JP5625502B2 - Cadmium reduction material and cadmium reduction method using the same - Google Patents

Cadmium reduction material and cadmium reduction method using the same Download PDF

Info

Publication number
JP5625502B2
JP5625502B2 JP2010127247A JP2010127247A JP5625502B2 JP 5625502 B2 JP5625502 B2 JP 5625502B2 JP 2010127247 A JP2010127247 A JP 2010127247A JP 2010127247 A JP2010127247 A JP 2010127247A JP 5625502 B2 JP5625502 B2 JP 5625502B2
Authority
JP
Japan
Prior art keywords
ppm
cadmium
concentration
acid
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010127247A
Other languages
Japanese (ja)
Other versions
JP2011250744A (en
Inventor
森 敏
敏 森
笹本 博彦
博彦 笹本
倫也 松山
倫也 松山
基史 鈴木
基史 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2010127247A priority Critical patent/JP5625502B2/en
Publication of JP2011250744A publication Critical patent/JP2011250744A/en
Application granted granted Critical
Publication of JP5625502B2 publication Critical patent/JP5625502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、カドミウム低減用資材及びそれを用いたカドミウム低減方法に関する。更に詳しくは、本発明は、所定量の鉄を含有し、イネ科植物に葉面散布することにより、イネ科植物の茎葉部、種子等の地上部、特に食用に供される種子、例えば、玄米等に含有されるカドミウムを低減させることができるカドミウム低減用資材、及びこのカドミウム低減用資材をイネ科植物の生育過程のうちの特定の時期に葉面散布することにより、イネ科植物の種子、特に玄米に含有されるカドミウムを低減させることができるカドミウム低減方法に関する。   The present invention relates to a cadmium reduction material and a cadmium reduction method using the same. More specifically, the present invention contains a predetermined amount of iron, and by foliar application to the grass family, the above-ground parts such as the foliage and seeds of the grass family, especially the seeds used for food, for example, Cadmium-reducing material capable of reducing cadmium contained in brown rice and the like, and seeds of gramineous plants by foliar application of this cadmium-reducing material at a specific time in the growth process of gramineous plants In particular, the present invention relates to a cadmium reduction method capable of reducing cadmium contained in brown rice.

食物にカドミウムが含有されていると、人間の健康に被害を及ぼす可能性があるが、土壌にはカドミウムが含有されており、土壌から植物、特に種子等の可食部へのカドミウムの移行が問題となっており、対策技術が必要とされている。このような状況下、CODEX(WHOとFAOによる合同食品規格委員会)において、農作物に含有されるカドミウム濃度の基準値が討議され、2006年7月、米について0.4mg/kg以下という案が採択され、現在、我が国でも、このCODEX基準値が米のカドミウム濃度の基準値とされている。   If food contains cadmium, human health may be damaged, but soil contains cadmium, and cadmium is transferred from soil to edible parts such as plants, especially seeds. It is a problem and countermeasure technology is required. Under such circumstances, CODEX (Joint Food Standards Committee by WHO and FAO) discussed the standard value of cadmium concentration contained in agricultural products. In July 2006, a proposal of 0.4 mg / kg or less for rice was proposed. In Japan, this CODEX standard value is now the standard value for cadmium concentration in rice.

また、前記の基準値を超える米が産出されるカドミウム汚染農用地である場合は、土壌を改良する必要があるが、現在、土壌改良は、主として客土法により実施されており、費用が高額であるとともに、近年、客土に用いる山土も採取が困難になりつつある。更に、客土法では、大量の排土を処理しなければならず、水田土壌とするためには土壌肥沃度を高める必要もある。   In addition, in the case of cadmium-contaminated agricultural land where rice exceeding the above-mentioned standard value is produced, it is necessary to improve the soil, but currently, soil improvement is mainly carried out by the land method, and the cost is high. In addition, in recent years, it has become difficult to collect the mountain soil used as the guest land. Furthermore, in the land-based soil method, a large amount of soil must be treated, and soil fertility needs to be increased to make paddy soil.

水稲を対象としたカドミウム含量の低減方法としては、客土法の他に、湛水管理によるカドミウム吸収抑制法もある。しかし、湛水管理による方法では、通常、5〜6週間の長期に亘って、常時、湛水しておく必要があり、落水後、収穫期までに地耐力が十分に回復しないことが懸念される。また、長期に亘って湛水されるため、土壌中に窒素が残留し、葉から種子への養分の転流が抑えられてしまうという問題もある。更に、長期に亘る湛水のため、収穫時にも水田が湿っており、収穫機の操作性が低下することも予想される。   As a method for reducing the cadmium content in paddy rice, there is a method for suppressing cadmium absorption by flood management in addition to the soil method. However, in the method by flooding management, it is usually necessary to flood constantly for a long period of 5 to 6 weeks, and there is a concern that the ground strength will not be sufficiently recovered by the harvesting period after the water has dropped. The Moreover, since it is flooded over a long period of time, there is a problem that nitrogen remains in the soil and the translocation of nutrients from the leaves to the seeds is suppressed. Furthermore, the paddy field is moist at the time of harvest due to flooding over a long period of time, and it is expected that the operability of the harvester will be reduced.

前記の他、カドミウムの低減方法としては、カドミウムを含有する土壌に、水と、酸及び/又は酸の塩類を加えて混合攪拌し、カドミウムを水中に溶出させ、次いで、このカドミウム含有水溶液とリン酸化セルロースを含有する固形資材とを接触させて水溶液中のカドミウムを吸着させ、その後、固形資材を取り除いてカドミウムを除去するカドミウム含有土壌の浄化方法が知られている(例えば、特許文献1参照。)。また、カドミウム含量が多い玄米が生産される水田に、作土1m当たり所定量の人工ゼオライト及びバーミキュライトを混合添加し、この水田で稲を栽培することにより、玄米中のカドミウム含量を低減する方法も知られている(例えば、特許文献2参照)。 In addition to the above, as a method for reducing cadmium, water and acid and / or acid salts are added to the cadmium-containing soil, mixed and stirred to elute the cadmium in water, and then the cadmium-containing aqueous solution and phosphorus are mixed. There is known a cadmium-containing soil purification method in which a solid material containing oxidized cellulose is brought into contact to adsorb cadmium in an aqueous solution, and thereafter the solid material is removed to remove cadmium (see, for example, Patent Document 1). ). A method of reducing the cadmium content in brown rice by adding a predetermined amount of artificial zeolite and vermiculite per 1 m 3 of soil to a paddy field where brown rice with a high cadmium content is produced and cultivating rice in this paddy field Is also known (see, for example, Patent Document 2).

特開2007−160272号公報JP 2007-160272 A 特開2009−278881号公報JP 2009-278881 A

特許文献1に記載された浄化方法では、カドミウム含有土壌を浄化することができるかもしれないが、操作、工程が煩雑であり、カドミウムが吸着された固形資材を処分しなければならないという問題もある。また、特許文献2に記載されている人工ゼオライトがカドミウム吸着能を有することは知られており、水田に混合して稲を栽培すれば、玄米中のカドミウム含量を低減させることができるかもしれないが、カドミウム含量を十分に低減させるため、多量の人工ゼオライトを混合した場合、コスト面で不利であるとともに、植物の成長に有用な土中の微量金属成分も同時に減少しまうため、稲が十分に成長しなくなることもある。   In the purification method described in Patent Document 1, it may be possible to purify cadmium-containing soil, but there is also a problem that operations and processes are complicated, and solid materials adsorbed with cadmium must be disposed of. . Moreover, it is known that the artificial zeolite described in Patent Document 2 has a cadmium adsorption ability, and if cultivated rice mixed with paddy fields, the cadmium content in brown rice may be reduced. However, in order to sufficiently reduce the cadmium content, mixing a large amount of artificial zeolite is disadvantageous in terms of cost and also reduces the amount of trace metal components in the soil that are useful for plant growth. It may stop growing.

本発明は、前記の従来の状況に鑑みてなされたものであり、所定量の鉄を含有し、イネ科植物に葉面散布することにより、イネ科植物の茎葉部、種子等の地上部、特に食用に供される種子、例えば、玄米等に含有されるカドミウムを低減させることができるカドミウム低減用資材(以下、「Cd低減用資材」ということもある。)、及びこのCd低減用資材をイネ科植物の生育過程のうちの止め葉が出現してから葉面に散布することにより、イネ科植物の生育を損なわず、且つイネ科植物の種子、特に玄米に含有されるカドミウムを低減させることができるカドミウム低減方法(以下、「Cd低減方法」ということもある。)を提供することを目的とする。   The present invention has been made in view of the above-mentioned conventional situation, contains a predetermined amount of iron, and by foliar application to the gramineous plant, the foliage portion of the gramineous plant, the above-ground portion such as seeds, In particular, a cadmium-reducing material that can reduce cadmium contained in edible seeds, such as brown rice (hereinafter also referred to as “Cd-reducing material”), and this Cd-reducing material. By spraying on the leaf surface after the emergence of the leaf of the growth process of the gramineous plant, the growth of the gramineous plant is not impaired and the cadmium contained in the seeds of the gramineous plant, especially brown rice, is reduced. It is an object of the present invention to provide a cadmium reduction method (hereinafter also referred to as “Cd reduction method”) that can be used.

