WO2007012493A1 - Kühlsystem für ein fahrzeug und verfahren zum betreiben eines kühlsystems - Google Patents

Kühlsystem für ein fahrzeug und verfahren zum betreiben eines kühlsystems Download PDF

Info

Publication number
WO2007012493A1
WO2007012493A1 PCT/EP2006/007473 EP2006007473W WO2007012493A1 WO 2007012493 A1 WO2007012493 A1 WO 2007012493A1 EP 2006007473 W EP2006007473 W EP 2006007473W WO 2007012493 A1 WO2007012493 A1 WO 2007012493A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
engine
coolant
cooling circuit
cooling system
Prior art date
Application number
PCT/EP2006/007473
Other languages
English (en)
French (fr)
Inventor
Uwe Haas
Thomas Anzenberger
Thomas Reuss
Günter ZITZLER
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Priority to US11/989,534 priority Critical patent/US8136488B2/en
Priority to CN2006800188480A priority patent/CN101184910B/zh
Priority to DE502006004883T priority patent/DE502006004883D1/de
Priority to EP06776478A priority patent/EP1913243B1/de
Publication of WO2007012493A1 publication Critical patent/WO2007012493A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/36Heat exchanger mixed fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures

Definitions

  • the invention relates to a cooling system for a vehicle according to the preamble of patent claim 1 and to a method for operating a cooling system according to the preamble of patent claim 14.
  • the main water cooler is divided into a high-temperature part and a low-temperature part. This division leads to problems with thermal stresses and reduces the cooling power that is needed for the actual engine cooling.
  • a cooling system in which an exhaust gas cooling device is integrated in an engine cooling circuit and is connected via a branch line and a return line with lines of the engine cooling circuit.
  • the exhaust gas cooling device can be decoupled from the engine, wherein a low-temperature circuit for cooling the exhaust gas cooling device is formed.
  • the decoupling is temperature dependent with the help of a thermostatic valve. Cooling water then circulates between the exhaust gas cooler and the engine cooler bypassing the engine.
  • a circulating pump is arranged for this purpose.
  • the return line is led from the cooling device in a leading from the engine to the radiator return line.
  • the cooling system according to the invention for a vehicle as well as the method according to the invention for operating a cooling system provide, in addition to the generic features, that a second cooling circuit can be coupled to a coolant return or to a coolant supply line on the output side, depending on operating conditions of an engine. Cooling of a cooling component in the second cooling circuit is ensured in all operating points of the engine.
  • the second cooling circuit is in particular a low-temperature circuit.
  • the engine cooling circuit for example, in a heating phase of the engine, remain virtually unaffected by the second cooling circuit.
  • the second coolant circuit branches off from the coolant supply line and couples again into the coolant supply line to the engine, wherein the second circuit is connected in parallel to the coolant supply line.
  • the second cooling circuit is parallel to the motor ' cooling circuit, if, for example, the second cooling circuit branches off from a coolant supply line and coupled into a coolant return. It is advantageously utilized that a cooling power requirement on a low-temperature part and on a high-temperature part of the cooling system rarely occurs simultaneously. For example, exhaust gas recirculation cooling is required only at partial load. In many operating points, the high-temperature cooling is only slightly loaded, eg with radiator thermostat in control mode) and can be used in principle for low-temperature cooling. The fact that no separate low-temperature cooler must be used, costs and space is saved.
  • cooling component in the second cooling circuit may preferably be provided an exhaust gas recirculation cooler, a transmission oil cooler and / or a charge air cooler.
  • a valve is arranged in the return line of the second cooling circuit, which depends on a coolant flow in the engine cooling circuit and / or an engine speed locks or opens a connecting line between the return line and the coolant return.
  • the valve closes automatically when exceeding a coolant volume flow in the engine cooling circuit and / or an engine speed.
  • the valve is preferably a check valve.
  • a first temperature measuring point is arranged in front of the cooling component and / or after a media outlet of a medium to be cooled from the cooling component, a second temperature measuring point. If the cooling component is e.g. an exhaust gas recirculation cooler, the temperature of the cooled exhaust gas and / or the temperature of the supplied coolant can be monitored.
  • the cooling component is e.g. an exhaust gas recirculation cooler
  • an electric pump is arranged in the second cooling circuit.
  • the electric pump is preferably an electric circulating pump. By the electric pump, a higher flow rate of the coolant is achieved in the second cooling circuit.
  • the electric pump is arranged in the branch line. Due to the arrangement of the electric pump in the branch line, the electric pump is arranged in front of the cooling component. This arrangement is advantageous for reasons of space.
  • the electric pump is arranged in the return line upstream of the valve.
  • the electric pump is hereby arranged after the cooling component. If the delivery rate of the pump is no longer sufficient, the valve, in particular a check valve, can open with increasing engine speed and thus increasing flow rate of a motor-driven pump arranged in the engine cooling circuit.
  • a unit for monitoring and / or controlling a flow rate of a coolant volume flow of the circulation pump is provided depending on a quantity of a medium to be cooled in the cooling component.
  • the electric pump can be controlled as required.
