WO2007010985A1 - 排気浄化装置 - Google Patents

排気浄化装置 Download PDF

Info

Publication number
WO2007010985A1
WO2007010985A1 PCT/JP2006/314391 JP2006314391W WO2007010985A1 WO 2007010985 A1 WO2007010985 A1 WO 2007010985A1 JP 2006314391 W JP2006314391 W JP 2006314391W WO 2007010985 A1 WO2007010985 A1 WO 2007010985A1
Authority
WO
WIPO (PCT)
Prior art keywords
particulate filter
exhaust
electric heater
flow direction
catalyst
Prior art date
Application number
PCT/JP2006/314391
Other languages
English (en)
French (fr)
Inventor
Tatsuki Igarashi
Original Assignee
Hino Motors, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors, Ltd. filed Critical Hino Motors, Ltd.
Publication of WO2007010985A1 publication Critical patent/WO2007010985A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0093Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are of the same type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2814Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates all sheets, plates or foils being corrugated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2807Metal other than sintered metal
    • F01N3/281Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates
    • F01N3/2821Metallic honeycomb monoliths made of stacked or rolled sheets, foils or plates the support being provided with means to enhance the mixing process inside the converter, e.g. sheets, plates or foils with protrusions or projections to create turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/38Honeycomb supports characterised by their structural details flow channels with means to enhance flow mixing,(e.g. protrusions or projections)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/40Honeycomb supports characterised by their structural details made of a single sheet, foil or plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust emission control device.
  • the urea SCR catalyst system is a NO reduction catalyst (selective reduction catalyst) that has the property of selectively reacting NO with a reducing agent even in the presence of oxygen in the middle of the exhaust pipe through which exhaust from the engine flows.
  • the required amount of reducing agent is added upstream of the NO reduction catalyst, and the reducing agent is subjected to a reduction reaction with NO (nitrogen oxide) in the exhaust gas on the NO reduction catalyst. This is to reduce NO emission concentration, and it has been put to practical use to reduce NO with high efficiency by using non-toxic urea as a reducing agent.
  • the catalyst regeneration type particulate filter system is equipped with a particulate filter having a porous honeycomb structure in which a catalyst is integrally supported in the middle of an exhaust pipe through which exhaust of engine power flows.
  • the inlets of the flow paths partitioned in a grid are alternately sealed, the inlets are sealed, and the flow paths are closed! /, The outlets are sealed, and the flow paths are partitioned. Only exhaust gas that permeates through the porous thin wall is discharged downstream.
  • Patent Document 1 is a prior art document in which a catalyst regeneration type particulate filter system is arranged upstream in the exhaust flow direction and a urea SCR catalyst system is arranged downstream in the exhaust flow direction.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-218475 (FIG. 3)
  • the present invention has an object to provide an exhaust emission control device that can perform NO reduction and particulate combustion satisfactorily and efficiently and has excellent durability. It has been done.
  • the exhaust emission control device of the present invention includes a urea SCR catalyst system and an electric heater regenerative type patch rate in the middle of the exhaust pipe of the internal combustion engine power, from the upstream side toward the downstream side in the exhaust flow direction. And a filter system.
  • the electric heater regeneration type particulate filter system includes a heat shield, an electric heater, a porous saw, and a two-cam structure from the upstream side to the downstream side in the exhaust flow direction.
  • a particulate filter and an oxidation catalyst are provided.
  • a shatter that can block the flow of exhaust gas is provided on the upstream side in the exhaust gas flow direction of the electric heater regeneration type particulate filter system.
  • the electric heater regenerative particulate filter system is a heater body type that generates heat by itself as a heat shielding material from the upstream side to the downstream side in the exhaust flow direction.
  • a particulate filter and a porous no-cam structure particulate filter are provided.
  • the urea SCR catalyst system includes an oxidation catalyst on the upstream side in the exhaust flow direction and a selective reduction catalyst on the downstream side.
  • the exhaust purification device of the present invention since the urea SCR catalyst system and the electric heater regeneration type particulate filter system are provided, NO reduction and particulate combustion can be performed efficiently and efficiently. It is possible to provide an exhaust purification system with excellent durability, and the urea SCR catalyst system is provided upstream of the electric heater regeneration type particulate filter system in the exhaust flow direction. The heat generated when regenerating the particulate filter of the filter system does not cause deterioration of the oxidation catalyst or selective reduction catalyst of the urea SCR catalyst system. In addition, the electric heater regenerative particulate filter system uses the exhaust flow of the urea SCR catalyst system.
  • This exhaust purification device does not require a shutter for shutting off the exhaust, and thus can provide various excellent effects such as a simplified system configuration.
  • FIG. 1 is a longitudinal side view showing an embodiment of an exhaust emission control device of the present invention.
  • FIG. 2 is a cross-sectional view showing an example of a particulate filter having a porous nozzle-cam structure used in the exhaust gas purification apparatus of FIG. 1.
  • FIG. 2 is a cross-sectional view showing an example of a particulate filter having a porous nozzle-cam structure used in the exhaust gas purification apparatus of FIG. 1.
  • FIG. 3 is a longitudinal side view showing another embodiment of the exhaust gas purification apparatus of the present invention.
  • FIG. 4 is a partially enlarged view showing a state in which a metal plate or metal foil is formed into a corrugated shape in a heater type particulate filter used in the exhaust gas purification apparatus of the present invention.
  • FIG. 5 is a perspective view showing a state in which a metal plate or metal foil is formed into a spiral shape in a heater body type particulate filter used in the exhaust gas purification apparatus of the present invention.
  • FIG. 6 is a plan view of FIG.
  • FIG. 7 is a partially enlarged view of a heater type particulate filter used in the exhaust gas purification apparatus of the present invention as seen from the exhaust flow direction.
  • FIGS. 1 and 2 show an embodiment of the exhaust purification system of the present invention.
  • a urea SCR catalyst is disposed upstream in the exhaust flow direction.
  • electric heater regeneration type particulate filter systems 3a and 3b are arranged in parallel.
  • the exhaust pipes la and lb are connected to the exhaust pipe 1 on the downstream side in the exhaust flow direction.
  • the urea SCR catalyst system 2 includes an oxidation catalyst 4 disposed on the upstream side in the exhaust gas flow direction, and a selective reduction catalyst 5 disposed on the downstream side.
  • the oxidation catalyst 4 is, for example, a flow-through type having a Hercam structure, in which platinum and aluminum oxide (alumina) are mixed and supported on a stainless steel metal carrier or the like. Yes. Also, exhaust G
  • the selective reduction catalyst 5 is a flow-through type having a Hercom structure, and employs a known catalyst such as a noble metal such as platinum or palladium, or a base metal catalyst such as an oxide of vanadium, copper or iron. However, it is generally preferable to use a base metal catalyst that is relatively difficult to be poisoned rather than a noble metal catalyst having a strong oxidizing power.
  • the electric heater regeneration type particulate filter systems 3a and 3b are sequentially arranged in the direction of exhaust flow from the upstream side to the downstream side, respectively, for the heat shielding materials 6a and 6b, the electric heaters 7a and 7b, and the particulate filter 8a and 8b. Oxidation catalysts 9a and 9b are provided.
  • the heat shields 6a and 6b are flow-through type having a Hercam structure, and a porous ceramic material such as cordierite suitable as a catalyst carrier is used. Cordierite hard cam is a good heat shield because of its low thermal conductivity and low pressure loss.
  • the heat shields 6a and 6b are arranged upstream of the electric heaters 7a and 7b so that the heat generated in the electric heaters 7a and 7b is not taken away by the exhaust G, and the particulate filter 8a, 8 ex
  • the temperature upstream of the exhaust flow direction of b is maintained at a high temperature, and the particulate filter burns well also upstream of the particulate filters 8a and 8b in the exhaust flow direction, and the regeneration efficiency of the particulate filters 8a and 8b Is to increase
  • the electric heaters 7a and 7b are, for example, sheaths and heaters, and the temperature of the exhaust gas G introduced into the particulate filters 8a and 8b is low.
  • the particulate filters 8a and 8b have a porous thin-walled hard cam structure made of ceramic such as silicon carbide (SiC).
  • the particulate filter 8a, 8b has an appropriate amount of alumina supported on platinum.
  • An acid catalyst prepared by adding a rare earth element such as cerium is integrally supported.
  • the particulate filters 8a and 8b are sealed at the inlet side of each flow path partitioned in a lattice pattern, and the inlet is sealed.
  • the outlet G is sealed, and only the exhaust gas G that has permeated through the porous thin wall that defines each flow path goes downstream.
  • the particulate filters 8a and 8b do not have to carry an oxidation catalyst in one piece!
  • Oxidation catalysts 9a and 9b are flow-through types having a hard cam structure, in which an appropriate amount of platinum, alumina or the like is supported on a carrier made of a porous ceramic such as cordierite, In combination with the materials 6a and 6b, the particulate filters 8a and 8b can be kept warm, and the exhaust gas G from the particulate filters 8a and 8b
  • a urea water addition nozzle arranged in a portion between the oxidation catalyst 4 and the selective reduction catalyst 5 of the exhaust pipe 1 so that urea water w u can be added to the selective reduction catalyst 5 10 is provided.
  • a urea water feed pipe 12 equipped with a urea water pump 11 is connected to the urea water addition nozzle 10 in the middle, and the urea water W stored in the urea water tank 13 is fed by the urea water pump 11. It is fed from the pipe 12 to the urea water addition nozzle 10 and can be added from the urea water addition nozzle 10 toward the selective catalytic reduction catalyst 5.
  • Shutters 15a and 15b that can be opened and closed by air cylinders 14a and 14b are arranged upstream of the direction of exhaust flow of the electric heater regeneration type particulate filter system 3a and 3b in the exhaust pipes la and lb.