前記のように、イネ科植物の茎葉部、種子等の地上部、特に食用に供される種子、例えば、玄米等に含有されるカドミウムを低減させるための従来の方法としては、カドミウムを含有する土壌の改良、湛水管理、及び何らかの資材に土壌中のカドミウムを吸着させて除去する等の各種の方法が知られている。しかし、これらの方法は、いずれも土壌に含有されるカドミウムを除去、低減するものであり、前記のような問題を有している。このような状況下、Cd低減用資材を葉面散布するという簡便な方法により、土壌に含有されるカドミウムの、植物の茎葉部等の地上部、特に食用に供される種子への移行が抑制されることが見出された。
本発明は、このような知見に基づいてなされたものである。
As described above, conventional methods for reducing cadmium contained in above-ground parts such as foliage and seeds of gramineous plants, in particular, edible seeds such as brown rice, contain cadmium. Various methods are known, such as soil improvement, flood management, and adsorbing and removing cadmium in soil on some materials. However, these methods all remove and reduce cadmium contained in the soil, and have the above-described problems. Under such circumstances, the cadmium contained in the soil is suppressed from transferring to the above-ground parts such as plant foliage, especially to edible seeds, by a simple method of foliar application of Cd reduction materials. It was found that
The present invention has been made based on such knowledge.

本発明は以下のとおりである。
1.鉄源及び有機酸を溶解させた水溶液であり、該水溶液に含有される鉄濃度が20〜500ppmであって、止め葉が出現してからイネ科植物に葉面散布して用いられることを特徴とするカドミウム低減用資材。
2.前記有機酸は、カルボキシル基及びヒドロキシル基のうちの少なくとも一方を有し、該カルボキシル基及び該ヒドロキシル基の合計が2個以上である前記1.に記載のカドミウム低減用資材。
3.前記有機酸は、クエン酸、リンゴ酸、酒石酸及びアスコルビン酸のうちの少なくとも1種である前記1.又は2.に記載のカドミウム低減用資材。
4.前記1.乃至3.のうちの少なくとも1項に記載のカドミウム低減用資材を、止め葉が出現してからイネ科植物の葉面に散布し、イネ科植物の種子に含有されるカドミウムを低減させることを特徴とするカドミウム低減方法。
The present invention is as follows.
1. It is an aqueous solution in which an iron source and an organic acid are dissolved, and the iron concentration contained in the aqueous solution is 20 to 500 ppm, and it is used by foliar application to a gramineous plant after a stop leaf appears. Characteristic material for reducing cadmium.
2. The organic acid has at least one of a carboxyl group and a hydroxyl group, and the total of the carboxyl group and the hydroxyl group is 2 or more. Materials for reducing cadmium as described in 1.
3. The organic acid is at least one of citric acid, malic acid, tartaric acid and ascorbic acid. Or 2. Materials for reducing cadmium as described in 1.
4). 1 above. To 3. The material for reducing cadmium according to at least one of the above is sprayed on a leaf surface of a gramineous plant after appearance of a stop leaf to reduce cadmium contained in the seeds of the gramineous plant Cadmium reduction method.

本発明のCd低減用資材は、イネ科植物に葉面散布して用いられ、イネ科植物の茎葉部、種子等の地上部、特に食用に供される種子、例えば、玄米等に含有されるカドミウムを効率よく低減させることができる。また、従来技術のように、例えば、カドミウムが吸着された固形資材の処分等の操作、工程を必要とせず、コスト面でも有利である。
また、有機酸が、カルボキシル基及びヒドロキシル基のうちの少なくとも一方を有し、該カルボキシル基及び該ヒドロキシル基の合計が2個以上である有機酸である場合は、より多くの鉄が、より長期に亘ってCd低減用資材に溶存し、イネ科植物の茎葉部、種子等の地上部に含有されるカドミウムをより効率よく低減させることができる。
更に、有機酸が、クエン酸、リンゴ酸、酒石酸及びアスコルビン酸のうちの少なくとも1種である場合は、鉄がより長期に亘って安定してCd低減用資材に溶存し、イネ科植物の茎葉部、種子等の地上部に含有されるカドミウムを特に効率よく低減させることができる。
本発明のカドミウム低減方法によれば、本発明のCd低減用資材を、止め葉が出現してから葉面に散布するという簡便な方法により、葉にカドミウムが含有されていたとしても、葉から種子へのカドミウムの転流が抑えられ、玄米等の種子に含有されるカドミウムを効率よく低減させることができる。また、この葉面散布は、殺虫剤、除草剤等の農薬の散布と同様にして実施することができ、特殊な器具、操作等も必要としない。
The Cd-reducing material of the present invention is used by foliar application to a grass family plant, and is contained in the above-ground parts such as the foliage part and seeds of the grass family plant, in particular, edible seeds such as brown rice. Cadmium can be reduced efficiently. Further, unlike the prior art, for example, an operation and a process such as disposal of a solid material on which cadmium is adsorbed are not required, which is advantageous in terms of cost.
Further, when the organic acid is an organic acid having at least one of a carboxyl group and a hydroxyl group, and the total of the carboxyl group and the hydroxyl group is 2 or more, more iron is used for a longer period. Thus, the cadmium dissolved in the Cd reducing material can be more efficiently reduced by being contained in the above-ground parts such as the foliage and seeds of the gramineous plant.
Further, when the organic acid is at least one of citric acid, malic acid, tartaric acid and ascorbic acid, iron is stably dissolved in the Cd reduction material for a longer period of time, and the foliage of the grass family plant Cadmium contained in the above-ground parts such as parts and seeds can be reduced particularly efficiently.
According to the cadmium reduction method of the present invention, even if cadmium is contained in the leaf, the material for Cd reduction of the present invention is sprayed on the leaf surface after the stop leaf appears. The cadmium commutation to the seed is suppressed, and the cadmium contained in the seed such as brown rice can be efficiently reduced. Moreover, this foliar spraying can be carried out in the same manner as the spraying of pesticides such as insecticides and herbicides, and does not require special equipment or operation.

育苗段階及び/又は葉面散布においてCd低減用資材を用いたときの、玄米収穫量に及ぼす影響を表すグラフである。It is a graph showing the influence which it has on brown rice yield when the Cd reduction material is used in the seedling raising stage and / or foliar application. 育苗段階及び/又は葉面散布においてCd低減用資材を用いたときの、玄米中のカドミウム濃度(Cd濃度)に及ぼす影響を表すグラフである。It is a graph showing the influence which acts on the cadmium density | concentration (Cd density | concentration) in brown rice when using the Cd reduction material in a seedling raising stage and / or foliar application. 育苗段階及び/又は葉面散布においてCd低減用資材を用いたときの、玄米中の鉄濃度(Fe濃度)に及ぼす影響を表すグラフである。It is a graph showing the influence which acts on the iron concentration (Fe density | concentration) in brown rice when the Cd reduction material is used in a seedling raising stage and / or foliar application. 育苗段階及び/又は葉面散布においてCd低減用資材を用いたときの、玄米中のCd濃度とFe濃度との相関を表すグラフである。It is a graph showing the correlation with the Cd density | concentration and the Fe density | concentration in brown rice when the Cd reduction material is used in a seedling raising stage and / or foliar application. 育苗段階及び/又は葉面散布においてCd低減用資材を用いたときの、玄米中の亜鉛濃度(Zn濃度)に及ぼす影響を表すグラフである。It is a graph showing the influence which acts on the zinc density | concentration (Zn density | concentration) in brown rice when using the Cd reduction material in a seedling raising stage and / or foliar application. 育苗段階及び/又は葉面散布においてCd低減用資材を用いたときの、玄米中のマンガン濃度(Mn濃度)に及ぼす影響を表すグラフである。It is a graph showing the influence which acts on the manganese density | concentration (Mn density | concentration) in brown rice when using the Cd reduction material in a seedling raising stage and / or foliar application. 育苗段階及び/又は葉面散布においてCd低減用資材を用いたときの、玄米中の銅濃度(Cu濃度)に及ぼす影響を表すグラフである。It is a graph showing the influence which acts on the copper density | concentration (Cu density | concentration) in brown rice when the Cd reduction material is used in a seedling raising stage and / or foliar application. Cd汚染土壌を用いて苗を生育させたときの、Cd低減用資材等の葉面散布が茎葉部におけるCd濃度に及ぼす影響を表すグラフである。It is a graph showing the influence which the foliar application of the Cd reduction material etc. has on the Cd concentration in the foliage when seedlings are grown using Cd-contaminated soil. Cd汚染土壌を用いて苗を生育させたときの、Cd低減用資材等の葉面散布が茎葉部におけるFe濃度に及ぼす影響を表すグラフである。It is a graph showing the influence which the foliar spraying of the Cd reduction material etc. has on the Fe concentration in the foliage when seedlings are grown using Cd-contaminated soil. Cd汚染土壌を用いて苗を生育させたときの、Cd低減用資材等の葉面散布が茎葉部におけるZn濃度に及ぼす影響を表すグラフである。It is a graph showing the influence which the foliar application of the Cd reduction material etc. has on the Zn concentration in the foliage when seedlings are grown using Cd-contaminated soil. Cd低減用資材中のFe濃度のイネの生育に及ぼす影響を草丈を指標として表すグラフである。It is a graph showing the influence which the density | concentration of Fe in the material for Cd reduction has on the growth of rice, using plant height as an index.