  • a branch of the return of the second cooling circuit is provided, the coolant in the coolant inlet of the engine cooling circuit between see engine radiator and engine introduces.
  • the coolant can enter a heating return to a pump inlet in the engine cooling circuit. The supply of the cooling component with coolant in the second cooling circuit is thus ensured at all operating points.
  • a thermostatic valve is provided for coupling the branch to the coolant supply line.
  • a valve in particular an electrically controlled throttle valve or a hose thermostat, is provided in the branch, which opens when the valve in front of the pump in the return line closes.
  • a check valve is provided in the branch downstream of the valve.
  • an additional cooler is provided to increase the cooling capacity between the engine radiator and the cooling component in the second cooling circuit.
  • the cooling system for a vehicle shown in the figure comprises an engine cooling circuit 39 in which a motor 18 is cooled, and a second cooling circuit 40 in which a cooling component 11 is cooled, e.g. an exhaust gas recirculation cooler.
  • An engine radiator 10 supplies the engine 18 with coolant via a coolant inlet 28 ', 28 and an adjoining coolant inlet 30, which leads to an inlet of a pump 17, preferably a water pump, the motor driven and their flow rate is therefore dependent on the speed of the motor 18 ,
  • a surge tank 26 is connected via a feed line 27.
  • the coolant enters the engine 18 and from there via a first coolant return 31 back to the engine radiator 10 and a second coolant return. run 32 to a arranged in the coolant inlet 30 main thermostat 16, which is preferably designed as a two-cell thermostat.
  • the main thermostat 16 has a connection for a short circuit line of the coolant inlet 30, the radiator return 32 and a heating return 33 of a heating unit 25, to which a part of the coolant 18 heated by the engine is supplied.
  • the second cooling circuit 40 is coolant from the engine radiator 10 via a branch 29 from the coolant inlet 28 ', 28 fed.
  • a first temperature measuring point 21 for detecting a coolant temperature is arranged in front of the cooling component 11.
  • the cooling component 11 preferably designed as an exhaust gas recirculation cooler enters a hot exhaust gas 19 and from the cooling component 11, a cooled exhaust gas 20 from.
  • the temperature of the medium cooled in the cooling component 11, e.g. Exhaust gas detectable. From a return 34 branches off a return line 37.
  • a preferably designed as an electric circulation pump 13 is arranged.
  • the electric circulation pump is a water pump.
  • the electric pump 13 is arranged depending on the embodiment, either before or after the cooling component 11.
  • both embodiments, both the type before the cooling component 11 in the branch line 29, and the arrangement of the pump 13 after the cooling component 11 in the return line 37 and in front of the valve 14 are shown, wherein the pump 13 in the embodiment before the cooling component 11 is dashed lines and drawn in the embodiment of the cooling component 11 with a solid line.
  • a preferably designed as a check valve 14 valve is arranged in the return line 37. If the pump 13 is arranged in the return line 37, this is arranged between the branch of the line 34 and the valve 14. From the valve 14, a connecting line 38 leads to the coolant return 31 of the engine cooling circuit 39.
  • a valve 12 is arranged, which is preferably designed as an electrically controllable throttle valve or as a hose thermostat.
  • a check valve 15 may connect thereto.
  • a connecting line 36 connects the return line 35 to the heating return 33 and thus to the coolant supply line 30.
  • the pump 13 receives drive signals from a unit 23 for monitoring and / or controlling a delivery rate of a coolant volume flow of the electric pump 13.
  • a preferred exhaust gas recirculation cooler as the cooling component 11 e.g. an operating point specific exhaust gas recirculation amount 24 of a motor control can be specified and the delivery rate of the pump 13 can be set accordingly.
  • the cooling component 11 requires, e.g. for cooling recirculated exhaust gas, cold coolant.
  • the coolant preferably cooling water
  • the valve 12 remains closed, and cold coolant is conveyed by the pump 13 back to an input of the engine radiator 10.
  • a low-temperature circuit between the cooling component 11 and the engine radiator 10 is formed.
  • a coolant volume flow in the low-temperature circuit consisting of the outlet region 28 'of the coolant inlet 28, the branch line 29, the cooling component 11, the return 34, the return line 37, the connecting line 38 and the inlet region 31' of the cooling water return 31, by the unit 23 to the Operating point specific desired quantity 24 can be adapted to cooled, recirculated exhaust gas.
  • the temperatures of the coolant at the first temperature measuring point 21 before the cooling component 11 and the exhaust gas temperature at the second temperature measuring point 22 after the Ruletaustory from the cooling component 11 can optionally be controlled by the cooling component 11 flow rate of the pump 13 and possibly. Be monitored.
  • valve 12 in the return line 35 it is achieved that the low-temperature cooling water can not affect the heating behavior of the motor 18. Namely, as long as the engine speed remains low, the delivery rate of the pump 13 is sufficient to maintain a circulating low-temperature cycle between the cooling component 11 and the engine radiator 10.
  • the valve 14 closes and prevents backward flow of the cooling component 11.
  • the valve 12 opens in the return 35 and allows a direct flow of coolant into the heating return 33 and the coolant inlet 30 and the pump inlet of the pump 17 in front of the engine 10. The cooling by the cooling component 11 is thus ensured in all operating points.
  • an additional cooler can optionally be integrated between the engine radiator 10 and the cooling component 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)

