WO2007010978A1 - 管路試験体及び管路試験方法 - Google Patents

管路試験体及び管路試験方法 Download PDF

Info

Publication number
WO2007010978A1
WO2007010978A1 PCT/JP2006/314371 JP2006314371W WO2007010978A1 WO 2007010978 A1 WO2007010978 A1 WO 2007010978A1 JP 2006314371 W JP2006314371 W JP 2006314371W WO 2007010978 A1 WO2007010978 A1 WO 2007010978A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
spherical
rod
angle
portions
Prior art date
Application number
PCT/JP2006/314371
Other languages
English (en)
French (fr)
Inventor
Yoshihiro Shutou
Tadahisa Hirakawa
Yasunobu Horita
Kazuhisa Yokino
Kouji Terasaki
Hiroshi Yasunaga
Hiroaki Kamohara
Kenichi Fujimaru
Original Assignee
Kyushu Electric Power Co., Inc.
Daiden Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu Electric Power Co., Inc., Daiden Co., Ltd. filed Critical Kyushu Electric Power Co., Inc.
Priority to JP2007526046A priority Critical patent/JP4450251B2/ja
Publication of WO2007010978A1 publication Critical patent/WO2007010978A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G1/00Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines
    • H02G1/06Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle
    • H02G1/08Methods or apparatus specially adapted for installing, maintaining, repairing or dismantling electric cables or lines for laying cables, e.g. laying apparatus on vehicle through tubing or conduit, e.g. rod or draw wire for pushing or pulling
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables
    • G02B6/50Underground or underwater installation; Installation through tubing, conduits or ducts
    • G02B6/54Underground or underwater installation; Installation through tubing, conduits or ducts using mechanical means, e.g. pulling or pushing devices
    • G02B6/545Pulling eyes

