANTES及び ISREプロモーターを用量 依存的に活性化した(図 3a)。次に、 IFN a 4及び IFN a 6プロモーター Lucコンスト ラクトを用いて、 IFN aプロモーター活性ィ匕を分析した。 IPS 1のみの過剰発現は、 IFN a 4及び IFN a 6プロモーター活性化をわずかに誘導した(図 3b)。し力し、 IRF 7が同時発現すると、 IFN a 4プロモーター、 IFN α 6プロモーターの両方が相乗的 に活性ィ匕し(図 3b)、 IPS— 1が、 IRF7媒介性転写活性を増強したことを示した。さら に、 Flag— IPS— 1と同時発現すると、 Myc— IRF3及び Myc— IRF7がゆっくりと移 動することを見い出した(図 3c)。この移動は、リン酸ィ匕によるものである。なぜなら、 ホスファターゼ処理により、ゆっくりとした移動は消失し (データは示されていない)、 I PS— 1が、 IRF3及び IRF7のリン酸化を誘導することを明らかにしたからである。 [0048] 次に、 TBKlZlKKi二重欠損マウス由来のマウス胚繊維芽細胞(MEF)を用いて 、 IPS— 1が媒介する IFN誘導がこれらのキナーゼに依存するか否かを調べた。 IFN βプロモーター活性は、 IPS— 1発現プラスミドをトランスフエタトした野生型 MEFで 増加した力 TBKlZlKKi二重欠損 MEFでは活性ィ匕は観察されな力つた(図 3d)。 他方、 TBK1の過剰発現は、野生型と TBKlZlKKi二重欠損 MEFとの両方でプロ モーターを活性ィ匕した。同様に、 TBK1の発現は、 TBKlZlKKi二重欠損細胞で I FN « 4プロモーターを活性ィ匕した力 IPS— 1の発現は活性ィ匕せず、 IPS— 1依存 性の IFNプロモーター活性化に TBK1及び IKKiが必須であることを示した(図 3d)。
[0049] 本発明者らは、 2つの IPS— 1の欠損変異体、 N末端 CLDのみをコードする IPS— 1Nと、 C末端非 CLD領域のみを含む IPS— 1Cとを作製した。 IPS— INの過剰発現 は、 IFN |8プロモーターを活性ィ匕した力 全長の過剰発現と比べると活性ィ匕は弱か つた。 IPS— 1Cの発現は、プロモーターを活性ィ匕せず(図 3e)、 IPS— 1が媒介する I FN βプロモーター活性ィ匕には、構造全体が必要であることを示した。
実施例 3
[0050] (IPS 1の発現は、抗ウィルス応答を与える。 )
IPS— 1発現後の、内因性 I型 IFN及び IFN誘導性遺伝子の誘導を分析した。 HE K293細胞における Flag— IPS— 1の過剰発現は、内因性 IFN jS (Ilhb)及び、 IP— 10 (CxcllO)及び GARG16 (Ifitl)等の IFN誘導性遺伝子の誘導を刺激した(図 4a) 。さらに、培養上清内の IFN a産生は、 IPS— 1をトランスフエタトした HEK293細胞 でも観察され、この誘導は、 IRF7の同時発現によって増強した(図 4b)。このように、 I PS— 1の発現は、これらの遺伝子の内因性プロモーター活性ィ匕を導く。次に、コント ロール又は IPS— 1をトランスフエタトした HEK293細胞に VSVを感染し、感染の 24 時間後にウィルス力価を測定した。ウィルス力価は、コントロール細胞と比較して IPS 1発現細胞で著しく減少した(図 4c)。これらの結果は、 IPS— 1のみの発現が、恐 らく I型 IFN等の抗ウィルス性サイト力インを産生することによって、抗ウィルス応答を 与えるのに十分であることを示唆した。
実施例 4
[0051] (IPS— 1は NF— κ Bを活性化する。 ) IPS— 1の発現が NF— κ Βを活性化するか否かを調べるために、 ΗΕΚ293細胞 に、 IPS— 1を、 ELAM1プロモーター Lucコンストラクトとトランジェントにトランスフエ タトした。 IPS— 1の発現は、用量依存的に NF- κ Β活性ィ匕を導いた(図 5a)。さらに、 この活性化は、触媒陰性(catalytic negative) IKK j8 (K44A)の同時発現によって阻 害された(図 5b)。 IPS— INも IPS— 1Cも NF— κ Βを活性化しなかった(図 5c)。さ らに、 IPS— 1発現プラスミドをトランスフエタトした HEK293細胞の培養上清におい て、 IL— 8の産生が観察された力 コントロールプラスミドでトランスフエタトした HEK2 93細胞では観察されなかった。これは、 IPS— 1が内因性NF— κ Bプロモーターも 活性ィ匕することを示唆して 、る(図 5d)。 IFN a及び IFN βプロモーター活性ィ匕と異 なり、 IPS— 1の過剰発現は、 TBKlZlKKi二重欠損 MEFで ELAM1活性化を誘 導した(図 5e)。さらに、 TRAF6欠損 MEFでは、 IPS— 1による NF— κ Β及び IFN プロモーター活性化が引き続き観察された。これらの結果は、 IPS— 5NF— κ B活性化は、 IKK jS依存的である力 TRAF6及び TBKlZlKKiに非依存的で あることを示している。
実施例 5
[0052] (IPS— 1は、 RIG— I、 Mda5、 FADD及び RIPlと複合体を形成する。 )
