WO2007009550A1 - Verfahren zur regeneration von stickoxid-speicherkatalysatoren - Google Patents

Verfahren zur regeneration von stickoxid-speicherkatalysatoren Download PDF

Info

Publication number
WO2007009550A1
WO2007009550A1 PCT/EP2006/005994 EP2006005994W WO2007009550A1 WO 2007009550 A1 WO2007009550 A1 WO 2007009550A1 EP 2006005994 W EP2006005994 W EP 2006005994W WO 2007009550 A1 WO2007009550 A1 WO 2007009550A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
lean
air
rich
engine
Prior art date
Application number
PCT/EP2006/005994
Other languages
English (en)
French (fr)
Inventor
Ulrich Goebel
Stephan Bremm
Christian Manfred Tomanik
Wilfried Mueller
Thomas Kreuzer
Original Assignee
Umicore Ag & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Umicore Ag & Co. Kg filed Critical Umicore Ag & Co. Kg
Priority to CN2006800307136A priority Critical patent/CN101248257B/zh
Priority to US11/995,765 priority patent/US7905087B2/en
Priority to DE502006001956T priority patent/DE502006001956D1/de
Priority to JP2008521822A priority patent/JP4728395B2/ja
Priority to KR1020087001149A priority patent/KR101281485B1/ko
Priority to BRPI0612863-7A priority patent/BRPI0612863B1/pt
Priority to EP06754492A priority patent/EP1907675B1/de
Publication of WO2007009550A1 publication Critical patent/WO2007009550A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9495Controlling the catalytic process
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/22Control of additional air supply only, e.g. using by-passes or variable air pump drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/30Arrangements for supply of additional air
    • F01N3/32Arrangements for supply of additional air using air pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a method for the regeneration of nitrogen oxide storage catalytic converters, which reduces the short emission peaks of hydrocarbons and carbon monoxide usually occurring during regeneration when switching back to storage operation.
  • the process is particularly advantageous in catalysts which have already been damaged by aging and which have to be regenerated more frequently than fresh catalysts.
  • Nitrogen oxide storage catalysts are used to remove the nitrogen oxides contained in the lean exhaust gas from so-called lean-burn engines.
  • the cleaning effect is based on the fact that in a lean phase of operation (storage phase, lean operation) of the engine, the nitrogen oxides are stored by the storage material of the storage catalyst in the form of nitrates.
  • a subsequent rich operating phase (regeneration phase, rich operation) of the engine the previously formed nitrates are decomposed and the released nitrogen oxides are reacted with the reducing, rich components of the exhaust gas during the rich operation on the storage catalyst to nitrogen, carbon dioxide and water.
  • the rich constituents of the exhaust gas are hydrocarbons, carbon monoxide and hydrogen.
  • nitrogen oxide storage catalysts The mode of operation of nitrogen oxide storage catalysts is described in detail in SAE publication SAE 950809.
  • the composition of nitrogen oxide storage catalysts are well known to the skilled person.
  • the nitrogen oxide storage materials are generally basic compounds of the alkali metals or alkaline earth metals, such as, for example, oxides, hydroxides or carbonates of barium and strontium, which are applied to suitable carrier materials in finely divided form.
  • a nitrogen oxide storage catalyst still catalytically active noble metals of the platinum group and oxygen storage materials. This composition gives a nitrogen oxide storage catalyst the function of a three-way catalyst under stoichiometric operating conditions.
  • the storage phase usually takes 100 to 200 seconds and depends on the storage capacity of the catalyst and the concentration of nitrogen oxides in the exhaust gas. However, for aged catalysts with reduced storage capacity, the duration of the storage phase may also drop to 50 seconds or less.
  • the regeneration phase fat operation, however, is always much shorter and takes only a few Seconds.
  • the exhaust gas leaving the nitrogen oxide storage catalytic converter during the regeneration has essentially no pollutants and is stoichiometrically composed. Its air ratio ⁇ is almost equal to 1 during this time.
  • the released nitrogen oxides and the oxygen bound to the oxygen storage components of the catalyst are no longer sufficient to oxidize all the rich exhaust gas constituents. There is therefore a breakthrough of these components by the catalyst and the air ratio drops to a value below 1. This breakthrough indicates the end of the regeneration and can be registered with the help of a so-called lambda probe behind the storage catalyst.
  • the regeneration of a storage catalytic converter is therefore inevitably associated with short emission peaks of hydrocarbons and carbon monoxide, which are further enhanced by the following effect:
  • the exhaust gas line between the engine and storage catalytic converter usually has a finite length.
  • the object of the present invention is to provide a method which is capable of reducing the emission peak and, in particular for already aged storage catalytic converters, to enable an overall improved exhaust gas purification.
  • This object is achieved by a method for the regeneration of a nitrogen oxide storage catalytic converter, which is arranged in the exhaust pipe of a lean-burn engine, by switching the engine from lean operation with lean exhaust gas to rich operation with rich exhaust gas and after regeneration again switching to lean operation.
