WO2007010876A1 - 接合仕口 - Google Patents

接合仕口 Download PDF

Info

Publication number
WO2007010876A1
WO2007010876A1 PCT/JP2006/314104 JP2006314104W WO2007010876A1 WO 2007010876 A1 WO2007010876 A1 WO 2007010876A1 JP 2006314104 W JP2006314104 W JP 2006314104W WO 2007010876 A1 WO2007010876 A1 WO 2007010876A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
column
rods
column base
connecting member
Prior art date
Application number
PCT/JP2006/314104
Other languages
English (en)
French (fr)
Inventor
Katsunori Ohnishi
Chika Iri
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006162548A external-priority patent/JP3962423B1/ja
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Priority to EP06781129A priority Critical patent/EP1905910A1/en
Priority to CN2006800228505A priority patent/CN101208485B/zh
Priority to US11/995,219 priority patent/US20090060642A1/en
Priority to KR1020087000978A priority patent/KR101306373B1/ko
Publication of WO2007010876A1 publication Critical patent/WO2007010876A1/ja
Priority to HK08109866.4A priority patent/HK1114411A1/xx
Priority to US13/624,305 priority patent/US8397445B2/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2454Connections between open and closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2463Connections to foundations
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B2001/2484Details of floor panels or slabs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T403/00Joints and connections
    • Y10T403/34Branched
    • Y10T403/349Coplanar