Definitions

  • the present invention relates to a pipe test body used to confirm whether or not a pipe is in a state in which a cable or the like can be properly passed, and in particular, the degree of bending of a pipe, the presence or absence of a step, and the like.
  • the present invention relates to a pipe test body that can be appropriately judged and a pipe test method using the same.
  • Such a pipe line is formed by connecting ends of a plurality of pipes with mortars or joints. Therefore, in the pipe line, a step may occur at the pipe connection part, and the wires are drawn. It may be an obstacle to insert. Also, in urban areas where the undergrounding of electric wires has been advanced, there may be cases where the pipe position of the pipes deteriorates over time or the pipe position shifts due to subsidence of the surrounding ground. Therefore, there is an increased risk of malfunction when trying to draw new wires into existing open pipelines.
  • Patent Document 1 JP 2000-96982 A
  • Patent Document 2 JP 2002-34113 A
  • the specimen can check the extreme bends of the pipe, even if there is a step at the connecting part of the pipe forming the pipe or the pipe is meandering, the specimen If there is enough clearance, the specimen will pass through the stepped part or meandering part as it is, and the stepped part or meandering may not be detected properly and may be overlooked. If there is a high risk of being damaged or being unable to be pulled in due to increased side pressure associated with meandering, there are problems.
  • the present invention has been made to solve the above-described problems, and enables the measurement of the radius of curvature of each part of the pipeline and the detection of the step with high accuracy in the passage test to the pipeline. Abnormal state can be detected with high accuracy in operation, and troubles when pulling in actual cables, etc. can be prevented, and a compact structure that can be used even in manholes where many types of pipes and cables are congested, etc. It is an object of the present invention to provide a pipe test body capable of improving work efficiency and a pipe test method using the pipe test body.
  • the pipeline test specimen according to the present invention is a pipeline test specimen that is passed through the pipeline to be tested and used for determining the normality of the pipeline based on whether or not the pipeline can be moved and passed.
  • a plurality of substantially spherical spherical portions formed at a predetermined ratio smaller than the inner diameter of the pipe line, and one or more rod-shaped portions having a predetermined thickness thinner than the spherical portion, and the rod-shaped portions are arranged between the spherical portions. They are arranged one by one, and both end portions are respectively attached to the spherical portions, and the respective spherical portions are connected linearly.
  • a plurality of spherical portions are connected by a rod-shaped portion, and even when the spherical portions are close to the inner dimensions of the pipe, the portions between the spherical portions are thin. Even if the outer diameter of the spherical part along the inner surface of the pipe is very close to the inner dimension of the pipe, it becomes a rod-like part and is less likely to interfere with the inner peripheral surface of the pipe.
  • the entire test specimen is moved along a bend within an appropriate range of the pipeline, and the diameter of the spherical part is close to the inner dimension of the pipeline, there is a step when the specimen is drawn into the pipeline.
  • the specimen it is easy for the specimen to stay without passing through at a certain point, and the stepped part in the pipe can be detected with high accuracy, and the length and diameter of the rod-like part and the curvature of the spherical part can be adjusted to determine the predetermined part of the pipe. It is possible to obtain a state in which the specimen cannot pass at the bent portion where the radius of curvature is less than or equal to the radius of curvature, and has the same line test function as the conventional specimen. Next, it allows higher cable communication line determination of accuracy.
  • the pipe test specimen according to the present invention includes at least three or more of the spherical portions as necessary. And an intermediate spherical portion connected to two rod-shaped portions among the plurality of spherical portions forms a universal joint mechanism that gives one of the two rod-shaped portions a degree of freedom of rotation around two orthogonal axes with respect to the other, The intermediate spherical portion allows the relative angle between the two rod-shaped portions to be changed within a predetermined angle range.
  • the intermediate spherical portion to which the plurality of rod-shaped portions are coupled allows the relative angle of each rod-shaped portion to be changed within a predetermined range with respect to each other. It is a universal joint mechanism with a rod-shaped portion, and the relative distance changes corresponding to the bends within an appropriate range of the pipe line are accompanied by a change in the entire specimen along the pipe line.
  • the bent part can be moved smoothly with slight changes in the angle between the rod-shaped parts, but if the movable range of the universal joint mechanism part is appropriately limited, it will exceed the movable range of the universal joint mechanism part.
  • the pipe test specimen according to the present invention has, in the intermediate spherical portion, an inclination angle of the other of the two rod-shaped portions connected to the spherical portion with respect to the other around the two orthogonal axes.
  • An angle sensor for detecting each angle component is provided.
  • an angle sensor that detects an angle change of the rod-like portion is incorporated in the spherical portion to which a plurality of rod-like portions are connected, and one of the rod-like shapes that changes along the bend of the pipe line.
  • the angle can be detected throughout the pipe, so that the bent state of each part of the pipe can be reliably grasped, and the tension and side pressure applied when pulling in the actual cable etc. Can be predicted in advance, and it becomes possible to more accurately determine whether or not to enter the line.
  • the pipe specimen according to the present invention has two rod-shaped portions connected to the intermediate spherical portion, and the distance between the centers of the spherical portions to which both ends are attached is the same. It is supposed to be the length dimension to be. [0016]
  • the distance between the two spherical portions arranged to sandwich the intermediate spherical portion is equal to each other, and the intermediate spherical portion and the intermediate spherical portion are located.
  • the rod-shaped parts By connecting the line connecting the arc center of the curved part with a symmetrical center line, the rod-shaped parts have a symmetrical positional relationship, so that the radius of curvature can be calculated using the same spherical part interval value and the angle measured by the angle sensor. Therefore, the calculation can be easily performed when calculating the radius of curvature.
  • the pipe test specimen is drawn into the pipe, the angle value detected by the angle sensor, and the movement distance of the pipe test specimen are determined by the pipe test specimen. It is recorded in correspondence with the elapsed time from the start of pipe entry, and the position on the pipeline corresponding to the angle value detection point at a predetermined time point is estimated, and the position corresponding to each position of the pipeline is The radius of curvature is calculated from the angle value, and the bending state of the pipeline is acquired.
  • a pipe test body capable of detecting with the angle sensor the inclination angle of the other of the two rod-like parts connecting the spherical parts to the other is drawn into the pipe,
  • the travel distance of the test specimen is determined by advancing the inside of the pipe along with the relative angle change between the rod-shaped parts following the pipe's bend, and detecting the angle at each part of the pipe.
  • the relationship between the pipe position and the angle detection value can be made to correspond to each other, the angle detection value force, the radius of curvature of each part of the pipe line can be derived, and the bending state of each part of the pipe line can be determined. Appropriately grasped and can determine whether or not a cable is allowed to pass through more accurately.
  • FIG. 1 is a schematic configuration diagram of a pipe test specimen according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view of a main part of a pipe test piece according to an embodiment of the present invention.
  • FIG. 3 is an explanatory view of a state of change in the angle of a rod-like portion at a pipe bending portion of a pipe test piece according to an embodiment of the present invention.
  • FIGS. 1 is a schematic configuration diagram of a pipe test specimen according to the present embodiment
  • FIG. 2 is an enlarged cross-sectional view of a main part of the pipe test specimen according to the present embodiment
  • FIG. 3 is a pipe test according to the present embodiment. It is a rod-shaped part angle change state explanatory drawing in the pipe curved part of a body.
  • the pipe test body 1 includes three spherical parts 11, 12, 13 that are made smaller than the inner diameter of the pipe 50 to be tested by a predetermined ratio, Spherical part 1
  • the structure includes two rod-like portions 21 and 22 that connect 1, 12, and 13 linearly.
  • the spherical parts 11, 12, 13 are substantially spherical bodies made of a resin having the same uniform outer diameter of about 85 to 97%, preferably 96% of the inner diameter of the pipe, and the inside is hollow. In this configuration, the rod-like portions 21 and 22 are connected and integrated with the end portions while passing through the inside. These spherical parts 11, 1
  • connecting portions 11a and 13a for connecting the pull-in rope 40 are provided on the spherical portions 11 and 13 which are front and rear ends in the direction of travel when the pipe is pulled in. .
  • the intermediate spherical portion 12 connected to the two rod-shaped portions 21, 22 is two substantially hemispherical outer shells connected to the two rod-shaped portions 21, 22 respectively.
  • the spherical universal joint structure is a combination of the members 12a and 12b, and the outer shell members 12a and 12b can slide relative to each other while changing their relative angles.
  • the configuration is such that one of 21 and 22 is given a degree of freedom of rotation around two orthogonal axes with respect to the other, and the relative angle between the two rod-like portions 21 and 22 can be changed within a predetermined angle range.
  • recording means 15 comprising a converter, CPU, memory, battery, etc. for angle measurement is housed inside the spherical portion 13 which is the rear side in the traveling direction, and is predetermined from the outside of the spherical portion 13 With this operation, it is possible to instruct the start and end of angle data recording.