  • the method is characterized in that with the renewed switching to the lean operation immediately before the storage catalyst as long blown air into the exhaust and thus the briefly still rich exhaust gas composition in a stoichiometric or lean composition is transferred to the now lean exhaust gas of the engine reached the storage catalyst.
  • the temporary injection of air into the exhaust pipe is already known, for example, from DE 198 02 631 C1, which describes an exhaust gas purification system for a lean-burn engine consisting of a nitrogen oxide storage catalyst and an SOx storage catalyst previously inserted into the exhaust gas line.
  • the additional Liehe air is used to raise the temperature of a SOx storage catalyst for the purpose of desulfurization to the desulfurization temperature.
  • the oxygen of the additional air is thereby reacted with a portion of the reductive constituents of the exhaust gas on the SOx storage catalyst with the release of heat energy while maintaining a reducing exhaust gas composition.
  • the injection of additional air begins with the engine switching from lean operation to rich operation.
  • the composition of the after switching from rich operation to lean operation still located in the exhaust pipe between the engine and catalyst rich exhaust gas is displaced by blowing air in the stoichiometric or lean of stoichiometric, lean range, so that the Speicheratalysa- tor in the situation is to convert the reductive constituents contained in the exhaust gas with oxygen.
  • the emission peak inevitably occurring when switching from rich operation to lean operation of reductive exhaust gas components is reduced to the necessary minimum.
  • the duration of the air injection depends on the transit time of the exhaust gas between the engine and the catalyst and results from the length of the exhaust pipe and the flow velocity of the exhaust gas at the respective operating point of the engine.
  • the amount of air injected into the exhaust gas is intended to shift the air ratio of the exhaust gas before entering the storage catalyst into the stoichiometric or superstoichiometric lean range.
  • the strength of the air injection is dimensioned so that the resulting gas mixture has an air ratio ⁇ equal to or greater than 1 and in particular between 1 and 1.3 and particularly preferably between 1 and 1.05. Excessive air injection should be avoided to minimize the cooling of the exhaust gas by the cold air.
  • FIG. 1 Internal combustion engine with exhaust gas purification system and secondary air supply for carrying out the method according to the invention Figure 2; Internal combustion engine with emission control system and alternative secondary air supply for carrying out the method according to the invention
  • the internal combustion engine (1) is equipped with an exhaust gas purification system 2, which contains a converter housing (3) with a nitrogen oxide storage catalyst.
  • the converter housing is connected via the exhaust pipe (4) and the exhaust manifold with the cylinders of the internal combustion engine.
  • a secondary air pump (5) is provided for air injection shortly before the nitrogen oxide storage catalyst.
  • the air supply line (6) opens into the exhaust system shortly before the storage catalytic converter.
  • the junction may be just before the converter housing or directly into the converter housing.
  • a metering valve (7) for timely and quantitative dosage of air injection is a metering valve (7).
  • the regeneration of the storage catalytic converter lasts only a few seconds and the expulsion of the remaining rich exhaust gas by the subsequent lean exhaust gas from the exhaust line between the cylinders of the engine and the storage catalytic converter is finished even after fractions of a second.
  • the internal combustion engine is equipped with an alternative secondary air supply.
  • a compressed air reservoir (8) is provided, from which the air for the air injection via the valve (6) is removed.
  • the pressure in the compressed air reservoir is maintained by the secondary air pump within a predetermined pressure interval.
  • the secondary air pump is started whenever the pressure in the tank drops below a lower limit and is turned off when the pressure exceeds an intended upper limit. In this way, the starting processes of the secondary air pump are decoupled from the regeneration events and the total number of start-up operations with respect to the arrangement of FIG. 1 is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Stickoxid-Speicherkatalysatoren zur Reinigung des Abgases von Magermotoren werden periodisch durch Umschalten des Motors von Magerbetrieb auf Fettbetrieb regeneriert. Nach erfolgter Regeneration wird der Motor wieder auf Magerbetrieb umgeschaltet. In der Abgasleitung vom Motor zum Katalysator befindet sich zu diesem Zeitpunkt noch fettes Abgas, welches durch das nachfolgende magere Abgas über den Katalysator in die Umwelt ausgeschoben wird. Dies führt zu kurzzeitigen Emissionsspitzen der fetten Abgasbestandteile und verschlechtert die erreichbare Abgasentgiftung. Zur Lösung des Problems wird vorgeschlagen, durch Einblasen von Luft vor dem Speicherkatalysator oxidierende Bedingungen zu schaffen, so daß die noch in der Abgasleitung vor dem Speicherkatalysator befindlichen fetten Abgasanteile am Speicherkatalysator zu unschädlichen Produkten umgesetzt werden können. Besonders bei schon durch Alterung in ihrer Speicherkapazität geschädigten Katalysatoren, die wesentlich häufiger als frische Katalysatoren regeneriert werden müssen, kann das vorgeschlagene Verfahren zu einer deutlichen Verbesserung der Abgasreinigung führen.