Definitions

  • the present invention relates to a joint for joining a beam end of a structure, a column base, or a peripheral member rigidly joined thereto to another structure via a support means.
  • the beam is made into a truss structure or a lattice structure, and the bending force acting on the beam is changed to an axial force to reduce the light weight of the beam.
  • a method of reducing the cross-section of the beam by using a suspended structure is also known in the prior art.
  • Patent Document 1 JP 2005-2777
  • An object of the present invention is to minimize the deformation of the entire building at the joint of the column base.
  • An object of the present invention is to enable a beam having a small cross section to cope with a large span at a joint end of a beam end.
  • the beam end of the structure, the column base, or a peripheral member rigidly connected thereto is joined to another structure capable of receiving a bending moment through the support means.
  • the reaction force generated at the joint with other structures due to the external force acting on the beam or column causes the support means to deform due to a slight geometric movement within the elastic range. By doing so, it is possible to generate a bending moment Mr that is opposite to the bending moment Mc that occurs at the column base or beam end.
  • the invention of claim 2 is the invention of claim 1, wherein the support means comprises a combination of at least two rods, one end of which is joined to the beam end or the peripheral member, and the other. The ends are joined to the side structure, and one end and the other end of the rods are separated from each other, and the one end interval is made smaller than the other end interval.
  • the invention of claim 3 is the invention of claim 1, wherein the support means comprises a combination of at least two rods, one end of which is connected by a connecting member, and the connecting member is a beam. Join to the end or peripheral member, and join the other end of the rod to the side structure, one end of the rod is separated from the other end, and the one end interval is narrower than the other end interval. It is a thing.
  • the invention of claim 4 is the invention of claim 1, wherein the support means comprises a combination of at least two rods, and the rods join the lower ends to the lower structure and the upper ends are pillars. They are joined to legs or peripheral members, and the upper ends and lower ends of these rods are separated from each other, and the upper end interval is made smaller than the lower end interval.
  • the invention of claim 5 is the invention of claim 1, wherein the support means comprises a combination of at least two rods, the rods joining the lower ends to the lower structure and the upper ends of the rods. They are connected to each other by a connecting member, and the connecting member is joined to a column base or a peripheral member. The upper ends and lower ends of the rods are separated from each other, and the upper end interval is made smaller than the lower end interval.
  • the invention of claim 6 is the invention of claim 5, wherein the building structure is further placed on a connecting portion between the connecting member and the rod.
  • the invention of claim 7 is the invention of claim 5 or 6, wherein one of the joint portions of the connecting member and the rod is a rigid joint.
  • the invention of claim 8 is the invention of any one of claims 5 to 7, wherein the joining of the column base or peripheral member and the connecting member is a tensile joint in which an introduction tension acts between them. It is made to become.
  • the invention of claim 9 is the invention of claim 8, wherein the tensile joint is the connecting portion.
  • a rational cross section with less deformation by providing elastic struts at the bottom of the material, supporting both ends of the elastic struts on the connecting member or the rod, and separating the intermediate portion of the elastic struts by the connecting member force
  • a bolt threaded through the intermediate portion of the elastic strut material and the connecting member is joined to the column base or the peripheral member.
  • the invention of claim 12 is the invention according to any one of claims 1, 4 to: 11, wherein the lower structure is the basis.
  • the invention of claim 13 is the invention according to any one of claims 4 to 11, wherein the lower structure is a lower-floor building structure.
  • the invention of claim 14 has a ramen structure including a plurality of columns, wherein at least one column is
  • the invention of claim 15 has a beam, and at least one of the beams is formed into the side structure by the joint end of the beam end according to any one of claims:! To 3, 10, and 11. The building is made to be joined.
  • the invention of claim 16 has a beam, and at least one of the beams is attached to the side structure by the joint end of the beam end according to any one of claims:! To 3, 10, and 11.
  • the bridge is made to be joined.
  • the force that joins the column bases of a plurality of columns arranged side by side to the lower structure, for example, the column base of one of the two columns is the present invention.
  • a special joint joint is applied, and a simple pin joint joint can be applied to the column base of the other column regardless of the joint joint unique to the present invention.
  • the rod pair provided between the lower structure and the column base is not limited to two rods but may be four rods or the like. It is also possible to provide two rods on the wife side of the column base of one column and the other two rods on the beam side. Les.
  • the upper end or lower end of the two rods and the column base or the lower structure may be joined together by pin joining or rigid joining.
  • the “rod” is not limited to a rod shape, but includes a shape steel shape and a plate shape.
  • a rod pair consisting of a combination of two rods is provided between the side structure and the end of the beam, and the two rods join one end of the two to the side structure and the other end of them. Is joined to the end of the beam, and the distance between the one end of the two rods is narrower than the distance between the other end, so that the axial force of the two rods exerts a bending moment on the end of the beam, This bending moment reduces the deformation of the beam (displacement of the crossing angle between the beam and the side structure), and acts to minimize the deformation of the entire beam.
  • a connecting member is joined to the beam end, and a pair of rods with the combined force of two rods is provided between the side structure and the connecting member, and the other ends of the two rods are connected to the side structure.
  • the one rod interval between the two rods is narrower than the other rod interval, so that the axial force of the two rods exerts a bending moment on the connecting member. This bending moment acts to reduce the deformation of the beam and minimize the deformation of the entire structure.
  • the connecting member is made of a material having a structure different from that of the structural member joined to the beam end, the connecting member is used as a horizontal member as the structural material joined to the beam end.
  • the connecting member can be made highly rigid. Therefore, the bending moment Mr of (e) described above exerted on the connecting member by the axial force of the two rods can be stably transmitted to the beam end and offset with the bending moment Mc generated at the beam end. Thereby, the deformation of the entire building can be stably minimized.
  • a rod pair consisting of a combination of two rods is provided between the column base and the lower structure, and the two mouths join their lower ends to the lower structure and their upper ends to the column base.
  • the connecting member Since the connecting member has a different lateral force than the structural member that joins the column base, it is different from the structural member that is used as the structural member that joins the connecting member to the column base.
  • the connecting member can be made highly rigid. Therefore, the bending moment Mr (k) described above (k) exerted on the connecting member by the axial force of the two rods can be stably transmitted to the column base and offset with the bending moment Mc generated in the column base. Thereby, the deformation of the entire building can be stably minimized.
  • (m) It is possible to increase the length of the connecting member that is a cross member force related to the position of the rigid joint point of the connecting member defined on the column base (including the floor beam joint piece welded to the column base). This means that the flange length f from the rigid joint point of the connecting member and the column base to the connecting point of the connecting member and the rod can be increased, and the axial force of the two rods exerts on the connecting member. This means that the bending moment Mr in (a) can be increased. This can reliably minimize the deformation of the entire building.
  • Both ends of the elastic strut material are supported by the connecting member or rod, the intermediate portion of the elastic strut material is floated from the connecting member, and the bolts passed through the intermediate portion of the elastic strut material and the connecting member are attached to the column.
  • the connecting member By connecting the column base to the column base, the connecting member can be connected to the column base by a simple structure.
  • FIG. 1 is a schematic diagram showing a portal ramen structure of Example 1.
  • FIG. 1 is a schematic diagram showing a portal ramen structure of Example 1.
  • FIG. 2 is a front view showing a portal ramen structure.
  • Fig. 3 is a schematic diagram showing a horizontal force acting on a column base joint.
  • FIG. 4 is a schematic diagram showing a bending moment acting on a column base joint.
  • FIG. 5 is a schematic diagram showing the structure of a ramen unit of Example 2.
  • FIG. 6 is a front view showing the structure of the ramen unit. 7]
  • FIG. 7 is a schematic diagram showing the portal ramen structure of Example 3.
  • FIG. 8 is a schematic plan view showing the building structure of the fourth embodiment.
  • FIG. 9 is a schematic view showing the column base joint joint of the fifth embodiment.
  • FIG. 10 is a schematic diagram showing the column base joint connection of the sixth embodiment.
  • FIG. 11 is a schematic diagram showing the column base joint joint of the seventh embodiment.
  • FIG. 12 is a schematic diagram showing the building structure of the eighth embodiment.
  • FIG. 13 is an enlarged view of the main part of FIG.
  • FIG. 14 is a plan view of FIG.
  • FIG. 15 is a schematic diagram showing a modification of FIG.
  • FIGS. 16A and 16B show the column base joint mount, where FIG. 16A is a perspective view seen from the outside, and FIG.
  • Fig. 17 is an external view showing the column base joint mount.
  • Fig. 18 is an internal view showing the column base joint mount.
  • FIG. 19 is a plan view showing the column base joint mount.
  • Fig. 20 is a schematic diagram showing the horizontal force acting on the column base joint.
  • Fig. 21 is a schematic diagram showing the bending moment acting on the column base joint.
  • FIG. 22 is a schematic diagram showing the ramen structure of Example 9.
  • FIG. 23 is a schematic diagram showing the building structure of Example 10.
  • FIG. 24 is an enlarged view of the main part of FIG.
  • FIG. 25 is a plan view of FIG. 24.
  • FIG. 26 is a perspective view showing the column base joint mount.
  • FIG. 27 is a schematic diagram showing the ramen structure of Example 11.
  • FIG. 28 is a schematic diagram showing the beam joint joint of Example 12.
  • Fig. 29 is a schematic diagram showing a specific example of a beam joint.
  • Fig. 30 is a schematic diagram showing the bending moment acting on the beam joint.
  • the building structure 10 has a gate-type ramen structure as shown in FIGS. 1 and 2, and is formed by connecting the columns 11 and 11 that are arranged side by side with a beam 12 that is rigidly joined to their upper ends.
  • the column bases 11 ⁇ / b> A of the columns 11 and 11 are joined to the foundation 13 (lower structure) by the column base joint joint 20.
  • the configuration of the column base joint 20 will be described.
  • the mounting member 21A is rigidly joined to the column base 11A, and the mounting member 21A is used as a base member 21 as a peripheral member rigidly joined to the column base 11A.
  • the column base joint 20 is provided between the foundation 13 and the base member 21 as two support rods.
  • the two rods 22A and 22B have their lower ends pin-bonded to the base 13 (or rigid connection is possible), and their upper ends are pin-bonded to the base member 21 (or rigid connection is also possible).
  • the distance between the upper ends of the two rods 22A and 22B is made narrower than the distance between the lower ends (the rods 22A and 22B are arranged in a C-shape with each other, and the upper end distance between the pillars 11 side is smaller than the lower end distance between the foundations 13 side. Narrow).
  • the rod 22A on the shear front side along the direction of the horizontal shearing force Q1 acting on the column 11 is tilted backward, and the rod 22B on the shear rear side is tilted forward.
  • a horizontal shearing force Q1 acts on the pillar 11. Further, in this embodiment, a horizontal shearing force Q2 (wall load corresponding to the lower half of the column 11, wind pressure, etc.) acts on the base member 21 in the same direction as the shearing force Q1 acting on the column 11. The shear forces Ql and Q2 are assumed to be virtually acting on one column.
  • the horizontal component of the axial force Ta, Tb is Ha, Hb
  • the vertical component is Va, Vb
  • the length of the flange from the junction point with the column base 11A to the junction point with the rod 22A in the base member 21 is f
  • the flange length to the junction point with the rod 22B is f.
  • Increasing the shearing force Q2 acting on the base member 21 can be realized by receiving a floor load or wind pressure at the trunk edge of the beam material and transmitting it to the base member 21.
  • the base member 21 is rigidly joined to the column base 11A, and a rod pair 22 having a combination force of two mouths 22A and 22B is provided between the base 13 and the base member 21, and the two rods 22A, 22B has their lower ends joined to the base 13, and their upper ends are joined to the base member 21, and the two rods 22A and 22B have a lower upper end interval that is narrower than the lower end interval.
  • the axial forces Ta and Tb of A and 22B exert a bending moment Mr on the base member 21, and this bending moment Mr reduces deformation of the column 11 (displacement of the crossing angle between the column 11 and the foundation), thereby deforming the entire building. Acts to minimize the.
  • the building structure 30 has a ramen unit structure as shown in FIGS. 5 and 6, and the adjacent columns 31, 31 are connected by ceiling beams 32 rigidly joined to their upper ends, and their lower ends It is connected by floor beams 33 which are rigidly joined to each other.
  • the column bases 31 ⁇ / b> A of the columns 31 and 31 are joined to the foundation 34 (lower structure) by the column base joint 40.
  • the structure of the column base joint 40 will be described.
  • the column base joint 40 is a base member as a peripheral member rigidly joined to the column base 31A by rigidly joining the floor base 33 (flange 41 A) to the base 31A. 41.
  • a rod pair 42 having a combination force of two rods 42A and 42B is provided between the base 34 and the base member 41.
  • the two rods 42A and 42B have their lower ends pin-bonded to the base 34 (which may be rigidly joined) and their upper ends are pin-joined to the base member 41 (which may be rigidly joined).
  • the distance between the upper ends of the two rods 42A and 42B is made smaller than the distance between the lower ends (the rods 42A and 42B are arranged in an eight-letter shape, and the upper end distance on the column 31 side is narrower than the lower end distance on the base 34 side. ).
  • the rod 42A on the shear front side along the direction of the horizontal shearing force Q1 acting on the column 31 is vertically arranged, and the rod 42B on the shear rear side is tilted forward.
  • the support mechanism of the building structure 30 by the column base joint joint 40 is substantially the same as the support mechanism by the column base joint joint 20 of the building structure 10. Accordingly, the shear force Q1 acts on the column 31 of the building structure 30, and the base member 41 is moved in the same shear direction by the shear force Q1.
  • the column base 31A (base member) is caused by the axial forces Ta and Tb of the two rods 42A and 42B.
  • the bending moment Mr generated at the Oka lj connection point with 41) is in the direction opposite to the bending moment Mc generated at the column base 3 1A (the rigid connection point with the base member 41) due to the shearing force Q1 acting on the column 31.
  • the base member 41 is subjected to a shearing force Q2 in the same direction as the shearing force Q1 acting on the column 31 (wall load, wind pressure, etc. corresponding to the lower half of the column 31).
  • Base member 41 is rigidly joined to column base 31A, and rod pair 42 consisting of the combined force of two openings 42A and 42B is provided between foundation 34 and base member 41, and two rods 42A 42B, their lower ends are joined to the base 34, and their upper ends are joined to the base member 41.
  • the distance between the upper ends of the two rods 42A and 42B is made smaller than the distance between the lower ends.
  • the axial forces Ta and Tb of 42 A and 42B exert a bending moment Mr on the base member 41. This bending moment Mr reduces the deformation of the column 31 (displacement of the crossing angle between the column 31 and the foundation 34), and Acts to minimize deformation.
  • the building structure 50 has a portal ramen structure as shown in FIG. 7, in which the columns 51 and 51 arranged side by side are connected to each other by a beam 52 that is rigidly joined to their upper ends.
  • the column bases 51 ⁇ / b> A of the columns 51 and 51 are joined to the lower-floor building structure 70 by the column base joint 60.
  • the lower-floor building structure 70 is a rigid frame structure in which the column 71 and the beam 72 are rigidly connected, and the column base 51A of the column 51 of the upper-level building structure 50 is connected to the beam 72 by the column base joint 60.
  • the structure of the column base joint 60 will be described.
  • the column base joint 60 has a flange 61A rigidly joined to the column base 51A, and this flange 61A is used as a base member 61 as a peripheral member rigidly joined to the column base 51A.
  • a rod pair 62 having a combination force of two rods 62A and 62B is provided between the beam 72 and the base member 61.
  • the two rods 62A and 62B have their lower ends pin-bonded to the beam 72 (or rigid connection is possible), and their upper ends are pin-bonded to the base member 61 (or rigid connection is also possible).
  • the distance between the upper ends of the two rods 62A and 62B is made smaller than the distance between the lower ends (the rods 62A and 62B are arranged in a C shape so that the upper end distance on the column 51 side is narrower than the lower end distance on the beam 72 side. ).
  • the cutting front rod 62A along the direction of the horizontal shearing force Q1 acting on the column 51 is vertically arranged, and the shearing rear rod 62B is tilted forward.
  • the support mechanism of the building structure 50 by the column base joint 60 is substantially the same as the support mechanism by the column base joint 20 of the building structure 10. Therefore, the shear force Q1 acts on the column 51 of the building structure 50, and the base member 61 is moved in the same shear direction by the shear force Q1, so that the axial force Ta is applied to the two rods 62A and 62B.
  • Tb occurs
  • the bending moment Mr generated at the column base 51A (Oka lj junction with the base member 61) due to the axial forces Ta and Tb of the two rods 62A and 62B is due to the shearing force Q1 acting on the column 51.
  • the base member 61 is rigidly connected to the column base 51A, and a rod pair 62, which is a combined force of the two rods 62A and 62B, is provided between the beam 72 and the base member 61, and the two rods 62A and 62B are
  • the two rods 62A, 62 are joined by joining the lower ends of the rods to the beam 72 and joining the upper ends of them to the base member 61, and making the upper end interval of the two rods 62A, 62B narrower than the lower end interval.
  • the axial forces Ta and Tb of B exert a bending moment Mr on the base member 61. This bending moment Mr reduces the deformation of the column 51 (displacement of the crossing angle between the column 51 and the beam 72) and minimizes the deformation of the entire building. Acts like
  • column base 51A is rigidly connected to beam 72 (column base 51A does not rotate, and column 51 and beam 72 intersect. The angle does not change, and the deformation of the column 51 can be reduced.
  • the lower structure is the beam 72 of the lower-floor building structure 70, and the column 51 of the upper-floor building structure 50 is the beam.
  • the building structure 80 has a portal ramen structure as shown in FIG. 8, and four columns 81 arranged side by side are connected by beams 82 (ceiling beams) that are rigidly joined to their upper ends.
  • the building structure 80 may be a structure in which four columns 81 arranged side by side are connected together by beams (floor beams) that are rigidly joined to their lower ends.
  • the building structure 80 is a foundation or lower-floor structure on each of the long side and the short side crossing the column 81 by connecting the column base 81A to the column base joints 83 and 84.
  • the column base joints 83 and 84 may have the same configuration as the column base joints 20, 40 and 60 described above, or the column base joint 120 described later.
  • the column base joint 90A shown in FIG. 9 has a rod pair 90 consisting of a combination of three rods 92A, 92B, and 92C between the lower structure and the column base (base member) 91 A of the column 91.
  • the three rods 92A to 92C are pin-joined at their lower ends to the lower structure (may be rigidly joined), and are pin-joined at their upper ends to the column base 91A (may be rigidly joined).
  • Column customer joint 9 In the plan view of OA, the two rods 92A, 92B and one rod 92C are positioned on the opposite sides of the column 91 with respect to the direction along the horizontal shearing force 9 acting on the column 91.
  • the two rods 92A and 92B are positioned on the opposite side of the vertical plane including the shearing force 9 on the front side of the shearing along the direction of the horizontal shearing force 9, and are tilted backward.
  • One rod 92C is disposed in a forward tilted position in a post-shear direction along the direction of the horizontal shearing force 9 and positioned in a vertical plane including the shearing force 9.
  • the upper end interval between the two rods 92A and 92C is made smaller than the lower end interval, and the upper end interval between the two rods 92B and 92C is made smaller than the lower end interval.
  • the support mechanism of the column base joint 90A is substantially the same as the support mechanism of the column base joint 20, 40, 60 described above.
  • the column base joint 90B shown in FIG. 10 is a pair of rods consisting of a combination of four rods 92A, 92B, 92C, 92D between the lower structure and the column base (base member) 91 A of the column 91. 92 is provided.
  • the four rods 92A to 92D have their lower ends pin-joined (or rigidly joined) to the lower structure, and their upper ends are pin-joined (or rigidly joined) to the column base 91A.
  • Column base joint In the plan view of 90B, the two rods 92A, 92B and the two rods 92C, 92D are opposite to each other across the column 91 in the direction along the horizontal shearing force Q acting on the column 91.
  • the two rods 92A, 92B are positioned on the front side of the shear along the direction of the horizontal shearing force Q and positioned on the opposite sides of the vertical plane including the shearing force Q, and are rearwardly tilted.
  • the two rods 92C and 92D are positioned forwardly and positioned on opposite sides of the vertical plane including the shearing force Q on the side after shearing along the direction of the horizontal shearing force Q.
  • the distance between the upper ends of the two rods 92A and 92C is made smaller than the distance between the lower ends, and the distance between the upper ends of the two rods 92B and 92D is made smaller than the distance between the lower ends.
  • the support mechanism of the column customer joint 90B is substantially the same as the support mechanism of the column base joints 20, 40, and 60 described above.
  • the column base joint 100 shown in Fig. 11 has four rods 102A to 102D between the lower structure and the column base (base member) 101A of the column 101 standing at the corner of the building structure 100A.
