WO2007013218A1 - Iron-supplying agent, iron supplying agent for plant comprising the same, and process for production of the same - Google Patents

Iron-supplying agent, iron supplying agent for plant comprising the same, and process for production of the same Download PDF

Info

Publication number
WO2007013218A1
WO2007013218A1 PCT/JP2006/310701 JP2006310701W WO2007013218A1 WO 2007013218 A1 WO2007013218 A1 WO 2007013218A1 JP 2006310701 W JP2006310701 W JP 2006310701W WO 2007013218 A1 WO2007013218 A1 WO 2007013218A1
Authority
WO
WIPO (PCT)
Prior art keywords
iron
supply agent
ions
iron supply
aqueous solution
Prior art date
Application number
PCT/JP2006/310701
Other languages
French (fr)
Japanese (ja)
Inventor
Satoshi Mori
Hirohiko Sasamoto
Masaharu Yasui
Original Assignee
Aichi Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corporation filed Critical Aichi Steel Corporation
Priority to JP2007528360A priority Critical patent/JP4096207B2/en
Publication of WO2007013218A1 publication Critical patent/WO2007013218A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers
    • C05D9/02Other inorganic fertilisers containing trace elements

Definitions

  • Iron supply agent plant iron supply agent containing the same, and method for producing the same
  • the present invention relates to an iron supply agent, an iron supply agent for plants containing the same, and a method for producing the same. More particularly, the present invention relates to an iron supply agent having a high Fe 2+ ion concentration in an aqueous solution state, in which oxidation of Fe 2+ ions is suppressed, a plant iron supply agent containing the same, and a method for producing the same.
  • Iron is a trace essential element for plants, and deficiency is known to cause peculiar symptoms such as yellowing of leaves and impaired synthesis of proteins. Iron is taken up in an ionized state. However, among Fe ions, Fe 3+ ions are known to be difficult to obtain a satisfactory effect on plants even if they are supplied. For this reason, some efforts have been made to supply iron as Fe 2+ ions. However, Fe 2+ ions of iron powder as a composition for supplying the iron for this plant that it is desired to be stably supplied for a long time an easy tool Fe 2+ ions become Sani ⁇ Well F e 3+ In addition, the use of iron furnaces, converter furnaces, and iron hydroxide has been proposed (see, for example, Patent Document 1).
  • EDTA ethylenediamine tetraacetic acid
  • Patent Document 1 Japanese Patent Laid-Open No. 8-277183
  • the iron content eluted from the iron-containing composition described in Patent Document 1 is mostly Fe 3+, and it is considered difficult for plants to take up.
  • the water-soluble inorganic iron salt is easily oxidized to Fe 3+ which does not easily maintain the Fe 2+ state.
  • water-soluble inorganic metal salts have been used for a long time as various fertilizers, and the strong acid anions that make up these water-soluble metal salts are used in other soils. It has become a problem to combine with these elements to form a water-insoluble salt and accumulate it in the soil. A water-soluble inorganic iron salt cannot solve this problem.
  • EDTA is essentially trivalent iron that is used as the EDTA iron complex.
  • EDTA is a strong chelating agent, and there are concerns about fixing heavy metals in soil and causing soil contamination, and dissolving in groundwater to cause water contamination.
  • the present invention is intended to solve the aforementioned conventional problems, has a high Fe 2+ I O emissions concentration in aqueous solution, the iron supply agent oxidation is suppressed in Fe 2+ ions, this It aims at providing the iron supply agent for plants to contain, and its manufacturing method.
  • the present inventors paid attention to an organic acid having a chelating power against iron and examined the organic acid iron.
  • ferrous citrate obtained by boiling metal iron, which is also known in the past
  • aqueous citrate solution Fe (OH)
  • ferric citrate obtained by reacting 3 with an aqueous solution of citrate
  • ferrous citrate (Fe 2+ ) is poor in water solubility and does not supply enough Fe 2+
  • 2 iron (Fe 3+) is water-soluble can be sufficiently obtained does not contain 1Z4 degree to force Fe 2+ ions of the total Fe I on, it was not divided Fe 2+ ion amount is insufficient.
  • compounds with strong ion binding properties such as iron citrate ammonium have been difficult to obtain the effect of suppressing Fe 2+ ion oxidation.
  • the present invention is as follows.
  • An iron supply agent comprising an aqueous solution obtained by dissolving an organic acid having a carboxyl group and a Z or hydroxyl group and FeO (hereinafter referred to as ⁇ iron supply agent of the first invention '') Called).
  • the Fe 2+ ions and Fe 3+ ions are contained, and the total of the Fe 2+ ions and the Fe 3+ ions is 100% by mass, the Fe 2+ ions are 50 to 90%.
  • the iron supply agent according to the above (1) which is mass%.
  • the iron supply agent for plants comprising the iron supply agent according to any one of the above (1) to (5) (hereinafter referred to as “the iron supply for plants of the first invention”) Agent ”).
  • an aqueous solution obtained by dissolving this iron supplying agent contains a Fe 2+ ions and Fe 3+ ions, when the total of the Fe 2+ ions and the Fe 3+ ions is 100 mass% And the Fe 2+ ion is 50 to 90% by mass.
  • the aqueous solution obtained by dissolving the iron supply agent has an Fe 2+ ion concentration force observed in the aqueous solution after standing for 168 hours, and is 75% or more of the Fe 2+ ion concentration observed immediately after the dissolution.
  • an aqueous solution obtained by dissolving this iron supply agent, a dimeric complex Kuen acid and Z or Kuen acid ion was two coordinated to one Fe 2+ ions, one Fe 2+ ions
  • the iron supply agent according to any one of (10) and (14) above is contained.
  • the plant iron supply agent (hereinafter referred to as “the plant iron supply agent of the second invention”).
  • the matrix comprising the biodegradable extender contains the citrate and the FeO;
  • iron supplier of the third invention An iron supplier comprising an organic acid having a carboxyl group and a Z or hydroxyl group and FeO (hereinafter referred to as “iron supplier of the third invention”).
  • an aqueous solution obtained by dissolving this iron supplying agent contains a Fe 2+ ions and Fe 3+ ions, when the total of the Fe 2+ ions and the Fe 3+ ions is 100 mass% And the Fe 2+ ion is 50 to 90% by mass.
  • the aqueous solution obtained by dissolving the iron supply agent has an Fe 2+ ion concentration force observed in the aqueous solution after standing for 168 hours, and is 75% or more of the Fe 2+ ion concentration observed immediately after the dissolution.
  • Aqueous solution (24) was dissolved the iron supplying agent comprising the one and the dimeric complexes Kuen acid and Z or Kuen acid ion was two coordinated against Fe 2+ ions, one Fe 2+ ions
  • a plant iron supply agent characterized by containing the iron supply agent according to any one of the above (20) to (24) hereinafter referred to as “the plant iron of the first invention”). "Supplier").
  • the matrix comprising the biodegradable extender contains the citrate and the FeO;
  • a dissolution step of heating an organic acid powder having a carboxyl group and Z or hydroxyl group, FeO powder, and water to obtain an aqueous solution obtained by dissolving the organic acid and FeO is provided.
  • the manufacturing method of the iron supply agent characterized by the above-mentioned.
  • the FeO powder is prepared by vacuum heating a granulated product obtained by granulating iron-containing dust and a granulated product obtained by granulating Z or iron-containing dust and a reducing agent.
  • a high Fe 2+ ion concentration can be obtained. That is, for example, a high Fe 2+ ion concentration can be obtained even in soil, and iron can be supplied with high probability. In addition, the resulting Fe 2+ ions are effectively suppressed in acidity, so that iron can be supplied with a high probability. In addition, the use of organic acids (especially cuenic acid) is safe for use with less environmental impact. Furthermore, when used on plants, a germination promoting effect and a growth promoting effect are obtained.
  • the iron content can be supplied with a particularly high probability.
  • the Fe 2+ ion concentration after standing for a predetermined time is 75% or more immediately after the start of measurement, the Fe 2+ ion has particularly high acidity and can stably supply Fe 2+ ions for a long time.
  • the resulting high Fe 2+ ion concentration According to the plant for iron supply agent in the first invention, the resulting high Fe 2+ ion concentration. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with high probability. Furthermore, since the Fe 2+ ions obtained are effectively suppressed in acidity, iron can be supplied with a high probability. In addition, the use of organic acids (especially quenoic acid) is safe for use with less environmental impact. Furthermore, germination promotion effect and growth promotion effect can be obtained.
  • a biodegradable binder In the case of containing a biodegradable binder, it can be an iron supply agent for plants having sustained release that stably and gradually supplies Fe 2+ over a long period of time. Furthermore, it can be made into the solid substance which contains other components other than an iron supply agent simultaneously.
  • the Fe 2+ supply amount can be easily kept within an appropriate range, and is excellent in versatility.
  • the iron supply agent When the iron supply agent is contained in an amount of 5% by mass or more, the effect of supplying Fe 2+ can be obtained particularly surely.
  • an aqueous solution having a high Fe 2+ ion concentration can be obtained. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with a high probability. Furthermore, since the Fe 2+ ions obtained by making the solution water effectively suppress the oxidation, iron can be supplied with a high probability.
  • the use of organic acids (especially cuenic acid) is safe for use with no environmental impact.
  • a germination promoting effect and a growth promoting effect are obtained.
  • the iron content can be supplied with a particularly high probability.
  • the Fe 2+ ion concentration after standing for a predetermined time is 75% or more immediately after dissolution, the Fe 2+ ion has particularly high acidity and can stably supply Fe 2+ ions for a long period of time.
  • a high Fe 2+ ion concentration can be obtained. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with high probability. Furthermore, since the Fe 2+ ions obtained are effectively suppressed in acidity, iron can be supplied with a high probability. In addition, the use of organic acids (especially quenoic acid) is safe for use with less environmental impact. Furthermore, germination promotion effect and growth promotion effect can be obtained.
  • a biodegradable binder In the case of containing a biodegradable binder, it can be an iron supply agent for plants having sustained release that stably and gradually supplies Fe 2+ over a long period of time. Furthermore, it can be made into the solid substance which contains other components other than an iron supply agent simultaneously.
  • the Fe 2+ supply amount can be easily kept within an appropriate range, and is excellent in versatility.
  • the iron supply agent When the iron supply agent is contained in an amount of 5% by mass or more, the effect of supplying Fe 2+ can be obtained particularly surely.
  • an aqueous solution having a high Fe 2+ ion concentration can be obtained. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with a high probability. Furthermore, since the Fe 2+ ions obtained by making the solution water effectively suppress the oxidation, iron can be supplied with a high probability.
  • the use of organic acids (especially cuenic acid) is safe for use with no environmental impact.
  • a germination promoting effect and a growth promoting effect are obtained.
  • the iron content can be supplied with a particularly high probability.
  • the Fe 2+ ion concentration after standing for a predetermined time is 75% or more immediately after dissolution, the Fe 2+ ion has particularly high acidity and can stably supply Fe 2+ ions for a long period of time.
  • a high Fe 2+ ion concentration can be obtained. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with high probability. Furthermore, since the Fe 2+ ions obtained are effectively suppressed in acidity, iron can be supplied with a high probability. In addition, the use of organic acids (especially quenoic acid) is safe for use with less environmental impact. Furthermore, germination promotion effect and growth promotion effect can be obtained.
  • a biodegradable binder In the case of containing a biodegradable binder, it can be an iron supply agent for plants having sustained release that stably and gradually supplies Fe 2+ over a long period of time. Furthermore, it can be made into the solid substance which contains other components other than an iron supply agent simultaneously.
  • the Fe 2+ supply amount can be easily kept within an appropriate range, and is excellent in versatility.
  • the iron supply agent When the iron supply agent is contained in an amount of 5% by mass or more, the effect of supplying Fe 2+ can be obtained particularly surely.
  • the iron supplier obtained by removing the water from the aqueous solution obtained by dissolving the organic acid of the present invention and FeO is stably and reliably provided. Can be obtained.
  • the FeO powder is an FeO powder obtained by vacuum-cooling a granulated product and then vacuum-quenching, the anti-acidic property is particularly high and the iron supply agent can be obtained reliably and stably.
  • FIG. 1 is a graph showing the correlation between the elapsed time in which an aqueous solution in which the iron supply agent of the product of the present invention (Experimental Examples 1 to 14) is dissolved is left and the Fe 2+ ion concentration.
  • FIG. 2 is a graph showing the correlation between elapsed time and Fe 2+ ion concentration when an oxidation acceleration test is performed on an aqueous solution in which the iron supplier of the product of the present invention (Experimental Examples 5 and 6) is dissolved. .
  • FIG. 3 A chart by mass spectrometry, in which the upper part is an aqueous solution in which the iron supplier of the product of the present invention (Experimental Example 7) is dissolved, the middle part is iron (III) citrate, and the lower part is anhydrous citrate. It is.
  • FIG. 4 is a chart obtained by further colliding Ar gas with a peak of mass 439 in the iron supply agent chart of the product of the present invention (Experimental Example 7) in the upper part of FIG.
  • FIG. 5 is an explanatory diagram of Hayasaki Cosmos watered with the product of the present invention (Experimental Example 8).
  • FIG. 6 is an explanatory diagram of Hayasaki Cosmos watered with the product of the present invention (Experimental Example 8).
  • FIG. 7 is an explanatory diagram of Hayasaki Cosmos watered with a reference product (Reference Example 1).
  • FIG. 8 is an explanatory diagram of Hayasaki Cosmos watered with a reference product (Reference Example 1).
  • FIG. 9 is an explanatory diagram of banana peppers irrigated with the product of the present invention (Experimental Example 8).
  • FIG. 10 is an explanatory diagram of banana peppers irrigated with a reference product (Reference Example 1).
  • FIG. 11 is an explanatory view of a spray chrysanthemum irrigated with the product of the present invention (Experimental Example 8).
  • FIG. 12 is an explanatory diagram of a spray chrysanthemum irrigated with a reference product (Reference Example 1).
  • FIG. 13 is an explanatory diagram of an all-day bloom pine needle button irrigated with a product of the present invention (Experimental Example 8).
  • FIG. 14 is an explanatory diagram of an all-day bloom pine needle button irrigated with a reference product (Reference Example 1).
  • FIG. 15 Rice seedlings grown in the seedling culture medium containing the iron supply agent for plants of the product of the present invention (Experimental Examples 9 and 10) and those that do not contain this! /, Grown in the seedling culture medium (Reference Example 2) It is explanatory drawing which compared the mode of breeding with the rice seedling.
  • FIG.16 Rice seedlings grown in the seedling culture medium containing the iron supply agent for plants of the product of the present invention (Experimental examples 9-1 and 9-2), and the seedlings without this! / It is explanatory drawing which compared the mode of breeding with the rice seedling grown in 2).
  • FIG.17 Rice seedlings grown in the seedling culture medium containing the iron supply agent for plants of the product of the present invention (Experimental examples 10-1 and 10-2), and the seedlings without this! /, Seedling culture medium (Reference Example 2) It is explanatory drawing which compared the mode of breeding with the rice seedling grown by ().
  • the iron supplier of the first invention is characterized in that it comprises an aqueous solution obtained by dissolving an organic acid having a carboxyl group and / or a hydroxyl group and FeO.
  • the iron supply agent of the second invention is characterized by removing water from an aqueous solution obtained by dissolving an organic acid having a carboxyl group and / or a hydroxyl group and FeO. That is, the other iron supply agent can be obtained by removing water from the iron supply agent.
  • the iron supply agent according to the third invention is characterized by containing an organic acid having a carboxyl group and / or a hydroxyl group and FeO.
  • the “organic acid” is an acid having a carboxyl group and a Z or hydroxyl group.
  • examples of the organic acid having a carboxyl group include citrate (including citrate anhydride), acetic acid, tartaric acid and oxalic acid.
  • examples of the organic acid having a hydroxyl group include ascorbic acid.
  • Examples of the organic acid having both a carboxyl group and a hydroxyl group include citrate and tartaric acid. These may be used alone or in combination of two or more. Of these, citrate, acetic acid, tartaric acid and oxalic acid are preferred because of their excellent stability.
  • an aqueous solution containing an organic acid and FeO citrate, acetic acid and tartaric acid are preferred because the Fe 2+ ion concentration is high relative to the organic acid concentration.
  • citrate, acetic acid and tartaric acid are preferred because the Fe 2+ ion concentration is high relative to the organic acid concentration.
  • the concentration of Fe 2+ ions with respect to the concentration of the organic acid is particularly high, so quenate is most preferred.
  • the "aqueous solution” is an aqueous solution obtained by dissolving an organic acid and FeO. That is, it is an aqueous solution not containing undissolved organic acid and FeO. However, it may be a supernatant in a solid-liquid coexisting solution containing V, an organic acid and / or FeO that is not dissolved.
  • the dissolved state of the organic acid and FeO in the aqueous solution is not particularly limited. That is, for example, this aqueous solution can contain an organic acid iron complex and an organic acid ion. Among these, it is particularly preferable that an organic acid iron complex is contained, and further, as described above. When an acid is contained, a taenoic acid complex is preferably contained.
  • This iron citrate complex is preferably a multimeric complex in which citrate and Z or a plurality of citrate ions are coordinated to one Fe 2+ ion, particularly a dimer complex (one Fe 2 ion).
  • the amount of the organic acid and FeO dissolved in the aqueous solution is not particularly limited, but usually the organic acid (particularly quenic acid) per 100 ml of water is 0.05 g or more (preferably 0.5 g to the temperature of the aqueous solution). The solubility limit of organic acid in degrees). On the other hand, FeO per 100 ml of water is 10 to 25 parts by mass (particularly 20 to 25 parts by mass) when the content of the organic acid is 100 parts by mass.
  • the water constituting the aqueous solution is not particularly limited, and various types of water can be used.
  • Water that is usually used such as tap water, industrial water, agricultural water, and ground water, which may be highly purified water such as pure water and ion exchange water, may be used.
  • a method for obtaining this aqueous solution is not particularly limited, but it can be obtained by a production method described later. That is, (1) it can be obtained by heating a mixture containing organic acid powder, FeO powder and water. In addition, (2) it can also be obtained by adding FeO powder to an organic acid aqueous solution in which the entire amount has been dissolved in advance and heating it with heat. Alternatively, (3) organic acid powder and FeO powder may be further added to an organic acid aqueous solution in which a predetermined amount is dissolved and heated. Furthermore, (4) it can be obtained by mixing organic acid powder, FeO and water without heating. Furthermore, (5) In addition to the above (1) to (4), when it is not completely dissolved! / ⁇ Organic acid and completely dissolved ⁇ FeO are contained, they are separated by a method such as filtration. The process to perform can be provided.
  • the iron supply agent of the first invention may contain a pyroligneous acid solution for anti-mold.
  • the content of the wood vinegar solution is preferably 10% by mass or less (usually 1% by mass or more) of the whole iron supply agent.
  • ultraviolet irradiation can be performed in advance for the same purpose.
  • the ultraviolet irradiation conditions are not particularly limited, it is preferable to use ultraviolet rays having a wavelength of 200 to 380 nm.
  • 72 10 4 ⁇ 3 for irradiation It is preferable to irradiate 111 2 or more.
  • the iron supply agent of the second invention is obtained by removing the aqueous solution water.
  • the above “removal” means an operation of removing a part or all of water from the aqueous solution, but usually the water content is 90% by mass or less based on the whole iron supply agent of the first invention.
  • the solid content is 10% by mass or less (preferably 5% by mass or less), and the pasty product is 60 to 90% by mass (preferably 65 to 85% by mass).
  • the iron supply agent of the second invention may be a solid product obtained by removing substantially all of the water from the aqueous solution, or may be a paste product obtained by removing a part of the water from the aqueous solution. Of these, solids are preferred.
  • the removal method is not particularly limited, and means such as reduced pressure heating drying, normal pressure heating drying, non-heating reduced pressure drying, and freeze drying can be used. Of these, reduced pressure hot air drying is preferred. This is because Fe 2+ can be prevented from being oxidized in the process of removing this water. In addition to drying under reduced pressure, drying under low oxygen may be used.
  • the heating temperature of the aqueous solution is not particularly limited, but is preferably maintained at 150 ° C or lower. This is because the Fe 3+ ion concentration tends to increase above 150 ° C.
  • the temperature of the aqueous solution by heating is more preferably 140 ° C. or less, particularly preferably 135 ° C. or less, and particularly preferably 130 ° C. or less.
  • the lower limit temperature is not particularly limited and may be any temperature that causes transpiration of water under the pressure environment when water is removed. For example, 60 ° C or higher is preferable, and 80 ° C or higher is preferable.
  • More preferred is 100 ° C or more, more preferred is 115 ° C or more, and particularly preferred is 120 ° C or more.
  • These upper limit temperature and lower limit temperature at the time of heating can be combined. That is, for example, 60 to 150 ° C is preferable, and 100 to 140 ° C is more preferable, and 110 to 130 ° C is more preferable. Other combinations may be used.
  • the pressure when the pressure is reduced when removing water, is not particularly limited, but is preferably 0.1 to 50 kPa force S, more preferably 0.1 to 20 kPa force S, and further preferably 3 to 15 kPa force. 4 to 10 kPa is particularly preferred.
  • the iron supply agent of the second invention can usually be dissolved almost entirely in water at a temperature of 15 ° C or higher.
  • 0.1 lg or more or 0.1-12 0 g, in particular 0.1 to 50 g, in particular 0.1 to 15 g
  • the properties of the aqueous solution in which this iron supply agent is dissolved will be described later.
  • the iron supply agent of the third invention contains an organic acid having a carboxyl group and / or a hydroxyl group and FeO. That is, for example, an iron supply agent containing organic acid powder and FeO powder.
  • an iron supply agent containing organic acid powder and FeO powder As a result of this iron supply agent, the iron supply agent (aqueous solution) of the first invention is obtained as a result of rainfall, irrigation, moisture in the soil, and the like. That is, the organic acid iron aqueous solution (particularly iron citrate aqueous solution) is formed.
  • This iron supply agent can be obtained, for example, by mixing organic acid powder and FeO powder.
  • this iron supply agent may contain water. That is, an iron supplier obtained by mixing an organic acid aqueous solution and FeO powder, an iron supplier obtained by mixing an organic acid aqueous solution (for example, a saturated aqueous solution), organic acid powder and FeO powder, and the like are included.
  • this iron supply agent can reduce the elution rate of an organic acid using the biodegradable binder etc. which are mentioned later. Thereby, it is possible to provide a release property.
  • the aqueous solution containing the iron supplier of the first invention, the aqueous solution of the iron supplier of the second invention, and the aqueous solution of the iron supplier of the third invention contain Fe 2+ ions and Fe 3+ ions, respectively.
  • Fe 2+ ions 50 to 90 wt% (further 60-90% by weight, in particular 70 to 90% by weight) It can be. That, Fe 3+ I ON as possible out to 10 to 50 mass 0/0 (further 10 to 40 mass 0/0, especially 10 to 30 mass 0/0). That is, an aqueous solution containing Fe 2+ at a high concentration can be obtained.
  • each ion concentration is a value measured by a measuring method of an example described later.
  • the iron supply agent of the first invention when cenoic acid is used as the organic acid, the iron supply agent of the first invention, the aqueous solution in which the iron supply agent of the second invention is made water-soluble, and the iron supply agent of the third invention are made water-soluble.
  • a trimer complex in which three citrate and Z or three citrate ions are coordinated to one Fe 2+ ion The content of each complex is not particularly limited.
  • the content of each complex with respect to the total iron supply agent is not particularly limited!
  • the aqueous solution in which the iron supply agent of the first invention, the iron supply agent in the second invention are dissolved in water, and the aqueous solution in which the iron supply agent of the third invention is dissolved in water are recognized when left standing for 168 hours.
  • the Fe 2+ ion concentration obtained can be 75% or more of the Fe 2+ ion concentration (mg Z liters) observed immediately after dissolution (immediately after measurement in the iron supplier of the first invention). That is, it is possible to hold the long-term stability to Fe 2+ ions, can be supplied to excellence in Fe 2+ ions Kosani ⁇ to be oxidized is suppressed to Fe 3+. However, the above-mentioned neglect shall be in a dark place at a temperature of 25 ° C where there is virtually no ultraviolet light.
  • Each ion concentration is a value measured by a measuring method of an example described later.
  • the iron supply agent of the first invention, the aqueous solution in which the iron supply agent of the second invention is dissolved in water, and the aqueous solution in which the iron supply agent of the third invention is dissolved in water are ultraviolet rays (especially wavelengths of 200 to 380 nm). Irradiation can improve the Fe 2+ ion concentration.
  • an aqueous solution with an Fe 2+ ion concentration of 80% or less of the total Fe ion concentration (mgZ liter) (especially 70% or less, usually 50% or more) is irradiated with ultraviolet rays with a wavelength of 253 nm at 72 X 10 4 ws /
  • the Fe 2+ ion concentration (mgZ liter) can be improved to 85% or more (further 90% or more, particularly 95% or more, usually 99.9% or less). This ion concentration is measured by the measurement method of the examples described later.
  • the iron supply agent of the first invention, the iron supply agent of the second invention and the iron supply agent of the third invention can be used as an iron supply agent for plants, which will be described later, and an iron supply agent for livestock (chicken, pig, Cattle, etc.) and iron supply agents for seafood (cultured fish, cultured shellfish, etc.). In addition, it can be used in various fields that require the supply of various Fe 2+ ions.
  • the iron supplier of the second invention may contain a biodegradable binder as in the iron supplier for plants described later. It can contain biodegradable extenders and can contain other components.
  • the iron supply agent for plants of the first invention is characterized by containing the iron supply agent of the first invention.
  • the iron supply agent for plants of the second invention is characterized by containing the iron supply agent of the second invention.
  • the iron supply agent for plants of the 3rd invention contains the iron supply agent of 3rd invention, It is characterized by the above-mentioned.
  • the iron supply agent of the first invention, the iron supply agent of the second invention or the iron supply agent of the third invention contained in each plant iron supply agent (hereinafter also simply referred to as "iron supply agent”)
  • the content is not particularly limited! However, when the total amount of the iron supply agent for plants is 100% by mass, it is contained in an amount of 5% by mass or more in terms of the iron supply agent of the second invention (in terms of complete dry mass). It is preferable. If it is this range, the effect which contains an iron supply agent can fully be acquired.
  • the content is preferably 95% by mass or less, more preferably 50% by mass or less, and even more preferably 30% by mass or less. For plants, iron is a trace essential element, so it is not necessary to give it too much.
  • the plant iron supplier of the present invention may contain a biodegradable binder.
  • the iron supply is gradually released as this binder is decomposed to produce Fe 2+ . Therefore, Fe 2+ ions can be supplied stably over a long period of time. That is, sustained release can be imparted to the plant iron supplier.
  • Biodegradable plastic As the biodegradable binder, a biodegradable plastic can be used.
  • Biodegradable plastics include polyalkylene succinate-based resins (polybutylene succinate resin, polyethylene succinate resin, etc.), polylactic acid-based resin, urea resin, poly-plastic filler-based resin, Examples thereof include cellulose-based resin, starch-based resin, and polybulal alcohol-based resin. These may be used alone or in combination of two or more.
  • the content of the biodegradable binder is not particularly limited, but is 10% by mass or less (more preferably 2-7% by mass, usually 1% by mass or more) when the total amount of iron supply for plants is 100% by mass. It is preferable that