Description

Verfahren zur Regeneration von Stickoxid-Speicherkatalysatoren
Beschreibung
Die Erfindung betrifft ein Verfahren zur Regeneration von Stickoxid-Speicherkatalysatoren, welches die bei der Regeneration üblicherweise auftretenden kurzen Emissi- onsspitzen von Kohlenwasserstoffen und Kohlenmonoxid beim Zurückschalten in den Speicherbetrieb verringert. Das Verfahren ist besonders vorteilhaft bei schon durch Alterung geschädigten Katalysatoren, die häufiger als frische Katalysatoren regeneriert werden müssen.
Stickoxid-Speicherkatalysatoren werden zur Entfernung der im mageren Abgas von sogenannten Magermotoren enthaltenen Stickoxide verwendet. Dabei beruht die Reinigungswirkung darauf, daß in einer mageren Betriebsphase (Speicherphase, Magerbetrieb) des Motors die Stickoxide vom Speichermaterial des Speicherkatalysators in Form von Nitraten gespeichert werden. In einer darauffolgenden fetten Betriebsphase (Regenerationsphase, Fettbetrieb) des Motors werden die zuvor gebildeten Nitrate zersetzt und die wieder freiwerdenden Stickoxide mit den reduzierend wirkenden, fetten Bestandteilen des Abgases während des Fettbetriebs am Speicherkatalysator zu Stickstoff, Kohlendioxid und Wasser umgesetzt. Als fette Bestandteile des Abgases werden Kohlenwasserstoffe, Kohlenmonoxid und Wasserstoff bezeichnet.
Die Arbeitsweise von Stickoxid-Speicherkatalysatoren wird ausführlich in der SAE- Schrift SAE 950809 beschrieben. Die Zusammensetzung von Stickoxid-Speicherkatalysatoren sind dem Fachmann hinreichend bekannt. Bei den Stickoxid-Speichermaterialien handelt es sich in der Regel um basische Verbindungen der Alkali- oder Erdalkalimetalle wie zum Beispiel Oxide, Hydroxide oder Carbonate des Bariums und Strontiums, die auf geeigneten Trägermaterialien in fein verteilter Form aufgebracht sind. Darüber hinaus weist ein Stickoxid-Speicherkatalysator noch katalytisch aktive Edelmetalle der Platingruppe und Sauerstoff-Speichermaterialien auf. Diese Zusammensetzung verleiht einem Stickoxid-Speicherkatalysator unter stöchiometrischen Betriebsbedingungen die Funktion eines Dreiweg-Katalysators.
Die Speicherphase (Magerbetrieb) dauert gewöhnlich 100 bis 200 Sekunden und hängt von der Speicherkapazität des Katalysators und der Konzentration der Stickoxide im Abgas ab. Bei gealterten Katalysatoren mit verminderter Speicherkapazität kann die Dauer der Speicherphase aber auch auf 50 Sekunden und weniger absinken. Die Regenerationsphase (Fettbetrieb) ist dagegen immer wesentlich kürzer und dauert nur wenige Sekunden. Das während der Regeneration aus dem Stickoxid-Speicherkatalysator austretende Abgas weist im wesentlichen keine Schadstoffe mehr auf und ist stöchio- metrisch zusammengesetzt. Seine Luftzahl λ ist während dieser Zeit nahezu gleich 1.
Zum Ende der Regenerationsphase reichen die freigesetzten Stickoxide und der an den Sauerstoff-Speicherkomponenten des Katalysators gebundene Sauerstoff nicht mehr aus, um alle fetten Abgasbestandteile zu oxidieren. Es kommt daher zu einem Durchbruch dieser Bestandteile durch den Katalysator und die Luftzahl sinkt auf einen Wert unter 1. Dieser Durchbruch zeigt das Ende der Regeneration an und kann mit Hilfe einer sogenannten Lambda-Sonde hinter dem Speicherkatalysator registriert werden. Die Regeneration eines