以下、本発明を詳しく説明する。
[1]カドミウム低減用資材
本発明のカドミウム低減用資材は、鉄源及び有機酸を溶解させた水溶液であり、この水溶液に含有されるFe濃度が20〜500ppmであって、止め葉が出現してからイネ科植物に葉面散布して用いられる。
The present invention will be described in detail below.
[1] Material for reducing cadmium The material for reducing cadmium according to the present invention is an aqueous solution in which an iron source and an organic acid are dissolved. The concentration of Fe contained in the aqueous solution is 20 to 500 ppm, and a stop leaf appears. After that, it is used by foliar spraying on grasses.

前記「鉄源」は、水に溶解させることができる限り、特に限定されず、鉄粉及び鉄元素を有する各種の化合物を用いることができる。鉄粉としては、ミルスケールを還元して製造される還元鉄粉、溶鋼を水でアトマイズして製造されるアトマイズ鉄粉等の各種の鉄粉が挙げられる。また、鉄元素を有する化合物としては、酸化第一鉄、酸化第二鉄、硫酸第一鉄、硫酸第二鉄、塩化第一鉄、塩化第二鉄、硝酸第一鉄、硝酸第二鉄、硫化第一鉄、硫化第二鉄、製鋼工程等で発生するミルスケール等が挙げられる。これらの鉄源は1種のみ用いてもよく、2種以上を併用してもよい。   The “iron source” is not particularly limited as long as it can be dissolved in water, and various compounds having iron powder and an iron element can be used. Examples of the iron powder include various iron powders such as reduced iron powder produced by reducing a mill scale and atomized iron powder produced by atomizing molten steel with water. Moreover, as a compound which has an iron element, ferrous oxide, ferric oxide, ferrous sulfate, ferric sulfate, ferrous chloride, ferric chloride, ferrous nitrate, ferric nitrate, Examples thereof include ferrous sulfide, ferric sulfide, and a mill scale generated in a steel making process. These iron sources may be used alone or in combination of two or more.

前記「有機酸」は、水に溶解して、鉄と錯体を形成することができる限り、特に限定されず、各種の有機酸を用いることができる。この有機酸としては、酢酸、シュウ酸、クエン酸、リンゴ酸、酒石酸等のカルボキシル基を有する有機酸、クエン酸、リンゴ酸、酒石酸等のカルボキシル基及びヒドロキシル基を有する有機酸、アスコルビン酸等のヒドロキシル基を有する有機酸が挙げられる。これらの有機酸のうちでは、カルボキシル基及びヒドロキシル基のうちの少なくとも一方を有し、カルボキシル基及びヒドロキシル基の合計が2個以上である、シュウ酸、クエン酸、リンゴ酸、酒石酸、アスコルビン酸等の有機酸が好ましい。このような有機酸であれば、鉄と錯体を形成し易く、且つこの錯体がより安定して存在し得る。これらの有機酸は1種のみ用いてもよく、2種以上を併用してもよい。   The “organic acid” is not particularly limited as long as it can be dissolved in water to form a complex with iron, and various organic acids can be used. Examples of the organic acid include organic acids having a carboxyl group such as acetic acid, oxalic acid, citric acid, malic acid and tartaric acid, organic acids having a carboxyl group and hydroxyl group such as citric acid, malic acid and tartaric acid, and ascorbic acid. An organic acid having a hydroxyl group may be mentioned. Among these organic acids, oxalic acid, citric acid, malic acid, tartaric acid, ascorbic acid, etc. having at least one of a carboxyl group and a hydroxyl group and a total of two or more carboxyl groups and hydroxyl groups The organic acid is preferred. With such an organic acid, it is easy to form a complex with iron, and this complex can exist more stably. These organic acids may be used alone or in combination of two or more.

前記「水溶液」を構成する水は、特に限定されず、種々の水を用いることができる。この水は、純水及びイオン交換水等の高度に精製された水であってもよく、水道水、工業用水、農業用水及び地下水等の水であってもよい。また、これらが混合された水であってもよい。   The water constituting the “aqueous solution” is not particularly limited, and various types of water can be used. This water may be highly purified water such as pure water and ion exchange water, or may be water such as tap water, industrial water, agricultural water, and underground water. Moreover, the water in which these were mixed may be sufficient.

水溶液の調製方法も特に限定されないが、本発明のCd低減用資材では、Fe濃度が極めて低いため、通常、所定量の鉄が含有される水溶液を直接調製するのではなく、高濃度の鉄が含有される原液を調製し、その後、原液を水により希釈し、所定量の鉄が含有される水溶液として用いられる。原液は、例えば、容器に水を投入し、その後、鉄源粉末と有機酸粉末とを一括して投入し、撹拌し、混合して調製することができる。また、容器に水を投入し、その後、有機酸粉末を投入し、撹拌して混合し、次いで、鉄源粉末を投入し、撹拌し、混合して調製することもできる。更に、容器に鉄源粉末と有機酸粉末とを一括して、又は順次投入し、粉末のまま混合し、その後、水を投入し、撹拌し、混合して調製することもできる。また、希釈方法も特に限定されず、例えば、原液を水に投入して希釈してもよく、水に原液を投入して希釈してもよく、原液と農薬及び他の葉面散布剤等とを混合して希釈してもよい。更に、原液の調製時、鉄源粉末及び有機酸粉末の溶解を促進するため、必要に応じて30〜50℃程度に加温することもできる。   The method for preparing the aqueous solution is not particularly limited, but the Cd reducing material of the present invention has an extremely low Fe concentration. Therefore, an aqueous solution containing a predetermined amount of iron is not usually prepared directly. A stock solution to be contained is prepared, and then the stock solution is diluted with water and used as an aqueous solution containing a predetermined amount of iron. The stock solution can be prepared, for example, by charging water into a container, and then charging the iron source powder and the organic acid powder all at once, stirring, and mixing. Alternatively, water can be added to the container, and then the organic acid powder can be added and mixed by stirring, and then the iron source powder can be added, stirred and mixed. Further, the iron source powder and the organic acid powder may be charged all at once or sequentially into the container, mixed as the powder, and then charged with water, stirred and mixed. Also, the dilution method is not particularly limited. For example, the stock solution may be diluted by adding it to water, or it may be diluted by adding the stock solution to water, and the stock solution, pesticide and other foliar spraying agents, etc. May be mixed and diluted. Furthermore, in order to promote dissolution of the iron source powder and the organic acid powder during the preparation of the stock solution, it can be heated to about 30 to 50 ° C. as necessary.

水溶液に含有されるFe濃度は20ppm以上であり、Fe濃度が20ppm未満であると、茎葉部、種子等の地上部、特に食用に供される種子、例えば、玄米等におけるカドミウムの含有量を十分に低減させることができず、玄米等を食用に供することができなくなることがある。一方、Fe濃度が高くなるとともにカドミウムの含有量を低減させる作用も高くなるため好ましいが、Fe濃度が高過ぎると、植物の生育が阻害される、及び玄米等の種子の収穫量が減少する等の悪影響を及ぼす虞がある。そのため、Fe濃度は20〜500ppmである。   The Fe concentration contained in the aqueous solution is 20 ppm or more, and if the Fe concentration is less than 20 ppm, the cadmium content in the above-ground parts such as foliage parts and seeds, especially seeds used for food, such as brown rice, is sufficient. In some cases, brown rice or the like cannot be used for food. On the other hand, it is preferable because the action of reducing the cadmium content is increased as the Fe concentration is increased. However, when the Fe concentration is too high, the growth of plants is inhibited, and the yield of seeds such as brown rice is reduced. There is a risk of adverse effects. Therefore, the Fe concentration is 20 to 500 ppm.

また、カドミウム含有量低減の作用と、植物の生育阻害等とを併せて考えるとともに、カドミウム含有量低減の作用のためには十分であり、且つ高過ぎないFe濃度という観点で、Fe濃度は、500ppm以下であり、200ppm以下であることが好ましい。即ち、Fe濃度は、20〜500ppmであり、60〜200ppmであることが好ましい。 Moreover, while considering the effect | action of cadmium content reduction | decrease, plant growth inhibition, etc. together, it is sufficient for the effect | action of cadmium content reduction | decrease, and also from a viewpoint of Fe concentration which is not too high, Fe concentration is 500 ppm or less , preferably 200 ppm or less. That is, the Fe concentration is 20 to 500 ppm , and preferably 60 to 200 ppm.