  • the plant iron supply agent of the present invention may contain a biodegradable extender.
  • the biodegradable extender is a component other than the above-mentioned noinda having biodegradability.
  • examples of the biodegradable extender include peat, straw, shochu, sake lees, citrate lees, rice husks, snow flowers, cocoons, humus, chicken manure, compost, cow manure, bone meal, and clay. Only one of these may be used 2 More than one species may be used in combination.
  • the biodegradable extender may or may not have a predetermined function for plants. Examples of the component having a predetermined function include components that serve as nutrients for plants.
  • the content of the biodegradable extender is not particularly limited, but can be 50 to 94% by mass (preferably 70 to 94% by mass) when the total amount of iron supply for plants is 100% by mass. Within this range, even when a small amount of iron supply agent is mixed with a large amount of soil, an appropriate amount can be mixed.
  • the plant iron supply agent of the present invention may contain other components in addition to the iron supply agent, the biodegradable binder and the biodegradable extender.
  • Other ingredients include lipoic acid, oryza oil, various vitamins, Mn, Zn, Cu, Cr, Si, Mg, Ca, Co, Mo, Ni, B, etc. (for example, metallic state, metallic acid Compounds such as S and C1, and the like. These may be used alone or in combination of two or more.
  • the other components are preferably 10 parts by mass or less when the total of the iron supplier, the biodegradable binder, and the biodegradable extender contained in the plant iron supplier is 100 parts by mass.
  • the method of using the plant iron supplier of the present invention is not particularly limited. For example, if it is in liquid form, spray (sprinkle soil, root of the target plant, foliar spray, etc.) or immerse (use as a culture solution for hydroponics. Soak the root of the target plant, etc.) ), And mixing with soil. If it is solid, use it for mixing with soil (powder, lump), spraying on soil (powder), filling in soil (powder, lump), etc. A method is mentioned.
  • the plant iron supply agent containing the iron supply agent of the first invention or (2) the iron supply agent of the second invention.
  • a plant iron supply agent that contains citrate as an organic acid, a biodegradable extender is included, and the matrix composed of the biodegradable extender contains chenate and FeO.
  • the plant iron supplier can be suitably used in alkaline soil.
  • the biodegradable extender can be applied as it is.
  • these biodegradable extenders peat, straw, shochu, sake lees and taenoic acid lees Peat is particularly preferred.
  • These biodegradable extenders may be used alone or in combination of two or more.
  • iron supply agents for plants containing the citrate and the biodegradable extender those containing peat as the biodegradable extender are particularly preferable.
  • the peat may be a mixture of these peats that may be used as collected or subjected to various modification treatments.
  • various modification treatments include alkali extraction treatment, neutralization treatment (such as phosphoric acid neutralization treatment, and maternal lime neutralization treatment).
  • peat examples include grassy peat (mainly organic components derived from various types of peat, moss and moss) and woody peat. Further, peats obtained by modifying these can be mentioned. These may be used alone or in combination of two or more.
  • the peat has a water repellent effect. For this reason, for example, when a plant iron supply agent is used in alkaline soil, a high ambient force pH and an aqueous solution or the like can be prevented from entering the plant iron supply agent. Therefore, the pH is kept low, the decrease in solubility of FeO is suppressed, and the oxidation of Fe 2+ ions is further suppressed. Therefore, it is possible to supply Fe 2+ ions stably over a long period of time. That is, excellent sustained release can be imparted by this plant iron supply agent.
  • the matrix composed of the biodegradable extender has a granular strength in which citrate and FeO are contained.
  • the shape of the particles constituting the granule is not particularly limited, and may be any of a sphere, an ellipsoid, a hemisphere, a cube, a cuboid, a cylinder, a plecket, and the like. Further, the granular body may be a dense body or a porous body.
  • the particle size (diameter in the case of a sphere, shortest dimension in the case of other shapes) is preferably 50 mm or less (more preferably 10 mm or less, further preferably 6 mm or less, usually 0.5 mm or more).
  • the water-repellent biodegradable extender as described above, for example, when this plant iron supplier is used in alkaline soil, Increase in pH inside the body is suppressed. This suppresses the decrease in FeO solubility.
  • the effect of FeO of Sani ⁇ system according to the click E phosphate also together be obtained, prolonged connexion from stable Fe 2 + ions Can be supplied.
  • the alkaline soil refers to 10 g of air-dried soil, added with 25 ml of distilled water and shaken for 1 hour, and when the pH of the resulting suspension is measured, the pH exceeds 7. It means soil. Therefore, the alkaline soil includes an alkaline soil obtained by alkalinizing an original alkaline soil and a non-alkaline soil (fertilization, desertification, etc.). Examples of the basic alkaline soil include soils containing various calcareous components such as shell fossil soils, calcareous soils, and sandy soils. These may be used alone or in combination of two or more. Furthermore, a mixed soil of a soil containing these various calcareous components and a non-alkaline soil, which is an alkaline soil as a whole is included.
  • the method for producing the plant iron supply agent is not particularly limited.
  • the plant iron supply agent of the second invention is obtained by mixing and granulating the iron supply agent of the second invention and peat.
  • the iron supply agent for plants of the third invention can be obtained by mixing and granulating the iron supply agent of the third invention (that is, for example, taenoic acid powder and FeO powder) and peat.
  • the mixing method is not particularly limited, and the mixing may be performed by an extruder or the like using a dry blend using a mortar mixer, an omni mixer, or the like.
  • the granulation method is not particularly limited, but it is usually granulated by an extrusion method. Further, it is preferable that mixing and granulation are continuously performed by extrusion molding because the process can be simplified.
  • the temperature for dry blending and extrusion molding is not particularly limited, and it may be room temperature (for example, 15 to 35 ° C) or may be heated to about 40 to 90 ° C if necessary! /.
  • the production method of the present invention is not particularly limited as described above, and various methods can be used. However, for example, it is possible to provide a dissolution step of heating a mixture containing organic acid powder, FeO powder, and water to obtain an aqueous solution obtained by dissolving the organic acid and FeO.
  • the "organic acid powder” is a powder containing the organic acid as a main component (usually a purity of 99% or more), and the particle shape and the like are not particularly limited as long as the purity and powder form.
  • the “FeO powder” is a powder containing FeO as a main component.
  • the amount of FeO contained in this FeO powder is not particularly limited, but usually FeO is 50% by mass or more (preferably 65% by mass or 100% by mass) with respect to the entire FeO powder. .
  • This FeO powder can be any type of FeO powder. FeO powder described later (granulated product obtained by granulating iron-containing dust, and Z or iron-containing dust and reducing agent). Granulated products obtained by granulation, FeO powder obtained by vacuum heating and vacuum quenching), and various commercially available FeO powders can be used. Among these, FeO powder obtained by heating the above granulated product in a vacuum and then quenching in a vacuum is preferred.
  • any water can be used as described above.
  • the amount of the organic acid powder, FeO powder, and water charged in the "mixture” is not particularly limited.
  • the citrate powder (assuming a purity of 100%): Fe 2 O
  • the mass ratio of powder (assuming purity 100%): water (assuming purity 100%) is preferably 60-90: 7-28: 3-20. 65-85: 10-24: It is more preferable to use at a ratio of 5 to 17.5. It is particularly preferable to use at a ratio of 68 to 72:10 to 22:10 to 15.
  • the above mixture may or may not contain other components in addition to the organic acid powder, FeO powder and water.
  • other components When other components are contained, they may be contained in a state dissolved in water or in a state not dissolved in water. Examples of other components include methanol and ethanol. By containing these, water can be removed more smoothly even under a reduced pressure environment. These may be used alone or in combination of two or more.
  • the heating conditions in the above "heating” are not particularly limited, but the heating temperature is preferably maintained at 150 ° C or lower. This is because the Fe 3+ ion concentration tends to increase above 150 ° C.
  • the temperature of the aqueous solution by this heating is more preferably 140 ° C or lower, more preferably 135 ° C or lower, and further preferably 130 ° C or lower.
  • the lower limit temperature is not particularly limited. For example, 40 ° C or higher is preferable, and 50 ° C or higher is more preferable. 60 ° C or higher is particularly preferable.
  • the upper limit temperature and the lower limit temperature at the time of heating can be combined. That is, for example, 40 to 150 ° C is preferred, 50 to 140 ° C is more preferred, and 60 to 130 ° C is more preferred. Combinations other than these may be used.
  • the pressure conditions for heating are not particularly limited.
  • the production method of the present invention can include a step of removing a water-insoluble component after the dissolving step.
  • the water-insoluble component include organic acid powder that cannot be dissolved and FeO powder that cannot be dissolved.
  • the removal method is not particularly limited, but can usually be performed by filtration. That is, a filtration step can be provided.
  • the filtration conditions at this time are not particularly limited. For example, it is preferable to use a membrane filter having a pore size of 10 m or less (more preferably 5 m or less, more preferably 3 ⁇ m or less) as the filtration filter.
  • the iron supply agent of the second invention it is possible to further include a drying step for removing the aqueous solution, hydraulic water, after the dissolving step.
  • the drying conditions in this drying step are not particularly limited, and natural drying may be performed, but it is preferable to use the above-described removal method and drying conditions. That is, it is preferable to remove water by heating under reduced pressure. Moisture is water soluble by reducing gradually and Kosani ⁇ excellent Fe 2+ ion component (Fe 2 + complex and the like) is concentrated by heating, and that the iron supply agent of the second invention is obtained Conceivable.
  • a purification step is a process for purifying water-soluble components. That is, for example, an iron supply agent obtained by removing water from the aqueous solution is brought into contact with water to dissolve the dissolvable part, and then the water-insoluble component is removed and extracted in the same manner as above. And a re-drying step for removing water from the extraction aqueous solution obtained in this extraction step.
  • the FeO powder used in the production method of the present invention is a granulated product obtained by granulating iron-containing dust, and is formed by granulating Z or iron-containing dust and a reducing agent.
  • the granulated product is FeO powder obtained by vacuum heating and vacuum quenching.
  • This FeO powder (FeO powder obtained using the above granulated product and Z or granulated product) is Fe Besides O, it is usually CaAl O, FeAl O, CaFe Si O, CaSi O and MgFe O.
  • double oxides may contain only one kind or two or more kinds.
  • the content of the composite oxide is preferably 0.5 to 10% by mass when the entire FeO powder is 100% by mass. Within this range, it is possible to obtain an iron supplier that is particularly excellent in acid resistance.
  • the shape of the particles constituting the FeO powder is not particularly limited, but is a FeO powder having a particle size of 5000 m or less and mixed with various particle sizes, and further includes porous particles. It may be.
  • the "dust containing iron” (hereinafter, simply referred to as “dust”) is one containing iron (such as dust collection powder).
  • This iron includes iron oxide, other iron compounds and metallic iron. These may contain only 1 type, or 2 or more types.
  • the amount of iron contained in the dust is not particularly limited, but usually 30% by mass or more (more preferably 35 to 90% by mass, still more preferably 40 to 80% in terms of metallic iron when the total dust is 100% by mass. Mass%).
  • the dust may contain other components in addition to iron. Other components include Zn, Ni, Cu and Mn. These may be simple metals or compounds such as oxides. Furthermore, these may contain only 1 type, and may contain 2 or more types.
  • the shape of the dust is not particularly limited, and may be a small piece or a mixture of powder and small pieces, but is usually a powder.
  • the average particle size of the powder is not particularly limited, but is preferably 3 to 10 / ⁇ ⁇ .
  • This dust includes forged shot dust collected in the forging process (powder collected in the process of driving the forging shot ball into the iron-based member to be processed) and various dusts generated in the steel making process.
  • ⁇ Powder collected in the process of melting iron-based materials in various furnaces to produce iron-based products for the purpose of smoke prevention (electric furnace dust, blast furnace dust, converter dust, cupola dust, etc.) ⁇ Can be mentioned. These may be used alone or in combination of two or more.
  • dust from which the chlorine content has been removed by washing with water (partially or entirely) is preferred.
  • the chlorine content in the dust is preferably 0.5% by mass or less (more preferably 0.4% by mass or less, and still more preferably 0.3% by mass or less).
  • the above "granulated product” contains dust or dust and a reducing agent. This granulated product is subsequently reduced or oxidized from Fe 2 O, Fe 2 O and Fe (single) to FeO during vacuum heating.
  • the shape of the particles constituting the granulated product is not particularly limited, and may be any of a sphere, an ellipsoid, a hemisphere, a cube, a cuboid, a cylinder, a plecket, and the like. Further, the granulated product may be a dense body or a porous body. Further, the particle size (diameter in the case of a sphere, shortest dimension in the case of other shapes) is preferably 25 mm or less (more preferably 15 mm or less, further preferably 10 mm or less, usually 3 mm or more).
  • the "reducing agent” is a component that reduces an iron compound that has been oxidized to a valence of 2 or more.
  • metallic iron, a mixture thereof, carbon, a mixture thereof, or the like can be used.
  • reducing agents used for iron cutting scraps, iron polishing scraps, iron powder, pig iron and steel, various waste materials (tire scraps, wood waste materials, etc.) and the like are preferable. These may be used alone or in combination of two or more.
  • the shape of the reducing agent is not particularly limited, but it is preferable that the contact area with the dust is large, so that powder, granules, small pieces, etc. are particularly preferable. Furthermore, the average particle size is preferably 200 m or less (preferably 180 ⁇ m or less).
  • the content of the reducing agent in the granulated product is not particularly limited, but when the dust is 100 parts by mass, it is 100 parts by mass or less (more preferably 90 parts by mass or less, more preferably 80 parts by mass or less, usually 30 parts by mass). Part or more) is preferred.
  • the granulated product usually contains noinda.
  • the type of binder is not limited, but alumina cement is preferred.
  • the blending amount is preferably 3 to 20 parts by mass (more preferably 3 to 15 parts by mass, further preferably 3 to 12 parts by mass) when the total amount of dust or dust and reducing agent is 100 parts by mass. . In this range, granulation can be performed smoothly and embrittlement of the granulated product can be suppressed.
  • the FeO concentration in the FeO powder can be increased.
  • the degree of vacuum during this vacuum heating is not particularly limited, but is preferably 0.1 to 13.3 kPa (more preferably 2.6 to 13.3 kPa, particularly preferably 4.0 to 6.7 kPa). In this range, it is possible to effectively suppress residual metallic iron and oxidation of FeO to Fe 2 O and the like. In this vacuum atmosphere Even under an inert gas that reproduces the partial pressure of oxygen, it is possible to obtain FeO powder by heating in the same way instead of this vacuum heating.
  • the heating temperature (measured value obtained by measuring the granulated product itself) during vacuum heating is preferably 600 to 1100 ° C (more preferably 800 to 950 ° C). However, when the granulated product contains a reducing agent, it is preferably 800 ° C or higher. In this range, FeO powder with a particularly high FeO content can be obtained, and dust can be prevented from melting during the heating process.
  • the heating time is not particularly limited, but is preferably 30 minutes or longer (more preferably 30 minutes or longer and within 6 hours).
  • the granulated product is usually heated using a heat treatment furnace.
  • the heat treatment furnace is not particularly limited as long as it includes at least a heater and can uniformly heat the granulated product to be charged.
  • Examples of the heat treatment furnace include a roller hearth furnace and a rotary kiln.
  • the granulated product is powdered by, for example, a stirring means equipped with a stirring blade while moving in the heat treatment furnace.
  • This heat treatment furnace may be equipped with a recovery device for recovering metallic zinc and the like produced by the reduction.
  • the amount of granulated product input to the heat treatment furnace is not particularly limited. Usually, it is preferable that the input amount is 100 mm or less, particularly 80 mm or less, and further 30 mm or less.
  • the high-temperature FeO powder produced by vacuum heating can be cooled without being oxidized.
  • the degree of vacuum during this vacuum quenching is not particularly limited, but is preferably 13.3 kPa or less (more preferably 6.7 kPa or less, usually 5.3 kPa or more).
  • the temperature drop rate is not particularly limited, but it is preferably 5 to 150 ° CZ. In this vacuum quenching, it is preferable to cool to 300 ° C or lower (more preferably 200 ° C or lower, particularly preferably 150 ° C or lower).
  • a granulated product containing metallic iron for the purpose of obtaining FeO powder having a higher FeO content, it is preferable to use a granulated product containing metallic iron.
  • the content of metallic iron is 5% by mass or more (more preferably 5 to 85% by mass, even more preferably, when the total amount of iron contained in the granulated product is 100% by mass Is preferably 8 to 50% by mass).
  • this granulated product for example, an FeO powder having a FeO content of 80 mass% or more (more preferably 85 mass% or more, particularly 90 mass% or more) based on the total iron content can be obtained.
  • Dust constituting the granulated product containing metallic iron as described above ⁇ the following (3) and (4) ⁇ and a combination of a dust and a reducing agent ⁇ the following (1), (2) and (5 ) ⁇ Includes (1) a mixture of electric furnace dust and metallic iron (iron powder, etc.), (2) a mixture of blast furnace dust and metallic iron (iron powder, etc.), (3) converter dust only, (4 ) Forged shot dust collection powder only, (5) A mixture of forged shot dust collection powder and metallic iron (iron powder, etc.). These may be used alone or in combination of two or more.
  • the electric arc furnace dust having an average particle diameter of 10 mu m (steelmaking dust) 47.6 mass 0/0, the average particle size is 75 mu m iron It was granulated into a cylindrical shape having a diameter of 8 mm and a length of about 20 mm using 47.6 mass% of powder and 4.8 mass% of alumina cement. The obtained granulated product was heated in a vacuum heating tank (roller hearth furnace) at 800 ° C. for 30 minutes, then at 850 ° C.
  • vacuum quenching is performed in a vacuum quenching bath to 400 ° C at a rate of temperature drop of 20 ° CZ, and the atmosphere in the vacuum cooling bath is replaced with nitrogen, followed by cooling to 200 ° C at a rate of temperature drop of 13 ° CZ, Thereafter, the temperature was lowered to room temperature to obtain FeO powder.
  • the FeO contained in this FeO powder was quantified by a calibration curve prepared in advance by X-ray diffraction using a mixed powder obtained by mixing a reagent FeO powder and a silicon powder at a predetermined ratio. was 65% by mass.
  • Forged shot dust collection powder with a particle size of 100 m 82%, iron powder 10% with an average particle size of 75 ⁇ m, alumina cement 5%, bentonite 3% It was granulated into a cylindrical shape having a diameter of 8 mm and a length of about 20 mm. The obtained granulated product was heated in a vacuum heating tank (roller hearth furnace) at 800 ° C. for 30 minutes, then at 850 ° C. for 30 minutes, and then at 900 ° C. for 1 hour.
  • a vacuum heating tank roll hearth furnace
  • vacuum quenching is performed in a vacuum quenching bath to 400 ° C at a rate of temperature drop of 20 ° CZ, and the atmosphere in the vacuum cooling bath is replaced with nitrogen, followed by cooling to 200 ° C at a rate of temperature drop of 13 ° CZ, Thereafter, the temperature was lowered to room temperature to obtain an FeO powder that was an aggregate force of spherical particles having a diameter of 1.8 mm.
  • the FeO contained in this FeO powder was quantified by a calibration curve prepared in advance by X-ray diffraction using a mixed powder obtained by mixing a reagent FeO powder and a silicon powder at a predetermined ratio. Was 90% by mass.
  • the iron supply obtained in [2] (1) above was stirred and mixed in ion-exchanged water at a temperature of 20 ° C to a concentration of 10 gZ liter (1.0% by mass) (approximately 5 minutes) Stirring). Then, filter using a membrane filter (pore size 1 m), and then immediately attach the water quality measurement pack to the UV'visible light spectrophotometer (manufactured by Shimadzu Corporation, model “UV1240”).
  • the Fe 2+ ions and the total amount of Fe ions contained in the obtained aqueous solution were measured (the total Fe ion amount force was converted to the Fe 3+ ion amount by subtracting the Fe 2+ ion amount). Further, the Fe 2+ ion concentration was measured by a phenantorin phosphorus absorptiometry based on JIS K0102. In this measurement, the work was always carried out in a room where direct sunlight was not inserted.
  • Fe 2+ ion concentration is 389mgZ l
  • Fe 3+ ion concentration is 1 86MgZ liter
  • a total of 100 mass 0/0 of the Fe 2+ ions and Fe 3+ ions Fe 2+ ions was 68 mass 0/0 when.
  • the obtained aqueous solution contains Fe 3+ ions ⁇ Fe 2+ ions 2.1 times as much as Fe 3+ ions, and an aqueous solution having a high Fe 2+ ion concentration is obtained.
  • the aqueous solution of Experimental Example 7 was diluted 10-fold with methanol.
  • the substances contained in this diluted solution were subjected to mass spectrometry using electrospray ionization mass spectrometry (ESIMS).
  • EIMS electrospray ionization mass spectrometry
  • Micromass type “Q-TOF” was used for the measurement device, and electrospray ionization (ESI) was used for the ionization method.
  • the ion mode was positive ion mode
  • the capillary voltage was 3000V
  • the cone voltage was 20V
  • the solvent removal temperature was 120 ° C.
  • the resulting chart is shown in FIG.
  • the peak is considered to be derived from citrate.
  • the compound constituting the peak of mass 439 contains Fe.
  • the peak at mass 439 is thought to be due to a dimer complex in which two citrate and Z or two citrate ions are coordinated with Fe ions.
  • the peak at mass 631 is thought to be due to a trimeric complex in which three citrate and Z or three citrate ions are coordinated to Fe ions, and the peak at mass 823 is relative to Fe ions. It is thought to be due to a tetrameric complex coordinated with quaternary acid and Z or citrate ion force S4.
  • the iron supplier of the present invention contains more dimer complexes and trimer complexes than the iron (III) citrate aqueous solution. cause of Fe 2+ ions, and has a high antioxidant, yet is stable to ultraviolet light, is considered to be a factor in increasing the Fe 2+ ions is observed rather.
  • an aqueous solution containing an iron supply agent at a concentration of 10 gZ liter (1.0 mass%) was obtained.
  • This aqueous solution was diluted 1000 times with water to obtain an irrigation solution (plant iron supply solution, one experimental example 8 of the present invention).
  • the total Fe ion concentration in the obtained irrigation solution is 0.5 mgZ liter, of which the Fe 2+ ion concentration is 0.3 mgZ liter.
  • a commercially available aqueous solution containing Fe 2+ ions (produced by Menedal Co., Ltd., product name “Plant Vigor Elementary Menedale”, aqueous solution containing ferrous sulfate) was diluted 100-fold to a irrigation solution (reference example). 1) was obtained.
  • the total Fe ion concentration in the obtained irrigation solution is 0.4 mgZ liter, of which the Fe 2+ ion concentration is 0.4 mgZ liter.
  • test soil As a test soil, a commercially available seedling culture soil was spread in a plastic container measuring 30 cm long ⁇ 28 cm wide ⁇ 4 cm deep to a depth of 4 cm to form an experimental cultivation zone.
  • each irrigation solution was irrigated so that 1 liter of water was evenly applied at the diio opening. After that, each irrigation solution (Experimental Example 8 and Reference Example 1) should be applied equally to each experimental cultivation area at 10:00 a.m. twice at 8 am and 5 pm daily. Continued irrigation.
  • Fig. 5 shows an explanatory diagram based on an image obtained by digitally photographing this cultivation area on April 13.
  • Fig. 6 shows an explanatory diagram using images obtained by digitally photographing this cultivation area on April 20.
  • Fig. 7 shows an explanatory diagram based on an image obtained by digitally photographing this cultivation area on April 13.
  • Fig. 8 shows an explanatory diagram based on images obtained by digitally photographing this cultivation area on April 20.
  • FIG. 9 shows an explanatory diagram based on an image obtained by digitally photographing this cultivation area on April 13.
  • Fig. 10 shows an explanatory diagram based on an image obtained by digitally photographing this cultivation area on April 16.
  • FIG. 11 shows an explanatory diagram based on images obtained by digitally photographing this cultivation area on April 13.
  • (iii 2) Spray chrysanthemum (using the irrigation solution of Reference Example 1)
  • Fig. 12 shows an explanatory diagram based on the image obtained by digitally photographing this cultivation area on April 13.
  • Fig. 13 shows an explanatory diagram based on the image obtained by digitally photographing this cultivation area on April 13.
  • FIG. 14 shows an explanatory diagram based on images obtained by digitally photographing this cultivation area on April 16.
  • FeO powder obtained in [1] and (2) above, citrate anhydride (purity 99.8% or more), and peat-treated soil improver made by Nippon Fertilizer Co., Ltd., trade name “Kumiai Hyhumin Special A )
  • citrate anhydride purity 99.8% or more
  • peat-treated soil improver made by Nippon Fertilizer Co., Ltd., trade name “Kumiai Hyhumin Special A )
  • a plant iron supplier (Experimental Example 10) was obtained.
  • Rice seedlings Rice (variety: Nihonbare) seeds were allowed to germinate for 2 days in a petri dish with tissue paper and moistened at room temperature. Thereafter, the following seedling culture soil was introduced into each cultivation pot, and 20 seeded rice plants were sown directly (seeding on January 15). At the time of sowing, rice seeds were embedded at a surface strength of about 0.5 cm. Each pot for cultivation was placed in a human meteorological device, and rice was grown until March 10 under the following seedling conditions, and the effect of the iron supply agent for plants was evaluated.
  • Fertilizer Chisso Asahi Fertilizer Co., Ltd., trade name “Long Total 70”, the same shall apply hereinafter
  • the soil containing lg was used as the seedling culture soil.
  • Experimental Example 91 soil containing 300 mL of the above shell fossil soil and the above fertilizer lg and the plant iron supplier 0. lg of Experimental Example 9 was used as a seedling culture soil.
  • Experimental Example 9 2 Soil containing 300 mL of the above-mentioned shell fossil soil and the above fertilizer lg and 1.0 g of the plant iron supply agent of Experimental Example 9 was used as the seedling culture soil.
  • Experimental Example 10-1 A soil obtained by mixing 300 mL of the above-mentioned shell fossil soil with the above fertilizer lg and 1.0 g of the iron supply agent for plants of Experimental Example 10 was used as a seedling culture soil.
  • Experimental Example 10-2 Soil in which 300 mL of the above-mentioned shell fossil soil was mixed with the above fertilizer lg and 2.0 g of the plant iron supply agent of Experimental Example 10 was used as a seedling culture soil.
  • Example 9-2 in which the amount of the iron supply agent for plants was increased to 10 times the amount of Experiment Example 91, the effect of increasing the amount was recognized.
  • plant height is 1.1 times smaller than Example 9-1, but SPAD value is 1.4 times, aboveground dry weight is 1.4 times, and root dry weight is 2.4. It was twice.
  • Example 92 there is a possibility that the iron supply threshold is large, where the standard deviation of plant height and SPAD value is large. For this reason, it may be better to add more plant iron supply agents.
  • the iron supply agent of the present invention is widely used in the field of agriculture, forestry and fisheries. That is, for example, it is widely used for the production of agricultural products, the production of horticultural plants, the production and maintenance of parks and golf courses, the maintenance of forests, the breeding of livestock, and the cultivation of seafood.
  • the plant iron supply aqueous solution and the plant iron supply agent of the present invention are widely used in the field of agriculture and forestry. That is, for example, it is widely used for production of agricultural products, hydroponics, production of horticultural plants, production and maintenance of parks and golf courses, forest maintenance, and the like. In particular, it is useful as a plant growth promoter in the production field of various agricultural products. It can also be used to solve food problems caused by plant growth in barren lands around the world and to improve the global environment by promoting absorption of carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Fertilizers (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Cultivation Of Plants (AREA)