  • a pair of rods 102 with a combined force of The four rods 102A to 102D are pin-joined (or rigidly joined) to the lower structure at their lower ends, and are pin-joined (or rigidly joined) to the column base 101A.
  • Each of the rods 102A to 102D is obliquely arranged in a radial downward direction at 45 degrees from each corner of the column base 101A having a square cross section to each side surface of the column base 101A.
  • the two rods 102A, 102B and the two rods 102C, 102D are interchanged in the direction along the girder horizontal shearing force QA acting on the column 101. It is positioned on the opposite side of column 101.
  • Two rods 102A and 102B have horizontal shear force QA Are located on opposite sides of the vertical plane including the shearing force QA, and are inclined backwards.
  • the two rods 102C and 102D are positioned forwardly and positioned on opposite sides of the vertical plane including the shearing force QA in the post-cutting direction along the direction of the horizontal shearing force QA.
  • the upper end interval between the two rods 102A and 102D is made smaller than the lower end interval, and the upper end interval between the two rods 102B and 102C is made smaller than the lower end interval.
  • the two rods 102B, 102C and the two rods 102A, 102D are interchanged in the direction along the horizontal shearing force QB acting on the column 101. It is positioned on the opposite side of column 101.
  • the two rods 102B and 102C are positioned backward on the opposite side of the vertical plane including the shearing force QB on the shear front side along the direction of the horizontal shearing force QB.
  • the two rods 102A, 102D are positioned forwardly and positioned on opposite sides of the vertical plane including the shearing force Q in the post shear direction along the direction of the horizontal shearing force QB.
  • the upper end interval between the two rods 102A and 102B is made smaller than the lower end interval, and the upper end interval between the two rods 102C and 102D is made smaller than the lower end interval.
  • the support mechanism of the column base joint 100 is substantially the same as the support mechanism of the column base joints 20, 40, 60 described above.
  • the column base joint joint 100 includes the functions of the above-mentioned column base joint joints 83 and 84, and can cope with the girder horizontal shear force QA and the wife horizontal shear force QB.
  • the building structure (building unit) 110 has a rectangular frame-shaped frame structure as shown in FIGS. 12 to 15, and includes columns 111, which are arranged on the long side and the short side that are orthogonal to each other in plan view.
  • the ceiling beam 112 is rigidly joined to the joint piece 112A which is rigidly joined to the upper end of the 111, thereby connecting the upper ends of the columns 111 and 111 and the lower end of the columns 111 and 111 (column base 111A).
  • the floor beam 113 (horizontal member) is rigidly joined to the joint piece 113A that is rigidly joined to the lower part of the columns 111 and 111.
  • the building structure 110 has a base 114 (substructure) on the column base 111A of the columns 111 and 111 on the long side and the short side, respectively, by the column base joint 120 of the column base joint 120A. It is joined to.
  • the column base 120A is a single rod arranged immediately below the column base 111A of the column 111 provided at the corner where the long side and the short side of the building structure 110 are orthogonal to each other as shown in FIGS. 122A, one rod 122B arranged just below the floor beam 113 of each of the long side and the short side, and the long side and the short side respectively joined to the upper ends of both rods 122A, 122B And a connecting member 121 for connecting the two.
  • the two rods 122A and 122B constitute a rod pair 122 on each of the long side and the short side, and the upper end interval thereof is narrower than the lower end interval.
  • the column base joint 120A is made of a cross member reinforced by a steel plate and a reinforcing piece as a connecting member 121
  • a rod 122A is a vertical member made of a square steel pipe
  • a rod 122B is made of a steel plate. Reinforcement with reinforcement pieces.
  • a joining point s2 at the other end of the connecting member 121 is provided.
  • At least one of the four joints rl, r2, sl, s2 is a rigid joint, and the remaining joints are pin joints.
  • s2 is a rigid joint and rl, r2, and si are pin joints.
  • the column base joint 120A forms the column base joint 120 as follows.
  • the long side (the same applies to the short side) will be described.
  • a rod pair 122 comprising a combination of two rods 122A and 122B is provided.
  • the two rods 122A and 122B have their lower ends (rl, si) pin-bonded to the foundation 114 with anchor bolts 123 and 124 (rigid connection is possible) and the upper end (r2) of the rod 122A is welded (weld length)
  • the rod 122B is rigidly joined to the connecting member 121 by welding (the welding length is long).
  • the distance between the upper ends of the two rods 122A and 122B is made narrower than the distance between the lower ends. ).
  • the rod 122A on the shearing front side along the direction of the horizontal shearing force Q1 acting on the column 111 is vertically arranged, and the rod 122B on the rear side of the cutting is tilted forward.
  • the building structure 110 is placed on the joint between the connecting member 121 of the column base joining base 120A and the rods 122A and 122B.
  • the lower end plate 111B of the column base 111A is connected to the rod 122A.
  • the lower surface 113B on the free end side of the joint piece 113A is placed on the upper end plate 132 of the rod 122B.
  • the outer space L between the column base 11A of the building structure 110 and the joint piece 113A is made smaller than the outer space K between the upper end plate 131 and the upper end plate 132 of the rod 122A and rod 122B.
  • the upper end plate 131 of the rod 122A and the upper end plate 132 of the rod 122B are located on the same level surface, and the upper surface of the connecting member 121 is lower than the level surface by the gap G. As a result, the upper surface of the connecting member 121 And a gap G is formed between the joint piece 113A and the lower surface.
  • the bolt 141 is passed through the upper end plate 131 of the rod 122A through the washer 141A and fastened to the fastening block 141B welded to the back side of the lower end plate 111B of the column base 11 1 A.
  • a bolt 143 as shown in Fig. 15 is connected to the thick plate washer 143A and the column base 111A of the column 111 via the joint piece 113A.
  • the rigidly joined floor beam 113 and the upper end plate 132 of the rod 122B may be inserted, and the nut 143B may be fastened on the back surface of the upper end plate 132.
  • the rod 122B and the building structure 110 can be firmly joined.
  • a horizontal shearing force Q1 acts on the column 111. Further, in this embodiment, a horizontal shearing force Q2 (wall load, wind pressure, etc. corresponding to the lower half of the column 111) acts on the connecting member 121 in the same direction as the shearing force Q1 acting on the column 111.
  • the shearing forces Ql and Q2 are virtually the cutting forces acting on one column.
  • Each rod 122 is driven by the fulcrum reaction force Q (Q1 + Q2) acting on the two rods 122A and 122B.
  • a and 122B generate axial forces Ta and Tb.
  • the axial forces Ta and Tb are the shear forces acting on the column 111. Occurs when the connecting member 21 is about to be moved in the same shear direction by Q1 and Q2.
  • the horizontal component of the axial force Ta and Tb is Ha, Hb, the vertical component is Va and Vb, and the arm length of the moment with respect to the column base 11 1A (rigid connection point with the connecting member 121) of the axial force Ta and Tb
  • the flange length from the joint point with the column base 111A to the joint point with the rod 122A is f
  • the flange length to the joint point with the rod 22B is f.
  • the angles 122A and 122B of the rods 122A and 122B are increased, the flange length f of the connecting member 121 is increased, and the shearing force acting on the connecting member 121 is increased.
  • a large Q2 is required.
  • Increasing the shearing force Q2 acting on the connecting member 121 can be realized by receiving a floor load or wind pressure at the trunk edge of the beam material and transmitting it to the connecting member 121.
  • connection between the rod 122A (122B) and the connecting member 121 or the base 114 is a pin joint
  • the resistance to the movement of the connecting member 121 is small, so the connecting member 121 is moved greatly, and Mr is also
  • the resistance to movement of the connecting member 121 increases, and Mr is a force that is smaller than that of pin connection. Deformation of the rod 122A (122 B) is very small. Generation of vibration can be suppressed.
  • the connecting member 121 is rigidly joined to the column base 111 A, and a rod pair 122 consisting of a combination of two rods 122A and 122B is provided between the foundation 114 and the connecting member 121, and the two rods 122A and 122B are By joining their lower ends to the foundation 114 and joining their upper ends to the connecting member 121, the distance between the upper ends of the two rods 122A and 122B is made smaller than the distance between the lower ends.
  • the axial forces Ta and Tb of 122B exert a bending moment Mr on the connecting member 121, and this bending moment Mr reduces the deformation of the column 111 (displacement of the crossing angle between the column 111 and the foundation) and minimizes the deformation of the entire building. Acts as follows.
  • the connecting member 121 Since the connecting member 121 is made of a cross member, the rigidity of the connecting member 121 is higher than that of a flange or floor beam that joins the connecting member 121 to the column base 111A. Can do. Therefore, the bending moment Mr of (a) above exerted on the connecting member 121 by the axial forces Ta and Tb of the two rods 122A and 122B is stably transmitted to the column base 111A, and the bending moment generated in the column base 111A. Can be offset with Mc. Thereby, the deformation of the entire building can be stably minimized.
  • the building structure 160 has a rectangular box-framed frame structure as shown in Fig. 22, and is rigidly connected to the upper ends of the columns 161 and 161 that are aligned on the long and short sides orthogonal to each other in plan view.
  • the ceiling beam 162 By connecting rigidly the ceiling beam 162 to the joint piece 162A to be connected, the upper ends of the columns 161 and 161 are connected to each other, and the lower ends of the columns 161 and 161 (column base 16)
  • the building structure 160 is composed of pillars 161 and 161 on the long side and the short side, respectively.
  • A is joined to the lower floor structure 170 (lower structure) by the column base joint 120 of the column base joint base 120A of the eighth embodiment.
  • the lower-floor building structure 170 is a rigid frame structure in which columns 171 and beams 172 are rigidly connected.
  • the column base 161 of the column 161 of the upper-layer building structure 160 is connected to the beam 172 by the column base joint 120. To be joined.
  • the support mechanism of the building structure 160 is substantially the same as the support mechanism of the building structure 110. Are identical. Accordingly, a shearing force Q1 acts on the column 161 of the building structure 160, and the shearing force Q1 tries to move the connecting member 121 in the shearing direction, so that the axial force is applied to the two rods 122A and 122B.
  • a shearing force Q2 (wall load, wind pressure, etc. corresponding to the lower half of the column 161) acts on the connecting member 121 in the same direction as the shearing force Q1 acting on the column 161.
  • the column base joint 120 of the column base 120 of the tenth embodiment differs from the eighth embodiment in the following points.
  • the connecting member 121 as shown in FIGS. 23 to 26 is a horizontal member made of a steel plate
  • the rod 122A is a vertical member made of a square steel pipe
  • the rod 122B Is a diagonal material with structural steel strength.
  • the column base joint 120A of the tenth embodiment forms the column base joint 120 as follows (see Figs. 20 and 21).
  • the long side (the same applies to the short side) will be described.
  • the column base joining base 120A is placed on the foundation 114, and a rod pair 122 comprising a combination of two rods 122A and 122B is provided between the foundation 114 and the connecting member 121.
  • the two rods 122A and 122B have their lower ends (rl, si) pin-bonded to the foundation 114 with anchor bolts 123 and 124 (rigid connection is possible) and the upper end (r2) of the rod 122A is welded (weld length)
  • the rod 122B is rigidly joined to the connecting member 121 by welding (the welding length is long).
  • the distance between the upper ends of the two rods 122A and 122B is made narrower than the distance between the lower ends (the rods 122A and 122B are arranged so as to form an 8-character shape, and the upper end distance on the column 111 side is made narrower than the lower end distance on the foundation 114 side. ).
  • the rod 122A on the shearing front side along the direction of the horizontal shearing force Q1 acting on the column 111 is vertically arranged, and the rod 122B on the rear side of the cutting is tilted forward.
  • the building structure 110 is connected to the column base joint 120A with the connecting member 121 and the rods 122A and 122B. Placed on the joint.
  • the lower end plate 111B of the column base 111A is placed on the upper end plate 131 of the rod 122A
  • the lower surface 113B on the free end side of the joint piece 113A is placed on the upper end plate 132 of the rod 122B.
  • the outer space L between the column base 111A of the building structure 110 and the joint piece 113A is made smaller than the outer space K between the upper end plate 131 and the upper end plate 132 of the rod 122A and rod 122B.
  • the upper end plate 131 of the rod 122A and the upper end plate 132 of the rod 122B are located on the same level surface, and the upper surface of the connecting member 121 is lower than the level surface by the gap G. As a result, the upper surface of the connecting member 121 And a gap G is formed between the joint piece 113A and the lower surface of the joint piece 113A.
  • the bolt 141 is passed through the upper end plate 131 of the rod 122A through the washer 141A, and is fastened to the fastening block 141B welded to the back side of the lower end plate 111B of the column base 111A.
  • the connecting member 121 is tension-bonded to the beam member 113 rigidly connected to the column base 111A of the column 111.
  • the elastic strut 150 is provided on the side (back side).
  • Elastic brace 150 Forms a square shape.
  • One end of the elastic strut 150 is supported by welding to the upper end plate 131 of the rod 122A, and the other end of the elastic strut 150 is supported by welding to the upper end of the rod 122B.
  • the middle part of the elastic tension member 150 is separated from the back surface of the connecting member 121 so as to have a reasonable cross section with little deformation.
  • the bolt 151 is connected to the intermediate part of the elastic tension member 150, the intermediate part of the connecting member 121, the joint base 113A of the column 111, the joint piece 113A, and the floor beam 113 in the joint piece 113A via the washer 151A. And tighten the nut 151B on the inner surface of the floor beam 113.
  • the bolt 151 can be a high strength bolt. The tension introduced into Bonoleto 151 becomes a resistance against the peeling force that peels off the column base 111A from the connecting member 121 (stripping resistance), and the column base 111A and the connecting member 121 are pulled together. To do.
  • the support mechanism by the column base joint 120 of the building structure 110 of the tenth embodiment is substantially the same as the support mechanism of the column base joint 120 of the eighth embodiment. Therefore, the shearing force Q1 acts on the column 111 of the building structure 110, and the shearing force Q1 tries to move the connecting member 121 in the cutting direction, so that the axial force is applied to the two rods 122A and 122B. Ta, Tb When this occurs, the bending moment Mr generated on the column base 111A (tensile joint with the connecting member 121) due to the axial forces Ta and Tb of the two rods 122A and 122B is the shearing force Q 1 acting on the column 111.
  • the bending moment M c generated in the column base 111 A (the tensile joint point with the connecting member 121) is opposite. Note that a shearing force Q2 acting on the column 111 and a cutting force Q2 in the same direction (wall load, wind pressure, etc. corresponding to the lower half of the column 111) act on the connecting member 121.
  • the column base 111 A is not peeled off from the base member 121 until the peeling force acting on the contact 132) exceeds the anti-stripping force F.
  • the connecting member 121 is tension-bonded to the column base 111A, and a rod pair 122 consisting of a combination of two rods 122A and 122B is provided between the foundation 114 and the connecting member 121, and the two rods 122A, 122 B joins the lower ends of the base 114 and the upper ends of the joints to the connecting member 121, and the upper ends of the two rods 122A and 122B are narrower than the lower ends.
  • the axial forces Ta and Tb of the rods 122A and 122B exert a bending moment Mr on the connecting member 121.
  • This bending moment Mr reduces the deformation of the column 111 (displacement of the crossing angle between the column 111 and the foundation), and the deformation of the entire building. It works to minimize it.
  • (b) As a result of introducing tension between the column base 111 A and the connecting member 121 into tension that joins the connecting member 121 to the column base 111 A, this introduction tension causes the column base 111A to peel off from the connecting member 121. Resistance to the peeling force (stripping resistance), and the rotation of the building structure 110 relative to the connecting member 121 (rotation ⁇ of the column 111 with respect to the vertical line shown in Fig. 6 and rotation ⁇ of the floor beam 113 with respect to the horizontal line) The deformation of the entire building can be stably minimized.
  • both ends of the elastic strut 150 are supported by the connecting member 121 or the rods 122A and 122B, and the intermediate portion of the elastic strut 150 is floated from the connecting member 121, and the intermediate portion of the elastic strut 150 is And the bolt 151 inserted through the connecting member 121 by tensile bonding to the column base 111A of the column 111.
  • the connecting member 121 can be tension-bonded to the column base 111A with a simple structure.
  • the building structure 160 has a rectangular frame-shaped frame structure as shown in Fig. 27, and is rigidly connected to the upper ends of the columns 161 and 161 that are aligned on the long and short sides orthogonal to each other in plan view.
  • the ceiling beam 162 By connecting rigidly the ceiling beam 162 to the joint piece 162A to be connected, the upper ends of the columns 161 and 161 are connected to each other, and the lower ends of the columns 161 and 161 (column base 16)
  • the building structure 160 is composed of pillars 161 and 161 on the long side and the short side, respectively.
  • A is joined to the lower-floor structure 170 (lower structure) by the column base joint 120 of the column base joint base 120A of the first embodiment.
  • the lower-floor building structure 170 is a rigid frame structure in which columns 171 and beams 172 are rigidly connected.
  • the column base 161 of the column 161 of the upper-level building structure 160 is connected to the beam 172 by the column base joint 120. To be joined.
  • the support mechanism of the building structure 160 is substantially the same as the support mechanism of the building structure 110. Accordingly, a shearing force Q1 acts on the column 161 of the building structure 160, and the shearing force Q1 tries to move the connecting member 121 in the shearing direction, so that the axial force is applied to the two rods 122A and 122B.
  • a shearing force Q1 acts on the column 161 of the building structure 160, and the shearing force Q1 tries to move the connecting member 121 in the shearing direction, so that the axial force is applied to the two rods 122A and 122B.
  • the bending moment Mr generated at the column base 161 A (bow I tension joint with the connecting member 121) due to the axial forces Ta and Tb of the two rods 122A and 122B is
  • the bending moment Mc occurs in the column base 161A (the tensile joint with the connecting member 121) due to the shearing force Q1 acting on the material.
  • a beam structure 210 constituting a bridge or the like is formed by joining the beam ends 211A at both ends of the simple beam 211 to the strong rigid bodies 212 on both sides by the beam joints 220. . It is assumed that the longitudinal direction of the beam 211 is arranged horizontally and the vertical load L is applied to the beam 211. Shall act.
  • the configuration of the beam connection port 220 will be described (the configuration of each beam connection port 220 provided at the beam end portion 211A at both ends of the beam 211 is substantially the same, and mainly the beam connection end 220A. A description will be given of the configuration of the beam joint 220 provided at the end 211A).
  • a flange 221A is rigidly joined to the beam end portion 211A, and this flange 221A is used as a base member 221.
  • a rod pair 222 comprising a combination of two rods 222A and 222B is provided between the Oka IJ body 212 and the base member 221.
  • the two rods 222A and 222B have one end pin-connected to the rigid body 212 (or rigid connection), and the other end pin-connected to the base member 221 (or rigid connection).
  • the distance between the other ends of the two rods 222A and 222B is made narrower than the distance between the one ends. Narrow).
  • the rod 222A on the shear front side along the direction of the direct shearing force L acting on the beam 211 is tilted backward, and the rod 222B on the shear rear side is tilted forward.
  • the vertical shearing force L acts on the beam 211.
  • a vertical shearing force L1 in the same direction as the shearing force L acting on the beam 211 acts on the base member 221 of the beam joint end 220A provided at the beam end 211A on one end side of the beam 211. It should be noted that the beam joint 22 provided at the beam end 211A on the other end side of the beam 211.
  • a vertical shearing force L2 in the same direction as the shearing force L acting on the beam 211 is also applied to the 0 base member 221.
  • L L1 + L2.
  • the fulcrum reaction force R1 (provided on the other end side of the beam 211) is provided at the connection portion of the two rods 222A and 2228 to the one oka 212 in the beam connection port 220.
  • R2 acts on beam joint 220.
  • R1 + R2 L
  • Rl X a R2 X b, where the distance between the point of action of the linear elastic force L on the beam 211 and the point of reaction of the fulcrum reaction force Rl and R2 on the rigid body 212 is a and b .
  • the bending moment Mrl (Mr2 in the beam joint 220 provided on the other end of the beam) caused by the axial forces Ta and Tb of the two rods 222A and 222B is the beam end 211A (base member 221). Occurs at the rigid joint point).
  • the bending moment Mrl is in the opposite direction to the bending moment Mcl.
  • the bending moment Mrl lowers the other end of the rod 222A on the shear front side, raises the other end of the rod 222B on the shear rear side, and slightly rotates the base member 221.
  • the horizontal component of axial force Ta, Tb is Ha, Hb
  • the vertical component is Va, Vb
  • the flange length from the joint point of the base member 221 with the beam end 211A to the joint point with the rod 222A is f
  • the flange length to the joint point with the rod 222B is f.
  • Mrl Ta X a + Tb + b... (3)
  • Mrl (Va / cos ⁇ a) X a + (Vb / cos ⁇ b) X b... (4)
  • the base member 221 is rigidly joined to the beam end portion 211A, and a rod pair 222 having a combination force of two rods 222A and 222B is provided between the rigid body 212 and the base member 221.
  • the two rods 222A and 222B One end of them is joined to the rigid body 212, the other end of them is joined to the base member 221, and the distance between the other ends of the two rods 222A and 222B is made smaller than the distance between the one end.
  • the axial forces Ta and Tb of the rods 222A and 222B exert a bending moment Mr 1 on the base member 221. This bending moment Mrl reduces the deformation of the beam 211 (change in the crossing angle between the beam 211 and the rigid body), and the entire beam. It acts to minimize the deformation of.
  • the beam joint according to the present invention includes a beam for an RC structure (rigid body), a beam for a tunnel wall (rigid body), a beam for an underground wall (rigid body), a bridge for a bridge pier (rigid body), and a steel frame. It can be applied to beams that are built on structures (rigid bodies), beams that are built on towers (rigid bodies), and beams that are built on hulls (rigid bodies).