Speicherkatalysators ist also zwangsläufig mit kurzen Emissionsspitzen von Kohlenwasserstoffen und Kohlenmonoxid verbunden, die noch durch folgenden Effekt verstärkt werden: Die Abgasleitung zwischen Motor und Speicherkatalysator weist üblicherweise eine endliche Länge auf. Während des Umschaltens von Fettbetrieb in den Magerbetrieb ist die gesamte Abgasleitung noch mit fettem Abgas gefüllt, das nach dem Umschalten durch das nun magere Abgas des Motors über den Katalysator in die Umwelt ausgeschoben wird. Der Katalysator kann diesen restlichen Anteil von fettem Abgas nicht mehr reinigen, da die zuvor gespeicherten, oxidierenden Bestandteile schon während des Fettbetriebs verbraucht wurden. Es kommt also zu einer verstärkten Emissionsspitze von Kohlenwasserstoffen und Kohlenmonoxid am Ende einer Regeneration.
Aufgabe der vorliegenden Erfindung ist es, ein Verfahren anzugeben, welches in der Lage ist, die Emissionsspitze zu verringern und insbesondere bei schon gealterten Speicherkatalysatoren eine insgesamt verbesserte Abgasreinigung zu ermöglichen.
Diese Aufgabe wird gelöst durch ein Verfahren zur Regeneration eines Stickoxid- Speicherkatalysators, der in der Abgasleitung eines Magermotors angeordnet ist, durch Umschalten des Motors von Magerbetrieb mit magerem Abgas auf Fettbetrieb mit fettem Abgas und nach erfolgter Regeneration erneutes Umschalten in den Magerbetrieb. Das Verfahren ist dadurch gekennzeichnet, daß mit dem erneuten Umschalten in den Magerbetrieb unmittelbar vor dem Speicherkatalysator so lange Luft in das Abgas eingeblasen und somit die kurzzeitig noch fette Abgaszusammensetzung in eine stöchi- ometrische oder magere Zusammensetzung überführt wird, bis das nun magere Abgas des Motors den Speicherkatalysator erreicht. Das zeitweilige Einblasen von Luft in die Abgasleitung ist zum Beispiel schon aus der DE 198 02 631 Cl bekannt, die ein Abgasreinigungssystem für einen Magermotor bestehend aus einem Stickoxid-Speicherkatalysator und einem davor in die Abgasleitung eingefügten SOx-Speicherkatalysator beschreibt. In dieser Schrift wird die zusätz- liehe Luft benutzt, um die Temperatur eines SOx-Speicherkatalysators zwecks Entschwefelung auf die Entschwefelungstemperatur anzuheben. Der Sauerstoff der zusätzlichen Luft wird dabei mit einem Teil der reduktiven Bestandteilen des Abgases am SOx-Speicherkatalysator unter Freisetzung von Wärmeenergie umgesetzt unter Beibehaltung einer reduzierenden Abgaszusammensetzung. Das Einblasen der zusätzlichen Luft beginnt mit dem Umschalten des Motors von Magerbetrieb in den Fettbetrieb.
Gemäß der Erfindung wird dagegen die Zusammensetzung des nach dem Umschalten vom Fettbetrieb in den Magerbetrieb noch in der Abgasleitung zwischen Motor und Katalysator befindliche fette Abgas durch Einblasen von Luft in den stöchiometrischen oder überstöchiometrischen, mageren Bereich verschoben, so daß der Speicherkatalysa- tor in der Lage ist, die im Abgas enthaltenen reduktiven Bestandteile mit Sauerstoff umzusetzen. Damit wird die beim Umschalten vom Fettbetrieb in den Magerbetrieb unvermeidlich auftretende Emissionsspitze von reduktiven Abgasbestandteilen auf das notwendige Mindestmaß verringert.