  • the rod-like portions 21 and 22 are substantially rod-like stainless steel pieces having a predetermined thickness thinner than the spherical portions 11, 12, and 13. In a state in which both end portions are attached to and integrally connected to the spherical portions 11, 12, and 13, the distance between the centers of the spherical portions 11, 12, and 13 is the same length. is there .
  • the rod-like parts 21 and 22 are directly engaged with each other through a universal joint 23 inside the spherical part 12, and have a mechanism capable of giving a rotational degree of freedom around two orthogonal axes with respect to the other.
  • angle sensors 31 and 32 for detecting the inclination angle of the other of the rod-like parts 21 and 22 with respect to one of the two orthogonal components are disposed in the spherical part 12. is there.
  • the angle sensors 31, 32 a displacement meter using a potentiometer or a strain gauge, a single encoder, a sensor using a Hall element, etc. are used.
  • the angle data obtained by the angle sensors 31 and 32 is transmitted to the recording means 15 in the spherical portion 13 and recorded in correspondence with the elapsed time from the start of measurement. Instead of recording the data in the recording means 15 in the spherical portion 13, the data is output to another recording means outside the conduit 50 via a communication cable or the like connected in advance, and the data is sent to the other recording means side. May be recorded.
  • each pull-in and pull-out loop 40 is connected to the front and rear connection parts l la and 13a of the pipe test specimen 1, and when preparation for drawing into the pipe 50 is complete, the rear side in the direction of travel
  • the recording means 15 provided in the spherical portion 13 is instructed to start recording by a predetermined operation, and measurement of the angle change is started.
  • the rope 40 starts to be scraped at a constant speed by the scraping device, and the pipeline specimen 1 is drawn into the pipeline 50.
  • the pipe test specimen 1 drawn into the pipe 50 advances through the pipe 50 at a substantially constant speed, and follows the shape of the pipe at the curved portion existing in the pipe 50.
  • the angle data obtained by the angle sensors 31 and 32 are simultaneously recorded in the recording means 15 in correspondence with the elapsed time from the start of recording.
  • Pipeline specimen during withdrawal 1 By making the pull-in speed constant, it is possible to clearly associate the position of the specimen in the pipe with the angle data without performing measurement of the required pull-in distance of the specimen in correspondence with the elapsed time. be able to.
  • the direction of the bent portion of the pipe 50 is not constant, and the pipe test specimen 1 itself advances with a slight rotation in the pipe 50. Therefore, the bending angle of the pipe 50, that is, the rod-like portion 21 , 22 with respect to one of the other can be obtained only by synthesizing the angular components of two orthogonal axes detected by the angle sensors 31 and 32.
  • the angle change range between the rod-like portions 21 and 22 is limited by the movable range of the outer shell members 12a and 12b of the spherical portion 12 that moves integrally with the rod-like portions 21 and 22, and in the bent portion of the pipeline
  • the pipe test specimen 1 advances smoothly in the pipe 50.
  • the curved portion of the pipeline is steeply curved and the rod-like portions 21 and 22 are required to change in angle beyond the movable range, the pipeline specimen 1 cannot pass through the curved portion of the pipeline 50. Thus, it is determined that the pipe 50 has a defective bent portion.
  • the radius of curvature of the pipe 50 (the radius of the arc passing through the center of the pipe 50) is known, the inner diameter of the pipe 50, the outer diameter of the spherical parts 11, 12, 13 and the spacing between the spherical parts are known. These values can be easily calculated using the other inclination angle value with respect to one of the rod-like portions 21 and 22 obtained by measurement with the angle sensor.
  • the radius of curvature R of the pipeline 50 is set to the radius of curvature R on the inner circumference side of the pipeline 50, and the inner radius of the pipeline 50.
  • the curve of the pipe specimen 1 is calculated from the angles ⁇ and ⁇ obtained by the angle sensors 31 and 32.
  • the two rod-like parts 21 and 22 are sized so that the distance between the spherical parts 11, 12, and 13 is the same value L, respectively.
  • the angle data at a predetermined time point can be reliably matched to the original detection position in the pipe, and the predetermined pipe position can be determined from the angle data.
  • the value of the radius of curvature can be derived appropriately, and the value of the radius of curvature at each position of the pipeline can be grasped, so that it is easy to identify abnormal points and caution points in the pipeline 50.
  • the analysis device may be made to detect a caution location or an abnormal location of the pipeline based on a preset condition and display it on a screen or the like. Through this process, the administrator can check whether there are abnormal bends in the pipeline. If it is confirmed that all the pipes are normal, cables and the like can be formally drawn into the pipes, and undergrounding can be realized by placing them in the pipes without any trouble.
  • the pipe test specimen 1 In the state where the pipe test specimen 1 is present in the pipe 50, the pipe test specimen 1 usually proceeds while contacting the inner peripheral side of the pipe bending portion, but in some cases, on the outer peripheral side.
  • the radius of curvature that includes a predetermined error is small, that is, the curve of the pipe 50 is suddenly curved.
  • the error tends to increase as the radius of curvature increases. If the bend of the pipe 50 is gentle and the load on the cable etc. is light, there is no adverse effect on the cable even if the error is large. There is no problem.
  • the pipeline test body according to the present embodiment has a structure in which a plurality of spherical portions 11, 12, 13 are connected by the rod-shaped portions 21, 22, and the intermediate spherical portion 12 portion has a rod-shaped configuration. Even if the spherical parts 11, 12, and 13 are close to the inner diameter of the pipe 50, the spherical part 11 , 12, 13 The thin rod-like portions 21, 22 are difficult to interfere with the inner peripheral surface of the conduit 50, and the rod-like portions 21, 22 can cope with bending within the appropriate range of the conduit 50. Thus, the relative angle is changed, and the entire specimen can be moved along the pipe 50. Therefore, the outer diameter of the spherical parts 11, 12, 13 is set to the pipe 50.
  • the spherical portion 12 incorporates angle sensors 31 and 32 for detecting the angle change between the rod-like portions 21 and 22, and the inclination of the other rod-like portion with respect to one rod-like portion changing along the bending of the pipe line. Since the oblique angle can be obtained continuously for each pipeline position, the values obtained by the angle sensors 31 and 32 can be correlated with the pipeline position to grasp the bent state of the pipeline 50, and the pipeline 50 abnormalities can be identified appropriately.
  • the force is such that the three spherical parts 11, 12, 13 are connected and used by the rod-like parts 21, 22. It can be connected by using two rod-shaped parts or by connecting four or more spherical parts.
  • the pipe test specimen 1 is drawn with a constant drawing speed into the pipe 50 during the line test, and the elapsed time. From this, it is necessary to calculate the curvature of each position of the pipe 50 using the moving distance and angle data of the test specimen, which is obvious from the above. It is also possible to directly measure the moving distance associated with the pulling-in and pulling-back with the elapsed time and to derive the curvature of each position of the pipe line 50 using the measurement result.
  • the distance moved forward and backward with respect to the pipeline 50 of each rope 40 used for pulling in and retracting the pipe test specimen 1, specifically, a predetermined point in the extra-pipe path of the rope on the pulling side or the pulling side Using a length measuring device that measures the passage length at the (measurement point), measuring the moving distance while acquiring the elapsed time information of the pipe drawing start force of the pipe test specimen, From the relationship between the travel distance of the pipe test specimen and the elapsed time that can be derived directly from the measured values obtained by the equipment, the pipe test Even when the body drawing speed changes, it is possible to reliably and highly accurately estimate the arrival position of the pipe test specimen in the pipe in the predetermined elapsed time, and the position of the pipe specimen in the predetermined elapsed time. Information on the radius of curvature derived from the detected angle value for each elapsed time can be accurately applied to each position corresponding to the pipe, and the bending state of the pipe can be grasped more accurately.
  • the angle detection data obtained by the angle sensor of the pipeline test specimen is also used as the pipe specimen. If the data is acquired outside the pipeline via a communication cable connected to the cable or by wireless communication, the measurement data of the rope movement distance and the data of the angle detection value are simultaneously transmitted. It is no longer necessary to synchronize the position and angle detection value of the pipe test specimen with the elapsed time, and processing such as recording is performed in such a way that the angle detection value is acquired at every predetermined distance moved by the loop.
  • the pipe state of the passage part of the pipe test specimen is in the middle of the line test. Therefore, it is possible to quickly identify abnormal points in the pipeline and take appropriate measures. Contrary to acquiring the angle detection value outside the pipe, the measurement data of the distance traveled by the rope is transmitted to the pipe test piece by wire or wirelessly, and the pipe test piece is recorded together with the angle detection value. You can record it on the means, and it's okay if you want.
  • the rope 40 is used as a flexible linear body that is used for pulling in and retracting the pipeline test specimen 1 with respect to the pipeline in the line test.
  • a cable with high tensile strength is adopted for the cable connected to the pipe test specimen for the purpose of data communication between the pipe test specimen and the outside of the pipe and power supply to Z or the pipe test specimen.
  • This cable can be used for bow I insertion and withdrawal of the pipe test specimen instead of the rope, and only the cable can be used as a linear body for moving the pipe test specimen in the pipe. It is not necessary to use multiple sets of cables and cables, and the number of accessories to be connected and connected to the pipe test specimen is reduced to reduce the preparation work and resistance to movement. By reducing the number, the movement of the pipe test specimen and other pipes will be smooth, and the force required for pulling in and pulling back will be reduced, so that the scraping device to be used can be reduced in size and cost.