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

 構造体10の梁端、柱脚、又はこれらに剛接合された周辺部材を、支持手段22を介して、曲げモーメントを受けることのできる他の構造体13に接合する接合仕口20において、梁又は柱に作用する外力に起因して他の構造体13との接合部に発生する反力により、支持手段22に弾性範囲内の微少の幾何学的な移動による変形を生じさせることで、柱脚又は梁端に生じる曲げモーメントMcと逆方向となる曲げモーメントMrを発生可能とするようにしたもの。

Description

明 細 書
接合仕口
技術分野
[0001] 本発明は構造体の梁端、柱脚、又はこれらに剛接合された周辺部材を、支持手段 を介して他の構造体に接合する接合仕口に関する。
背景技術
[0002] 建物の柱脚接合仕口として、特許文献 1に記載の如ぐ建物のもつ柱の柱脚を基 礎に剛接合するものがある。即ち、柱の柱脚を基礎に剛接合し、柱と基礎の交差角 度の変位をピン接合による場合よりも少なくし、建物全体の変形を少なくすることがで きる。
[0003] また、単純梁を大スパンに架けるとき、梁の曲げ変形を小さくするためには、大断面 の梁が必要になる。この場合には、梁が大型、大重量になる。
[0004] そこで、従来技術では、梁をトラス構造やラチス構造にし、梁に作用する曲げ力を 軸力に変えて梁の軽量ィヒを図る方法、梁にプリストレスをかけて梁を小断面化する方 法、又は梁を吊り構造にして梁を小断面化する方法が採用されている。
特許文献 1 :特開 2005-2777
発明の開示
発明が解決しょうとする課題
[0005] 本発明の課題は、柱脚の接合仕口において、建物全体の変形を極小にすることに ある。
[0006] 本発明の課題は、梁端の接合仕口において、小断面の梁で大スパンに対応可能 にすることにある。
課題を解決するための手段
[0007] 請求項 1の発明は、構造体の梁端、柱脚、又はこれらに剛接合された周辺部材を、 支持手段を介して、曲げモーメントを受けることのできる他の構造体に接合する接合 仕口において、梁又は柱に作用する外力に起因して他の構造体との接合部に発生 する反力により、支持手段に弾性範囲内の微少の幾何学的な移動による変形を生じ させることで、柱脚又は梁端に生じる曲げモーメント Mcと逆方向となる曲げモーメント Mrを発生可能とするようにしたものである。
[0008] 請求項 2の発明は、請求項 1の発明において更に、前記支持手段は、少なくとも 2 本のロッドの組合せからなり、それらのロッドは一端を梁端又は周辺部材に接合する とともに、他端を側部構造体に接合し、それらのロッドの一端同士、他端同士はそれ ぞれ離間し、一端間隔を他端間隔より狭くしてなるようにしたものである。
[0009] 請求項 3の発明は、請求項 1の発明において更に、前記支持手段は、少なくとも 2 本のロッドの組合せからなり、それらのロッドは一端同士を連結部材で連結し、連結 部材を梁端又は周辺部材に接合するとともに、ロッドの他端を側部構造体に接合し、 それらのロッドの一端同士、他端同士はそれぞれ離間し、一端間隔を他端間隔より 狭くしてなるようにしたものである。
[0010] 請求項 4の発明は、請求項 1の発明において更に、前記支持手段は、少なくとも 2 本のロッドの組合せからなり、それらのロッドは下端を下部構造体に接合するとともに 、上端を柱脚又は周辺部材に接合し、それらのロッドの上端同士、下端同士はそれ ぞれ離間し、上端間隔を下端間隔より狭くしてなるようにしたものである。
[0011] 請求項 5の発明は、請求項 1の発明において更に、前記支持手段は、少なくとも 2 本のロッドの組合せからなり、それらのロッドは下端を下部構造体に接合するとともに 、ロッドの上端同士を連結部材で連結し、連結部材を柱脚又は周辺部材に接合し、 それらロッドの上端同士、下端同士はそれぞれ離間し、上端間隔を下端間隔より狭く してなるようにしたものである。
[0012] 請求項 6の発明は、請求項 5の発明において更に、前記建物構造体を前記連結部 材と前記ロッドとの連結部の上に載置してなるようにしたものである。
[0013] 請求項 7の発明は、請求項 5又は 6の発明において更に、前記連結部材と前記ロッ ドとの接合部の一方が剛接合であるようにしたものである。
[0014] 請求項 8の発明は、請求項 5〜7のいずれかの発明において更に、前記柱脚又は 周辺部材と前記連結部材との接合が、それらの間に導入張力が作用する引張接合 となっているようにしたものである。
[0015] 請求項 9の発明は、請求項 8の発明において更に、前記引張接合が、前記連結部 材の下部に弾性突張り材を設け、弾性突張り材の両端部を連結部材又は前記ロッド に支持し、弾性突張り材の中間部を連結部材力 離隔して変形の少ない合理的な断 面にし、弾性突張り材の中間部と連結部材に揷通したボルトを柱脚又は周辺部材に 接合してなるようにしたものである。
[0016] 請求項 10の発明は、請求項 1〜9のいずれかの発明において更に、 Mr=Mcであ るようにしたものである。
[0017] 請求項 11の発明は、請求項 1〜9のいずれかの発明において更に、 Mr>Mcであ るようにしたものである。
[0018] 請求項 12の発明は、請求項 1、 4〜: 11のいずれかの発明において更に、前記下部 構造体が基礎であるようにしたものである。
[0019] 請求項 13の発明は、請求項 4〜: 11のいずれかの発明において更に、前記下部構 造体が下階建物構造体であるようにしたものである。
[0020] 請求項 14の発明は、複数の柱を含むラーメン構造体を有し、少なくとも一つの柱は
、請求項 1、 4〜: 13のいずれかに記載の柱脚の接合仕口によって下部構造体に接合 されてレ、るようにした建物である。
[0021] 請求項 15の発明は、梁を有し、少なくとも一つの梁は、請求項:!〜 3、 10、 11のい ずれかに記載の梁端の接合仕口によって側部構造体に接合されているようにした建 物である。
[0022] 請求項 16の発明は、梁を有し、少なくとも一つの梁は、請求項:!〜 3、 10、 11のい ずれかに記載の梁端の接合仕口によって側部構造体に接合されているようにした橋 である。
[0023] 本発明の建物構造体にあっては、相並ぶ複数の柱の各柱脚を下部構造体に接合 するものである力 例えば 2つの柱のうちの 1つの柱の柱脚において本発明特有の接 合仕口を適用し、他の 1つの柱の柱脚においては本発明特有の接合仕口によらずに 単純なピン接合仕口を適用するものでも良レ、。
[0024] 本発明の柱脚接合仕口にあっては、下部構造体と柱脚の間に設けるロッド対が 2本 のロッドからなるものに限らず、 4本等のロッドからなるものでも良 1つの柱の柱脚 における妻側に 2本のロッドを設け、その桁側に他の 2本のロッドを設けるものでも良 レ、。
[0025] 本発明の接合仕口にあっては、 2本のロッドの上端又は下端と、柱脚又は下部構造 体との接合はピン接合しても、剛接合して良い。
[0026] 本発明において、「ロッド」は棒状のものに限らず、形鋼状のもの、板状のものも含 む。
発明の効果
[0027] (請求項 1)
(a)構造体の梁端、柱脚、又はこれらに剛接合された周辺部材を、支持手段を介し て他の構造体に接合する接合仕口において、梁又は柱の軸と直交して作用する力 に起因して、柱脚又は梁端に生じる曲げモーメント Mcと逆方向となる曲げモーメント Mrを、支持手段の変形 (支持手段の弾性範囲内の微少の幾何学的な移動による変 形)により発生可能とすることにより、梁端又は柱脚の変形 (梁又は柱と他の構造体の 交差角度の変位)を少なくし、構造体全体の変形を極小にする。
[0028] (請求項 2)
(b)側部構造体と梁の端部の間に 2本のロッドの組合せからなるロッド対を設け、 2本 のロッドはそれらの一端を側部構造体に接合するとともに、それらの他端を梁の端部 に接合し、 2本のロッドの一端側の間隔を他端側の間隔より狭くしてなることにより、 2 本のロッドの軸力が梁の端部に曲げモーメントを及ぼし、この曲げモーメントが梁の変 形 (梁と側部構造体の交差角度の変位)を少なくし、梁全体の変形を極小にするよう に作用する。
[0029] (c)梁に剪断力が作用し、 2本のロッドに軸力が発生するとき、 2本のロッドの軸力に 起因して梁の端部に生ずる曲げモーメント Mrが、梁に作用する剪断力に起因して梁 の端部に生ずる曲げモーメント Mcと逆方向になる。従って、曲げモーメント Mcによる 梁の変形と、曲げモーメント Mrによる梁の変形が互いに相殺し、梁の変形を少なくし 、梁全体の変形を極小にする。
[0030] (d)梁の変形を上述 (b)、(c)の如くに梁の端部に作用する曲げモーメント Mr、 Mcによ り少なくできるから、 2本のロッドの他端を側部構造体に剛接合せず、簡易にピン接合 する場合でも梁の変形を少なくし、梁全体の変形を極小にできる。 [0031] (請求項 3)
(e)梁端に連結部材を接合し、側部構造体と連結部材の間に 2本のロッドの組合せ 力らなるロッド対を設け、 2本のロッドはそれらの他端を側部構造体に接合するととも に、それらの一端を連結部材に接合し、 2本のロッドの一端間隔を他端間隔より狭くし てなることにより、 2本のロッドの軸力が連結部材に曲げモーメントを及ぼし、この曲げ モーメントが梁の変形を少なくし、構造体全体の変形を極小にするように作用する。
[0032] (f)連結部材を梁端に接合する構造材とは別構成の材カ なるものにしたから、連結 部材を上記梁端に接合する構造材としての横架材とするものに比して、連結部材を 高剛性のものにすることができる。従って、 2本のロッドの軸力が連結部材に及ぼす 上述 (e)の曲げモーメント Mrを、安定的に梁端に伝え、梁端に生ずる曲げモーメント Mcと相殺させることができる。これにより、建物全体の変形を安定的に極小化できる
[0033] (g)梁端に定められる連結部材の接合点の位置に関係なぐ連結部材の長さを長く できる。これは、連結部材と梁端の上述の接合点から、連結部材とロッドとの接合点ま でのフランジ長さ fを長くできることを意味し、ひいては 2本のロッドの軸力が連結部材 に及ぼす前述 (e)の曲げモーメント Mrを大きくとることができることを意味する。これに より、建物全体の変形を確実に極小化できる。
[0034] (請求項 4)
(h)柱脚と下部構造体の間に 2本のロッドの組合せからなるロッド対を設け、 2本の口 ッドはそれらの下端を下部構造体に接合するとともに、それらの上端を柱脚に接合し 、 2本のロッドの上端間隔を下端間隔より狭くしてなることにより、 2本のロッドの軸力が 柱脚に曲げモーメントを及ぼし、この曲げモーメントが柱の変形 (柱と基礎の交差角 度の変位)を少なくし、建物全体の変形を極小にするように作用する。
[0035] (i)建物構造体の柱に剪断力が作用し、 2本のロッドに軸力が発生するとき、 2本の口 ッドの軸力に起因して柱脚に生ずる曲げモーメント Mrが、柱に作用する剪断力に起 因して柱脚に生ずる曲げモーメント Mcと逆方向になる。従って、曲げモーメント Mcに よる柱の変形と、曲げモーメント Mrによる柱の変形が互いに相殺し、柱の変形を少な くし、建物全体の変形を極小にする。 [0036] (j)柱の変形を上述 (h)、(i)の如くに柱脚に作用する曲げモーメント Mr、 Mcにより少 なくできるから、 2本のロッドの下端を下部構造体に剛接合せず、簡易にピン接合す る場合でも柱の変形を少なくし、建物全体の変形を極小にできる。
[0037] (請求項 5)
(k)柱脚に連結部材を接合し、下部構造体と連結部材の間に 2本のロッドの組合せ 力らなるロッド対を設け、 2本のロッドはそれらの下端を下部構造体に接合するととも に、それらの上端を連結部材に接合し、 2本のロッドの上端間隔を下端間隔より狭くし てなることにより、 2本のロッドの軸力が連結部材に曲げモーメントを及ぼし、この曲げ モーメントが柱の変形 (柱と基礎の交差角度の変位)を少なくし、建物全体の変形を 極小にするように作用する。
[0038] ①連結部材を柱脚に接合する構造材とは別構成の横材力 なるものにしたから、連 結部材を上記柱脚に接合する構造材としての横架材とするものに比して、連結部材 を高剛性のものにすることができる。従って、 2本のロッドの軸力が連結部材に及ぼす 上述 (k)の曲げモーメント Mrを、安定的に柱脚に伝え、柱脚に生ずる曲げモーメント Mcと相殺させることができる。これにより、建物全体の変形を安定的に極小化できる
[0039] (m)柱脚 (柱脚に溶接される床梁用ジョイントピースを含む)に定められる連結部材 の剛接合点の位置に関係なぐ横材力 なる連結部材の長さを長くできる。これは、 連結部材と柱脚の上述の剛接合点から、連結部材とロッドとの接合点までのフランジ 長さ fを長くできることを意味し、ひいては 2本のロッドの軸力が連結部材に及ぼす前 述 (a)の曲げモーメント Mrを大きくとることができることを意味する。これにより、建物全 体の変形を確実に極小化できる。
[0040] (請求項 6)
(n)建物構造体を上述 (n)の連結部材 (横材)とロッド (斜材及び/又は鉛直材)との 接合部の上に載置するときには、建物構造体の柱脚に接合する構造材としての横架 材 (梁、桁、胴差し、土台等)の固定度を強化できる。 2本のロッドの軸力が連結部材 に及ぼす前述 (k)の曲げモーメント Mrを建物構造体の柱脚 (床梁)に伝えるとき、建 物構造体の柱と、建物構造体の連結部材への支圧支点 (載置点)の距離が大きくな り、支点反力が軽減する(但し、曲げモーメント Mrが建物構造体の支圧でなぐ引き 抜き力を当該支点に及ぼすときには、支点反力軽減の効果はなぐ別途の梁固定ボ ルトに反力がかかる)。
[0041] (請求項 7)
(0)上述 (k)の連結部材とロッドとの接合部を剛接合とすることができる。
[0042] (p)連結部材 (横材)とロッド (斜材及び Z又は鉛直材)の上端を剛接合することで、 連結部材に作用する剪断力 Q2の変動を回避できる。 1本のロッドの下端と下部構造 体の接合点 rl、該ロッドの上端と連結部材 (横材)との接合点 r2、他の 1本のロッド (斜 材)の下端と下部構造体の接合点 si、該ロッドの上端と連結部材 (横材)の接合点 s2 を考える。このとき、全ての rl、 r2、 sl、 s2がピン接合であれば、 2本のロッドの軸力が 連結部材に及ぼす前述 (a)の曲げモーメント Mrは大きくなるが、建物構造体の強度 は柱に作用する剪断力 Q1と上述の Q2の比率で大きく異なるものになり、建物構造体 の強度を予め特定できない。他方、連結部材 (横材)とロッド (斜材及び/又は鉛直 材)の上端 (r2及び/又は s2)を剛接合しておくと、曲げモーメント Mrは上記ほど大き くならないが、建物構造体の強度は Ql、 Q2の比率による差異が殆どなくなり、建物 構造体の強度をプランに左右されることなく予め特定できる。
[0043] (請求項 8)
(q)柱脚に連結部材を引張接合し、下部構造体と連結部材の間に 2本のロッドの組 合せからなるロッド対を設け、 2本のロッドはそれらの下端を下部構造体に接合すると ともに、それらの上端を連結部材に接合し、 2本のロッドの上端間隔を下端間隔より 狭くしてなることにより、 2本のロッドの軸力が連結部材に曲げモーメントを及ぼし、こ の曲げモーメントが柱の変形 (柱と基礎の交差角度の変位)を少なくし、建物全体の 変形を極小にするように作用する。
[0044] (r)柱脚に連結部材を引張接合する張力が柱脚と連結部材の間に導入される結果 、この導入張力が柱脚を連結部材から引き剥がす引き剥がし力に対する抵抗力(耐 引き剥がし力)になり、連結部材に対する建物構造体の回転 (鉛直線に対する柱の 回転、水平線に対する床梁の回転)を少なくし、建物全体の変形を安定的に極小化 できる。 [0045] (s)柱脚 (柱脚に溶接される床梁用ジョイントピースを含む)に定められる連結部材の 引張接合点の位置に関係なぐ横材力 なる連結部材の長さを長くできる。これは、 連結部材と柱脚の上述の引張接合点から、連結部材とロッドとの接合点までのフラン ジ長さ fを長くできることを意味し、ひいては 2本のロッドの軸力が連結部材に及ぼす 前述 (a)の曲げモーメント Mrを大きくとることができることを意味する。これにより、建物 全体の変形を確実に極小化できる。
[0046] (t)連結部材 (横材)とロッド (斜材及び/又は鉛直材)の上端を剛接合することで、 連結部材に作用する剪断力 Q2の変動を回避できる。 1本のロッドの下端と下部構造 体の接合点 rl、該ロッドの上端と連結部材 (横材)との接合点 r2、他の 1本のロッド (斜 材)の下端と下部構造体の接合点 si、該ロッドの上端と連結部材 (横材)の接合点 s2 を考える。このとき、全ての rl、 r2、 sl、 s2がピン接合であれば、 2本のロッドの軸力が 連結部材に及ぼす前述 (q)の曲げモーメント Mrは大きくなるが、建物構造体の強度 は柱に作用する剪断力 Q1と上述の Q2の比率で大きく異なるものになり、建物構造体 の強度を予め特定できない。他方、連結部材 (横材)とロッド (斜材及び/又は鉛直 材)の上端 (r2及び/又は s2)を剛接合しておくと、曲げモーメント Mrは上記ほど大き くならないが、建物構造体の強度は Ql、 Q2の比率による差異が殆どなくなり、建物 構造体の強度をプランに左右されることなく予め特定できる。
[0047] (請求項 9)
(u)弾性突張り材の両端部を連結部材又はロッドに支持し、弾性突張り材の中間部 を連結部材から浮かし、弾性突張り材の中間部と連結部材に揷通したボルトを柱の 柱脚に引張接合することにより、簡易な構造により、柱脚に連結部材を引張接合でき る。
[0048] (請求項 10)
(v_l)曲げモーメント Mrと曲げモーメント Mcを、 Mr = Mcとすることにより、柱脚は下 部構造体に対し剛接合状態 (柱脚は回転せず、柱と基礎の交差角度は変位しない) になり、柱の変形を少なくすることができる。柱脚の移動はない。
[0049] (v_2)曲げモーメント Mrと曲げモーメント Mcを、 Mr = Mcとすることにより、梁の端部 は剛体に対し剛接合状態(梁の端部は回転せず、梁と剛体の交差角度は変位しな レ、)になり、梁の変形を少なくすることができる。梁の端部の移動はない。
[0050] (請求項 11)
(w-1)曲げモーメント Mrと曲げモーメント Mcを、 Mr>Mcとすることにより、柱脚は M cよる変形を Mrによって逆方向に戻され、超剛接合状態になり、柱の変形を上述 (v_l )より少なくすることができる。ベース部材は剪断方向に移動する。
[0051] (w-2)曲げモーメント Mrと曲げモーメント Mcを、 Mr>Mcとすることにより、梁の端部 は Mcよる変形を Mrによって逆方向に戻され、超剛接合状態になり、梁の変形を上 述 (v-2)より少なくすることができる。梁の端部は剪断方向に移動する。
[0052] (請求項 12)
(X)下部構造体を基礎とし、建物構造体の柱を基礎に接合する接合仕口において、 上述 (h)〜(w)を実現できる。
[0053] (請求項 13)
(y)下部構造体を下階建物構造体とし、上階建物構造体の柱を下階建物構造体の 柱頭又は梁に接合する接合仕口において、上述 (h)〜(w)を実現できる。梁勝ち工法 において高い剛性を得ることができる。
[0054] (請求項 14)
(z-1)建物において、上述 (a)、(h)〜(y)を実現できる。
[0055] (請求項 15)
(Z-2)建物において、上述 (a)〜(g)、(v)、(w)を実現できる。
[0056] (請求項 16)
(z- 3)橋において、上述 (a)〜(g)、(v)、(w)を実現できる。
図面の簡単な説明
[0057] [図 1]図 1は実施例 1の門型ラーメン構造を示す模式図である。
[図 2]図 2は門型ラーメン構造を示す正面図である。
[図 3]図 3は柱脚接合仕口に作用する水平力を示す模式図である。
[図 4]図 4は柱脚接合仕口に作用する曲げモーメントを示す模式図である。
[図 5]図 5は実施例 2のラーメンユニット構造を示す模式図である。
[図 6]図 6はラーメンユニット構造を示す正面図である。 園 7]図 7は実施例 3の門型ラーメン構造を示す模式図である。
園 8]図 8は実施例 4の建物構造体を示す模式平面図である。
園 9]図 9は実施例 5の柱脚接合仕口を示す模式図である。
園 10]図 10は実施例 6の柱脚接合仕口を示す模式図である。
園 11]図 11は実施例 7の柱脚接合仕口を示す模式図である。
園 12]図 12は実施例 8の建物構造体を示す模式図である。
[図 13]図 13は図 12の要部拡大図である。
[図 14]図 14は図 13の平面図である。
[図 15]図 15は図 13の変形例を示す模式図である。
園 16]図 16は柱脚接合架台を示し、(A)は外側から視た斜視図、(B)は内側から視 た斜視図である。
園 17]図 17は柱脚接合架台を示す外面図である。
園 18]図 18は柱脚接合架台を示す内面図である。
園 19]図 19は柱脚接合架台を示す平面図である。
園 20]図 20は柱脚接合仕口に作用する水平力を示す模式図である。
園 21]図 21は柱脚接合仕口に作用する曲げモーメントを示す模式図である。
園 22]図 22は実施例 9のラーメン構造体を示す模式図である。
[図 23]図 23は実施例 10の建物構造体を示す模式図である。
[図 24]図 24は図 23の要部拡大図である。
[図 25]図 25は図 24の平面図である。
園 26]図 26は柱脚接合架台を示す斜視図である。
園 27]図 27は実施例 11のラーメン構造体を示す模式図である。
園 28]図 28は実施例 12の梁接合仕口を示す模式図である。