  • the air stored in the air tank 16 is fed to the air cylinders 14a and 14b via air pipes 18a and 18b provided with electromagnetic valves 17a and 17b in the middle.
  • combustion air supply nozzles 19a and 19b are provided on the upstream side of the heat shield 6a, 6b in the exhaust flow direction of the heat regenerative particulate filter system 3a, 3b in the electric heater regenerative particulate filter system 3a, 3b, located in the exhaust pipe la, lb on the downstream side of the shatter 15a, 15b in the exhaust flow direction.
  • combustion air supply nozzles 19a and 19b are provided on the upstream side of the heat shield 6a, 6b in the exhaust flow direction of the heat regenerative particulate filter system 3a, 3b in the electric heater regenerative particulate filter system 3a, 3b, located in the exhaust pipe la, lb on the downstream side of the shatter 15a, 15b in the exhaust flow direction
  • combustion air supply nozzles 19a and 19b are provided on the upstream side of the heat shield 6a, 6b in the exhaust flow direction of the heat regenerative particulate filter system 3a, 3b in the electric heater regenerative particulate filter system 3
  • the combustion air Ab from the air pump 22 is supplied to the combustion air supply nozzles 19a and 19b through the air supply pipe 21 and the air supply pipes 21a and 21b, and is supplied to the combustion air supply nozzles 19a and 19b.
  • the heat shielding materials 6a and 6b and the electric heaters 7a and 7b are introduced into the particulate filters 8a and 8b.
  • reference numeral 23 denotes a temperature detector for detecting the temperature of the exhaust gas G in the exhaust pipe 1 between the oxidation catalyst 4 and the selective catalytic reduction catalyst 5 of the urea SCR catalyst system 2, 24a , 24b, ex
  • Gas heater regeneration type particulate filter system 3a, 3b Oxidation catalyst 9a, 9b Installed downstream of the exhaust flow direction from the installation position, temperature ex temperature of exhaust G passing through oxidation catalyst 9a, 9b is detected
  • the detected exhaust temperatures Tl, T2a, T2b can be supplied to the engine control computer (ECU) 25! /.
  • 26 is designed to detect the pressure of the exhaust gas G sent from the selective reduction catalyst 5 of the urea SCR catalyst system 2 at a position immediately before branching to the exhaust pipes la and lb in the exhaust pipe 1.
  • the pressure detector 27 is a pressure detector installed downstream of the position where the exhaust pipes la and lb of the exhaust pipe 1 merge to detect the pressure of the exhaust G.
  • the exhaust pressures PI and P2 detected by the detectors 26 and 27 can be given to the engine control computer 25.
  • 28 is a battery, and the battery 28 can supply power to the electric heaters 7a and 7b via the heater relays 29a and 29b.
  • the engine control computer 25 can give a start command VI to the urea water pump 11, and can give a valve opening / closing command V2a, V2b to the solenoid valves 17a, 17b.
  • Switch command V3 can be given to relay 30 of air pump 22.
  • the engine control computer 25 can give the valve opening / closing commands V4a and V4b to the solenoid valves 20a and 20b, and the switching commands V5a and V5b can be given to the heater relays 29a and 29b.
  • V6 is a battery voltage supplied to the engine control computer 25.
  • the reason why the notch voltage V6 is input to the engine control computer 25 is as follows. That is, a great amount of power is consumed in the electric heaters 7a and 7b. For this reason, for example, when the battery 28 is deteriorated or the charging / discharging balance has a problem, and the battery voltage is lowered, the battery 28 will become extreme when the electric heaters 7a and 7b are turned on. This is to avoid a voltage drop that may affect other electrical components such as the engine control computer 25.
  • the urea water pump 11 is driven by the start command VI from the engine control computer 25, The amount of urea water W that corresponds to the generated amount of ⁇ ⁇ estimated from the current operating state is fed from the urea water tank 13 through the urea water supply pipe 12 to the urea water addition nozzle 10 by the urea water pump 11. Then, it is injected as a reducing agent from the urea water addition nozzle 10 toward the selective reduction catalyst 5.
  • urea water W is decomposed into ammonia and carbon dioxide, and NO and NO in exhaust G react with ammonia and harmless N and H ex 2 2
  • urea water W as the reducing agent, a high NO reduction rate can be obtained from a relatively low temperature range, and the practicality of the urea SCR catalyst system 2 can be greatly improved.
  • the exhaust G is guided to a flow path that is partitioned in a grid and the inlet side is not sealed ex
  • the particulates collected by the particulate filter 8a are promoted by the acid / sodium reaction and are well burned off.
  • the valve opening / closing command V2a is given to the electromagnetic valve 17a to open the electromagnetic valve 17a, and the air from the air tank 16 is supplied to the air cylinder 14a to close the shirter 15a.
  • the valve opening / closing command V2b is given to the solenoid valve 17b, the solenoid valve 17b is closed, and the air from the air tank 16 is not supplied to the air cylinder 14a.
  • G is an electric heater regenerative particulate filter system 3 ex
  • the exhaust gas Gex will not flow to the b side and the electric heater regenerative particulate filter system 3a side.
  • the electric heater regenerative particulate filter system 3a When the electric heater regenerative particulate filter system 3a is energized and the electric heater 7a is energized to continue heating and the combustion air Ab is introduced into the particulate filter 8a, the amount of heat generated by the electric heater 7a is increased.
  • the particulate filter 8a is effectively applied to the particulate filter 8a, and the particulate filter 8a is effectively heated, so that the acid-oxidation reaction of the particulates collected in the particulate filter 8a is promoted.
  • the acid atmosphere around the particulate filter 8a is enhanced, and the collected particulate matter easily burns, and the particulate filter 8a is regenerated to be usable.
  • harmful gases such as high concentration CO and HC generated by burning the particulates at a relatively low temperature due to the heating of the electric heater 7a pass through the oxidation catalyst 9a. Oxidized to harmless CO and HO and discharged.
  • the particulate filter in the other electrical heater regeneration type particulate filter system 3b passes through a predetermined operation period. If the engine control computer 25 determines that the particulate accumulation amount of 8b is equal to or greater than the predetermined amount, the particulate filter 8b in the other electric heater regenerative particulate filter system 3b is the same as described above. Playback is performed
  • valve opening / closing command V2a is given to the solenoid valve 17a, the solenoid valve 17a is closed, and the air from the air tank 16 is not supplied to the air cylinder 14a.
  • the valve open / close command V2b is given to the solenoid valve 17b, and the solenoid valve 17b is opened. Air from the air tank 16 is supplied to the air cylinder 14a, and the shirter 15b is closed. Electric heater regenerative particulate filter ex
  • exhaust G does not circulate to the electric heater regenerative particulate filter system 3b side.
  • the heater relay 29a is turned off by the switching command V5a from the engine control computer 25, and the heater relay 29b is turned on by the switching command V5b. For this reason, the notch 28 force is also energized to the electric heater 7b in the electric heater regeneration type particulate filter system 3b, the electric heater 7b is heated, and the particulate filter 8b is positively heated.
  • the particulate filter 8b is positively heated by the electric heater 7b.
  • the engine control computer 25 gives the switching command V3 to the relay 30 to drive the air pump 22, and the solenoid valve 20b receives the valve opening / closing command V4b.
  • the combustion air Ab from the air pump 22 is supplied from the air supply pipe 21b to the combustion air supply nozzle 19b, and the electric heater regeneration type particulate filter system 3b is supplied from the combustion air supply nozzle 19b. Led in.
  • the electric heater regeneration type particulate filter system 3b side When the electric heater regeneration type particulate filter system 3b side is energized and the electric heater 7b is energized to continue heating and the combustion air Ab is introduced into the particulate filter 8b, the amount of heat generated by the electric heater 7b is increased.
  • the particulate filter 8b is effectively applied to the particulate filter 8b and effectively heated, so that the acid-oxidation reaction of the particulates collected in the particulate filter 8b is promoted, and the force is also increased.
  • the acid atmosphere around the curative filter 8b is enhanced, and the collected particulates are easily burned, and the particulate filter 8b is regenerated to be usable in the same manner as the particulate filter 8a.
  • harmful gases such as high concentration CO and HC generated by burning the particulates at a relatively low temperature due to the heating of the electric heater 7b are similar to the above.
  • harmful gases such as high concentration CO and HC generated by burning the particulates at a relatively low temperature due to the heating of the electric heater 7b are similar to the above.
  • the catalyst 9b When passing through the catalyst 9b, it is oxidized and discharged into harmless CO and HO.
  • the particulate filter 8a can be used even in an operation state where the exhaust temperature is low during light load operation or the like. , 8b can be effectively burned and removed by heating the electric heaters 7a, 7b, and the force is also reduced by the heat-shielding material 6a at the inlet side of the electric heater regeneration type particulate filter system 3a, 3b. , 6b and outlet side Due to the heat retention effect of the catalysts 9a and 9b, the temperature of the particulate filters 8a and 8b can be increased rapidly, making it easy to incinerate the particulates and creating an environment that is shorter than before! This can be completed, which can greatly reduce power consumption.
  • harmful gases such as CO and HC generated by burning particulates at a relatively low temperature by heating the electric heaters 7a and 7b pass through the oxidation catalysts 9a and 9b on the outlet side. By doing so, it can be discharged after being acidified with harmless CO and HO, and finally in the atmosphere.
  • the electric heater regeneration type particulate filter systems 3a and 3b are provided in parallel as a pair so that the exhaust gas G can flow alternately.
  • the particulate filter 8a, 8b of the other electrical heater regeneration type particulate filter system 3a, 3b is not exposed to the flow of the exhaust gas G. , 7b more efficient ex
  • Heating can be performed.