IPS— 1、 Mda5及び RIG— Iの配列類似性により、これらの分子が物理的に互いに 会合するかどうかを調べてみた。 HEK293細胞に、 Myc— IPS— 1を、 Flag— Mda 5、 Flag - Mda5AC, Flag— RIG— I又は Flag— RIG— IACとトランスフエタトし、 細胞可溶ィ匕液を抗 Myc抗体で免疫沈降した。 Myc— IPS— 1及び Flag—RIG— I △Cの両方を発現する細胞で、免疫共沈降が観察された(図 6a)。さらに、弱いもの の、 Myc— IPS— l及びFlag— Mda5△C間で会合が観察された(図6a)。 IPS— 1 の CLDが発現したときにも、類似した会合が観察された (データは示されて!/、な!/、)。 これらの結果は、 IPS— 1の CLDが RIG— I及び Mda— 5の N末端 CARD含有領域 と会合することを示した。
[0053] FADD及び RIP1が、 dsRNAが誘導する抗ウィルス応答に関連していたので、こ れらの分子の相互作用を調べた。 Flag— FADD及び Flag— RIP 1は、 Myc— IPS —1と共沈殿したが、 Flag— TBK1はしなかった(図 6b)。 FADDとの相互作用に、 I PS— 1Cは必須であった力 IPS— INは必須でなかった(図 6c)。さらに、 IPS— 1が 媒介する IFN βプロモーター活性ィ匕は、 Ν末端デスエフェクタードメインをコードする FADD DEDの発現によって減少し、 FADD DEDが IPS— 1依存性シグナル伝 達に関連するドミナントネガティブな変異体として作用することを示唆した(図 6d)。 実施例 6
[0054] (IPS 1ノックダウンは IFN応答をブロックする。)
siRNAオリゴを用いて IPS— 1の内因性発現を減少し、 IPS— 1の生理機能を調べた 。ヒト IPS— lmRNAの異なる部分を標的とする二本鎖 21— mer RNAを 3個用意し た。パイロット実験では、トランスフエクシヨンの 48時間後に、 2個の siRNA(Ips— 1— 1、 Ips- 1 - 2)力 RT—PCRで定量したように、 Hela細胞内の IPS— 1のノックダウ ンを誘導した(図 7a)。力かる siRNAによる IPS— 1の発現の減少は、 7日間続いた( データは示されていない)。そこで、力かる 2つの siRNAを新たな分析に使用した。コ ントロール siRNA (コントロール)、 Ips— 1— 1又は Ips— 1— 2を、 HDK293細胞にト ランスフエタトし、全 RNAを、 48時間後に RT— PCR分析用に調製し、標的遺伝子の 発現の減少を確認した力 Gapdhの発現には何の影響もな力つた(図 7a)。
[0055] dsRNAトランスフエクシヨンが誘導する IFN βプロモーター活性化に対する、 siRN Aの影響を調べてみた。コントロール、 Ips—l l又はIps—l 2で処理したHEK2 93細胞に、 IFN jSプロモーター Lucコンストラクトをトランスフエタトし、その後、合成 d sRNAポリ(I : C)を異なる濃度でトランスフエタトした。 Ips— 1発現のノックダウンは、 ポリ(I : C)刺激後にプロモーター活性の減少を導いた(図 7b)。さらに、コントロール 又は Ips— 1 - IsiRNAをトランジェントにトランスフエクシヨン処理した HEK293細胞 に、 RIG— IAC又は Trifを発現させた。 RIG— IACは恒常的に IFN βプロモーター を活性化することを示した(Nat Immunol. 5, 730-737, 2004) 0 RIG—IACが誘導す るプロモーター活性ィ匕は、 Ips— 1—1処理細胞で減少した力 Trifが誘導する活性 化は、これらの細胞で減少しなかった(図 7c)。したがって、 IPS 1は、 RIG— I依存 性シグナル伝達に必須である力 Trif依存性シグナル伝達には必須でな ヽ。
[0056] ポリ(I: C)で刺激した IFN β及び IFN誘導性遺伝子の発現を調べた。ポリ(I: C)ト ランスフエクシヨンの 3時間後の IFN β及び IP— 10メッセージの誘導は、コントロール で処理した細胞と比較して、 Ips— 1 1及び Ips— 1 2で処理した HEK293細胞で 著しく減少し(図 7d)、 IPS— 1が、 dsRNAが媒介する遺伝子誘導に必須であること を示唆した。次に、 siRNAで処理した HEK293細胞を、細胞変異性でない VSV変 異体 (VSVmt) (J Virol. 76, 8011-8018, 2002)又は NDVで感染し、 IFN aを測定し た。 Ips— 1—1又は Ips— 1—2で処理した細胞における、ウィルス感染 24時間後の I FN α産生は、コントロール siRNAで処理した細胞と比較して、顕著に減少した(図 7 e)。したがって、 IPS— 1は、ウィルス感染に対する抗ウィルス応答にも、 dsRNA刺 激にも必須である。
実施例 7
(ホモ型ノックアウトマウスは健康に生育する。 )