園 29]図 29は梁接合仕口の具体例を示す模式図である。
園 30]図 30は梁接合仕口に作用する曲げモーメントを示す模式図である。
符号の説明
10、 30、 50 建物構造体
11、 31、 51 柱 11 A, 31A、 51A 柱脚
13、 34 基礎(下部構造体)
20、 40、 60 柱脚接合仕口
21、 41、 61 ベース部材
22、 42、 62 ロッド対
22A、 22B、 42A、 42B、 62A、 62B
70 下階建物構造体
72 梁 (下部構造体)
Q1、 Q2 剪断力
Ta、Tb 軸力
Mc、 Mr 曲げモーメント
110、 160 建物構造体
111 柱
111A 柱脚
113、 163 床梁 (横架材)
114 基礎 (下部構造体)
120 柱脚接合仕口
121 ベース部材
122 ロッド、対
122A、 122B ロッド
150 弾性突張り材
151 ボノレ卜
170 下階建物構造体 (下部構造体)
210 梁構造体
211 梁
211 A 梁端部
212 岡 IJ体
220 梁接合仕口 222 ロッド、対
222A、 222B ロッド
発明を実施するための最良の形態
[0059] 以下、本発明の実施例を図面に基づき説明する。
実施例
[0060] (実施例 1) (図 1〜図 4)
建物構造体 10は、図 1、図 2に示す如ぐ門型ラーメン構造をなし、相並ぶ柱 11、 1 1をそれらの上端部に剛接合される梁 12により連結したものである。建物構造体 10 は、柱 11、 11の各柱脚 11Aを、柱脚接合仕口 20により基礎 13 (下部構造体)に接 合される。以下、柱脚接合仕口 20の構成について説明する。
[0061] 柱脚接合仕口 20は、柱脚 11Aに取付部材 21Aを剛接合し、この取付部材 21 Aを 、柱脚 11Aに剛接合された周辺部材としてのベース部材 21とする。
[0062] 柱脚接合仕口 20は、基礎 13とベース部材 21の間に、支持手段として、 2本のロッド
22A、 22Bの組合せ力 なるロッド対 22を設ける。 2本のロッド 22A、 22Bは、それら の下端を基礎 13にピン接合 (剛接合でも可)するとともに、それらの上端をベース部 材 21にピン接合(剛接合でも可)する。 2本のロッド 22A、 22Bの上端間隔を下端間 隔より狭くする(ロッド 22A、 22Bを互いにハの字状をなすように配置し、柱 11側の上 端間隔を基礎 13側の下端間隔より狭くする)。本実施例では、柱 11に作用する水平 剪断力 Q1の方向に沿う剪断前方側のロッド 22Aを後傾させ、剪断後方側のロッド 22 Bを前傾させる。
[0063] 以下、建物構造体 10の柱脚接合仕口 20による支持メカニズムについて説明する( 図 3、図 4)。
[0064] (1)柱 11に水平剪断力 Q1が作用する。本実施例では更に、ベース部材 21に、柱 1 1に作用する剪断力 Q1と同方向の水平剪断力 Q2 (柱 11の下半分に対応する壁荷 重、風圧力等)が作用する。尚、剪断力 Ql、 Q2は仮想的に 1つの柱に作用する剪断 力とする。
[0065] このとき、 2本のロッド 22A、 22Bの基礎 13への接合部には、支点反力 Q = Q1 + Q
2が作用する。 [0066] (2)柱 11に作用する剪断力 Qlに起因する曲げモーメント Mcが柱脚 11A (ベース部 材 21との剛接合点)に生ずる。
[0067] (3)2本のロッド 22A、 22Bに作用する支点反力 Q (Q1 + Q2)により、各ロッド 22A、 22Bに軸力 Ta、 Tbが発生する。尚、軸力 Ta、 Tbは、柱 11に作用する剪断力 Ql、 Q 2によってベース部材 21が同剪断方向に移動させられようとするときに発生する。
[0068] そして、 2本のロッド 22A、 22Bの軸力 Ta、 Tbに起因する曲げモーメント Mrが柱脚 11A (ベース部材 21との剛接合点)に生ずる。曲げモーメント Mrは曲げモーメント M cと逆方向になる。曲げモーメント Mrは、剪断前方側のロッド 22Aの上端を下げ、剪 断後方側のロッド 22Bの上端を上げ、ベース部材 21を微小回転させる。
[0069] 軸力 Ta、 Tbの水平成分を Ha、 Hb、鉛直成分を Va、 Vbとし、軸力 Ta、 Tbの柱脚 11 A (ベース部材 21との剛接合点)に対するモーメントの腕の長さを a、 bとし、ベース部 材 21における柱脚 11Aとの接合点からロッド 22Aとの接合点までのフランジ長さを f 、ロッド 22Bとの接合点までのフランジ長さを fとし、ロッド 22Aが基礎 13に対してなす 交差角度を Θ a (図 4)とし、ロッド 22Bが基礎 13に対してなす交差角度を Θ b (図 4)と するとき、下記 (1)式〜 (5)式が成立する。尚、柱 11の軸力を無視する。
[0070] Ql + Q2 = Ha+Hb … (1)
Va+Vb = 0 … (2)
Mr=Ta X a+Tb + b … (3)
Mr= (Ha/cos Θ a) X a + (Hb/cos Θ b) X b … (4)
a = f · sin Θ a、 b = f · sin Θ b ·■ · (5)
[0071] 従って、曲げモーメント Mrを大きくとるためには、ロッド 22A、 22Bの角度 Θ a、 Θ b を大きくとる、ベース部材 21のフランジ長さ fを大きくとる、ベース部材 21に作用する 剪断力 Q2を大きくとることが必要になる。
[0072] ベース部材 21に作用する剪断力 Q2を大きくすることは、床荷重や風圧力を梁材ゃ 胴縁で受け、これをベース部材 21に伝える等にて実現できる。
[0073] また、ロッド 22A (22B)と、ベース部材 21又は基礎 13との接合をピン接合とした場 合は、ベース部材 21の移動に対する抵抗が少ないため、ベース部材 21が大きく移 動され、 Mrも大きくすることができ、剛接合とした場合は、ベース部材 21の移動に対 する抵抗が大きくなるため、 Mrはピン接合に比べ小さくなる力 ロッド 22A (22B)の 変形が微少となるため、微振動の発生を抑制することができる。
[0074] (4)Mr = Mcで柱脚 11Aは剛接合状態(柱脚 11Aが回転しなレ、、柱 11と基礎 13の 相対角度を不変)になる。
[0075] (5)Mr>Mcで柱脚 11Aは Mcによる変形方向と逆方向に戻される。これを、超剛接 合状態というものとする。ベース部材 21は剪断方向(Q1の方向)に移動する。
[0076] (6)Mrく Mcで柱脚 11Aは半剛接合状態(剛接合より弱レ、)になる。ベース部材 21 は剪断方向と逆方向に移動する。
[0077] 本実施例によれば以下の作用効果を奏する。
(a)柱脚 11Aにベース部材 21を剛接合し、基礎 13とベース部材 21の間に 2本の口 ッド 22A、 22Bの組合せ力らなるロッド対 22を設け、 2本のロッド 22A、 22Bはそれら の下端を基礎 13に接合するとともに、それらの上端をベース部材 21に接合し、 2本 のロッド 22A、 22Bの上端間隔を下端間隔より狭くしてなることにより、 2本のロッド 22 A、 22Bの軸力 Ta、 Tbがベース部材 21に曲げモーメント Mrを及ぼし、この曲げモー メント Mrが柱 11の変形 (柱 11と基礎の交差角度の変位)を少なくし、建物全体の変 形を極小にするように作用する。
[0078] (b)建物構造体 10の柱 11に剪断力 Q1が作用し、 2本のロッド 22A、 22Bに軸力 Ta 、 Tbが発生するとき、 2本のロッド 22A、 22Bの軸力 Ta、 Tbに起因して柱脚 11Aに生 ずる曲げモーメント Mrが、柱 11に作用する剪断力 Q1に起因して柱脚 11Aに生ずる 曲げモーメント Mcと逆方向になる。従って、曲げモーメント Mcによる柱 11の変形と、 曲げモーメント Mrによる柱 11の変形が互いに相殺し、柱 11の変形を少なくし、建物 全体の変形を極小にする。
[0079] (c)柱 11の変形を上述 (a)、(b)の如くにベース部材 21に作用する曲げモーメント Mr 、 Mcにより少なくできるから、 2本のロッド 22A、 22Bの下端を基礎 13に剛接合せず 、簡易にピン接合する場合でも柱 11の変形を少なくし、建物全体の変形を極小にで きる。
[0080] (d)曲げモーメント Mrと曲げモーメント Mcを、 Mr=Mcとすることにより、柱脚 11Aは 基礎 13に対し剛接合状態(柱脚 11 Aは回転せず、柱 11と基礎 13の交差角度は変 位しない)になり、柱 11の変形を少なくすることができる。
[0081] (e)曲げモーメント Mrと曲げモーメント Mcを、 Mr>Mcとすることにより、柱脚 11Aは Mcよる変形を Mrによって逆方向に戻され、超剛接合状態になり、柱 11の変形を上 述 (d)より少なくすることができる。ベース部材 21は剪断方向に移動する。
[0082] (f)ベース部材 21に、柱 11に作用する剪断力 Q1と同方向の剪断力 Q2が作用する ようにすることにより、基礎 13が 2本のロッド 22A、 22Bに及ぼす支点反力 Q = Q1 + Q2を大きくし、ひいては 2本のロッド 22A、 22Bの軸力 Ta、 Tbを大きぐ曲げモーメン ト Mrを大きくし、 2本のロッド 22A、 22Bを設けたことの効果を一層向上できる。
[0083] (g)下部構造体を基礎 13とし、建物構造体 10の柱 11を基礎 13に接合する接合仕 口 20において、上述 (a)〜(f)を実現できる。
[0084] (実施例 2) (図 5、図 6)
建物構造体 30は、図 5、図 6に示す如ぐラーメンユニット構造をなし、相並ぶ柱 31 、 31を、それらの上端部に剛接合される天井梁 32により連結するとともに、それらの 下端部に剛接合される床梁 33により連結したものである。建物構造体 30は、柱 31、 31の各柱脚 31Aを、柱脚接合仕口 40により基礎 34 (下部構造体)に接合される。以 下、柱脚接合仕口 40の構成について説明する。
[0085] 柱脚接合仕口 40は、柱脚 31 Aに床梁 33 (フランジ 41 A)を剛接合し、この床梁 33 を、柱脚 31 Aに剛接合された周辺部材としてのベース部材 41とする。
[0086] 柱脚接合仕口 40は、基礎 34とベース部材 41の間に 2本のロッド 42A、 42Bの組合 せ力らなるロッド対 42を設ける。 2本のロッド 42A、 42Bは、それらの下端を基礎 34に ピン接合 (剛接合でも可)するとともに、それらの上端をベース部材 41にピン接合 (剛 接合でも可)する。 2本のロッド 42A、 42Bの上端間隔を下端間隔より狭くする(ロッド 42A、 42Bを互いに八の字状をなすように配置し、柱 31側の上端間隔を基礎 34側 の下端間隔より狭くする)。本実施例では、柱 31に作用する水平剪断力 Q1の方向に 沿う剪断前方側のロッド 42Aを鉛直配置し、剪断後方側のロッド 42Bを前傾させる。
[0087] 建物構造体 30の柱脚接合仕口 40による支持メカニズムは、建物構造体 10の柱脚 接合仕口 20による支持メカニズムと実質的に同一である。従って、建物構造体 30の 柱 31に剪断力 Q1が作用し、この剪断力 Q1によってベース部材 41が同剪断方向に 移動させられようとすることにて 2本のロッド 42A、 42Bに軸力 Ta、 Tbが発生するとき 、 2本のロッド 42A、 42Bの軸力 Ta、 Tbに起因して柱脚 31A (ベース部材 41との岡 lj 接合点)に生ずる曲げモーメント Mrが、柱 31に作用する剪断力 Q1に起因して柱脚 3 1A (ベース部材 41との剛接合点)に生ずる曲げモーメント Mcと逆方向になる。尚、 ベース部材 41に、柱 31に作用する剪断力 Q1と同方向の剪断力 Q2 (柱 31の下半部 に対応する壁荷重、風圧力等)が作用する。
[0088] 本実施例によれば以下の作用効果を奏する。
(a)柱脚 31 Aにベース部材 41を剛接合し、基礎 34とベース部材 41の間に 2本の口 ッド 42A、 42Bの組合せ力らなるロッド対 42を設け、 2本のロッド 42A、 42Bはそれら の下端を基礎 34に接合するとともに、それらの上端をベース部材 41に接合し、 2本 のロッド 42A、 42Bの上端間隔を下端間隔より狭くしてなることにより、 2本のロッド 42 A、 42Bの軸力 Ta、 Tbがベース部材 41に曲げモーメント Mrを及ぼし、この曲げモー メント Mrが柱 31の変形 (柱 31と基礎 34の交差角度の変位)を少なくし、建物全体の 変形を極小にするように作用する。
[0089] (b)建物構造体 30の柱 31に剪断力 Q1が作用し、 2本のロッド 42A、 42Bに軸力 Ta 、 Tbが発生するとき、 2本のロッド 42A、 42Bの軸力 Ta、 Tbに起因して柱脚 31Aに生 ずる曲げモーメント Mrが、柱 31に作用する剪断力 Q1に起因して柱脚 31Aに生ずる 曲げモーメント Mcと逆方向になる。従って、曲げモーメント Mcによる柱 31の変形と、 曲げモーメント Mrによる柱 31の変形が互いに相殺し、柱 31の変形を少なくし、建物 全体の変形を極小にする。
[0090] (c)柱 31の変形を上述 (a)、(b)の如くにベース部材 41に作用する曲げモーメント Mr 、 Mcにより少なくできるから、 2本のロッド 42A、 42Bの下端を基礎 34に剛接合せず 、簡易にピン接合する場合でも柱 31の変形を少なくし、建物全体の変形を極小にで きる。
[0091] (d)曲げモーメント Mrと曲げモーメント Mcを、 Mr=Mcとすることにより、柱脚 31Aは 基礎 34に対し剛接合状態(柱脚 31Aは回転せず、柱 31と基礎 34の交差角度は変 位しない)になり、柱 31の変形を少なくすることができる。
[0092] (e)曲げモーメント Mrと曲げモーメント Mcを、 Mr>Mcとすることにより、柱脚 31Aは Mcよる変形を Mrによって逆方向に戻され、超剛接合状態になり、柱 31の変形を上 述 (d)より少なくすることができる。ベース部材 41は剪断方向に移動する。
[0093] (f)ベース部材 41に、柱 31に作用する剪断力 Q1と同方向の剪断力 Q2が作用する ようにすることにより、基礎 34が 2本のロッド 42A、 42Bに及ぼす支点反力 Q = Q1 + Q2を大きくし、ひいては 2本のロッド 42A、 42Bの軸力 Ta、 Tbを大きぐ曲げモーメン ト Mrを大きくし、 2本のロッド 42A、 42Bを設けたことの効果を一層向上できる。
[0094] (g)下部構造体を基礎 34とし、建物構造体 30の柱 31を基礎 34に接合する接合仕 口 40において、上述 (a)〜(f)を実現できる。
[0095] (実施例 3) (図 7)
建物構造体 50は、図 7に示す如ぐ門型ラーメン構造をなし、相並ぶ柱 51、 51を、 それらの上端部に剛接合される梁 52により連結したものである。建物構造体 50は、 柱 51、 51の各柱脚 51Aを、柱脚接合仕口 60により下階建物構造体 70に接合され る。下階建物構造体 70は柱 71と梁 72を剛接合したラーメン構造体であり、その上階 建物構造体 50の柱 51の柱脚 51Aが柱脚接合仕口 60により梁 72に接合される。以 下、柱脚接合仕口 60の構成について説明する。
[0096] 柱脚接合仕口 60は、柱脚 51 Aにフランジ 61 Aを剛接合し、このフランジ 61 Aを、柱 脚 51 Aに剛接合された周辺部材としてのベース部材 61とする。
[0097] 柱脚接合仕口 60は、梁 72とベース部材 61の間に 2本のロッド 62A、 62Bの組合せ 力らなるロッド対 62を設ける。 2本のロッド 62A、 62Bは、それらの下端を梁 72にピン 接合 (剛接合でも可)するとともに、それらの上端をベース部材 61にピン接合 (剛接合 でも可)する。 2本のロッド 62A、 62Bの上端間隔を下端間隔より狭くする(ロッド 62A 、 62Bを互いにハの字状をなすように配置し、柱 51側の上端間隔を梁 72側の下端 間隔より狭くする)。本実施例では、柱 51に作用する水平剪断力 Q1の方向に沿う剪 断前方側のロッド 62Aを鉛直配置し、剪断後方側のロッド 62Bを前傾させる。
[0098] 建物構造体 50の柱脚接合仕口 60による支持メカニズムは、建物構造体 10の柱脚 接合仕口 20による支持メカニズムと実質的に同一である。従って、建物構造体 50の 柱 51に剪断力 Q1が作用し、この剪断力 Q1によってベース部材 61が同剪断方向に 移動させられようとすることにて 2本のロッド 62A、 62Bに軸力 Ta、 Tbが発生するとき 、 2本のロッド 62A、 62Bの軸力 Ta、 Tbに起因して柱脚 51A (ベース部材 61との岡 lj 接合点)に生ずる曲げモーメント Mrが、柱 51に作用する剪断力 Q1に起因して柱脚 5 1A (ベース部材 61との剛接合点)に生ずる曲げモーメント Mcと逆方向になる。尚、 ベース部材 61に、柱 51に作用する剪断力 Q1と同方向の剪断力 Q2 (柱 51の下半部 に対応する壁荷重、風圧力等)が作用する。
[0099] 本実施例によれば以下の作用効果を奏する。
(a)柱脚 51Aにベース部材 61を剛接合し、梁 72とベース部材 61の間に 2本のロッド 62A、 62Bの組合せ力 なるロッド対 62を設け、 2本のロッド 62A、 62Bはそれらの 下端を梁 72に接合するとともに、それらの上端をベース部材 61に接合し、 2本のロッ ド 62A、 62Bの上端間隔を下端間隔より狭くしてなることにより、 2本のロッド 62A、 62 Bの軸力 Ta、 Tbがベース部材 61に曲げモーメント Mrを及ぼし、この曲げモーメント Mrが柱 51の変形 (柱 51と梁 72の交差角度の変位)を少なくし、建物全体の変形を 極小にするように作用する。
[0100] (b)建物構造体 50の柱 51に剪断力 Q1が作用し、 2本のロッド 62A、 62Bに軸力 Ta 、 Tbが発生するとき、 2本のロッド 62A、 62Bの軸力 Ta、 Tbに起因して柱脚 51Aに生 ずる曲げモーメント Mrが、柱 51に作用する剪断力 Q1に起因して柱脚 51Aに生ずる 曲げモーメント Mcと逆方向になる。従って、曲げモーメント Mcによる柱 51の変形と、 曲げモーメント Mrによる柱 51の変形が互いに相殺し、柱 51の変形を少なくし、建物 全体の変形を極小にする。
[0101] (c)柱 51の変形を上述 (a)、(b)の如くにベース部材 61に作用する曲げモーメント Mr 、 Mcにより少なくできるから、 2本のロッド 62A、 62Bの下端を梁 72に剛接合せず、 簡易にピン接合する場合でも柱 51の変形を少なくし、建物全体の変形を極小にでき る。
[0102] (d)曲げモーメント Mrと曲げモーメント Mcを、 Mr=Mcとすることにより、柱脚 51Aは 梁 72に対し剛接合状態 (柱脚 51Aは回転せず、柱 51と梁 72の交差角度は変位しな レ、)になり、柱 51の変形を少なくすることができる。
[0103] (e)曲げモーメント Mrと曲げモーメント Mcを、 Mr>Mcとすることにより、柱脚 51Aは Mcよる変形を Mrによって逆方向に戻され、超剛接合状態になり、柱 51の変形を上 述 (d)より少なくすることができる。ベース部材 61は剪断方向に移動する。
[0104] (f)ベース部材 61に、柱 51に作用する剪断力 Q1と同方向の剪断力 Q2が作用する ようにすることにより、梁 72が 2本のロッド 62A、 62Bに及ぼす支点反力 Q = Q1 + Q2 を大きくし、ひいては 2本のロッド 62A、 62Bの軸力 Ta、 Tbを大き 曲げモーメント Mrを大きくし、 2本のロッド 62A、 62Bを設けたことの効果を一層向上できる。
[0105] (g)下部構造体を下階建物構造体 70の梁 72とし、上階建物構造体 50の柱 51を梁
72に接合する接合仕口 60において、上述 (a)〜(f)を実現できる。
[0106] (実施例 4) (図 8)
建物構造体 80は、図 8に示す如ぐ門型ラーメン構造をなし、相並ぶ 4本の柱 81を 、それらの上端部に剛接合される梁 82 (天井梁)により連結したものである。尚、建物 構造体 80は、相並ぶ 4本の柱 81を、それらの下端部に剛接合される梁 (床梁)により 併せ連結するものでの良い。建物構造体 80は、図 8の平面視で、柱 81に交差する 長辺側と短辺側のそれぞれにおいて、各柱脚 81Aを柱脚接合仕口 83、 84により基 礎又は下階構造体に接合される。柱脚接合仕口 83、 84は、前述した柱脚接合仕口 20、 40、 60、或いは後述する柱脚接合仕口 120と同一の構成からなるものとするこ とがでさる。
[0107] (実施例 5) (図 9)
図 9に示した柱脚接合仕口 90Aは、下部構造体と、柱 91の柱脚(ベース部材) 91 Aの間に、 3本のロッド 92A、 92B、 92Cの組合せからなるロッド対 90を設ける。 3本 のロッド 92A〜92Cは、それらの下端を下部構造体にピン接合(剛接合でも可)する とともに、それらの上端を柱脚 91Aにピン接合 (剛接合でも可)する。柱客接合仕口 9 OAの平面視で、柱 91に作用する水平剪断力 9に沿う方向に関し、 2本のロッド 92A 、 92Bと 1本のロッド 92Cは互いに柱 91を挟む反対側に位置付けられ、 2本のロッド 9 2A、 92Bは、水平剪断力 9の方向に沿う剪断前方側で互いに剪断力 9を含む鉛直 面の反対側に位置付けられて後傾配置される。 1本のロッド 92Cは、水平剪断力 9の 方向に沿う剪断後方向で、剪断力 9を含む鉛直面内に位置付けられて前傾配置され る。 2本のロッド 92A、 92Cの上端間隔を下端間隔より狭くし、 2本のロッド 92B、 92C の上端間隔を下端間隔より狭くする。 [0108] 柱脚接合仕口 90Aによる支持メカニズムは、前述柱脚接合仕口 20、 40、 60の支 持メカニズムと実質的に同一である。