Abstract

Die Erfindung betrifft ein Kühlsystem für ein Fahrzeug mit einem Motor (18), einem Motorkühler (10) und einem Motorkühlkreislauf (39), wobei ein zweiter Kühlkreislauf (40) mit mindestens einer Kühlkomponente (11) an den Motorkühler (10) ankoppelbar ist und mit einer Abzweigleitung (29) von einer Kühlmittelzuleitung (28) des Motorkühlkreislaufs (39) und mit einer Rückleitung (34, 37, 38) von der Kühlkomponente (11) mit einem Kühlmittelrücklauf (31) des Motorkühlkreislaufs (39) verbunden ist. Es wird vorgeschlagen, dass der zweite Kühlkreislauf (38) abhängig von Betriebsbedingungen des Motors (10) aus- gangsseitig wahlweise an den Kühlmittelrücklauf (31) oder an eine Kühlmittelzuleitung (30) koppelbar ist.

Description

Kühlsystem für ein Fahrzeug und Verfahren zum Betreiben eines
Kühlsystems
Die Erfindung betrifft ein Kühlsystem für ein Fahrzeug gemäß dem Oberbegriff des Patentanspruchs 1 und ein Verfahren zum Betreiben eines Kühlsystems gemäß dem Oberbegriff des Patentanspruchs 14.
In heutigen Fahrzeug-Kühlsystemen zirkuliert das Kühlmedium zwischen den zu kühlenden Bauteilen, z.B. dem Motor, der Lichtmaschine etc., und dem Kühler unabhängig von der Motorlast mit einer relativ hohen, thermostatgeregelten Temperatur von etwa 1000C, um Reibungsverluste am Motor möglichst zu minimieren. Wird zur Kühlung von bestimmten Bauteilen oder Betriebsmedien, z.B. Getriebe, Abgasrückführung, Ladeluft etc., Kühlwasser mit wesentlich geringerer Temperatur benötigt, so wird ein eigener Kreislauf mit separatem Niedertemperaturkühler notwendig. Oft wird der Hauptwasserkühler konstruktiv unterteilt und ein Teil als Niedertemperaturkühler verwendet. Am Fahrzeug sind entweder zwei Kühler verbaut, ein Hochtemperaturkühler und ein Niedrigtemperaturkühler, was Bauraumprobleme schafft, oder der Hauptwasserkühler ist in einen Hochtemperaturteil und einen Niedertemperaturteil unterteilt. Diese Unterteilung führt zu Problemen mit Thermospannungen und verringert die Kühlleistung, die zur eigentlichen Motorkühlung benötigt wird.
Aus der DE 196 33 190 A1 ist bereits ein Kühlsystem bekannt, bei der eine Abgaskühleinrichtung in einen Motorkühlkreislauf integriert ist und über eine Abzweigleitung und eine Rückleitung mit Leitungen des Motorkühlkreislaufs verbunden ist. Bei einer Aufwärmphase des Motors kann die Abgaskühleinrichtung vom Motor entkoppelt werden, wobei ein Niedertemperaturkreislauf zur Kühlung der Abgaskühleinrichtung gebildet wird. Die Entkopplung erfolgt temperaturabhängig mit Hilfe eines Thermostatventils. Kühlwasser zirkuliert dann zwischen Abgaskühleinrichtung und Motorkühler unter Umgehung des Motors. In der Abzweigleitung, die von einer vom Motorkühler zum Motor führenden Kühlmittelleitung abzweigt, ist dazu eine Umwälzpumpe angeordnet. Die Rückleitung ist von der Kühleinrichtung in eine vom Motor zu dem Motorkühler führende Rückleitung geführt. Es ist Aufgabe der vorliegenden Erfindung, ausgehend vom Stand der Technik ein Kühlsystem zu schaffen, das einen bedarfsgerechten verbesserten Niedertemperaturkreislauf zur Verfügung stellt.
Die Aufgabe wird erfindungsgemäß mit den Merkmalen des Patentanspruchs 1 und des Patentanspruchs 14 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in Unteransprüchen angegeben.
Das erfindungsgemäße Kühlsystem für ein Fahrzeug wie auch das erfindungsgemäße Verfahren zum Betreiben eines Kühlsystems sehen neben den gattungsgemäßen Merkmalen vor, dass ein zweiter Kühlkreislauf abhängig von Betriebsbedingungen eines Motors ausgangsseitig wahlweise an einen Kühlmittelrücklauf oder an eine Kühlmittelzuleitung koppelbar ist. Eine Kühlung einer Kühlkomponente im zweiten Kühlkreislauf ist in allen Betriebspunkten des Motors gewährleistet. Der zweite Kühlkreislauf ist insbesondere ein Niedertemperaturkreislauf. Gleichzeitig kann der Motorkühlkreislauf, z.B. in einer Aufheizphase des Motors, vom zweiten Kühlkreislauf praktisch unbeeinflusst bleiben. In einem Betriebszustand zweigt der zweite Kühlmittelkreislauf von der Kühlmittelzuleitung ab und koppelt wieder in die Kühlmittelzuleitung zum Motor ein, wobei der zweite Kreislauf parallel zur Kühlmittelzuleitung geschaltet ist. Wird der Kühlkreislauf abhängig von Betriebsbedingungen umgeschaltet, verläuft der zweite Kühlkreis parallel zum Motor- ' kühlkreis, wenn z.B. der zweite Kühlkreis von einer Kühlmittelzuleitung abzweigt und in einen Kühlmittelrücklauf einkoppelt. Es wird vorteilhaft ausgenutzt, dass eine Kühlleistungsanforderung an einen Niedertemperaturteil und an einen Hochtemperaturteil des Kühlsystems selten gleichzeitig auftritt. Beispielsweise wird die Abgasrückführungs- Kühlung nur bei Teillast benötigt. In vielen Betriebspunkten ist die Hochtemperatur- Kühlung nur gering belastet, z.B. mit Kühlerthermostat im Regelbetrieb) und kann prinzipiell zur Niedertemperaturkühlung verwendet werden. Dadurch, dass kein separater Niedertemperaturkühler eingesetzt werden muss, werden Kosten und Bauraum gespart. Es werden auch Probleme mit Thermospannungen am Motorkühler, die bei Unterteilung des Motorkühlers in einen Hochtemperaturteil und einen Niedertemperaturteil entstehen würden, vermieden. Als Kühlkomponente im zweiten Kühlkreislauf kann bevorzugt ein Abgasrückführungskühler, ein Getriebeölkühler und/oder ein Ladeluftkühler vorgesehen sein.