Abstract

[PROBLEMS] To provide an iron-supplying agent and an iron-supplying agent for plant which can provide an aqueous solution having a high Fe2+ ion concentration and reduced in the oxidation of Fe2+ ions. [MEANS FOR SOLVING PROBLEMS] The iron-supplying agent comprises an aqueous solution which has dissolved therein an organic acid having a carboxyl group and/or a hydroxyl group (particularly citric acid) and FeO. Alternatively, the iron-supplying agent may be prepared by removing water from an aqueous solution which has dissolved therein an organic acid having a carboxyl group and/or a hydroxyl group (particularly citric acid) and FeO. The iron-supplying agent can be prepared by a process comprising the dissolution step in which a mixture of an organic acid powder (particularly a citric acid powder), an FeO powder and water is heated to give an aqueous solution having the organic acid and FeO dissolved therein. The FeO powder used is preferably produced by heating under vacuum granules which are produced by granulating an iron-containing dust and/or granules which are produced by granulating an iron-containing dust together with a reducing agent and then quickly cooling the resulting granules under reduced pressure.

Description

明 細 書  Specification
鉄供給剤、これを含有する植物用鉄供給剤並びにその製造方法 技術分野  Iron supply agent, plant iron supply agent containing the same, and method for producing the same
[0001] 本発明は鉄供給剤、これを含有する植物用鉄供給剤並びにその製造方法に関す る。更に詳しくは、水溶液状態で高い Fe2+イオン濃度を有し、 Fe2+イオンの酸化が 抑制された鉄供給剤、これを含有する植物用鉄供給剤並びにその製造方法に関す る。 [0001] The present invention relates to an iron supply agent, an iron supply agent for plants containing the same, and a method for producing the same. More particularly, the present invention relates to an iron supply agent having a high Fe 2+ ion concentration in an aqueous solution state, in which oxidation of Fe 2+ ions is suppressed, a plant iron supply agent containing the same, and a method for producing the same.
背景技術  Background art
[0002] 鉄は植物にとって微量必須元素であり、欠乏すると、葉の黄白化及び蛋白質の合 成反応が損なわれる等の特有の症状を生じることが知られている。また、鉄はイオン 化された状態で取り込まれる。しかし、 Feイオンのうち、 Fe3+イオンは、これを供給し ても植物に対して満足な効用が得られ難いことが知られている。このため、従来より、 鉄を Fe2+イオンとして供給する工夫がなされている。しかし、 Fe2+イオンは酸ィ匕さて F e3+になり易ぐ Fe2+イオンを長期にわたって安定して供給できることが望まれている この植物に対して鉄を供給する組成物として鉄粉や転炉滓、水酸化鉄などの使用 が提案されている (例えば、特許文献 1参照)。更に、硫酸鉄及び硝酸鉄等の水溶性 無機鉄塩を用いる方法、及びエチレンジァミン四酢酸(以下、単に「EDTA」という) による EDTA鉄錯体を用いる方法等が知られて 、る。 [0002] Iron is a trace essential element for plants, and deficiency is known to cause peculiar symptoms such as yellowing of leaves and impaired synthesis of proteins. Iron is taken up in an ionized state. However, among Fe ions, Fe 3+ ions are known to be difficult to obtain a satisfactory effect on plants even if they are supplied. For this reason, some efforts have been made to supply iron as Fe 2+ ions. However, Fe 2+ ions of iron powder as a composition for supplying the iron for this plant that it is desired to be stably supplied for a long time an easy tool Fe 2+ ions become Sani匕Well F e 3+ In addition, the use of iron furnaces, converter furnaces, and iron hydroxide has been proposed (see, for example, Patent Document 1). Further, a method using a water-soluble inorganic iron salt such as iron sulfate and iron nitrate, and a method using an EDTA iron complex with ethylenediamine tetraacetic acid (hereinafter simply referred to as “EDTA”) are known.
[0003] 特許文献 1 :特開平 8— 277183号公報 Patent Document 1: Japanese Patent Laid-Open No. 8-277183
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] しかし、特許文献 1に記載の鉄含有組成物から溶出される鉄分は大部分が Fe3+と なり、植物が取り込むことは困難であると考えられる。また、上記水溶性無機鉄塩は、 Fe2+の状態を保持し難ぐ Fe3+へと酸化され易い。更に、従来と同様に塩類の蓄積 を引き起こすという問題もある。即ち、各種肥料として水溶性無機金属塩類がこれま で長く使用されており、これら水溶性金属塩を構成した強酸陰イオンが土壌中の他 の元素と結合して水不溶性の塩を形成して土壌に蓄積することが問題となっている。 水溶性無機鉄塩ではこの問題を解消することができない。更に、 EDTA鉄錯体とし て使用されているのは実質上 3価鉄である。また、 EDTAは強いキレート化剤であり、 土壌中の重金属を固定し土壌汚染を引き起こすこと、地下水に溶け込んで水汚染を 引き起こすこと等が危惧されている。 [0004] However, the iron content eluted from the iron-containing composition described in Patent Document 1 is mostly Fe 3+, and it is considered difficult for plants to take up. In addition, the water-soluble inorganic iron salt is easily oxidized to Fe 3+ which does not easily maintain the Fe 2+ state. In addition, there is a problem of causing accumulation of salts as in the past. In other words, water-soluble inorganic metal salts have been used for a long time as various fertilizers, and the strong acid anions that make up these water-soluble metal salts are used in other soils. It has become a problem to combine with these elements to form a water-insoluble salt and accumulate it in the soil. A water-soluble inorganic iron salt cannot solve this problem. Furthermore, it is essentially trivalent iron that is used as the EDTA iron complex. In addition, EDTA is a strong chelating agent, and there are concerns about fixing heavy metals in soil and causing soil contamination, and dissolving in groundwater to cause water contamination.
[0005] 本発明は、上記の従来の問題を解決するものであり、水溶液状態で高い Fe2+ィォ ン濃度を有し、 Fe2+イオンの酸化が抑制された鉄供給剤、これを含有する植物用鉄 供給剤並びにその製造方法を提供することを目的とする。 [0005] The present invention is intended to solve the aforementioned conventional problems, has a high Fe 2+ I O emissions concentration in aqueous solution, the iron supply agent oxidation is suppressed in Fe 2+ ions, this It aims at providing the iron supply agent for plants to contain, and its manufacturing method.
課題を解決するための手段  Means for solving the problem
[0006] 本発明者らは、鉄に対するキレート力を有する有機酸に注目し、有機酸鉄について 検討を行った。その結果、例えば、従来力も知られている金属鉄とクェン酸水溶液と を煮沸して得られるクェン酸第 1鉄であり、 Fe (OH) [0006] The present inventors paid attention to an organic acid having a chelating power against iron and examined the organic acid iron. As a result, for example, ferrous citrate obtained by boiling metal iron, which is also known in the past, and aqueous citrate solution, Fe (OH)
3とクェン酸水溶液とを反応させ て得られるクェン酸第 2鉄のうちクェン酸第 1鉄 (Fe2+)は水溶性に乏しく Fe2+を十分 に供給するには至らず、クェン酸第 2鉄 (Fe3+)は水溶性は十分に得られるが全 Feィ オンの 1Z4程度し力 Fe2+イオンが含まれず、 Fe2+イオン量が不十分であることが分 かった。更に、クェン酸鉄アンモ-ゥム等のようなイオン結合性の強い化合物は Fe2+ イオンの酸ィ匕抑制効果が十分に得られ難力つた。 Of the ferric citrate obtained by reacting 3 with an aqueous solution of citrate, ferrous citrate (Fe 2+ ) is poor in water solubility and does not supply enough Fe 2+ , 2 iron (Fe 3+) is water-soluble can be sufficiently obtained does not contain 1Z4 degree to force Fe 2+ ions of the total Fe I on, it was not divided Fe 2+ ion amount is insufficient. In addition, compounds with strong ion binding properties such as iron citrate ammonium have been difficult to obtain the effect of suppressing Fe 2+ ion oxidation.
これに対して、クェン酸粉末と FeO粉末と水とを煮詰めて得られる固形物やペース ト状物、及びこれらを精製して得られた水溶液を乾固して得られる固形物等は、各々 水溶させた際に特異的に高い Fe2+イオン濃度を示し、尚かつ Fe2+イオンは酸化さ れ難いことを知見した。本発明はこの知見に基づき完成された。 In contrast, solids and pastes obtained by boiling citrate powder, FeO powder and water, and solids obtained by drying the aqueous solution obtained by refining these, It was found that when it was dissolved in water, the concentration of Fe 2+ ions was specifically high, and that Fe 2+ ions were not easily oxidized. The present invention has been completed based on this finding.
[0007] 本発明は以下に示す通りである。 [0007] The present invention is as follows.
(1)カルボキシル基及び Z又はヒドロキシル基を備える有機酸と、 FeOと、が溶解さ れて得られた水溶液からなることを特徴とする鉄供給剤 (以下、「第 1発明の鉄供給 剤」という)。  (1) An iron supply agent comprising an aqueous solution obtained by dissolving an organic acid having a carboxyl group and a Z or hydroxyl group and FeO (hereinafter referred to as `` iron supply agent of the first invention '') Called).
(2) Fe2+イオンと Fe3+イオンとを含有し、該 Fe2+イオンと該 Fe3+イオンとの合計を 1 00質量%とした場合に、該 Fe2+イオンが 50〜90質量%である上記(1)に記載の鉄 供給剤。 (3) 168時間静置した後に該水溶液内に認められる Fe2+イオン濃度力 測定開始 直後に認められる Fe2+イオン濃度の 75%以上である上記(1)に記載の鉄供給剤。 (2) When Fe 2+ ions and Fe 3+ ions are contained, and the total of the Fe 2+ ions and the Fe 3+ ions is 100% by mass, the Fe 2+ ions are 50 to 90%. The iron supply agent according to the above (1), which is mass%. (3) The iron supply agent according to (1), wherein the Fe 2+ ion concentration force observed in the aqueous solution after standing for 168 hours is 75% or more of the Fe 2+ ion concentration observed immediately after the start of measurement.
(4)上記有機酸として、少なくともクェン酸を含有する上記(1)に記載の鉄供給剤。 (4) The iron supply agent according to (1) above, which contains at least citrate as the organic acid.
(5) 1つの Fe2+イオンに対してクェン酸及び/又はクェン酸イオンが 2つ配位した 二量体錯体と、 1つの Fe2+イオンに対してクェン酸及び Z又はクェン酸イオンが 3つ 配位した三量体錯体と、を含有する上記 (4)に記載の鉄供給剤。 (5) and dimeric complexes Kuen acid and / or Kuen acid ion was two coordinated to one Fe 2+ ion, Kuen acid and Z or Kuen acid ion for one Fe 2+ ions The iron supplier according to (4) above, comprising three coordinated trimer complexes.
(6) 上記(1)乃至(5)のうちの!/ヽずれかに記載の鉄供給剤を含有することを特徴 とする植物用鉄供給剤 (以下、「第 1発明の植物用鉄供給剤」という)。  (6) The iron supply agent for plants comprising the iron supply agent according to any one of the above (1) to (5) (hereinafter referred to as “the iron supply for plants of the first invention”) Agent ”).
(7)生分解性バインダを含有する上記 (6)に記載の植物用鉄供給剤。  (7) The iron supplier for plants according to (6) above, which contains a biodegradable binder.
(8)生分解性増量剤を含有する上記 (6)に記載の植物用鉄供給剤。  (8) The iron supply agent for plants according to (6) above, which contains a biodegradable extender.
(9)本植物用鉄供給剤全体を 100質量%とした場合に、上記鉄供給剤を 5質量% 以上含有する上記 (6)に記載の植物用鉄供給剤。  (9) The plant iron supply agent according to (6) above, which contains 5% by mass or more of the iron supply agent when the total amount of the iron supply agent for plants is 100% by mass.
(10)カルボキシル基及び Z又はヒドロキシル基を備える有機酸と、 FeOと、が溶解 されて得られた水溶液から水を除去してなることを特徴とする鉄供給剤 (以下、「第 2 発明の鉄供給剤」という)。  (10) An iron supplier obtained by removing water from an aqueous solution obtained by dissolving an organic acid having a carboxyl group and a Z or hydroxyl group, and FeO (hereinafter referred to as `` the second invention ''). Iron supply ").
(11)本鉄供給剤を溶解させてなる水溶液は、 Fe2+イオンと Fe3+イオンとを含有し、 該 Fe2+イオンと該 Fe3+イオンとの合計を 100質量%とした場合に、該 Fe2+イオンが 5 0〜90質量%である上記(10)に記載の鉄供給剤。 (11) an aqueous solution obtained by dissolving this iron supplying agent contains a Fe 2+ ions and Fe 3+ ions, when the total of the Fe 2+ ions and the Fe 3+ ions is 100 mass% And the Fe 2+ ion is 50 to 90% by mass.
(12)本鉄供給剤を溶解させてなる水溶液は、 168時間静置した後に該水溶液内 に認められる Fe2+イオン濃度力 該溶解直後に認められる Fe2+イオン濃度の 75% 以上である上記(10)に記載の鉄供給剤。 (12) The aqueous solution obtained by dissolving the iron supply agent has an Fe 2+ ion concentration force observed in the aqueous solution after standing for 168 hours, and is 75% or more of the Fe 2+ ion concentration observed immediately after the dissolution. The iron supply agent according to (10) above.
(13)上記有機酸として、少なくともクェン酸を含有する上記(10)に記載の鉄供給 剤。  (13) The iron supply agent according to the above (10), which contains at least citrate as the organic acid.
(14)本鉄供給剤を溶解させてなる水溶液は、 1つの Fe2+イオンに対してクェン酸 及び Z又はクェン酸イオンが 2つ配位した二量体錯体と、 1つの Fe2+イオンに対して クェン酸及び Z又はクェン酸イオンが 3つ配位した三量体錯体と、を含有する上記( 13)に記載の鉄供給剤。 (14) an aqueous solution obtained by dissolving this iron supply agent, a dimeric complex Kuen acid and Z or Kuen acid ion was two coordinated to one Fe 2+ ions, one Fe 2+ ions The iron supplier according to the above (13), comprising: a quaternary acid and a trimeric complex in which Z or three citrate ions are coordinated.
( 15)上記( 10)及び( 14)のうちの 、ずれかに記載の鉄供給剤を含有することを特 徴とする植物用鉄供給剤 (以下、「第 2発明の植物用鉄供給剤」という)。 (15) The iron supply agent according to any one of (10) and (14) above is contained. The plant iron supply agent (hereinafter referred to as “the plant iron supply agent of the second invention”).
(16)生分解性バインダを含有する上記(15)に記載の植物用鉄供給剤。  (16) The iron supplier for plants according to (15) above, which contains a biodegradable binder.
(17)生分解性増量剤を含有する上記(15)に記載の植物用鉄供給剤。  (17) The iron supply agent for plants according to the above (15), which contains a biodegradable extender.
(18)本植物用鉄供給剤全体を 100質量%とした場合に、上記鉄供給剤を 5質量 %以上含有する上記(15)に記載の植物用鉄供給剤。  (18) The plant iron supply agent according to (15) above, which contains 5% by mass or more of the iron supply agent when the total amount of the iron supply agent for plants is 100% by mass.
(19)上記有機酸としてクェン酸を含有し、  (19) containing cenoic acid as the organic acid,
上記生分解性増量剤として泥炭を含有し、  Containing peat as the biodegradable extender,
該生分解性増量剤カゝらなるマトリックスに、該クェン酸及び上記 FeOが含有されて なり、  The matrix comprising the biodegradable extender contains the citrate and the FeO;
アルカリ土壌において用いられる上記(17)に記載の植物用鉄供給剤。  The plant iron supply agent according to the above (17), which is used in alkaline soil.
(20)カルボキシル基及び Z又はヒドロキシル基を備える有機酸と FeOとを含有す ることを特徴とする鉄供給剤 (以下、「第 3発明の鉄供給剤」という)。  (20) An iron supplier comprising an organic acid having a carboxyl group and a Z or hydroxyl group and FeO (hereinafter referred to as “iron supplier of the third invention”).
(21)本鉄供給剤を溶解させてなる水溶液は、 Fe2+イオンと Fe3+イオンとを含有し、 該 Fe2+イオンと該 Fe3+イオンとの合計を 100質量%とした場合に、該 Fe2+イオンが 5 0〜90質量%である上記(20)に記載の鉄供給剤。 (21) an aqueous solution obtained by dissolving this iron supplying agent contains a Fe 2+ ions and Fe 3+ ions, when the total of the Fe 2+ ions and the Fe 3+ ions is 100 mass% And the Fe 2+ ion is 50 to 90% by mass.
(22)本鉄供給剤を溶解させてなる水溶液は、 168時間静置した後に該水溶液内 に認められる Fe2+イオン濃度力 該溶解直後に認められる Fe2+イオン濃度の 75% 以上である上記(20)に記載の鉄供給剤。 (22) The aqueous solution obtained by dissolving the iron supply agent has an Fe 2+ ion concentration force observed in the aqueous solution after standing for 168 hours, and is 75% or more of the Fe 2+ ion concentration observed immediately after the dissolution. The iron supply agent according to (20) above.
(23)上記有機酸として、少なくともクェン酸を含有する上記(20)に記載の鉄供給 剤。  (23) The iron supply agent according to (20) above, which contains at least citrate as the organic acid.
(24)本鉄供給剤を溶解させてなる水溶液は、 1つの Fe2+イオンに対してクェン酸 及び Z又はクェン酸イオンが 2つ配位した二量体錯体と、 1つの Fe2+イオンに対して クェン酸及び Z又はクェン酸イオンが 3つ配位した三量体錯体と、を含有する上記( 23)に記載の鉄供給剤。 Aqueous solution (24) was dissolved the iron supplying agent comprising the one and the dimeric complexes Kuen acid and Z or Kuen acid ion was two coordinated against Fe 2+ ions, one Fe 2+ ions The iron supplier according to the above (23), which contains a ternary complex in which three citrates and Z or three citrate ions are coordinated.
(25)上記(20)乃至(24)のうちの!/ヽずれかに記載の鉄供給剤を含有することを特 徴とする植物用鉄供給剤 (以下、「第 1発明の植物用鉄供給剤」という)。  (25) A plant iron supply agent characterized by containing the iron supply agent according to any one of the above (20) to (24) (hereinafter referred to as “the plant iron of the first invention”). "Supplier").
(26)生分解性バインダを含有する上記(25)に記載の植物用鉄供給剤。  (26) The iron supplier for plants according to the above (25), which contains a biodegradable binder.
(27)生分解性増量剤を含有する上記 (25)に記載の植物用鉄供給剤。 (28)本植物用鉄供給剤全体を 100質量%とした場合に、上記鉄供給剤を 5質量 %以上含有する上記 (25)に記載の植物用鉄供給剤。 (27) The iron supplier for plants according to (25) above, which contains a biodegradable extender. (28) The plant iron supply agent according to (25), which contains 5% by mass or more of the iron supply agent, when the total amount of the iron supply agent for plants is 100% by mass.
(29)上記有機酸としてクェン酸を含有し、  (29) containing cenoic acid as the organic acid,
上記生分解性増量剤として泥炭を含有し、  Containing peat as the biodegradable extender,
該生分解性増量剤カゝらなるマトリックスに、該クェン酸及び上記 FeOが含有されて なり、  The matrix comprising the biodegradable extender contains the citrate and the FeO;
アルカリ土壌において用いられる上記(27)に記載の植物用鉄供給剤。  The plant iron supply agent according to (27), which is used in alkaline soil.
(30)カルボキシル基及び Z又はヒドロキシル基を備える有機酸粉末と、 FeO粉末 と、水とを含む混合物を加熱して、該有機酸及び FeOが溶解されて得られた水溶液 を得る溶解工程を備えることを特徴とする鉄供給剤の製造方法。  (30) A dissolution step of heating an organic acid powder having a carboxyl group and Z or hydroxyl group, FeO powder, and water to obtain an aqueous solution obtained by dissolving the organic acid and FeO is provided. The manufacturing method of the iron supply agent characterized by the above-mentioned.
(31)上記水溶液力 水を除去する乾燥工程を備える上記(30)に記載の鉄供給剤 の製造方法。  (31) The method for producing an iron supply agent according to (30), further comprising a drying step for removing water.
(32)上記有機酸として、少なくともクェン酸を含有する上記(30)に記載の鉄供給 剤の製造方法。  (32) The method for producing an iron supply agent according to (30), wherein the organic acid contains at least citrate.
(33)上記 FeO粉末は、鉄分を含有するダストを造粒してなる造粒品、及び Z又は 鉄分を含有するダストと還元剤とを造粒してなる造粒品、を真空加熱したのち真空急 冷して得られた FeO粉末である上記(30)に記載の鉄供給剤の製造方法。  (33) The FeO powder is prepared by vacuum heating a granulated product obtained by granulating iron-containing dust and a granulated product obtained by granulating Z or iron-containing dust and a reducing agent. The method for producing an iron supply agent according to the above (30), which is FeO powder obtained by vacuum quenching.
発明の効果 The invention's effect
第 1発明の鉄供給剤によれば、高い Fe2+イオン濃度が得られる。即ち、例えば、土 壌中でも高い Fe2+イオン濃度を得ることができ、高い確率で鉄分の供給ができる。更 に、得られる Fe2+イオンは効果的に酸ィ匕が抑制されるため、高い確率で鉄分の供給 ができる。また、有機酸 (特にクェン酸)を使用しているために、環境負荷がなぐ使用 上安全である。更に、植物に対して用いた場合には発芽促進効果及び成長促進効 果が得られる。 According to the iron supply agent of the first invention, a high Fe 2+ ion concentration can be obtained. That is, for example, a high Fe 2+ ion concentration can be obtained even in soil, and iron can be supplied with high probability. In addition, the resulting Fe 2+ ions are effectively suppressed in acidity, so that iron can be supplied with a high probability. In addition, the use of organic acids (especially cuenic acid) is safe for use with less environmental impact. Furthermore, when used on plants, a germination promoting effect and a growth promoting effect are obtained.
所定の Fe2+イオン割合である場合は、特に高 、確率で鉄分の供給ができる。 所定時間静置後の Fe2+イオン濃度が測定開始直後の 75%以上である場合は、特 に高い抗酸ィ匕性を有し、長期的に安定して Fe2+イオンを供給できる。 In the case of a predetermined Fe 2+ ion ratio, the iron content can be supplied with a particularly high probability. When the Fe 2+ ion concentration after standing for a predetermined time is 75% or more immediately after the start of measurement, the Fe 2+ ion has particularly high acidity and can stably supply Fe 2+ ions for a long time.
有機酸として少なくともクェン酸を含有する場合は、上記各効果を特に大きく得るこ とがでさる。 When at least citrate is contained as an organic acid, the above effects can be obtained particularly greatly. Togashi.
二量体錯体と三量体錯体とを含有する場合は、高い Fe2+イオン濃度が得られ、且 つ特に高!ヽ抗酸化性が発揮される。 When a dimer complex and a trimer complex are contained, a high Fe 2+ ion concentration can be obtained, and a particularly high antioxidant property is exhibited.
[0009] 第 1発明の植物用鉄供給剤によれば、高い Fe2+イオン濃度が得られる。即ち、例え ば、土壌中で水溶された場合にも高い Fe2+イオン濃度を得ることができ、高い確率 で鉄分の供給ができる。更に、得られる Fe2+イオンは効果的に酸ィ匕が抑制されるた め、高い確率で鉄分の供給ができる。また、有機酸 (特にクェン酸)を使用しているた めに、環境負荷がなぐ使用上安全である。更に、発芽促進効果及び成長促進効果 が得られる。 [0009] According to the plant for iron supply agent in the first invention, the resulting high Fe 2+ ion concentration. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with high probability. Furthermore, since the Fe 2+ ions obtained are effectively suppressed in acidity, iron can be supplied with a high probability. In addition, the use of organic acids (especially quenoic acid) is safe for use with less environmental impact. Furthermore, germination promotion effect and growth promotion effect can be obtained.
生分解性バインダを含有する場合は、 Fe2+を長期間にわたって安定して徐々に供 給する徐放性を有する植物用鉄供給剤とすることができる。更に、鉄供給剤以外の 他の成分を同時に含有した固形物とすることができる。 In the case of containing a biodegradable binder, it can be an iron supply agent for plants having sustained release that stably and gradually supplies Fe 2+ over a long period of time. Furthermore, it can be made into the solid substance which contains other components other than an iron supply agent simultaneously.
生分解性増量剤を含有する場合は、 Fe2+供給量を適当な範囲に簡便に保つこと ができ、汎用性に優れる。 In the case of containing a biodegradable extender, the Fe 2+ supply amount can be easily kept within an appropriate range, and is excellent in versatility.
鉄供給剤を 5質量%以上含有する場合は、特に確実に Fe2+供給効果を得ることが できる。 When the iron supply agent is contained in an amount of 5% by mass or more, the effect of supplying Fe 2+ can be obtained particularly surely.
[0010] 第 2発明の鉄供給剤によれば、高い Fe2+イオン濃度の水溶液が得られる。即ち、 例えば、土壌中で水溶された場合にも高い Fe2+イオン濃度を得ることができ、高い 確率で鉄分の供給ができる。更に、水溶させて得られる Fe2+イオンは効果的に酸ィ匕 が抑制されるため、高い確率で鉄分の供給ができる。また、有機酸 (特にクェン酸)を 使用しているために、環境負荷がなぐ使用上安全である。また、植物に対して用い た場合には発芽促進効果及び成長促進効果が得られる。 [0010] According to the iron supply agent of the second invention, an aqueous solution having a high Fe 2+ ion concentration can be obtained. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with a high probability. Furthermore, since the Fe 2+ ions obtained by making the solution water effectively suppress the oxidation, iron can be supplied with a high probability. In addition, the use of organic acids (especially cuenic acid) is safe for use with no environmental impact. In addition, when used on plants, a germination promoting effect and a growth promoting effect are obtained.
所定の Fe2+イオン割合である場合は、特に高 、確率で鉄分の供給ができる。 所定時間静置後の Fe2+イオン濃度が溶解直後の 75%以上である場合は、特に高 い抗酸ィ匕性を有し、長期的に安定して Fe2+イオンを供給できる。 In the case of a predetermined Fe 2+ ion ratio, the iron content can be supplied with a particularly high probability. When the Fe 2+ ion concentration after standing for a predetermined time is 75% or more immediately after dissolution, the Fe 2+ ion has particularly high acidity and can stably supply Fe 2+ ions for a long period of time.
有機酸として少なくともクェン酸を含有する場合は、上記各効果を特に大きく得るこ とがでさる。  When at least citrate is contained as the organic acid, the above effects can be obtained particularly greatly.
二量体錯体と三量体錯体とを含有する場合は、高い Fe2+イオン濃度が得られ、且 つ特に高!ヽ抗酸化性が発揮される。 When containing dimeric and trimeric complexes, high Fe 2+ ion concentrations are obtained, and Particularly high!
[0011] 第 2発明の植物用鉄供給剤によれば、高い Fe2+イオン濃度が得られる。即ち、例え ば、土壌中で水溶された場合にも高い Fe2+イオン濃度を得ることができ、高い確率 で鉄分の供給ができる。更に、得られる Fe2+イオンは効果的に酸ィ匕が抑制されるた め、高い確率で鉄分の供給ができる。また、有機酸 (特にクェン酸)を使用しているた めに、環境負荷がなぐ使用上安全である。更に、発芽促進効果及び成長促進効果 が得られる。 [0011] According to the plant iron supplier of the second invention, a high Fe 2+ ion concentration can be obtained. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with high probability. Furthermore, since the Fe 2+ ions obtained are effectively suppressed in acidity, iron can be supplied with a high probability. In addition, the use of organic acids (especially quenoic acid) is safe for use with less environmental impact. Furthermore, germination promotion effect and growth promotion effect can be obtained.
生分解性バインダを含有する場合は、 Fe2+を長期間にわたって安定して徐々に供 給する徐放性を有する植物用鉄供給剤とすることができる。更に、鉄供給剤以外の 他の成分を同時に含有した固形物とすることができる。 In the case of containing a biodegradable binder, it can be an iron supply agent for plants having sustained release that stably and gradually supplies Fe 2+ over a long period of time. Furthermore, it can be made into the solid substance which contains other components other than an iron supply agent simultaneously.
生分解性増量剤を含有する場合は、 Fe2+供給量を適当な範囲に簡便に保つこと ができ、汎用性に優れる。 In the case of containing a biodegradable extender, the Fe 2+ supply amount can be easily kept within an appropriate range, and is excellent in versatility.
鉄供給剤を 5質量%以上含有する場合は、特に確実に Fe2+供給効果を得ることが できる。 When the iron supply agent is contained in an amount of 5% by mass or more, the effect of supplying Fe 2+ can be obtained particularly surely.
クェン酸を含有し、生分解性増量剤として泥炭を含有し、生分解性増量剤からなる マトリックスにクェン酸及び FeOが含有されてなり、アルカリ土壌において用いられる 場合は、 Fe2+が Fe3+へと酸ィ匕されることが抑制されて、アルカリ土壌においても高い 確率で鉄分の供給ができる。 When containing citrate, peat as a biodegradable extender, and containing citrate and FeO in a matrix made of biodegradable extender and used in alkaline soil, Fe 2+ is Fe 3 + is Sani spoon is it is suppressed to be the supply of iron with high probability even in alkaline soils.
[0012] 第 3発明の鉄供給剤によれば、高い Fe2+イオン濃度の水溶液が得られる。即ち、 例えば、土壌中で水溶された場合にも高い Fe2+イオン濃度を得ることができ、高い 確率で鉄分の供給ができる。更に、水溶させて得られる Fe2+イオンは効果的に酸ィ匕 が抑制されるため、高い確率で鉄分の供給ができる。また、有機酸 (特にクェン酸)を 使用しているために、環境負荷がなぐ使用上安全である。また、植物に対して用い た場合には発芽促進効果及び成長促進効果が得られる。 [0012] According to the iron supply agent of the third invention, an aqueous solution having a high Fe 2+ ion concentration can be obtained. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with a high probability. Furthermore, since the Fe 2+ ions obtained by making the solution water effectively suppress the oxidation, iron can be supplied with a high probability. In addition, the use of organic acids (especially cuenic acid) is safe for use with no environmental impact. In addition, when used on plants, a germination promoting effect and a growth promoting effect are obtained.
所定の Fe2+イオン割合である場合は、特に高 、確率で鉄分の供給ができる。 所定時間静置後の Fe2+イオン濃度が溶解直後の 75%以上である場合は、特に高 い抗酸ィ匕性を有し、長期的に安定して Fe2+イオンを供給できる。 In the case of a predetermined Fe 2+ ion ratio, the iron content can be supplied with a particularly high probability. When the Fe 2+ ion concentration after standing for a predetermined time is 75% or more immediately after dissolution, the Fe 2+ ion has particularly high acidity and can stably supply Fe 2+ ions for a long period of time.
有機酸として少なくともクェン酸を含有する場合は、上記各効果を特に大きく得るこ とがでさる。 When at least citrate is contained as an organic acid, the above effects can be obtained particularly greatly. Togashi.
二量体錯体と三量体錯体とを含有する場合は、高い Fe2+イオン濃度が得られ、且 つ特に高!ヽ抗酸化性が発揮される。 When a dimer complex and a trimer complex are contained, a high Fe 2+ ion concentration can be obtained, and a particularly high antioxidant property is exhibited.
[0013] 第 3発明の植物用鉄供給剤によれば、高い Fe2+イオン濃度が得られる。即ち、例え ば、土壌中で水溶された場合にも高い Fe2+イオン濃度を得ることができ、高い確率 で鉄分の供給ができる。更に、得られる Fe2+イオンは効果的に酸ィ匕が抑制されるた め、高い確率で鉄分の供給ができる。また、有機酸 (特にクェン酸)を使用しているた めに、環境負荷がなぐ使用上安全である。更に、発芽促進効果及び成長促進効果 が得られる。 [0013] According to the plant iron supplier of the third invention, a high Fe 2+ ion concentration can be obtained. That is, for example, even when water is dissolved in soil, a high Fe 2+ ion concentration can be obtained, and iron can be supplied with high probability. Furthermore, since the Fe 2+ ions obtained are effectively suppressed in acidity, iron can be supplied with a high probability. In addition, the use of organic acids (especially quenoic acid) is safe for use with less environmental impact. Furthermore, germination promotion effect and growth promotion effect can be obtained.