IPSチマウスは、予想されたメンデル比で生まれ、繁殖性であり、健康に育ち、 10週 の年齢まで異常を示さな力つた。また、ホモ接合体(一 Z )において、 IPS— 1遺伝 子の機能が欠損して 、ることを確認するためサザンプロット分析を行った。マウスの尾 部より抽出したゲノム DNAを EcoRIで消化した遺伝子断片と、以下に示した放射能 標識をしたマウスゲノム由来のプローブ (配列番号 27)を用いてサザンプロット法によ り確認した。その結果、野生型( + Z + )には単一の 11. 3kbバンド力 ホモ接合体( — Z )には 7. Okbバンド力 ヘテロ接合体( + Z )にはその両方のバンドが得ら れた(図 8b参照)。次に、ホモ接合体(-Z-)において、 IPS 1遺伝子が発現して いないことを確認するためノーザンブロット分析を行った(図 8c参照)。さらに、 IPS— 1の発現がタンパク質レベルでも消失していることを確認するために、ウェスタンブロッ ト分析を行った(図 8d参照)。図 8の dの矢印に示した箇所が内在性 IPS— 1タンパク であり、野生型( + Z + )では現れているバンド力 ホモ接合体(一 Z )には現れて いないのが確認できる。
マウスゲノム由来のプローブ: GTAGGGACAGGCAGTTGTGGACATCAGA (配列番号 27) 実施例 8
(IPS 1欠損型(一 Z )マウスは、各 RNAウィルスに対する反応性を喪失し、ウイ ルス感染のモデルマウスとして利用できる。 )
IPS 1欠損型(一 Z )マウスにおける各 RNAウィルス、具体的には-ユーカツス ル病ウィルス (NDV)、水疱性口内炎ウィルス (VSV)、及びセンダイウィルス (SeV) に対する反応性を調べた。まず、野生型( + Z + )、及び IPS— 1欠損型(一 Z ) M EFに 1本鎖 RNAウィルスである-ユーカツスル病ウィルス (NDV)、水疱性口内炎ゥ ィルス (VSV)、及びセンダイウィルス(SeV)を感染させ、 24時間後の培養上清中の サイト力イン (IFN a , IFN |8 , IL— 6)濃度をエライザ法により測定した。結果は図 9 の aに示すとおりである。次に、野生型( + Z + )、及び IPS— 1欠損型(― Z ) ME Fに NDV、 VSV, SeVを感染させ、 0、 9、 18時間後に細胞から RNAを回収し、 IFN β、 IFN a、 IP— 10、 RANTES、 IL— 6の各 mRNAに相補的なプローブを用いて 、 IFN a、 IFN β、 IFN a、 IP— 10、 RNATES、及び IL 6の遺伝子発現をノーザ ンブロット法にて検討した。なお、プローブは以下の(1)〜(5)に示した。また、ポジテ イブコントロールとして、 β— actinを用い、プローブは、 Hemmi H et al., J. Exp. Med . , 199: 1641-1650, 2004に記載のプローブを用いた。結果は図 9の bに示すとおりで ある。図 9の a及び bより、 IPS 1欠損マウスは、上記ウィルス(NDV、 VSV及び SeV )による各種サイト力イン(IFN a、 IFN β、 IP— 10、 RANTES、 IL 6)の産生が抑 制されることが確認された。
( l) lFN - β ;
ACCTTAAACTCATGAAGTACAACAGCTACGCCTG (配列番号 28)
(2) lFNa ;Hemmi H et al., J. Exp. Med., 199: 1641-1650, 2004に記載のプローブ
(3) IP— 10;
Figure imgf000034_0001
GCTGTCCTAGCTC (配列番号 29)
(4)RANTES;
Figure imgf000034_0002
(5)IL— 6; GAGTCCTTCAGAGAGATAC (配列番号 31)
[0059] さらに、野生型( + Z + )、 IPS— 1欠損型(一 Z )マウスの腹腔マクロファージに 脳心筋炎ウィルス (EMCV)を感染させ、 24時間後の培養上清中のサイト力イン (IF N a、 IFN |8、 IL 6)濃度をエライザ法により測定した。結果は図 9の cに示すとおり である。次に、野生型(+Z+)、IPS— 1欠損型(-Z-)マウスの腹腔マクロファー ジに EMCVを感染させ、 0、 6、 9時間経過後、細胞より RNAを回収し、 IFN j8、 IFN a、 IP— 10、 RNATES、及び IL— 6の遺伝子発現を RT—PCR法により検討した。 なお、ポジティブコントロールとして、 β actinを用いた。結果は図 9の dに示すとお りである。図 9の c及び dより、 IPS— 1欠損マウスは、 EMCVによる各種サイト力イン (I FN a、 IFN β、 IP— 10、 RANTES、 IL— 6)の産生が抑制されることが確認された
[0060] これらの結果より、 IPS— 1欠損型(一 Z )マウスは、 I型 IFNプロモーターの活性 化による抗ウィルス応答機能が喪失しており、マウス内においてウィルスがより活発に 増殖するという性質を有している。したがって、 IPS— 1欠損型(一 Z—)マウスは、ゥ ィルス感染のモデルマウスとして利用できることが明らカゝとなった。
実施例 9
[0061] (IPS— 1欠損型(一 Z )マウスにおけるポリ i:cに対する反応性を喪失し、ウィルス 感染のモデルマウスとして利用できる。 )