Die Dauer der Lufteinblasung hängt von der Laufzeit des Abgases zwischen Motor und Katalysator ab und ergibt sich aus der Länge der Abgasleitung und der Strömungsgeschwindigkeit des Abgases im jeweiligen Betriebspunkt des Motors. Die Menge der in das Abgas eingeblasenen Luft soll die Luftzahl des Abgases vor Eintritt in den Speicherkatalysator in den stöchiometrischen oder überstöchiometrischen, mageren Bereich verschieben. Bevorzugt wird die Stärke der Lufteinblasung so bemessen, daß das resul- tierende Gasgemisch eine Luftzahl λ gleich oder größer 1 aufweist und insbesondere zwischen 1 und 1,3 und besonders bevorzugt zwischen 1 und 1,05 liegt. Eine zu starke Lufteinblasung sollte vermieden werden um die Abkühlung des Abgases durch die kalte Luft so gering wie möglich zu halten.
Die Erfindung wird im folgenden an Hand der Figuren 1 und 2 näher erläutert. Es zei- gen:
Figur 1; Verbrennungsmotor mit Abgasreinigungsanlage und Sekundärluftzufuhr zur Durchführung des erfindungsgemäßen Verfahrens Figur 2; Verbrennungsmotor mit Abgasreinigungsanlage und alternativer Sekundärluftzufuhr zur Durchfuhrung des erfindungsgemäßen Verfahrens
Gemäß Figur 1 ist der Verbrennungsmotor (1) mit einer Abgasreinigungsanlage 2 ausgerüstet, die ein Konvertergehäuse (3) mit einem Stickoxid-Speicherkatalysator enthält. Das Konvertergehäuse ist über die Abgasleitung (4) und die Abgaskrümmer mit den Zylindern des Verbrennungsmotors verbunden. Zur Lufteinblasung kurz vor dem Stickoxid-Speicherkatalysator ist eine Sekundärluftpumpe (5) vorgesehen. Die Luftzufuhrungsleitung (6) mündet kurz vor dem Speicherkatalysator in die Abgasanlage. Die Einmündung kann dabei kurz vor dem Konvertergehäuse liegen oder direkt in das Kon- vertergehäuse erfolgen. Zur zeitgerechten und mengengerechten Dosierung der Lufteinblasung dient ein Dosierventil (7).
Wie schon ausgeführt, dauert die Regeneration des Speicherkatalysators nur wenige Sekunden und das Ausschieben des restlichen fetten Abgases durch das nachfolgende magere Abgas aus der Abgasleitung zwischen den Zylindern des Motors und dem Spei- cherkatalysator ist sogar schon nach Bruchteilen von Sekunden beendet. Um eine schnelle Bereitstellung der Luft zu gewährleisten, ist es daher zweckmäßig, die Sekundärluftpumpe kontinuierlich zu betreiben und die Dosierung der Luft zum richtigen Zeitpunkt mit dem Ventil vorzunehmen. Energiesparender ist es jedoch, die Sekundärluftpumpe immer erst mit dem Beginn der Regenerationsphase zu starten und die Dosie- rung der Luft ebenfalls mit dem Ventil vorzunehmen. Nach Abschalten der Lufteinblasung wird auch die Sekundärluftpumpe wieder ausgeschaltet.
In Figur 2 ist der Verbrennungsmotor mit einer alternativen Sekundärluftzuführung ausgerüstet. In dieser Anordnung ist ein Druckluftspeicher (8) vorgesehen, aus dem die Luft für die Lufteinblasung über das Ventil (6) entnommen wird. Der Druck im Druck- luftspeicher wird von der Sekundärluftpumpe in einem vorgegebenen Druckintervall gehalten. Die Sekundärluftpumpe wird immer dann gestartet, wenn der Druck im Speicher unter einen unteren Grenzwert fällt und wird ausgeschaltet, wenn der Druck einen vorgesehenen oberen Grenzwert überschreitet. Auf diese Weise werden die Startvorgänge der Sekundärluftpumpe von den Regenerationsereignissen abgekoppelt und insgesamt die Anzahl der Startvorgänge gegenüber der Anordnung von Figur 1 vermindert.