更に、水溶液に含有される鉄は安定して溶解されていることが好ましい。本発明のCd低減用資材は、前記のように原液を希釈して用いられるが、植物に吸収されるまで鉄が安定して溶解しているためには、pH変動によって鉄の沈殿が生じないことが好ましい。また、農薬及び他の葉面散布剤と混合し、中性付近で使用してもよい。例えば、Cd低減用資材のpHを7.0に調整し、3日間静置した後のFe濃度が、pH調整直後のFe濃度の80%以上、特に90%以上、更に95%以上、即ち、溶存率が80%以上、特に90%以上、更に95%以上であることが好ましい。
鉄の溶存率(%)=(3日間静置後のFe濃度/pH調整直後のFe濃度)×100
Furthermore, it is preferable that iron contained in the aqueous solution is stably dissolved. The Cd reducing material of the present invention is used by diluting the stock solution as described above. However, since iron is stably dissolved until it is absorbed by plants, iron precipitation does not occur due to pH fluctuations. It is preferable. Further, it may be mixed with agricultural chemicals and other foliar sprays and used near neutrality. For example, the Fe concentration after adjusting the pH of the Cd reducing material to 7.0 and standing for 3 days is 80% or more, particularly 90% or more, more preferably 95% or more of the Fe concentration immediately after pH adjustment, The dissolution rate is preferably 80% or more, particularly 90% or more, and more preferably 95% or more.
Iron dissolution rate (%) = (Fe concentration after standing for 3 days / Fe concentration immediately after pH adjustment) × 100

また、イネ科植物は多数あるが、本発明では、特に種子が食用に供されるイネ科植物が対象となり、前記「イネ科植物」としては、イネ、コムギ、オオムギ、トウモロコシ、カラスムギ、ライムギ、キビ、ヒエ、アワ、サトウキビ等が挙げられる。これらのイネ科植物のうちでは、食用として特に多量に供給され、消費されているイネ、コムギ、オオムギ、トウモロコシが、カドミウム低減の対象となる主たるイネ科植物である。   In addition, there are a large number of gramineous plants, but in the present invention, particularly gramineous plants whose seeds are used for food, the above-mentioned `` gramineous plants '' include rice, wheat, barley, corn, oats, rye, Examples include millet, millet, millet, and sugarcane. Among these gramineous plants, rice, wheat, barley, and corn, which are supplied and consumed particularly in large quantities for food, are the main gramineous plants targeted for cadmium reduction.

Cd低減用資材は、止め葉が出現してからイネ科植物に葉面散布して用いられる。この葉面散布では、通常、全ての葉にCd低減用資材が可能な限り均等に散布され、葉から種子へのカドミウムの転流が抑えられる。散布方法は特に限定されないが、農薬の散布に用いられる一般的な散布器を使用し、ノズルから噴出されるCd低減用資材を、葉の上方から散布、又は下方から吹き上げるようにして散布することができる。 The Cd reducing material is used by foliar application to a grass plant after the stop leaf appears . In this foliar application, the Cd reduction material is normally applied as evenly as possible to all the leaves, and cadmium translocation from the leaves to the seeds is suppressed. The spraying method is not particularly limited, but using a general sprayer used for spraying agricultural chemicals, spray the material for Cd reduction ejected from the nozzle by spraying from above the leaves or blowing from below. Can do.

[2]カドミウム低減方法
本発明のカドミウム低減方法は、本発明のカドミウム低減用資材を、止め葉が出現してからイネ科植物の葉面に散布し、イネ科植物の種子に含有されるカドミウムを低減させるCd低減方法である。
このCd低減方法において用いられるCd低減用資材における「鉄源」、「水溶液に含有されるFe濃度」、「有機酸」、「水溶液」、「イネ科植物」及び「葉面散布」については、前記[1]におけるそれぞれの記載をそのまま適用することができる。
[2] Cadmium reduction method The cadmium reduction method of the present invention is the cadmium reduction method of the present invention, wherein the material for cadmium reduction of the present invention is sprayed on the leaf surface of a grass family plant after the appearance of the stop leaf, and contained in the seeds of the grass family plant. This is a Cd reduction method for reducing.
Regarding the “iron source”, “Fe concentration contained in aqueous solution”, “organic acid”, “aqueous solution”, “grass plant” and “foliar application” in the Cd reducing material used in this Cd reduction method, Each description in [1] can be applied as it is.

このCd低減方法では、Cd低減用資材は、止め葉が出現してからイネ科植物の葉面に散布され、葉から種子へのカドミウムの転流が抑えられ、種子、例えば、玄米に含有されるカドミウムが低減される。この葉面散布は、例えば、イネの場合、田植えをしてから早稲では50日経過した頃、晩稲では80日経過した頃に実施される。この止め葉が出現してから収穫期までの期間に、Cd低減用資材を葉面に散布することにより、種子に含有されるカドミウムを十分に低減させることができる。   In this Cd reduction method, the Cd reduction material is sprayed on the leaf surface of the grass family plant after the appearance of the stop leaf, the cadmium translocation from the leaf to the seed is suppressed, and contained in the seed, for example, brown rice. Cadmium is reduced. For example, in the case of rice, this foliar spraying is performed when 50 days have passed since rice planting and 80 days have passed since late rice. By spraying the Cd reducing material on the leaf surface during the period from the appearance of this stop leaf to the harvesting period, the cadmium contained in the seed can be sufficiently reduced.

Cd低減用資材を葉面に散布する頻度は特に限定されないが、1〜5日間隔、特に2〜5日間隔、更に3〜5日間隔とすることができる。また、散布の間隔は等間隔である必要はなく、生育状況等をみながら、適宜、前記の間隔で散布することができる。更に、初期の段階では、より間隔があくときがあってもよく、例えば、8〜14日間散布しなくても、その前後で前記の間隔で散布すれば、種子に含有されるカドミウムを十分に低減させることができる。   The frequency of spraying the Cd reducing material on the leaf surface is not particularly limited, but may be 1 to 5 days, particularly 2 to 5 days, and further 3 to 5 days. Further, the intervals of spraying need not be equal, and can be sprayed at the above-mentioned intervals as appropriate while observing the growth situation. Furthermore, in the initial stage, there may be a case where there is a longer interval. For example, even if it is not sprayed for 8 to 14 days, if it is sprayed at the intervals before and after that, the cadmium contained in the seeds can be sufficiently obtained. Can be reduced.

以下、実施例により本発明を具体的に説明する。
実施例1
[1]Cd低減用資材原液の作製
35℃の水250リットルにクエン酸35kgを溶解させ、その後、水酸化マグネシウムを2.3kg、炭酸カルシウムを1.8kg添加した。次いで、酸化第一鉄を7kg添加し、24時間以上攪拌し、Fe濃度15000ppmの水溶液を調製した。その後、目開き1.0μmの一次フィルターと、目開き0.2μmの二次フィルターとを用いて水溶液を濾過し、Cd低減用資材の原液を作製した。
Hereinafter, the present invention will be described specifically by way of examples.
Example 1
[1] Preparation of Cd reducing material stock solution 35 kg of citric acid was dissolved in 250 liters of water at 35 ° C., and then 2.3 kg of magnesium hydroxide and 1.8 kg of calcium carbonate were added. Next, 7 kg of ferrous oxide was added and stirred for 24 hours or more to prepare an aqueous solution with an Fe concentration of 15000 ppm. Thereafter, the aqueous solution was filtered using a primary filter having a mesh opening of 1.0 μm and a secondary filter having a mesh opening of 0.2 μm to prepare a stock solution of Cd reducing material.

[2]葉面散布圃場試験
(1)試験方法
イネの品種として「ヒノヒカリ」を使用し、プール育苗時、原液の希釈液を用いた苗と、用いない苗とに分けて育苗した。希釈液を用いる場合は、原液を水により30000倍に希釈してFe濃度を0.5ppmとした希釈液を、2日に1回取り替える方法で育苗した。この育苗は野外で実施した。また、播種から28日経過後、苗を18.2×55mの面積の水田圃場に移植した。移植は、圃場を12区画に分画し、そのうちの6つの区画にCd低減用資材を用いて育苗した苗、他の6つの区画にCd低減用資材を用いないで育苗した苗を移植した。尚、各々の区画に一条あたり120株の苗を8条植えた。
[2] Foliar spray field test (1) Test method “Hinohikari” was used as a rice cultivar, and the seedlings were bred separately into seedlings using a diluted solution of the stock solution and seedlings not used at the time of pool seedling raising. In the case of using the diluted solution, seedlings were grown by a method in which the diluted solution was diluted 30000 times with water to make the Fe concentration 0.5 ppm and replaced once every two days. This seedling was carried out outdoors. Further, after 28 days from sowing, seedlings were transplanted to a paddy field having an area of 18.2 × 55 m. In the transplantation, the field was divided into 12 sections, and seedlings grown using Cd reduction materials were transplanted into 6 sections, and seedlings grown without using Cd reduction materials were transplanted into the other 6 sections. In addition, 8 seedlings of 120 strains per line were planted in each section.