In einer günstigen Ausgestaltung ist in der Rückleitung des zweiten Kühlkreislaufs ein Ventil angeordnet, das abhängig von einer Kühlmittelstrommenge im Motorkühlkreislauf und/oder einer Motordrehzahl eine Verbindungsleitung zwischen der Rückleitung und dem Kühlmittelrücklauf sperrt oder öffnet.
In einer günstigen Ausgestaltung schließt das Ventil bei Übersteigen eines Kühlmittelvolumenstroms im Motorkühlkreislauf und/oder einer Motordrehzahl selbsttätig. Das Ventil ist bevorzugt ein Rückschlagventil.
In einer günstigen Ausgestaltung ist vor der Kühlkomponente eine erste Temperaturmessstelle angeordnet und/oder nach einem Medienaustritt eines zu kühlenden Mediums aus der Kühlkomponente eine zweite Temperaturmessstelle. Ist die Kühlkomponente z.B. ein Abgasrückführungskühler, kann die Temperatur des gekühlten Abgases und/oder der Temperatur des zugeführten Kühlmittels überwacht werden.
In einer günstigen Ausgestaltung ist im zweiten Kühlkreislauf eine elektrische Pumpe angeordnet. Die elektrische Pumpe ist bevorzugt eine elektrische Umwälzpumpe. Durch die elektrische Pumpe wird eine höhere Fördermenge des Kühlmittels im zweiten Kühlkreislauf erreicht.
In einer günstigen Ausgestaltung ist die elektrische Pumpe in der Abzweigleitung angeordnet. Auf Grund der Anordnung der elektrischen Pumpe in der Abzweigleitung ist die elektrische Pumpe vor der Kühlkomponente angeordnet. Diese Anordnung ist aus Platzgründen vorteilhaft.
In einer günstigen Ausgestaltung ist die elektrische Pumpe in der Rückleitung stromaufwärts des Ventils angeordnet. Die elektrische Pumpe ist hiermit nach der Kühlkomponente angeordnet. Reicht die Förderleistung der Pumpe nicht mehr aus, kann das Ventil, insbesondere ein Rückschlagventil, bei ansteigender Motordrehzahl und damit ansteigender Fördermenge einer im Motorkühlkreis angeordneten motorangetriebenen Pumpe öffnen.
In einer günstigen Ausgestaltung ist eine Einheit zur Überwachung und/oder Steuerung einer Fördermenge eines Kühlmittelvolumenstroms der Umwälzpumpe abhängig von einer Menge eines in der Kühlkomponente zu kühlenden Mediums vorgesehen. Die e- lektrische Pumpe kann nach Bedarf angesteuert werden.
In einer günstigen Ausgestaltung ist ein Abzweig des Rücklaufs des zweiten Kühlkreislaufs vorgesehen, der Kühlmittel in den Kühlmittelzulauf des Motorkühlkreislaufs zwi- sehen Motorkühler und Motor einführt. Das Kühlmittel kann z.B. in einen Heizungsrücklauf zu einem Pumpeneintritt im Motorkühlkreis gelangen. Die Versorgung der Kühlkomponente mit Kühlmittel im zweiten Kühlkreislauf ist damit in allen Betriebspunkten sichergestellt.
In einer günstigen Ausgestaltung ist zur Kopplung des Abzweigs an die Kühlmittelzuleitung ein Thermostatventil vorgesehen.
In einer günstigen Ausgestaltung ist in dem Abzweig ein Ventil, insbesondere ein elektrisch angesteuertes Drosselventil oder ein Schlauchthermostat, vorgesehen, das öffnet, wenn das Ventil vor der Pumpe in der Rückleitung schließt.
In einer günstigen Ausgestaltung ist im Abzweig stromabwärts des Ventils ein Rückschlagventil vorgesehen.
In einer günstigen Ausgestaltung ist zur Steigerung der Kühlleistung zwischen dem Motorkühler und der Kühlkomponente im zweiten Kühlkreislauf ein zusätzlicher Kühler vorgesehen.
Weitere Ausbildungsformen und Aspekte der Erfindung werden unabhängig von einer Zusammenfassung in den Patentansprüchen ohne Beschränkung der Allgemeinheit im Folgenden anhand einer Zeichnung näher erläutert. Dabei zeigt die einzige Figur eine Prinzipskizze einer Verschaltung eines bevorzugten Kühlsystems.
Das in der Figur dargestellte Kühlsystem für ein Fahrzeug umfasst einen Motorkühlkreislauf 39, in dem ein Motor 18 gekühlt wird, und einen zweiten Kühlkreislauf 40, in dem eine Kühlkomponente 11 gekühlt wird, z.B. ein Abgasrückführungskühler.
Ein Motorkühler 10 versorgt den Motor 18 mit Kühlmittel über einen Kühlmittelzulauf 28', 28 und einen daran anschließenden Kühlmittelzulauf 30, der an einem Eingang einer Pumpe 17 führt, bevorzugt einer Wasserpumpe, die motorangetrieben und deren Fördermenge daher abhängig von der Drehzahl des Motors 18 ist. Am Motorkühler 10 bzw. dessen Kühlmittelzulauf 28 ist ein Ausgleichsbehälter 26 über eine Zuleitung 27 angeschlossen.
Über die Pumpe 17 gelangt das Kühlmittel in den Motor 18 und von dort über einen ersten Kühlmittelrücklauf 31 zurück zum Motorkühler 10 und einen zweiten Kühlmittelrück- lauf 32 zu einem im Kühlmittelzulauf 30 angeordneten Hauptthermostat 16, der bevorzugt als Zweitellerthermostat ausgebildet ist. Der Hauptthermostat 16 weist einen An- schluss für eine Kurzschlussleitung des Kühlmittelzulaufs 30, den Kühlerrücklauf 32 und einen Heizungsrücklauf 33 einer Heizungseinheit 25 auf, der ein Teil des vom Motor 18 erwärmten Kühlmittels zugeführt wird.