Claims

Patentansprüche
1. Verfahren zur Regeneration eines Stickoxid-Speicherkatalysators, der in der Abgasleitung eines Magermotors angeordnet ist, durch Umschalten des Motors von Magerbetrieb mit magerem Abgas auf Fettbetrieb mit fettem Abgas und nach erfolgter Regeneration erneutes Umschalten in den Magerbetrieb, dad urch gekennze i chnet, daß mit dem erneuten Umschalten in den Magerbetrieb unmittelbar vor dem Speicherkatalysator so lange Luft in das Abgas eingeblasen und somit die kurzzeitig noch fette Abgaszusammensetzung in eine stöchiometrische oder magere Zusam- mensetzung überführt wird, bis das nun magere Abgas des Motors den Speicherkatalysator erreicht.
2. Verfahren nach Anspruch 1, dadurch gekennzei chnet, daß die Menge der in das Abgas eingeblasenen Luft so bemessen wird, daß das resultierende Gasgemisch eine Luftzahl λ gleich oder größer 1 aufweist.
3. Verfahren nach Anspruch 2, d ad urch geke nnzeichnet, daß die Menge der in das Abgas eingeblasenen Luft so bemessen wird, daß das resultierende Gasgemisch eine Luftzahl λ zwischen 1 und 1,05 aufweist.
4. Verfahren nach Anspruch 1, dadurch gekennzei ch net, daß die benötigte Luft von einer Sekundärluftpumpe (5) bereitgestellt und mit Hilfe eines Ventils (7) zum richtigen Zeitpunkt und in der richtigen Menge dem Abgas zugemischt wird.
5. Verfahren nach Anspruch 4, dadurch gekennzei chnet, daß die Sekundärluftpumpe kontinuierlich betrieben wird.
6. Verfahren nach Anspruch 4, dadurch gekennze i chnet, daß die Sekundärluftpumpe erst kurz vor dem Ende des Fettbetriebs gestartet und nach Beendigung der Luftzuführung zum Abgas wieder ausgeschaltet wird.
7. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Sekundärluftpumpe mit dem Beginn des Fettbetriebs gestartet wird.
8. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Sekundärluftpumpe einen Druckluftspeicher (8) mit Luft versorgt, aus dem die Luft für die Lufteinblasung über das Ventil (7) entnommen wird.
PCT/EP2006/005994 2005-07-16 2006-06-22 Verfahren zur regeneration von stickoxid-speicherkatalysatoren WO2007009550A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN2006800307136A CN101248257B (zh) 2005-07-16 2006-06-22 用于再生氮氧化物存储催化转化器的方法
US11/995,765 US7905087B2 (en) 2005-07-16 2006-06-22 Method for regenerating nitrogen oxide storage catalysts
DE502006001956T DE502006001956D1 (de) 2005-07-16 2006-06-22 Verfahren zur regeneration von stickoxid-speicherkatalysatoren
JP2008521822A JP4728395B2 (ja) 2005-07-16 2006-06-22 窒素酸化物吸蔵触媒を再生するための方法
KR1020087001149A KR101281485B1 (ko) 2005-07-16 2006-06-22 산화 질소 저장 촉매 변환기 재생 방법
BRPI0612863-7A BRPI0612863B1 (pt) 2005-07-16 2006-06-22 Método para regeneração de conversores catalíticos de armazenamento de óxido de nitrogênio
EP06754492A EP1907675B1 (de) 2005-07-16 2006-06-22 Verfahren zur regeneration von stickoxid-speicherkatalysatoren