  • particulate filter 8a, 8b of one electric heater regeneration type particulate filter system 3a, 3b the force of the other electric heater regeneration type particulate filter system 3b, 3a Since particulates can be continuously collected by the filters 8b and 8a, the particulate filter 8a and 8b of any one of the electric heater regeneration type particulate filter systems 3a and 3b can be continuously used as a usable state. Reduction of particulates can be achieved.
  • the air filter ex a particulate filter 8a or 8b through which the exhaust gas G circulates.
  • the combustion air Ab from the pump 22 can be guided through the air feed pipe 21a or 21b, it is easier to burn the collected particulates by increasing the acid atmosphere around the particulate filters 8a and 8b. Thus, the burning and removal of the particulates can be completed in a shorter energization time, and the power consumption can be further greatly reduced.
  • the oxidation catalyst is integrally supported on the particulate filters 8a and 8b, the particulates collected by the particulate filters 8a and 8b are adopted. Since the oxidation reaction can be promoted by the oxidation catalyst, the exhaust gas temperature is low, and more reliable particulate removal and combustion can be realized in the operation region.
  • the urea SCR catalyst system 2 and the electric heater regeneration type particulate filter systems 3a and 3b are provided, NO reduction and particulate combustion are performed efficiently and efficiently.
  • the urea SCR catalyst system 2 is provided upstream of the electric heater regeneration type particulate filter system 3a, 3b in the exhaust flow direction. Therefore, the heat generated when regenerating the particulate filter systems 8a and 8b of the electric heater regeneration type particulate filter system 3a and 3b reduces the deterioration of the oxidation catalyst 4 and selective reduction catalyst 5 of the urea SCR catalyst system 2.
  • the electric heater regenerative particulate filter system 3a, 3b is disposed downstream of the urea SCR catalyst system 2 in the exhaust flow direction. But particulate filter 8a, 8b because it has to perform the playback by forcibly heating the electric heater 7a, by 7b, can be carried out without any problem in the combustion of particulates.
  • FIGS. 3 to 7 show another embodiment of the exhaust gas purification apparatus of the present invention, which differs from the above embodiment in the following points. That is, the electric heater regeneration type particulate filter system 3 in the illustrated example does not include the electric heaters 7a and 7b and the oxidation catalysts 9a and 9b shown in FIG. 1, but includes the heat shielding materials 6a and 6b, silicon carbide (SiC), etc. Between the porous thin-walled hard cam particulate filter 8a and 8b made of ceramic, the heater body type particulate filter 3 la, 3 lb was installed between the 8a and 8b.
  • SiC silicon carbide
  • the two systems are partitioned by the partition plate 32.
  • the other points different from the illustrated example are that the shirters 15a and 15b shown in FIG. 1 are not provided on the upstream side in the exhaust flow direction of the heat shielding materials 6a and 6b in the electric heater regenerative particulate filter system 3. It is a point.
  • the heater-type particulate filter 3 la, 31b the one disclosed in Japanese Patent Laid-Open No. 11 257048 is used, and is shown in FIGS. That is, the heater body shape
  • the particulate filters 31a and 31b are made of heat-stainless stainless steel or heat-resistant alloy steel strips of metal plates or metal foils 33 with a thickness of about 30 to 50 ⁇ m. Between the opposed surfaces of the metal plate or metal foil 33, a porous electrical insulating film 34 made of an inorganic fiber such as slag wool, glass wool, silica wool, alumina or the like is interposed.
  • the metal plate or the metal foil 33 forming the particulate filter 3 la, 3 lb is pressed into a corrugated shape or an uneven shape to form a shell 35.
  • a large number of through-holes 37 having yoke-like protrusions or burrs 36 on the periphery are formed in the corrugated shape or irregularities.
  • the particulate filters 31a and 31b have the exhaust flow path 38 between the opposed surfaces of the stacked metal plates or metal foils 33, and are directed from one end side to the other end side in the vortex axial direction.
  • the exhaust G is arranged to circulate and
  • the rate filters 31a and 31b can be powered directly from the battery 28.
  • the heater type particulate filter 3 la, 3 lb is configured so that the metal plate or the metal foil 33 functions as a particulate filter and can function as a heater itself when energized. It is summer.
  • the same reference numerals as those shown in FIG. 1 denote the same parts.
  • the exhaust G from which the diesel engine power is also discharged is the exhaust.
  • the air is then divided into two and discharged to the downstream exhaust pipe 1 via the heat shield 6a of the electric heater regeneration type particulate filter system 3, the particulate filter 3 la of the heater body, and the particulate filter 8a.
  • the exhaust gas G is discharged to the downstream exhaust pipe 1 through the material 6b, the heater body type particulate filter 31b, and the particulate filter 8b, and the exhaust G exhausted from both systems joins and is sent to the downstream side of the exhaust pipe 1. .
  • urea water W as the reducing agent, a high NO reduction rate can be obtained from a relatively low temperature range, and the practicality of the urea SCR catalyst system 2 can be greatly improved.
  • the protrusions or burrs 36 facing the exhaust flow path 38 act as flow resistances, and the exhaust G spreads over the entire exhaust flow path 38.
  • the metal plate or metal foil 33 of the particulate filters 31a and 31b has a large area ex contact with the exhaust G due to the corrugations or irregularities, and the protrusions or burrs 36 protrude from the exhaust flow path 38. Particulates in the exhaust G are collected by protrusions or burrs 36.
  • the particulates that have not been collected by the heater type particulate filters 31a, 31b are collected by the thin wall surfaces of the particulate filters 8a, 8b. For this reason, the exhaust gas G ex discharged from the electric heater regenerative particulate filter system 3 is purified and sent to the exhaust pipe 1 downstream.
  • the determination as to whether or not to switch from the normal operation mode to the forced regeneration mode is made as follows, for example.
  • the engine control computer obtains the differential pressure between the exhaust pressure P1 detected by the pressure detector 26 and the exhaust pressure P2 detected by the pressure detector 27, and forcibly regenerates when the differential pressure exceeds a predetermined value. Judged as the mode.
  • Force the particulate filters 31a, 31b, 8a, 8b in either of the system, the heat shield 6b, the heater type particulate filter 3 lb, or the porous no-cam particulate filter 8b There are various means for determining whether to reproduce automatically. For example, first select and determine one of the particulate filters 31a, 8a, or the system including the particulate filters 31b, 8b, and then play back alternately. May be.
  • the lower one of the exhaust temperatures T2a and T2b is selected as the system for selecting regeneration. This is because it can be determined that the lower the exhaust gas temperatures T2a and T2b, the smaller the amount of exhaust gas flowing (that is, the greater the amount of particulate trapped).
  • the engine control computer 25 gives a switching command V5a, V5b to any one of the heater relays 29a, 29b, and any power heater relay 25a, 25b is turned on.
  • V5a, V5b a switching command
  • the heater relay 25a is turned on, power is supplied from the notch 28 to the particulate filter 31a, and the particulate filter 31a is heated by resistance. For this reason, the particulates collected in the particulate filter 3 la are burned, and the particulate filter 31a is regenerated to be reusable.
  • the particulate filter 31a can be maintained at a high temperature-raised state. Therefore, the particulates can be burned efficiently.
  • the exhaust gas G also rises in temperature due to the combustion of the particulates in the particulate filter 31a and is sent to the particulate filter 8a. For this reason, the particulates collected in the particulate filter 8a are burned, and the particulate filter 8a is also regenerated to be reusable.
  • the heat shield 6a, the particulate filter 3 la, 8a, and the heat shield 6b, the particulate filter 3 lb, 8b are installed in parallel, and the shirt 15a as shown in FIG. , 15b are not provided, the exhaust gas G introduced into the electric heater regenerative particulate filter system 3 is diverted and the heat shield 6a, particulate filters 3la, 8a and ex
  • the other particulate filter 31b, 31a is responsible for the collection of ex particulates in most of the exhaust G, and these particulate filters 31b, 31a are also subjected to the combustion of particulates and Particulate filters 3a, 31b downstream of the particulate filter 3la, 31b, which are sequentially used in the regeneration process, are used in the particulate filter 8a, 8b! Curate is burned and regenerated.
  • Whether the regeneration of the particulate filters 31a, 31b, 8a, 8b is completed is determined by, for example, the exhaust temperatures T2a, T2b detected by the temperature detectors 24a, 24b. That is, when the exhaust temperature T2a, T2b is higher than the predetermined temperature for a predetermined time, the engine control computer 25 determines that the regeneration has ended, and switches the heater relays 29a, 29b to the switching command V5a. , V5b is given. Therefore, the predetermined heater relays 25a and 25b are turned off, and energization to the particulate filters 31a and 31b is finished.
  • the particulate filter can be regenerated under all conditions, including light load operation and frequent engine stoppage conditions, regardless of the diesel engine operation conditions. In addition, it is possible to achieve high particulate collection efficiency (over 90% over particulate). Further, when the particulate filters 31a and 31b are resistance-heated by energization at the time of regeneration, the volume of the internal exhaust expands and the viscosity also rises to further increase the ventilation resistance. Therefore, the particulate filters 31a and 31b The flow rate of exhaust gas G diverted to 31b automatically decreases and decreases ex
  • urea SCR catalyst system 2 and electric heater regeneration Since the particulate filter system 3 is installed, NO reduction and particulate combustion can be performed efficiently and efficiently, and an exhaust purification system with excellent durability can be provided. Since the catalyst system 2 is provided upstream of the electric heater regeneration type particulate filter system 3 in the exhaust flow direction, the heat generated during regeneration of the particulate filters 8a and 8b of the electric heater regeneration type particulate filter system 3 In addition to the deterioration of the oxidation catalyst 4 and the selective catalytic reduction catalyst 5 of the urea SCR catalyst system 2, the electric heater regeneration type particulate filter system 3 is disposed downstream of the urea SCR catalyst system 2 in the exhaust flow direction. The force of the particulate filter 31a, 31b is a heater body that is forced to regenerate by heating. Because, combustion of Patikyu rate can be carried out without any problem. Ex to prevent the flow of exhaust G