Dem zweiten Kühlkreislauf 40 ist Kühlmittel vom Motorkühler 10 über einen Abzweig 29 aus dessen Kühlmittelzulauf 28', 28 zuführbar. Im Abzweig 29 ist vor der Kühlkomponente 11 eine erste Temperaturmessstelle 21 zur Erfassung einer Kühlmitteltemperatur angeordnet. In die bevorzugt als Abgasrückführungskühler ausgebildete Kühlkomponente 11 tritt ein heißes Abgas 19 ein und aus der Kühlkomponente 11 ein gekühltes Abgas 20 aus. An einer zweiten Temperaturmessstelle 22 ist die Temperatur des in der Kühlkomponente 11 gekühlten Mediums, z.B. Abgas, erfassbar. Aus einem Rücklauf 34 zweigt eine Rückleitung 37 ab.
In dem zweiten Kühlkreislauf 40 ist eine bevorzugt als elektrische Umwälzpumpe ausgebildete Pumpe 13 angeordnet. Bevorzugt ist die elektrische Umwälzpumpe eine Wasserpumpe. Hierbei ist die elektrische Pumpe 13 je nach Ausführungsbeispiel entweder vor oder nach der Kühlkomponente 11 angeordnet. In der Figur sind beide Ausführungsar- ten, sowohl die Artordnung vor der Kühlkomponente 11 in der Abzweigleitung 29, als auch die Anordnung der Pumpe 13 nach der Kühlkomponente 11 in der Rückleitung 37 und vor dem Ventil 14 gezeigt, wobei die Pumpe 13 in der Ausführungsart vor der Kühlkomponente 11 strichliert und in der Ausführungsart nach der Kühlkomponente 11 mit durchgezogener Linie gezeichnet ist.
In der Rückleitung 37 ist ein bevorzugt als Rückschlagventil ausgebildetes Ventil 14 angeordnet. Ist die Pumpe 13 in der Rückleitung 37 angeordnet, ist diese zwischen dem Abzweig aus der Leitung 34 und dem Ventil 14 angeordnet. Von dem Ventil 14 führt eine Verbindungsleitung 38 zum Kühlmittelrücklauf 31 des Motorkühlkreislaufs 39.
Aus dem Rücklauf 34 zweigt eine weitere Rückleitung 35 ab, in der ein Ventil 12 angeordnet ist, das bevorzugt als elektrisch ansteuerbares Drosselventil oder als Schlauchthermostat ausgebildet ist. Optional kann sich ein Rückschlagventil 15 daran anschließen. Eine Verbindungsleitung 36 verbindet die Rückleitung 35 mit dem Heizungsrücklauf 33 und damit mit der Kühlmittelzuleitung 30. . .
Die Pumpe 13 erhält Ansteuersignale von einer Einheit 23 zur Überwachung und/oder Steuerung einer Fördermenge eines Kühlmittelvolumenstroms der elektrischen Pumpe 13. Bei einem bevorzugten Abgasrückführungskühler als Kühlkomponente 11 kann z.B. eine betriebspunktspezifische Abgasrückführungsmenge 24 einer Motorsteuerung vorgegeben werden und die Fördermenge der Pumpe 13 entsprechend eingestellt werden.
Die Kühlkomponente 11 benötigt, z.B. zur Kühlung von rückgeführtem Abgas, kaltes Kühlmittel. Zu diesem Zweck wird das Kühlmittel, bevorzugt Kühlwasser, am Ausgang des Motorkühlers 10 entnommen. Wird am Ausgang der Kühlkomponente 11 ein Temperaturgrenzwert nicht erreicht, so bleibt das Ventil 12 geschlossen, und kaltes Kühlmittel wird von der Pumpe 13 wieder zurück an einen Eingang des Motorkühlers 10 gefördert. Ein Niedertemperaturkreislauf zwischen der Kühlkomponente 11 und dem Motorkühler 10 entsteht. Ein Kühlmittelvolumenstrom im Niedertemperaturkreis, bestehend aus dem Austrittsbereich 28' des Kühlmittelzulaufs 28, der Abzweigleitung 29, der Kühlkomponente 11 , des Rücklaufs 34, der Rückleitung 37, der Verbindungsleitung 38 und dem Eintrittsbereich 31' des Kühlwasserrücklaufs 31, kann durch die Einheit 23 an die betriebspunktspezifische Wunschmenge 24 an gekühltem, rückgeführtem Abgas angepasst werden. Durch die Temperaturen des Kühlmittels an der ersten Temperaturmessstelle 21 vor der Kühlkomponente 11 und der Abgastemperatur an der zweiten Temperaturmessstelle 22 nach dem Medientautritt aus der Kühlkomponente 11 kann optional der durch die Kühlkomponente 11 fließende Förderstrom der Pumpe 13 geregelt und ggfs. überwacht werden.
Durch das Ventil 12 im Rücklauf 35 wird erreicht, dass das Niedertemperatur- Kühlwasser das Aufheizverhalten des Motors 18 nicht beeinträchtigen kann. Solange nämlich die Motordrehzahl gering bleibt, reicht die Förderleistung der Pumpe 13 aus, um einen zirkulierenden Niedertemperaturkreislauf zwischen der Kühlkomponente 11 und dem Motorkühler 10 aufrecht zu erhalten. Steigt die Motordrehzahl über einen Grenzwert, so schließt das Ventil 14 und verhindert eine rückwärtige Durchströmung der Kühlkomponente 11. Zu diesem Zeitpunkt öffnet das Ventil 12 im Rücklauf 35 und ermöglicht einen direkten Kühlmittelstrom in den Heizungsrücklauf 33 bzw. den Kühlmittelzulauf 30 und zum Pumpeneintritt der Pumpe 17 vor dem Motor 10. Die Kühlung durch die Kühlkomponente 11 ist damit in allen Betriebspunkten sichergestellt. Zur weiteren Steigerung der Kühlleistung kann zwischen dem Motorkühler 10 und der Kühlkomponente 11 noch optional ein zusätzlicher Kühler eingebunden werden. BEZUGSZEICHEN LISTE
Motorkühler Kühlkomponente Ventil Pumpe Ventil Rückschlagventil Hauptthermostat motorangetriebene Pumpe Motor Abgas vor Kühlkomponente ' " * Abgas nach Kühlkomponente Temperaturmessstelle nach Kühlkomponente Temperaturmessstelle vor Kühlkomponente - ■ • Überwachungseinheit betriebspunktspezifische Abgasrückführungsmenge der Motorsteuerung Heizung Behälter Zuleitung Kühlmittelzuleitung ' Austrittsbereich aus Motorkühler Abzweig Kühlmittelzuleitung Kühlerrücklauf ' Eintrittsbereich in Motorkühler Kühlerrücklauf Heizungsrücklauf Rücklauf Abzweig Verbindungsleitung Rückleitung zu elektrischer Pumpe Verbindungsleitung Motorkühlkreislauf zweiter Kreislauf