田植え後は随時湛水し、2008年、9月15日から9月25日までは落水し、その後は収穫直前の10月9日に落水した。次いで、希釈液を用いた区画と、用いなかった区画とから、それぞれ3区画づつを選び、止め葉が出現してからCd低減用資材を葉面散布した。葉面散布は雨天でない日に実施し、日時は、2008年、8月18(原液の希釈倍率;750倍、Fe濃度;20ppm、散布量;17.7L/区画)、22日(原液の希釈倍率;350倍、Fe濃度;43ppm、散布量;18.4L/区画)の2日間、9月3(原液の希釈倍率;350倍、Fe濃度;43ppm、散布量;31.1L/区画)、4(散布量;31.1L/区画)、9(散布量;23.0L/区画)、14(散布量;23.0L/区画)、16(散布量;23.0L/区画)、20(散布量;26.5L/区画)、24(散布量;23.0L/区画)、27日(散布量;27.6L/区画)の8日間、及び10月3(散布量;23.0L/区画)、9(散布量;23.0L/区画)、13(散布量;23.0L/区画)、15日(散布量;23.0L/区画)の4日間(9月4日から10月15日までは原液の希釈倍率;250倍、Fe濃度;60ppmの希釈液を用いた。)、計14日間で、夕刻に散布した。また、育苗時に原液の希釈液を用いた区画と、用いなかった区画の各々の他の3区画にはCd低減用資材を散布しなかった。   After rice planting, it was flooded from time to time, and it fell from September 15th to September 25th in 2008. After that, it fell on October 9th, just before harvesting. Next, three sections were selected from the sections using the diluent and the sections not used, and the Cd reduction material was sprayed on the foliage after the stop leaf appeared. Foliar spraying was carried out on a non-rainy day, and the date was August 18, 2008 (dilution ratio of stock solution: 750 times, Fe concentration: 20 ppm, spraying amount: 17.7 L / section), 22 days (dilution of stock solution) Magnification: 350 times, Fe concentration: 43 ppm, application rate: 18.4 L / compartment, 2 days, September 3 (dilution ratio of stock solution: 350 times, Fe concentration: 43 ppm, application rate: 31.1 L / compartment), 4 (spraying amount; 31.1 L / compartment), 9 (spraying amount; 23.0 L / compartment), 14 (spraying amount; 23.0 L / compartment), 16 (spraying amount; 23.0 L / compartment), 20 ( Application amount: 26.5 L / compartment), 24 (application amount: 23.0 L / compartment), 27 days (application amount: 27.6 L / compartment) for 8 days, and October 3 (application amount: 23.0 L / compartment) (Compartment), 9 (spreading amount; 23.0 L / compartment), 13 (spraying amount; 23.0 L / compartment), 5 days (spreading amount: 23.0 L / compartment) for 4 days (from September 4 to October 15 the dilution ratio of the stock solution: 250 times, Fe concentration: 60 ppm dilution) was used in total 14 It was sprayed in the evening in the day. Moreover, the Cd reduction material was not sprayed on the other three sections of the section using the diluted solution of the undiluted solution at the time of seedling raising and the section not used.

(2)評価方法
(a)玄米の収穫量
希釈液を用いずに育苗(図1〜4では「苗処理無し」と表記する。)し、葉面散布をしなかった区画(図1〜4では「葉面散布無し」と表記する。)(以下、「区画A」という。)、希釈液を用いずに育苗し、葉面散布をした区画(図1〜4では「葉面散布有り」と表記する。)(以下、「区画B」という。)、希釈液を用いて育苗(図1〜4では「苗処理有り」と表記する。)し、葉面散布をしなかった区画(以下、「区画C」という。)、及び希釈液を用いて育苗し、葉面散布をした区画(以下、「区画D」という。)、の各々の区画から2箇所、合計10mから株を切り取り玄米を収穫し、1m当たりの玄米の収穫量を測定した。
(2) Evaluation method (a) Harvested amount of brown rice Plants grown without using a diluent (indicated as “no seedling treatment” in FIGS. 1 to 4) and not sprayed with leaves (FIGS. 1 to 4) (Hereinafter referred to as “section A”), a section where seedlings were grown without using a diluent and the leaves were sprayed (in FIGS. 1 to 4 “with leaf application”). (Hereinafter referred to as “section B”), the seedlings that were grown using the diluent (indicated as “seedling treatment” in FIGS. 1 to 4), and the foliar spray was not applied (hereinafter referred to as “seedling treatment”). , And “division C”), and 2 divisions from each division of the seedlings that were grown using the diluent and sprayed with leaves (hereinafter referred to as “division D”), from 10 m 2 in total. harvested brown rice was measured yield of rice per 1 m 2.

(b)玄米中のCd濃度及びFe濃度
各々の区画について2箇所、合計面積10m当たりの種子をサンプリングし、これらの種子中からそれぞれ玄米10粒を採種し、各々の玄米を、30質量%濃度の硝酸と超純水(ミリポア社製の超純水製造装置により製造された商品名「ミリQ水」)との質量比1:3の混合液が入れられた別々のポリテトラフルオロエチレン製の分解瓶に投入し、その後、マイクロウェーブ硝酸分解装置(CEM社製、型式「MAS XPRESS」)により硝酸で分解した。次いで、分解液を用いて、CdはICP−MAS分析法により、Feは2,2’−ビピリジン発色法により測定した。同様の操作により、全12区画について分析し、評価した。分析値は、乾物種子重あたりの存在量(濃度)である。
(B) Cd concentration and Fe concentration in brown rice Samples per 10 m 2 of total area are sampled at two locations in each section, 10 grains of brown rice are sampled from these seeds, and 30% by mass of each brown rice Made of separate polytetrafluoroethylene containing a mixture of nitric acid with a concentration of 1: 3 and a mass ratio of 1: 3 between ultrapure water (trade name “MilliQ water” manufactured by Millipore ultrapure water production equipment) Was then decomposed with nitric acid using a microwave nitric acid decomposition apparatus (CEM, model “MAS XPPRESS”). Next, using the decomposition solution, Cd was measured by ICP-MAS analysis, and Fe was measured by 2,2′-bipyridine coloring method. By the same operation, all 12 compartments were analyzed and evaluated. The analytical value is the abundance (concentration) per dry matter seed weight.

(3)評価結果
図1の玄米の収穫量をみると、区画B、区画C、及び区画D、のいずれの区画においても、区画Aと比べて、玄米の収穫量に有意な差はないことが分かる。このことから、本発明のCd低減用資材は、育苗時に用いても、止め葉が出現してから葉面散布しても、イネの生育に害を及ぼしていないと考えられる。
図1において、区画Aの平均値は503.0g/m[棒グラフの値(以下、同様である。)]、最大値は531.3g/m、最小値は451.7g/m、標準偏差は36.5[棒グラフの上部に記載(以下、同様である。)]、区画Bの平均値は537.0g/m、最大値は544.0g/m、最小値は532.9g/m、標準偏差は5.0、区画Cの平均値は500.0g/m、最大値は546.1g/m、最小値は514.1g/m、標準偏差は45.2、区画Dの平均値は481.0g/m、最大値は498.5g/m、最小値は472.0g/m、標準偏差は12.5である。
(3) Evaluation results Looking at the yield of brown rice in FIG. 1, there is no significant difference in the yield of brown rice in any of the sections B, C and D compared to section A. I understand. From this, it is considered that the Cd reducing material of the present invention does not harm the growth of rice even when it is used at the time of seedling raising, or when the leaf surface is sprayed after the stop leaf appears.
In FIG. 1, the average value of the section A is 503.0 g / m 2 [bar graph value (hereinafter the same)], the maximum value is 531.3 g / m 2 , the minimum value is 451.7 g / m 2 , The standard deviation is 36.5 [described at the top of the bar graph (the same applies hereinafter)], the average value of the section B is 537.0 g / m 2 , the maximum value is 544.0 g / m 2 , and the minimum value is 532. 9 g / m 2 , standard deviation is 5.0, the average value of section C is 500.0 g / m 2 , the maximum value is 546.1 g / m 2 , the minimum value is 514.1 g / m 2 , and the standard deviation is 45. 2, the average value of the section D is 481.0 g / m 2 , the maximum value is 498.5 g / m 2 , the minimum value is 472.0 g / m 2 , and the standard deviation is 12.5.

また、図2の収穫後の玄米中のCd濃度をみると、希釈液の苗への散布はCd濃度に影響を及ぼさないが、止め葉が出現してからCd低減用資材を葉面散布したときはCd濃度が5%有意で低いことが分かる。更に、図3のように、葉面散布により玄米中のFe濃度が高くなっており、玄米中のCd濃度とFe濃度との相関をプロットした図4によれば、Fe濃度が高くなるとともに、Cd濃度が低下していることが分かる。
図2において、区画Aの平均値は186.0ppb、最大値は201.3ppb、最小値は168.7ppb、標準偏差は13、7、区画Bの平均値は195.0ppb、最大値は209.9ppb、最小値は181、6ppb、標準偏差は11.3、区画Cの平均値は169.5ppb、最大値は186.3ppb、最小値は151.7ppb、標準偏差は10.9、区画Dの平均値は162.4ppb、最大値は168.4ppb、最小値は146.1ppb、標準偏差は6.7である。また、図3において、区画Aの平均値は7.2ppm、最大値は7.9ppm、最小値は6.2ppm、標準偏差は0.5、区画Bの平均値は7.1ppm、最大値は8.3ppm、最小値は6.5ppm、標準偏差は0.6、区画Cの平均値は8.8ppm、最大値は10.5ppm、最小値は7.7ppm、標準偏差は0.9、区画Dの平均値は9.3ppm、最大値は11.1ppm、最小値は7.9ppm、標準偏差は1.0である。更に、図4における直線は一次回帰直線である。
In addition, when the Cd concentration in the brown rice after harvest shown in FIG. 2 is observed, the spraying of the diluted solution on the seedlings does not affect the Cd concentration, but the Cd reducing material was sprayed on the foliage after the stop leaf appeared. Sometimes the Cd concentration is 5% significant and low. Furthermore, as shown in FIG. 3, the Fe concentration in brown rice is increased by foliar application, and according to FIG. 4 in which the correlation between Cd concentration and Fe concentration in brown rice is plotted, the Fe concentration increases, It can be seen that the Cd concentration is lowered.
In FIG. 2, the average value of the section A is 186.0 ppb, the maximum value is 201.3 ppb, the minimum value is 168.7 ppb, the standard deviation is 13, 7, the average value of the section B is 195.0 ppb, and the maximum value is 209.ppb. 9 ppb, minimum value 181, 6 ppb, standard deviation 11.3, section C average value 169.5 ppb, maximum value 186.3 ppb, minimum value 151.7 ppb, standard deviation 10.9, section D The average value is 162.4 ppb, the maximum value is 168.4 ppb, the minimum value is 146.1 ppb, and the standard deviation is 6.7. In FIG. 3, the average value of Section A is 7.2 ppm, the maximum value is 7.9 ppm, the minimum value is 6.2 ppm, the standard deviation is 0.5, the average value of Section B is 7.1 ppm, and the maximum value is 8.3 ppm, the minimum value is 6.5 ppm, the standard deviation is 0.6, the average value of the section C is 8.8 ppm, the maximum value is 10.5 ppm, the minimum value is 7.7 ppm, the standard deviation is 0.9, the section The average value of D is 9.3 ppm, the maximum value is 11.1 ppm, the minimum value is 7.9 ppm, and the standard deviation is 1.0. Furthermore, the straight line in FIG. 4 is a linear regression line.