[0109] (実施例 6) (図 10)
図 10に示した柱脚接合仕口 90Bは、下部構造体と、柱 91の柱脚(ベース部材) 91 Aの間に、 4本のロッド 92A、 92B、 92C、 92Dの組合せからなるロッド対 92を設ける 。 4本のロッド 92A〜92Dは、それらの下端を下部構造体にピン接合(剛接合でも可 )するとともに、それらの上端を柱脚 91Aにピン接合 (剛接合でも可)する。柱脚接合 仕口 90Bの平面視で、柱 91に作用する水平剪断力 Qに沿う方向に関し、 2本のロッ ド 92A、 92Bと 2本のロッド 92C、 92Dは互いに柱 91を挟む反対側に位置付けられ、 2本のロッド 92A、 92Bは、水平剪断力 Qの方向に沿う剪断前方側で互いに剪断力 Qを含む鉛直面の反対側に位置付けられて後傾配置される。 2本のロッド 92C、 92D は、水平剪断力 Qの方向に沿う剪断後方向側で互いに剪断力 Qを含む鉛直面の反 対側に位置付けられて前傾配置される。
[0110] 2本のロッド 92A、 92Cの上端間隔を下端間隔より狭くし、 2本のロッド 92B、 92Dの 上端間隔を下端間隔より狭くする。
[0111] 柱客接合仕口 90Bによる支持メカニズムは、前述柱脚接合仕口 20、 40、 60の支 持メカニズムと実質的に同一である。
[0112] (実施例 7) (図 11)
図 11に示した柱脚接合仕口 100は、下部構造体と、建物構造体 100Aのコーナー に立設された柱 101の柱脚(ベース部材) 101Aの間に、 4本のロッド 102A〜102D の組合せ力 なるロッド対 102を設ける。 4本のロッド 102A〜102Dは、それらの下 端を下部構造体にピン接合 (剛接合でも可)するとともに、それらの上端を柱脚 101A にピン接合(剛接合でも可)する。各ロッド 102A〜: 102Dは、四角断面をなす柱脚 1 01Aの各角部から当該柱脚 101Aの各側面に対し 45度をなす放射下向き方向に斜 交配置される。
[0113] 柱脚接合仕口 100の平面視で、柱 101に作用する桁方向水平剪断力 QAに沿う方 向に関し、 2本のロッド 102A、 102Bと 2本のロッド 102C、 102Dは互レヽに柱 101を 挟む反対側に位置付けられる。 2本のロッド 102A、 102Bは、桁方向水平剪断力 QA に沿う剪断前方側で互いに剪断力 QAを含む鉛直面の反対側に位置付けられて後 傾配置される。 2本のロッド 102C、 102Dは、桁方向水平剪断力 QAの方向に沿う剪 断後方向で互いに剪断力 QAを含む鉛直面の反対側に位置付けられて前傾配置さ れる。 2本のロッド 102A、 102Dの上端間隔を下端間隔より狭くし、 2本のロッド 102B 、 102Cの上端間隔を下端間隔より狭くする。
[0114] 柱脚接合仕口 100の平面視で、柱 101に作用する妻方向水平剪断力 QBに沿う方 向に関し、 2本のロッド 102B、 102Cと 2本のロッド 102A、 102Dは互レヽに柱 101を 挟む反対側に位置付けられる。 2本のロッド 102B、 102Cは、妻方向水平剪断力 QB の方向に沿う剪断前方側で互いに剪断力 QBを含む鉛直面の反対側に位置付けら れて後傾配置される。 2本のロッド 102A、 102Dは、妻方向水平剪断力 QBの方向に 沿う剪断後方向で互いに剪断力 Qを含む鉛直面の反対側に位置付けられて前傾配 置される。 2本のロッド 102A、 102Bの上端間隔を下端間隔より狭くし、 2本のロッド 1 02C、 102Dの上端間隔を下端間隔より狭くする。
[0115] 柱脚接合仕口 100による支持メカニズムは、前述した柱脚接合仕口 20、 40、 60の 支持メカニズムと実質的に同一である。柱脚接合仕口 100は、前述柱脚接合仕口 83 、 84の機能を併せ含むものであり、桁方向水平剪断力 QAと妻方向水平剪断力 QB に対応できる。
[0116] (実施例 8) (図 12〜図 21)
建物構造体 (建物ユニット) 110は、図 12〜図 15示す如ぐ四角箱形骨組構造のラ ーメン構造をなし、平面視で相直交する長辺と短辺のそれぞれにおいて、相並ぶ柱 111, 111の上端部に剛接合されるジョイントピース 112Aに天井梁 112を剛接合す ることにより、それら柱 111、 111の上端部を連結するとともに、相並ぶ柱 111、 111 の下端部(柱脚 111A)に剛接合されるジョイントピース 113Aに床梁 113 (横架材)を 剛接合することにより、それら柱 111、 111の下端部を連結する。
[0117] 建物構造体 110は、長辺と短辺のそれぞれにおいて、柱 111、 111の各柱脚 111 Aを、柱脚接合架台 120Aの柱脚接合仕口 120により基礎 114 (下部構造体)に接 合される。
[0118] 以下、柱脚接合架台 120Aの柱脚接合仕口 120について説明する。 柱脚接合架台 120Aは、図 16〜図 19に示す如ぐ建物構造体 110の長辺と短辺 が直交するコーナー部に設けられる柱 111の柱脚 111Aの直下に配置される 1本の ロッド 122Aと、長辺と短辺のそれぞれの床梁 113の直下に配置される各 1本のロッド 122Bと、長辺と短辺のそれぞれにおいて両ロッド 122A、 122Bの上端部に接合さ れてそれらを連結する連結部材 121とを有する。 2本のロッド 122Aとロッド 122Bは 長辺と短辺のそれぞれにおいてロッド対 122を構成し、それらの上端間隔を下端間 隔より狭くする。
[0119] 柱脚接合架台 120Aは、図 20に示す如ぐ連結部材 121を形鋼と補強片により補 強した横材とし、ロッド 122Aを角鋼管からなる鉛直材とし、ロッド 122Bを形鋼と補強 片により補強した斜材とする。ロッド 122Aの下端部と基礎 114の接合点 rl、ロッド 12 2Aの上端部と連結部材 121の一端部の接合点 r2、ロッド 122Bの下端部と基礎 114 の接合点 sl、ロッド 122Bの上端部と連結部材 121の他端部の接合点 s2を備える。 4 つの接合点 rl、 r2、 sl、 s2のうちの少なくとも 1っを剛接合点とし、残余の接合点をピ ン接合点とする。本実施例では s2を剛接合点とし、 rl、 r2、 siをピン接合点とする。
[0120] 柱脚接合架台 120Aは柱脚接合仕口 120を以下の如くに形成する。以下、長辺( 短辺も同じ)について説明する。
[0121] (1)柱脚接合架台 120Aを基礎 114の上に載置し、基礎 114と連結部材 121の間に
2つのロッド 122A、 122Bの組合せからなるロッド対 122を設ける。 2本のロッド 122A 、 122Bは、それらの下端(rl、 si)をアンカーボルト 123、 124により基礎 114にピン 接合 (剛接合でも可)するとともに、ロッド 122Aの上端 (r2)を溶接 (溶接長は短い)に より連結部材 121にピン接合(剛接合でも可)し、ロッド 122Bの上端 (s2)を溶接 (溶 接長は長レ、)により連結部材 121に剛接合する。 2本のロッド 122A、 122Bの上端間 隔を下端間隔より狭くする(ロッド 122A、 122Bを互いに八の字をなすように配置し、 柱 111側の上端間隔を基礎 114側の下端間隔より狭くする)。本実施例では、柱 111 に作用する水平剪断力 Q1の方向に沿う剪断前方側のロッド 122Aを鉛直配置し、剪 断後方側のロッド 122Bを前傾させる。
[0122] (2)建物構造体 110を柱脚接合架台 120Aの連結部材 121とロッド 122A、 122Bと の接合部の上に載置する。本実施例では、柱脚 111Aの下端板 111Bをロッド 122A の上端板 131の上に載置し、ジョイントピース 113Aの自由端側の下面 113Bをロッド 122Bの上端板 132の上に載置する。このとき、ロッド 122Aとロッド 122Bの上端板 1 31と上端板 132の外法間隔 Kに対し、建物構造体 110の柱脚 11Aとジョイントピース 113Aの外法間隔 Lを小とする。また、ロッド 122Aの上端板 131とロッド 122Bの上端 板 132は同一レベル面に位置し、連結部材 121の上面はそれらのレベル面よりギヤ ップ Gだけ低位をなし、結果として連結部材 121の上面とジョイントピース 113Aの下 面との間にギャップ Gを形成する。
[0123] (3)ボルト 141をヮッシャ 141Aを介してロッド 122Aの上端板 131に揷通し、柱脚 11 1 Aの下端板 111 Bの裏面側に溶接してある締結ブロック 141 Bに締結する。
[0124] (4)ボルト 142を厚板ヮッシャ 142Aを介して柱 111の柱脚 111Aに剛接合してある ジョイントピース 113A、ジョイントピース 113A内の床梁 113、連結部材 121を挿通し 、連結部材 121の裏面側にてナット 142Bを締結する。これにより、柱 111の柱脚 111 A (ジョイントピース 113A)に横材からなる連結部材 121が剛接合された。
[0125] 尚、柱脚接合架台 120Aの柱脚接合仕口 120にあっては、図 15に示す如ぐボル ト 143を厚板ヮッシャ 143A、柱 111の柱脚 111Aにジョイントピース 113Aを介して剛 接合してある床梁 113、ロッド 122Bの上端板 132を挿通し、上端板 132の裏面にて ナット 143Bを締結しても良い。ロッド 122Bと建物構造体 110とを強固に接合できる。
[0126] 以下、建物構造体 110の支持メカニズムについて説明する(図 20、図 21)。
[0127] (1)柱 111に水平剪断力 Q1が作用する。本実施例では更に、連結部材 121に、柱 1 11に作用する剪断力 Q1と同方向の水平剪断力 Q2 (柱 111の下半分に対応する壁 荷重、風圧力等)が作用する。尚、剪断力 Ql、 Q2は仮想的に 1つの柱に作用する剪 断力とする。
[0128] このとき、 2本のロッド 122A、 122Bの基礎 114への接合部には、支点反力 Q = Q1
+ Q2が作用する。
[0129] (2)柱 111に作用する剪断力 Q1に起因する曲げモーメント Mcが柱脚 111A (連結 部材 21との剛接合点)に生ずる。
[0130] (3)2本のロッド 122A、 122Bに作用する支点反力 Q (Q1 + Q2)により、各ロッド 122
A、 122Bに軸力 Ta、 Tbが発生する。尚、軸力 Ta、 Tbは、柱 111に作用する剪断力 Q1、 Q2によって連結部材 21が同剪断方向に移動させられようとするときに発生する
[0131] そして、 2本のロッド 122A、 122Bの軸力 Ta、 Tbに起因する曲げモーメント Mrが柱 脚 111A (連結部材 121との剛接合点)に生ずる。曲げモーメント Mrは曲げモーメン ト Mcと逆方向になる。曲げモーメント Mrは、剪断前方側のロッド 122Aの上端を下げ 、剪断後方側のロッド 122Bの上端を上げ、連結部材 121を微小回転させる。
[0132] 軸力 Ta、 Tbの水平成分を Ha、 Hb、鉛直成分を Va、 Vbとし、軸力 Ta、 Tbの柱脚 11 1A (連結部材 121との剛接合点)に対するモーメントの腕の長さを a、 bとし、連結部 材 121における柱脚 111Aとの接合点からロッド 122Aとの接合点までのフランジ長さ を f、ロッド 22Bとの接合点までのフランジ長さを fとし、ロッド 122Aが基礎 114に対し てなす交差角度を Θ a (図 21)とし、ロッド 122Bが基礎 114に対してなす交差角度を 0 b (図 21)とするとき、下記 (1)式〜 (5)式が成立する。尚、柱 111の軸力を無視する。
[0133] Ql + Q2 = Ha+Hb … (1)
Va+Vb = 0 … (2)
Mr=Ta X a+Tb + b … (3)
Mr= (Ha/cos Θ a) X a+ (Hb/cos Θ b) X b … (4)
a = f · sin Θ a、 b = f · sin Θ b … (5)
[0134] 従って、曲げモーメント Mrを大きくとるためには、ロッド 122A、 122Bの角度 Θ a、 Θ bを大きくとる、連結部材 121のフランジ長さ fを大きくとる、連結部材 121に作用する 剪断力 Q2を大きくとることが必要になる。
[0135] 連結部材 121に作用する剪断力 Q2を大きくすることは、床荷重や風圧力を梁材ゃ 胴縁で受け、これを連結部材 121に伝える等にて実現できる。
[0136] また、ロッド 122A (122B)と、連結部材 121又は基礎 114との接合をピン接合とし た場合は、連結部材 121の移動に対する抵抗が少ないため、連結部材 121が大きく 移動され、 Mrも大きくすることができ、剛接合とした場合は、連結部材 121の移動に 対する抵抗が大きくなるため、 Mrはピン接合に比べ小さくなる力 ロッド 122A (122 B)の変形が微少となるため、微振動の発生を抑制することができる。
[0137] (4)Mr=Mcで柱脚 111 Aは剛接合状態(柱脚 111 Aが回転しなレ、、柱 111と基礎 1 14の相対角度を不変)になる。
[0138] (5)Mr>Mcで柱脚 111Aは Mcによる変形方向と逆方向に戻される。これを、超剛 接合状態というものとする。連結部材 121は剪断方向(Q1の方向)に移動する。
[0139] (6)Mr< Mcで柱脚 111Aは半剛接合状態(剛接合より弱い)になる。連結部材 121 は剪断方向と逆方向に移動する。
[0140] 本実施例によれば以下の作用効果を奏する。
(a)柱脚 111 Aに連結部材 121を剛接合し、基礎 114と連結部材 121の間に 2本の ロッド 122A、 122Bの組合せからなるロッド対 122を設け、 2本のロッド 122A、 122B はそれらの下端を基礎 114に接合するとともに、それらの上端を連結部材 121に接 合し、 2本のロッド 122A、 122Bの上端間隔を下端間隔より狭くしてなることにより、 2 本のロッド 122A、 122Bの軸力 Ta、 Tbが連結部材 121に曲げモーメント Mrを及ぼし 、この曲げモーメント Mrが柱 111の変形 (柱 111と基礎の交差角度の変位)を少なく し、建物全体の変形を極小にするように作用する。
[0141] (b)連結部材 121を横材からなるものにしたから、連結部材 121を柱脚 111Aに接合 するフランジゃ床梁とするものに比して、連結部材 121を高剛性にすることができる。 従って、 2本のロッド 122A、 122Bの軸力 Ta、 Tbが連結部材 121に及ぼす上述 (a)の 曲げモーメント Mrを、安定的に柱脚 111 Aに伝え、柱脚 111 Aに生ずる曲げモーメン ト Mcと相殺させることができる。これにより、建物全体の変形を安定的に極小化できる
[0142] (c)柱脚 111A (柱脚 111Aに溶接される床梁用ジョイントピース 113Aを含む)に定 められる連結部材 121の剛接合点の位置に関係なく、横材からなる連結部材 121の 長さを長くできる。これは、連結部材 121と柱脚 111Aの上述の剛接合点から、連結 部材 121とロッド 122Bとの接合点までのフランジ長さ fを長くできることを意味し、ひ いては 2本のロッド 122A、 122Bの軸力 Ta、 Tbが連結部材 121に及ぼす前述 (a)の 曲げモーメント Mrを大きくとることができること(理由は前述した)を意味する。これに より、建物全体の変形を確実に極小化できる。
[0143] (d)連結部材 121 (横材)とロッド (斜材 122B及び Z又は鉛直材 122A)の上端を剛 接合することで、連結部材 121に作用する剪断力 Q2の変動を回避できる。 1本のロッ ド 122Aの下端と基礎 114の接合点 rl、該ロッド 122Aの上端と連結部材 121 (横材) との接合点 r2、他の 1本のロッド 122B (斜材)の下端と基礎 114の接合点 sl、該ロッド 122Bの上端と連結部材 121 (横材)の接合点 s2を考える。このとき、全ての rl、 r2、 s 1、 s2がピン接合であれば、 2本のロッド 122A、 122Bの軸力 Ta、 Tbが連結部材 121 に及ぼす前述 (a)の曲げモーメント Mrは大きくなる力 建物構造体 110の強度は柱 1 11に作用する剪断力 Q1と上述の Q2の比率で大きく異なるものになり、建物構造体 1 10の強度を予め特定できなレ、。他方、連結部材 121 (横材)とロッド (斜材 122B及び /又は鉛直材 122A)の上端 (r2及び/又は s2)を剛接合しておくと、曲げモーメント Mrは上記ほど大きくならないが、建物構造体 110の強度は Ql、 Q2の比率による差 異が殆どなくなり、建物構造体 110の強度をプランに左右されることなく予め特定でき る。
[0144] (e)建物構造体 110を上述 (d)の連結部材 121 (横材)とロッド (斜材 122B及び/又 は鉛直材 122A)との剛接合部の上に載置するときには、建物構造体 110の(床梁 1 13の)固定度を強化できる。 2本のロッド 122A、 122Bの軸力 Ta、 Tbが連結部材 12 1に及ぼす前述 (a)の曲げモーメント Mrを建物構造体 110の柱脚 111 A (床梁)に伝 えるとき、建物構造体 110の柱 111と、建物構造体 110の連結部材 121への支圧支 点(載置点)の距離が大きくなり、支点反力が軽減する(但し、曲げモーメント Mrが建 物構造体 110の支圧でなぐ引き抜き力を当該支点に及ぼすときには、支点反力軽 減の効果はなぐ別途の梁固定ボルトに反力がかかる。
[0145] (f)建物構造体 110の柱 111に剪断力が作用し、 2本のロッド 122A、 122Bに軸力 T a、Tbが発生するとき、 2本のロッド 122A、 122Bの軸力 Ta、 Tbに起因して柱脚 111 Aに生ずる曲げモーメント Mrが、柱 111に作用する剪断力に起因して柱脚 111Aに 生ずる曲げモーメント Mcと逆方向になる。従って、曲げモーメント Mcによる柱 111の 変形と、曲げモーメント Mrによる柱 111の変形が互いに相殺し、柱 111の変形を少 なくし、建物全体の変形を極小にする。
[0146] (g)柱 111の変形を上述 (a)、(f)の如くに連結部材 121に作用する曲げモーメント Mr 、 Mcにより少なくできるから、 2本のロッド 122A、 122Bの下端を基礎 114に剛接合 せず、簡易にピン接合する場合でも柱 111の変形を少なくし、建物全体の変形を極 /J、にできる。
[0147] (h)曲げモーメント Mrと曲げモーメント Mcを、 Mr=Mcとすることにより、柱脚 111A は基礎 114に対し剛接合状態(柱脚 111Aは回転せず、柱 111と基礎の交差角度は 変位しない)になり、柱 111の変形を少なくすることができる。
[0148] (i)曲げモーメント Mrと曲げモーメント Mcを、 Mr>Mcとすることにより、柱脚 111A は Mcよる変形を Mrによって逆方向に戻され、超剛接合状態になり、柱 111の変形を 上述 (d)より少なくすることができる。連結部材 121は剪断方向に移動する。
[0149] (j)連結部材 121に、柱 111に作用する剪断力 Q1と同方向の剪断力 Q2が作用する ようにすることにより、基礎 114が 2本のロッド 122A、 122Bに及ぼす支点反力 Q = Q 1 + Q2を大きくし、ひいては 2本のロッド 122A、 122Bの軸力 Ta、 Tbを大きぐ曲げ モーメント Mrを大きくし、 2本のロッド 122A、 122Bを設けたことの効果を一層向上で きる。
[0150] (k)下部構造体を基礎 114とし、建物構造体 110の柱 111を基礎 114に接合する接 合仕口 120において、上述 (a)〜(j)を実現できる。
[0151] (実施例 9) (図 22)
建物構造体 160は、図 22に示す如ぐ四角箱形骨組構造のラーメン構造をなし、 平面視で相直交する長辺と短辺のそれぞれにおいて、相並ぶ柱 161、 161の上端 部に剛接合されるジョイントピース 162Aに天井梁 162を剛接合することにより、それ ら柱 161、 161の上端部を連結するとともに、相並ぶ柱 161、 161の下端部(柱脚 16
1A)に剛接合されるジョイントピース 163Aに床梁 163 (横架材)を剛接合することに より、それら柱 161、 161の下端部を連結する。
[0152] 建物構造体 160は、長辺と短辺のそれぞれにおいて、柱 161、 161の各柱脚 161
Aを、実施例 8の柱脚接合架台 120Aの柱脚接合仕口 120により下階構造体 170 ( 下部構造体)に接合される。
[0153] 下階建物構造体 170は柱 171と梁 172を剛接合したラーメン構造体であり、その上 階建物構造体 160の柱 161の柱脚 161 Aが柱脚接合仕口 120により梁 172に接合 される。
[0154] 建物構造体 160の支持メカニズムは、建物構造体 110の支持メカニズムと実質的 に同一である。従って、建物構造体 160の柱 161に剪断力 Q1が作用し、この剪断力 Q1によって連結部材 121が同剪断方向に移動させられようとすることにて 2本のロッ ド 122A、 122Bに軸力 Ta、 Tbが発生するとき、 2本のロッド 122A、 122Bの軸力 Ta 、 Tbに起因して柱脚 161A (連結部材 121との剛接合点)に生ずる曲げモーメント Mr 力 柱 61に作用する剪断力 Q1に起因して柱脚 161A (連結部材 121との剛接合点) に生ずる曲げモーメント Mcと逆方向になる。尚、連結部材 121に、柱 161に作用す る剪断力 Q1と同方向の剪断力 Q2 (柱 161の下半部に対応する壁荷重、風圧力等) が作用する。