Claims

PATENTANSPRÜCHE
1. Kühlsystem für ein Fahrzeug mit einem Motor (18), einem Motorkühler (10) und einem Motorkühlkreislauf (39), wobei ein zweiter Kühlkreislauf (40) mit mindestens einer Kühlkomponente (11) an den Motorkühler (10) ankoppelbar ist und mit einer Abzweigleitung (29) von einer Kühlmittelzuleitung (28) des Motorkühlkreislaufs (39) und mit einer Rückleitung (34, 37, 38) von der Kühlkomponente (11) mit einem Kühlmittelrücklauf (31) des Motorkühlkreislaufs (39) verbunden ist, dadurch gekennzeichnet, dass der zweite Kühlkreislauf (40) abhängig von Betriebsbedingungen des Motors (10) ausgangsseitig wahlweise an den Kühlmittelrücklauf (31) oder an eine Kühlmittelzuleitung (30) koppelbar ist.
2. Kühlsystem nach Anspruch 1 , dadurch gekennzeichnet, dass in der Rückleitung (37) des zweiten Kühlkreislaufs (40) ein Ventil (14) angeordnet ist, das ab- " '' hängig von einem Kühlmittelvolumenstrom im Motorkühlkreislauf (38) und/oder einer Motordrehzahl des Motors (18) eine Verbindungsleitung (38) zwischen der' Rückleitung (37) und dem Kühlmittelrücklauf (31) sperrt oder öffnet:
3. Kühlsystem nach Anspruch 1 , dadurch gekennzeichnet, dass das Ventil (14) bei Übersteigen eines Kühlmittelvolumenstroms und/oder einer Motordrehzahl selbsttätig schließt.
4. Kühlsystem nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass im zweiten Kühlkreislauf (40) eine elektrische Pumpe (13) angeordnet ist.
5. Kühlsystem nach Anspruch 4, dadurch gekennzeichnet, dass die elektrische Pumpe (13) stromaufwärts der Kühlkomponente (11) angeordnet ist.
6. Kühlsystem nach Anspruch 4, dadurch gekennzeichnet, dass die elektrische Pumpe (13) stromabwärts der Kühlkomponente (11) angeordnet ist.
7. Kühlsystem nach Anspruch 6, dadurch gekennzeichnet, dass die elektrische Pumpe (13) in der Rückleitung (37) stromaufwärts des Ventils (14) angeordnet ist.
8. Kühlsystem nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Einheit (23) zur Überwachung und/oder Steuerung einer Fördermenge eines Kühlmittelvolumenstroms der elektrischen Pumpe (13) abhängig von einer Menge eines in der Kühlkomponente (11) zu kühlenden Mediums vorgesehen ist.
9. Kühlsystem nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Abzweig (35, 36) des Rücklaufs (34) des zweiten Kühlkreislaufs (40) vorgesehen ist, der Kühlmittel in den Kühlmittelzulauf (30) des Motorkühlkreislaufs (39) zwischen Motorkühler (10) und Motor (18) einführt.
10. Kühlsystem nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zur Kopplung des Abzweigs (35, 36) an die Kühlmittelzuleitung (30) ein Thermostatventil (16) vorgesehen ist.
11. Kühlsystem nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass in dem Abzweig (35) ein Ventil (12) vorgesehen ist, das öffnet, wenn das Ventil (14) in der Rückleitung (37) schließt.
12. Kühlsystem nach zumindest einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass im Abzweig (35) stromabwärts des Ventils (12) ein Rückschlagventil (15) vorgesehen ist.
13. Kühlsystem nach zumindest einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Motorkühler (10) und der Kühlkomponente (11) im zweiten Kühlkreislauf (40) ein zusätzlicher Kühler vorgesehen ist.
14. Verfahren zum Betreiben eines Kühlsystem für ein Fahrzeug mit einem Motor (18), einem Motorkühler (10) und einem Motorkühlkreislauf (39), wobei ein zweiter Kühlkreislauf (40) mit mindestens einer Kühlkomponente (11) an den Motorkühler (10) angekoppelt wird und mit einer Abzweigleitung (28) von einer Kühlmittelzuleitung (29) des Motorkühlkreislaufs (39) und mit einer Rückleitung (34, 37, 38) von der Kühlkomponente (11) mit einem Kühlmittelrücklauf (31) des Motorkühlkreislaufs (39) verbunden wird, dadurch gekennzeichnet, dass der zweite Kühlkreislauf (40) abhängig von Betriebsbedingungen des Motors (10) aus-
. - O 20
gangsseitig wahlweise an den Kühlmittelrücklauf (31) oder an eine Kühlmittelzuleitung (30) gekoppelt wird.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass ein Kühlmittelvolumenstrom im zweiten Kühlkreislauf (40) abhängig von einer vorgegebenen Menge eines in der Kühlkomponente (11) zu kühlenden Mediums eingestellt wird.
PCT/EP2006/007473 2005-07-28 2006-07-27 Kühlsystem für ein fahrzeug und verfahren zum betreiben eines kühlsystems WO2007012493A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/989,534 US8136488B2 (en) 2005-07-28 2006-07-27 Cooling system for a vehicle, and method for the operation of a cooling system
CN2006800188480A CN101184910B (zh) 2005-07-28 2006-07-27 用于车辆的冷却系统和用于运行冷却系统的方法
DE502006004883T DE502006004883D1 (de) 2005-07-28 2006-07-27 Kühlsystem für ein fahrzeug und verfahren zum betreiben eines kühlsystems
EP06776478A EP1913243B1 (de) 2005-07-28 2006-07-27 Kühlsystem für ein fahrzeug und verfahren zum betreiben eines kühlsystems

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102005035297 2005-07-28
DE102005035297.9 2005-07-28
DE102006020951.6 2006-05-05
DE102006020951A DE102006020951A1 (de) 2005-07-28 2006-05-05 Kühlsystem für ein Fahrzeug und Verfahren zum Betreiben eines Kühlsystems

Publications (1)

Publication Number Publication Date
WO2007012493A1 true WO2007012493A1 (de) 2007-02-01

Family

ID=37398853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/007473 WO2007012493A1 (de) 2005-07-28 2006-07-27 Kühlsystem für ein fahrzeug und verfahren zum betreiben eines kühlsystems

Country Status (5)