Abstract

 管路試験体として、複数の球状部11、12、13を棒状部21、22で連結した構造を有し、球状部11、12、13が管路50内寸に近い大きさであっても、球状部間の部分が細い棒状部21、22となって、曲っている管路50の内周面に干渉しにくくなっていることから、管路50内面に沿わせる球状部11、12、13の外径を管路50の内寸に極めて近いものとしても、管路50の適切な範囲内の曲りに沿って試験体1全体を沿わせて移動させられ、球状部11、12、13の径が管路内寸に近い分、試験体1を管路50に引入れた際、段差がある箇所で試験体1が通過せずに留まりやすくなり、管路50への通線試験において管路50各部の曲率半径計測や段差検知を精度よく実施でき、簡易な作業で確実に異常状態検出が行え、実際のケーブル等引入れ時のトラブルを防止できる。

Description

明 細 書
管路試験体及び管路試験方法
技術分野
[0001] 本発明は、管路がケーブル等を適切に通線可能な状態であるか否力を確認するの に使用する管路試験体に関し、特に管路の曲り具合や段差の有無等を適切に判定 可能な管路試験体及びこれを用いた管路試験方法に関する。
背景技術
[0002] 近年、道路周辺景観への配慮だけでなぐ道路における安全で快適な通行スぺー スの確保や災害時の被害軽減等を目的として、電力線や通信ケーブル等の電線類 を道路下の地中に坦設する地中化が進められている。こうした電線類を地中に埋設 する際には、コンクリートや金属、又は合成樹脂製の管を地中で複数連結させつつ 埋設し、得られた管路に端部のマンホール等から電線類を引入れる方法が採られて いる。
[0003] こうした管路は、複数の管の端部同士をモルタルや継手で連結して形成されるため 、管路においては、管の連結部分に段差が発生することもあり、電線類を引入れる際 に障害となることがある。また、電線類の地中化が先行して進められた都市部では、 管路をなす管材の経年劣化や、周囲地盤の沈下等に伴う管路位置のずれが生じて レ、る場合もあり、既設の空き管路へ新たに電線等を引入れようとする際には不具合を 生じる危険性が高くなつている。
[0004] 一方、従来のこうした電線類の地中化整備対象としては、商業集積地における言わ ばメインストリートとされる大通りが主であった力 近年は、生活道路環境の質的向上 や道路のバリアフリー化、歴史的な街並保存等の、多様な無電柱化のニーズに対応 する形で、地中化整備対象は商業地にとどまらず、住宅地や街並保存地区などへも 拡大されている。これに伴い、スペースが狭く曲りくねった道路においても管路を設け るケースが増えてきており、設置される管路は以前に比べて曲率大の屈曲部分を生 じていたり、蛇行状態となっていたりする危険性も高ぐ管路の途中で電線類等が引 入れ不能となる事態が特に生じやすくなつてレ、る。 [0005] こうした電線類の地中化に際し、管路の異常状態が原因で起るトラブルは、管路の 改修を伴って地中化工事の費用ゃェ期に大きな影響を与えるため、ケーブル等を管 路に引入れるのに先立って、管路が段差や急な曲り部分を生じさせずに適切に設置 され、且つ管路内に障害物が存在しないか否かの確認作業がなされていた。この確 認作業としては、一般に管路内のケーブル等の収容スペースに対応する大きさの試 験棒等の管路試験体を、管路内にワイヤやロープ等を介して引入れて通過させる通 線試験が実施されている。このような従来の通線試験用として管路内に引入れられる 管路試験体の例としては、特開 2000— 96982号、及び特開 2002— 34113号の各 公報に開示されるものがある。
特許文献 1 :特開 2000— 96982号公報
特許文献 2 :特開 2002— 34113号公報
発明の開示
発明が解決しょうとする課題
[0006] 従来の管路試験体は前記各特許文献に示されるものとなっており、いずれも所定 長さの曲らなレ、棒状体であり、管路の曲り部分がある曲率半径以下である場合に通 過できなくなることを利用して、管路が規定された曲率半径以上とされて配設されて レ、るか否力を確認できる仕組みであった。そして、こうした従来の試験体は、管路の 曲り状態の検出を適切に行えるように、長さについては条件に対応した所定寸法とさ れる一方、太さについては曲り検出に際して両端部以外が管路内面と干渉するのを 避けつつ管路内をスムーズに進行できるよう十分細い径に設定される。この結果、試 験体では管路の極端な曲り箇所はチェックできるものの、管路をなす管材の連結箇 所などに段差が生じていたり、管路が蛇行していたりしていても、試験体の通る間隔 さえあればこうした段差部分や蛇行部分を試験体がそのまま通過し、段差や蛇行を 適切に検出できず見逃してしまう場合もあり、ケーブル等を管路に引入れる際に段差 箇所でケーブルが損傷したり、蛇行に伴う側圧増大で引入れできなくなる危険性が 極めて高いとレ、う課題を有してレ、た。
[0007] また、実際のケーブル等の管路引入れ時には、管路の曲り部分は複数箇所に存在 し、それぞれ曲率半径も異なっていることが一般的であり、こうした曲り部分の数やそ の曲り具合が延線張力やケーブル側圧に大きく影響する。従来の試験体は、管路の 曲り状態がある最小曲率半径以上であるか否かを判定するものに過ぎず、この管路 各部が所定の曲率半径以上になっているという情報だけでは適切に管路への入線 可否を判定することは難しレ、とレ、う課題を有してレ、た。
[0008] 本発明は前記課題を解消するためになされたもので、管路への通線試験において 管路各部の曲率半径計測や段差検知を精度よく実施可能とし、従来同様の簡易な 引入れ作業で精度良く異常状態検出が行え、実際のケーブル等引入れ時のトラブ ルを防止できると共に、多種の管やケーブル等が輻輳したマンホール内等でも使用 可能なコンパクト構造を有し、通線試験作業の能率向上も図れる管路試験体、及び 当該管路試験体が用いられる管路試験方法を提供することを目的とする。
課題を解決するための手段
[0009] 本発明に係る管路試験体は、試験対象となる管路に揷通され、管路における移動 、通過の可否に基づく管路の正常性判定に用いられる管路試験体において、前記 管路の内径より所定割合で小さく形成される略球状の複数の球状部と、当該球状部 より細い所定太さの一又は複数の棒状部とを備え、当該棒状部が、球状部間に一つ ずつ配置されて両端部をそれぞれ球状部に取付けられ、各球状部を線状に連結す るものである。
[0010] このように本発明によれば、複数の球状部を棒状部で連結した構造を有し、球状部 が管路内寸に近い大きさであっても、球状部間の部分が細い棒状部となって曲って レ、る管路の内周面に干渉しにくくなつていることにより、管路内面に沿わせる球状部 の外径を管路の内寸に極めて近いものとしても、管路の適切な範囲内の曲りに沿つ て試験体全体を沿わせて移動させられ、球状部の径が管路内寸に近い分、試験体 を管路に引入れた際、段差がある箇所で試験体が通過せずに留まりやすくなり、管 路中の段差部分を精度よく検出でき、また、棒状部の長さとその径、さらに球状部の 曲率を調整すれば、管路の所定の曲率半径以下となる曲り部分で試験体の通過で きない状態が得られ、従来の試験体同様の通線試験機能も合せ持つこととなり、精 度の高いケーブル通線可否判定が行える。