次に、 IPS— 1欠損型(-Z-)マウスにポリ i:cを投与し、ポリ I : Cの投与量及び投 与時間における各種サイト力イン(IFN a、 IFN jS、 IP— 10、及び IL 6)の産生を 調べた。まず、 IPS— 1欠損型(一 Z )マウスにおける NDV感染応答性シグナル伝 達経路を解析した。野生型( + Z + )、 IPS— 1欠損型(-Z-) MEFを図で示した 濃度のポリ I : Cで刺激し、 24時間後の培養上清中のサイト力イン (IFNひ、 IFN |8、 I L— 6)濃度をエライザ法により測定した。結果は図 10aに示すとおりである。次に、野 生型( + Z + )、 IPS 1欠損型(— Z ) MEFをポリ I : Cで刺激した。 0、 2、 4、 6時 間後に細胞から RNAを回収し、上記に示した IFN β、 IFN a、 IP— 10、 IL— 6の各 mRNAに相補的なプローブを用いて、 IFN β、 IFN a、 IP— 10、及び IL— 6の遺伝 子発現をノーザンブロット法にて検討した。なお、ポジティブコントロールとして、 β ァクチン(j8— actin)を用いた。結果は図 10の bに示すとおりである。さらに、ヘテロ 型(+Z+)、 IPS— 1欠損型(-Z-)マウスにポリ I : Cを静脈内注射し、計時的に採 取した血清中におけるサイト力イン (IFN α、 IFN |8、 IL 6)濃度をエライザ法により 測定した。結果は図 10の cに示すとおりである。
[0062] 図 10の a〜cに示される結果より、 IPS— 1欠損マウスはポリ I : Cにより誘導される各 種サイト力イン (IFN α、 IFN j8、 IP— 10、 IL 6)の産生が抑制されることが確認さ れた。これらの結果は、 IPS— 1欠損型(一 Z )マウス力 ウィルス感染のモデルマ ウスとして利用できることを支持するものである。
実施例 10
[0063] (IPS 1欠損型(一 Z )マウスにおける NDV感染応答性シグナル伝達経路を活 性化し、抗ウィルス応答を誘導する。 )
さらに本発明者らは、 IPS— 1欠損型(一 Z—)マウスにおけるウィルス感染応答の シグナル伝達経路を解析した。まず、野生型( + Z + )、 IPS— 1欠損型(一 Z ) M EFに NDVを感染させ、 0、 10、 20時間後に核タンパク質を抽出し、 NF— kBの活性 化を EMSA法により検討した。 IPS— 1野生型( + Z + )において観察される NF— κ Bの発現力 IPS— 1欠損型(一 Z )においては、観察されなかった(図 11の a)。 次に、野生型( + Z + )、 IPS 1欠損型(一 Z ) MEFに NDVを感染させ、 0、 6、 8 時間後にライセートを調整した。調整したライセートを NativePAGEで展開後、フィ ルターに転写し、フィルターを抗 IRF3抗体でブロットし、ダイマー(二量体)形成を検 討した。 IRF3の活性ィ匕をダイマー形成により確認したところ、 IPS 1欠損型(一Z -)においては、これらダイマー形成が観察されな力つた(図 11の b)。
[0064] 以上の結果より、 IPS— 1の NDV感染応答のシグナル伝達は、 NF— κ Βや、 IRF 3の活性ィ匕を介して、 I型 IFNを産生したり、 IFN誘導性遺伝子を発現したりすること により、抗ウィルス応答を誘導するものであることが示唆された。 [0065] [材料と方法]
(ハイスループットスクリーニング)
スクリーニングは、若干修正を加えた文献(EMBO J. 21, 5184-5194, 2002)に従つ て行った。ヒト胎盤、脾臓又は PBLの cDNAライブラリーを、 pCMV6— XL3 (OriGen e Technologies Inc.社製)にクローユングしたプラスミド DNAで E. coli DH5 aを形質 転換し、 1プレートあたり 100コロニーまでの密度で LB寒天アンピシリンプレートに播 種した。ー晚インキュベートした後、ニトロセルロースフィルター膜を用いてレプリカプ レートを作製した。一次形質転換プレートのコロニーを搔爬し、 QIAprep 8 Miniprep Kit (QIAGEN社製)を用いてプラスミド DNAを調製し、 cDNAプールとして用いた。 2 4ゥエル皿に播種した HEK293細胞(1 X 105Zゥエル)に、 Lipofectamine 2000 (Inv itrogen社製)を用いて、 1. 0 gの cDNAプールと、 lOOngの IFN j8— Lucコンスト ラタトとをトランジェントにトランスフ タトした。 36時間後、細胞を 100 1のレポーター 溶解バッファー(Promega社製)で溶解した。デュアルルシフェラーゼアツセィシステム (Promega社製)で、可溶化液 5 1のルシフェラーゼ活性を測定した。 50ngのゥミシィ タケールシフェラーゼレポーター遺伝子を、内部コントロールとして同時にトランスフ ェクトとした。
[0066] 陽性プールに対応するレプリカプレートの個別コロニーを選択し、 1. Omlのアンピ シリン含有 LB培地で培養した。培養物より調製したプラスミド DNAを、 IFN |8 -Luc と HEK293にコトランスフエタトし、ルシフェラーゼ活性を分析し、プールの活性化に 関与する単一のクローンを単離した。 5 '及び 3 'プライマーを用いて、陽性 DNAをシ 一クェンシングし、 BLASTサーチにより特徴づけた。ヒト胎盤 cDNAライブラリーから 入手した単一ヒト IPS— 1クローンは、最初の ATGのアップストリームで、インフレーム ストップコドンを有するオープンリーディングフレーム全体をコードして 、た。ポリ Aテ ールも得られたクローンに含まれて 、た。