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

 ディーゼルエンジンからの排気管1の中途部に、排気流れ方向上流側から下流側へ向けて、尿素SCR触媒システム2と、電気ヒータ再生型パティキュレートフィルタシステム3a,3bを配置すると共に、尿素SCR触媒システム2は排気流れ方向上流側に酸化触媒4を備え且つ下流側に選択還元型触媒5を備え、電気ヒータ再生型パティキュレートフィルタシステム3a,3bは、排気流れ方向上流側から下流側に向けて遮熱材6a,6b、電気ヒータ7a,7b、多孔質ハニカム構造でウォールスルーのパティキュレートフィルタ8a,8b、酸化触媒9a,9bを備える。

Description

排気浄化装置
技術分野
[0001] 本発明は排気浄化装置に関する。
背景技術
[0002] 近年車両においては、ディーゼルエンジン力ゝらの排気中の NO低減技術として、尿 素 SCR (Selective Catalytic Reduction)触媒システム力 又、パティキュレート(Partic ulate Matter:粒子状物質)低減技術として、触媒再生型パティキュレートフィルタシス テムが、夫々、実用化されている。
[0003] 尿素 SCR触媒システムは、エンジンからの排気が流通する排気管の中途部に酸素 共存下でも選択的に NOを還元剤と反応させる性質を備えた NO還元触媒 (選択還 元型触媒)を装備したもので、該 NO還元型触媒の上流側に必要量の還元剤を添 加して該還元剤を NO還元触媒上で排気中の NO (窒素酸化物)と還元反応させ、 これにより NOの排出濃度を低減させるものであり、還元剤としては、毒性のない尿 素を使用して、 NOを高効率で低減させることが実用化されている。
[0004] 又、触媒再生型パティキュレートフィルタシステムは、エンジン力 の排気が流通す る排気管の中途部に、触媒を一体的に担持させた多孔質ハニカム構造のパティキュ レートフィルタを装備したもので、格子状に区画された各流路の入口が交互に目封じ され、入口が目封じされて 、な 、流路につ!/、ては、その出口が目封じされ、各流路を 区画する多孔質薄壁を透過した排気のみが下流側へ排出されるようにしたものであ る。
[0005] 而して、近年にぉ 、ては、 NO及びパティキュレートの両方を低減させることが要求 されており、このため、尿素 SCR触媒システム及び触媒再生型パティキュレートフィ ルタシステムを連結して車両に搭載することが検討されており、両者の配置の仕方と しては、尿素 SCR触媒システムを排気流れ方向上流側に配置し、触媒再生型パティ キュレートフィルタシステムを排気流れ方向下流側に配置する力、或は、触媒再生型 パティキュレートフィルタシステムを排気流れ方向上流側に配置し、尿素 SCR触媒シ ステムを排気流れ方向下流側に配置することが考えられる。なお、触媒再生型パティ キュレートフィルタシステムを排気流れ方向上流側に配置し、尿素 SCR触媒システム を排気流れ方向下流側に配置した先行技術文献としては特許文献 1がある。
特許文献 1:特開 2004— 218475号公報(図 3)
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、これら二つのシステムの性能や機能は、共に触媒活性に依存するこ とから、エンジン排気の温度の影響が大きぐ従って、排気流れ方向下流側に配置さ れたシステムでは、排気温度が低下する等して、その性能や耐久性を大きく損なうこ とが問題となる。
[0007] 例えば、尿素 SCR触媒システムを排気流れ方向上流側に配置し、触媒再生型パ ティキュレートフィルタシステムを排気流れ方向下流側に配置した場合、パティキユレ ートの再生時に、排気を昇温させるためエンジンのメイン噴射に続いて圧縮上死点よ りも遅 、非着火のタイミングでポスト噴射が行なわれて排気中に未燃の燃料が添加さ れた場合には、選択還元型触媒或はその前段に配置される酸化触媒において HC が燃焼するため、選択還元型触媒は高温に曝されて熱劣化を生じ、又熱劣化を考 慮すると、触媒再生型パティキュレートフィルタシステムにおけるパティキュレートフィ ルタの昇温が不十分となる。このため、パティキュレートフィルタの強制昇温に時間を 要し、パティキュレートフィルタに捕集されたパティキュレートの燃焼が十分に行なわ れず、再生率の低下や燃費の悪化を招来する虞がある。
[0008] 又、触媒再生型パティキュレートフィルタシステムを排気流れ方向上流側に配置し 、尿素 SCR触媒システムを排気流れ方向下流側に配置した場合には、触媒再生型 パティキュレートフィルタシステムにおけるパティキュレートフィルタでの強制再生時に パティキュレートが燃焼することにより生じる熱により、排気流れ方向下流側の選択還 元型触媒が劣化する虞があり、且つ、通常時においては選択還元型触媒の温度が 低下し、 NOの低減性能が低下する虞がある。
[0009] 本発明は上述の実情に鑑み、 NO低減やパティキュレート燃焼を良好に効率良く 行なうことができると共に、耐久性に優れた排気浄化装置を提供することを目的として なしたものである。
課題を解決するための手段
[0010] 本発明の排気浄化装置は、内燃機関力ゝらの排気管の中途部に、排気流れ方向上 流側から下流側へ向けて、尿素 SCR触媒システムと、電気ヒータ再生型パティキユレ ートフィルタシステムとを設けたものである。
[0011] 本発明の排気浄ィ匕装置においては、電気ヒータ再生型パティキュレートフィルタシ ステムは、複数組並列配置されているものである。
[0012] 本発明の排気浄ィ匕装置においては、電気ヒータ再生型パティキュレートフィルタシ ステムは、排気流れ方向上流側から下流側に向けて遮熱材、電気ヒータ、多孔質ノ、 二カム構造のパティキュレートフィルタ、酸化触媒を設けて 、る。
[0013] 本発明の排気浄ィ匕装置においては、電気ヒータ再生型パティキュレートフィルタシ ステムの各排気流れ方向上流側には、排気の流れを遮断し得るシャツタを設けたも のである。
[0014] 本発明の排気浄ィ匕装置においては、電気ヒータ再生型パティキュレートフィルタシ ステムは、排気流れ方向上流側から下流側へ向けて遮熱材、給電によりそれ自体が 発熱するヒーター体型のパティキュレートフィルタ、多孔質ノヽ-カム構造のパティキュ レートフィルタを設けたものである。
[0015] 本発明の排気浄ィ匕装置においては、尿素 SCR触媒システムは、排気流れ方向上 流側に酸化触媒を備え且つ下流側に選択還元型触媒を備えたものである。
発明の効果
[0016] 本発明の排気浄化装置によれば、尿素 SCR触媒システムと電気ヒータ再生型パテ ィキュレートフィルタシステムを設けているため、 NO低減やパティキュレート燃焼を 良好に効率良く行なうことができると共に、耐久性に優れた排気浄ィ匕装置を提供する ことができ、又、尿素 SCR触媒システムは電気ヒータ再生型パティキュレートフィルタ システムの排気流れ方向上流側に設けているため、電気ヒータ再生型パティキュレー トフィルタシステムのパティキュレートフィルタを再生する際の熱により尿素 SCR触媒 システムの酸化触媒や選択還元型触媒の劣化を生じることがなぐ更に、電気ヒータ 再生型パティキュレートフィルタシステムは尿素 SCR触媒システムの排気流れ方向 下流側に配置されている力 パティキュレートフィルタは電気ヒータにより強制的に加 熱して再生を行なうようにしているため、パティキュレートの燃焼は何等問題なく行な うことができ、更に、請求項 5の排気浄ィ匕装置においては、排気を遮断するためのシ ャッタが不要であるため、システム構成が簡素化される、等種々の優れた効果を奏し 得る。
図面の簡単な説明
[0017] [図 1]本発明の排気浄化装置の一実施例を示す縦断側面図である。
[図 2]図 1の排気浄ィ匕装置に使用する多孔質ノヽ-カム構造のパティキュレートフィル タの一例を示す断面図である。
[図 3]本発明の排気浄ィ匕装置の他の実施例を示す縦断側面図である。
[図 4]本発明の排気浄ィ匕装置に使用するヒーター体型のパティキュレートフィルタに おいて、金属板又は金属箔を波型に成形した状態を示す部分拡大図である。
[図 5]本発明の排気浄ィ匕装置に使用するヒーター体型のパティキュレートフィルタに ぉ 、て、金属板又は金属箔を渦巻き状に成形した状態を示す斜視図である。
[図 6]図 5の平面図である。
[図 7]本発明の排気浄ィ匕装置に使用するヒーター体型のパティキュレートフィルタを 排気の流れ方向から見た部分拡大図である。
符号の説明
[0018] 1 排気管
2 尿素 SCR触媒システム
3 電気ヒータ再生型パティキュレートフィルタシステム
3a 電気ヒータ再生型パティキュレートフィルタシステム
3b 電気ヒータ再生型パティキュレートフィルタシステム
4 酸化触媒
5 選択還元型触媒
6a 遮熱材
6b 遮熱材
7a 電気ヒータ 7b 電気ヒータ
8a ノ ティキユレ -卜フイノレタ
8b ノ ティキユレ -卜フイノレタ
9a 酸化触媒
9b 酸化触媒
15a シャツタ
15b シャツタ
31a ノ ティキユレ -卜フイノレタ
31b ノ ティキユレ -卜フイノレタ
G 排気
発明を実施するための最良の形態
[0019] 以下、本発明の実施例を、添付図面を参照して説明する。
図 1、図 2は本発明の排気浄ィ匕装置の一実施例で、ディーゼルエンジンのェキゾ一 ストマ-ホールドに接続された排気管 1の中途部には、排気流れ方向上流側に尿素 SCR触媒システム 2が配置され、尿素 SCR触媒システム 2の排気流れ方向下流側に おいて分岐した 2系統の排気管 la, lbの中途部には、夫々、電気ヒータ再生型パテ ィキュレートフィルタシステム 3a, 3bが並列配置されている。排気管 la, lbは排気流 れ方向下流側で排気管 1に接続されて!ヽる。
[0020] 尿素 SCR触媒システム 2は、排気流れ方向上流側に配置された酸化触媒 4と、下 流側に配置された選択還元型触媒 5とを備えている。而して、酸化触媒 4は、例えば 、ハ-カム構造を有するフロースルー型で、白金に酸ィ匕アルミニウム (アルミナ)を混 合してステンレス製のメタル担体等に担持させた構造となっている。又、排気 G がこ
ex の酸ィ匕触媒 4を通過する際には、該排気 G 中の NOの大半を占める NOは反応性
ex X
の高い NOに変化するようになっている。
2
[0021] 選択還元型触媒 5は、ハ-カム構造を有するフロースルー型で、白金、パラジウム 等の貴金属や、バナジウム、銅、鉄の酸化物等の卑金属触媒といった従来周知の触 媒を採用することが可能であるが、一般的に酸化力の強い貴金属触媒を採用するよ りも、比較的被毒され難い卑金属触媒を採用する方がより好ましい。 [0022] 電気ヒータ再生型パティキュレートフィルタシステム 3a, 3bは夫々、排気流れ方向 上流側から下流側へ向けて、順次、遮熱材 6a, 6b、電気ヒータ 7a, 7b、パティキユレ ートフィルタ 8a, 8b、酸化触媒 9a, 9bを備えている。
[0023] 而して、遮熱材 6a, 6bは、ハ-カム構造を有するフロースルー型で、触媒担体とし て適しているコージライト等の多孔質セラミック材が使用される。コージライトハ-カム は熱伝導率が低く、圧力損失も低 、ため良好な遮熱材となる。
[0024] 又、電気ヒータ 7a, 7bの上流側に遮熱材 6a, 6bを配置したのは、電気ヒータ 7a, 7 bで発生した熱が排気 G により奪われないようにして、パティキュレートフィルタ 8a, 8 ex