[0011] また、本発明に係る管路試験体は必要に応じて、前記球状部を少なくとも 3個以上 とし、前記複数の球状部のうち、二つの棒状部と連結する中間の球状部が、前記二 つの棒状部の一方へ他方に対する直交二軸周りの回転自由度を与える自在継手機 構をなし、前記中間の球状部が、前記二つの棒状部の相対角度を所定角度範囲内 変更可能とするものである。
[0012] このように本発明によれば、複数の棒状部が連結される中間の球状部が、各棒状 部の相対角度を互いに所定範囲で変更可能とする、直交二軸周りの回転自由度を 有する自在継手機構とされ、棒状部同士の、管路の適切な範囲内の曲りに対応した 相対角度変化を伴いながら、試験体全体を管路に沿わせて移動させられることにより 、管路の問題ない曲り部分では棒状部同士の若干の角度変化を伴いつつスムーズ に移動できる一方、 自在継手機構部分の可動範囲に適宜制限を設ければ、自在継 手機構部分の可動範囲を超える所定の曲率半径以下となる曲り部分では通過でき ない状態が得られることとなり、より精度よく曲り状態の異常箇所の検出、特定が行え ると共に、管路内面に沿わせる球状部の径をさらに管路の内寸に近付けられ、その 分管路中の段差部分をより確実に検出できることとなる。
[0013] また、本発明に係る管路試験体は必要に応じて、前記中間の球状部内に、当該球 状部に連結する二つの棒状部における一方に対する他方の傾き角度を前記直交二 軸周りの各角度成分ごとにそれぞれ検出する角度センサを備えるものである。
[0014] このように本発明によれば、棒状部が複数連結される球状部に、棒状部の角度変 化を検出する角度センサを内蔵させ、管路の曲りに沿って変化する一方の棒状部に 対する他方の棒状部の傾斜角度を各管路位置毎に連続して取得可能とすることによ り、角度センサで得られた値と管路位置を対応させて管路の曲り状態を把握できると 共に、管路の異常な曲り箇所を適切に特定できる。また、管路の曲りが正常な範囲内 であっても角度を管路全体で検出できることで、管路各部の曲り状態を確実に把握し て、実際のケーブル等引入れ時に力かる張力や側圧を前もって予測することができ、 より正確な入線可否判断が可能になる。
[0015] また、本発明に係る管路試験体は必要に応じて、前記中間の球状部に連結する二 つの棒状部が、それぞれ両端が取付けられた各球状部の中心間距離を互いに同じ くする長さ寸法とされるちのである。 [0016] このように本発明によれば、中間の球状部を挟んで配設される二つの棒状部力 連 結する各球状部間隔を等しくする寸法とされ、中間の球状部とこれが位置する管路 曲り部分の円弧中心とを結ぶ線を対称の中心線として棒状部同士が対称位置関係 となることにより、同一の球状部間隔の値と角度センサで測定された角度等を用いて 曲率半径を求められることとなり、曲率半径を算出する際に計算が容易に行える。
[0017] また、本発明に係る管路試験方法は、前記管路試験体を管路に引入れ、前記角度 センサで検出した角度値、及び管路試験体の移動距離を、管路試験体の管路引入 れ開始からの経過時間と対応させつつ記録し、所定時点での角度値検出地点に該 当する管路上の位置をそれぞれ推定した上で、管路の前記各位置ごとに対応する 角度値から曲率半径を算出し、管路の曲り状況を取得するものである。
[0018] このように本発明によれば、球状部間を連結する二つの棒状部の一方に対する他 方の傾き角度を角度センサで検出できる管路試験体を管路内に引入れ、球状部が 通過できる範囲で、管路の曲りに追随した棒状部同士の相対角度変化を伴わせつ つ管路内を進行させ、管路各部位で角度を検出していくことにより、試験体の移動距 離との関係から管路位置と角度検出値とを対応させられ、角度の検出値力 管路各 部位の曲率半径を導けることとなり、管路各部位がどのような曲り状態となっているか を適切に把握でき、ケーブル等通線可否の判定をより精度良く行える。
図面の簡単な説明
[0019] [図 1]本発明の一実施の形態に係る管路試験体の概略構成図である。
[図 2]本発明の一実施の形態に係る管路試験体の要部拡大断面図である。
[図 3]本発明の一実施の形態に係る管路試験体の管路曲り部分における棒状部角 度変化状態説明図である。
符号の説明
[0020] 1 管路試験体
11、 12、 13 球状部
11a, 13a 接続部
12a、 12b 外殻部材
15 記録手段 21、 22 棒状部
23 自在継手
31、 32 角度センサ
40 ロープ
50 管路
発明を実施するための最良の形態
[0021] 以下、本発明の一実施の形態を図 1〜図 3に基づいて説明する。図 1は本実施の 形態に係る管路試験体の概略構成図、図 2は本実施の形態に係る管路試験体の要 部拡大断面図、図 3は本実施の形態に係る管路試験体の管路曲り部分における棒 状部角度変化状態説明図である。
前記各図に示すように本実施の形態に係る管路試験体 1は、試験対象となる管路 5 0の内径より所定割合で小さくされてなる三つの球状部 11、 12、 13と、この球状部 1
1、 12、 13を線状に連結する二つの棒状部 21、 22とを備える構成である。
[0022] 前記球状部 11、 12、 13は、管路内径の約 85ないし 97%、望ましくは 96%となる同 じ一律の外径を有する樹脂製の略球状体とされ、内部を中空とされ、棒状部 21、 22 を内部に貫通させつつその端部に連結一体化する構成である。これら球状部 11、 1
2、 13のうち、管路内引入れの際の進行方向前後端となる球状部 11、 13には、引入 れ '引戻し用のロープ 40を接続する接続部 11 a、 13aが配設される。
[0023] 前記球状部 11、 12、 13のうち、二つの棒状部 21、 22と連結する中間の球状部 12 は、二つの棒状部 21、 22にそれぞれ連結する二つの略半球状の外殻部材 12a、 12 bを組合わせた球状の自在継手構造となっており、外殻部材 12a、 12b同士が互い に球面上で摺動しつつ相対角度を変化させられる仕組みであり、二つの棒状部 21、 22の一方へ他方に対する直交二軸周りの回転自由度を与え、二つの棒状部 21、 2 2の相対角度を所定角度範囲内で変更可能とする構成である。
[0024] —方、進行方向後方側とされる球状部 13の内部には、角度計測のための変換器、 CPU,メモリ及び電池等からなる記録手段 15が収納され、球状部 13外部から所定 の操作で角度データの記録の開始、終了を指示できる仕組みとなっている。
[0025] 前記棒状部 21、 22は、球状部 11、 12、 13より細い所定太さのステンレス製略棒状 部とされ、各球状部 11、 12、 13に両端部を取付けられて一体に連結された状態で 各球状部 11、 12、 13の中心間距離を互いに同じくする長さ寸法とされる構成である 。この棒状部 21、 22は球状部 12内部で 自在継手 23を介して直接係合しており、 一方の他方に対する直交二軸周りの回転自由度を与えられる仕組みである。