[0067] (プラスミド)
テンプレートとして、スクリーニングによって得た IPS— l—pCMV6—XL3を用いて 、 PCR【こより IPS— 1、 IPS— lN (a. a. 1—117)及び IPS— 1C (a. a. 118— 540) を増幅し、 pFLAG- CMV2 (Sigma社製)、又は pEF- BOSに結紮し、それぞれ Flag標識 、 Myc標識発現コンストラクトを作製した。ヒト IRF3及び IRF7を RT— PCRにより入 手し、 pEF- BOSに結紮した。 IKK jS K44A、 TBK1及び Trifコンストラクトは、文献 に記載されている(J Immunol. 171 , 4304-4310, 2003)。 RT— PCRで増幅した、ヒト F ADD DED (a. a. 1— 85)を RT— PCTにより増幅し、 pFLAG- CMV2に結紮した。 RT— PCTにより増幅したヒト RIG— I、 RIG -lAC (a. a. 1— 604)、 Mda5、 Mda5 △C (a. a 1— 575)及び RIP1を、 pFLAG- CMV6 (Sigma社製)に結紮した。 IFN β 、 IFN a 4、 IFN a 6及び ELAM1のルシフェラーゼレポーターコンストラクトは文献 に記載されている(Nat Immunol. 5, 1061-1068, 2004)。 ISRE— Lucは Stratageneよ り入手した。 IP— 10— Luc及び RANTES— Lucは D.T. Golenbock (マッサチューセ ット大学医学部、 MA)より提供された。
[0068] (細胞、ウィルス及び試薬)
HEK293細胞、 Hela細胞及び MEF細胞を、 5%COのインキュベーター内の 10
2
%FCSを添カ卩した DMEMで培養した。 TBKlZlKKi二重欠損マウス由来の MEF 細胞は、文献記載の通り調製した (J Exp Med. 199, 1641-1650, 2004) 0ポリ(I : C) ( Amersham Bioscience社製)を Fugene (Roche社製)と混合し、 HEK293細胞にトラン スフ タトした。抗 Flag抗体(M2)ビーズ及び HRP複合抗 Flag抗体(M2)は、 Sigma 社より購入した。抗 Myc抗体(9E10)ァガロース及び HRP複合抗 Myc抗体(9E10) は、 Santa Cruz社から購入した。 VSV及び VSV変異体は、 Dr. T. Abe、 Dr. Y. Mat suura (大阪大学)より提供された。 NDVは、 Dr. T.Fujita (東京都臨床医学総合研究 所)より提供された。
[0069] (レポーター分析)
24ゥエルプレート(1 X 105細胞 Zゥエル)に播種した HEK293細胞、又は 6ゥエル プレート(1 X 105細胞/ゥエル)に播種した MEF細胞に、 lOOngのルシフェラーゼレ ポータープラスミドと、所定の発現プラスミド又は空コントロールプラスミド合計 1. Ο μ gとを、トランジェントにトランスフエタトした。 36〜48時間後、全細胞可溶化液のルシ フェラーゼ活性をデュアルールシフェラーゼレポーターアツセィシステム(Promega社 製)で測定した。 50ngのゥミシィタケ—ルシフェラーゼレポーター遺伝子を、内部コン トロールとして同時にトランスフエタトした。 [0070] (ELISA)
FLAG - IPS - 1又は FLAG - IRF7をトランジェントにトランスフエタトした HEK29 3細胞、又はウィルスを感染した細胞を 24時間培養した。上清のサイト力イン IFN a を、製造者の指示に従って ELISA (PBL Bio Lab.社製)により測定した。 IL— 8の E LISAは、文献記載どおりに行った (J Immunol. 174, 2273-2279,2005) 0
[0071] (プラークアツセィ)
VSVを感染させた HEK293細胞から回収した培養上清のウィルス収量を測定した 。回収したウィルスの段階希釈液で感染された BHK細胞を、 1. 0%の低融解ァガロ ースを含む DMEMで覆った。 24時間のインキュベーション後にプラークを算定した
[0072] (ノーザンブロット分析及び RT—PCR)
ヒト多組織ノーザンブロット(CLONTECH社製)で32 P標識全長ヒト IPS— 1プローブ をハイブリダィズし、洗浄し、オートラジオグラフィ一により視覚化した。 RT— PCR分 析用に、全 RNAを Trizol試薬(Invitrogen社製)を用いて単離し、 Superscript III逆転 写酵素 (Invitrogen社製)を製造者の指示に従って用いて逆転写した。 PCRは、以 下のプライマーを用いて連続して行った。
Ifnb ; 5 ' - CAGCAATTTTCAGTGTCAGAAGCT- 3 ' (配列番号 3)及び 5 ' - TC ATCCTGTCCTTG AGGC AGTAT - 3 ' (配列番号 4)、 CxcllO; 5,一 TGA CTCTAAGTGGCATTCAAGG - 3 ' (配列番号 5)及び 5 '—GATTCAGACA TCTCTTCTCACCC - 3 ' (配列番号 6)、 Ifitl ; 5, - CCTGCTGGTGGTGGA CAAAT- 3 ' (配列番号 7)及び 5 '— TGCGGCCCTTGTTATTCC— 3,(配列 番号 8) , Gapdh; 5,— CTGGGCTACACTGAGCACCAG - 3,(配列番号 9)及 び 5, - CCAGCGTCAAAGGTGGAG - 3 ' (配列番号 10)。