bの排気流れ方向上流側の温度を高温に維持させ、パティキュレートフィルタ 8a, 8b の排気流れ方向上流側においても、パティキュレートの燃焼を良好に行なわせ、パテ ィキュレートフィルタ 8a, 8bの再生効率を高めるためである。
[0025] 電気ヒータ 7a, 7bは例えばシース、ヒータで、パティキュレートフィルタ 8a, 8bに導入 された排気 G の温度が低 、運転領域でもパティキュレートの燃焼を良好に行なうた ex
めのものであり、電気ヒータ 7a, 7bにより積極的に加熱を行なうことにより、排気 G の ex 温度が低 、領域でもパティキュレートを良好に燃焼除去し得るようになって!/、る。
[0026] パティキュレートフィルタ 8a, 8bは、炭化珪素(SiC)等のセラミックで製作された多 孔質薄壁のハ-カム構造で、例えば、アルミナに白金を担持させたものに適宜の量 のセリウム等の希土類元素を添加してなる酸ィ匕触媒を一体的に担持させたものであ る。而して、パティキュレートフィルタ 8a, 8bは図 2に示すように、格子状に区画された 各流路の入口側が目封じされ、入口が目封じされて 、な 、流路につ!/、ては、その出 口が目封じされ、各流路を区画する多孔質薄壁を透過した排気 G のみが下流側へ ex
排出されるようになっている。なお、パティキュレートフィルタ 8a, 8bは酸化触媒を一 体的に担持させたものでなくても良!、。
[0027] 酸化触媒 9a, 9bは、ハ-カム構造を有するフロースルー型で、コージライト等の多 孔質セラミックで製作された担体に白金及びアルミナ等を適量担持させたものであり 、遮熱材 6a, 6bと協働してパティキュレートフィルタ 8a, 8bに対し保温効果を得られ るようになっていると共に、パティキュレートフィルタ 8a, 8bからの排気 G 中の有害な ex
COや HCを酸化して無害の COや H Oにし得るようになつている。 [0028] 排気管 1の酸化触媒 4と選択還元型触媒 5との間の部分には、選択還元型触媒 5に 向けて尿素水 wuを添カ卩し得るように配置した尿素水添加ノズル 10が設けられて 、る 。尿素水添加ノズル 10には、中途部に尿素水ポンプ 11を備えた尿素水送給管 12が 接続され、尿素水タンク 13に貯留された尿素水 Wは、尿素水ポンプ 11により尿素水 送給管 12から尿素水添加ノズル 10へ送給され、尿素水添加ノズル 10から選択還元 型触媒 5へ向けて添加し得るようになって 、る。
[0029] 排気管 la, lb内における電気ヒータ再生型パティキュレートフィルタシステム 3a, 3 bの排気流れ方向上流側には、エアシリンダ 14a, 14bにより開閉し得るようにしたシ ャッタ 15a, 15bが配置されており、エアタンク 16に貯留された空気は、中途部に電 磁弁 17a, 17bを備えた空気管路 18a, 18bを介してエアシリンダ 14a, 14bに送給さ れるようになっている。
[0030] 電気ヒータ再生型パティキュレートフィルタシステム 3a, 3bにおける遮熱材 6a, 6b の排気流れ方向上流側には、シャツタ 15a, 15bよりも排気流れ方向下流側において 排気管 la, lb内に位置するよう、燃焼用空気供給ノズル 19a, 19bが設けられている 。燃焼用空気供給ノズル 19a, 19bには、中途部に電磁弁 20a, 20bを備えた空気送 給管 21a, 21bが接続され、空気送給管 21a, 21bが合流した空気送給管 21に接続 された空気ポンプ 22からの燃焼用空気 Abは、空気送給管 21、空気送給管 21a, 21 bを経て燃焼用空気供給ノズル 19a, 19bへ送給され、燃焼用空気供給ノズル 19a, 19bから遮熱材 6a, 6b、電気ヒータ 7a, 7bを介して、パティキュレートフィルタ 8a, 8b へ導入されるようになって!/、る。
[0031] 図 1中、 23は尿素 SCR触媒システム 2の酸化触媒 4と選択還元型触媒 5との間にお いて、排気管 1内の排気 G の温度を検出するための温度検出器、 24a, 24bは、電 ex
気ヒータ再生型パティキュレートフィルタシステム 3a, 3bの酸化触媒 9a, 9b設置位置 よりも排気流れ方向下流側に設置されて酸化触媒 9a, 9bを通過した排気 G の温度 ex を検出するようにした温度検出器であり、検出した排気温度 Tl, T2a, T2bは、ェン ジン制御コンピュータ(ECU) 25へ与え得るようになって!/、る。
[0032] 又、 26は、排気管 1内の排気管 la, lbに分岐する直前位置において、尿素 SCR 触媒システム 2の選択還元型触媒 5から送出された排気 G の圧力を検出するよう〖こ した圧力検出器、 27は、排気管 1の排気管 la, lbが合流した位置よりも排気流れ方 向下流側に設置されて排気 G の圧力を検出するようにした圧力検出器であり、圧力
ex
検出器 26, 27で検出した排気圧力 PI , P2はエンジン制御コンピュータ 25へ与え得 るようになっている。
[0033] 更に、 28はバッテリであり、バッテリ 28からはヒータリレー 29a, 29bを介して電気ヒ ータ 7a, 7bへ給電し得るようになつている。又、エンジン制御コンピュータ 25からは 尿素水ポンプ 11へ起動指令 VIを与え得るようになつていると共に、電磁弁 17a, 17 bへ弁開閉指令 V2a, V2bを与え得るようになっており、且つ、空気ポンプ 22のリレ 一 30へ切替え指令 V3を与え得るようになつている。又、エンジン制御コンピュータ 2 5からは電磁弁 20a, 20bへ弁開閉指令 V4a, V4bを与え得るようになっており、ヒー タリレー 29a, 29bへは切替え指令 V5a, V5bを与え得るようになつている。なお、 V6 はエンジン制御コンピュータ 25へ与えられるバッテリ電圧である。
[0034] ノ ッテリ電圧 V6をエンジン制御コンピュータ 25へ入力するようにしたのは、以下の ような理由による。すなわち、電気ヒータ 7a, 7bでは多大な電力が消費される。このた め、例えば、ノ ッテリ 28の劣化或は充放電収支に問題があって、ノ ッテリ電圧が低下 しているような場合、電気ヒータ 7a, 7bがオンになると、ノ ッテリ 28は極端な電圧低下 が生じ、エンジン制御コンピュータ 25等、他の電装品に影響を及ぼす虞があり、これ を回避するためである。
[0035] 以下、上記図示例の作動について説明する
例えば、図 1に示すようにシャツタ 15aを開き、シャツタ 15bを閉止させてディーゼル エンジンの運転を行なうと、ディーゼルエンジン力も排出された排気 G は、排気管 1
ex
から尿素 SCR触媒システム 2の酸化触媒 4、選択還元型触媒 5を経て排気管 laに導 入され、電気ヒータ再生型パティキュレートフィルタシステム 3aの遮熱材 6a、電気ヒー タ 7a、パティキュレートフィルタ 8a、酸ィ匕触媒 9aを経て下流の排気管 1へ排出される
[0036] この際、排気 G が尿素 SCR触媒システム 2の酸ィ匕触媒 4を通過する場合には、排
ex
気 G 力NOの大半を占める NOが反応性の高い NOとなる。又、例えば、温度検出 ex X 2
器 23で検出した排気温度 T1が選択還元型触媒 5の活性温度領域にある場合には、 エンジン制御コンピュータ 25からの起動指令 VIにより尿素水ポンプ 11が駆動され、
Figure imgf000011_0001
ヽつた現在の運転状態から推定した ΝΟχの 発生量に見合う添加量の尿素水 Wが尿素水タンク 13から尿素水送給管 12を経て 尿素水ポンプ 11により尿素水添加ノズル 10へ送給され、尿素水添加ノズル 10から 選択還元型触媒 5へ向けて還元剤として噴射される。
[0037] このため、選択還元型触媒 5においては、尿素水 Wはアンモニアと炭酸ガスに分 解されると共に、排気 G 中の NO及び NOはアンモニアと反応して無害の N及び H ex 2 2
Oに還元処理される。
2
[0038] 従って、尿素 SCR触媒システム 2を設けることにより、酸化触媒 4を通過させることで 排気 G 中の NOxの大半を占める NOを反応性の高い NOとすることができるので、 ex 2
還元剤に尿素水 Wを用いて、比較的低い温度領域から高い NO低減率を得ること ができ、尿素 SCR触媒システム 2の実用性を大幅に向上させることができる。
[0039] 電気ヒータ再生型パティキュレートフィルタシステム 3aのパティキュレートフィルタ 8a においては、排気 G は格子状に区画されて入口側が目封じされていない流路に導 ex
入されて多孔質薄壁を透過し、出口側が目封じされて!/ヽな!ヽ流路か下流側へ排出さ れるが、排気 G 中のパティキュレートはパティキュレートフィルタ 8aにおける前記多 ex
孔質薄壁により捕集される(図 2参照)。このため、電気ヒータ再生型パティキュレート フィルタシステム 3aから排出される排気 G は清浄化された状態となる。
ex
[0040] 上述のように、シャツタ 15aを開けてシャツタ 15bを閉止し、電気ヒータ再生型パティ キュレートフィルタシステム 3a側に排気 G を流しながら運転を行なう場合に、温度検 ex
出器 24aにより検出した排気温度 T2aが約 250°C以上の運転条件下では、パティキ ュレートフィルタ 8aに捕集されたパティキュレートは酸ィ匕反応が促進されて良好に燃 焼除去される。
[0041] しかし、市街地の渋滞路を走行する場合のように、温度検出器 24aにより検出した 排気温度 T2aが約 250°Cを大きく下回るような軽負荷での運転状態が長く継続する と、パティキュレートフィルタ 8aに捕集されて 、るパティキュレートの良好な燃焼除去 が望めなくなるので、圧力検出器 26, 27で検出した排気圧力 PI, P2の差圧が上昇 し、エンジン制御コンピュータ 25においては、パティキュレートフィルタ 8aにおけるパ ティキュレートの堆積量が所定量以上になったものと判断される。
[0042] このため、エンジン制御コンピュータ 25からは、弁開閉指令 V2aが電磁弁 17aに与 えられて電磁弁 17aが開き、エアタンク 16からの空気はエアシリンダ 14aに送給され てシャツタ 15aが閉止し、又、弁開閉指令 V2bは電磁弁 17bに与えられて電磁弁 17 bが閉止し、エアタンク 16からの空気がエアシリンダ 14aに送給されずに、シャツタ 15 bが開き、これにより、排気 G は電気ヒータ再生型パティキュレートフィルタシステム 3 ex
b側へ流通し、電気ヒータ再生型パティキュレートフィルタシステム 3a側へは排気 G ex が流通しないようになる。
[0043] 更に、エンジン制御コンピュータ 25からは、ヒータリレー 29aへ切替え指令 V5aが与 えられて、ヒータリレー 29aがオンになるため、バッテリ 28からは電気ヒータ 7aに通電 されて、電気ヒータ 7aが発熱され、電気ヒータ再生型パティキュレートフィルタシステ ム 3a側には排気 G が流通しない状態でパティキュレートフィルタ 8aが積極的に加熱 ex
される。
[0044] 次いで、電気ヒータ 7aによりパティキュレートフィルタ 8aを積極的に加熱することで 温度検出器 24aにより検出される排気温度 T2aが所定温度に到達したら、エンジン 制御コンピュータ 25からリレー 30に切替え指令 V3を与えて空気ポンプ 22を駆動さ せると共に、電磁弁 20aに弁開閉指令 V4aを与えて電磁弁 20aを開く。このため、空 気ポンプ 22からの燃焼用空気 Abは、空気送給管 21aから燃焼用空気供給ノズル 19 aへ送給され、該燃焼用空気供給ノズル 19aから電気ヒータ再生型パティキュレートフ ィルタシステム 3a内に導かれる。