Country Link
US (1) US8136488B2 (de)
EP (1) EP1913243B1 (de)
CN (1) CN101184910B (de)
DE (2) DE102006020951A1 (de)
WO (1) WO2007012493A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7669558B2 (en) * 2007-07-16 2010-03-02 Gm Global Technology Operations, Inc. Integrated vehicle cooling system
DE102008035880A1 (de) * 2008-08-01 2010-02-04 Behr Gmbh & Co. Kg Kühlanordnung eines Kraftfahrzeuges
DE102008037062A1 (de) * 2008-08-08 2010-02-11 Bayerische Motoren Werke Aktiengesellschaft Kühleinrichtung für eine Kraftfahrzeug-Brennkraftmaschine und Verfahren zum Betreiben derselben
DE102008042660A1 (de) * 2008-10-08 2010-04-15 Ford Global Technologies, LLC, Dearborn Flüssigkeitsgekühlte Brennkraftmaschine mit Ölkühler und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
IT1397042B1 (it) * 2009-03-25 2012-12-28 Ferrari Spa Sistema di raffreddamento per un veicolo con propulsione ibrida
DE102009020186B4 (de) * 2009-05-06 2011-07-14 Audi Ag, 85057 Ausfallsicherer Drehsteller für einen Kühlmittelkreislauf
DE102009057802B4 (de) * 2009-12-10 2021-01-21 Volkswagen Ag Kühlkreislauf für eine Brennkraftmaschine
DE102010035174A1 (de) * 2010-08-23 2012-02-23 Gm Global Technology Operations Llc (N.D.Ges.D. Staates Delaware) Kühlsystem für ein Fahrzeug mit einem Abgasrückführungssystem und Verfahren zur Kühlung eines Fahrzeugs mit einem Abgasrückführungssystem
DE102010055072A1 (de) * 2010-12-18 2012-06-21 Volkswagen Ag Kühlkreis für eine Brennkraftmaschine mit einer Abgasrückführung und Verfahren zum Betrieb einer Brennkraftmaschine mit einem solchen Kühlkreis
DE102010056238A1 (de) * 2010-12-24 2012-06-28 Audi Ag Antrieb mit einer Brennkraftmaschine und einer Expansionsmaschine mit Gasrückführung
FR2986267A1 (fr) * 2012-01-26 2013-08-02 Peugeot Citroen Automobiles Sa Circuit de refroidissement de moteur a combustion a refroidissement d'accessoire
GB2502833B (en) * 2012-06-06 2017-07-12 Gm Global Tech Operations Llc Exhaust gas recirculation (EGR) cooling system
GB2507342B (en) * 2012-10-29 2016-06-01 Gm Global Tech Operations Llc Heating apparatus for an internal combustion engine
DE102013019687B3 (de) * 2013-11-26 2015-03-26 Audi Ag Kühlsystem für ein Hybridfahrzeug aufweisend zumindest eine elektrische Antriebsmaschine und zumindest eine Verbrennungskraftmaschine und Verfahren zu dessen Regelung
CN104196588B (zh) * 2014-08-18 2016-06-08 南通常测机电设备有限公司 一种油温控制系统及其控制方法
DE102015111407A1 (de) * 2015-07-14 2017-01-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kühlsystem für ein Fahrzeug
CN107100713B (zh) * 2016-02-23 2019-05-17 上海汽车集团股份有限公司 车辆及其发动机
US10196960B2 (en) * 2017-03-09 2019-02-05 GM Global Technology Operations LLC Cooling system having variable coolant flow paths for exhaust gas recirculation system
DE102017002840A1 (de) 2017-03-24 2018-09-27 Deutz Aktiengesellschaft Vorrichtung zur Optimierung des schmierölseitigen Aufheizverhaltens einer Verbrennungskraftmaschine sowie Verfahren zum Betreiben einer Brennkraftmaschine
DE102017209827A1 (de) * 2017-06-09 2018-12-13 Volkswagen Aktiengesellschaft Brennkraftmaschine und Kraftfahrzeug
FR3070432B1 (fr) * 2017-08-30 2019-08-16 Psa Automobiles Sa Ensemble d’un circuit de refroidissement pour un moteur thermique et une boite de vitesses

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571431A1 (fr) * 1984-10-09 1986-04-11 Renault Vehicules Ind Dispositif de refroidissement pour moteur a combustion interne
WO1995001500A1 (en) * 1993-07-01 1995-01-12 Scania Cv Aktiebolag Cooling system for a vehicle equipped with a retarder
EP0864733A1 (de) * 1997-03-13 1998-09-16 GATE S.p.A. Kühlungsanlage für eine Brennkraftmaschine, insbesondere für Kraftfahrzeuge
EP1055813A2 (de) * 1999-05-27 2000-11-29 Bayerische Motoren Werke Aktiengesellschaft Flüssigkeitsgekühlte Brennkraftmaschine mit einem Abgasrückführsystem
DE10146313A1 (de) * 2001-09-20 2003-04-17 Daimler Chrysler Ag Kühlkreislauf einer flüssigkeitsgekühlten Brennkraftmaschine
WO2003076776A1 (de) * 2002-03-08 2003-09-18 Robert Bosch Gmbh Kühlkreislauf für einen verbrennungsmotor

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56132417A (en) 1980-03-24 1981-10-16 Hitachi Ltd Device for recovering waste heat of heat engine
JPS56165713A (en) * 1980-05-21 1981-12-19 Toyota Motor Corp Cooler for engine
US4362131A (en) 1980-12-10 1982-12-07 The Garrett Corporation Engine cooling system
JPS5968545A (ja) 1982-10-12 1984-04-18 Nippon Soken Inc 内燃機関の暖機促進装置
JPS62247113A (ja) * 1986-03-28 1987-10-28 Aisin Seiki Co Ltd 内燃機関の冷却系制御装置
JPH0735724B2 (ja) 1986-11-11 1995-04-19 アイシン精機株式会社 エンジン冷却システム
JPS63215860A (ja) 1987-03-03 1988-09-08 Hino Motors Ltd エンジンの廃熱利用装置
JPS6419156A (en) 1987-07-10 1989-01-23 Kubota Ltd Waste heat recovering apparatus for water-cooled engine
JPS6460760A (en) 1987-08-28 1989-03-07 Kubota Ltd Waste heat recovering device for water cooled engine
DE3828470A1 (de) 1987-09-11 1990-03-01 Eberspaecher J Waermetraegerkreislauf fuer eine fahrzeugheizung mit einem motorunabhaengigen heizgeraet
JPH01155020A (ja) 1987-12-11 1989-06-16 Kubota Ltd エンジンの排熱回収装置
JPH05157006A (ja) 1991-11-29 1993-06-22 Kubota Corp エンジンの排熱回収装置
DE4240239C2 (de) 1992-12-01 1995-11-30 Wolfgang Schmitz Verbrennungskraftmaschine
JPH08165925A (ja) 1994-12-14 1996-06-25 Toyota Motor Corp 内燃機関のegrクーラ用冷却水循環装置
JPH08296437A (ja) 1995-04-27 1996-11-12 Toyota Motor Corp ディーゼル機関のヒータ制御装置
DE19633190B4 (de) * 1996-08-17 2004-02-26 Daimlerchrysler Ag Kühlsystem für eine Brennkraftmaschine
JP3858331B2 (ja) 1997-04-08 2006-12-13 三菱ふそうトラック・バス株式会社 排気ガス還流装置
SE513698C2 (sv) * 1998-04-06 2000-10-23 Scania Cv Ab Kylanordning för en motor i ett fordon
DE10017434A1 (de) 2000-04-07 2001-10-31 Bayerische Motoren Werke Ag Flüssigkeitsgekühlte, thermostatgesteuerte Brennkraftmaschine für ein Fahrzeug, insbesondere PKW
JP2002021639A (ja) 2000-07-07 2002-01-23 Ishikawajima Harima Heavy Ind Co Ltd ディーゼルコジェネシステム
GB2374138B (en) 2001-04-07 2005-06-15 Llanelli Radiators Ltd Vehicle thermal management systems
DE10317003A1 (de) * 2003-04-11 2004-12-09 Behr Gmbh & Co. Kg Kreislaufanordnung zur Kühlung von Ladeluft und Verfahren zum Betreiben einer derartigen Kreislaufanordnung
DE10344018B4 (de) * 2003-09-15 2016-12-22 Mahle International Gmbh Kühlsystem eingerichtet für einen Verbrennungsmotor mit einem Heißwasserspeicher
DE102004021551A1 (de) * 2004-05-03 2006-02-09 Daimlerchrysler Ag Kühlsystem, insbesondere für ein Kraftfahrzeug
DE102004061426A1 (de) * 2004-12-21 2006-07-06 Daimlerchrysler Ag System und Verfahren zum Temperieren eines Motoröls einer Brennkraftmaschine eines Kraftfahrzeugs