[0073] (免疫共沈降及びィムノブロット分析)
HEK293細胞 100万個を、 100mm皿に播種した。 12時間後、細胞に空プラスミド 又は所定のプラスミド全量 6. 0 ;z gを、 Lipofectamine 2000 (Invitrogen社製)を用いて トランジェントにトランスフエタトした。免疫沈降及びィムノブロットは、文献記載のとお り行った(Nat Immunol. 5, 1061-1068, 2004)。 [0074] (RNA干渉) ドからなる二本鎖 RN Aデュプレックスを、ダーマコンリサーチ(Dharmacon research) により合成した。ヒ HPS— 1を標的とするのに用いた RNAオリゴヌクレオチドは、次の 通りである。 Ips— 1— 1センス; 5,一 UAGUUGAUCUCGCGGACGAdTdT— 3, (配列番号 11)、 Ips— 1—1アンチセンス; 5,— UCGUCCGCGAGAUCAACUA dTdT- 3,(配列番号 12)、 Ips— 1— 2センス; CCGUUUGCUGAAGACAAGA dTdT- 3' (配列番号 13)、 Ips— 1— 2アンチセンス; UCUUGUCUUCAGCAA ACGGdTdT- 3' (配列番号 14)。 HEK293細胞又は Hela細胞を、 60mm皿(5 X 105)に、トランスフエクシヨンの 12時間前に播種した。 ΙΟΟηΜの siRNAを、 Lipofecta mine 2000又は 01igofectamine (Invitrogen社製)を製造者の指示に従って用いて、そ れぞれ HEK293細胞又は Hela細胞にトランスフエタトした。トランスフエクシヨンの 48 時間後、細胞を新たな実験に使用した。 RT— PCRにより、 IPS— lmRNAのノックダ ゥンを 5, - ATGCCGTTTGCTGAAGAC - 3 ' (配列番号 15)及び 5,— CTAGT GCAGACGCCGCCG - 3 ' (配列番号 16)のプライマーで確認した。
[0075] (IPS 1ノックアウトマウスの作製)
(1)キメラマウスの作製
IPS— 1の生理学的役割を検討するため、ジーンターゲテイングにより IPS— Λマウス を作製した。 IPS ΓΛマウスを作製するためのターゲテイングベクターは、 pMCl— neo (Stratagene社製)力ものネオマイシン而性遺伝子で、ェクソン 1及びェクソン 2を 置換し、負の選択マーカーとして単純へルぺスウィルスチミジンキナーゼ(HSV—T Κ)を挿入することにより構築した(図 8a参照)。次に、当業者に公知の方法に従い、 エレクト口ポーシヨン法で、構築されたターゲッティングベクターを ES細胞に導入した 。 G418とガンシクロビアに二重に耐性を持つコロニーを選択し、 PCRにより相同組 換えが起きた細胞を選択した後、相同組み換えの認められた陽性クローン (ES細胞 )を胚盤胞に導入して仮親に移植することによりキメラマウスを作製した。
(2)ヘテロ欠損 (IPS マウスの作製
こうして得られたキメラマウスの交配によって F1マウスを作製した。 F1マウスの遺伝 型を PCR及びサザンプロット法で解析したところ生殖系列への変異の導入 (germ— 1 ine化)が確認され、ヘテロ欠損マウス (IPS - マウス)が作製された。
(3)更に、 IPS— マウスどうしを交配させて、 IPS— 1遺伝子ホモ欠損マウス (IP S— マウス)を作製した。
産業上の利用可能性
[0076] 本発明によると、 IFN β等の I型 IFNの産生を誘導する新規なシグナル伝達分子 IP S— 1及び IPS— 1遺伝子を提供することができ、 IPS— 1機能を標的とした薬剤は、 ウィルス感染を制御するために、治療的に有用である。
[0077] また、本発明の本件 DNAを IPS - 1活性を有するタンパク質の製造に使用する方 法や、本発明の IPS— 1又は IPS— 1をコードする DNAで形質転換した宿主細胞で 発現させた組換えタンパク質を用いた I型 IFNプロモーターを活性ィ匕する方法や、本 発明の本件タンパク質を I型 IFNの製造に使用する方法は、 IPS— 1が、 IFN— αを はじめとする各種サイト力イン産生の特異的な調節に対する治療上のターゲットとな る可能性を与え、ウィルス感染や自然免疫疾患への治療へ応用することができる。ま た、前記方法により、 I型 IFNプロモーターを活性ィ匕させて I型インターフェロン等を製 造することも可能である。さらに、 I型 IFNプロモーターの活性化機能を阻害 (又は増 強)する化合物のスクリーニングに利用することが可能である。
[0078] また、本発明の IPS— 1ノックアウト非ヒト動物の抗ウィルス応答機能が喪失したモデ ル動物としての使用方法によれば、人工的に抗ウィルス応答機能が働力ない状態を 作り出すことができ、生体内におけるウィルス応答機能を明らかにするためや、 RNAi の作用機作の解明や、ウィルス感染症の治療方法の解明や、抗ウィルス薬をスクリー ニングすることも可能である。