生分解性バインダを含有する場合は、 Fe2+を長期間にわたって安定して徐々に供 給する徐放性を有する植物用鉄供給剤とすることができる。更に、鉄供給剤以外の 他の成分を同時に含有した固形物とすることができる。 In the case of containing a biodegradable binder, it can be an iron supply agent for plants having sustained release that stably and gradually supplies Fe 2+ over a long period of time. Furthermore, it can be made into the solid substance which contains other components other than an iron supply agent simultaneously.
生分解性増量剤を含有する場合は、 Fe2+供給量を適当な範囲に簡便に保つこと ができ、汎用性に優れる。 In the case of containing a biodegradable extender, the Fe 2+ supply amount can be easily kept within an appropriate range, and is excellent in versatility.
鉄供給剤を 5質量%以上含有する場合は、特に確実に Fe2+供給効果を得ることが できる。 When the iron supply agent is contained in an amount of 5% by mass or more, the effect of supplying Fe 2+ can be obtained particularly surely.
クェン酸を含有し、生分解性増量剤として泥炭を含有し、生分解性増量剤からなる マトリックスにクェン酸及び FeOが含有されてなり、アルカリ土壌において用いられる 場合は、 Fe2+が Fe3+へと酸ィ匕されることが抑制されて、アルカリ土壌においても高い 確率で鉄分の供給ができる。 When containing citrate, peat as a biodegradable extender, and containing citrate and FeO in a matrix made of biodegradable extender and used in alkaline soil, Fe 2+ is Fe 3 + is Sani spoon is it is suppressed to be the supply of iron with high probability even in alkaline soils.
[0014] 本発明の製造方法によれば、前記本発明の有機酸と FeOとが溶解されて得られた 水溶液力もなる鉄供給剤を安定して、確実に得ることができる。 [0014] According to the production method of the present invention, it is possible to stably and reliably obtain an iron supply agent having an aqueous solution force obtained by dissolving the organic acid of the present invention and FeO.
水溶液力ゝら水を除去する乾燥工程を備える場合は、前記本発明の有機酸と FeOと が溶解されて得られた水溶液力ゝら水を除去してなる鉄供給剤を安定して、確実に得 ることがでさる。  In the case of providing a drying step for removing water from the aqueous solution, the iron supplier obtained by removing the water from the aqueous solution obtained by dissolving the organic acid of the present invention and FeO is stably and reliably provided. Can be obtained.
FeO粉末が造粒品を真空加熱したのち真空急冷して得られた FeO粉末である場 合は、特に抗酸ィ匕性の高 、鉄供給剤を確実に安定して得ることができる。  When the FeO powder is an FeO powder obtained by vacuum-cooling a granulated product and then vacuum-quenching, the anti-acidic property is particularly high and the iron supply agent can be obtained reliably and stably.
図面の簡単な説明 [図 1]本発明品(実験例 1 1〜1 4)の鉄供給剤を溶解した水溶液を放置した経過 時間と Fe2+イオン濃度のとの相関を示すグラフである。 Brief Description of Drawings FIG. 1 is a graph showing the correlation between the elapsed time in which an aqueous solution in which the iron supply agent of the product of the present invention (Experimental Examples 1 to 14) is dissolved is left and the Fe 2+ ion concentration.
[図 2]本発明品(実験例 5及び 6)の鉄供給剤を溶解した水溶液に対して酸化加速試 験を行った際の経過時間と Fe2+イオン濃度との相関を示すグラフである。 FIG. 2 is a graph showing the correlation between elapsed time and Fe 2+ ion concentration when an oxidation acceleration test is performed on an aqueous solution in which the iron supplier of the product of the present invention (Experimental Examples 5 and 6) is dissolved. .
[図 3]質量分析によるチャートであり、このうち上段が本発明品(実験例 7)の鉄供給剤 を溶解した水溶液であり、中段がクェン酸鉄 (III)であり、下段が無水クェン酸である。  [Fig. 3] A chart by mass spectrometry, in which the upper part is an aqueous solution in which the iron supplier of the product of the present invention (Experimental Example 7) is dissolved, the middle part is iron (III) citrate, and the lower part is anhydrous citrate. It is.
[図 4]図 3の上段の本発明品(実験例 7)の鉄供給剤のチャートにおける質量 439のピ ークにつ 、て、更に Arガスを衝突させて得られたチャートである。  4 is a chart obtained by further colliding Ar gas with a peak of mass 439 in the iron supply agent chart of the product of the present invention (Experimental Example 7) in the upper part of FIG.
[図 5]本発明品(実験例 8)を灌水した早咲コスモスの説明図である。  FIG. 5 is an explanatory diagram of Hayasaki Cosmos watered with the product of the present invention (Experimental Example 8).
[図 6]本発明品(実験例 8)を灌水した早咲コスモスの説明図である。  FIG. 6 is an explanatory diagram of Hayasaki Cosmos watered with the product of the present invention (Experimental Example 8).
[図 7]参考品(参考例 1)を灌水した早咲コスモスの説明図である。  FIG. 7 is an explanatory diagram of Hayasaki Cosmos watered with a reference product (Reference Example 1).
[図 8]参考品(参考例 1)を灌水した早咲コスモスの説明図である。  FIG. 8 is an explanatory diagram of Hayasaki Cosmos watered with a reference product (Reference Example 1).
[図 9]本発明品(実験例 8)を灌水したバナナピーマンの説明図である。  FIG. 9 is an explanatory diagram of banana peppers irrigated with the product of the present invention (Experimental Example 8).
[図 10]参考品(参考例 1)を灌水したバナナピーマンの説明図である。  FIG. 10 is an explanatory diagram of banana peppers irrigated with a reference product (Reference Example 1).
[図 11]本発明品(実験例 8)を灌水したスプレー菊の説明図である。  FIG. 11 is an explanatory view of a spray chrysanthemum irrigated with the product of the present invention (Experimental Example 8).
[図 12]参考品(参考例 1)を灌水したスプレー菊の説明図である。  FIG. 12 is an explanatory diagram of a spray chrysanthemum irrigated with a reference product (Reference Example 1).
[図 13]本発明品(実験例 8)を灌水した終日咲松葉ボタンの説明図である。  FIG. 13 is an explanatory diagram of an all-day bloom pine needle button irrigated with a product of the present invention (Experimental Example 8).
[図 14]参考品 (参考例 1)を灌水した終日咲松葉ボタンの説明図である。  FIG. 14 is an explanatory diagram of an all-day bloom pine needle button irrigated with a reference product (Reference Example 1).
[図 15]本発明品 (実験例 9及び 10)の植物用鉄供給剤を含む育苗用培土で育てたィ ネ苗と、これを含まな!/、育苗用培土 (参考例 2)で育てたイネ苗との育成の様子を比 較した説明図である。  [Fig. 15] Rice seedlings grown in the seedling culture medium containing the iron supply agent for plants of the product of the present invention (Experimental Examples 9 and 10) and those that do not contain this! /, Grown in the seedling culture medium (Reference Example 2) It is explanatory drawing which compared the mode of breeding with the rice seedling.
[図 16]本発明品 (実験例 9— 1及び 9— 2)の植物用鉄供給剤を含む育苗用培土で育 てたイネ苗と、これを含まな!/、育苗用培土 (参考例 2)で育てたイネ苗との育成の様子 を比較した説明図である。  [Fig.16] Rice seedlings grown in the seedling culture medium containing the iron supply agent for plants of the product of the present invention (Experimental examples 9-1 and 9-2), and the seedlings without this! / It is explanatory drawing which compared the mode of breeding with the rice seedling grown in 2).
[図 17]本発明品(実験例 10— 1及び 10— 2)の植物用鉄供給剤を含む育苗用培土 で育てたイネ苗と、これを含まな!/、育苗用培土 (参考例 2)で育てたイネ苗との育成の 様子を比較した説明図である。  [Fig.17] Rice seedlings grown in the seedling culture medium containing the iron supply agent for plants of the product of the present invention (Experimental examples 10-1 and 10-2), and the seedlings without this! /, Seedling culture medium (Reference Example 2) It is explanatory drawing which compared the mode of breeding with the rice seedling grown by ().
発明を実施するための最良の形態 [0016] 以下、本発明を詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
[1]鉄供給剤  [1] Iron supply agent
第 1発明の鉄供給剤は、カルボキシル基及び/又はヒドロキシル基を備える有機酸 と、 FeOと、が溶解されて得られた水溶液カゝらなることを特徴とする。  The iron supplier of the first invention is characterized in that it comprises an aqueous solution obtained by dissolving an organic acid having a carboxyl group and / or a hydroxyl group and FeO.
第 2発明の鉄供給剤は、カルボキシル基及び/又はヒドロキシル基を備える有機酸 と、 FeOと、が溶解されて得られた水溶液力ゝら水を除去してなることを特徴とする。即 ち、本他の鉄供給剤は、上記本鉄供給剤力ゝら水を除去して得られる。  The iron supply agent of the second invention is characterized by removing water from an aqueous solution obtained by dissolving an organic acid having a carboxyl group and / or a hydroxyl group and FeO. That is, the other iron supply agent can be obtained by removing water from the iron supply agent.
第 3発明の鉄供給剤は、カルボキシル基及び/又はヒドロキシル基を備える有機酸 と FeOとを含有することを特徴とする。  The iron supply agent according to the third invention is characterized by containing an organic acid having a carboxyl group and / or a hydroxyl group and FeO.
[0017] (1)第 1発明の鉄供給剤 [0017] (1) Iron supply agent of the first invention
上記「有機酸」は、カルボキシル基及び Z又はヒドロキシル基を備える酸である。こ の有機酸としては、カルボキシル基を有する有機酸としてはクェン酸 (無水クェン酸 を含む)、酢酸、酒石酸及びシユウ酸が挙げられる。ヒドロキシル基を有する有機酸と してはァスコルビン酸等が挙げられる。また、カルボキシル基とヒドロキシル基との両 方を有する有機酸としては、クェン酸と酒石酸とが挙げられる。これらは 1種のみを用 いてもよぐ 2種以上を併用してもよい。また、これらのなかでも、安定性に優れるため クェン酸、酢酸、酒石酸及びシユウ酸が好ましい。更に、有機酸と FeOとを含有する 水溶液を調製した場合に、有機酸濃度に対する Fe2+イオン濃度が高いためクェン酸 、酢酸及び酒石酸が好ましい。また、これらのなかでも、刺激臭がなぐまた有機酸と FeOとを含有する水溶液を調製した場合に、有機酸濃度に対する Fe2+イオン濃度 が特に高 、ためクェン酸が最も好ま 、。 The “organic acid” is an acid having a carboxyl group and a Z or hydroxyl group. As the organic acid, examples of the organic acid having a carboxyl group include citrate (including citrate anhydride), acetic acid, tartaric acid and oxalic acid. Examples of the organic acid having a hydroxyl group include ascorbic acid. Examples of the organic acid having both a carboxyl group and a hydroxyl group include citrate and tartaric acid. These may be used alone or in combination of two or more. Of these, citrate, acetic acid, tartaric acid and oxalic acid are preferred because of their excellent stability. Furthermore, when an aqueous solution containing an organic acid and FeO is prepared, citrate, acetic acid and tartaric acid are preferred because the Fe 2+ ion concentration is high relative to the organic acid concentration. Among these, when an aqueous solution containing no irritating odor or containing an organic acid and FeO is prepared, the concentration of Fe 2+ ions with respect to the concentration of the organic acid is particularly high, so quenate is most preferred.
[0018] 上記「水溶液」は、有機酸と FeOとが溶解されて得られた水溶液である。即ち、溶解 されていない有機酸及び FeOが含有されない水溶液である。但し、溶けきつていな V、有機酸及び/又は溶けきつて 、な 、FeOが含有される固液共存液中における上 澄み液であってもよい。 [0018] The "aqueous solution" is an aqueous solution obtained by dissolving an organic acid and FeO. That is, it is an aqueous solution not containing undissolved organic acid and FeO. However, it may be a supernatant in a solid-liquid coexisting solution containing V, an organic acid and / or FeO that is not dissolved.
また、有機酸及び FeOの水溶液中における溶解状態は特に限定されない。即ち、 例えば、この水溶液には有機酸鉄錯体及び有機酸イオン等を含有できる。これらの なかでも特に有機酸鉄錯体が含有されることが好ましぐ更には、上記のごとくクェン 酸が含有される場合にはタエン酸錯体が含有されることが好ま ヽ。このクェン酸鉄 錯体は、 1つの Fe2+イオンに対してクェン酸及び Z又はクェン酸イオンが複数の配 位した多量体錯体であることが好ましぐ特に二量体錯体(1つの Fe2+イオンに対し てクェン酸及び/又はクェン酸イオンが 2つ配位した錯体)が含有されることが好まし ぐ更には、二量体錯体と三量体錯体(1つの Fe2+イオンに対してクェン酸及び Z又 はクェン酸イオンが 3つ配位した錯体)との両方が含有されることがより好ま 、。 Further, the dissolved state of the organic acid and FeO in the aqueous solution is not particularly limited. That is, for example, this aqueous solution can contain an organic acid iron complex and an organic acid ion. Among these, it is particularly preferable that an organic acid iron complex is contained, and further, as described above. When an acid is contained, a taenoic acid complex is preferably contained. This iron citrate complex is preferably a multimeric complex in which citrate and Z or a plurality of citrate ions are coordinated to one Fe 2+ ion, particularly a dimer complex (one Fe 2 ion). It is preferable that a cation and / or a complex in which two citrate ions are coordinated with respect to the + ion, and further a dimer complex and a trimer complex (one Fe 2+ ion In contrast, it is more preferable to contain both citrate and a complex in which three citrate ions are coordinated.
[0019] この水溶液に溶解された有機酸及び FeOの量は特に限定されないが、通常、水 1 00mlあたりの有機酸 (特にクェン酸)は 0. 05g以上 (好ましくは 0. 5g〜水溶液の温 度における有機酸の溶解限度量)である。一方、水 100mlあたりの FeOは、有機酸 の含有量を 100質量部とした場合に、 10〜25質量部(特に 20〜25質量部)である。  [0019] The amount of the organic acid and FeO dissolved in the aqueous solution is not particularly limited, but usually the organic acid (particularly quenic acid) per 100 ml of water is 0.05 g or more (preferably 0.5 g to the temperature of the aqueous solution). The solubility limit of organic acid in degrees). On the other hand, FeO per 100 ml of water is 10 to 25 parts by mass (particularly 20 to 25 parts by mass) when the content of the organic acid is 100 parts by mass.
[0020] また、この水溶液を構成する水は、特に限定されず、種々の水を用いることができる 。純水及びイオン交換水等の高度に精製された水であってもよぐ水道水、工業用水 、農業用水及び地下水等の通常使用される水であってもよい。  [0020] The water constituting the aqueous solution is not particularly limited, and various types of water can be used. Water that is usually used, such as tap water, industrial water, agricultural water, and ground water, which may be highly purified water such as pure water and ion exchange water, may be used.
[0021] この水溶液を得る方法は特に限定されないが、後述する製造方法において得るこ とができる。即ち、(1)有機酸粉末と FeO粉末と水とを含む混合物を加熱して得ること ができる。その他、(2)予め全量を溶解させた有機酸水溶液に FeO粉末を添加しカロ 熱して得ることもできる。また、(3)予め所定量を溶解させた有機酸水溶液に、更に有 機酸粉末と FeO粉末とを添加し加熱して得ることもできる。更に、(4)加熱せず有機 酸粉末と FeOと水とを混合して得ることもできる。更に(5)上記(1)〜(4)に加えて溶 解しきれな!/ヽ有機酸及び溶解しきれ ヽな ヽ FeOが含有される場合には、これらを濾 過等の方法で分離する工程を備えることができる。  [0021] A method for obtaining this aqueous solution is not particularly limited, but it can be obtained by a production method described later. That is, (1) it can be obtained by heating a mixture containing organic acid powder, FeO powder and water. In addition, (2) it can also be obtained by adding FeO powder to an organic acid aqueous solution in which the entire amount has been dissolved in advance and heating it with heat. Alternatively, (3) organic acid powder and FeO powder may be further added to an organic acid aqueous solution in which a predetermined amount is dissolved and heated. Furthermore, (4) it can be obtained by mixing organic acid powder, FeO and water without heating. Furthermore, (5) In addition to the above (1) to (4), when it is not completely dissolved! / ヽ Organic acid and completely dissolved ヽ FeO are contained, they are separated by a method such as filtration. The process to perform can be provided.
[0022] 第 1発明の鉄供給剤は、防黴のために木酢液を含有させることができる。木酢液を 含有させる場合、木酢液の含有量は鉄供給剤全体の 10質量%以下 (通常、 1質量 %以上)が好ましい。更に、同様な目的で予め紫外線照射を行うことができる。紫外 線照射条件等は特に限定されないが、波長 200〜380nmの紫外線を用いることが 好ましい。また、照射を行ぅ場合には72 104 ^ 3 。1112以上を照射することが好 ましい。更に、保存の際には低温で保存することが好ましい。その温度は特に限定さ れな 、が 15°C以下が好まし!/、。 第 1発明の鉄供給剤の性質については後述する。 [0022] The iron supply agent of the first invention may contain a pyroligneous acid solution for anti-mold. When the wood vinegar solution is contained, the content of the wood vinegar solution is preferably 10% by mass or less (usually 1% by mass or more) of the whole iron supply agent. Furthermore, ultraviolet irradiation can be performed in advance for the same purpose. Although the ultraviolet irradiation conditions are not particularly limited, it is preferable to use ultraviolet rays having a wavelength of 200 to 380 nm. In addition, 72 10 4 ^ 3 for irradiation. It is preferable to irradiate 111 2 or more. Furthermore, when storing, it is preferable to store at a low temperature. The temperature is not particularly limited, but 15 ° C or less is preferred! The properties of the iron supply agent of the first invention will be described later.
[0023] (2)第 2発明の鉄供給剤 [0023] (2) Iron supply agent of the second invention
一方、第 2発明の鉄供給剤は、上記水溶液力 水を除去して得られる。 上記「除去」は、水溶液から水の一部又は全部を除去する作業を意味するが、通常 、第 1発明の鉄供給剤全体に対する水分量は 90質量%以下である。特に固形物で は 10質量%以下 (好ましくは 5質量%以下)であり、ペースト状物では 60〜90質量 % (好ましくは 65〜85質量%)である。第 2発明の鉄供給剤は、水溶液から実質的に 全部の水が除去されて固形物であってもよぐ水溶液から一部の水が除去されたぺ 一スト状物であってもよ 、が、これらのうちでは固形物が好まし 、。  On the other hand, the iron supply agent of the second invention is obtained by removing the aqueous solution water. The above “removal” means an operation of removing a part or all of water from the aqueous solution, but usually the water content is 90% by mass or less based on the whole iron supply agent of the first invention. In particular, the solid content is 10% by mass or less (preferably 5% by mass or less), and the pasty product is 60 to 90% by mass (preferably 65 to 85% by mass). The iron supply agent of the second invention may be a solid product obtained by removing substantially all of the water from the aqueous solution, or may be a paste product obtained by removing a part of the water from the aqueous solution. Of these, solids are preferred.
また、この除去の方法は特に限定されず、減圧加熱乾燥、常圧加熱乾燥、非加熱 減圧乾燥、及び凍結乾燥等の手段を用いることができる。これらのなかでは、減圧カロ 熱乾燥が好ましい。 Fe2+がこの水を除去する過程で酸化されることを防止できるから である。また、減圧乾燥以外にも、低酸素下における乾燥でもよい。 Further, the removal method is not particularly limited, and means such as reduced pressure heating drying, normal pressure heating drying, non-heating reduced pressure drying, and freeze drying can be used. Of these, reduced pressure hot air drying is preferred. This is because Fe 2+ can be prevented from being oxidized in the process of removing this water. In addition to drying under reduced pressure, drying under low oxygen may be used.
[0024] 水の除去を行う際に加熱を行う場合、水溶液の加熱の温度は特に限定されないが 、 150°C以下に保持することが好ましい。 150°Cを超えると Fe3+イオン濃度が高くな る傾向にあるからである。この加熱による水溶液の温度は、 140°C以下がより好ましく 、 135°C以下が更に好ましぐ 130°C以下が特に好ましい。また、一方、下限温度は 特に限定されず、水の除去を行う際の圧力環境下で水の蒸散を生じる温度であれば よいが、例えば、 60°C以上が好ましぐ 80°C以上がより好ましぐ 100°C以上が更に 好ましぐ 115°C以上が特に好ましぐ 120°C以上がとりわけ好ましい。これらの加熱 の際の上限温度及び下限温度は各々組合せとすることができる。即ち、例えば、 60 〜150°Cが好ましぐ 100〜140°Cがより好ましぐ 110〜130°Cが更に好ましい。こ れら以外の組合せであってもよ 、。 [0024] When heating is performed when water is removed, the heating temperature of the aqueous solution is not particularly limited, but is preferably maintained at 150 ° C or lower. This is because the Fe 3+ ion concentration tends to increase above 150 ° C. The temperature of the aqueous solution by heating is more preferably 140 ° C. or less, particularly preferably 135 ° C. or less, and particularly preferably 130 ° C. or less. On the other hand, the lower limit temperature is not particularly limited and may be any temperature that causes transpiration of water under the pressure environment when water is removed. For example, 60 ° C or higher is preferable, and 80 ° C or higher is preferable. More preferred is 100 ° C or more, more preferred is 115 ° C or more, and particularly preferred is 120 ° C or more. These upper limit temperature and lower limit temperature at the time of heating can be combined. That is, for example, 60 to 150 ° C is preferable, and 100 to 140 ° C is more preferable, and 110 to 130 ° C is more preferable. Other combinations may be used.
[0025] 更に、水を除去する際に減圧を行う場合、その圧力は特に限定されないが、 0. 1〜 50kPa力 S好ましく、 0. l〜20kPa力 Sより好ましく、 3〜15kPa力更に好ましく、 4〜10 kPaが特に好ましい。 [0025] Further, when the pressure is reduced when removing water, the pressure is not particularly limited, but is preferably 0.1 to 50 kPa force S, more preferably 0.1 to 20 kPa force S, and further preferably 3 to 15 kPa force. 4 to 10 kPa is particularly preferred.
[0026] 第 2発明の鉄供給剤は、通常、 15°C以上の温度の水にほぼ全量を溶解させること ができる。例えば、温度 25°Cの純水 100mlに対しては 0. lg以上(更には 0. 1〜12 0g、特に 0. l〜50g、とりわけ 0. l〜15g)を溶解させることができる。この鉄供給剤 を溶解させた水溶液の性質につ!ヽては後述する。 [0026] The iron supply agent of the second invention can usually be dissolved almost entirely in water at a temperature of 15 ° C or higher. For example, for 100 ml of pure water at a temperature of 25 ° C, 0.1 lg or more (or 0.1-12 0 g, in particular 0.1 to 50 g, in particular 0.1 to 15 g) can be dissolved. The properties of the aqueous solution in which this iron supply agent is dissolved will be described later.
[0027] (3)第 3発明の鉄供給剤 [0027] (3) Iron supply agent of the third invention
第 3発明の鉄供給剤は、カルボキシル基及び/又はヒドロキシル基を備える有機酸 と FeOとを含有する。即ち、例えば、有機酸粉末と FeO粉末とを含有する鉄供給剤 である。この鉄供給剤は、降雨、灌水及び土中の水分等により、結果的に前記第 1発 明の鉄供給剤 (水溶液)が得られるものである。即ち、前記有機酸鉄水溶液 (特にク ェン酸鉄水溶液)が形成される。これにより、前記第 1発明の鉄供給剤による作用効 果がそのまま得られる。この鉄供給剤は、例えば、有機酸粉末と FeO粉末とを混合し て得られる。  The iron supply agent of the third invention contains an organic acid having a carboxyl group and / or a hydroxyl group and FeO. That is, for example, an iron supply agent containing organic acid powder and FeO powder. As a result of this iron supply agent, the iron supply agent (aqueous solution) of the first invention is obtained as a result of rainfall, irrigation, moisture in the soil, and the like. That is, the organic acid iron aqueous solution (particularly iron citrate aqueous solution) is formed. As a result, the effect of the iron supplier of the first invention can be obtained as it is. This iron supply agent can be obtained, for example, by mixing organic acid powder and FeO powder.
尚、この鉄供給剤は水を含有してもよい。即ち、有機酸水溶液と FeO粉末とを混合 した鉄供給剤、及び有機酸水溶液 (例えば、飽和水溶液)と有機酸粉末と FeO粉末 とを混合した鉄供給剤等が含まれる。  In addition, this iron supply agent may contain water. That is, an iron supplier obtained by mixing an organic acid aqueous solution and FeO powder, an iron supplier obtained by mixing an organic acid aqueous solution (for example, a saturated aqueous solution), organic acid powder and FeO powder, and the like are included.
また、この鉄供給剤は、後述する生分解性バインダ等を用いて、有機酸の溶出速 度を低下させることができる。これにより除放性を持たせることができる。  Moreover, this iron supply agent can reduce the elution rate of an organic acid using the biodegradable binder etc. which are mentioned later. Thereby, it is possible to provide a release property.
上記有機酸、上記 FeO及び上記水等については、前記各々をそのまま適用できる  Each of the above-mentioned organic acids, FeO, water, etc. can be applied as they are.
[0028] (4)第 1発明、第 2発明及び第 3発明の各鉄供給剤に共通する事項 [0028] (4) Items common to the iron supply agents of the first invention, the second invention and the third invention
第 1発明の鉄供給剤、第 2発明の鉄供給剤を水溶させた水溶液、及び第 3発明の 鉄供給剤を水溶させた水溶液は、各々 Fe2+イオンと Fe3+イオンとが含有され、 Fe2+ イオンと Fe3+イオンとの合計を 100質量0 /0とした場合に、 Fe2+イオンが 50〜90質量 % (更には 60〜90質量%、特に 70〜90質量%)とすることができる。即ち、 Fe3+ィ オンは 10〜50質量0 /0 (更には 10〜40質量0 /0、特に 10〜30質量0 /0)とすることがで きる。即ち、高濃度に Fe2+を含有する水溶液を得ることができる。但し、この各イオン 濃度は、後述する実施例の測定方法により測定された値である。 The aqueous solution containing the iron supplier of the first invention, the aqueous solution of the iron supplier of the second invention, and the aqueous solution of the iron supplier of the third invention contain Fe 2+ ions and Fe 3+ ions, respectively. , when the sum of the Fe 2+ ions and Fe 3+ ions is 100 mass 0/0, Fe 2+ ions 50 to 90 wt% (further 60-90% by weight, in particular 70 to 90% by weight) It can be. That, Fe 3+ I ON as possible out to 10 to 50 mass 0/0 (further 10 to 40 mass 0/0, especially 10 to 30 mass 0/0). That is, an aqueous solution containing Fe 2+ at a high concentration can be obtained. However, each ion concentration is a value measured by a measuring method of an example described later.
[0029] 特に、有機酸としてクェン酸を用いた場合には、第 1発明の鉄供給剤、第 2発明の 鉄供給剤を水溶させた水溶液、及び第 3発明の鉄供給剤を水溶させた水溶液には、 1つの Fe2+イオンに対してクェン酸及び/又はクェン酸イオンが 2つ配位した二量体 錯体と、 1つの Fe2+イオンに対してクェン酸及び Z又はクェン酸イオンが 3つ配位し た三量体錯体と、が含有される。それぞれの錯体の含有量は特に限定されない。ま た、各鉄供給剤全体に対する各錯体の含有割合も特に限定されな!ヽ。 [0029] In particular, when cenoic acid is used as the organic acid, the iron supply agent of the first invention, the aqueous solution in which the iron supply agent of the second invention is made water-soluble, and the iron supply agent of the third invention are made water-soluble. In aqueous solution, a dimer in which two citrate ions and / or two citrate ions are coordinated to one Fe 2+ ion And a trimer complex in which three citrate and Z or three citrate ions are coordinated to one Fe 2+ ion. The content of each complex is not particularly limited. In addition, the content of each complex with respect to the total iron supply agent is not particularly limited!
[0030] また、第 1発明の鉄供給剤、第 2発明の鉄供給剤を水溶させた水溶液、及び第 3発 明の鉄供給剤を水溶させた水溶液では、 168時間静置した場合に認められる Fe2+ イオン濃度は、溶解直後(第 1発明の鉄供給剤においては測定直後)に認められる F e2+イオン濃度 (mgZリットル)の 75%以上とすることができる。即ち、長期間安定して Fe2+イオンを保持することができ、 Fe3+へ酸化されることが抑制された抗酸ィ匕性に優 れた Fe2+イオンを供給することができる。但し、上記放置は実質的に紫外線があたら ない温度 25°Cの暗所におけるものとする。この各イオン濃度は、後述する実施例の 測定方法により測定された値である。 [0030] In addition, the aqueous solution in which the iron supply agent of the first invention, the iron supply agent in the second invention are dissolved in water, and the aqueous solution in which the iron supply agent of the third invention is dissolved in water are recognized when left standing for 168 hours. The Fe 2+ ion concentration obtained can be 75% or more of the Fe 2+ ion concentration (mg Z liters) observed immediately after dissolution (immediately after measurement in the iron supplier of the first invention). That is, it is possible to hold the long-term stability to Fe 2+ ions, can be supplied to excellence in Fe 2+ ions Kosani匕性to be oxidized is suppressed to Fe 3+. However, the above-mentioned neglect shall be in a dark place at a temperature of 25 ° C where there is virtually no ultraviolet light. Each ion concentration is a value measured by a measuring method of an example described later.
[0031] 更に、第 1発明の鉄供給剤、第 2発明の鉄供給剤を水溶させた水溶液、及び第 3発 明の鉄供給剤を水溶させた水溶液は、紫外線 (特に波長 200〜380nm)を照射する ことにより、 Fe2+イオン濃度を向上させることができる。特に Fe2+イオン濃度が全 Feィ オン濃度 (mgZリットル)の 80%以下 (特に 70%以下、通常 50%以上)である水溶 液に対して、波長 253nmの紫外線を 72 X 104 w s/cm2照射した場合に、 Fe2+ イオン濃度 (mgZリットル)を 85%以上(更には 90%以上、特に 95%以上、通常 99 . 9%以下)に向上させることができる。尚、このイオン濃度の測定は、後述する実施 例の測定方法によるものとする。 [0031] Furthermore, the iron supply agent of the first invention, the aqueous solution in which the iron supply agent of the second invention is dissolved in water, and the aqueous solution in which the iron supply agent of the third invention is dissolved in water are ultraviolet rays (especially wavelengths of 200 to 380 nm). Irradiation can improve the Fe 2+ ion concentration. In particular, an aqueous solution with an Fe 2+ ion concentration of 80% or less of the total Fe ion concentration (mgZ liter) (especially 70% or less, usually 50% or more) is irradiated with ultraviolet rays with a wavelength of 253 nm at 72 X 10 4 ws / When irradiated with cm 2 , the Fe 2+ ion concentration (mgZ liter) can be improved to 85% or more (further 90% or more, particularly 95% or more, usually 99.9% or less). This ion concentration is measured by the measurement method of the examples described later.
[0032] 第 1発明の鉄供給剤、第 2発明の鉄供給剤及び第 3発明の鉄供給剤は、後述する 植物用鉄供給剤として利用できるほか、家畜用鉄供給剤 (鶏、豚、牛等)、魚介類用 鉄供給剤 (養殖魚、養殖貝等)などとして利用できる。その他、各種 Fe2+イオンの供 給を要する各種分野にぉ ヽて利用できる。これらの植物用途以外の各種用途用鉄 供給剤として用いる場合には、例えば、第 2発明の鉄供給剤では、後述する植物用 鉄供給剤におけると同様に、生分解性バインダを含有することができ、生分解性増量 剤を含有することができ、更にはその他の成分を含有することができる。 [0032] The iron supply agent of the first invention, the iron supply agent of the second invention and the iron supply agent of the third invention can be used as an iron supply agent for plants, which will be described later, and an iron supply agent for livestock (chicken, pig, Cattle, etc.) and iron supply agents for seafood (cultured fish, cultured shellfish, etc.). In addition, it can be used in various fields that require the supply of various Fe 2+ ions. When used as an iron supplier for various uses other than those for plants, for example, the iron supplier of the second invention may contain a biodegradable binder as in the iron supplier for plants described later. It can contain biodegradable extenders and can contain other components.