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2571431A1 (fr) * 1984-10-09 1986-04-11 Renault Vehicules Ind Dispositif de refroidissement pour moteur a combustion interne
WO1995001500A1 (en) * 1993-07-01 1995-01-12 Scania Cv Aktiebolag Cooling system for a vehicle equipped with a retarder
EP0864733A1 (de) * 1997-03-13 1998-09-16 GATE S.p.A. Kühlungsanlage für eine Brennkraftmaschine, insbesondere für Kraftfahrzeuge
EP1055813A2 (de) * 1999-05-27 2000-11-29 Bayerische Motoren Werke Aktiengesellschaft Flüssigkeitsgekühlte Brennkraftmaschine mit einem Abgasrückführsystem
DE10146313A1 (de) * 2001-09-20 2003-04-17 Daimler Chrysler Ag Kühlkreislauf einer flüssigkeitsgekühlten Brennkraftmaschine
WO2003076776A1 (de) * 2002-03-08 2003-09-18 Robert Bosch Gmbh Kühlkreislauf für einen verbrennungsmotor

Also Published As

Publication number Publication date
US8136488B2 (en) 2012-03-20
DE102006020951A1 (de) 2007-02-01
CN101184910B (zh) 2011-02-09
EP1913243B1 (de) 2009-09-16
US20090229542A1 (en) 2009-09-17
DE502006004883D1 (de) 2009-10-29
CN101184910A (zh) 2008-05-21
EP1913243A1 (de) 2008-04-23

Similar Documents

Publication Publication Date Title
EP1913243B1 (de) Kühlsystem für ein fahrzeug und verfahren zum betreiben eines kühlsystems
DE69834891T2 (de) Kühlungsanlage für die Brennkraftmaschine einer Lokomotive
DE102008035955B4 (de) Kühlstrategie
EP2517298B1 (de) Verfahren zum temperieren einer stromquelle eines fahrzeugs
DE10300294A1 (de) Kraftübertragungs-Wärmemanagementsystem und Verfahren für das Beheizen des Fahrgastraumes und das Anwärmen des Verbrennungsmotors für Hybridfahrzeuge
EP3454401A1 (de) Kraftfahrzeug mit einem kühlsystem
WO2011036239A1 (de) System für ein kraftfahrzeug zum erwärmen und/ oder kühlen einer batterie und eines kraftfahrzeuginnenraumes
DE102006017246A1 (de) Abwärmenutzungssystem für einen Kraftfahrzeugmotor
EP1108572B1 (de) Wärmetauschsystem für die Heizung eines Fahrzeugs mit Hybridantrieb
EP3747074B1 (de) Kühlsystem für brennstoffzellenstacks
DE10335298A1 (de) Motortemperaturmanagement für einen Verbrennungsmotor
EP1623101B1 (de) Kreislauf zur k hlung von ladeluft und verfahren zum betreib en eines derartigen kreislaufs
DE102014019684A1 (de) Anordnung zur Umwandlung thermischer Energie aus Verlustwärme einer Verbrennungskraftmaschine
DE102005029918B4 (de) Kühlsystem für eine aufgeladene Brennkraftmaschine
DE10318744A1 (de) Kühlsystem
EP3530899A1 (de) Kühlsystem und brennkraftmaschine
DE112014004338T5 (de) Kühlsystem in einem Fahrzeug
EP2108813B1 (de) Vorrichtung zum Kühlen oder Erwärmen eines Verbrennungsmotors
DE10012197B4 (de) Thermomanagement für ein Kraftfahrzeug mit einem Kühlmittelkreislauf und einer Klimaanlage
EP1536961B1 (de) System und verfahren zur regulierung des wärmehaushalts eines fahrzeugs
DE102010009290B4 (de) Kühlmittelkreislauf für eine Brennkraftmaschine mit Abgasrückführung
DE102017209827A1 (de) Brennkraftmaschine und Kraftfahrzeug
EP3412885B1 (de) Brennkraftmaschine mit einem kühlmittelkreislauf
DE19750721A1 (de) Kühlmittelkreislauf eines Verbrennungsmotors
DE10343775B4 (de) Leistungsbedarfsgesteuertes Kühl- und Heizsystem für Kraftfahrzeuge mit unabhängig von der Brennkraftmaschine antreibbarer Fördervorrichtung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006776478

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680018848.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11989534

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2006776478

Country of ref document: EP