[0045] このように、排気 G を電気ヒータ再生型パティキュレートフィルタシステム 3b側へ流 ex
通させつつ、電気ヒータ再生型パティキュレートフィルタシステム 3a側において、電気 ヒータ 7aへ通電させて加熱を継続し、且つ燃焼用空気 Abをパティキュレートフィルタ 8aへ導入すると、電気ヒータ 7aの発熱量が効率良くパティキュレートフィルタ 8aに与 えられて該パティキュレートフィルタ 8aが効果的に加熱され、パティキュレートフィルタ 8aに捕集されたパティキュレートの酸ィ匕反応が促進されることになり、し力ゝも該パティ キュレートフィルタ 8a周囲の酸ィ匕雰囲気が高められて捕集済みのパティキュレートが 容易に燃焼し、パティキュレートフィルタ 8aが使用可能に再生される。 [0046] この際、電気ヒータ 7a及びパティキュレートフィルタ 8aは、遮熱材 6a及び酸化触媒 9aにより挟み込まれて断熱された状態にあるので、捕集済みのパティキュレートの酸 化反応が始まることでパティキュレートフィルタ 8aが急速に温度上昇し、これによりパ ティキュレートがより一層、燃焼され易くなる結果、従来より短時間でパティキュレート の燃焼を完了することが可能となり、消費電力が従来よりも少なくてすむ。
[0047] 又、このような電気ヒータ 7aの加熱を受けてパティキュレートが比較的低温で燃焼さ れることにより生じた高濃度の COや HC等の有害ガスは、酸化触媒 9aを通過する際 に無害な COや H Oに酸化処理されて排出される。
2 2
[0048] 一方の電気ヒータ再生型パティキュレートフィルタシステム 3aにおけるパティキユレ ートフィルタ 8aの再生が完了した後、所定時間に亘る運転期間を経て他方の電気ヒ ータ再生型パティキュレートフィルタシステム 3bにおけるパティキュレートフィルタ 8b のパティキュレート堆積量が所定量以上となっているものとエンジン制御コンピュータ 25において判断されたら、前述したと同様にして、他方の電気ヒータ再生型パティキ ュレートフィルタシステム 3bにおけるパティキュレートフィルタ 8bの再生が行なわれる
[0049] すなわち、エンジン制御コンピュータ 25からは、弁開閉指令 V2aが電磁弁 17aに与 えられて電磁弁 17aが閉止し、エアタンク 16からの空気はエアシリンダ 14aに送給さ れないためシャツタ 15aが開き、又、弁開閉指令 V2bは電磁弁 17bに与えられて電 磁弁 17bが開き、エアタンク 16からの空気がエアシリンダ 14aに送給されて、シャツタ 15bが閉止し、これにより、排気 G は電気ヒータ再生型パティキュレートフィルタシス ex
テム 3a側へ流通し、電気ヒータ再生型パティキュレートフィルタシステム 3b側へは排 気 G が流通しないようになる。
ex
[0050] 又、エンジン制御コンピュータ 25からの切替え指令 V5aによりヒータリレー 29aがォ フになり、切替え指令 V5bによりヒータリレー 29bがオンになる。このため、ノ ッテリ 28 力も電気ヒータ再生型パティキュレートフィルタシステム 3bにおける電気ヒータ 7bへ 通電され、電気ヒータ 7bが発熱されてパティキュレートフィルタ 8bは積極的に加熱さ れる。
[0051] 次いで、電気ヒータ 7bによりパティキュレートフィルタ 8bを積極的に加熱することで 温度検出器 24bにより検出される排気温度 T2bが所定温度に到達したら、エンジン 制御コンピュータ 25からリレー 30に切替え指令 V3を与えて空気ポンプ 22を駆動さ せると共に、電磁弁 20bに弁開閉指令 V4bを与えて電磁弁 20bを開く。このため、空 気ポンプ 22からの燃焼用空気 Abは、空気送給管 21bから燃焼用空気供給ノズル 1 9bへ送給され、該燃焼用空気供給ノズル 19bから電気ヒータ再生型パティキュレート フィルタシステム 3b内に導かれる。
[0052] このように、排気 G を電気ヒータ再生型パティキュレートフィルタシステム 3a側へ流 ex
通させつつ、電気ヒータ再生型パティキュレートフィルタシステム 3b側において、電気 ヒータ 7bへ通電させて加熱を継続し、且つ燃焼用空気 Abをパティキュレートフィルタ 8bへ導入すると、電気ヒータ 7bの発熱量が効率良くパティキュレートフィルタ 8bに与 えられて該パティキュレートフィルタ 8bが効果的に加熱され、パティキュレートフィルタ 8bに捕集されたパティキュレートの酸ィ匕反応が促進されることになり、し力も該パティ キュレートフィルタ 8b周囲の酸ィ匕雰囲気が高められて捕集済みのパティキュレートが 容易に燃焼し、パティキュレートフィルタ 8aの場合と同様にしてパティキュレートフィル タ 8bが使用可能に再生される。
[0053] この際、電気ヒータ 7b及びパティキュレートフィルタ 8bは、遮熱材 6b及び酸化触媒 9bにより挟み込まれて断熱された状態にあるので、捕集済みのパティキュレートの酸 化反応が始まることでパティキュレートフィルタ 8bが急速に温度上昇し、これによりパ ティキュレートがより一層、燃焼され易くなる結果、従来より短時間でパティキュレート の燃焼を完了することが可能となり、消費電力が従来よりも少なくてすむ。
[0054] 又、このような電気ヒータ 7bの加熱を受けてパティキュレートが比較的低温で燃焼さ れることにより生じた高濃度の COや HC等の有害ガスは、前述したと同様に、酸ィ匕触 媒 9bを通過する際に無害な COや H Oに酸化処理されて排出される。
2 2
[0055] 従って、電気ヒータ 7a, 7bを有する電気ヒータ再生型パティキュレートフィルタシス テム 3a, 3bを設けることにより、軽負荷運転時等における排気温度の低い運転状態 であっても、パティキュレートフィルタ 8a, 8bに捕集されたパティキュレートを電気ヒー タ 7a, 7bの加熱により効果的に燃焼除去することができ、し力も、電気ヒータ再生型 パティキュレートフィルタシステム 3a, 3b入口側の遮熱材 6a, 6b及び出口側の酸ィ匕 触媒 9a, 9bによる保温効果によりパティキュレートフィルタ 8a, 8bを急速に温度上昇 させてパティキュレートを焼却し易 、環境とすることができるので、従来より短!ヽ通電 時間でパティキュレートの燃焼除去を完了することができ、これにより消費電力の大 幅な低減ィ匕を図ることができる。
[0056] 又、パティキュレートを電気ヒータ 7a, 7bの加熱により比較的低温で焼却することに より生じた高濃度の COや HC等の有害ガスを、出口側の酸化触媒 9a, 9bを通過さ せることで無害な COや H Oに酸ィ匕処理して排出することができ、最終的に大気中
2 2
へ排出される排気 G 中に有害ガスが残存してしまう虞れを未然に回避することがで ex
きる。
[0057] 更に、電気ヒータ再生型パティキュレートフィルタシステム 3a, 3bを並列に対で設け て排気 G を交互に流し得るように構成しているので、排気 G を電気ヒータ再生型パ ex ex
ティキュレートフィルタシステム 3a, 3bの何れか一方に流通させることにより、他方の 電気ヒータ再生型パティキュレートフィルタシステム 3a, 3bのパティキュレートフィルタ 8a, 8bを排気 G の流れに晒されない状態として電気ヒータ 7a, 7bにより効率の良い ex
加熱を行うことができる。
[0058] し力も、一方の電気ヒータ再生型パティキュレートフィルタシステム 3a, 3bのパティ キュレートフィルタ 8a, 8bを再生させている間に、他方の電気ヒータ再生型パティキュ レートフィルタシステム 3b, 3aのパティキュレートフィルタ 8b, 8aでパティキュレートの 捕集を継続することができるので、常に何れかの電気ヒータ再生型パティキュレートフ ィルタシステム 3a, 3bのパティキュレートフィルタ 8a, 8bを使用可能な状態として連続 的にパティキュレートの低減ィ匕を図ることができる。
[0059] 更に又、排気 G が流通しているパティキュレートフィルタ 8a又は 8bに対し空気ポン ex
プ 22からの燃焼用空気 Abを空気送給管 21a又は 21bを介し導き得るようにしてある ので、パティキュレートフィルタ 8a, 8b周囲の酸ィ匕雰囲気を高めて捕集済みパティキ ュレートを更に燃え易くすることができ、より一層短い通電時間でパティキュレートの 燃焼除去を完了することができて消費電力の更に大幅な低減ィ匕を図ることができる。
[0060] 又更に、パティキュレートフィルタ 8a, 8bに酸化触媒を一体的に担持せしめた構成 を採用することにより、パティキュレートフィルタ 8a, 8bに捕集されたパティキュレート の酸化反応を酸化触媒により促進することができるので、排気温度が低!、運転領域 にて、より一層確実なパティキュレートの燃焼除去を実現することができる。
[0061] 本実施例の排気浄化装置によれば、尿素 SCR触媒システム 2と電気ヒータ再生型 パティキュレートフィルタシステム 3a, 3bを設けているため、 NO低減やパティキユレ ート燃焼を良好に効率良く行なうことができると共に、耐久性に優れた排気浄ィ匕装置 を提供することができ、又、尿素 SCR触媒システム 2は電気ヒータ再生型パティキユレ ートフィルタシステム 3a, 3bの排気流れ方向上流側に設けているため、電気ヒータ再 生型パティキュレートフィルタシステム 3a, 3bのパティキュレートフィルタ 8a, 8bを再 生する際の熱により、尿素 SCR触媒システム 2の酸化触媒 4や選択還元型触媒 5の 劣化を生じることがなぐ更に、電気ヒータ再生型パティキュレートフィルタシステム 3a , 3bは尿素 SCR触媒システム 2の排気流れ方向下流側に配置されているが、パティ キュレートフィルタ 8a, 8bは電気ヒータ 7a, 7bにより強制的に加熱して再生を行なう ようにしているため、パティキュレートの燃焼は何等問題なく行なうことができる。
[0062] 図 3〜図 7は本発明の排気浄ィ匕装置の他の実施例で、前記実施例とは以下の点で 異なっている。すなわち、本図示例における電気ヒータ再生型パティキュレートフィル タシステム 3は、図 1に示す電気ヒータ 7a, 7b、酸化触媒 9a, 9bを備えず、遮熱材 6a , 6bと、炭化珪素(SiC)等のセラミックで製作された多孔質薄壁のハ-カム構造のパ ティキュレートフィルタ 8a, 8bとの間に、電気ヒータ再生式でヒーター体型のパティキ ュレートフィルタ 3 la, 3 lbを設けるようにした点であり、遮熱材 6a、ヒーター体型のパ ティキュレートフィルタ 3 la、パティキュレートフィルタ 8aの系統と、遮熱材 6b、ヒータ 一体型のパティキュレートフィルタ 3 lb、パティキュレートフィルタ 8bの系統とを並列 配置するようにした点である。
[0063] 而して、両系統の間は仕切板 32により仕切られている。又、前記図示例と異なる他 の点は、電気ヒータ再生型パティキュレートフィルタシステム 3における遮熱材 6a, 6b の排気流れ方向上流側に、図 1に示すシャツタ 15a, 15bを設けないようにした点で ある。
[0064] ヒーター体型のパティキュレートフィルタ 3 la, 31bは、特開平 11 257048号公報 に示されているものが使用され、図 4〜図 7に示されている。すなわち、ヒーター体型 のパティキュレートフィルタ 31a, 31bは、耐熱ステンレス鋼や耐熱合金鋼製の帯状で 厚さ 30〜50 μ m程度の金属板又は金属箔 33が渦巻き状に多重に積層されて形成 されると共に、積層された金属板又は金属箔 33の対向面間には、例えばスラグウー ル、グラスウール、シリカウール、アルミナ等の無機繊維質製の多孔性電気絶縁膜 3 4が介在されている。