[0026] また、これら棒状部 21、 22の一方に対する他方の傾き角度を直交する二軸の各成 分ごとにそれぞれ検出する角度センサ 31、 32が、球状部 12内に配設される構成で ある。角度センサ 31、 32としては、ポテンショメータや歪みゲージを用いた変位計、口 一タリエンコーダの他、ホール素子を用いたセンサ等が用いられ、棒状部 21、 22が 一直線上にある場合を 0° とし、ここからの傾き角度を直交二軸周りの各角度成分ご とに検出するものとなっている。この角度センサ 31、 32で得られた角度データは、球 状部 13内の記録手段 15に送信され、計測開始からの経過時間と対応させて記録さ れる。なお、球状部 13内の記録手段 15にデータを記録する代りに、あらかじめ接続 した通信ケーブル等を介して管路 50外部の別の記録手段へデータを出力させ、この 別の記録手段側にデータを記録するようにしてもかまわない。
[0027] 次に、前記構成に基づく管路試験体による通線試験作業について説明する。あら かじめ、地中埋設済の円断面形状の管路 50には引入れ用線材としてのロープ 40が 通され、管路 50における試験体引入れ側とは反対側となる出口側端部には、ウィン チ等の卷取り装置(図示を省略)を配置し、ロープ 40の卷取りで管路試験体 1を管路 50へ引入れ可能な状態としておく。
[0028] 管路試験体 1の前後の接続部 l la、 13aにそれぞれ引入れ用、引戻し用の各ロー プ 40を接続し、管路 50への引入れ準備が整ったら、進行方向後方側となる球状部 1 3内に設けた記録手段 15に対し所定の操作で記録開始を指示して、角度変化の計 測を開始する。同時に、管路 50出口側では、卷取り装置によるロープ 40の一定速度 での卷取りを開始し、管路試験体 1を管路 50内に引入れていく。
[0029] 管路 50に引入れられた管路試験体 1は、ほぼ一定の速度で管路 50内を進み、管 路 50に存在する曲り部分で管路内形状に追随させて棒状部 21、 22同士の相対角 度を適宜変化させ、同時に角度センサ 31、 32で得られる角度データを、記録開始か らの経過時間と対応させつつ記録手段 15に記録していく。引入れ中の管路試験体 1 の引入れ速度を一定とすることで、通常必要な試験体の引入れ距離の測定を経過 時間と対応させつつ行うことなしに、試験体の管路中位置と角度データを明確に対 応付けることができる。なお、管路 50の曲り部分の向きは一定ではなぐ管路試験体 1自体も管路 50中で若干の回転を伴いつつ進むため、管路 50の曲りの角度、すな わち棒状部 21、 22の一方に対する他方の傾き角度は、角度センサ 31、 32で検出さ れた直交二軸の各角度成分の合成によってのみ得られることとなる。
[0030] 棒状部 21、 22同士の角度変化範囲は、棒状部 21、 22と一体に動く球状部 12の 各外殻部材 12a、 12bの可動範囲によって制限されており、管路の曲り部分における 湾曲が緩やかで棒状部 21、 22同士の相対角度変化が可動範囲に収る場合には、 管路試験体 1は管路 50内をスムーズに進める。一方、管路の曲り部分における湾曲 が急峻で、棒状部 21、 22に対し可動範囲を超える角度変化を要求する場合には、 管路試験体 1はこの管路 50の曲り部分を通過できず、これにより管路 50には不良曲 り部分が存在すると判定される。
[0031] また、管路 50に段差が生じており、段差部分には球状部 11、 12、 13の外径より小 さい隙間しかない場合には、管路試験体 1はこの段差部分を通過できず、これにより 管路 50には不良段差部分が存在すると判定される。球状部 11、 12、 13を管路 50の 内寸に近い値としていることで、段差の検出精度が高ぐ小さな段差の見逃しも起り にくい。
[0032] 管路試験体 1が管路 50をスムーズに進行して管路 50終端に達したら、管路試験体 1を回収し、速やかに球状部 13における記録手段 15に対し所定の記録終了操作を 行レ、、角度変化の計測を終える。この後、この球状部 13内の記録手段 15にケープ ル等を介してパソコン等の解析装置(図示を省略)を接続し、記録手段 15に格納され た角度変化のデータを、解析装置で読出す。この解析装置ではデータ解析を実行し 、管路 50各位置における曲り部分の曲率半径を算出する。管路 50の曲率半径(管 路 50の中心を通る円弧の半径)は、管路 50の内径や球状部 11、 12、 13の外径、球 状部同士の間隔が既知であることから、これらの値と角度センサでの計測により得ら れる棒状部 21、 22の一方に対する他方の傾き角度値を用いて容易に算出できる。
[0033] 詳しくは、管路 50の曲率半径 Rを、管路 50の内周側の曲率半径 R、管路 50内周 側に接触しながら進行する管路試験体 1における球状部 11、 12、 13の円弧状軌跡 の半径 R、管路内径 Φ 、球状部 11、 12、 13の外径 φ 、管路試験体 1の曲り角度 Θ
S R S
、及び各球状部 11、 12、 13の間隔 Lを用いて(図 3参照)、
Figure imgf000011_0001
よって、曲り角度 Θは、
Θ =COS (COS Θ 'COS θ )
または、近似計算で、
(tan0 )2=(tan0 )2+ (tan θ Ϋ
X Υ
よって、曲り角度 θは、
Θ =tan_1((tan0 )2+(tan0 )2) 1/
X Υ
さらに、図 3の AOBDより、
L/2=R -sin( Θ /2)
S 0
θ =π/2- θ /2
1 0
球状部間が等間隔 Lであることから、 ZOBC= Θ であり、
1
θ =π—2θ = π -2(π/2- Θ /2)= θ
1 0 0
よって、球状部軌跡の半径 Rは、
S
R =L/(2'sin(0/2))
s
上記各式より、各角度センサ 31、 32で得られる角度 θ 、 Θ から管路試験体 1の曲
X Y
り角度 Θが得られ、これと既知の管路内径 φ 、球状部直径 φ 、及び球状部間隔 L
R S
の各値を用いて、最終的に曲率半径 Rが求められることとなる。
この曲率半径 Rの算出にあたっては、二つの棒状部 21、 22が、それぞれ各球状部 11、 12、 13同士の間隔を同一値 Lとする寸法とされ、中間の球状部 12中心 Bとこれ が位置する管路曲り部分の円弧中心点 Oとを結ぶ線を対称の中心線として棒状部 2 1、 22同士が対称位置関係となっていることから、上記各式に示したように、同一の 球状部間隔 Lと角度センサで測定された角度 θ 、 Θ 他の各値を用いて曲率半径 R
X Y
をスムーズ且つ確実に算出できる。
[0035] また、管路試験体 1の引入れ速度を一定としていることで、所定時点での角度デー タを管路における本来の検出位置に確実に対応させられ、角度データから所定管路 位置における曲率半径の値を適切に導き出すことができ、管路各位置ごとの曲率半 径の値を把握できることで、管路 50における異常箇所や注意箇所を特定しやすレ、。