[0033] [2]植物用鉄供給剤  [0033] [2] Iron supply agent for plants
第 1発明の植物用鉄供給剤は、第 1発明の鉄供給剤を含有することを特徴とする。 第 2発明の植物用鉄供給剤は、第 2発明の鉄供給剤を含有することを特徴とする。 第 3発明の植物用鉄供給剤は、第 3発明の鉄供給剤を含有することを特徴とする。 これらの本発明の植物用鉄供給剤は、 1種のみを用いてもよぐ 2種以上を併用し てもよい。 The iron supply agent for plants of the first invention is characterized by containing the iron supply agent of the first invention. The iron supply agent for plants of the second invention is characterized by containing the iron supply agent of the second invention. The iron supply agent for plants of the 3rd invention contains the iron supply agent of 3rd invention, It is characterized by the above-mentioned. These plant iron supply agents of the present invention may be used alone or in combination of two or more.
[0034] 各植物用鉄供給剤に含有される第 1発明の鉄供給剤、第 2発明の鉄供給剤又は第 3発明の鉄供給剤 (以下、単に「鉄供給剤」とも 、う)の含有量は特に限定されな!、が 、植物用鉄供給剤全体を 100質量%とした場合に、第 2発明の鉄供給剤 (完全乾燥 質量換算)に換算して 5質量%以上含有されることが好ましい。この範囲であれば鉄 供給剤を含有する効果を十分に得ることができる。また、この含有量は 95質量%以 下であることが好ましぐ 50質量%以下であることがより好ましぐ 30質量%以下であ ることが特に好ましい。植物にとって鉄は微量必須元素であるため過度に与える必要 はなぐ上記範囲で十分な供給量を保つことができる。  [0034] The iron supply agent of the first invention, the iron supply agent of the second invention or the iron supply agent of the third invention contained in each plant iron supply agent (hereinafter also simply referred to as "iron supply agent") The content is not particularly limited! However, when the total amount of the iron supply agent for plants is 100% by mass, it is contained in an amount of 5% by mass or more in terms of the iron supply agent of the second invention (in terms of complete dry mass). It is preferable. If it is this range, the effect which contains an iron supply agent can fully be acquired. The content is preferably 95% by mass or less, more preferably 50% by mass or less, and even more preferably 30% by mass or less. For plants, iron is a trace essential element, so it is not necessary to give it too much.
[0035] 更に、本発明の植物用鉄供給剤には、生分解性バインダを含有することができる。  [0035] Furthermore, the plant iron supplier of the present invention may contain a biodegradable binder.
生分解性バインダを含有することにより、このバインダが分解されるに従って徐々に 鉄供給剤が放出されて Fe2+を生じる。このため長期にわたって安定して Fe2+イオン を供給することができる。即ち、植物用鉄供給剤に徐放性を付与できる。 By containing a biodegradable binder, the iron supply is gradually released as this binder is decomposed to produce Fe 2+ . Therefore, Fe 2+ ions can be supplied stably over a long period of time. That is, sustained release can be imparted to the plant iron supplier.
この生分解性バインダとしては、生分解性プラスチックを用いることができる。生分 解性プラスチックとしてはポリアルキレンサクシネート系榭脂(ポリブチレンサクシネー ト榭脂、ポリエチレンサクシネート榭脂など)、ポリ乳酸系榭脂、尿素樹脂、ポリ力プロ ラ外ン系榭脂、セルロース系榭脂、澱粉系榭脂、ポリビュルアルコール系榭脂等が 挙げられる。これらは 1種のみを用いてもよぐ 2種以上を併用してもよい。  As the biodegradable binder, a biodegradable plastic can be used. Biodegradable plastics include polyalkylene succinate-based resins (polybutylene succinate resin, polyethylene succinate resin, etc.), polylactic acid-based resin, urea resin, poly-plastic filler-based resin, Examples thereof include cellulose-based resin, starch-based resin, and polybulal alcohol-based resin. These may be used alone or in combination of two or more.
この生分解性バインダの含有量は特に限定されないが、植物用鉄供給剤全体を 1 00質量%とした場合に 10質量%以下 (より好ましくは 2〜7質量%、通常 1質量%以 上)とすることが好ましい。  The content of the biodegradable binder is not particularly limited, but is 10% by mass or less (more preferably 2-7% by mass, usually 1% by mass or more) when the total amount of iron supply for plants is 100% by mass. It is preferable that
[0036] また、本発明の植物用鉄供給剤は、生分解性増量剤を含有することができる。生分 解性増量剤は、生分解性を有する上記ノインダ以外の成分である。この生分解性増 量剤としては、泥炭、糠、焼酎粕、酒粕、クェン酸粕、籾殻、雪花菜、葦、腐葉土、鶏 糞、堆肥、牛糞、骨粉及び粘土等が挙げられる。これらは 1種のみを用いてもよぐ 2 種以上を併用してもよい。尚、生分解性増量剤は、植物に対する所定の機能を有し ていてもよぐ有していなくてもよい。所定の機能を有する成分とは、例えば、植物に 対して栄養分となる成分が挙げられる。 [0036] The plant iron supply agent of the present invention may contain a biodegradable extender. The biodegradable extender is a component other than the above-mentioned noinda having biodegradability. Examples of the biodegradable extender include peat, straw, shochu, sake lees, citrate lees, rice husks, snow flowers, cocoons, humus, chicken manure, compost, cow manure, bone meal, and clay. Only one of these may be used 2 More than one species may be used in combination. The biodegradable extender may or may not have a predetermined function for plants. Examples of the component having a predetermined function include components that serve as nutrients for plants.
この生分解性増量剤の含有量は特に限定されないが、植物用鉄供給剤全体を 10 0質量%とした場合に 50〜94質量% (好ましくは 70〜94質量%)とすることができる 。この範囲であれば、多量の土に対して微量の鉄供給剤を混合した場合にも、適切 な量を混合することができる。  The content of the biodegradable extender is not particularly limited, but can be 50 to 94% by mass (preferably 70 to 94% by mass) when the total amount of iron supply for plants is 100% by mass. Within this range, even when a small amount of iron supply agent is mixed with a large amount of soil, an appropriate amount can be mixed.
[0037] 本発明の植物用鉄供給剤は、鉄供給剤、生分解性バインダ及び生分解性増量剤 以外にも他の成分を含有することができる。他の成分としては、リポ酸、オリザ油、各 種ビタミン類、 Mn、 Zn、 Cu、 Cr、 Si、 Mg、 Ca、 Co、 Mo、 Ni、 B等の各成分(例えば 、金属状態、金属酸ィ匕物等)、 S及び C1等の化合物等が挙げられる。これらは 1種の みを用いてもよぐ 2種以上を併用してもよい。その他の成分は、植物用鉄供給剤に 含有される鉄供給剤と生分解性バインダと生分解性増量剤との合計を 100質量部と した場合に 10質量部以下とすることが好ましい。  [0037] The plant iron supply agent of the present invention may contain other components in addition to the iron supply agent, the biodegradable binder and the biodegradable extender. Other ingredients include lipoic acid, oryza oil, various vitamins, Mn, Zn, Cu, Cr, Si, Mg, Ca, Co, Mo, Ni, B, etc. (for example, metallic state, metallic acid Compounds such as S and C1, and the like. These may be used alone or in combination of two or more. The other components are preferably 10 parts by mass or less when the total of the iron supplier, the biodegradable binder, and the biodegradable extender contained in the plant iron supplier is 100 parts by mass.
[0038] 本発明の植物用鉄供給剤の使用方法は特に限定されない。例えば、液状である場 合は、散布する(土、対象植物の根元等へ灌水、葉面散布等)、浸漬する (水耕栽培 用の培養液等として使用。対象植物の根を浸漬する等)、土に混合する等の使用方 法が挙げられる。また、固形状である場合は、土と混合 (粉体状で、塊状で)する、土 に散布 (粉体状で)する、土中に埋める (粉体状で、塊状で)等の使用方法が挙げら れる。  [0038] The method of using the plant iron supplier of the present invention is not particularly limited. For example, if it is in liquid form, spray (sprinkle soil, root of the target plant, foliar spray, etc.) or immerse (use as a culture solution for hydroponics. Soak the root of the target plant, etc.) ), And mixing with soil. If it is solid, use it for mixing with soil (powder, lump), spraying on soil (powder), filling in soil (powder, lump), etc. A method is mentioned.
[0039] また、特に本発明の植物用鉄供給剤のうち、(1)第 1発明の鉄供給剤を含有する植 物用鉄供給剤、又は (2)第 2発明の鉄供給剤を含有する植物用鉄供給剤、であって 且つ、有機酸としてクェン酸を含有する場合には、生分解性増量剤を含有し、この 生分解性増量剤からなるマトリックスにクェン酸及び FeOが含有されてなる植物用鉄 供給剤であれば、アルカリ土壌において好適に用いることができる。  [0039] In particular, among the plant iron supply agents of the present invention, (1) the plant iron supply agent containing the iron supply agent of the first invention, or (2) the iron supply agent of the second invention. A plant iron supply agent that contains citrate as an organic acid, a biodegradable extender is included, and the matrix composed of the biodegradable extender contains chenate and FeO. The plant iron supplier can be suitably used in alkaline soil.
この際に用いる生分解性増量剤としては、前記生分解性増量剤をそのまま適用で きる。これらの生分解性増量剤のなかでも、泥炭、糠、焼酎粕、酒粕及びタエン酸粕 が好ましぐ特に泥炭が好ましい。これらの生分解性増量剤は 1種のみを用いてもよく 、 2種以上を併用してもよい。 As the biodegradable extender used in this case, the biodegradable extender can be applied as it is. Among these biodegradable extenders, peat, straw, shochu, sake lees and taenoic acid lees Peat is particularly preferred. These biodegradable extenders may be used alone or in combination of two or more.
[0040] このクェン酸と生分解性増量剤とを含有する植物用鉄供給剤のなかでも、生分解 性増量剤として泥炭を含有するものが特に好ましい。  [0040] Among the iron supply agents for plants containing the citrate and the biodegradable extender, those containing peat as the biodegradable extender are particularly preferable.
この泥炭は、採取された状態のままで用いてもよぐ各種改質処理を施して用いて もよぐこれらの混合物であってもよい。上記の各種改質処理としてはアルカリ抽出処 理、中和処理 (リン酸中和処理、苦土石灰中和処理など)等が挙げられる。  The peat may be a mixture of these peats that may be used as collected or subjected to various modification treatments. Examples of the various modification treatments include alkali extraction treatment, neutralization treatment (such as phosphoric acid neutralization treatment, and maternal lime neutralization treatment).
上記泥炭としては、草質泥炭 (各種ピート、葦類及び苔類等に由来する有機分を主 成分とする)及び木質泥炭等が挙げられる。更に、これらを改質処理した泥炭が挙げ られる。これらは 1種のみを用いてもよぐ 2種以上を併用してもよい。  Examples of the peat include grassy peat (mainly organic components derived from various types of peat, moss and moss) and woody peat. Further, peats obtained by modifying these can be mentioned. These may be used alone or in combination of two or more.
[0041] 上記泥炭は撥水作用を有する。このため、例えば、植物用鉄供給剤をアルカリ土壌 にお 、て用いた場合には、周囲力 pHの高 、水溶液等が植物用鉄供給剤へ侵入 することが抑制される。従って、 pHが低く保たれ、 FeOの溶解性の低下が抑えられ、 且つ Fe2+イオンの酸化もより抑制される。そのため、長期に亘つて安定して Fe2+ィォ ンを供給することができる。即ち、この植物用鉄供給剤により優れた徐放性を付与で きる。 [0041] The peat has a water repellent effect. For this reason, for example, when a plant iron supply agent is used in alkaline soil, a high ambient force pH and an aqueous solution or the like can be prevented from entering the plant iron supply agent. Therefore, the pH is kept low, the decrease in solubility of FeO is suppressed, and the oxidation of Fe 2+ ions is further suppressed. Therefore, it is possible to supply Fe 2+ ions stably over a long period of time. That is, excellent sustained release can be imparted by this plant iron supply agent.
[0042] 更に、クェン酸、 FeO及び泥炭の合計を 100質量%とした場合に、クェン酸は 5〜 15質量0 /0含有され、 FeOは 5〜10質量0 /0含有されていることが好ましい。このクェン 酸の含有量は 7〜 13質量%であることがより好ましく、 FeOの含有量は 7〜8質量% であることがより好ましい。これにより、 FeOの溶解性の低下が十分に抑えられ、且つ Fe2+イオンの酸化もより十分に抑制され、長期に亘つて安定して Fe2+イオンを供給 することができる。 [0042] Further, in the case of a 100 wt% Kuen acid, FeO and the sum of the peat, Kuen acid is contained 5-15 wt 0/0, FeO is that is contained 5 to 10 weight 0/0 preferable. The citrate content is more preferably 7 to 13% by mass, and the FeO content is more preferably 7 to 8% by mass. Thus, reduction in the solubility of FeO is sufficiently suppressed, and the oxidation of Fe 2+ ions is more sufficiently suppressed, prolonged connexion can be stably supplied to Fe 2+ ions.
[0043] また、生分解性増量剤からなるマトリックスに、クェン酸及び FeOが含有された粒状 体力 なることが好ましい。この粒状体を構成する粒子の形状は特に限定されず、球 体、楕円体、半球体、立方体、直方体、円柱体及びプリケット等のいずれでもよい。 更に、粒状体は緻密体でもよぐ多孔質体であってもよい。またその粒径 (球形である ときは直径、その他の形状であるときは最短寸法)は 50mm以下 (より好ましくは 10m m以下、更に好ましくは 6mm以下、通常 0. 5mm以上)が好ましい。 [0044] 上記のように撥水性の生分解性増量剤によりクェン酸及び FeOの、外部環境との 接触を抑制することにより、例えば、この植物用鉄供給剤をアルカリ土壌において用 いた場合、粒状体の内部の pHの上昇が抑えられる。これにより FeOの溶解性の低下 が抑えられる。更に、空気中の酸素等によるクェン酸の酸化も抑制されるため、このク ェン酸による FeOの酸ィ匕抑制の効果も併せて得られ、長期に亘つてより安定して Fe2 +イオンを供給することができる。 [0043] Further, it is preferable that the matrix composed of the biodegradable extender has a granular strength in which citrate and FeO are contained. The shape of the particles constituting the granule is not particularly limited, and may be any of a sphere, an ellipsoid, a hemisphere, a cube, a cuboid, a cylinder, a plecket, and the like. Further, the granular body may be a dense body or a porous body. In addition, the particle size (diameter in the case of a sphere, shortest dimension in the case of other shapes) is preferably 50 mm or less (more preferably 10 mm or less, further preferably 6 mm or less, usually 0.5 mm or more). [0044] By suppressing the contact of citrate and FeO with the external environment by the water-repellent biodegradable extender as described above, for example, when this plant iron supplier is used in alkaline soil, Increase in pH inside the body is suppressed. This suppresses the decrease in FeO solubility. Furthermore, since the oxidation of Kuen acid by oxygen in the air is suppressed, the effect of FeO of Sani匕抑system according to the click E phosphate also together be obtained, prolonged connexion from stable Fe 2 + ions Can be supplied.
[0045] また、上記アルカリ土壌とは、風乾した土壌 10gに蒸留水 25ミリリットルを加えて 1時 間振とうし、得られた懸濁液の pHを測定した場合に、その pHが 7を超える土壌のこと をいう。従って、アルカリ土壌には、本来的なアルカリ土壌、及び非アルカリ土壌が後 天的 (施肥、砂漠化等)にアルカリィ匕してなるアルカリ土壌を含まれる。上記本来的な アルカリ土壌としては、貝化石土壌、石灰質土壌、珊瑚質土壌等の各種石灰質成分 が含まれる土壌が挙げられる。これらは 1種のみ用いてもよぐ 2種以上を併用しても よい。更に、これらの各種石灰質成分が含有された土壌と非アルカリ土壌との混合土 壌であって、全体としてアルカリ土壌であるものが含まれる。  [0045] In addition, the alkaline soil refers to 10 g of air-dried soil, added with 25 ml of distilled water and shaken for 1 hour, and when the pH of the resulting suspension is measured, the pH exceeds 7. It means soil. Therefore, the alkaline soil includes an alkaline soil obtained by alkalinizing an original alkaline soil and a non-alkaline soil (fertilization, desertification, etc.). Examples of the basic alkaline soil include soils containing various calcareous components such as shell fossil soils, calcareous soils, and sandy soils. These may be used alone or in combination of two or more. Furthermore, a mixed soil of a soil containing these various calcareous components and a non-alkaline soil, which is an alkaline soil as a whole is included.
[0046] また、この植物用鉄供給剤の製造方法は特に限定されないが、例えば、第 2発明 の植物用鉄供給剤は、第 2発明の鉄供給剤と泥炭とを混合し、造粒して得ることがで きる。また、第 3発明の植物用鉄供給剤は、第 3発明の鉄供給剤 (即ち、例えば、タエ ン酸粉末及び FeO粉末)と泥炭とを混合し、造粒して得ることができる。  [0046] The method for producing the plant iron supply agent is not particularly limited. For example, the plant iron supply agent of the second invention is obtained by mixing and granulating the iron supply agent of the second invention and peat. Can be obtained. The iron supply agent for plants of the third invention can be obtained by mixing and granulating the iron supply agent of the third invention (that is, for example, taenoic acid powder and FeO powder) and peat.
上記混合の方法は特に限定されず、モルタルミキサー及びォムニミキサー等を用 いたドライブレンドでもよぐ押出成形機等により混合してもよい。更に、造粒の方法も 特に限定されないが、通常、押出成形法により造粒される。また、押出成形により混 合と造粒とを連続して行えば、工程が簡略ィ匕でき好ましい。このドライブレンド及び押 出成形等の温度は特に限定されず、室温 (例えば、 15〜35°C)でもよぐ必要に応じ て 40〜90°C程度に加熱してもよ!/、。  The mixing method is not particularly limited, and the mixing may be performed by an extruder or the like using a dry blend using a mortar mixer, an omni mixer, or the like. Furthermore, the granulation method is not particularly limited, but it is usually granulated by an extrusion method. Further, it is preferable that mixing and granulation are continuously performed by extrusion molding because the process can be simplified. The temperature for dry blending and extrusion molding is not particularly limited, and it may be room temperature (for example, 15 to 35 ° C) or may be heated to about 40 to 90 ° C if necessary! /.
このクェン酸粉末及び FeO粉末については、下記 [4]鉄供給剤の製造方法におけ る各々の記載をそのまま適用できる。  For this citrate powder and FeO powder, the respective descriptions in the following [4] Method for producing iron supply can be applied as they are.
[0047] [3]鉄供給剤の製造方法  [0047] [3] Method for producing iron supply agent
本発明の製造方法は、前述のように特に限定されず種々の方法を用いることができ るが、例えば、有機酸粉末と、 FeO粉末と、水とを含む混合物を加熱して、有機酸及 び FeOが溶解されて得られた水溶液を得る溶解工程を備えることができる。 The production method of the present invention is not particularly limited as described above, and various methods can be used. However, for example, it is possible to provide a dissolution step of heating a mixture containing organic acid powder, FeO powder, and water to obtain an aqueous solution obtained by dissolving the organic acid and FeO.
[0048] 上記「有機酸粉末」は、上記有機酸を主成分 (通常、純度 99%以上)とする粉末で あり、その純度及び粉末形態であれば粒子形状などは特に限定されない。  [0048] The "organic acid powder" is a powder containing the organic acid as a main component (usually a purity of 99% or more), and the particle shape and the like are not particularly limited as long as the purity and powder form.
上記「FeO粉末」は、 FeOを主成分とする粉末である。この FeO粉末に含有される FeOの量は特に限定されないが、通常、 FeO粉末全体に対して FeOが 50質量%以 上(好ましくは 65質量%以上、 100質量%であってもよい)である。この FeO粉末はど のような FeO粉末を用いてもよぐ後述する FeO粉末 (鉄分を含有するダストを造粒し てなる造粒品、及び Z又は鉄分を含有するダストと還元剤とを造粒してなる造粒品、 を真空加熱したのち真空急冷して得られた FeO粉末)、及び各種市販の FeO粉末を 用いることができる。これらのなかでは、上記造粒品を真空加熱したのち真空急冷し て得られた FeO粉末が好まし 、。  The “FeO powder” is a powder containing FeO as a main component. The amount of FeO contained in this FeO powder is not particularly limited, but usually FeO is 50% by mass or more (preferably 65% by mass or 100% by mass) with respect to the entire FeO powder. . This FeO powder can be any type of FeO powder. FeO powder described later (granulated product obtained by granulating iron-containing dust, and Z or iron-containing dust and reducing agent). Granulated products obtained by granulation, FeO powder obtained by vacuum heating and vacuum quenching), and various commercially available FeO powders can be used. Among these, FeO powder obtained by heating the above granulated product in a vacuum and then quenching in a vacuum is preferred.
上記「水」は、前述のごとくどのような水も用いることができる。  As the “water”, any water can be used as described above.
[0049] 上記「混合物」における有機酸粉末と FeO粉末と水との仕込み量は特に限定され ないが、例えば、クェン酸を用いる場合には、クェン酸粉末 (純度 100%と仮定): Fe O粉末 (純度 100%と仮定):水(純度 100%と仮定)の質量比で、 60〜90 : 7〜28: 3〜20の割合で用いることが好ましぐ 65〜85 : 10〜24 : 5〜17. 5の割合で用いる ことがより好ましぐ 68〜72: 10〜22: 10〜15の割合で用いることが特に好ましい。  [0049] The amount of the organic acid powder, FeO powder, and water charged in the "mixture" is not particularly limited. For example, when using citrate, the citrate powder (assuming a purity of 100%): Fe 2 O The mass ratio of powder (assuming purity 100%): water (assuming purity 100%) is preferably 60-90: 7-28: 3-20. 65-85: 10-24: It is more preferable to use at a ratio of 5 to 17.5. It is particularly preferable to use at a ratio of 68 to 72:10 to 22:10 to 15.
[0050] 上記混合物には、有機酸粉末、 FeO粉末及び水以外にも他の成分を含有してもよ ぐ含有しなくてもよい。他の成分を含有する場合は、水に溶解した状態で含有しても よぐ水に溶解されない状態で含有されてもよい。他の成分としては、例えば、メタノ ール及びエタノールが挙げられる。これらを含有させることで減圧環境下にお ヽても 水の除去をよりスムーズに行うことができる。これらは 1種のみを用いてもよぐ 2種以 上を併用してもよい。  [0050] The above mixture may or may not contain other components in addition to the organic acid powder, FeO powder and water. When other components are contained, they may be contained in a state dissolved in water or in a state not dissolved in water. Examples of other components include methanol and ethanol. By containing these, water can be removed more smoothly even under a reduced pressure environment. These may be used alone or in combination of two or more.
[0051] 上記「加熱」における加熱条件は特に限定されないが、加熱温度は 150°C以下に 保持することが好ましい。 150°Cを超えると Fe3+イオン濃度が高くなる傾向にあるから である。この加熱による水溶液の温度は、 140°C以下がより好ましぐ 135°C以下が 更に好ましぐ 130°C以下が特に好ましい。一方、下限温度は特に限定されず、例え ば、 40°C以上が好ましぐ 50°C以上がより好ましぐ 60°C以上が特に好ましい。これ らの加熱の際の上限温度及び下限温度は各々組合せとすることができる。即ち、例 えば、 40〜150°Cが好ましぐ 50〜140°Cがより好ましぐ 60〜130°Cが更に好まし い。これら以外の組合せであってもよい。尚、加熱の際の圧力条件は特に限定されな い。 [0051] The heating conditions in the above "heating" are not particularly limited, but the heating temperature is preferably maintained at 150 ° C or lower. This is because the Fe 3+ ion concentration tends to increase above 150 ° C. The temperature of the aqueous solution by this heating is more preferably 140 ° C or lower, more preferably 135 ° C or lower, and further preferably 130 ° C or lower. On the other hand, the lower limit temperature is not particularly limited. For example, 40 ° C or higher is preferable, and 50 ° C or higher is more preferable. 60 ° C or higher is particularly preferable. The upper limit temperature and the lower limit temperature at the time of heating can be combined. That is, for example, 40 to 150 ° C is preferred, 50 to 140 ° C is more preferred, and 60 to 130 ° C is more preferred. Combinations other than these may be used. The pressure conditions for heating are not particularly limited.
この加熱により、クェン酸がより多く水に溶解され、これに従い FeOの溶解量も増え 、目的とする Fe2+イオン又は Fe2+イオン錯体の濃度が高くなるものと考えられる。 By this heating, more citrate is dissolved in water, and the amount of FeO dissolved is increased accordingly, and the concentration of the target Fe 2+ ion or Fe 2+ ion complex is considered to increase.
[0052] 本発明の製造方法では、上記溶解工程の後に水不溶性成分を除去する工程を備 えることができる。この水不溶性成分としては、溶解しきらない有機酸粉末及び溶解 しきらない FeO粉末等が挙げられる。除去方法は特に限定されないが、通常、濾過 により行うことができる。即ち、濾過工程を備えることができる。この際の濾過条件は特 に限定されないが、例えば、濾過フィルターには孔径 10 m以下(より好ましくは 5 m以下、更に好ましくは 3 μ m以下)のメンブランフィルターを用いることが好ましい。  [0052] The production method of the present invention can include a step of removing a water-insoluble component after the dissolving step. Examples of the water-insoluble component include organic acid powder that cannot be dissolved and FeO powder that cannot be dissolved. The removal method is not particularly limited, but can usually be performed by filtration. That is, a filtration step can be provided. The filtration conditions at this time are not particularly limited. For example, it is preferable to use a membrane filter having a pore size of 10 m or less (more preferably 5 m or less, more preferably 3 μm or less) as the filtration filter.
[0053] また、第 2発明の鉄供給剤を得る場合は、上記溶解工程の後に、更に、上記水溶 液力 水を除去する乾燥工程を備えることができる。この乾燥工程における乾燥条件 は特に限定されず、自然乾燥をさせてもよいが、前述した除去方法及び乾燥条件を 用いることが好ましい。即ち、減圧加熱により水を除去することが好ましい。加熱により 水分を徐々に減ずることで水溶性であり且つ抗酸ィ匕性に優れた Fe2+イオン成分 (Fe 2+錯体等)が濃縮され、第 2発明の鉄供給剤が得られるものと考えられる。 [0053] In addition, when obtaining the iron supply agent of the second invention, it is possible to further include a drying step for removing the aqueous solution, hydraulic water, after the dissolving step. The drying conditions in this drying step are not particularly limited, and natural drying may be performed, but it is preferable to use the above-described removal method and drying conditions. That is, it is preferable to remove water by heating under reduced pressure. Moisture is water soluble by reducing gradually and Kosani匕性excellent Fe 2+ ion component (Fe 2 + complex and the like) is concentrated by heating, and that the iron supply agent of the second invention is obtained Conceivable.
[0054] 更に、前記第 2発明の鉄供給剤を得る際には、更に、精製工程を備えることもでき る。精製工程は、水溶性成分を精製する工程である。即ち、例えば、上記水溶液から 水を除去して得られる鉄供給剤を水と接触させて溶解可能部分を溶解させた後、上 記と同様にして水不溶性成分を除去して抽出する抽出工程と、この抽出工程で得ら れた抽出水溶液力 水を除去する再乾燥工程と、を備えることができる。  [0054] Furthermore, when obtaining the iron supply agent of the second invention, a purification step can be further provided. The purification process is a process for purifying water-soluble components. That is, for example, an iron supply agent obtained by removing water from the aqueous solution is brought into contact with water to dissolve the dissolvable part, and then the water-insoluble component is removed and extracted in the same manner as above. And a re-drying step for removing water from the extraction aqueous solution obtained in this extraction step.
[0055] また、本発明の製造方法で用いる上記 FeO粉末は、鉄分を含有するダストを造粒 してなる造粒品、及び Z又は鉄分を含有するダストと還元剤とを造粒してなる造粒品 、を真空加熱したのち真空急冷して得られた FeO粉末であることが好ま 、。  [0055] The FeO powder used in the production method of the present invention is a granulated product obtained by granulating iron-containing dust, and is formed by granulating Z or iron-containing dust and a reducing agent. Preferably, the granulated product is FeO powder obtained by vacuum heating and vacuum quenching.
この FeO粉末(上記造粒品及び Z又は造粒品を用いて得られた FeO粉末)は、 Fe O以外にも、通常、 CaAl O、 FeAl O、 CaFe Si O、 CaSi O及び MgFe Oのう This FeO powder (FeO powder obtained using the above granulated product and Z or granulated product) is Fe Besides O, it is usually CaAl O, FeAl O, CaFe Si O, CaSi O and MgFe O.
2 4 2 4 2 2 6 2 5 2 4 ちの少なくとも 1種の複酸ィ匕物が含有されるからである。これらの複酸化物は 1種のみ が含有されてもよぐ 2種以上が含有されてもよい。また、複合酸化物の含有量は、 F eO粉末全体を 100質量%とした場合に 0. 5〜10質量%が好ましい。この範囲であ れば抗酸ィ匕性に特に優れた鉄供給剤を得ることができる。  This is because 2 4 2 4 2 2 6 2 5 2 4 of at least one double acid compound is contained. These double oxides may contain only one kind or two or more kinds. The content of the composite oxide is preferably 0.5 to 10% by mass when the entire FeO powder is 100% by mass. Within this range, it is possible to obtain an iron supplier that is particularly excellent in acid resistance.
更に、この FeO粉末を構成する粒子の形状は特に限定されないが、粒径が 5000 m以下であり、多種の粒径の粉末が混在した FeO粉末であり、更には、多孔性の 粒子が含まれていてもよい。  Further, the shape of the particles constituting the FeO powder is not particularly limited, but is a FeO powder having a particle size of 5000 m or less and mixed with various particle sizes, and further includes porous particles. It may be.
[0056] 上記「鉄分を含有するダスト」(以下、単に「ダスト」とも ヽぅ)は鉄分を含有するもの( 集塵粉など)である。この鉄分としては、酸化鉄、その他の鉄化合物及び金属鉄が挙 げられる。これらは 1種のみが含有されてもよぐ 2種以上が含有されてもよい。ダスト に含有される鉄分量は特に限定されないが、通常、ダスト全体を 100質量%とした場 合に金属鉄換算で 30質量%以上 (より好ましくは 35〜90質量%、更に好ましくは 40 〜80質量%)である。また、ダストには、鉄分以外にも他の成分が含有されてもよい。 他の成分としては Zn、 Ni、 Cu及び Mn等が挙げられる。これらは単体金属でもよぐ 酸ィ匕物等の化合物でもよい。更に、これらは 1種のみが含有されてもよぐ 2種以上が 含有されてもよい。 [0056] The "dust containing iron" (hereinafter, simply referred to as "dust") is one containing iron (such as dust collection powder). This iron includes iron oxide, other iron compounds and metallic iron. These may contain only 1 type, or 2 or more types. The amount of iron contained in the dust is not particularly limited, but usually 30% by mass or more (more preferably 35 to 90% by mass, still more preferably 40 to 80% in terms of metallic iron when the total dust is 100% by mass. Mass%). The dust may contain other components in addition to iron. Other components include Zn, Ni, Cu and Mn. These may be simple metals or compounds such as oxides. Furthermore, these may contain only 1 type, and may contain 2 or more types.
このダストの形状は特に限定されず、小片又は粉体と小片との混合物等であっても よいが、通常、粉体である。この粉体の平均粒径は特に限定されないが 3〜10 /ζ πι が好ましい。  The shape of the dust is not particularly limited, and may be a small piece or a mixture of powder and small pieces, but is usually a powder. The average particle size of the powder is not particularly limited, but is preferably 3 to 10 / ζ πι.