更に、前記(2)、(b)において玄米中のCd濃度及びFe濃度を測定したときに、併せて乾物種子重当たりの存在量としてZn濃度、Mn濃度及びCu濃度を測定した。図5はZn濃度、図6はMn濃度、図7はCu濃度であり、Zn濃度は葉面散布により高くなり、Mn濃度は葉面散布の影響が小さく、Cu濃度は葉面散布により高くなる傾向があることが分かる。図5において、区画Aの平均値は15.4ppm、最大値は16.3ppm、最小値は14.6ppm、標準偏差は0.5、区画Bの平均値は14.5ppm、最大値は15.2ppm、最小値は13.5ppm、標準偏差は0.5、区画Cの平均値は17.1ppm、最大値は18.2ppm、最小値は16.1ppm、標準偏差は0.6、区画Dの平均値は16.9ppm、最大値は17.8ppm、最小値は15.9ppm、標準偏差は0.7である。また、図6において、区画Aの平均値は16.8ppm、最大値は18.1ppm、最小値は15.1ppm、標準偏差は1.1、区画Bの平均値は15.6ppm、最大値は16.8ppm、最小値は13.3ppm、標準偏差は1.3、区画Cの平均値は17.2ppm、最大値は19.3ppm、最小値は15.0ppm、標準偏差は1.4、区画Dの平均値は16.6ppm、最大値は17.6ppm、最小値は15.2ppm、標準偏差は0.7である。更に、図7において、区画Aの平均値は1.08ppm、最大値は1.86ppm、最小値は0.76ppm、標準偏差は0.34、区画Bの平均値は0.79ppm、最大値は0.97ppm、最小値は0.70ppm、標準偏差は0.08、区画Cの平均値は1.16ppm、最大値は1.59ppm、最小値は0.94ppm、標準偏差は0.17、区画Dの平均値は0.99ppm、最大値は1.13ppm、最小値は0.84ppm、標準偏差は0.10である。   Furthermore, when the Cd concentration and Fe concentration in the brown rice were measured in the above (2) and (b), the Zn concentration, Mn concentration and Cu concentration were also measured as abundance per dry matter seed weight. 5 shows the Zn concentration, FIG. 6 shows the Mn concentration, and FIG. 7 shows the Cu concentration. The Zn concentration is increased by foliar application, the Mn concentration is less affected by foliar application, and the Cu concentration is increased by foliar application. It turns out that there is a tendency. In FIG. 5, the average value of section A is 15.4 ppm, the maximum value is 16.3 ppm, the minimum value is 14.6 ppm, the standard deviation is 0.5, the average value of section B is 14.5 ppm, and the maximum value is 15. 2ppm, minimum value is 13.5ppm, standard deviation is 0.5, average value of section C is 17.1ppm, maximum value is 18.2ppm, minimum value is 16.1ppm, standard deviation is 0.6, section D The average value is 16.9 ppm, the maximum value is 17.8 ppm, the minimum value is 15.9 ppm, and the standard deviation is 0.7. In FIG. 6, the average value of section A is 16.8 ppm, the maximum value is 18.1 ppm, the minimum value is 15.1 ppm, the standard deviation is 1.1, the average value of section B is 15.6 ppm, and the maximum value is 16.8 ppm, minimum value 13.3 ppm, standard deviation 1.3, section C average value 17.2 ppm, maximum value 19.3 ppm, minimum value 15.0 ppm, standard deviation 1.4, section The average value of D is 16.6 ppm, the maximum value is 17.6 ppm, the minimum value is 15.2 ppm, and the standard deviation is 0.7. Furthermore, in FIG. 7, the average value of the section A is 1.08 ppm, the maximum value is 1.86 ppm, the minimum value is 0.76 ppm, the standard deviation is 0.34, the average value of the section B is 0.79 ppm, and the maximum value is 0.97ppm, minimum value is 0.70ppm, standard deviation is 0.08, average value of section C is 1.16ppm, maximum value is 1.59ppm, minimum value is 0.94ppm, standard deviation is 0.17, section The average value of D is 0.99 ppm, the maximum value is 1.13 ppm, the minimum value is 0.84 ppm, and the standard deviation is 0.10.

比較例1
イネの品種「ヒノヒカリ」の幼植物を使用し、葉面へのFeやZnの散布が、茎葉部におけるCd蓄積、即ち、根からのCdの吸収、移行に及ぼす影響をみた。
(1)試験方法
試験用ポットに、Cd汚染地帯の汚染土壌(0.1N塩酸抽出法で測定したCd濃度が1.8ppmである。)を投入し、その後、イネの種子を播き、播種から2週間経過後に葉面散布を開始した。また、処理区画としては、展着剤のみを用いた対照区、Cd低減用資材散布区(図8では「Fe散布区」と表記する。)、Zn溶解水溶液散布区(図8では「Zn散布区」と表記する。)、Cd低減用資材及びZn溶解水溶液散布区(図8では「Fe・Zn散布区」と表記する。)の4区画とした。
Comparative Example 1
Using seedlings of the rice cultivar “Hinohikari”, the effect of application of Fe and Zn on the leaf surface on Cd accumulation in the foliage, that is, absorption and migration of Cd from the roots was observed.
(1) Test method Contaminated soil in a Cd-contaminated zone (Cd concentration measured by 0.1N hydrochloric acid extraction method is 1.8 ppm) is put into a test pot, and then rice seeds are sown and seeded. After 2 weeks, foliar spraying was started. In addition, as a processing section, a control section using only a spreading agent, a Cd reduction material spray section (referred to as “Fe spray section” in FIG. 8), a Zn-dissolved aqueous solution spray section (“Zn spray” in FIG. 8). ), And Cd reduction material and Zn-dissolved aqueous solution spraying zone (indicated as “Fe · Zn spraying zone” in FIG. 8).

試験液としては、Cd低減用資材原液をFe濃度が200ppmとなるように希釈したCd低減用資材と、ZnClをZn濃度が20ppmとなるように溶解させたZn溶解水溶液(ZnはICP−AES分析法により定量した。)とを使用し、散布量は、ポット当たり毎回40ミリリットルとした(Cd低減用資材及びZn溶解水溶液散布区では、各々の試験液をそれぞれ40ミリリットル散布した。)。 As a test solution, a Cd reduction material stock solution diluted with a Fe concentration of 200 ppm, a Zn solution containing ZnCl 2 dissolved to a Zn concentration of 20 ppm (Zn is ICP-AES). The amount applied was 40 ml each time per pot (40 ml of each test solution was sprayed in the Cd reduction material and Zn-dissolved aqueous solution spray section).

また、試験液の散布は、ある日にCd低減用資材を散布すると、翌日、Zn溶解水溶液を散布するという方法で実施し、両試験液を同日に散布することはしなかった。更に、Cd低減用資材及びZn散布区では、両試験液を同時に散布することはせず、時間をおいて、又は日をかえて散布した。このようにして、各々の試験液をそれぞれ10回散布した。また、毎日、ポットの水位を観察し、適宜、水を加えて水位を維持し、播種から27日経過後、根本から地上部をサンプリングし、風乾後、Cd濃度を測定した。   The test solution was sprayed by a method of spraying a Zn-dissolved aqueous solution the next day when the Cd reduction material was sprayed on a certain day, and both test solutions were not sprayed on the same day. Furthermore, in the Cd reduction material and the Zn spraying zone, the two test solutions were not sprayed at the same time, but were sprayed after some time or in different days. Thus, each test solution was sprayed 10 times. Moreover, the water level of the pot was observed every day, water was appropriately added to maintain the water level, and after 27 days from sowing, the above-ground part was sampled from the root, air-dried, and the Cd concentration was measured.

(2)評価方法
風乾した植物体を細かく粉砕した後、約100mgを測り採り、前記実施例1の[2]、(2)、(b)に記載の方法と同様にしてCdを定量した。分析値は、地上部乾重量当たりの存在量(濃度)である。
(2) Evaluation method After finely pulverizing the air-dried plant, about 100 mg was measured and Cd was quantified in the same manner as described in [2], (2) and (b) of Example 1. The analytical value is the abundance (concentration) per dry weight on the ground.