[0036] この他、解析装置に、あらかじめ設定した条件に基づいて管路の注意箇所や異常 箇所を検出させ、画面等に表示させるようにしてもよい。こうした処理を経て、管理者 が管路に異常屈曲箇所がないかどうかをチェックすることが可能となる。管路が全て 正常であることを確認できたら、正式にケーブル等を管路に引入れることができ、トラ ブル無く管路内に位置させて地中化を実現できる。
[0037] なお、管路試験体 1が管路 50内に存在する状態において、管路試験体 1は通常、 管路曲り部分の内周側に接触しながら進行するが、場合により外周側に接触すること もあり、曲り部分内周側への接触を前提としての曲率半径算出では、所定の誤差を 含むこととなる力 曲率半径が小さくなる場合、すなわち、管路 50の曲りが急でケー ブル等にとって厳しい条件の場合には誤差は十分小さぐ曲率半径が大きくなるに つれ誤差は大きくなる傾向を示すなど、条件が厳しく精度の高い値が要求される曲 率半径小の場合には十分な精度を確保でき、且つ、管路 50の曲りが緩やかでケー ブル等への負荷が軽度である場合には誤差が大きくなつてもケーブルへの悪影響は ないことから、こうした誤差が実質的に問題となることはない。
[0038] このように本実施の形態に係る管路試験体では、複数の球状部 11、 12、 13を棒状 部 21、 22で連結した構造を有すると共に、中間の球状部 12部分が、棒状部 21、 22 の一方に対し他方へ直交二軸周りの回転自由度を与える自在継手機構とされ、球状 部 11、 12、 13が管路 50内径に近い大きさであっても、球状部 11、 12、 13間の細い 棒状部 21、 22が曲っている管路 50の内周面に干渉しにくぐ且つ棒状部 21、 22同 士が管路 50の適切な範囲内の曲りには対応して相対角度を変化させ、試験体全体 を管路 50に沿わせて進行可能とすることから、球状部 11、 12、 13の外径を管路 50 の内径に極めて近い値とすることができ、管路 50の段差がある箇所で球状部 11、 12 、 13が通過せずに留まりやすくなり、管路 50中の段差部分を精度よく検出できる。ま た、管路 50の問題ない曲り部分では棒状部 21、 22同士の若干の角度変化を伴い つつスムーズに移動できる一方、 自在継手機構部分の可動範囲に適宜制限を設け れば、 自在継手機構部分の可動範囲を超える所定の曲率半径以下となる曲り部分 では試験体の通過できない状態が得られることとなり、曲り状態の異常箇所の検出、 特定が精度よく行え、従来の試験体同様の通線試験機能を有しつつ、より精度の高 レ、ケーブル通線可否判定が行える。
[0039] さらに、球状部 12に棒状部 21、 22間の角度変化を検出する角度センサ 31、 32を 内蔵させ、管路の曲りに沿って変化する一方の棒状部に対する他方の棒状部の傾 斜角度を各管路位置毎に連続して取得可能とすることから、角度センサ 31、 32で得 られた値と管路位置を対応させて管路 50の曲り状態を把握できると共に、管路 50の 異常箇所を適切に特定できる。
なお、前記実施の形態に係る管路試験体においては、三つの球状部 11、 12、 13 を棒状部 21、 22で連結して用いる構成としている力 これに限らず、二つの球状部 を一つの棒状部で連結したり、四つ以上の球状部を連結したりして用いる構成とする ことちでさる。
[0040] また、前記実施の形態に係る管路試験方法においては、通線試験の際に管路試 験体 1が管路 50への引入れ速度を一定とされて引入れられ、経過時間から自明な試 験体の移動距離と角度データを用いて管路 50各位置の曲率を求めるようにしてレ、る 、これに限らず、引入れ速度に関わりなぐ管路試験体 1の管路 50への引入れ'引 戻しに伴う移動距離を経過時間と対応させつつ直接測定し、この測定結果を用いて 管路 50の各位置の曲率を導くようにすることもできる。例えば、管路試験体 1の引入 れ及び引戻しに使用する各ロープ 40の管路 50に対し進退移動した距離、具体的に は、引入れ側又は引戻し側のロープの管路外経路における所定地点(測定点)での 通過長さ、を測定する測長装置を用い、管路試験体の管路引入れ開始力 の経過 時間情報を合わせて取得しつつ移動距離を測定することで、測長装置で得られた測 定値より直接的に導ける管路試験体の移動距離と経過時間との関係から、管路試験 体の引入れ速度が変化するような場合でも管路試験体の管路内における所定経過 時間での到達位置を確実且つ高精度に推定可能となり、管路試験体の所定経過時 間での位置に対応する管路各位置に、各経過時間毎の角度検出値から導いた曲率 半径の情報をそれぞれ正確に当てはめられ、管路の曲り状態をより精度よく把握でき
、管路における異常箇所を確実に特定可能となる。また、この測長装置を用い、管路 に対してロープの進退移動した距離を測定することに加えて、管路試験体の角度セ ンサで得られる角度検出値のデータを、管路試験体に接続して管路外に引出した通 信用ケーブルを介して、もしくは無線通信によって、管路外で取得するようにすれば 、ロープの移動距離の測定データと前記角度検出値のデータとを同時に取扱え、管 路試験体の位置と角度検出値に関して経過時間による同期をとる必要がなくなり、口 ープの移動した所定距離毎に角度検出値を取得していく形で記録等処理を行うこと ができ、ロープの移動距離から取得した管路試験体の管路内での各位置毎に、角度 検出値力も導かれる曲率半径を直接対応付けて処理でき、管路各位置における曲 率半径をより正確に取得できることとなり、高い精度で管路の曲り状態を把握できるこ とに加え、データ解析及び表示装置を併用すれば、管路試験体の既通過部分の管 路についてはその曲り状態を通線試験途中の段階においても把握できることとなり、 管路における異常箇所を速やかに特定して適切な対処が可能となる。なお上記の角 度検出値を管路外で取得するのとは逆に、ロープの移動距離の測定データを管路 試験体側に有線又は無線で伝送し、角度検出値と共に管路試験体の記録手段に記 録してレ、くようにしてもかまわなレ、。
さらに、前記実施の形態に係る管路試験方法においては、通線試験で管路に対す る管路試験体 1の引入れ及び引戻しに使用する可撓性線状体としてロープ 40を用 いているが、この他、管路試験体と管路外とのデータ通信及び Z又は管路試験体へ の電源供給等を目的として管路試験体に接続されるケーブルに高抗張力性のものを 採用し、このケーブルをロープの代りに管路試験体の弓 I入れ及び引戻しに使用する こともでき、管路試験体の管路内移動に用いる線状体としてケーブルのみを使用で きることで、ロープとケーブルを複数組併用せずに済み、管路試験体に連結、接続 する付属物の数を減らして準備作業の手間を減らすと共に、移動の抵抗となるものが 減ることで、管路試験体他の管路内での移動がスムーズとなり、引入れ及び引戻しに 係る力を軽減して、使用する卷取り装置等の小型化、低コスト化が図れる。