Claims

請求の範囲
[I] 以下の (a)又は (b)のタンパク質をコードする DNA。
(a)配列番号 2に示されるアミノ酸配列力もなるタンパク質
(b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、置 換若しくは付加されたアミノ酸配列力もなり、かつ IPS - 1活性を有するタンパク質
[2] 配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するアミノ酸 配列からなり、かつ IPS— 1活性を有するタンパク質をコードする DNA。
[3] 配列番号 1に示される塩基配列若しくはその相補的配列力 なる DNA。
[4] 配列番号 1に示される塩基配列において、 1若しくは数個の塩基が欠失、置換若しく は付加された塩基配列からなり、かつ IPS— 1活性を有するタンパク質をコードする D
[5] 請求項 2記載の DNAとストリンジェントな条件下でハイブリダィズし、かつ IPS— 1活 性を有するタンパク質をコードする DNA。
[6] 配列番号 2に示されるアミノ酸配列からなるタンパク質。
[7] 配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、置換 若しくは付加されたアミノ酸配列力もなり、かつ IPS - 1活性を有するタンパク質。
[8] 配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するアミノ酸 配列からなり、かつ IPS— 1活性を有するタンパク質。
[9] 組換えタンパク質であることを特徴とする請求項 6〜8の 、ずれか記載のタンパク質。
[10] 請求項 6〜9のいずれか記載のタンパク質と、マーカータンパク質及び Z又はべプチ ドタグとを結合させた融合タンパク質又は融合ペプチド。
[II] 請求項 1〜5のいずれか記載の DNAを含み、かつ IPS— 1を発現することができる組 換えベクター。
[12] 組換えプラスミドベクターである請求項 11記載の組換えベクター。
[13] さらに、レポーター遺伝子を発現することができることを特徴とする請求項 11又は 12 記載の組換えベクター。
[14] レポーター遺伝子が、ホタルルシフェラーゼ遺伝子であることを特徴とする請求項 11 又は 12記載の組換えベクター。
[15] 請求項 11〜 14のいずれか記載の組換えベクターが導入され、かつ IPS— 1を発現 する形質転換体。
[16] IPS 1遺伝子を有する組換えベクターによって形質転換された形質転換体。
[17] 形質転換体が、哺乳類細胞由来であることを特徴とする請求項 15又は 16記載の形 質転換体。
[18] 哺乳類細胞が、 HEK293細胞、 Hela細胞又は MEF細胞である請求項 17に記載の 形質転換体。
[19] 請求項 6〜9の 、ずれか記載のタンパク質又はその部分ポリペプチドを認識する抗 体。
[20] モノクローナル抗体であることを特徴とする請求項 19記載の抗体。
[21] IPS— 1遺伝子の機能が染色体上で欠損し、野生型において発現される IPS— 1を 発現する機能が失われて 、ることを特徴とする IPS - 1ノックアウト非ヒト動物。
[22] げっ歯類動物であることを特徴とする請求項 21記載の IPS— 1ノックアウト非ヒト動物
[23] げっ歯類動物力 マウスであることを特徴とする請求項 22記載の IPS— 1ノックアウト 非ヒト動物。
[24] 以下の (a)〜(f)の 、ずれか記載 DNAを、 IPS - 1活性を有するタンパク質の製造に 使用する方法。
(a)配列番号 2に示されるアミノ酸配列力 なるタンパク質をコードする DNA
(b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列カゝらなり、かつ IPS - 1活性を有するタンパク質 をコードする DNA
(c)配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するァミノ 酸配列からなり、かつ IPS— 1活性を有するタンパク質をコードする DNA
(d)配列番号 1に示される塩基配列からなる DNA
(e)配列番号 1に示される塩基配列において、 1若しくは数個の塩基が欠失、置換若 しくは付加された塩基配列からなり、かつ IPS— 1活性を有するタンパク質をコードす る DNA (f)配列番号 1に示される塩基配列力 なる DNAとストリンジェントな条件下でノ、イブ リダィズし、かつ IPS— 1活性を有するタンパク質をコードする DNA
[25] 以下の (a)〜(c)の!、ずれか記載のタンパク質を用いて、 I型 IFNプロモーターを活性 化する方法。
(a)配列番号 2に示されるアミノ酸配列力もなるタンパク質。
(b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列カゝらなり、かつ IPS - 1活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するァミノ 酸配列からなり、かつ IPS— 1活性を有するタンパク質
[26] タンパク質力 以下の (a)〜(f)のいずれか記載の DNAで形質転換した宿主細胞で発 現させた組換えタンパク質であることを特徴とする請求項 25記載の IFN βプロモータ 一を活性化する方法。
(a)配列番号 2に示されるアミノ酸配列力 なるタンパク質をコードする DNA
(b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列カゝらなり、かつ IPS - 1活性を有するタンパク質 をコードする DNA
(c)配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するァミノ 酸配列からなり、かつ IPS— 1活性を有するタンパク質をコードする DNA
(d)配列番号 1に示される塩基配列からなる DNA
(e)配列番号 1に示される塩基配列において、 1若しくは数個の塩基が欠失、置換若 しくは付加された塩基配列からなり、かつ IPS— 1活性を有するタンパク質をコードす る DNA
(f)配列番号 1に示される塩基配列力 なる DNAとストリンジェントな条件下でノ、イブ リダィズし、かつ IPS— 1活性を有するタンパク質をコードする DNA
[27] 以下の (a)〜(c)のいずれか記載のタンパク質を、 I型 IFNの製造に使用する方法。
(a)配列番号 2に示されるアミノ酸配列力もなるタンパク質。
(b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列カゝらなり、かつ IPS - 1活性を有するタンパク質
(c)配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するァミノ 酸配列からなり、かつ IPS— 1活性を有するタンパク質
[28] タンパク質力 以下の (a)〜(f)のいずれか記載の DNAで形質転換した宿主細胞で発 現させた組換えタンパク質であることを特徴とする請求項 27記載の使用する方法。
(a)配列番号 2に示されるアミノ酸配列力 なるタンパク質をコードする DNA
(b)配列番号 2に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列カゝらなり、かつ IPS - 1活性を有するタンパク質 をコードする DNA
(c)配列番号 2に示されるアミノ酸配列と少なくとも 90%以上の相同性を有するァミノ 酸配列からなり、かつ IPS— 1活性を有するタンパク質をコードする DNA
(d)配列番号 1に示される塩基配列からなる DNA
(e)配列番号 1に示される塩基配列において、 1若しくは数個の塩基が欠失、置換若 しくは付加された塩基配列からなり、かつ IPS— 1活性を有するタンパク質をコードす る DNA
(f)配列番号 1に示される塩基配列力 なる DNAとストリンジェントな条件下でノ、イブ リダィズし、かつ IPS— 1活性を有するタンパク質をコードする DNA
[29] IPS— 1遺伝子の機能を染色体上で欠損させた IPS— 1ノックアウト非ヒト動物を、 I型 IFNプロモーターの活性ィ匕による抗ウィルス応答機能が喪失したモデル動物として 使用する方法。
[30] 非ヒト動物が、マウスであることを特徴とする請求項 29記載の抗ウィルス応答機能が 喪失したモデル動物としての使用方法。
PCT/JP2006/314562 2005-07-26 2006-07-24 インターフェロン誘導分子ips-1 WO2007013391A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005215864 2005-07-26
JP2005-215864 2005-07-26
JP2006111410A JP2007054042A (ja) 2005-07-26 2006-04-13 インターフェロン誘導分子ips−1
JP2006-111410 2006-04-13