[0065] 又、パティキュレートフィルタ 3 la, 3 lbを形成する金属板又は金属箔 33には、夫々 、図 4に示すように、波型又は凹凸状にプレス成形が施されてゥネリ 35が形成されて いると同時に、周縁にヨーク状の突起又はバリ 36を有する多数の貫通孔 37が、前記 波型又は凹凸に穿設されている。而して、パティキュレートフィルタ 31a, 31bは、積 層された金属板又は金属箔 33の対向面間に排気流路 38を有し、その一端側から他 端側へと渦の軸線方向へ向けて排気 G が流通するよう配置されており、パティキュ
ex
レートフィルタ 31a, 31bには、バッテリ 28から直接給電を行ない得るようになつている
[0066] 従って、ヒーター体型のパティキュレートフィルタ 3 la, 3 lbは、金属板又は金属箔 3 3がパティキュレートフィルタとして機能すると共に、通電することによりそれ自体がヒ ータとして機能し得るようになつている。なお、図 3中、図 1に示すものと同一の符号の ものは同一のものを示す。
[0067] 本図示例においては、例えば、ディーゼルエンジン力も排出された排気 G は、排
ex 気管 1から尿素 SCR触媒システム 2の酸化触媒 4、選択還元型触媒 5を経て電気ヒー タ再生型パティキュレートフィルタシステム 3へ導入される。又、強制再生モードでな い場合には、排気 G は電気ヒータ再生型パティキュレートフィルタシステム 3の入側
ex
で二つに分流し、電気ヒータ再生型パティキュレートフィルタシステム 3の遮熱材 6a、 ヒーター体型のパティキュレートフィルタ 3 la、パティキュレートフィルタ 8aを経て下流 の排気管 1へ排出されると共に、遮熱材 6b、ヒーター体型のパティキュレートフィルタ 31b、パティキュレートフィルタ 8bを経て下流の排気管 1へ排出され、両系統から排 出された排気 G は合流して排気管 1を下流側へ送給される。
ex
[0068] この際、排気 G が尿素 SCR触媒システム 2で NOが低減されるのは前記図示例と
ex X
同様なので詳しい説明は省略するが、選択還元型触媒 5においては、前記図示例と 同様、尿素水 Wはアンモニアと炭酸ガスに分解されると共に、排気 G 中の NO及び u ex
NOはアンモニアと反応して無害の N及び H Oに還元処理される。
2 2 2
[0069] 従って、尿素 SCR触媒システム 2を設けることにより、酸化触媒 4を通過させることで 排気 G 中の NOxの大半を占める NOを反応性の高い NOとすることができるので、 ex 2
還元剤に尿素水 Wを用いて、比較的低い温度領域から高い NO低減率を得ること ができ、尿素 SCR触媒システム 2の実用性を大幅に向上させることができる。
[0070] 又、ヒーター体型のパティキュレートフィルタ 31a, 31bにおいては、排気流路 38に 臨む突起又はバリ 36が流動抵抗として働くうえ、排気 G は排気流路 38の全域に拡 ex
散された乱流状態となり、排気流路 38内を均一に通過する。し力も、パティキュレート フィルタ 31a, 31bの金属板又は金属箔 33は、波型又は凹凸によって排気 G と接触 ex する面積が大きぐ且つ、排気流路 38に突起又はバリ 36が突出しているため、排気 G 中のパティキュレートは、突起又はバリ 36に捕集される。
ex
[0071] 又、ヒーター体型のパティキュレートフィルタ 31a, 31bにおいて捕集されなかった パティキュレートは、パティキュレートフィルタ 8a, 8bの薄壁面において捕集される。こ のため、電気ヒータ再生型パティキュレートフィルタシステム 3から排出された排気 G ex は清浄化されて排気管 1を下流側へ送給される。
[0072] 電気ヒータ再生型パティキュレートフィルタシステム 3において、通常運転モードから 強制再生モードへの切替える力否かの判断は、例えば、以下のようにして行なう。す なわち、エンジン制御コンピュータにおいて、圧力検出器 26で検出した排気圧力 P1 と圧力検出器 27で検出した排気圧力 P2との差圧を求め、差圧が所定の値以上の場 合に強制再生モードであると判断する。
[0073] 又、強制再生モードの際に、遮熱材 6a、ヒーター体型のパティキュレートフィルタ 31 a、炭化珪素(SiC)等のセラミックで製作された多孔質ノヽ-カム構造のパティキュレー トフィルタ 8aの系統と、遮熱材 6b、ヒーター体型のパティキュレートフィルタ 3 lb、多 孔質ノヽ-カム構造のパティキュレートフィルタ 8bの系統のうちどちらの系統でパティキ ュレートフィルタ 31a, 31b、 8a, 8bを強制的に再生させるか決定するのは、種々の 手段がある。例えば、最初に何れかのパティキュレートフィルタ 31a, 8a,又はパティ キュレートフィルタ 31b, 8bを含む系統を選択、決定し、後は交互に再生するようにし ても良い。或は、温度検出器 24a, 24bで検出した排気温度 T2a, T2bから判断する ようにしても良い。再生を選択する系統としては、例えば、排気温度 T2a, T2bの低 い方を選択する。これは排気温度 T2a, T2bが低い方が流通する排気量が少ない( すなわち、パティキュレート捕集量が多い)と判断できるからである。
[0074] 而して、強制再生モードの場合は、エンジン制御コンピュータ 25からヒータリレー 29 a, 29bの何れかに切替え指令 V5a, V5bが与えられ、何れ力のヒータリレー 25a, 2 5bがオンになる。例えば、ヒータリレー 25aがオンになった場合には、ノ ッテリ 28から はパティキュレートフィルタ 31aに通電が行なわれてパティキュレートフィルタ 31aが抵 抗加熱され昇温する。このため、パティキュレートフィルタ 3 laに捕集されていたパテ ィキュレートが燃焼し、パティキュレートフィルタ 31aが再使用可能に再生される。
[0075] ヒーター体型のパティキュレートフィルタ 3 laの上流側には遮熱材 6aが設けられて いるため、パティキュレートフィルタ 31aを高い昇温状態に保持することができる。従つ て、パティキュレートの燃焼を効率良く行なうことができる。
[0076] 又、パティキュレートフィルタ 31aにおけるパティキュレートの燃焼により排気 G も昇 ex 温してパティキュレートフィルタ 8aに送給される。このため、パティキュレートフィルタ 8 aに捕集されているパティキュレートが燃焼し、パティキュレートフィルタ 8aも再使用可 能に再生される。
[0077] 遮熱材 6a、パティキュレートフィルタ 3 la, 8aと、遮熱材 6b、パティキュレートフィル タ 3 lb, 8bの系統とは並列に設置されているうえ、図 1に示すようなシャツタ 15a, 15b が設けられていないため、電気ヒータ再生型パティキュレートフィルタシステム 3に導 入された排気 G は分流して遮熱材 6a、パティキュレートフィルタ 3 la, 8aの系統と、 ex
遮熱材 6b、パティキュレートフィルタ 3 lb, 8bの系統を通過する。パティキュレートを ある程度以上捕集したパティキュレートフィルタ 3 la, 3 lbでは、通気抵抗が増加し、 更にそれが何れか一方のパティキュレートフィルタ 31a, 31bへの通電により抵抗力口 熱されると、内部の排気の体積が膨張すると共に、粘度も上昇して通気抵抗を更に 増大させるので、当該パティキュレートフィルタ 31a, 31bへ分流される排気 G の流 ex 量が自動的に減少し、その減少分だけ他方のパティキュレートフィルタ 3 lb, 31aへ の排気 G の流量が増大する。 [0078] このような状況下でヒーター体型のパティキュレートフィルタ 3 la, 3 lbに堆積したパ ティキュレートが、流量の減少した排気 G 力 の酸素の供給を受けて燃焼されると共 ex
に、その間、他方のパティキュレートフィルタ 31b, 31aが大部分の排気 G における ex パティキュレートの捕集処理を受持ち、これらのパティキュレートフィルタ 31b, 31aも その後、前記と同様にしてパティキュレートの燃焼及び再生工程に順次供され、又、 燃焼、再生工程に供されているパティキュレートフィルタ 3 la, 31bの下流側の多孔 質ハ-カム構造のパティキュレートフィルタ 8a, 8bにお!/、てもパティキュレートの燃焼 、再生が行なわれる。
[0079] パティキュレートフィルタ 31a, 31b、 8a, 8bの再生が終了したか否かは、例えば、 温度検出器 24a, 24bで検出した排気温度 T2a, T2bにより判断される。すなわち、 排気温度 T2a, T2bが所定の温度よりも高い状態が所定の時間継続した場合に、ェ ンジン制御コンピュータ 25では、再生は終了したものと判断し、ヒータリレー 29a, 29 bに切替え指令 V5a, V5bが与えられる。このため、所定のヒータリレー 25a, 25bは オフになって、パティキュレートフィルタ 31a, 31bに対する通電は終了する。
[0080] 一方の系統のパティキュレートフィルタ 31a, 8a又は 31b, 8bの再生が終了すると、 次回は他方の系統のパティキュレートフィルタ 31b, 8b又は 31a, 8aの再生が上述し たと同様にして行なわれる。
[0081] 電気ヒータ再生型パティキュレートフィルタシステム 3においては、ディーゼルェンジ ンの運転条件に関係なく軽負荷運転やエンジン停止頻度の多い条件下も含めてあ らゆる条件下でパティキュレートフィルタの再生が可能となると共に、パティキュレート の高い捕集効率 (対パティキュレートで 90%超)を達成することができる。又、再生時 に、パティキュレートフィルタ 31a, 31bが通電により抵抗加熱されると、内部の排気の 体積が膨張すると共に、粘度も上昇して通気抵抗を更に増大するので、当該パティ キュレートフィルタ 31a, 31bへ分流される排気 G の流量が自動的に減少し、その減 ex
少分だけ他方のパティキュレートフィルタ 3 lb, 3 laへの排気 G の流量が増大する ex
ため、排気 G の流れを遮断するための排気ノ レブが不要となり、システム構成が簡 ex
素化される。
[0082] 本実施例の排気浄ィ匕装置においても、尿素 SCR触媒システム 2と電気ヒータ再生 型パティキュレートフィルタシステム 3を設けているため、 NO低減やパティキュレート 燃焼を良好に効率良く行なうことができると共に、耐久性に優れた排気浄ィ匕装置を提 供することができ、又、尿素 SCR触媒システム 2は電気ヒータ再生型パティキュレート フィルタシステム 3の排気流れ方向上流側に設けているため、電気ヒータ再生型パテ ィキュレートフィルタシステム 3のパティキュレートフィルタ 8a, 8bを再生する際の熱に より尿素 SCR触媒システム 2の酸化触媒 4や選択還元型触媒 5の劣化を生じることが なぐ更に、電気ヒータ再生型パティキュレートフィルタシステム 3は尿素 SCR触媒シ ステム 2の排気流れ方向下流側に配置されている力 パティキュレートフィルタ 31a, 31bはヒーター体型で強制的に加熱して再生を行なうようにしているため、パティキュ レートの燃焼は何等問題なく行なうことができる。又、排気 G の流れを遮断するため ex
の排気バルブが不要となり、システム構成が簡素化される。
なお、本発明の排気浄ィ匕装置は上記実施例に限定されるものではなぐ本発明の 要旨を逸脱しない範囲内で種々変更をカ卩ぇ得ることは勿論である。