Claims

請求の範囲
[1] 試験対象となる管路に揷通され、管路における移動、通過の可否に基づく管路の正 常性判定に用レ、られる管路試験体において、
前記管路の内径より所定割合で小さく形成される略球状の複数の球状部と、 当該球状部より細い所定太さの一又は複数の棒状部とを備え、
当該棒状部が、球状部間に一つずつ配置されて両端部をそれぞれ球状部に取付 けられ、各球状部を線状に連結することを
特徴とする管路試験体。
[2] 前記請求項 1に記載の管路試験体において、
前記球状部を少なくとも 3個以上とし、前記複数の球状部のうち、二つの棒状部と 連結する中間の球状部が、前記二つの棒状部の一方へ他方に対する直交二軸周り の回転自由度を与える自在継手機構をなし、
前記中間の球状部が、前記二つの棒状部の相対角度を所定角度範囲内変更可 能とすることを
特徴とする管路試験体。
[3] 前記請求項 2に記載の管路試験体において、
前記中間の球状部内に、当該球状部に連結する二つの棒状部における一方に対 する他方の傾き角度を前記直交二軸周りの各角度成分ごとにそれぞれ検出する角 度センサを備えることを
特徴とする管路試験体。
[4] 前記請求項 3に記載の管路試験体において、
前記中間の球状部に連結する二つの棒状部が、それぞれ両端が取付けられた各 球状部の中心間距離を互いに同じくする長さ寸法とされることを
特徴とする管路試験体。
[5] 前記請求項 3又は 4に記載の管路試験体を管路に引入れ、前記角度センサで検出 した角度値、及び管路試験体の移動距離を、管路試験体の管路引入れ開始からの 経過時間と対応させつつ記録し、所定時点での角度値検出地点に該当する管路上 の位置をそれぞれ推定した上で、管路の前記各位置ごとに対応する角度値から曲率 半径を算出し、管路の曲り状況を取得することを 特徴とする管路試験方法。
PCT/JP2006/314371 2005-07-21 2006-07-20 管路試験体及び管路試験方法 WO2007010978A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007526046A JP4450251B2 (ja) 2005-07-21 2006-07-20 管路試験体及び管路試験方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005211344 2005-07-21
JP2005-211344 2005-07-21

Publications (1)

Publication Number Publication Date
WO2007010978A1 true WO2007010978A1 (ja) 2007-01-25

Family

ID=37668850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314371 WO2007010978A1 (ja) 2005-07-21 2006-07-20 管路試験体及び管路試験方法

Country Status (3)

Country Link
JP (1) JP4450251B2 (ja)
KR (1) KR100940766B1 (ja)
WO (1) WO2007010978A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099504A1 (ja) * 2007-02-16 2008-08-21 Kyushu Electric Power Co., Inc. 管路内ケーブル引入状況予測方法
WO2012102611A1 (en) * 2011-01-25 2012-08-02 Jelcer-Ip B.V. A pipe travelling apparatus and use thereof
JP2020205736A (ja) * 2019-06-19 2020-12-24 株式会社東芝 敷設管の状態解析システムおよび敷設管の状態解析方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558267A (en) * 1978-07-04 1980-01-21 Igarashi Kogyo Kk Method of inspecting interior of water immersed underground conduit
JPH04328402A (ja) * 1991-04-30 1992-11-17 Hitachi Cable Ltd パイプ通過試験方法
JPH0847130A (ja) * 1994-08-03 1996-02-16 Tokyo Electric Power Co Inc:The 自走管路導通試験器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69320121D1 (de) * 1992-09-04 1998-09-10 Nippon Telegraph & Telephone Verfahren und Apparat zur Messung der Länge von Leitungen
KR19980032285A (ko) * 1997-08-13 1998-07-25 박정재 관로 탐색 자주차용 관 굴곡량 측정장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS558267A (en) * 1978-07-04 1980-01-21 Igarashi Kogyo Kk Method of inspecting interior of water immersed underground conduit
JPH04328402A (ja) * 1991-04-30 1992-11-17 Hitachi Cable Ltd パイプ通過試験方法
JPH0847130A (ja) * 1994-08-03 1996-02-16 Tokyo Electric Power Co Inc:The 自走管路導通試験器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099504A1 (ja) * 2007-02-16 2008-08-21 Kyushu Electric Power Co., Inc. 管路内ケーブル引入状況予測方法
JP4757316B2 (ja) * 2007-02-16 2011-08-24 九州電力株式会社 管路内ケーブル引入状況予測方法
KR101127089B1 (ko) * 2007-02-16 2012-03-23 다이덴 가부시키가이샤 관로 내 케이블 인입 상황 예측 방법
WO2012102611A1 (en) * 2011-01-25 2012-08-02 Jelcer-Ip B.V. A pipe travelling apparatus and use thereof
JP2020205736A (ja) * 2019-06-19 2020-12-24 株式会社東芝 敷設管の状態解析システムおよび敷設管の状態解析方法
JP7210386B2 (ja) 2019-06-19 2023-01-23 株式会社東芝 敷設管の状態解析システムおよび敷設管の状態解析方法

Also Published As

Publication number Publication date
KR100940766B1 (ko) 2010-02-10
KR20070112449A (ko) 2007-11-26
JP4450251B2 (ja) 2010-04-14
JPWO2007010978A1 (ja) 2009-01-29

Similar Documents

Publication Publication Date Title
KR100917876B1 (ko) 송·배전관로 도통검사용 자주식 장비
JP5206175B2 (ja) 変状計測装置
JP4677595B1 (ja) 配管検査装置
KR101258078B1 (ko) 통수배관 내부검사용 탐사장치
KR101720585B1 (ko) 도통시험용 내시경 관경ㆍ곡률반경측정 시스템 및 이를 이용한 관경ㆍ곡률반경 측정방법
KR101532240B1 (ko) 자기 보정 기능을 갖는 지중 전력 관로용 곡률 반경 측정 시스템 및 이를 이용한 곡률 반경 측정 방법
WO2009095657A1 (en) Structural load monitoring using collars and connecting elements with strain sensors
EP2364239A1 (en) Method and apparatus for measuring the alignment of two pipes to be welded together
JP2006234525A (ja) 管内調査装置
KR100939557B1 (ko) 송·배전·통신용 관로의 도통검사 및 상태 확인을 위한 관로 측정장치 및 이를 이용한 관로의 곡률반경 측정 방법
WO2007010978A1 (ja) 管路試験体及び管路試験方法
JP5198112B2 (ja) 配管の検査装置及びその検査方法
KR101782152B1 (ko) 송배전 지중관로의 도통시험장치
US4628613A (en) Bend detector for a pipeline pig
Ishikawa et al. Investigation of odometry method of pipe line shape by peristaltic crawling robot combined with inner sensor
JP2007231635A (ja) 推進工法用位置計測方法及びその装置
EP1157271B1 (en) Apparatus for the internal inspection of pipes and tubes and the like
JP4757316B2 (ja) 管路内ケーブル引入状況予測方法
KR100395205B1 (ko) 센트럴라이저를 구비한 지하매설 금속배관의 검사장치
JP5174361B2 (ja) 管内調査装置
JP2008275478A (ja) 管路点検診断装置
JP3158307U (ja) 超音波肉厚測定装置
JPS5833566Y2 (ja) 銅配管用渦流探傷装置
JP7346682B1 (ja) 埋め込み管路の形状測定装置及び形状測定方法
JPH0735152A (ja) 角度検出機能付球面継手および管路の曲率測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077009842

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2007526046

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06781331

Country of ref document: EP

Kind code of ref document: A1