Publications (1)

Publication Number Publication Date
WO2007013391A1 true WO2007013391A1 (ja) 2007-02-01

Family

ID=37683288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314562 WO2007013391A1 (ja) 2005-07-26 2006-07-24 インターフェロン誘導分子ips-1

Country Status (2)

Country Link
JP (1) JP2007054042A (ja)
WO (1) WO2007013391A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625724B2 (en) * 2005-08-25 2009-12-01 Board Of Regents, The University Of Texas System MAVS in the prevention and treatment of viral diseases
CN103784944A (zh) * 2014-01-23 2014-05-14 武汉大学 Irf7基因在支架及内膜剥脱术后再狭窄中的功能和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2009001555A1 (ja) * 2007-06-26 2010-08-26 国立大学法人北海道大学 I型インターフェロンの発現調節剤
CN107881152B (zh) * 2017-12-22 2021-06-29 中国医学科学院医学生物学研究所 一种用于检测甲型肝炎病毒滴度的细胞系及其构建方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003048202A2 (en) * 2001-12-03 2003-06-12 Asahi Kasei Pharma Corporation Nf-kappab activating genes
JP2004267002A (ja) * 2000-10-23 2004-09-30 Naoki Maruyama セネッセンスマーカープロテイン30欠損動物、抗体およびその作製方法
JP2004305111A (ja) * 2003-04-08 2004-11-04 Kanazawa Univ Tlo Inc IgA腎症発症モデル非ヒト動物
WO2004111085A1 (en) * 2003-06-10 2004-12-23 Xantos Biomedicine Ag Angiogenic factor and its medical use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004267002A (ja) * 2000-10-23 2004-09-30 Naoki Maruyama セネッセンスマーカープロテイン30欠損動物、抗体およびその作製方法
WO2003048202A2 (en) * 2001-12-03 2003-06-12 Asahi Kasei Pharma Corporation Nf-kappab activating genes
JP2004305111A (ja) * 2003-04-08 2004-11-04 Kanazawa Univ Tlo Inc IgA腎症発症モデル非ヒト動物
WO2004111085A1 (en) * 2003-06-10 2004-12-23 Xantos Biomedicine Ag Angiogenic factor and its medical use

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STRAUSBERGT R.L. ET AL.: "Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences", PROC. NATL. ACAD. SCI. USA, vol. 99, no. 26, 24 December 2002 (2002-12-24), pages 16899 - 16903, XP002372203 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625724B2 (en) * 2005-08-25 2009-12-01 Board Of Regents, The University Of Texas System MAVS in the prevention and treatment of viral diseases
CN103784944A (zh) * 2014-01-23 2014-05-14 武汉大学 Irf7基因在支架及内膜剥脱术后再狭窄中的功能和应用

Also Published As

Publication number Publication date
JP2007054042A (ja) 2007-03-08

Similar Documents

Publication Publication Date Title
Sigg et al. Evolutionary proteomics uncovers ancient associations of cilia with signaling pathways
EP1109908B1 (en) Methods for determining compounds for modulating the body weight
EP1352961A1 (en) Synovial cell protein
WO2000075655A1 (fr) Procede de criblage avec cd100
JPH11506907A (ja) アポトーシスを変調する新規ペプチドおよび組成物
JP2008517627A (ja) Torcポリヌクレオチドおよびポリペプチドならびに使用法
JP2010524434A (ja) Kcnh2の統合失調症関連アイソフォームおよび抗精神病薬の開発
US20150139999A1 (en) Interferon antagonists, antibodies thereto, and associated methods of use
EP2328917B1 (en) Neuronal viability factor and use thereof
EP1235934B1 (en) Screening method for candidate drugs
WO2007013391A1 (ja) インターフェロン誘導分子ips-1
EP2231177B1 (en) Trophic factor for the treatment of retinal degenerative diseases
US6762291B1 (en) Insect p53 tumor suppressor genes and proteins
EP1302541B1 (en) Method for recognizing bacterial DNA
AU2011207210A1 (en) Compositions,kits, and methods for identification, assessment, prevention, and therapy of metabolic disorders
WO2006070860A1 (ja) 炎症性サイトカイン抑制剤の新規スクリーニング方法
CN101835799A (zh) 超敏反应调节剂
JPH09506243A (ja) レセプター認識因子、蛋白配列およびその使用方法
JP2004180540A (ja) 哺乳動物のToll様受容体3に結合する新規アダプタータンパク質およびその遺伝子
US20060292639A1 (en) Splice variant of the vanilloid receptor VR1A
US6908750B2 (en) Gene encoding HM1.24 antigen protein and promoter thereof
US20180245086A1 (en) Transfection vector for pathogenic amoebae and uses thereof
EP1306436A1 (en) P53-dependent novel apoptosis-associated protein and method of screening apoptosis controlling agent
JP4375960B2 (ja) 生体代謝の修飾
WO2001012213A2 (en) Ttp-related zinc finger domains and methods of use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06768363

Country of ref document: EP

Kind code of ref document: A1