(3)評価結果
図8によれば、播種から2週間経過後のイネ幼苗にCd低減用資材を散布しても、地上部のCd濃度は低減されず、寧ろ高くなっている。また、Cdと同族元素であるZn溶解水溶液を散布したとき、並びにCd低減用資材及びZn溶解水溶液を散布したとき、のいずれの場合も、地上部のCd濃度は低減されず、寧ろ高くなっている。これらのことから、止め葉が出現する前の生育初期段階では、Cd低減用資材を散布しても地上部のCd濃度は低減されないことが分かる。
図8において、対照区の平均値は9.3ppm、最大値は9.9ppm、最小値は8.6ppm、標準偏差は0.6、Fe散布区の平均値は10.1ppm、最大値は10.5ppm、最小値は9.4ppm、標準偏差は0.5、Zn散布区の平均値は11.0ppm、最大値は12.7ppm、最小値は10.1ppm、標準偏差は0.9、Fe・Zn散布区の平均値は10.7ppm、最大値は12.0ppm、最小値は10.0ppm、標準偏差は0.8である。
(3) Evaluation result According to FIG. 8, even if the Cd reduction material is sprayed on the rice seedlings after two weeks from sowing, the Cd concentration in the above-ground part is not reduced but rather becomes high. In addition, when spraying a Zn-dissolved aqueous solution, which is an element similar to Cd, and when spraying a Cd-reducing material and a Zn-dissolved aqueous solution, the Cd concentration in the above-ground part is not reduced but rather becomes high. Yes. From these facts, it is understood that the Cd concentration in the above-ground part is not reduced even when the Cd reducing material is sprayed in the initial growth stage before the stop leaf appears.
In FIG. 8, the average value in the control group is 9.3 ppm, the maximum value is 9.9 ppm, the minimum value is 8.6 ppm, the standard deviation is 0.6, the average value in the Fe-spreading group is 10.1 ppm, and the maximum value is 10 0.5 ppm, minimum value is 9.4 ppm, standard deviation is 0.5, average value of Zn scattering zone is 11.0 ppm, maximum value is 12.7 ppm, minimum value is 10.1 ppm, standard deviation is 0.9, Fe -The average value of Zn scattering zone is 10.7 ppm, the maximum value is 12.0 ppm, the minimum value is 10.0 ppm, and the standard deviation is 0.8.

また、前記(2)において地上部のCd濃度を測定したときに、併せて乾物重量当たりの存在量としてFe濃度及びZn濃度を測定した。図9はFe濃度、図10はZn濃度であり、散布の有無により濃度に大差があるという結果になっている。図9において、対照区の平均値は594ppm、最大値は700ppm、最小値は486ppm、標準偏差は89、Fe散布区の平均値は7508ppm、最大値は7789ppm、最小値は7180pm、標準偏差は254、Zn散布区の平均値は655ppm、最大値は716ppm、最小値は574ppm、標準偏差は59、Fe・Zn散布区の平均値は7489ppm、最大値は8562ppm、最小値は6675ppm、標準偏差は801である。また、図10において、対照区の平均値は488ppm、最大値は529ppm、最小値は455ppm、標準偏差は27、Fe散布区の平均値は499ppm、最大値は525ppm、最小値は479pm、標準偏差は23、Zn散布区の平均値は8093ppm、最大値は8962ppm、最小値は7163ppm、標準偏差は708、Fe・Zn散布区の平均値は6423ppm、最大値は6778ppm、最小値は5683ppm、標準偏差は507である。   Further, when the Cd concentration in the above-ground part was measured in the above (2), the Fe concentration and the Zn concentration were also measured as the abundance per dry matter weight. FIG. 9 shows the Fe concentration, and FIG. 10 shows the Zn concentration. As a result, there is a large difference in the concentration depending on the presence or absence of scattering. In FIG. 9, the average value of the control group is 594 ppm, the maximum value is 700 ppm, the minimum value is 486 ppm, the standard deviation is 89, the average value of the Fe-spreading group is 7508 ppm, the maximum value is 7789 ppm, the minimum value is 7180 pm, and the standard deviation is 254 The average value of Zn scattering zone is 655 ppm, the maximum value is 716 ppm, the minimum value is 574 ppm, the standard deviation is 59, the average value of Fe · Zn scattering zone is 7289 ppm, the maximum value is 8562 ppm, the minimum value is 6675 ppm, the standard deviation is 801 It is. In FIG. 10, the average value of the control group is 488 ppm, the maximum value is 529 ppm, the minimum value is 455 ppm, the standard deviation is 27, the average value of the Fe-spreading group is 499 ppm, the maximum value is 525 ppm, the minimum value is 479 pm, and the standard deviation 23, the average value of Zn spraying zone is 8093 ppm, the maximum value is 8962 ppm, the minimum value is 7163 ppm, the standard deviation is 708, the average value of Fe · Zn spraying zone is 6423 ppm, the maximum value is 6778 ppm, the minimum value is 5683 ppm, the standard deviation Is 507.

実験例1(Cd低減用資材におけるFe濃度の上限値の確認)
イネの種子を水に浸漬し(播種日;2010年3月15日)、1週間経過後に、発芽した苗を3本1組として容量500ミリリットルのポットに移植した(移植日;3月22日)。土壌としては市販の培養土(花ごころ社製、商品名「花ちゃん培養土」)を用いた。移植から11日経過後より2週間に亘って、Cd低減用資材の散布を開始した。Cd低減用資材としては、原液を、Fe濃度が20ppm、100ppm、200ppm、500ppm、2500ppmとなるように希釈した希釈液を用いた。散布量は、1ポット(3本植え)1回当たり10ミリリットルとし、4月2、6、8、9、13、14、16日の合計7回スプレーにより散布した。このようにしてイネを生育させ、草丈を指標として生育状況を評価した。結果は表1及び図11のとおりである。
Experimental Example 1 (Confirmation of upper limit of Fe concentration in Cd reduction material)
Rice seeds were immersed in water (seeding date; March 15, 2010), and after one week, the germinated seedlings were transplanted as a set of three seedlings into a 500 ml pot (transplanting date; March 22). ). As the soil, commercially available soil (manufactured by Hanagokoro Co., Ltd., trade name “Hana-chan culture soil”) was used. The application of the Cd-reducing material was started over 2 weeks after 11 days from the transplantation. As the Cd reducing material, a diluted solution obtained by diluting the stock solution so that the Fe concentration was 20 ppm, 100 ppm, 200 ppm, 500 ppm, 2500 ppm was used. The amount of application was 10 ml per pot (3 plants), and sprayed a total of 7 times on April 2, 6, 8, 9, 13, 14, and 16 days. Rice was grown in this way, and the growth status was evaluated using plant height as an index. The results are as shown in Table 1 and FIG.

Figure 0005625502
Figure 0005625502

表1及び図11によれば、Fe濃度が500ppmの希釈液までは、葉面散布を施していないイネ(Fe濃度0ppmの場合)と同等で、草丈は十分に伸び順調に生育した。一方、Fe濃度が2500ppmの希釈液では、草丈の伸びが80%程度に抑制されることが分かった。これらの結果は、散布されるCd低減用資材における好ましいFe濃度が1600程度ppm以下、特に500ppm以下であることを裏付けるものである。   According to Table 1 and FIG. 11, up to a diluted solution with an Fe concentration of 500 ppm, it was equivalent to rice not subjected to foliar application (when the Fe concentration was 0 ppm), and the plant height grew sufficiently and grew smoothly. On the other hand, it was found that the elongation of the plant height was suppressed to about 80% in the diluted solution having an Fe concentration of 2500 ppm. These results confirm that the preferable Fe concentration in the dispersed Cd reducing material is about 1600 ppm or less, particularly 500 ppm or less.

実験例2(水溶液中の鉄安定性の評価)
(1)水溶液の調製
クエン酸、リンゴ酸、酒石酸及びアスコルビン酸を、それぞれ1ミリモル測り採り、90ミリリットルの蒸留水に溶解させた。その後、硫酸第一鉄・七水和物を0.1ミリモル(27.8mg)測り採り、各々の水溶液に溶解させた。次いで、水酸化ナトリウムを用いて、それぞれの水溶液のpHを5、6又は7に調整し、更に蒸留水を加えて水溶液の全量を100ミリリットルとした。
Experimental Example 2 (Evaluation of iron stability in aqueous solution)
(1) Preparation of aqueous solution Citric acid, malic acid, tartaric acid, and ascorbic acid were each measured at 1 mmol and dissolved in 90 ml of distilled water. Thereafter, 0.1 mmol (27.8 mg) of ferrous sulfate heptahydrate was measured and dissolved in each aqueous solution. Next, the pH of each aqueous solution was adjusted to 5, 6 or 7 using sodium hydroxide, and distilled water was further added to make the total amount of the aqueous solution 100 ml.