Claims

請求の範囲
[1] 内燃機関力もの排気管の中途部に、排気流れ方向上流側力も下流側へ向けて、 尿素 SCR触媒システムと、電気ヒータ再生型パティキュレートフィルタシステムとを設 けたことを特徴とする排気浄ィ匕装置。
[2] 電気ヒータ再生型パティキュレートフィルタシステムは、複数組並列配置されている 請求項 1記載の排気浄化装置。
[3] 電気ヒータ再生型パティキュレートフィルタシステムは、排気流れ方向上流側から下 流側に向けて遮熱材、電気ヒータ、多孔質ノヽ-カム構造のパティキュレートフィルタ、 酸化触媒を設けた請求項 1に記載の排気浄化装置。
[4] 電気ヒータ再生型パティキュレートフィルタシステムは、排気流れ方向上流側から下 流側に向けて遮熱材、電気ヒータ、多孔質ノヽ-カム構造のパティキュレートフィルタ、 酸化触媒を設けた請求項 2に記載の排気浄化装置。
[5] 電気ヒータ再生型パティキュレートフィルタシステムの各排気流れ方向上流側には
、排気の流れを遮断し得るシャツタを設けた請求項 2に記載の排気浄ィ匕装置。
[6] 電気ヒータ再生型パティキュレートフィルタシステムの各排気流れ方向上流側には
、排気の流れを遮断し得るシャツタを設けた請求項 3に記載の排気浄ィ匕装置。
[7] 電気ヒータ再生型パティキュレートフィルタシステムの各排気流れ方向上流側には
、排気の流れを遮断し得るシャツタを設けた請求項 4に記載の排気浄化装置。
[8] 電気ヒータ再生型パティキュレートフィルタシステムは、排気流れ方向上流側から下 流側へ向けて遮熱材、給電によりそれ自体が発熱するヒーター体型のパティキュレー トフィルタ、多孔質ノヽ-カム構造のパティキュレートフィルタを設けた請求項 1に記載 の排気浄化装置。
[9] 電気ヒータ再生型パティキュレートフィルタシステムは、排気流れ方向上流側から下 流側へ向けて遮熱材、給電によりそれ自体が発熱するヒーター体型のパティキュレー トフィルタ、多孔質ノヽ-カム構造のパティキュレートフィルタを設けた請求項 2に記載 の排気浄化装置。
[10] 尿素 SCR触媒システムは、排気流れ方向上流側に酸ィ匕触媒を備え且つ下流側に 選択還元型触媒を備えた請求項 1に記載の排気浄化装置。
[11] 尿素 SCR触媒システムは、排気流れ方向上流側に酸ィ匕触媒を備え且つ下流側に 選択還元型触媒を備えた請求項 2に記載の排気浄化装置。
[12] 尿素 SCR触媒システムは、排気流れ方向上流側に酸ィ匕触媒を備え且つ下流側に 選択還元型触媒を備えた請求項 3に記載の排気浄化装置。
[13] 尿素 SCR触媒システムは、排気流れ方向上流側に酸ィ匕触媒を備え且つ下流側に 選択還元型触媒を備えた請求項 4に記載の排気浄化装置。
[14] 尿素 SCR触媒システムは、排気流れ方向上流側に酸ィ匕触媒を備え且つ下流側に 選択還元型触媒を備えた請求項 5に記載の排気浄化装置。
[15] 尿素 SCR触媒システムは、排気流れ方向上流側に酸ィ匕触媒を備え且つ下流側に 選択還元型触媒を備えた請求項 6に記載の排気浄化装置。
[16] 尿素 SCR触媒システムは、排気流れ方向上流側に酸ィ匕触媒を備え且つ下流側に 選択還元型触媒を備えた請求項 7に記載の排気浄化装置。
[17] 尿素 SCR触媒システムは、排気流れ方向上流側に酸ィ匕触媒を備え且つ下流側に 選択還元型触媒を備えた請求項 8に記載の排気浄化装置。
PCT/JP2006/314391 2005-07-21 2006-07-20 排気浄化装置 WO2007010985A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-211111 2005-07-21
JP2005211111A JP2007023997A (ja) 2005-07-21 2005-07-21 排気浄化装置

Publications (1)

Publication Number Publication Date
WO2007010985A1 true WO2007010985A1 (ja) 2007-01-25

Family

ID=37668857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314391 WO2007010985A1 (ja) 2005-07-21 2006-07-20 排気浄化装置

Country Status (2)

Country Link
JP (1) JP2007023997A (ja)
WO (1) WO2007010985A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009065555A1 (de) * 2007-11-22 2009-05-28 Audi Ag Abgasnachbehandlungseinrichtung für eine brennkraftmaschine und verfahren zur nachbehandlung von abgasen einer brennkraftmaschine
US7799289B2 (en) 2007-07-31 2010-09-21 Caterpillar Inc Exhaust treatment system with NO2 control
US8166751B2 (en) 2007-07-31 2012-05-01 Caterpillar Inc. Particulate filter
WO2022115349A1 (en) * 2020-11-30 2022-06-02 Corning Incorporated Electrically powered catalyst heater for fluid treatment systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853716B1 (ko) 2007-05-29 2008-08-25 일진전기 주식회사 촉매전기히터를 이용한 질소산화물 저감장치
KR100857511B1 (ko) * 2007-05-29 2008-09-08 일진홀딩스 주식회사 바이패스관을 이용한 질소산화물 저감장치
KR100911586B1 (ko) 2007-12-14 2009-08-10 현대자동차주식회사 선택적 촉매 환원장치용 일산화탄소 저감장치
DE102008013405A1 (de) 2008-03-10 2009-09-17 Robert Bosch Gmbh Abgasvorrichtung einer Brennkraftmaschine
JP6032268B2 (ja) * 2014-12-22 2016-11-24 トヨタ自動車株式会社 フィルタの故障診断装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299841A (ja) * 1993-04-19 1994-10-25 Mitsubishi Motors Corp ディーゼルエンジンの排気ガス浄化装置
JP2002306929A (ja) * 2001-04-16 2002-10-22 Hitachi Ltd エンジン排ガスの浄化方法及び装置
JP2004100699A (ja) * 2002-09-04 2004-04-02 Ford Global Technologies Llc 排気エミッション診断システム
JP2005090450A (ja) * 2003-09-19 2005-04-07 Hino Motors Ltd 排気浄化装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224983B2 (ja) * 2002-05-15 2009-02-18 三菱ふそうトラック・バス株式会社 内燃機関の排気ガス浄化装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299841A (ja) * 1993-04-19 1994-10-25 Mitsubishi Motors Corp ディーゼルエンジンの排気ガス浄化装置
JP2002306929A (ja) * 2001-04-16 2002-10-22 Hitachi Ltd エンジン排ガスの浄化方法及び装置
JP2004100699A (ja) * 2002-09-04 2004-04-02 Ford Global Technologies Llc 排気エミッション診断システム
JP2005090450A (ja) * 2003-09-19 2005-04-07 Hino Motors Ltd 排気浄化装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7799289B2 (en) 2007-07-31 2010-09-21 Caterpillar Inc Exhaust treatment system with NO2 control
US8166751B2 (en) 2007-07-31 2012-05-01 Caterpillar Inc. Particulate filter
WO2009065555A1 (de) * 2007-11-22 2009-05-28 Audi Ag Abgasnachbehandlungseinrichtung für eine brennkraftmaschine und verfahren zur nachbehandlung von abgasen einer brennkraftmaschine
WO2022115349A1 (en) * 2020-11-30 2022-06-02 Corning Incorporated Electrically powered catalyst heater for fluid treatment systems

Also Published As

Publication number Publication date
JP2007023997A (ja) 2007-02-01

Similar Documents

Publication Publication Date Title
JP3876705B2 (ja) ディーゼルエンジンの排気ガス浄化システム
US7784276B2 (en) Exhaust gas purifier and method of control therefor
WO2007010985A1 (ja) 排気浄化装置
JP3829699B2 (ja) 排ガス浄化システム及びその再生制御方法
WO2005028824A1 (ja) 排気浄化装置
WO2007058015A1 (ja) 排気ガス浄化システムの再生制御方法及び排気ガス浄化システム
WO2004104385A1 (ja) 排気浄化装置
KR20010090826A (ko) 열이 회수되는 희박 연소 환경 내에서 유체스트림으로부터 오염인자를 제거하기 위한 일체형 장치
JP2001280121A (ja) 連続再生型パティキュレートフィルタ装置
JP4135757B2 (ja) 内燃機関の排気浄化システム
JP2004162600A (ja) 内燃機関の排気浄化装置
JP2015206274A (ja) 内燃機関の排気ガス浄化システム及び内燃機関の排気ガス浄化方法
JP2007198315A (ja) 内燃機関の排気浄化装置及び排気浄化方法
EP1101907A1 (en) Exhaust gas emission-control system
KR100773268B1 (ko) 디젤 배출가스 정화 장치 및 그 제어방법
KR100763411B1 (ko) 다중배열형 디젤 산화/환원 촉매변환장치
JP2007127069A (ja) 排気浄化装置
JP2009515083A (ja) 内燃エンジンから排出される排出ガスの浄化システム
JP4285596B2 (ja) ディーゼル排気ガス浄化装置
JP4363074B2 (ja) 排気ガス浄化システム
JPH10121946A (ja) ディーゼル機関の排ガス浄化装置
JP3826661B2 (ja) ディーゼルパティキュレートフィルター
JP2893985B2 (ja) 内燃機関用フィルタ再生装置
JP5858225B2 (ja) 排気浄化装置の温度制御装置
JPH0573221U (ja) パティキュレートトラップフィルタ再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781351

Country of ref document: EP

Kind code of ref document: A1