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005033395.8 2005-07-16
DE102005033395A DE102005033395B4 (de) 2005-07-16 2005-07-16 Verfahren zur Regeneration von Stickoxid-Speicherkatalysatoren

Publications (1)

Publication Number Publication Date
WO2007009550A1 true WO2007009550A1 (de) 2007-01-25

Family

ID=36821533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/005994 WO2007009550A1 (de) 2005-07-16 2006-06-22 Verfahren zur regeneration von stickoxid-speicherkatalysatoren

Country Status (10)

Country Link
US (1) US7905087B2 (de)
EP (1) EP1907675B1 (de)
JP (1) JP4728395B2 (de)
KR (1) KR101281485B1 (de)
CN (1) CN101248257B (de)
AT (1) ATE412819T1 (de)
BR (1) BRPI0612863B1 (de)
DE (2) DE102005033395B4 (de)
RU (1) RU2402684C2 (de)
WO (1) WO2007009550A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077929A (ja) * 2008-09-26 2010-04-08 Isuzu Motors Ltd 排気ガス浄化システム及び排気ガス浄化方法
DE102021103073A1 (de) 2021-02-10 2021-10-28 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734713B1 (ko) * 2015-12-10 2017-05-24 현대자동차주식회사 연료소모저감을 위한 삼원촉매 제어방법과 삼원촉매제어시스템 및 차량
DE102018209530A1 (de) * 2018-06-14 2019-12-19 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129236A (ja) * 1992-10-13 1994-05-10 Toyota Motor Corp 内燃機関の排気浄化装置
US5388403A (en) * 1993-03-12 1995-02-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
US6722125B1 (en) * 1998-04-11 2004-04-20 Audi Ag Method for operating an internal combustion engine
DE10326592A1 (de) * 2003-06-13 2004-12-30 Daimlerchrysler Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators in einer Abgasanlage einer direkteinspritzenden Ottobrennkraftmaschine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2658753B2 (ja) * 1992-07-30 1997-09-30 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2830655B2 (ja) * 1992-10-14 1998-12-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2830668B2 (ja) * 1992-12-29 1998-12-02 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3246086B2 (ja) * 1993-06-11 2002-01-15 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP3344040B2 (ja) * 1993-11-25 2002-11-11 トヨタ自動車株式会社 内燃機関の排気浄化装置
US5722236A (en) * 1996-12-13 1998-03-03 Ford Global Technologies, Inc. Adaptive exhaust temperature estimation and control
US5746049A (en) * 1996-12-13 1998-05-05 Ford Global Technologies, Inc. Method and apparatus for estimating and controlling no x trap temperature
DE19802631C1 (de) * 1998-01-24 1999-07-22 Daimler Chrysler Ag Verfahren und Einrichtung zum Reinigen von Abgasen eines Verbrennungsmotors
DE19842625C2 (de) * 1998-09-17 2003-03-27 Daimler Chrysler Ag Verfahren zum Betrieb einer Verbrennungsmotoranlage mit schwefelanreichernder Abgasreinigungskomponente und damit betreibbare Verbrennungsmotoranlage
JP4114322B2 (ja) * 2000-03-30 2008-07-09 三菱自動車工業株式会社 内燃機関の排気浄化装置
JP4042399B2 (ja) * 2001-12-12 2008-02-06 三菱自動車工業株式会社 排気浄化装置
JP4304428B2 (ja) * 2003-02-07 2009-07-29 いすゞ自動車株式会社 内燃機関の排気ガス浄化システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06129236A (ja) * 1992-10-13 1994-05-10 Toyota Motor Corp 内燃機関の排気浄化装置
US5388403A (en) * 1993-03-12 1995-02-14 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification device for an engine
US6722125B1 (en) * 1998-04-11 2004-04-20 Audi Ag Method for operating an internal combustion engine
DE10326592A1 (de) * 2003-06-13 2004-12-30 Daimlerchrysler Ag Verfahren zur Regeneration eines NOx-Speicherkatalysators in einer Abgasanlage einer direkteinspritzenden Ottobrennkraftmaschine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 432 (M - 1654) 11 August 1994 (1994-08-11) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010077929A (ja) * 2008-09-26 2010-04-08 Isuzu Motors Ltd 排気ガス浄化システム及び排気ガス浄化方法
DE102021103073A1 (de) 2021-02-10 2021-10-28 Audi Aktiengesellschaft Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung

Also Published As

Publication number Publication date
RU2008105358A (ru) 2009-08-27
DE502006001956D1 (de) 2008-12-11
KR20080026175A (ko) 2008-03-24
DE102005033395B4 (de) 2007-06-06
JP4728395B2 (ja) 2011-07-20
RU2402684C2 (ru) 2010-10-27
ATE412819T1 (de) 2008-11-15
BRPI0612863A2 (pt) 2010-11-30
US20090145112A1 (en) 2009-06-11
EP1907675A1 (de) 2008-04-09
JP2009501864A (ja) 2009-01-22
DE102005033395A1 (de) 2007-01-25
CN101248257B (zh) 2010-09-22
BRPI0612863B1 (pt) 2018-06-26
EP1907675B1 (de) 2008-10-29
CN101248257A (zh) 2008-08-20
US7905087B2 (en) 2011-03-15
KR101281485B1 (ko) 2013-07-03

Similar Documents

Publication Publication Date Title
EP1088157B1 (de) VERFAHREN ZUR DE-SULFATIERUNG EINES NO x?-SPEICHERKATALYSATORS
DE69636436T2 (de) Abgasemissionsregelungsvorrichtung für brennkraftmaschinen
DE19800665C1 (de) Verfahren zum Betreiben eines Stickoxid-Speicherkatalysators
EP0968362B1 (de) BETRIEB EINES VERBRENNUNGSMOTORS IN VERBINDUNG MIT EINEM NOx-SPEICHER-KATALYSATOR
DE102009008165A9 (de) System und Verfahren zur Regelung der Einbringungsmenge an Harnstoff in ein Abgas eines Fahrzeugs
EP2988852B1 (de) Entschwefelung von nox-speicherkatalysatoren
WO2004090296A1 (de) Abgasnachbehandlungseinrichtung und -verfahren
EP2115277A1 (de) Verfahren zur regeneration von russfiltern in der abgasanlage eines magermotors und abgasanlage hierfür
EP2112339A1 (de) Verfahren und Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors
EP1058578B1 (de) REGENERATION EINES NOx-SPEICHERKATALYSATORS EINES VERBRENNUNGSMOTORS
EP1907675B1 (de) Verfahren zur regeneration von stickoxid-speicherkatalysatoren
EP2122135B1 (de) Verfahren zum entschwefeln von stickoxid-speicherkatalysatoren in der abgasanlage eines magermotors
DE102015219114B4 (de) Verfahren zur Abgasnachbehandlung einer Brennkraftmaschine
DE102018201869B4 (de) Anordnung und Verfahren zur Behandlung eines von einem Verbrennungsmotor erzeugten Abgasstroms sowie Kraftfahrzeug
DE102006035283B4 (de) Verfahren zur Bestimmung der Schwefelentladung eines NOx-Speicherkatalysators
DE102004018648A1 (de) Verfahren zur Reduktion von Stickoxiden mit einem Abgasnachbehandlungssystem
EP2253821A1 (de) Verfahren zur Reinigung der Abgase eines Verbrennungsmotors mit einem Katalysator
EP1941134B1 (de) Verfahren zum betreiben eines stickoxid-speicherkatalysators an einem dieselmotor
EP1079079B1 (de) Motorsteuerung für einen Dieselmotor
EP1303690A1 (de) Verfahren zur adaption eines katalysatortemperatur-sollbereichs für einen no x?-speicherkatalysator
DE10010031B4 (de) Verfahren und Vorrichtung zur Durchführung einer NOx-Regeneration eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Speicherkatalysators
DE10123148A1 (de) Verfahren und Vorrichtung zur Entschwefelung eines Vorkatalysators
DE102016015082A1 (de) Verfahren zum Betreiben einer Abgasanlage eines Kraftwagens und Abgasanlage
WO2006069768A1 (de) Verfahren zur regeneration eines stickoxid-speicherkatalysators
DE102014226659A1 (de) Verfahren zum Betreiben eines Methanoxidationskatalysators und Abgasnachbehandlungssystem

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006754492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020087001149

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2008521822

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 282/KOLNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008105358

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 200680030713.6

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006754492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11995765

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0612863

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080116