[0057] このダストとしては、鍛造工程で発生する鍛造ショット集塵粉 (鍛造用ショット球を被 加工用鉄系部材に打ち込む過程で集塵された粉末)、及び、製鋼工程で発生する 各種ダスト{鉄系部材等を各種炉で熔解して鉄系製品を製造する過程で防噴煙のた めに集塵された粉末 (電気炉ダスト、高炉ダスト、転炉ダスト、キュポラダストなど) }等 が挙げられる。これらは 1種のみを用いてもよぐ 2種以上を併用してもよい。特に塩 素分を予め水洗除去(一部又は全部)したダストが好ましい。特にダストに含有される 塩素分は 0. 5質量%以下 (より好ましくは 0. 4質量%以下、更に好ましくは 0. 3質量 %以下)が好ましい。 [0058] 上記「造粒品」は、ダスト、又はダストと還元剤とを含有する。この造粒品は、その後 、真空加熱の際に Fe O、 Fe O及び Fe (単体)から FeOへ還元又は酸化が促進さ [0057] This dust includes forged shot dust collected in the forging process (powder collected in the process of driving the forging shot ball into the iron-based member to be processed) and various dusts generated in the steel making process. {Powder collected in the process of melting iron-based materials in various furnaces to produce iron-based products for the purpose of smoke prevention (electric furnace dust, blast furnace dust, converter dust, cupola dust, etc.)} Can be mentioned. These may be used alone or in combination of two or more. In particular, dust from which the chlorine content has been removed by washing with water (partially or entirely) is preferred. In particular, the chlorine content in the dust is preferably 0.5% by mass or less (more preferably 0.4% by mass or less, and still more preferably 0.3% by mass or less). [0058] The above "granulated product" contains dust or dust and a reducing agent. This granulated product is subsequently reduced or oxidized from Fe 2 O, Fe 2 O and Fe (single) to FeO during vacuum heating.
2 3 3 4  2 3 3 4
れる。  It is.
造粒品を構成する粒子の形状は特に限定されず、球体、楕円体、半球体、立方体 、直方体、円柱体及びプリケット等のいずれでもよい。更に、造粒品は緻密体でもよく 、多孔質体であってもよい。またその粒径 (球形であるときは直径、その他の形状であ るときは最短寸法)は 25mm以下(より好ましくは 15mm以下、更に好ましくは 10mm 以下、通常 3mm以上)が好ましい。  The shape of the particles constituting the granulated product is not particularly limited, and may be any of a sphere, an ellipsoid, a hemisphere, a cube, a cuboid, a cylinder, a plecket, and the like. Further, the granulated product may be a dense body or a porous body. Further, the particle size (diameter in the case of a sphere, shortest dimension in the case of other shapes) is preferably 25 mm or less (more preferably 15 mm or less, further preferably 10 mm or less, usually 3 mm or more).
[0059] 上記「還元剤」は、 2価以上に酸化された鉄化合物を還元する成分である。還元剤 としては、金属鉄、その混合物、カーボン、その混合物等を用いることができる。特に 、鉄切削屑、鉄研磨屑、鉄粉、銑鉄及び鋼等に用いられる還元剤、各種廃材 (タイヤ 屑、木材廃材等)等が好ましい。これらは 1種のみを用いてもよぐ 2種以上を併用し てもよい。 [0059] The "reducing agent" is a component that reduces an iron compound that has been oxidized to a valence of 2 or more. As the reducing agent, metallic iron, a mixture thereof, carbon, a mixture thereof, or the like can be used. In particular, reducing agents used for iron cutting scraps, iron polishing scraps, iron powder, pig iron and steel, various waste materials (tire scraps, wood waste materials, etc.) and the like are preferable. These may be used alone or in combination of two or more.
還元剤の形状は特に限定されな 、が、ダストとの接触面積が大き 、ことが好ま ヽ ため粉末、顆粒及び小片等が好ましぐ特に粉末が好ましい。更に平均粒径は 200 m以下 (好ましくは 180 μ m以下)が好ま U、。  The shape of the reducing agent is not particularly limited, but it is preferable that the contact area with the dust is large, so that powder, granules, small pieces, etc. are particularly preferable. Furthermore, the average particle size is preferably 200 m or less (preferably 180 μm or less).
造粒品中の還元剤の含有量は特に限定されないが、ダストを 100質量部とした場 合に 100質量部以下 (より好ましくは 90質量部以下、更に好ましくは 80質量部以下、 通常 30質量部以上)が好ま 、。  The content of the reducing agent in the granulated product is not particularly limited, but when the dust is 100 parts by mass, it is 100 parts by mass or less (more preferably 90 parts by mass or less, more preferably 80 parts by mass or less, usually 30 parts by mass). Part or more) is preferred.
[0060] また、造粒品には、通常、ノインダが含有される。バインダの種類は限定されないが 、アルミナセメントが好ましい。その配合量は、ダスト、又はダストと還元剤との合計を 1 00質量部とした場合に 3〜20質量部(より好ましくは 3〜15質量部、更に好ましくは 3 〜12質量部)が好ましい。この範囲では、造粒をスムーズに行うことができ、造粒品が 脆化も抑制できる。 [0060] The granulated product usually contains noinda. The type of binder is not limited, but alumina cement is preferred. The blending amount is preferably 3 to 20 parts by mass (more preferably 3 to 15 parts by mass, further preferably 3 to 12 parts by mass) when the total amount of dust or dust and reducing agent is 100 parts by mass. . In this range, granulation can be performed smoothly and embrittlement of the granulated product can be suppressed.
[0061] 上記「真空加熱」を行うことで FeO粉末中の FeO濃度を大きくできる。この真空加熱 を行う際の真空度は特に限定されないが 0. 1〜13. 3kPa (より好ましくは 2. 6〜13 . 3kPa、特に好ましくは 4. 0〜6. 7kPa)が好ましい。この範囲では金属鉄の残留や FeOが Fe O等へ酸ィ匕されることを効果的に抑制できる。尚、この真空雰囲気にお ける酸素分圧を再現した不活性ガス下にお 、ても、この真空加熱に変えて同様にカロ 熱することで FeO粉末を得ることができる。 [0061] By performing the "vacuum heating", the FeO concentration in the FeO powder can be increased. The degree of vacuum during this vacuum heating is not particularly limited, but is preferably 0.1 to 13.3 kPa (more preferably 2.6 to 13.3 kPa, particularly preferably 4.0 to 6.7 kPa). In this range, it is possible to effectively suppress residual metallic iron and oxidation of FeO to Fe 2 O and the like. In this vacuum atmosphere Even under an inert gas that reproduces the partial pressure of oxygen, it is possible to obtain FeO powder by heating in the same way instead of this vacuum heating.
[0062] 真空加熱を行う際の加熱温度 (造粒品自体を測定した測定値)は 600〜1100°C ( より好ましくは 800〜950°C)が好ましい。但し、造粒品が還元剤を含有する場合は 8 00°C以上とすることが好ましい。この範囲では、 FeO含有量が特に高い FeO粉末が 得られ、加熱過程でダストが溶融することも防止できる。 [0062] The heating temperature (measured value obtained by measuring the granulated product itself) during vacuum heating is preferably 600 to 1100 ° C (more preferably 800 to 950 ° C). However, when the granulated product contains a reducing agent, it is preferably 800 ° C or higher. In this range, FeO powder with a particularly high FeO content can be obtained, and dust can be prevented from melting during the heating process.
また、加熱時間は特に限定されないが 30分以上 (より好ましくは 30分以上且つ 6時 間以内)が好ましい。  The heating time is not particularly limited, but is preferably 30 minutes or longer (more preferably 30 minutes or longer and within 6 hours).
尚、ダストに酸化亜鉛等が含有される場合は、還元されて金属亜鉛となり、 600°C 以上且つ 1. 56kPa程度の真空下で蒸発して回収できる。これにより FeOの純度を 更に向上させることができる。  When zinc oxide or the like is contained in the dust, it is reduced to metal zinc, which can be recovered by evaporation under a vacuum of 600 ° C or higher and about 1.56 kPa. This can further improve the purity of FeO.
[0063] 造粒品の加熱は、通常、熱処理炉を用いてなされる。この熱処理炉は、少なくともヒ ータを備え、投入される造粒品を均一に加熱できるものであれば、特に限定されない 。熱処理炉としては、例えば、ローラーハース炉及びロータリーキルン等が挙げられ る。造粒品は、熱処理炉内を移動しながら、例えば、攪拌翼を備える攪拌手段等によ り粉末化される。この熱処理炉は、還元によって生成した金属亜鉛等を回収するため の回収器を備えて 、てもよ 、。熱処理炉への造粒品の投入量は特に限定されな ヽ 1S 熱処理炉で加熱される造粒品全体への熱伝導を考慮し、炉床に散布された造粒 品の平均高さが、通常、 100mm以下、特に 80mm以下、更に 30mm以下となる投 入量であることが好ましい。  [0063] The granulated product is usually heated using a heat treatment furnace. The heat treatment furnace is not particularly limited as long as it includes at least a heater and can uniformly heat the granulated product to be charged. Examples of the heat treatment furnace include a roller hearth furnace and a rotary kiln. The granulated product is powdered by, for example, a stirring means equipped with a stirring blade while moving in the heat treatment furnace. This heat treatment furnace may be equipped with a recovery device for recovering metallic zinc and the like produced by the reduction. The amount of granulated product input to the heat treatment furnace is not particularly limited. Usually, it is preferable that the input amount is 100 mm or less, particularly 80 mm or less, and further 30 mm or less.
[0064] 上記「真空急冷」により真空加熱で生成された高温の FeO粉末を酸化させることな く冷却できる。この真空急冷の際の真空度は特に限定されないが 13. 3kPa以下 (よ り好ましくは 6. 7kPa以下、通常、 5. 3kPa以上)が好ましい。また、降温速度は特に 限定されないが 5〜150°CZ分とすることが好ましい。この真空急冷では 300°C以下 (より好ましくは 200°C以下、特に好ましくは 150°C以下)に冷却することが好ましい。  [0064] By the above "vacuum quenching", the high-temperature FeO powder produced by vacuum heating can be cooled without being oxidized. The degree of vacuum during this vacuum quenching is not particularly limited, but is preferably 13.3 kPa or less (more preferably 6.7 kPa or less, usually 5.3 kPa or more). The temperature drop rate is not particularly limited, but it is preferably 5 to 150 ° CZ. In this vacuum quenching, it is preferable to cool to 300 ° C or lower (more preferably 200 ° C or lower, particularly preferably 150 ° C or lower).
[0065] 特に FeO含有量のより多い FeO粉末を得る目的においては、金属鉄を含有する造 粒品を用いることが好ましい。金属鉄の含有量は、造粒品に含有される鉄分の全量 を 100質量%とした場合に 5質量%以上 (より好ましくは 5〜85質量%、更に好ましく は 8〜50質量%)が好ましい。この造粒品を用いた場合には、例えば、鉄分全量に 対する FeOの含有量が 80質量%以上(更には 85質量%以上、特に 90質量%以上 )の FeO粉末を得ることができる。 [0065] In particular, for the purpose of obtaining FeO powder having a higher FeO content, it is preferable to use a granulated product containing metallic iron. The content of metallic iron is 5% by mass or more (more preferably 5 to 85% by mass, even more preferably, when the total amount of iron contained in the granulated product is 100% by mass Is preferably 8 to 50% by mass). When this granulated product is used, for example, an FeO powder having a FeO content of 80 mass% or more (more preferably 85 mass% or more, particularly 90 mass% or more) based on the total iron content can be obtained.
[0066] 上記のような金属鉄を含有する造粒品を構成するダスト{下記(3)及び (4) }及びダ ストと還元剤との組合せ {下記(1)、 (2)及び (5) }としては(1)電気炉ダストと金属鉄( 鉄粉等)との混合物、(2)高炉ダストと金属鉄 (鉄粉等)との混合物、(3)転炉ダストの み、(4)鍛造ショット集塵粉のみ、(5)鍛造ショット集塵粉と金属鉄 (鉄粉等)との混合 物等が挙げられる。これらは 1種のみを用いてもよぐ 2種以上併用してもよい。 [0066] Dust constituting the granulated product containing metallic iron as described above {the following (3) and (4)} and a combination of a dust and a reducing agent {the following (1), (2) and (5 )} Includes (1) a mixture of electric furnace dust and metallic iron (iron powder, etc.), (2) a mixture of blast furnace dust and metallic iron (iron powder, etc.), (3) converter dust only, (4 ) Forged shot dust collection powder only, (5) A mixture of forged shot dust collection powder and metallic iron (iron powder, etc.). These may be used alone or in combination of two or more.
実施例  Example
[0067] 以下、本発明を実施例により具体的に説明する。  Hereinafter, the present invention will be specifically described with reference to examples.
[l]FeO粉末の製造  [l] Manufacture of FeO powder
(1)電気炉ダストを用いた FeO粉末  (1) FeO powder using electric furnace dust
Fe (35. 8質量%)、Zn(22. 7質量%)、C (5. 95質量%)、Ca (2. 92質量%)、 Mn (2. 89質量%)、C1(2. 89質量%)及び Si (2. 16質量%)等が含有され、平均 粒径が 10 μ mの電気炉ダスト (製鋼ダスト) 47. 6質量0 /0と、平均粒径が 75 μ mの鉄 粉 47. 6質量%と、アルミナセメント 4. 8質量%とを用いて直径 8mm且つ長さ約 20 mmの円柱形に造粒した。得られた造粒品を真空加熱槽 (ローラーハース炉)で 800 °Cで 30分間、次いで 850°Cで 30分間、その後 900°Cで 1時間、各々真空加熱した。 次いで、真空急冷槽で降温速度 20°CZ分で 400°Cまで真空急冷し、更に、真空 冷却槽内の雰囲気を窒素置換して、更に降温速度 13°CZ分で 200°Cまで冷却し、 その後、室温にまで降温させて FeO粉末を得た。 Fe (35.8 mass%), Zn (22.7 mass%), C (5.95 mass%), Ca (2.92 mass%), Mn (2.89 mass%), C1 (2.89 mass%) and Si (2. 16% by mass) or the like is contained, the electric arc furnace dust having an average particle diameter of 10 mu m (steelmaking dust) 47.6 mass 0/0, the average particle size is 75 mu m iron It was granulated into a cylindrical shape having a diameter of 8 mm and a length of about 20 mm using 47.6 mass% of powder and 4.8 mass% of alumina cement. The obtained granulated product was heated in a vacuum heating tank (roller hearth furnace) at 800 ° C. for 30 minutes, then at 850 ° C. for 30 minutes, and then at 900 ° C. for 1 hour. Next, vacuum quenching is performed in a vacuum quenching bath to 400 ° C at a rate of temperature drop of 20 ° CZ, and the atmosphere in the vacuum cooling bath is replaced with nitrogen, followed by cooling to 200 ° C at a rate of temperature drop of 13 ° CZ, Thereafter, the temperature was lowered to room temperature to obtain FeO powder.
尚、この FeO粉末に含有される FeOを、試薬 FeO粉末とシリコン粉末とを所定割合 で混合してなる混合粉末を用いて X線回折法により予め作成した検量線により定量し たところ、含有量は 65質量%であった。  The FeO contained in this FeO powder was quantified by a calibration curve prepared in advance by X-ray diffraction using a mixed powder obtained by mixing a reagent FeO powder and a silicon powder at a predetermined ratio. Was 65% by mass.
[0068] (2)鍛造ショット集塵粉を用いた FeO粉末 (下記 [4]及び [8]で使用) [0068] (2) FeO powder using forged shot dust collection powder (used in [4] and [8] below)
Fe (80. 0質量%)、 Zn(0. 02質量%)、 Ca (0. 01質量%)、 Mn (0. 06質量%) 及び Si(0. 06質量%)等が含有され、平均粒径が 100 mの鍛造ショット集塵粉 82 %と、平均粒径が 75 μ mの鉄粉 10%と、アルミナセメント 5%と、ベントナイト 3%とを 用いて直径 8mm且つ長さ約 20mmの円柱形に造粒した。得られた造粒品を真空加 熱槽(ローラーハース炉)により 800°Cで 30分間、次いで 850°Cで 30分間、その後、 900°Cで 1時間、各々真空加熱した。 Fe (80.0 mass%), Zn (0.02 mass%), Ca (0.01 mass%), Mn (0.06 mass%), Si (0.06 mass%), etc. Forged shot dust collection powder with a particle size of 100 m 82%, iron powder 10% with an average particle size of 75 μm, alumina cement 5%, bentonite 3% It was granulated into a cylindrical shape having a diameter of 8 mm and a length of about 20 mm. The obtained granulated product was heated in a vacuum heating tank (roller hearth furnace) at 800 ° C. for 30 minutes, then at 850 ° C. for 30 minutes, and then at 900 ° C. for 1 hour.
次いで、真空急冷槽で降温速度 20°CZ分で 400°Cまで真空急冷し、更に、真空 冷却槽内の雰囲気を窒素置換して、更に降温速度 13°CZ分で 200°Cまで冷却し、 その後、室温にまで降温させて直径 1. 8mmの球形状粒子の集合体力 なる FeO粉 末を得た。  Next, vacuum quenching is performed in a vacuum quenching bath to 400 ° C at a rate of temperature drop of 20 ° CZ, and the atmosphere in the vacuum cooling bath is replaced with nitrogen, followed by cooling to 200 ° C at a rate of temperature drop of 13 ° CZ, Thereafter, the temperature was lowered to room temperature to obtain an FeO powder that was an aggregate force of spherical particles having a diameter of 1.8 mm.
尚、この FeO粉末に含有される FeOを、試薬 FeO粉末とシリコン粉末とを所定割合 で混合してなる混合粉末を用いて X線回折法により予め作成した検量線により定量し たところ、含有量は 90質量%であった。  The FeO contained in this FeO powder was quantified by a calibration curve prepared in advance by X-ray diffraction using a mixed powder obtained by mixing a reagent FeO powder and a silicon powder at a predetermined ratio. Was 90% by mass.
[0069] [2]鉄供給剤の製造  [0069] [2] Manufacture of iron supply agents
(1)有機酸としてクェン酸を使用  (1) Use citrate as organic acid
クェン酸 (純度 99%以上) 15. 4kgと水 5. 6kgとを耐圧容器内で混合して、液内温 度を 80°Cまで徐々に昇温させた。そして、温度 80°Cに達した時点で上記 [1] (1)で 得られた FeO粉末を 3. 3kg投入した。その後、 4時間かけて液温を 130°Cまで昇温 させた。そして、液温が 130°Cに達したところで容器内を約 8kPaまで減圧し、この状 態を 100分間保持した。その結果、塊状の鉄供給剤 17kgを得た。その後、塊状の鉄 供給剤を粉砕機により粉砕して粉末状にした。  Chenic acid (purity 99% or more) 15.4 kg and 5.6 kg of water were mixed in a pressure vessel, and the temperature in the liquid was gradually raised to 80 ° C. When the temperature reached 80 ° C, 3.3 kg of the FeO powder obtained in [1] (1) above was added. Thereafter, the liquid temperature was raised to 130 ° C over 4 hours. When the liquid temperature reached 130 ° C, the inside of the container was depressurized to about 8 kPa, and this state was maintained for 100 minutes. As a result, 17 kg of massive iron supply agent was obtained. Thereafter, the massive iron supply agent was pulverized by a pulverizer into powder.
[0070] (2)有機酸として酢酸を使用  [0070] (2) Use acetic acid as organic acid
酢酸 (純度 99%以上) 12kgと水 5. 6kgとを耐圧容器内で混合して、液内温度を 80 °Cまで徐々に昇温させた。そして、温度 80°Cに達した時点で上記 [1] (1)で得られた FeO粉末を 7. 3kg投入した。その後、 4時間かけて液温を 130°Cまで昇温させた。そ して、液温が 130°Cに達したところで容器内を約 8kPaまで減圧し、この状態を 100分 間保持した。その結果、塊状の鉄供給剤 17. 5kgを得た。その後、塊状の鉄供給剤 を粉砕機により粉砕して粉末状にした。  12 kg of acetic acid (purity 99% or more) and 5.6 kg of water were mixed in a pressure vessel, and the liquid temperature was gradually raised to 80 ° C. When the temperature reached 80 ° C, 7.3 kg of the FeO powder obtained in [1] (1) above was added. Thereafter, the liquid temperature was raised to 130 ° C over 4 hours. When the liquid temperature reached 130 ° C, the inside of the container was depressurized to about 8 kPa, and this state was maintained for 100 minutes. As a result, 17.5 kg of massive iron supplier was obtained. Thereafter, the massive iron supply agent was pulverized by a pulverizer into powder.
[0071] (3)有機酸として酒石酸を使用  [0071] (3) Using tartaric acid as the organic acid
酒石酸 (純度 99%以上) 15kgと水 5. 6kgとを耐圧容器内で混合して、液内温度を 80°Cまで徐々に昇温させた。そして、温度 80°Cに達した時点で上記 [1] (1)で得ら れた FeO粉末を 7. 3kg投入した。その後、 4時間かけて液温を 130°Cまで昇温させ た。そして、液温が 130°Cに達したところで容器内を約 8kPaまで減圧し、この状態を 100分間保持した。その結果、塊状の鉄供給剤 20kgを得た。その後、塊状の鉄供 給剤を粉砕機により粉砕して粉末状にした。 15 kg of tartaric acid (purity 99% or more) and 5.6 kg of water were mixed in a pressure vessel, and the liquid temperature was gradually raised to 80 ° C. And when the temperature reaches 80 ° C, it is obtained by [1] (1) above. 7.3 kg of the FeO powder was added. Thereafter, the liquid temperature was raised to 130 ° C over 4 hours. When the liquid temperature reached 130 ° C, the inside of the container was depressurized to about 8 kPa, and this state was maintained for 100 minutes. As a result, 20 kg of massive iron supply agent was obtained. Thereafter, the massive iron supply agent was pulverized with a pulverizer into powder.
[0072] (4)有機酸としてシユウ酸を使用  [0072] (4) Using oxalic acid as the organic acid
シユウ酸 (純度 99%以上) 18kgと水 5. 6kgとを耐圧容器内で混合して、液内温度 を 80°Cまで徐々に昇温させた。そして、温度 80°Cに達した時点で上記 [1] (1)で得 られた FeO粉末を 7. 3kg投入した。その後、 4時間かけて液温を 130°Cまで昇温さ せた。そして、液温が 130°Cに達したところで容器内を約 8kPaまで減圧し、この状態 を 100分間保持した。その結果、塊状の鉄供給剤 21kgを得た。その後、塊状の鉄供 給剤を粉砕機により粉砕して粉末状にした。  18 kg of oxalic acid (purity 99% or more) and 5.6 kg of water were mixed in a pressure vessel, and the liquid temperature was gradually raised to 80 ° C. When the temperature reached 80 ° C, 7.3 kg of the FeO powder obtained in [1] (1) above was added. Thereafter, the liquid temperature was raised to 130 ° C over 4 hours. When the liquid temperature reached 130 ° C, the inside of the container was depressurized to about 8 kPa, and this state was maintained for 100 minutes. As a result, 21 kg of massive iron supply agent was obtained. Thereafter, the massive iron supply agent was pulverized with a pulverizer into powder.
[0073] [3]Fe2+イオン濃度の測定 [0073] [ 3 ] Measurement of Fe 2+ ion concentration
(l) Fe2+イオン濃度 (l) Fe 2+ ion concentration
上記 [2] (1)で得られた鉄供給剤を濃度 10gZリットル(1. 0質量%)となるように温 度 20°Cのイオン交換水に撹拌混合して溶解させた (およそ 5分間撹拌)。その後、メ ンブランフィルター(孔径 1 m)を用いて濾過し、その後、すぐに紫外'可視光分光 光度計 (株式会社島津製作所製、形式「UV1240」)に水質測定パックを装着して、 得られた水溶液に含有される Fe2+イオンと総 Feイオン量とを測定した (総 Feイオン量 力も Fe2+イオン量を差し引いた量を Fe3+イオン量として換算)。更に、 Fe2+イオン濃 度 «JIS K0102に基づくフエナント口リン吸光光度法により測定した。尚、この測定 では常に直射日光の差し込まない室内において作業を行った。 The iron supply obtained in [2] (1) above was stirred and mixed in ion-exchanged water at a temperature of 20 ° C to a concentration of 10 gZ liter (1.0% by mass) (approximately 5 minutes) Stirring). Then, filter using a membrane filter (pore size 1 m), and then immediately attach the water quality measurement pack to the UV'visible light spectrophotometer (manufactured by Shimadzu Corporation, model “UV1240”). The Fe 2+ ions and the total amount of Fe ions contained in the obtained aqueous solution were measured (the total Fe ion amount force was converted to the Fe 3+ ion amount by subtracting the Fe 2+ ion amount). Further, the Fe 2+ ion concentration was measured by a phenantorin phosphorus absorptiometry based on JIS K0102. In this measurement, the work was always carried out in a room where direct sunlight was not inserted.
[0074] この測定の結果、 Fe2+イオン濃度は 389mgZリットルであり、 Fe3+イオン濃度は 1 86mgZリットルであり、 Fe2+イオンと Fe3+イオンとの合計を 100質量0 /0とした場合に Fe2+イオンは 68質量0 /0であった。即ち、得られる水溶液は Fe3+イオン→Fe2+イオン が Fe3+イオンの 2. 1倍含有され、 Fe2+イオン濃度が高い水溶液が得られていること が分かる。 [0074] The results of this measurement, Fe 2+ ion concentration is 389mgZ l, Fe 3+ ion concentration is 1 86MgZ liter, and a total of 100 mass 0/0 of the Fe 2+ ions and Fe 3+ ions Fe 2+ ions was 68 mass 0/0 when. In other words, the obtained aqueous solution contains Fe 3+ ions → Fe 2+ ions 2.1 times as much as Fe 3+ ions, and an aqueous solution having a high Fe 2+ ion concentration is obtained.
[0075] (2)各鉄供給剤の各濃度における Fe2+イオン濃度 [0075] (2) Fe 2+ ion concentration at each concentration of each iron supply agent
上記(1)と同様にして、上記 [2] (1)〜 (4)で得られた有機酸が異なる 4種類の鉄供 給剤を表 1に示す濃度に調製して各々の水溶液における Fe2+イオン濃度を測定した 。その結果を表 1に示す。 In the same manner as (1) above, four types of iron provided with different organic acids obtained in [2] (1) to (4) above. The feeds were prepared to the concentrations shown in Table 1 and the Fe 2+ ion concentration in each aqueous solution was measured. The results are shown in Table 1.
[0076] [表 1] 表 1 [0076] [Table 1] Table 1
Figure imgf000029_0001
Figure imgf000029_0001
[0077] 表 1の結果より、シユウ酸は低濃度力 高濃度までほとんど Fe2+イオン濃度に変化 が認められないことが分かる。また、酢酸は高濃度で Fe2+イオン濃度が高いものの低 濃度では他の有機酸に比べると Fe2+イオン濃度が小さいことが分かる。更に、クェン 酸及び酒石酸は、いずれも上記の問題はないが、酒石酸に比べるとクェン酸は更に 、いずれの濃度においても鉄供給剤の質量あたりの Fe2+イオン濃度が高いことが分 かる。即ち、最も効率よく Fe2+イオンを供給できることが分かる。 [0077] From the results in Table 1, it can be seen that oxalic acid shows almost no change in Fe 2+ ion concentration up to low concentration strength and high concentration. It can also be seen that acetic acid has a high concentration of Fe 2+ ions but a low concentration of Fe 2+ ions compared to other organic acids. In addition, kenic acid and tartaric acid do not have the above-mentioned problems, but kenic acid is more inferior to tartaric acid. , Cal Fe 2+ ion concentration per mass of iron supplying agent at any concentration that is high partial. That is, it can be seen that Fe 2+ ions can be supplied most efficiently.
[0078] [4]抗酸化性の評価  [0078] [4] Evaluation of antioxidant properties
(1)室内放置による抗酸ィ匕性  (1) Anti-acidity by leaving indoors
上記 [2] (1)〜(3)で得られた有機酸が異なる 3種類の鉄供給剤を用い、上記 [3] と同様にして、各鉄供給剤の濃度が表 2に示す値となるように調製した実験例 1 1 〜3— 4の鉄供給剤水溶液を用意した。これらの各実験例の水溶液について上記 [3 ]と同様にして Fe2+イオン濃度を測定し、その後、そのまま室内に放置し、表 2に示す 時間毎に同様にして Fe2+イオン濃度を測定した。その結果を表 2に併記した。また、 この表 2のうちクェン酸を用いた実験例 1 1〜1 4をグラフ化して図 1に示した。 [2] Using the three types of iron supply agents with different organic acids obtained in (1) to (3) above, the concentration of each iron supply agent is the value shown in Table 2 in the same manner as in [3] above. Experimental Examples 11 1 to 3-4 prepared in this way were prepared iron supply aqueous solutions. Measure the Fe 2+ ion concentration in the same manner as in [3] above for the aqueous solutions of each of these experimental examples, then leave it in the room and measure the Fe 2+ ion concentration in the same manner at each time shown in Table 2. did. The results are also shown in Table 2. Also, in Table 2, experimental examples 11 to 14 using citrate are graphed and shown in FIG.
[0079] また、 500ミリリットルの蒸留水に 2. 5gのァスコルビン酸を溶解させ、ァスコルビン 酸水溶液を作製した。その後、この水溶液に上記 [1] (2)で得られた FeO粉末を 1. Og投入し、 30分間攪拌し、次いで、濾過し、挟雑物を除いた。その後、濾過後の水 溶液から 20ミリリットルずつ分取し、それぞれ 2個の容器に投入し、一方の容器中の 水溶液を水酸ィ匕ナトリウム水溶液 (実験例 6— 2)により pH6. 0に調整した。 pH調整 をしていない他方のァスコルビン酸鉄水溶液(実験例 6— 1)の pHは 3. 4であった。 これら 2種類のァスコルビン酸鉄水溶液(実験例 6— 1及び 6— 2)についても同様に F e2+イオン濃度を測定し、併せて pH測定 (表 2の Fe2+イオン濃度の下に付記した)を 行った。この結果を表 2に併記した。 [0079] Further, 2.5 g of ascorbic acid was dissolved in 500 ml of distilled water to prepare an ascorbic acid aqueous solution. Then, 1. Og of the FeO powder obtained in [1] (2) above was added to this aqueous solution, stirred for 30 minutes, and then filtered to remove impurities. Then, 20 ml each was taken from the filtered aqueous solution and put into two containers, and the aqueous solution in one container was adjusted to pH 6.0 with sodium hydroxide aqueous solution (Example 6-2). did. The pH of the other aqueous ascorbate aqueous solution (Experimental Example 6-1) that had not been adjusted for pH was 3.4. These two Asukorubin iron solution (Experimental Examples 6-1 and 6-2) was similarly measured F e 2+ ion concentration also, together appended below the Fe 2+ ion concentration of pH measurement (Table 2 Did). The results are also shown in Table 2.
[0080] 表 2の結果より、有機酸がこれらクェン酸、酒石酸、酢酸及びァスコルビン酸である 場合には、いずれも鉄供給剤の濃度に関係なぐ初期の濃度のからの変動が小さく 抑制されており、優れた抗酸ィ匕性を有していることが分かる。即ち、例えば、図 1に示 すように、実験例 1 1では初期値に対して 82. 3%以上、実験例 1 2では初期値 に対して 81. 9%以上、実験例 1 3では初期値に対して 80. 7%以上、実験例 1 4では初期値に対して 87. 3%以上と、いずれにおいても初期の Fe2+濃度に対して 8 0%以上のイオン濃度が長期間にわたって保持されている。従って、優れた抗酸ィ匕 性を有していることが分かる。また、実験例 6—1及び 6— 2のァスコルビン酸を用いた 鉄供給剤においては pH変動も小さく抑制されていることが分かる。 [0081] [表 2] [0080] From the results in Table 2, when the organic acids are quenoic acid, tartaric acid, acetic acid and ascorbic acid, the fluctuations from the initial concentration related to the concentration of the iron supply agent are all small and suppressed. It can be seen that it has excellent acid resistance. That is, for example, as shown in FIG. 1, in Experimental Example 1 1 is over 82.3% of the initial value, in Experimental Example 1 2 is over 81.9% of the initial value, and in Experimental Example 1 3 is the initial value. 88.7% or more for the value, and 87.3% or more for the initial value in Experimental Example 14; in both cases, an ion concentration of 80% or more with respect to the initial Fe 2+ concentration over a long period of time. Is retained. Therefore, it can be seen that it has excellent acid resistance. It can also be seen that in the iron supply agents using ascorbic acid in Experimental Examples 6-1 and 6-2, the pH fluctuation is also suppressed to a small extent. [0081] [Table 2]
表 2 Table 2
Figure imgf000031_0001
Figure imgf000031_0001
[0082] (2)酸化加速試験による抗酸化性  [0082] (2) Antioxidant property by accelerated oxidation test
上記 [2] (1)〜(2)で得られた有機酸が異なる 2種類の鉄供給剤を用い、上記 [3] と同様にして得た実験例 4{鉄供給剤濃度 10gZリットル (0. 1質量%) }及び実験例 5{鉄供給剤濃度 5gZリットル (0. 5質量%) }の各々水溶液について、酸化加速試 験を行った。即ち、エアーポンプを用いて実験例 5及び 6の各水溶液(200ミリリットル )内に毎分 0. 6リットルの空気を送り込んでパブリングし、表 3に示す時間毎に上記 [3 ]と同様に Fe2+イオン濃度を測定した。その結果を表 3に併記した。また、この表 3を グラフィ匕して図 2に示した。 [2] Experimental example 4 obtained in the same manner as in the above [3] using two types of iron supply agents having different organic acids obtained in (1) to (2) {Iron supply concentration 10 gZ liter (0 1 mass%)} and Experimental Example 5 {Iron-supplier concentration 5gZ liter (0.5 mass%)} Test was carried out. That is, 0.6 liters of air was sent into each aqueous solution (200 milliliters) of Experimental Examples 5 and 6 using an air pump for publishing at a time shown in Table 3 in the same manner as in [3] above. The 2+ ion concentration was measured. The results are also shown in Table 3. In addition, Table 3 is graphically shown in Fig. 2.
[0083] [表 3] 表 3[0083] [Table 3] Table 3
Figure imgf000032_0001
Figure imgf000032_0001