(2)Fe濃度の測定
前記(1)の調製直後の各々の水溶液を10ミリリットルづつ採取し、これにアスコルビン酸を200〜300mg投入し、10〜30分間還元反応をさせ、その後、2,2’−ビピリジン発色法によりFe濃度を測定した。また、3日間静置したそれぞれの水溶液についても同様にしてFe濃度を測定し、鉄の溶存率を算出して水溶液中の鉄安定性を評価した。結果は表2のとおりである。
鉄の溶存率(%)=(3日間静置後のFe濃度/pH調整直後のFe濃度)×100
(2) Measurement of Fe concentration 10 ml of each aqueous solution immediately after the preparation of (1) was sampled, 200 to 300 mg of ascorbic acid was added thereto, and a reduction reaction was performed for 10 to 30 minutes. The Fe concentration was measured by the '-bipyridine coloring method. Moreover, Fe concentration was measured similarly about each aqueous solution left still for 3 days, the dissolution rate of iron was computed, and the iron stability in aqueous solution was evaluated. The results are shown in Table 2.
Iron dissolution rate (%) = (Fe concentration after standing for 3 days / Fe concentration immediately after pH adjustment) × 100

Figure 0005625502
3日間静置後のFe濃度がpH調整直後のFe濃度を上回った場合は、溶存率は100%とした。
Figure 0005625502
When the Fe concentration after standing for 3 days exceeded the Fe concentration immediately after pH adjustment, the dissolution rate was set to 100%.

表2によれば、クエン酸及び酒石酸では、pHにかかわりなく溶存率は100%であり、水溶液に鉄が安定して溶解されていることが分かる。また、リンゴ酸ではpHが高めのときに溶存率が少し低下し、アスコルビン酸ではpHが低めのときに溶存率が僅かに低下するが、いずれも十分な溶存率が保たれており、安定性が高いことが分かる。一方、有機酸を用いなかった場合は、pHが低ければ安定性は十分であるが、pHが高くなるとともに安定性が低下し、実際に散布して用いるときには問題である。   According to Table 2, it can be seen that in citric acid and tartaric acid, the dissolution rate is 100% regardless of the pH, and iron is stably dissolved in the aqueous solution. Also, with malic acid, the dissolution rate slightly decreases when the pH is high, and with ascorbic acid, the dissolution rate decreases slightly when the pH is low, but both have a sufficient dissolution rate and are stable. Is high. On the other hand, when no organic acid is used, the stability is sufficient if the pH is low, but the stability decreases as the pH increases, and this is a problem when actually used after being sprayed.

本発明は、イネ科植物の茎葉部、種子等の地上部、特に食用に供される種子、例えば、玄米におけるカドミウムの含有量を低減させる技術分野において利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized in the technical field which reduces content of cadmium in above-ground parts, such as a foliage part of a Gramineae plant, a seed, especially a seed provided for food, for example, brown rice.

Claims (4)

鉄源及び有機酸を溶解させた水溶液であり、該水溶液に含有される鉄濃度が20〜500ppmであって、止め葉が出現してからイネ科植物に葉面散布して用いられることを特徴とするカドミウム低減用資材。 It is an aqueous solution in which an iron source and an organic acid are dissolved, and the iron concentration contained in the aqueous solution is 20 to 500 ppm, and it is used by foliar application to a gramineous plant after a stop leaf appears. Characteristic material for reducing cadmium. 前記有機酸は、カルボキシル基及びヒドロキシル基のうちの少なくとも一方を有し、該カルボキシル基及び該ヒドロキシル基の合計が2個以上である請求項1に記載のカドミウム低減用資材。   The cadmium reduction material according to claim 1, wherein the organic acid has at least one of a carboxyl group and a hydroxyl group, and the total of the carboxyl group and the hydroxyl group is 2 or more. 前記有機酸は、クエン酸、リンゴ酸、酒石酸及びアスコルビン酸のうちの少なくとも1種である請求項1又は2に記載のカドミウム低減用資材。   The cadmium reduction material according to claim 1 or 2, wherein the organic acid is at least one of citric acid, malic acid, tartaric acid, and ascorbic acid. 請求項1乃至3のうちのいずれか1項に記載のカドミウム低減用資材を、止め葉が出現してからイネ科植物の葉面に散布し、イネ科植物の種子に含有されるカドミウムを低減させることを特徴とするカドミウム低減方法。   4. The material for reducing cadmium according to any one of claims 1 to 3 is sprayed on a leaf surface of a grass family plant after appearance of a stop leaf to reduce cadmium contained in a seed of the grass family plant. A cadmium reduction method comprising:
JP2010127247A 2010-06-02 2010-06-02 Cadmium reduction material and cadmium reduction method using the same Active JP5625502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010127247A JP5625502B2 (en) 2010-06-02 2010-06-02 Cadmium reduction material and cadmium reduction method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010127247A JP5625502B2 (en) 2010-06-02 2010-06-02 Cadmium reduction material and cadmium reduction method using the same

Publications (2)

Publication Number Publication Date
JP2011250744A JP2011250744A (en) 2011-12-15
JP5625502B2 true JP5625502B2 (en) 2014-11-19

Family

ID=45415262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010127247A Active JP5625502B2 (en) 2010-06-02 2010-06-02 Cadmium reduction material and cadmium reduction method using the same

Country Status (1)

Country Link
JP (1) JP5625502B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511303A (en) * 2018-11-27 2019-03-26 湖南省水稻研究所 A kind of method of administration dropping cadmium agent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105724428B (en) * 2016-03-02 2017-02-22 广东省生态环境与土壤研究所(广东省土壤科学博物馆) Foliage blocking agent capable of accurately regulating and controlling rice cadmium absorption transport related gene expression and application of foliage blocking agent
CN108967442B (en) * 2018-07-24 2020-06-05 广东省生态环境技术研究所 Ferrous modified selenium sol for inhibiting cadmium and arsenic accumulation of rice and preparation method and application thereof
CN110963851B (en) * 2019-11-18 2021-06-25 中国水稻研究所 Novel organic fertilizer for controlling rice heavy metal cadmium pollution or accumulation and preparation and application methods thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002355665A (en) * 2001-03-27 2002-12-10 Taiheiyo Cement Corp Method for cleaning soil containing cadmium
JP2003180165A (en) * 2001-12-18 2003-07-02 Eisai Seikaken Kk Plant nitric acid-reducing agent
WO2007007676A1 (en) * 2005-07-08 2007-01-18 National University Corporation Hokkaido University Method for cultivation of plant
JP4096208B2 (en) * 2005-07-29 2008-06-04 愛知製鋼株式会社 Iron supply agent for plant for alkaline soil and method for producing the same
JP4783123B2 (en) * 2005-11-15 2011-09-28 財団法人電力中央研究所 Genes that enhance plant iron transport
JP4550731B2 (en) * 2005-12-16 2010-09-22 興和株式会社 Purification method of cadmium contaminated soil
JP4638844B2 (en) * 2006-07-31 2011-02-23 電気化学工業株式会社 Agricultural materials
JP5291890B2 (en) * 2007-04-23 2013-09-18 雪印種苗株式会社 Rice with high zinc content
JP2009278881A (en) * 2008-05-20 2009-12-03 Ehime Univ Method for reducing cadmium content in unpolished rice

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109511303A (en) * 2018-11-27 2019-03-26 湖南省水稻研究所 A kind of method of administration dropping cadmium agent

Also Published As

Publication number Publication date
JP2011250744A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
Ehret et al. Production and quality of greenhouse roses in recirculating nutrient systems
Snyder et al. Silicon fertilization of rice on Everglades Histosols
Fagbenro et al. Effect of different levels of humic acid on the growth and nutrient uptake of teak seedlings
Brecht et al. Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustinegrass
EP0160210B1 (en) Combination fertilizer composition
CN104550207A (en) Novel method for metal-polluted soil restoration by plant
JP5625502B2 (en) Cadmium reduction material and cadmium reduction method using the same
CA3149921A1 (en) An additive for soil conditioning and an agricultural composition containing said additive for plant growth
JP3401501B2 (en) Agricultural and horticultural materials
CN86107852A (en) Be used to control the method for the compound of bryophyte, lichens, algae and mould and microbial pathogens
US20120122693A1 (en) Dry fertilizer with growth hormone-containing formulation and method of use and making
Ramesh et al. Synthesis of Mn3O4 nano complex using aqueous extract of Helianthus annuus seed cake and its effect on biological growth of Vigna radiata
WO2007114212A1 (en) Fertilizer composition, process for producing the same and method of use thereof
AU2019100208A4 (en) An additive for soil conditioning and an agricultural composition containing said additive for plant growth
JP3639456B2 (en) Plant growth promoter and fertilizer using the plant growth promoter
Malinowska The yield and content of Ti, Fe, Mn, Cu in celery leaves (Apium graveolens L. var. dulce Mill. Pers.) as a result of Tytanit application
JPH0676288B2 (en) Agricultural and horticultural germicides and plant disease control agents
JP2006055160A (en) Rare earth chelate compound-added agricultural bed soil and method for producing the same
EP3680223A1 (en) Mixture comprising an urease inhibitor (ui) and a nitrification inhibitor (ni) such as an ni mixture comprising 2-(3,4-dimethyl-1h-pyrazol-1-yl)succinic acid (dmpsa) and dicyandiamide (dcd)
AU2006200467B2 (en) Micronutrient chelate fertilizer
JP7454178B2 (en) Method and agent for promoting head-heading of head-forming leafy vegetables
DE102014100026A1 (en) Mixed-metallic crystalline orthophosphates for the time-controlled release of trace elements in rhizodermal and epidermal areas of plants
JP3158265B2 (en) Cultivation method of genoshoko
US20220112136A1 (en) Agricultural composition containing si clay and a base
MXPA06012265A (en) Use of nickel to correct growth disorders in plants.

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250