[0155] 本実施例によれば、実施例 1と実質的に同様の作用効果を奏する。
[0156] (実施例 10) (図 23〜図 26)
実施例 10の柱脚接合架台 120Aの柱脚接合仕口 120は、実施例 8におけると以下 の点を異にする。
[0157] 即ち、実施例 10の柱脚接合架台 120Aは、図 23〜図 26に示す如ぐ連結部材 12 1を鋼板からなる横材とし、ロッド 122Aを角鋼管からなる鉛直材とし、ロッド 122Bを 形鋼力 なる斜材とする。
[0158] そして、実施例 10の柱脚接合架台 120Aは柱脚接合仕口 120を以下の如くに形 成する(図 20、図 21参照)。以下、長辺(短辺も同じ)について説明する。
[0159] (1)柱脚接合架台 120Aを基礎 114の上に載置し、基礎 114と連結部材 121の間に 2つのロッド 122A、 122Bの組合せからなるロッド対 122を設ける。 2本のロッド 122A 、 122Bは、それらの下端(rl、 si)をアンカーボルト 123、 124により基礎 114にピン 接合 (剛接合でも可)するとともに、ロッド 122Aの上端 (r2)を溶接 (溶接長は短い)に より連結部材 121にピン接合(剛接合でも可)し、ロッド 122Bの上端 (s2)を溶接 (溶 接長は長レ、)により連結部材 121に剛接合する。 2本のロッド 122A、 122Bの上端間 隔を下端間隔より狭くする(ロッド 122A、 122Bを互いに八の字をなすように配置し、 柱 111側の上端間隔を基礎 114側の下端間隔より狭くする)。本実施例では、柱 111 に作用する水平剪断力 Q1の方向に沿う剪断前方側のロッド 122Aを鉛直配置し、剪 断後方側のロッド 122Bを前傾させる。
[0160] (2)建物構造体 110を柱脚接合架台 120Aの連結部材 121とロッド 122A、 122Bと の接合部の上に載置する。本実施例では、柱脚 111Aの下端板 111Bをロッド 122A の上端板 131の上に載置し、ジョイントピース 113Aの自由端側の下面 113Bをロッド 122Bの上端板 132の上に載置する。このとき、ロッド 122Aとロッド 122Bの上端板 1 31と上端板 132の外法間隔 Kに対し、建物構造体 110の柱脚 111 Aとジョイントピー ス 113Aの外法間隔 Lを小とする。また、ロッド 122Aの上端板 131とロッド 122Bの上 端板 132は同一レベル面に位置し、連結部材 121の上面はそれらのレベル面よりギ ヤップ Gだけ低位をなし、結果として連結部材 121の上面とジョイントピース 113Aの 下面との間にギャップ Gを形成する。
[0161] (3)ボルト 141をヮッシャ 141Aを介してロッド 122Aの上端板 131に揷通し、柱脚 11 1 Aの下端板 111 Bの裏面側に溶接してある締結ブロック 141 Bに締結する。
[0162] (4)柱 111の柱脚 111 Aと剛接合された梁材 113に連結部材 121を引張接合する。
具体的には、柱 111の柱脚 111A (柱脚 111Aに溶接される床梁用ジョイントピース 1 13 Aを含む)に引張接合される連結部材 121における、柱脚 111A (ジョイントピース 113A)に対する反対側(裏面側)に弾性突張り材 150を設ける。弾性突張り材 150 はくの字状をなす。弾性突張り材 150の一端部をロッド 122Aの上端板 131に溶接し て支持するとともに、弾性突張り材 150の他端部をロッド 122Bの上端部側に溶接し て支持する。弾性突張り材 150の中間部を連結部材 121の裏面から離隔させて変形 の少ない合理的な断面にする。ボルト 151をヮッシャ 151Aを介して、弾性突張り材 1 50の中間部、連結部材 121の中間部、柱 111の柱脚 111Aに剛接合してあるジョイ ントピース 113A、ジョイントピース 113A内の床梁 113に揷通し、床梁 113の内面側 にてナット 151Bを締結する。ボルト 151は高力ボルトを採用できる。ボノレト 151に導 入する張力が、柱脚 111Aを連結部材 121から引き剥がす引き剥がし力に対する抵 抗カ(耐引き剥がし力)となり、柱脚 111Aと連結部材 121を弹発的に引き寄せるよう に接合する。
[0163] 実施例 10の建物構造体 110の柱脚接合仕口 120による支持メカニズムは、実施例 8の柱脚接合仕口 120の支持メカニズムと実質的に同一である。従って、建物構造 体 110の柱 111に剪断力 Q1が作用し、この剪断力 Q1によって連結部材 121が同剪 断方向に移動させられようとすることにて 2本のロッド 122A、 122Bに軸力 Ta、 Tbが 発生するとき、 2本のロッド 122A、 122Bの軸力 Ta、 Tbに起因して柱脚 111A (連結 部材 121との引張接合点)に生ずる曲げモーメント Mrが、柱 111に作用する剪断力 Q 1に起因して柱脚 111 A (連結部材 121との引張接合点)に生ずる曲げモーメント M cと逆方向になる。尚、連結部材 121に、柱 111に作用する剪断力 Q1と同方向の剪 断力 Q2 (柱 111の下半部に対応する壁荷重、風圧力等)が作用する。
[0164] 以下、実施例 10において特有な、建物構造体 110の柱脚接合架台 120Aに対す る引き剥がし防止メカニズムについて説明する(図 24)。
[0165] (1)ベース部材 121の裏面側に付帯させた弾性突張り材 150と柱 111の柱脚 111A
(ジョイントピース 113A)とを弓 [張接合させたボルト 151に導入張力 P0を導入する。
[0166] (2)ボノレト 151力 S柱 111に対する距離を dl、柱脚 111A (ジョイントピース 113A)とべ 一ス部材 121 (上端板 132)との接点が柱 111に対する距離を d2とするとき、柱脚 11 1A (ジョイントピース 113A)とベース部材 121 (上端板 132)の接点には、耐引き剥 力 Sし力 Fを生ずる。耐引き剥がし力 Fは、建物構造体 110に作用する横力 P (図 5)に 起因して建物構造体 110を柱脚接合架台 120Aに対して回転させ、建物構造体 11 0の柱脚 111Aを柱脚接合架台 120Aのベース部材 121から引き剥がす引き剥がし 力に対する抵抗力であり、 F=P0 X (dl/d2)である。例えば、 Ρ0 = 1·97トン、 dl = 15 5mm, d2 = 250mmとするとき、 F= 1.22トンである。
[0167] (3)横力 Pに起因して柱脚 111A (ジョイントピース 113A)とベース部材 121 (上端板
132)の接点に作用する引き剥がし力が、耐引き剥がし力 Fを超えるまで、柱脚 111 Aはベース部材 121から引き剥がされない。
[0168] 本実施例によれば、実施例 8による作用効果に加え、以下の作用効果を奏する。
[0169] (a)柱脚 111Aに連結部材 121を引張接合し、基礎 114と連結部材 121の間に 2本 のロッド 122A、 122Bの組合せからなるロッド対 122を設け、 2本のロッド 122A、 122 Bはそれらの下端を基礎 114に接合するとともに、それらの上端を連結部材 121に接 合し、 2本のロッド 122A、 122Bの上端間隔を下端間隔より狭くしてなることにより、 2 本のロッド 122A、 122Bの軸力 Ta、 Tbが連結部材 121に曲げモーメント Mrを及ぼし 、この曲げモーメント Mrが柱 111の変形 (柱 111と基礎の交差角度の変位)を少なく し、建物全体の変形を極小にするように作用する。 [0170] (b)柱脚 111 Aに連結部材 121を引張接合する張力が柱脚 111 Aと連結部材 121 の間に導入される結果、この導入張力が柱脚 111Aを連結部材 121から引き剥がす 引き剥がし力に対する抵抗力(耐引き剥がし力)になり、連結部材 121に対する建物 構造体 110の回転(図 6に示した鉛直線に対する柱 111の回転 Θ、水平線に対する 床梁 113の回転 Θ )を少なくし、建物全体の変形を安定的に極小化できる。
[0171] (c)柱脚 111A (柱脚 111Aに溶接される床梁用ジョイントピース 113Aを含む)に定 められる連結部材 121の引張接合点の位置に関係な 横材力 なる連結部材 21 の長さを長くできる。これは、連結部材 121と柱脚 111Aの上述の引張接合点から、 連結部材 121とロッド 122Bとの接合点までのフランジ長さ fを長くできることを意味し 、ひいては 2本のロッド 122A、 122Bの軸力 Ta、Tbが連結部材 121に及ぼす前述 (a )の曲げモーメント Mrを大きくとることができること(理由は前述した)を意味する。これ により、建物全体の変形を確実に極小化できる。
[0172] (d)連結部材 121 (横材)とロッド (斜材 122B及び/又は鉛直材 122A)の上端を剛 接合することで、連結部材 121に作用する剪断力 Q2の変動を回避できる。 1本のロッ ド 122Aの下端と基礎 114の接合点 rl、該ロッド 122Aの上端と連結部材 121 (横材) との接合点 r2、他の 1本のロッド 122B (斜材)の下端と基礎 114の接合点 sl、該ロッド 122Bの上端と連結部材 121 (横材)の接合点 s2を考える。このとき、全ての rl、 r2、 s 1、 s2がピン接合であれば、 2本のロッド 122A、 122Bの軸力 Ta、 Tbが連結部材 121 に及ぼす前述 (a)の曲げモーメント Mrは大きくなる力 建物構造体 110の強度は柱 1 11に作用する剪断力 Q1と上述の Q2の比率で大きく異なるものになり、建物構造体 1 10の強度を予め特定できなレ、。他方、連結部材 121 (横材)とロッド (斜材 122B及び Z又は鉛直材 122A)の上端 (r2及び Z又は s2)を剛接合しておくと、曲げモーメント Mrは上記ほど大きくならないが、建物構造体 110の強度は Ql、 Q2の比率による差 異が殆どなくなり、建物構造体 110の強度をプランに左右されることなく予め特定でき る。
[0173] (e)弾性突張り材 150の両端部を連結部材 121又はロッド 122A、 122Bに支持し、 弾性突張り材 150の中間部を連結部材 121から浮かし、弾性突張り材 150の中間部 と連結部材 121に挿通したボルト 151を柱 111の柱脚 111Aに引張接合することによ り、簡易な構造により、柱脚 111Aに連結部材 121を引張接合できる。
[0174] (実施例 11) (図 27)
建物構造体 160は、図 27に示す如ぐ四角箱形骨組構造のラーメン構造をなし、 平面視で相直交する長辺と短辺のそれぞれにおいて、相並ぶ柱 161、 161の上端 部に剛接合されるジョイントピース 162Aに天井梁 162を剛接合することにより、それ ら柱 161、 161の上端部を連結するとともに、相並ぶ柱 161、 161の下端部(柱脚 16
1A)に剛接合されるジョイントピース 163Aに床梁 163 (横架材)を剛接合することに より、それら柱 161、 161の下端部を連結する。
[0175] 建物構造体 160は、長辺と短辺のそれぞれにおいて、柱 161、 161の各柱脚 161
Aを、実施例 1の柱脚接合架台 120Aの柱脚接合仕口 120により下階構造体 170 ( 下部構造体)に接合される。
[0176] 下階建物構造体 170は柱 171と梁 172を剛接合したラーメン構造体であり、その上 階建物構造体 160の柱 161の柱脚 161 Aが柱脚接合仕口 120により梁 172に接合 される。
[0177] 建物構造体 160の支持メカニズムは、建物構造体 110の支持メカニズムと実質的 に同一である。従って、建物構造体 160の柱 161に剪断力 Q1が作用し、この剪断力 Q1によって連結部材 121が同剪断方向に移動させられようとすることにて 2本のロッ ド 122A、 122Bに軸力 Ta、 Tbが発生するとき、 2本のロッド 122A、 122Bの軸力 Ta 、 Tbに起因して柱脚 161 A (連結部材 121との弓 I張接合点)に生ずる曲げモーメント Mrが、柱 161に作用する剪断力 Q1に起因して柱脚 161A (連結部材 121との引張 接合点)に生ずる曲げモーメント Mcと逆方向になる。尚、連結部材 121に、柱 161に 作用する剪断力 Q1と同方向の剪断力 Q2 (柱 161の下半部に対応する壁荷重、風圧 力等)が作用する。
[0178] 本実施例によれば、実施例 1と実質的に同様の作用効果を奏する。
[0179] (実施例 12) (図 28〜図 30)
橋等を構成する梁構造体 210は、図 28、図 29に示す如ぐ単純梁 211の両端の 梁端部 211Aのそれぞれを、梁接合仕口 220により両側の強固な剛体 212に接合さ れる。尚、梁 211の長手方向を水平方向に配置するものとし、梁 211には鉛直荷重 L が作用するものとする。以下、梁接合仕口 220の構成について説明する(梁 211の 両端の梁端部 211Aに設けた各梁接合仕口 220の構成は実質的に同一であり、主と して、一端側の梁端部 211Aに設けた梁接合仕口 220の構成について説明する)。
[0180] 梁接合仕口 220は、梁端部 211Aにフランジ 221Aを剛接合し、このフランジ 221A をベース部材 221とする。
[0181] 梁接合仕口 220は、岡 IJ体 212とベース部材 221の間に 2本のロッド 222A、 222Bの 組合せからなるロッド対 222を設ける。 2本のロッド 222A、 222Bは、それらの一端を 剛体 212にピン接合(剛接合でも可)するとともに、それらの他端をベース部材 221に ピン接合(剛接合でも可)する。 2本のロッド 222A、 222Bの他端間隔を一端間隔より 狭くする(ロッド 222A、 222Bを互いにハの字状をなすように配置し、梁 211側の他 端間隔を剛体 212側の一端間隔より狭くする)。本実施例では、梁 211に作用する鉛 直剪断力 Lの方向に沿う剪断前方側のロッド 222Aを後傾させ、剪断後方側のロッド 222Bを前傾させる。
[0182] 以下、梁構造体 210の支持メカニズムを梁 211の一端側に設けた梁接合仕口 220 について説明する(図 30)。
[0183] (1)梁 211に鉛直剪断力 Lが作用する。梁 211の一端側の梁端部 211Aに設けた梁 接合仕口 220のベース部材 221には、梁 211に作用する剪断力 Lと同方向の鉛直 剪断力 L1が作用する。尚、梁 211の他端側の梁端部 211Aに設けた梁接合仕口 22
0のベース部材 221にも、梁 211に作用する剪断力 Lと同方向の鉛直剪断力 L2が作 用する。 L = L1 + L2である。
[0184] このとき、梁接合仕口 220におレヽて、 2本のロッド 222A、 2228の岡1本212への接 合部には、支点反力 R1 (梁 211の他端側に設けた梁接合仕口 220では R2)が作用 する。梁 211への線弾力 Lの作用点と、剛体 212への支点反力 Rl、 R2の作用点との 距離を a、 bとすると、 R1 +R2 = L、 Rl X a = R2 X bである。
[0185] (2)梁 211に作用する剪断力 Lに起因する曲げモーメント Mcl (梁の他端側に設け た梁接合仕口 220では Mc2)が梁端部 211A (ベース部材 221との剛接合点)に生 ずる。
[0186] (3)2本のロッド 222A、 222Bに作用する支点反力 Rlにより、各ロッド 222A、 222B に軸力 Ta、 Tbが発生する。尚、軸力 Ta、 Tbは、梁 211に作用する剪断力 L1によつ てベース部材 221が同剪断方向に移動させられようとするときに発生する。
[0187] そして、 2本のロッド 222A、 222Bの軸力 Ta、 Tbに起因する曲げモーメント Mrl (梁 の他端側に設けた梁接合仕口 220では Mr2)が梁端部 211A (ベース部材 221との 剛接合点)に生ずる。曲げモーメント Mrlは曲げモーメント Mclと逆方向になる。曲げ モーメント Mrlは、剪断前方側のロッド 222Aの他端を下げ、剪断後方側のロッド 222 Bの他端を上げ、ベース部材 221を微小回転させる。
[0188] 軸力 Ta、 Tbの水平成分を Ha、 Hb、鉛直成分を Va、 Vbとし、軸力 Ta、 Tbの梁端部 211A (ベース部材 221との剛接合点)に対するモーメントの腕の長さを a、 bとし、ベ 一ス部材 221における梁端部 211Aとの接合点からロッド 222Aとの接合点までのフ ランジ長さを f、ロッド 222Bとの接合点までのフランジ長さを fとし、ロッド 222Aが剛体 212に対してなす交差角度を Θ a (図 3)とし、ロッド 222Bが剛体 212に対してなす交 差角度を 6 b (図 3)とするとき、下記 (1)式〜 (5)式が成立する。尚、梁 211の軸力を無 視する。
[0189] Rl =Va+Vb … (1)
Ha + Hb = 0 … (2)
Mrl =Ta X a+Tb + b … (3)
Mrl = (Va/cos Θ a) X a + (Vb/cos Θ b) X b … (4)
a = f · sin Θ a、 b = f · sin Θ b ·■ · (5)
[0190] 従って、曲げモーメント Mrlを大きくとるためには、ロッド 222A、 222Bの角度 Θ a、
Θ bを大きくとる、ベース部材 221のフランジ長さ fを大きくとる、ベース部材 221に作 用する剪断力 L1を大きくとることが必要になる。
[0191] ベース部材 221に作用する剪断力 L1を大きくすることは、鉛直荷重 Lを梁材で受け
、これをベース部材 221に伝える等にて実現できる。
[0192] また、ロッド 222A (222B)と、ベース部材 221又は剛体 212との接合をピン接合と した場合は、ベース部材 221の移動に対する抵抗が少ないため、ベース部材 221が 大きく移動され、 Mrlも大きくすることができ、剛接合とした場合は、ベース部材 221 の移動に対する抵抗が大きくなるため、 Mrlはピン接合に比べ小さくなる力 S、ロッド 22 2A(222B)の変形が微少となるため、微振動の発生を抑制することができる。
[0193] (4)Mrl = Mclで梁端部 211Aは剛接合状態(梁端部 211Aが回転しなレ、、梁 211 と剛体 212の相対角度を不変)になる。
[0194] (5)Mrl >Mclで梁端部 211Aは Mclによる変形方向と逆方向に戻される。これを、 超剛接合状態とレ、うものとする。ベース部材 221は剪断方向(Lの方向)に移動する。
[0195] (6)Mrl < Mclで梁端部 211Aは半剛接合状態(剛接合より弱レ、)になる。ベース部 材 21は剪断方向と逆方向に移動する。
[0196] 本実施例によれば以下の作用効果を奏する。
(a)梁端部 211Aにベース部材 221を剛接合し、剛体 212とベース部材 221の間に 2本のロッド 222A、 222Bの組合せ力らなるロッド対 222を設け、 2本のロッド 222A、 222Bはそれらの一端を剛体 212に接合するとともに、それらの他端をベース部材 22 1に接合し、 2本のロッド 222A、 222Bの他端間隔を一端間隔より狭くしてなることに より、 2本のロッド 222A、 222Bの軸力 Ta、Tbがベース部材 221に曲げモーメント Mr 1を及ぼし、この曲げモーメント Mrlが梁 211の変形(梁 211と剛体の交差角度の変 位)を少なくし、梁全体の変形を極小にするように作用する。
[0197] (b)梁構造体 210の梁 211に剪断力 Lが作用し、 2本のロッド 222A、 222Bに軸力 T a、 Tbが発生するとき、 2本のロッド 222A、 222Bの軸力 Ta、 Tbに起因して梁端部 21 1Aに生ずる曲げモーメント Mrlが、梁 211に作用する剪断力 Lに起因して梁端部 21 1Aに生ずる曲げモーメント Mclと逆方向になる。従って、曲げモーメント Mclによる 梁 211の変形と、曲げモーメント Mrlによる梁 211の変形が互いに相殺し、梁 211の 変形を少なくし、建物全体の変形を極小にする。
[0198] (c)梁 211の変形を上述 (a)、(b)の如くにベース部材 221に作用する曲げモーメント Mrl、 Mclにより少なくでさる力ら、 2本のロッド、 222A、 222Bの一端を岡 lj体 212に岡 lj 接合せず、簡易にピン接合する場合でも梁 211の変形を少なくし、建物全体の変形 を極小にできる。
[0199] (d)曲げモーメント Mrlと曲げモーメント Mclを、 Mrl = Mclとすることにより、梁端部
211Aは剛体 212に対し剛接合状態(梁端部 211Aは回転せず、梁 211と剛体 212 の交差角度は変位しなレ、)になり、梁 211の変形を少なくすることができる。 [0200] (e)曲げモーメント Mrlと曲げモーメント Mclを、 Mrl >Mclとすることにより、梁端部 211Aは Mclよる変形を Mrlによって逆方向に戻され、超剛接合状態になり、梁 211 の変形を上述 (d)より少なくすることができる。ベース部材 221は剪断方向に移動する 産業上の利用可能性
[0201] 本発明に係る梁接合仕口は、 RC構造 (剛体)に架ける梁、トンネル壁(剛体)に架 ける梁、地下壁 (剛体)に架ける梁、橋脚 (剛体)に架ける橋、鉄骨構造 (剛体)に架け る梁、タワー(剛体)に架ける梁、船体(剛体)に架ける梁に適用できる。