[0084] 表 3及び図 2より、有機酸がクェン酸である場合には、酸化加速試験においても濃 度変動が小さく抑制されており、優れた抗酸ィ匕性を有していることが分かる。特に、濃 度が 1. 0質量%の実験例 4では初期値に対して 288時間後(12日後)にも 77%の F e2+濃度を保持して ヽることが分かる。 [0084] From Table 3 and FIG. 2, when the organic acid is citrate, the concentration fluctuation is suppressed to be small even in the oxidation acceleration test, and it has excellent acid resistance. I understand. In particular, in Experiment Example 4 with a concentration of 1.0% by mass, it can be seen that the Fe 2+ concentration of 77% is maintained even after 288 hours (12 days later) from the initial value.
[0085] [5]紫外線照射による評価  [0085] [5] Evaluation by ultraviolet irradiation
上記 [2] ( 1)で得られた鉄供給剤を用い、上記 [3]と同様にして実験例 6 {鉄供給 剤濃度 6gZリットル (0. 6質量%) }の水溶液を得た。得られた実験例 6の水溶液の 調製直後の Feイオン濃度は、全 Feイオン濃度が 824mgZリットルであり、このうち Fe 2+イオン濃度が 534mgZリットルであった。 Using the iron supplier obtained in [2] (1) above, an aqueous solution of Experimental Example 6 {iron supplier concentration 6 gZ liter (0.6 mass%)} was obtained in the same manner as [3] above. The Fe ion concentration immediately after preparation of the aqueous solution obtained in Experimental Example 6 was 824 mgZ liters in total Fe ion concentration, of which Fe 2+ ion concentration was 534 mgZ liters.
その後、この実験例 6の水溶液 90リットルに、 72 Χ 104 /ζ ^ 3Ζ«η2の紫外線 (波 長 253nm)を 18時間照射した。得られた紫外線照射した実験例 6の水溶液の照射 直後の Feイオン濃度は、全 Feイオン濃度が 824mgZリットルであり、このうち Fe2+ィ オン濃度が 8 lOmgZリットルであった。また、その後、実験例 6の紫外線照射後の水 溶液を暗所で保存したところ、 21日後には、調製直後の Fe2+イオン濃度に回復され ていた。 [0086] この結果から、紫外線照射によっても酸化されず、むしろ Fe3+イオンが Fe2+イオン へ変換される反応が進んでいることが分かる。従って、従来の無機化合物を主成分と する Fe2+イオン溶液と異なり、太陽光や紫外線による酸化劣化の問題がなぐ保存 安定性にも優れて 、ることが分かる。 Thereafter, 90 liters of the aqueous solution of Experimental Example 6 was irradiated with ultraviolet rays (wavelength 253 nm) of 72 Χ 10 4 / ζ ^ 3 Ζη 2 for 18 hours. The Fe ion concentration immediately after irradiation of the aqueous solution of Experimental Example 6 obtained by ultraviolet irradiation was 824 mgZ liters of total Fe ion concentration, of which Fe 2+ ion concentration was 8 lOmgZ liters. After that, when the aqueous solution after UV irradiation in Experimental Example 6 was stored in a dark place, it was recovered to the Fe 2+ ion concentration just after the preparation after 21 days. [0086] From this result, it can be seen that the reaction in which Fe 3+ ions are converted to Fe 2+ ions is proceeding without being oxidized by ultraviolet irradiation. Therefore, it can be seen that, unlike a conventional Fe 2+ ion solution containing an inorganic compound as a main component, it has excellent storage stability without the problem of oxidative degradation due to sunlight or ultraviolet rays.
[0087] [6]質量分析による評価  [0087] [6] Evaluation by mass spectrometry
上記 [2] (1)で得られた鉄供給剤を用い、上記 [3]と同様にして実験例 7{鉄供給 剤濃度 10gZリットル(1. 0質量%) }の水溶液を得た。得られた実験例 7の水溶液の 調製直後の Feイオン濃度は、全 Feイオン濃度力 86mgZリットルであり、このうち Fe 2+イオン濃度が 330mgZリットルであった。 Using the iron supplier obtained in [2] (1) above, an aqueous solution of Experimental Example 7 {Iron supplier concentration 10 gZ liter (1.0 mass%)} was obtained in the same manner as [3] above. The Fe ion concentration immediately after the preparation of the obtained aqueous solution of Experimental Example 7 was 86 mgZ liters in total Fe ion concentration, of which the Fe 2+ ion concentration was 330 mgZ liters.
その後、この実験例 7の水溶液をメタノールで 10倍量に希釈した。この希釈液に含 まれる物質にっ 、てエレクトロスプレーイオン化質量分析法 (ESIMS)を用いて質量 分析を行った。測定装置には Micromass製の形式「Q—TOF」を用い、イオン化法 にはエレクトロスプレーイオンィ匕法 (ESI)を用いた。更に、イオンィ匕モードは正イオン モード、キヤピラリー電圧は 3000V、コーン電圧は 20V、脱溶媒温度は 120°Cで測 定を行った。この結果得られたチャートを図 3に示す。  Thereafter, the aqueous solution of Experimental Example 7 was diluted 10-fold with methanol. The substances contained in this diluted solution were subjected to mass spectrometry using electrospray ionization mass spectrometry (ESIMS). Micromass type “Q-TOF” was used for the measurement device, and electrospray ionization (ESI) was used for the ionization method. Furthermore, the ion mode was positive ion mode, the capillary voltage was 3000V, the cone voltage was 20V, and the solvent removal temperature was 120 ° C. The resulting chart is shown in FIG.
[0088] 更に、得られたチャートのうちの質量 439のピークについて、 Arガスを衝突(Collisi on Energy : 120eV)させて質量分析を行ったところ、質量 55. 9にピークを生じた。 この結果、質量 439のピークを構成する化合物には、 Feが含有されることが分力つた 。この結果得られたチャートを図 4に示す。  Furthermore, when mass analysis was performed on the peak of mass 439 in the obtained chart by collision with Ar gas (Collisiion Energy: 120 eV), a peak was generated at mass 55.9. As a result, it was found that Fe contained in the compound constituting the peak of mass 439. The resulting chart is shown in FIG.
また、比較試験の結果として、クェン酸鉄 (III) (和光純薬製、 FeC H O、全 Feィ  In addition, as a result of the comparative test, iron (III) citrate (Wako Pure Chemicals, FeC H 2 O, all Fe
6 5 7 オン濃度 584mgZリットル、 Fe2+イオン濃度 142mgZリットル)の同様な溶液を測定 して得られたチャートと、無水クェン酸 (和光純薬製、 C H O )の同様な溶液を測定 6 5 7 Measures a similar solution of citrate anhydride (manufactured by Wako Pure Chemicals, CHO) with a chart obtained by measuring a similar solution with an on-concentration of 584 mgZ liter and Fe 2+ ion concentration of 142 mgZ liter.
6 8 7  6 8 7
して得られたチャートと、を図 3に示した。  The chart obtained in this way is shown in FIG.
[0089] 図 3及び図 4の結果から、無水クェン酸によるチャートから、実験例 7によるチャート に認められる質量 215 ( [C H O +Na] +)及び質量407 ( [2 (C H O ) +Na] +)の [0089] From the results of FIGS. 3 and 4, from the chart with citrate anhydride, mass 215 ([CHO + Na] + ) and mass 407 ([2 (CHO) + Na] + )of
6 8 7 6 8 7  6 8 7 6 8 7
ピークは、クェン酸に由来するものであると考えられる。  The peak is considered to be derived from citrate.
また、質量 439の再分析の結果力も質量 439のピークを構成する化合物には Feが 含有されることが分かる。この Feに相当する質量を差し引くとクェン酸 2つ分の質量と なり、質量 439のピークは Feイオンに対してクェン酸及び Z又はクェン酸イオンが 2 つ配位した二量体錯体によるものであると考えられる。同様に、質量 631のピークは Feイオンに対してクェン酸及び Z又はクェン酸イオンが 3つ配位した三量体錯体に よるものであると考えられ、質量 823のピークは Feイオンに対してクェン酸及び Z又 はクェン酸イオン力 S4つ配位した四量体錯体によるものであると考えられる。 In addition, as a result of reanalysis of mass 439, it can be seen that the compound constituting the peak of mass 439 contains Fe. By subtracting the mass corresponding to Fe, Thus, the peak at mass 439 is thought to be due to a dimer complex in which two citrate and Z or two citrate ions are coordinated with Fe ions. Similarly, the peak at mass 631 is thought to be due to a trimeric complex in which three citrate and Z or three citrate ions are coordinated to Fe ions, and the peak at mass 823 is relative to Fe ions. It is thought to be due to a tetrameric complex coordinated with quaternary acid and Z or citrate ion force S4.
[0090] 更に、クェン酸鉄 (III)を溶解した水溶液 (全 Feイオン濃度 584mgZリットル、 Fe2+ イオン濃度 142mgZリットル)と比べると、質量 439及び質量 631のピークが小さく相 対的な含有量が少な 、ことが予測される。 [0090] Furthermore, when compared with an aqueous solution in which iron (III) citrate is dissolved (total Fe ion concentration 584 mgZ liter, Fe 2+ ion concentration 142 mgZ liter), the peaks of mass 439 and mass 631 are small, and the relative content Is expected to be small.
これらの結果を総合すると、本発明の鉄供給剤には、クェン酸鉄 (III)水溶液に比 ベてより多くの二量体錯体及び三量体錯体が特異的に含有され、この結果、多量の Fe2+イオンを生じ、且つ高い抗酸化性を有し、更には、紫外線に対して安定であり、 むしろ Fe2+イオンの増加が認められる要因であると考えられる。 Summing up these results, the iron supplier of the present invention contains more dimer complexes and trimer complexes than the iron (III) citrate aqueous solution. cause of Fe 2+ ions, and has a high antioxidant, yet is stable to ultraviolet light, is considered to be a factor in increasing the Fe 2+ ions is observed rather.
[0091] [7]植物用鉄供給剤 (液)の評価 [0091] [7] Evaluation of plant iron supply (liquid)
(1)植物用鉄供給液 (灌水溶液として使用)の調製  (1) Preparation of iron supply solution for plants (used as irrigation solution)
上記 [3]と同様にして鉄供給剤が濃度 10gZリットル (1. 0質量%)で含有された水 溶液を得た。この水溶液を 1000倍量に水で希釈して、灌水溶液 (植物用鉄供給液、 本発明品一実験例 8)を得た。得られた灌水溶液 (実験例 8)中の全 Feイオン濃度は 0. 5mgZリットルであり、このうち Fe2+イオン濃度は 0. 3mgZリットルである。 In the same manner as in [3] above, an aqueous solution containing an iron supply agent at a concentration of 10 gZ liter (1.0 mass%) was obtained. This aqueous solution was diluted 1000 times with water to obtain an irrigation solution (plant iron supply solution, one experimental example 8 of the present invention). The total Fe ion concentration in the obtained irrigation solution (Experimental Example 8) is 0.5 mgZ liter, of which the Fe 2+ ion concentration is 0.3 mgZ liter.
比較のために、市販の Fe2+イオンを含む水溶液 (メネデール株式会社製、品名「植 物活力素メネデール」、硫酸第一鉄を含む水溶液)を 100倍に希釈して灌水溶液 (参 考例 1)を得た。得られた灌水溶液中の全 Feイオン濃度は 0. 4mgZリットルであり、 このうち Fe2+イオン濃度は 0. 4mgZリットルである。 For comparison, a commercially available aqueous solution containing Fe 2+ ions (produced by Menedal Co., Ltd., product name “Plant Vigor Elementary Menedale”, aqueous solution containing ferrous sulfate) was diluted 100-fold to a irrigation solution (reference example). 1) was obtained. The total Fe ion concentration in the obtained irrigation solution is 0.4 mgZ liter, of which the Fe 2+ ion concentration is 0.4 mgZ liter.
[0092] (2)実験用栽培区の調製 [0092] (2) Preparation of experimental cultivation area
実験用土として市販の育苗用培土を、縦 30cm X横 28cm X深さ 4cmのプラスチッ ク容器に深さ 4cmに敷き詰めて実験用栽培区を形成した。  As a test soil, a commercially available seedling culture soil was spread in a plastic container measuring 30 cm long × 28 cm wide × 4 cm deep to a depth of 4 cm to form an experimental cultivation zone.
[0093] (3)播種、灌水、生育 [0093] (3) Sowing, irrigation, growth
4月 1日に、上記実験用栽培区の各々に早咲コスモス、バナナピーマン、スプレー 菊及び終日咲松葉ボタンの 4種類の種を各々面積割合が均等になるように 30gずつ 撒いて上記各々の灌水溶液を 1リットルずつジヨウ口で均等に力かるように灌水した。 その後、上記各実験用栽培区に、毎日午前 8時、及び午後 5時の 2回、上記各々の 灌水溶液 (実験例 8及び参考例 1)を 1リットルずつジヨウ口で均等に力かるように灌水 し続けた。 On April 1st each of the above experimental cultivation areas, 30g each of 4 kinds of seeds of early blooming cosmos, banana peppers, spray chrysanthemum and all-day blooming pine needle buttons were equally distributed. Then, each irrigation solution was irrigated so that 1 liter of water was evenly applied at the diio opening. After that, each irrigation solution (Experimental Example 8 and Reference Example 1) should be applied equally to each experimental cultivation area at 10:00 a.m. twice at 8 am and 5 pm daily. Continued irrigation.
[0094] (4)結果 [0094] (4) Results
(i 1)早咲コスモス(実験例 8の灌水溶液を使用)  (i 1) Hayasaki Cosmos (using the irrigation solution of Experimental Example 8)
4月 6日に発芽を確認した。 4月 13日にこの栽培区をデジタル撮影して得られた画 像による説明図を図 5に示した。更に、 4月 20日にこの栽培区をデジタル撮影して得 られた画像による説明図を図 6に示した。  Germination was confirmed on April 6. Fig. 5 shows an explanatory diagram based on an image obtained by digitally photographing this cultivation area on April 13. In addition, Fig. 6 shows an explanatory diagram using images obtained by digitally photographing this cultivation area on April 20.
(i 2)早咲コスモス (参考例 1の灌水溶液を使用)  (i 2) Hayasaki Cosmos (using the irrigation solution of Reference Example 1)
4月 8日に発芽を確認した。 4月 13日にこの栽培区をデジタル撮影して得られた画 像による説明図を図 7に示した。更に、 4月 20日にこの栽培区をデジタル撮影して得 られた画像による説明図を図 8に示した。  Germination was confirmed on April 8. Fig. 7 shows an explanatory diagram based on an image obtained by digitally photographing this cultivation area on April 13. In addition, Fig. 8 shows an explanatory diagram based on images obtained by digitally photographing this cultivation area on April 20.
上記結果から、実験例 8を用いた栽培区では発芽が早い。更に、図 5と図 7と比較 すると参考例 1を用いた栽培区では本葉が出始めた段階であるのに対して、実験例 8を用いた栽培区では本葉が既に大きく生育し始めており、その後の生育も早いこと が分かる。  From the above results, germination is fast in the cultivation section using Experimental Example 8. Furthermore, when compared with Fig. 5 and Fig. 7, in the cultivation plot using Reference Example 1, the true leaves began to appear, whereas in the cultivation plot using Experimental Example 8, the true leaves began to grow greatly. It can be seen that the subsequent growth is fast.
[0095] (ii 1)バナナピーマン (実験例 8の灌水溶液を使用)  [0095] (ii 1) Banana pepper (using the irrigation solution of Experimental Example 8)
4月 6日に発芽を確認した。 4月 13日にこの栽培区をデジタル撮影して得られた画 像による説明図を図 9に示した。  Germination was confirmed on April 6. Fig. 9 shows an explanatory diagram based on an image obtained by digitally photographing this cultivation area on April 13.
(ii 2)バナナピーマン (参考例 1の灌水溶液を使用)  (ii 2) Banana bell pepper (using the irrigation solution of Reference Example 1)
4月 8日に発芽を確認した。 4月 16日にこの栽培区をデジタル撮影して得られた画 像による説明図を図 10に示した。  Germination was confirmed on April 8. Fig. 10 shows an explanatory diagram based on an image obtained by digitally photographing this cultivation area on April 16.
上記結果から、実験例 8を用いた栽培区では発芽が早いことが分かる。また、その 後の生育も実験例 8を用いた方が早力つた。  From the above results, it can be seen that germination is fast in the cultivation area using Experimental Example 8. The subsequent growth was faster when Experimental Example 8 was used.
[0096] (iii 1)スプレー菊(実験例 8の灌水溶液を使用) [Iii] (iii 1) Spray chrysanthemum (using the irrigation solution of Experimental Example 8)
4月 13日に発芽を確認した。 4月 13日にこの栽培区をデジタル撮影して得られた 画像による説明図を図 11に示した。 (iii 2)スプレー菊 (参考例 1の灌水溶液を使用) Germination was confirmed on April 13. Fig. 11 shows an explanatory diagram based on images obtained by digitally photographing this cultivation area on April 13. (iii 2) Spray chrysanthemum (using the irrigation solution of Reference Example 1)
4月 16日に発芽を確認した。 4月 13日にこの栽培区をデジタル撮影して得られた 画像による説明図を図 12に示した。  Germination was confirmed on April 16. Fig. 12 shows an explanatory diagram based on the image obtained by digitally photographing this cultivation area on April 13.
上記結果から、実験例 8を用いた栽培区では発芽が早いことが分かる。また、その 後の生育も実験例 8を用いた方が早力つた。  From the above results, it can be seen that germination is fast in the cultivation area using Experimental Example 8. The subsequent growth was faster when Experimental Example 8 was used.
[0097] (iv- 1)終日咲松葉ボタン (実験例 8の灌水溶液を使用) [0097] (iv- 1) All-day Sakimatsuba button (using the irrigation solution of Experimental Example 8)
4月 13日に発芽を確認した。 4月 13日にこの栽培区をデジタル撮影して得られた 画像による説明図を図 13に示した。  Germination was confirmed on April 13. Fig. 13 shows an explanatory diagram based on the image obtained by digitally photographing this cultivation area on April 13.
(iv- 2)終日咲松葉ボタン (参考例 1の灌水溶液を使用)  (iv-2) All-day Sakimatsuba button (uses the irrigation solution of Reference Example 1)
4月 16日に発芽を確認した。 4月 16日にこの栽培区をデジタル撮影して得られた 画像による説明図を図 14に示した。  Germination was confirmed on April 16. Fig. 14 shows an explanatory diagram based on images obtained by digitally photographing this cultivation area on April 16.
上記結果から、実験例 8を用いた栽培区では発芽が早いことが分かる。また、発芽 本数も多かった。  From the above results, it can be seen that germination is fast in the cultivation area using Experimental Example 8. There were also many germinations.
[0098] [8]植物用鉄供給剤をイネの育苗に用いた場合の評価 [0098] [8] Evaluation of plant iron supplier used for rice seedlings
(1)植物用鉄供給剤 (水溶液を乾固品、実験例 9)  (1) Iron supply agent for plants (Aqueous solution in dry product, Experiment 9)
無水クェン酸(純度 99. 8%) 800gと水 2リットルとをステンレス鋼製ビーカーに投入 し、室温(20°C)で攪拌し、無水クェン酸を水に溶解させた。その後、上記 [1] (2)で 得られた FeO粉末を lOOg投入し、更に 30分間攪拌を継続した。次いで、この液体を 濾過 (濾紙を使用)して得られた濾液を 90°Cに調温された乾燥機で 72時間乾燥させ てペースト状物とし、更に、室温まで冷却して塊状物とした。得られた塊状物を乳鉢 で粉砕し、次いで、目開き 1. Ommの篩を通過させ、粒径 1. Omm以下の植物用鉄 供給剤 (実験例 9)を得た。  800 g of succinic anhydride (purity 99.8%) and 2 liters of water were placed in a stainless steel beaker and stirred at room temperature (20 ° C) to dissolve the succinic anhydride in water. Thereafter, lOOg of the FeO powder obtained in [1] (2) above was added, and stirring was continued for another 30 minutes. Next, the filtrate obtained by filtering this liquid (using filter paper) was dried for 72 hours in a dryer adjusted to 90 ° C. to make a paste, and further cooled to room temperature to make a lump. . The obtained lump was pulverized in a mortar and then passed through a sieve having an opening of 1. Omm to obtain an iron supply agent for plants (Experimental Example 9) having a particle size of 1. Omm or less.
[0099] (2)植物用鉄供給剤 (泥炭を含有、実験例 10)の製造 [0099] (2) Production of plant iron supply agent (containing peat, Experimental Example 10)
上記 [1] (2)で得られた FeO粉末と、無水クェン酸 (純度 99. 8%以上)と、泥炭加 ェ土壌改良剤(日本肥糧株式会社製、商品名「くみあいハイフミン特号 A」)とを、 7. 5質量%: 10. 0質量%: 82. 5質量%の割合で混合した後、直径 3mm且つ長さ約 6 mmの円柱形に造粒して、泥炭を含有する植物用鉄供給剤 (実験例 10)を得た。  FeO powder obtained in [1] and (2) above, citrate anhydride (purity 99.8% or more), and peat-treated soil improver (made by Nippon Fertilizer Co., Ltd., trade name “Kumiai Hyhumin Special A )) Is mixed at a ratio of 7.5% by mass: 10.0% by mass: 82.5% by mass and then granulated into a cylindrical shape having a diameter of 3 mm and a length of about 6 mm to contain peat. A plant iron supplier (Experimental Example 10) was obtained.
[0100] (3)イネの育苗 イネ(品種;日本晴れ)の種子を 2日間、ティッシュペーパーを敷いたシャーレを室 温湿潤として催芽させた。その後、各栽培用ポットに下記育苗用培土を投入し、上記 催芽させたイネを 1ポット当たり 20粒ずっ直播きした(1月 15日播種)。播種に際して はイネの種子を培土の表面力 約 0. 5cmの深さに埋め込んだ。各栽培用ポットを人 ェ気象器内に置き、下記育苗条件下においてイネを 3月 10日まで育苗して、植物用 鉄供給剤の効果を評価した。 [0100] (3) Rice seedlings Rice (variety: Nihonbare) seeds were allowed to germinate for 2 days in a petri dish with tissue paper and moistened at room temperature. Thereafter, the following seedling culture soil was introduced into each cultivation pot, and 20 seeded rice plants were sown directly (seeding on January 15). At the time of sowing, rice seeds were embedded at a surface strength of about 0.5 cm. Each pot for cultivation was placed in a human meteorological device, and rice was grown until March 10 under the following seedling conditions, and the effect of the iron supply agent for plants was evaluated.
[0101] (4)使用した育苗用培土 [0101] (4) Used seedling culture soil
参考例 2 ;貝化石土壌(CaCOを約 70質量%含有、以下同様) 300mLに対して、  Reference Example 2: Shell fossil soil (containing approximately 70% by weight of CaCO, the same shall apply hereinafter)
3  Three
肥料 (チッソ旭肥料社製、商品名「ロングトータル 70」、以下同様) lgを配合した土を 育苗用培土とした。  Fertilizer (Chisso Asahi Fertilizer Co., Ltd., trade name “Long Total 70”, the same shall apply hereinafter) The soil containing lg was used as the seedling culture soil.
実験例 9 1;上記貝化石土壌 300mLに上記肥料 lgと、実験例 9の植物用鉄供給 剤 0. lgとを配合した土を育苗用培土とした。  Experimental Example 91: soil containing 300 mL of the above shell fossil soil and the above fertilizer lg and the plant iron supplier 0. lg of Experimental Example 9 was used as a seedling culture soil.
実験例 9 2;上記貝化石土壌 300mLに上記肥料 lgと、実験例 9の植物用鉄供給 剤 1. 0gとを配合した土を育苗用培土とした。  Experimental Example 9 2; Soil containing 300 mL of the above-mentioned shell fossil soil and the above fertilizer lg and 1.0 g of the plant iron supply agent of Experimental Example 9 was used as the seedling culture soil.
実験例 10— 1;上記貝化石土壌 300mLに上記肥料 lgと、実験例 10の植物用鉄 供給剤 1. 0gとを配合した土を育苗用培土とした。  Experimental Example 10-1: A soil obtained by mixing 300 mL of the above-mentioned shell fossil soil with the above fertilizer lg and 1.0 g of the iron supply agent for plants of Experimental Example 10 was used as a seedling culture soil.
実験例 10— 2 ;上記貝化石土壌 300mLに上記肥料 lgと、実験例 10の植物用鉄 供給剤 2. 0gとを配合した土を育苗用培土とした。  Experimental Example 10-2: Soil in which 300 mL of the above-mentioned shell fossil soil was mixed with the above fertilizer lg and 2.0 g of the plant iron supply agent of Experimental Example 10 was used as a seedling culture soil.
[0102] (5)育苗条件 [0102] (5) Seedling conditions
人工気象器 (日本医科器械製作所製、型式「LH - 100SJ )を用い、日照を 14時 間(照度は 1500ルクス、温度は 25°C)、夜間を 10時間(温度は 20°C)に調整して運 転した。また、灌水は、当初各ポットに対して 50mlの蒸留水を添加し、育苗期間を通 じて毎日各ポット全体の質量が 400gに維持されるように灌水を行った。更に、生育 期間を通じて各ポットを毎日ランダムに位置換えし、照明(日照)が均等に照射される よつにした。  Using an artificial meteorograph (manufactured by Nippon Medical Instrument Co., Ltd., model “LH-100SJ”), sunshine is adjusted to 14 hours (illuminance is 1500 lux, temperature is 25 ° C) and night is adjusted to 10 hours (temperature is 20 ° C) In addition, 50 ml of distilled water was initially added to each pot, and irrigation was carried out so that the mass of each pot was maintained at 400 g every day throughout the seedling period. In addition, each pot was randomly repositioned every day throughout the growing period so that the lighting (sunshine) was evenly illuminated.
[0103] 上記育苗を終えた 3月 10日に、各ポットのそれぞれ 20本の草丈を測定し、その平 均値を算出した。更に、 SPAD値 (葉緑素量の指標である緑色濃度)を、葉緑素計( ミノルタ株式会社製、型式「SPAD— 502」)を用いて測定した。次いで、各ポットから 苗を取り出し、根の土をふるい、デジタル撮影した (得られた画像による説明図を図 1 5に示した)。その後、 7日間乾燥させ、更に根の土のほぼ全量をふるい落とし、次い で、地上部乾物重と根部乾物重 (根乾物重と籾重との合計)とを測定した。この結果 を表 4に示した。 [0103] On March 10 when the seedlings were finished, 20 plant heights were measured for each pot, and the average value was calculated. Further, the SPAD value (green density, which is an index of the amount of chlorophyll) was measured using a chlorophyll meter (model “SPAD-502” manufactured by Minolta Co., Ltd.). Then from each pot The seedlings were taken out, sifted through the root soil, and digitally photographed (an illustration of the resulting image is shown in Figure 15). After that, it was dried for 7 days, and then almost all of the root soil was screened out. Then, the above-ground dry weight and root dry weight (total of dry weight and dredged weight) were measured. The results are shown in Table 4.
尚、苗の草丈と SPAD値については、各々のポットのそれぞれ 20本の苗の平均値 と標準偏差とを記載した。  Regarding the plant height and SPAD value of seedlings, the average value and standard deviation of 20 seedlings in each pot are described.
[0104] [表 4] [0104] [Table 4]
表 4  Table 4
Figure imgf000038_0001
Figure imgf000038_0001
[0105] (6)評価結果  [0105] (6) Evaluation results
表 4及び図 15〜 17の結果より、肥料は与えたが植物用鉄供給剤を与えな力つた参 考例 2による苗は、草丈が 15. 9cm、 SPAD値が 13. 0、地上部乾物重が 0. 38g、 根部乾物重が 0. 3 lgという結果であった。  Based on the results in Table 4 and Figures 15-17, the seedlings from Reference Example 2 with fertilizer but not fertilizer for plants were 15.9 cm in plant height, 13.0 cm in SPAD, and dry on the ground. The weight was 0.38 g and the root dry matter weight was 0.3 lg.
これに対して、 0. lgの実験例 9の植物用鉄供給剤を与えた実験例 9—1では、僅 カゝな配合量であるにも関わらず、アルカリ土壌内においても植物鉄供給剤を配合し た効果が認められた。即ち、参考例 2に対して、草丈及び SPAD値が 1. 5倍、地上 部乾物重が 2. 6倍、根部乾物重が 1. 7倍であり、いずれも参考例 2よりも優れている ことが分力ゝる。  On the other hand, in Experimental Example 9-1, which was given the plant iron supply agent in Experimental Example 9 of 0.lg, the plant iron supply agent was used even in alkaline soil, although the amount was small. The effect of blending was confirmed. In other words, the plant height and SPAD value is 1.5 times, the above-ground dry weight is 2.6 times, and the root dry weight is 1.7 times that of Reference Example 2, which is superior to Reference Example 2. I can speak of something.
更に、植物用鉄供給剤の配合量を実験例 9 1に対して 10倍量に増量した実験例 9— 2では、その増量効果が認められた。即ち、実験例 9—1に対して、草丈は 1. 1倍 と変化が小さいが、 SPAD値は 1. 4倍、地上部乾物重が 1. 4倍、根部乾物重が 2. 4 倍であった。また、実験例 9 2では、草丈及び SPAD値の標準偏差が大きぐ鉄供 給量の閾値を示している可能性がある。このため、より多くの植物用鉄供給剤を配合 した方がょ 、ものと考えられる。 Furthermore, in Experiment Example 9-2, in which the amount of the iron supply agent for plants was increased to 10 times the amount of Experiment Example 91, the effect of increasing the amount was recognized. In other words, plant height is 1.1 times smaller than Example 9-1, but SPAD value is 1.4 times, aboveground dry weight is 1.4 times, and root dry weight is 2.4. It was twice. In Example 92, there is a possibility that the iron supply threshold is large, where the standard deviation of plant height and SPAD value is large. For this reason, it may be better to add more plant iron supply agents.
[0106] また、 1. Ogの実験例 10の植物用鉄供給剤を与えた実験例 10— 1についても、ァ ルカリ土壌内においても植物鉄供給剤を配合した効果が認められた。即ち、参考例 2に対して、草丈が 1. 7倍、 SPAD値が 2. 1倍、地上部乾物重が 2. 9倍、根部乾物 重が 2. 8倍であり、いずれも参考例 2よりも優れていることが分かる。 [0106] In addition, in Experimental Example 10-1 to which the plant iron supply agent of Experimental Example 10 of Og was given, the effect of adding the plant iron supply agent in alkaline soil was also observed. That is, plant height is 1.7 times, SPAD value is 2.1 times, aboveground dry weight is 2.9 times, and root dry weight is 2.8 times that of Reference Example 2. It turns out that it is superior.
更に、植物用鉄供給剤の配合量を実験例 10— 1に対して 2倍量に増量した実験例 10— 2では、実験例 10— 1に対して、草丈及び SPAD値は 1. 1倍、地上部乾物重 は 0. 65倍、根部乾物重は 0. 77倍であった。このように実験例 10— 1と実験例 10— 2を比較した場合の明確な差異は認められ難いが、これは生分解性増量剤を含有す ることによる遅効性効果が現れているためと考えられる。即ち、実験例 9の植物用鉄 供給剤は即効性を有しているのに対して、実験例 10の植物用鉄供給剤は遅効性を 有していることが分かる。従って、より長期間の育苗を行うことで差異が認められるよう になるものと考えられる。  In addition, in Experimental Example 10-2, the amount of the plant iron supply agent was increased to twice that of Experimental Example 10-1, and the plant height and SPAD values were 1.1 times that of Experimental Example 10-1. The above-ground dry weight was 0.65 times and the root dry weight was 0.77 times. Thus, it is difficult to recognize a clear difference between Experimental Example 10-1 and Experimental Example 10-2. This is because a delayed action effect due to containing a biodegradable bulking agent appears. Conceivable. That is, it can be seen that the iron supply agent for plant of Experimental Example 9 has an immediate effect, whereas the iron supply agent for plant of Experimental Example 10 has a delayed effect. Therefore, it is considered that the difference will be recognized by raising seedlings for a longer period.
産業上の利用可能性  Industrial applicability
[0107] 本発明の鉄供給剤は、農林水産分野において広く利用される。即ち、例えば、農 産物の生産、園芸植物の生産、公園及びゴルフ場の製造'保持、森林保持、家畜飼 育、魚介類の養殖等に幅広く利用される。本発明の植物用鉄供給水溶液及び植物 用鉄供給剤は、農林分野において広く利用される。即ち、例えば、農産物の生産、 水耕栽培、園芸植物の生産、公園及びゴルフ場の製造'保持、森林保持等に広く利 用される。特に各種農産物の生産分野において植物成長促進剤として有用である。 更に、世界各地の不毛の土地での植物の成長による食料問題の解決、及び二酸ィ匕 炭素の吸収促進による地球環境の改善等に利用することもできる。 [0107] The iron supply agent of the present invention is widely used in the field of agriculture, forestry and fisheries. That is, for example, it is widely used for the production of agricultural products, the production of horticultural plants, the production and maintenance of parks and golf courses, the maintenance of forests, the breeding of livestock, and the cultivation of seafood. The plant iron supply aqueous solution and the plant iron supply agent of the present invention are widely used in the field of agriculture and forestry. That is, for example, it is widely used for production of agricultural products, hydroponics, production of horticultural plants, production and maintenance of parks and golf courses, forest maintenance, and the like. In particular, it is useful as a plant growth promoter in the production field of various agricultural products. It can also be used to solve food problems caused by plant growth in barren lands around the world and to improve the global environment by promoting absorption of carbon dioxide.

Claims

請求の範囲  The scope of the claims
[I] カルボキシル基及び Z又はヒドロキシル基を備える有機酸と、 FeOと、が溶解されて 得られた水溶液カゝらなることを特徴とする鉄供給剤。  [I] An iron supplier comprising an aqueous solution obtained by dissolving an organic acid having a carboxyl group and Z or hydroxyl group, and FeO.
[2] Fe2+イオンと Fe3+イオンとを含有し、該 Fe2+イオンと該 Fe3+イオンとの合計を 100質 量%とした場合に、該 Fe2+イオンが 50〜90質量%である請求項 1に記載の鉄供給 剤。 [2] When Fe 2+ ions and Fe 3+ ions are contained and the total of the Fe 2+ ions and the Fe 3+ ions is 100 mass%, the Fe 2+ ions are 50 to 90%. The iron supply agent according to claim 1, wherein the iron supply agent is in mass%.
[3] 168時間静置した後に該水溶液内に認められる Fe2+イオン濃度力 測定開始直後 に認められる Fe2+イオン濃度の 75%以上である請求項 1に記載の鉄供給剤。 [3] The iron supply agent according to claim 1, wherein the Fe 2+ ion concentration observed in the aqueous solution after standing for 168 hours is 75% or more of the Fe 2+ ion concentration observed immediately after the start of measurement.
[4] 上記有機酸として、少なくともクェン酸を含有する請求項 1に記載の鉄供給剤。 [4] The iron supply agent according to claim 1, containing at least citrate as the organic acid.
[5] 1つの Fe2+イオンに対してクェン酸及び Z又はクェン酸イオンが 2つ配位した二量体 錯体と、 1つの Fe2+イオンに対してクェン酸及び Z又はクェン酸イオンが 3つ配位し た三量体錯体と、を含有する請求項 4に記載の鉄供給剤。 [5] and dimeric complexes Kuen acid and Z or Kuen acid ion was two coordinated to one Fe 2+ ion, Kuen acid and Z or Kuen acid ion for one Fe 2+ ions The iron supply agent according to claim 4, comprising a trimeric complex coordinated in three.
[6] 請求項 1乃至 5のうちのいずれかに記載の鉄供給剤を含有することを特徴とする植物 用鉄供給剤。 [6] A plant iron supplier comprising the iron supplier according to any one of claims 1 to 5.
[7] 生分解性バインダを含有する請求項 6に記載の植物用鉄供給剤。  [7] The iron supplier for plants according to claim 6, which contains a biodegradable binder.
[8] 生分解性増量剤を含有する請求項 6に記載の植物用鉄供給剤。  [8] The plant iron supply agent according to [6] containing a biodegradable extender.
[9] 本植物用鉄供給剤全体を 100質量%とした場合に、上記鉄供給剤を 5質量%以上 含有する請求項 6に記載の植物用鉄供給剤。  [9] The iron supplier for plants according to claim 6, which contains 5% by mass or more of the iron supplier when the total iron supplier for plants is 100% by mass.
[10] カルボキシル基及び Z又はヒドロキシル基を備える有機酸と、 FeOと、が溶解されて 得られた水溶液から水を除去してなることを特徴とする鉄供給剤。 [10] An iron supplier obtained by removing water from an aqueous solution obtained by dissolving an organic acid having a carboxyl group and a Z or hydroxyl group and FeO.
[I I] 本鉄供給剤を溶解させてなる水溶液は、 Fe2+イオンと Fe3+イオンとを含有し、該 Fe2 +イオンと該 Fe3+イオンとの合計を 100質量%とした場合に、該 Fe2+イオンが 50〜9 0質量%である請求項 10に記載の鉄供給剤。 [II] an aqueous solution obtained by dissolving this iron supply agent, when containing the Fe 2+ ions and Fe 3+ ions, and the sum of the said Fe 2 + ions and the Fe 3+ ions is 100 mass% The iron supplier according to claim 10, wherein the Fe 2+ ion is 50 to 90% by mass.
[12] 本鉄供給剤を溶解させてなる水溶液は、 168時間静置した後に該水溶液内に認め られる Fe2+イオン濃度力 該溶解直後に認められる Fe2+イオン濃度の 75%以上で ある請求項 10に記載の鉄供給剤。 [12] The aqueous solution obtained by dissolving the iron supply agent has a Fe 2+ ion concentration force observed in the aqueous solution after standing for 168 hours, and is 75% or more of the Fe 2+ ion concentration observed immediately after the dissolution. The iron supply agent according to claim 10.
[13] 上記有機酸として、少なくともクェン酸を含有する請求項 10に記載の鉄供給剤。 13. The iron supply agent according to claim 10, containing at least citrate as the organic acid.
[14] 本鉄供給剤を溶解させてなる水溶液は、 1つの Fe2+イオンに対してクェン酸及び Z 又はクェン酸イオンが 2つ配位した二量体錯体と、 1つの Fe2+イオンに対してクェン 酸及び Z又はクェン酸イオンが 3つ配位した三量体錯体と、を含有する請求項 13に 記載の鉄供給剤。 [14] The aqueous solution in which the iron supply agent is dissolved contains citrate and Z for one Fe 2+ ion. Or a dimer complex in which two citrate ions are coordinated, and a trimer complex in which three citrate and Z or three citrate ions are coordinated to one Fe 2+ ion. The iron supply agent according to 13.
[15] 請求項 10乃至 14のうちのいずれかに記載の鉄供給剤を含有することを特徴とする 植物用鉄供給剤。  [15] A plant iron supplier comprising the iron supplier according to any one of claims 10 to 14.
[16] 生分解性バインダを含有する請求項 15に記載の植物用鉄供給剤。  16. The plant iron supply agent according to claim 15, containing a biodegradable binder.
[17] 生分解性増量剤を含有する請求項 15に記載の植物用鉄供給剤。  17. The plant iron supply agent according to claim 15, comprising a biodegradable extender.
[18] 本植物用鉄供給剤全体を 100質量%とした場合に、上記鉄供給剤を 5質量%以上 含有する請求項 15に記載の植物用鉄供給剤。  18. The plant iron supply agent according to claim 15, which contains 5% by mass or more of the iron supply agent when the total iron supply agent for plants is 100% by mass.
[19] 上記有機酸としてクェン酸を含有し、 [19] containing cenoic acid as the organic acid,
上記生分解性増量剤として泥炭を含有し、  Containing peat as the biodegradable extender,
該生分解性増量剤カゝらなるマトリックスに、該クェン酸及び上記 FeOが含有されて なり、  The matrix comprising the biodegradable extender contains the citrate and the FeO;
アルカリ土壌において用いられる請求項 17に記載の植物用鉄供給剤。  The plant iron supplier according to claim 17, which is used in alkaline soil.
[20] カルボキシル基及び Z又はヒドロキシル基を備える有機酸と FeOとを含有することを 特徴とする鉄供給剤。 [20] An iron supplier comprising an organic acid having a carboxyl group and a Z or hydroxyl group and FeO.
[21] 本鉄供給剤を溶解させてなる水溶液は、 Fe2+イオンと Fe3+イオンとを含有し、該 Fe2 [21] The aqueous solution obtained by dissolving the iron supplier contains Fe 2+ ions and Fe 3+ ions, and the Fe 2
+イオンと該 Fe3+イオンとの合計を 100質量%とした場合に、該 Fe2+イオンが 50〜9When the total of + ions and Fe 3+ ions is 100 mass%, the Fe 2+ ions are 50 to 9
0質量%である請求項 20に記載の鉄供給剤。 The iron supply agent according to claim 20, which is 0% by mass.
[22] 本鉄供給剤を溶解させてなる水溶液は、 168時間静置した後に該水溶液内に認め られる Fe2+イオン濃度力 該溶解直後に認められる Fe2+イオン濃度の 75%以上で ある請求項 20に記載の鉄供給剤。 Aqueous solution [22] is dissolved in the iron supplying agent comprising is a 168-hour standing was immediately Fe 2+ ion concentration force lysis observed in aqueous solution accepted is Fe 2+ ion concentration of 75% or more after The iron supply agent according to claim 20.
[23] 上記有機酸として、少なくともクェン酸を含有する請求項 20に記載の鉄供給剤。 23. The iron supply agent according to claim 20, containing at least citrate as the organic acid.
[24] 本鉄供給剤を溶解させてなる水溶液は、 1つの Fe2+イオンに対してクェン酸及び Z 又はクェン酸イオンが 2つ配位した二量体錯体と、 1つの Fe2+イオンに対してクェン 酸及び Z又はクェン酸イオンが 3つ配位した三量体錯体と、を含有する請求項 23に 記載の鉄供給剤。 [24] an aqueous solution obtained by dissolving this iron supply agent, a dimeric complex Kuen acid and Z or Kuen acid ion was two coordinated to one Fe 2+ ions, one Fe 2+ ions 24. The iron supplier according to claim 23, comprising: a trimeric complex in which three citrate and Z or three citrate ions are coordinated.
[25] 請求項 20乃至 24のうちのいずれかに記載の鉄供給剤を含有することを特徴とする 植物用鉄供給剤。 [25] The iron supply agent according to any one of claims 20 to 24 is contained. Iron supply agent for plants.
[26] 生分解性バインダを含有する請求項 25に記載の植物用鉄供給剤。  [26] The iron supplier for plants according to claim 25, comprising a biodegradable binder.
[27] 生分解性増量剤を含有する請求項 25に記載の植物用鉄供給剤。  27. The plant iron supply agent according to claim 25, comprising a biodegradable extender.
[28] 本植物用鉄供給剤全体を 100質量%とした場合に、上記鉄供給剤を 5質量%以上 含有する請求項 25に記載の植物用鉄供給剤。  28. The plant iron supply agent according to claim 25, which contains 5% by mass or more of the iron supply agent when the total amount of the iron supply agent for plants is 100% by mass.
[29] 上記有機酸としてクェン酸を含有し、 [29] containing cenoic acid as the organic acid,
上記生分解性増量剤として泥炭を含有し、  Containing peat as the biodegradable extender,
該生分解性増量剤カゝらなるマトリックスに、該クェン酸及び上記 FeOが含有されて なり、  The matrix comprising the biodegradable extender contains the citrate and the FeO;
アルカリ土壌において用いられる請求項 27に記載の植物用鉄供給剤。  The plant iron supplier according to claim 27, which is used in alkaline soil.
[30] カルボキシル基及び Z又はヒドロキシル基を備える有機酸粉末と、 FeO粉末と、水と を含む混合物を加熱して、該有機酸及び FeOが溶解されて得られた水溶液を得る 溶解工程を備えることを特徴とする鉄供給剤の製造方法。 [30] A dissolution step is provided in which an organic acid powder having a carboxyl group and Z or hydroxyl group, an FeO powder, and water are heated to obtain an aqueous solution obtained by dissolving the organic acid and FeO. The manufacturing method of the iron supply agent characterized by the above-mentioned.
[31] 上記水溶液力 水を除去する乾燥工程を備える請求項 30に記載の鉄供給剤の製 造方法。 31. The method for producing an iron supply agent according to claim 30, further comprising a drying step for removing the aqueous solution water.
[32] 上記有機酸として、少なくともクェン酸を含有する請求項 30に記載の鉄供給剤の製 造方法。  32. The method for producing an iron supply agent according to claim 30, wherein the organic acid contains at least citrate.
[33] 上記 FeO粉末は、鉄分を含有するダストを造粒してなる造粒品、及び Z又は鉄分を 含有するダストと還元剤とを造粒してなる造粒品、を真空加熱したのち真空急冷して 得られた FeO粉末である請求項 30に記載の鉄供給剤の製造方法。  [33] The FeO powder is prepared by vacuum-heating a granulated product obtained by granulating iron-containing dust and a granulated product obtained by granulating Z or iron-containing dust and a reducing agent. 31. The method for producing an iron supply agent according to claim 30, which is FeO powder obtained by vacuum quenching.
PCT/JP2006/310701 2005-07-29 2006-05-29 Iron-supplying agent, iron supplying agent for plant comprising the same, and process for production of the same WO2007013218A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528360A JP4096207B2 (en) 2005-07-29 2006-05-29 Iron supply agent for plants and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-220024 2005-07-29
JP2005220024 2005-07-29

Publications (1)

Publication Number Publication Date
WO2007013218A1 true WO2007013218A1 (en) 2007-02-01

Family

ID=37683124

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2006/310701 WO2007013218A1 (en) 2005-07-29 2006-05-29 Iron-supplying agent, iron supplying agent for plant comprising the same, and process for production of the same
PCT/JP2006/310702 WO2007013219A1 (en) 2005-07-29 2006-05-29 Iron supplying agent for plant for use in alkaline soil, and process for production of the same

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310702 WO2007013219A1 (en) 2005-07-29 2006-05-29 Iron supplying agent for plant for use in alkaline soil, and process for production of the same

Country Status (3)

Country Link
JP (2) JP4096208B2 (en)
TW (2) TW200738583A (en)
WO (2) WO2007013218A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009150927A1 (en) * 2008-06-09 2009-12-17 Sugimoto Mikio Process for producing liquid metal chelate compound and metal chelate compound
JP2010517379A (en) * 2007-01-17 2010-05-20 クゥアルコム・インコーポレイテッド Configuration of base stations that function as regional mobility agents
JP2010228951A (en) * 2009-03-26 2010-10-14 Aichi Steel Works Ltd Iron supplier for plant and method for manufacturing the same
JP2011050934A (en) * 2009-09-04 2011-03-17 Nihon Technical Development Center Co Ltd Solid matter for water purification and marine resource growth
EP3912967A4 (en) * 2019-05-08 2022-08-24 Fertinagro Biotech, S.L. Additive for improving the efficiency of pig purine as a fertiliser

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MD3685C2 (en) * 2008-01-29 2009-03-31 Институт Химии Академии Наук Молдовы Process for obtaining hexa-m-acetato-m3-oxo-tris(aqua)triferrum(III) nitrate in solid form and in the form of aqueous solution
JP4729120B1 (en) * 2010-02-15 2011-07-20 Jfeミネラル株式会社 Iron ion supply material, manufacturing method thereof, and iron ion supply method
JP5804454B2 (en) * 2010-03-31 2015-11-04 国立研究開発法人農業・食品産業技術総合研究機構 Water-soluble iron supplier with reducing power made from coffee cake or tea husk
JP5733781B2 (en) 2010-03-31 2015-06-10 国立研究開発法人農業・食品産業技術総合研究機構 Fenton reaction catalyst made from coffee cake or tea husk
JP5625502B2 (en) * 2010-06-02 2014-11-19 愛知製鋼株式会社 Cadmium reduction material and cadmium reduction method using the same
JP5180328B2 (en) * 2011-01-24 2013-04-10 Jfeミネラル株式会社 Iron ion supply material, manufacturing method thereof, and iron ion supply method
JP2012239952A (en) 2011-05-17 2012-12-10 National Agriculture & Food Research Organization Fenton reaction catalyst produced by using reducing organic substance as raw material
JP6048110B2 (en) * 2012-02-17 2016-12-21 住友化学株式会社 Rice seed germination promotion method and rice cultivation method
CN103601598B (en) * 2013-12-03 2015-09-09 王石麟 A kind of production method of vegetables matrix in strong sprout
JP6015646B2 (en) 2013-12-24 2016-10-26 Jfeスチール株式会社 Iron ion supply material
JP6768316B2 (en) * 2016-03-10 2020-10-14 日の丸カーボテクノ株式会社 Manufacturing method of water quality improving material and water quality improving method
CN109169079A (en) * 2018-09-18 2019-01-11 江西农业大学 A kind of rice mechanical transplanting seedling raising ground substance, preparation method and application

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075249A (en) * 1983-09-29 1985-04-27 Masao Tanuma Method for coloring to green color plant faded in wilted state
JPS6075248A (en) * 1983-09-29 1985-04-27 Masao Tanuma Color former for faded plant
JPS6174640A (en) * 1984-09-20 1986-04-16 Agency Of Ind Science & Technol Composition containing iron (ii) compound
JPS62123026A (en) * 1985-11-25 1987-06-04 Nippon Zeon Co Ltd Powdery composition containing iron compound
JPH04198111A (en) * 1990-11-28 1992-07-17 Masayuki Abe Soil improver and production thereof
JPH11189579A (en) * 1997-12-25 1999-07-13 Mitsubishi Rayon Co Ltd Production of high purity optically active chelated iron complex
JP2001026505A (en) * 1999-07-12 2001-01-30 Sana:Kk Plant growing agent and method for promoting plant growth
JP2002293683A (en) * 2001-04-04 2002-10-09 Hida Sangyo Kk Method of producing poultry manure fertilizer of high iron content
JP2003180340A (en) * 2001-12-20 2003-07-02 Marine Biotechnol Inst Co Ltd Method for accelerating propagation of microorganism belonging to genus cycloclasticus
JP2003267730A (en) * 2002-03-14 2003-09-25 Aichi Steel Works Ltd METHOD FOR PRODUCING FeO POWDER
JP2004097167A (en) * 2002-09-13 2004-04-02 Daiichi Seimou Co Ltd Quality improving agent for laver culture
JP2004123677A (en) * 2002-10-07 2004-04-22 Aichi Steel Works Ltd Plant growth promoting agent

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6075249A (en) * 1983-09-29 1985-04-27 Masao Tanuma Method for coloring to green color plant faded in wilted state
JPS6075248A (en) * 1983-09-29 1985-04-27 Masao Tanuma Color former for faded plant
JPS6174640A (en) * 1984-09-20 1986-04-16 Agency Of Ind Science & Technol Composition containing iron (ii) compound
JPS62123026A (en) * 1985-11-25 1987-06-04 Nippon Zeon Co Ltd Powdery composition containing iron compound
JPH04198111A (en) * 1990-11-28 1992-07-17 Masayuki Abe Soil improver and production thereof
JPH11189579A (en) * 1997-12-25 1999-07-13 Mitsubishi Rayon Co Ltd Production of high purity optically active chelated iron complex
JP2001026505A (en) * 1999-07-12 2001-01-30 Sana:Kk Plant growing agent and method for promoting plant growth
JP2002293683A (en) * 2001-04-04 2002-10-09 Hida Sangyo Kk Method of producing poultry manure fertilizer of high iron content
JP2003180340A (en) * 2001-12-20 2003-07-02 Marine Biotechnol Inst Co Ltd Method for accelerating propagation of microorganism belonging to genus cycloclasticus
JP2003267730A (en) * 2002-03-14 2003-09-25 Aichi Steel Works Ltd METHOD FOR PRODUCING FeO POWDER
JP2004097167A (en) * 2002-09-13 2004-04-02 Daiichi Seimou Co Ltd Quality improving agent for laver culture
JP2004123677A (en) * 2002-10-07 2004-04-22 Aichi Steel Works Ltd Plant growth promoting agent

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SASAMOTO H.: "2 Ka Tetsuion o Antei Kyokyu Suru Shin Sozai no Kaihatsu", EXPECTED MATERIALS FOR THE FUTURE, vol. 5, no. 12, 10 December 2005 (2005-12-10), pages 6 - 7, XP003008037 *
SASAMOTO H.: "Shokubutsu Kasseizai 'Tetsuriki Agri' -Tetsu Ion Power de Chikyu o Kenko ni-", MATERIALS SCIENCE & TECHNOLOGY, vol. 74, no. 10, 2004, pages 1057 - 1060, XP003008036 *
SASAMOTO H.: "Tetsu Ion de Shokubutsu no Seimeiryoku o Hikidasu Shin Dojo Kairyozai 'Tetsuriki agri' no Kaihatsu", ENVIRONMENTAL MANAGEMENT, vol. 39, no. 6, 2003, pages 603 - 608, XP003008035 *
SEKI T.: "Tetsuriki Agri (Tetsu Ion ni yoru Shokubutsu no Kogosei Sokushinzai)", AICHI TEKKO GIHO, vol. 22, no. 1, 2004, pages 30 - 32, XP003008034 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010517379A (en) * 2007-01-17 2010-05-20 クゥアルコム・インコーポレイテッド Configuration of base stations that function as regional mobility agents
WO2009150927A1 (en) * 2008-06-09 2009-12-17 Sugimoto Mikio Process for producing liquid metal chelate compound and metal chelate compound
US20110065945A1 (en) * 2008-06-09 2011-03-17 Mikio Sugimoto Method for producing liquid metal chelate compound and metal chelate compound
JP2010228951A (en) * 2009-03-26 2010-10-14 Aichi Steel Works Ltd Iron supplier for plant and method for manufacturing the same
JP2011050934A (en) * 2009-09-04 2011-03-17 Nihon Technical Development Center Co Ltd Solid matter for water purification and marine resource growth
EP3912967A4 (en) * 2019-05-08 2022-08-24 Fertinagro Biotech, S.L. Additive for improving the efficiency of pig purine as a fertiliser

Also Published As

Publication number Publication date
JP4096208B2 (en) 2008-06-04
TW200704623A (en) 2007-02-01
TW200738583A (en) 2007-10-16
JPWO2007013218A1 (en) 2009-02-05
JPWO2007013219A1 (en) 2009-02-05
JP4096207B2 (en) 2008-06-04
WO2007013219A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
JP4096207B2 (en) Iron supply agent for plants and method for producing the same
Marcińczyk et al. Biochar and engineered biochar as slow-and controlled-release fertilizers
Basavegowda et al. Current and future perspectives on the use of nanofertilizers for sustainable agriculture: the case of phosphorus nanofertilizer
EP1612200A2 (en) Fertilising composition and process for the obtainment thereof
JP2003519065A (en) Controlled release of stabilized and efficient calcium cyanamide
KR100979931B1 (en) Liquid fertilizer including natural mineral materials and method of manufacturing the same
JP2009280472A (en) Method of producing organic material for plant cultivation
CN105272720A (en) Compound fertilizer capable of restoring soil and reducing crop cadmium absorption and application
WO2014025275A2 (en) Fertilizer with controlled components release, fertilizer with controlled components release production method and method of fertilizer application
KR101168754B1 (en) Liquid fertilizers using minerals and method for manufacturing the same
KR101311986B1 (en) Slow-release stick fertilizer and a method for producing the same
JP2017023125A (en) Coated rice seed and manufacturing method of the same
JP5401656B2 (en) Clay heat treatment granular material
US11407689B2 (en) Black urea enhanced efficiency controllable release fertilizer compositions
AU2019243423B2 (en) Selecting and applying metal oxides and clays for plant growth
CN106518402A (en) Environment-friendly fertilizer, and production method thereof
KR100892968B1 (en) Soil conditioner for agriculture
KR20200036165A (en) Solid fertilizer for forests made using abalone shell, and manufacturing method thereof
KR100726345B1 (en) Organic fertilizer
KR20120041488A (en) Method for improving soil using granite waste powder
KR20090079318A (en) Soil conditioner for agriculture
KR101479142B1 (en) Soil improvement material and its manufacturing method
JPH01133992A (en) Heavy metal absorption suppressing fertilizer composition
KR102497005B1 (en) Mineral nano liquid fertilizer for growing sprout crops and manufacturing method thereof
CN106635035A (en) Soil improver for saline and alkaline land and preparation method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528360

Country of ref document: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756697

Country of ref document: EP

Kind code of ref document: A1