Claims

請求の範囲
[1] 構造体の梁端、柱脚、又はこれらに剛接合された周辺部材を、支持手段を介して、 曲げモーメントを受けることのできる他の構造体に接合する接合仕口において、 梁又は柱に作用する外力に起因して他の構造体との接合部に発生する反力により 、支持手段に弾性範囲内の微少の幾何学的な移動による変形を生じさせることで、 柱脚又は梁端に生じる曲げモーメント Mcと逆方向となる曲げモーメント Mrを発生可 能とすることを特徴とする接合仕口。
[2] 前記支持手段は、少なくとも 2本のロッドの組合せからなり、
それらのロッドは一端を梁端又は周辺部材に接合するとともに、他端を側部構造体 に接合し、
それらのロッドの一端同士、他端同士はそれぞれ離間し、一端間隔を他端間隔より 狭くしてなることを特徴とする請求項 1に記載の梁端の合仕口。
[3] 前記支持手段は、少なくとも 2本のロッドの組合せからなり、
それらのロッドは一端同士を連結部材で連結し、連結部材を梁端又は周辺部材に 接合するとともに、ロッドの他端を側部構造体に接合し、
それらのロッドの一端同士、他端同士はそれぞれ離間し、一端間隔を他端間隔より 狭くしてなることを特徴とする請求項 1に記載の梁端の接合仕口。
[4] 前記支持手段は、少なくとも 2本のロッドの組合せからなり、
それらのロッドは下端を下部構造体に接合するとともに、上端を柱脚又は周辺部材 に接合し、
それらのロッドの上端同士、下端同士はそれぞれ離間し、上端間隔を下端間隔より 狭くしてなることを特徴とする請求項 1に記載の柱脚の接合仕口。
[5] 前記支持手段は、少なくとも 2本のロッドの組合せからなり、
それらのロッドは下端を下部構造体に接合するとともに、ロッドの上端同士を連結部 材で連結し、連結部材を柱脚又は周辺部材に接合し、
それらロッドの上端同士、下端同士はそれぞれ離間し、上端間隔を下端間隔より狭 くしてなることを特徴とする請求項 1に記載の柱脚の接合仕口。
[6] 前記建物構造体を前記連結部材と前記ロッドとの連結部の上に載置してなる請求 項 5に記載の柱脚の接合仕口。
[7] 前記連結部材と前記ロッドとの接合部の一方が剛接合であることを特徴とする請求 項 5又は 6に記載の柱脚の接合仕口。
[8] 前記柱脚又は周辺部材と前記連結部材との接合が、それらの間に導入張力が作 用する引張接合となっていることを特徴とする請求項 5〜7のいずれかに記載の柱脚 の接合仕口。
[9] 前記引張接合が、前記連結部材の下部に弾性突張り材を設け、弾性突張り材の両 端部を連結部材又は前記ロッドに支持し、弾性突張り材の中間部を連結部材から離 隔して変形の少ない合理的な断面にし、弾性突張り材の中間部と連結部材に挿通し たボルトを柱脚又は周辺部材に接合してなる請求項 8に記載の柱脚の接合仕口。
[10] Mr=Mcである請求項 1〜9のいずれかに記載の接合仕口。
[11] Mr>Mcである請求項 1〜9のいずれかに記載の接合仕口。
[12] 前記下部構造体が基礎である請求項 1、 4〜: 11のいずれかに記載の柱脚の接合 仕口。
[13] 前記下部構造体が下階建物構造体である請求項 1、 4〜: 11のいずれかに記載の 柱脚の接合仕口。
[14] 複数の柱を含むラーメン構造体を有し、少なくとも一つの柱は、請求項 1、 4〜: 13の いずれかに記載の柱脚の接合仕口によって下部構造体に接合されていることを特徴 とする建物。
[15] 梁を有し、少なくとも一つの梁は、請求項:!〜 3、 10、 11のいずれかに記載の梁端 の接合仕口によって側部構造体に接合されていることを特徴とする建物。
[16] 梁を有し、少なくとも一つの梁は、請求項:!〜 3、 10、 11のいずれかに記載の梁端 の接合仕口によって側部構造体に接合されていることを特徴とする橋。
PCT/JP2006/314104 2005-07-15 2006-07-14 接合仕口 WO2007010876A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP06781129A EP1905910A1 (en) 2005-07-15 2006-07-14 Fixture joint
CN2006800228505A CN101208485B (zh) 2005-07-15 2006-07-14 接合接头
US11/995,219 US20090060642A1 (en) 2005-07-15 2006-07-14 Joint connection
KR1020087000978A KR101306373B1 (ko) 2005-07-15 2006-07-14 접합 조인트
HK08109866.4A HK1114411A1 (en) 2005-07-15 2008-09-05 Fixture joint
US13/624,305 US8397445B2 (en) 2005-07-15 2012-09-21 Joint connection in which a beam end or column base of a structure, or a peripheral members rigidly joined to the beam end or column base, are joined to another structure via supporting means

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005-207831 2005-07-15
JP2005207831 2005-07-15
JP2005254142 2005-09-01
JP2005-254142 2005-09-01
JP2006162548A JP3962423B1 (ja) 2006-06-12 2006-06-12 梁接合仕口
JP2006162545 2006-06-12
JP2006-162545 2006-06-12
JP2006-162548 2006-06-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/995,219 A-371-Of-International US20090060642A1 (en) 2005-07-15 2006-07-14 Joint connection
US13/624,305 Division US8397445B2 (en) 2005-07-15 2012-09-21 Joint connection in which a beam end or column base of a structure, or a peripheral members rigidly joined to the beam end or column base, are joined to another structure via supporting means

Publications (1)

Publication Number Publication Date
WO2007010876A1 true WO2007010876A1 (ja) 2007-01-25

Family

ID=37668757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/314104 WO2007010876A1 (ja) 2005-07-15 2006-07-14 接合仕口

Country Status (6)

Country Link
US (2) US20090060642A1 (ja)
EP (1) EP1905910A1 (ja)
KR (1) KR101306373B1 (ja)
CN (1) CN101208485B (ja)
HK (1) HK1114411A1 (ja)
WO (1) WO2007010876A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063985A (ja) * 2009-09-17 2011-03-31 Sekisui Chem Co Ltd ユニット建物及び局所フレーム
CN103015309A (zh) * 2012-12-31 2013-04-03 中铁第四勘察设计院集团有限公司 整体节点钢结构门式墩
CN108018991A (zh) * 2016-11-03 2018-05-11 重庆大学 一种自复位粘弹性消能钢梁

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103510619A (zh) * 2013-10-14 2014-01-15 苏州皇家整体住宅系统股份有限公司 低矮轻型木结构房屋门式钢架系统
CA2918756C (en) 2015-01-23 2020-07-21 Zeke Carlyon Insulated panel assembly
US9464427B2 (en) * 2015-01-23 2016-10-11 Columbia Insurance Company Light gauge steel beam-to-column joint with yielding panel zone
CN108331161A (zh) * 2018-02-07 2018-07-27 台山市东扩钢构有限公司 一种新型钢结构支架

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131289A (ja) * 1996-10-28 1998-05-19 Natl House Ind Co Ltd 梁架構
JP2000154507A (ja) * 1998-11-20 2000-06-06 Kawasaki Heavy Ind Ltd 塔頂変位抑制型多径間吊橋
JP2002121747A (ja) * 2000-08-09 2002-04-26 Nippon Steel Corp 鉄骨柱の半固定直接基礎および杭基礎構造
JP2004044285A (ja) * 2002-07-15 2004-02-12 Okabe Co Ltd 建築構造物の柱脚部施工方法

Family Cites Families (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US965185A (en) * 1909-08-17 1910-07-26 John F Hickman Telegraph and other pole.
US1341335A (en) * 1918-07-31 1920-05-25 Macilwaine George Wilson Supporting of outside staging used during the construction of ships or other structures
US2053226A (en) * 1934-09-01 1936-09-01 Charles W Mowry Earthquake resistant structure
US2602616A (en) * 1946-12-24 1952-07-08 Underwood Corp Machine supporting foot
US3431691A (en) * 1966-01-17 1969-03-11 Mckee & Co Arthur G Apparatus and method for supporting vessels
US3538659A (en) * 1968-09-19 1970-11-10 United States Steel Corp Building construction
US3630474A (en) * 1970-08-18 1971-12-28 Kearney National Inc Breakaway pole support structure
US3794277A (en) * 1972-08-14 1974-02-26 A Smedley Earthquake resistant support
JPS524095B2 (ja) * 1973-02-08 1977-02-01
US3789174A (en) * 1973-03-07 1974-01-29 Gen Electric Earthquake-protective support system for electrical apparatus
US3921039A (en) * 1974-03-01 1975-11-18 Sangamo Electric Co Seismic resistant structure for a capacitor bank
US3869836A (en) * 1974-04-15 1975-03-11 Cloy L Allen Mobile home protector
US4064668A (en) * 1974-07-09 1977-12-27 Carter Duane L Supporting pier with tie-down
US4269400A (en) * 1979-05-04 1981-05-26 Barry Wright Corporation Stacked, resilient isolator components
US4301989A (en) * 1979-06-29 1981-11-24 Kallenbach Ralph M Pipe whip restraint system and energy absorbing device therefor
US4417426A (en) * 1981-03-23 1983-11-29 Quakebrace, Inc. Support system
US4469956A (en) * 1983-01-24 1984-09-04 U.S. Windpower, Inc. Windmill support structure
US4520649A (en) * 1983-08-02 1985-06-04 Barton Sr George D Vehicle anchoring stand
US4546581A (en) * 1984-08-10 1985-10-15 Gustafson Harold L Building structure support system
US4606142A (en) * 1985-01-22 1986-08-19 Reneau Charles F Elevated game blind
US5063719A (en) * 1988-09-07 1991-11-12 Hitachi Metals, Ltd. Column base structure
US4976077A (en) * 1989-01-23 1990-12-11 Tucker Joe W Foundation stanchion for mobile home foundations apparatus and method
US5199690A (en) * 1990-07-26 1993-04-06 M/Rad Corporation Active vibration isolation system
US5205528A (en) * 1992-04-17 1993-04-27 John Cunningham Earthquake-resistant architectural system
US5359821A (en) * 1992-08-24 1994-11-01 Merriman Denys J Support system for mobil and manufactured housing
IL116284A (en) * 1995-12-07 2000-07-16 Raychman Leon Dynamic building support structure and method for building same
US6115972A (en) * 1996-04-09 2000-09-12 Tamez; Federico Garza Structure stabilization system
US5782043A (en) * 1996-11-19 1998-07-21 Duncan; C. Warren Seismic correction system for retrofitting structural columns
US5775038A (en) * 1996-12-20 1998-07-07 J. Muller International Fixed point seismic buffer system
US6334279B1 (en) * 1998-11-05 2002-01-01 James Oliver Adjustable outrigger for manufactured home
US6141928A (en) * 1999-02-08 2000-11-07 Platt; Robert E. Post mount
US6665990B1 (en) * 2000-03-06 2003-12-23 Barr Engineering Co. High-tension high-compression foundation for tower structures
US6530182B2 (en) * 2000-10-23 2003-03-11 Kazak Composites, Incorporated Low cost, light weight, energy-absorbing earthquake brace
US6381907B1 (en) * 2000-12-18 2002-05-07 Charles J. Mackarvich Adjustable support system for premanufactured building
US7228661B2 (en) * 2001-03-19 2007-06-12 Rizzotto John L Rapid steel frame assembly
JP2003049558A (ja) * 2001-08-07 2003-02-21 Kazuhiko Kasai 制振間柱
US6591564B2 (en) * 2001-10-10 2003-07-15 Matt Cusimano Ground-anchor brace system for modular buildings
US6718710B2 (en) * 2002-06-03 2004-04-13 Robert E. Platt Post mount
US6837010B2 (en) * 2002-12-05 2005-01-04 Star Seismic, Llc Pin and collar connection apparatus for use with seismic braces, seismic braces including the pin and collar connection, and methods
US6820389B1 (en) * 2003-03-20 2004-11-23 Valmont Industries, Inc. Support pole having a traffic signal support arm attached thereto
CN100381651C (zh) * 2003-05-20 2008-04-16 积水化学工业株式会社 组合式建筑物
US7637071B2 (en) * 2004-06-15 2009-12-29 John Duncan Pryor Multiple leg concrete anchor
US7533506B2 (en) * 2006-01-11 2009-05-19 Platt Robert E Bracket for mounting and vertically leveling a post on a surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10131289A (ja) * 1996-10-28 1998-05-19 Natl House Ind Co Ltd 梁架構
JP2000154507A (ja) * 1998-11-20 2000-06-06 Kawasaki Heavy Ind Ltd 塔頂変位抑制型多径間吊橋
JP2002121747A (ja) * 2000-08-09 2002-04-26 Nippon Steel Corp 鉄骨柱の半固定直接基礎および杭基礎構造
JP2004044285A (ja) * 2002-07-15 2004-02-12 Okabe Co Ltd 建築構造物の柱脚部施工方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011063985A (ja) * 2009-09-17 2011-03-31 Sekisui Chem Co Ltd ユニット建物及び局所フレーム
CN103015309A (zh) * 2012-12-31 2013-04-03 中铁第四勘察设计院集团有限公司 整体节点钢结构门式墩
CN108018991A (zh) * 2016-11-03 2018-05-11 重庆大学 一种自复位粘弹性消能钢梁
CN108018991B (zh) * 2016-11-03 2023-08-11 重庆大学 一种自复位粘弹性消能钢梁

Also Published As

Publication number Publication date
US20090060642A1 (en) 2009-03-05
US8397445B2 (en) 2013-03-19
KR101306373B1 (ko) 2013-09-09
US20130019557A1 (en) 2013-01-24
KR20080022576A (ko) 2008-03-11
HK1114411A1 (en) 2008-10-31
CN101208485A (zh) 2008-06-25
EP1905910A1 (en) 2008-04-02
CN101208485B (zh) 2013-05-08

Similar Documents

Publication Publication Date Title
WO2007010876A1 (ja) 接合仕口
JP6450577B2 (ja) 挟締金具およびこれを用いた部材の固定構造
JP2006177135A (ja) 耐震補強用接合構造
JP2003261993A (ja) 柱と梁の接合構造
JP4264916B2 (ja) 端部rc造鉄骨梁
JP5497696B2 (ja) 鉄骨ブレース、およびこれと鉄骨柱及び鉄骨梁との接合構造
JP4163238B2 (ja) 柱脚接合仕口
JP2009030321A (ja) 複合梁と木製柱の接続による門型フレーム
KR102392355B1 (ko) 가로보 연결 구조체
JP3215633U (ja) ブレース取付構造
JP4542996B2 (ja) 筋かい連結ボルト及び木造家屋の耐震補強工法
JP3549488B2 (ja) 木造軸組住宅用筋交い
JP4085023B2 (ja) 鉄骨柱又は鋼管柱と梁鉄筋との接合構造
JP3962424B2 (ja) 柱脚接合仕口
JP3208554U (ja) 柱と梁とブレースとの接合部構造
KR102298130B1 (ko) 철골보 단부 보강 시스템
JP4422429B2 (ja) 鋼製基礎およびユニット建物
KR102510627B1 (ko) 장방향의 아치형으로 이루어지는 지붕 조립장치
JP2000192547A (ja) 鉄骨構造物における柱部材と横架材との接合方法及び接合構造
KR102352235B1 (ko) 기둥과 보의 연결 구조체
JP2696478B2 (ja) 屋根構造物及びその施工法
JPH09328816A (ja) 六角建築構造における三つ又柱およびアンカープレート
JP2010196448A (ja) 持ち出し梁の配設構造及びこれを用いたバルコニー骨組み
JP2022137887A (ja) 水平耐力パネル及び建物
JPH01219229A (ja) 梁の補強構造

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022850.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006781129

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11995219

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020087000978

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE