WO2007007406A1 - 電子部品試験装置 - Google Patents

電子部品試験装置 Download PDF

Info

Publication number
WO2007007406A1
WO2007007406A1 PCT/JP2005/012947 JP2005012947W WO2007007406A1 WO 2007007406 A1 WO2007007406 A1 WO 2007007406A1 JP 2005012947 W JP2005012947 W JP 2005012947W WO 2007007406 A1 WO2007007406 A1 WO 2007007406A1
Authority
WO
WIPO (PCT)
Prior art keywords
test
electronic
under test
tested
contact
Prior art date
Application number
PCT/JP2005/012947
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Suzuki
Shigeki Kaneko
Hiroki Ikeda
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to PCT/JP2005/012947 priority Critical patent/WO2007007406A1/ja
Priority to TW095125451A priority patent/TW200720675A/zh
Priority to PCT/JP2006/313962 priority patent/WO2007007835A1/ja
Priority to CNA2006800164255A priority patent/CN101176007A/zh
Priority to KR1020077025767A priority patent/KR100922145B1/ko
Priority to JP2007524704A priority patent/JP4934033B2/ja
Priority to US11/911,202 priority patent/US7859286B2/en
Publication of WO2007007406A1 publication Critical patent/WO2007007406A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/01Subjecting similar articles in turn to test, e.g. "go/no-go" tests in mass production; Testing objects at points as they pass through a testing station
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to various electronic components such as semiconductor integrated circuit elements (hereinafter also referred to as ICs typically).
  • ICs semiconductor integrated circuit elements
  • a handler In an electronic component testing apparatus called a handler, a large number of ICs to be tested stored in a customer tray are transported into a handler, and each IC to be tested is picked up by a contact arm and contacted by a test head. The tester force is tested by inputting a test pattern to the IC under test and inspecting its response pattern. When this test is completed, each IC under test is paid out from the contact part of the test head and placed on the tray according to the test result, so that it is sorted into categories such as non-defective products, defective products, high speed / medium speed 'low speed'. It is broken.
  • handlers there is a handler disclosed in Patent Document 1, for example, as a handler used in a logic IC having a relatively short test time.
  • This type of handler is a type of handler that picks up two ICs with a contact arm and presses them against the contact part at the same time, and contacts the IC under test with a heat plate for high temperature testing.
  • the contact arm has a built-in heater, and testing is performed while supplying thermal energy to the IC under test.
  • the IC to be tested is input to the handler in lot units, and when the lot is completed, the IC to be tested of the next lot is generally input.
  • the last IC to be tested in the lot is one to three. For this reason, in the final test, the IC under test is not present in the suction part of any contact arm. It will be pressed against the contact part.
  • the end of the lot includes the case where the IC under test is empty.
  • the IC under test before the test is transferred from the customer tray to the heat plate by the 3D pick and place device, and the heat plate force is also transferred to the buffer stage by another 3D pick and place device. Force that the IC under test of this buffer stage part is attracted by the contact arm and pressed against the contact part. While the IC is attracted by the contact arm, there are 4 ICs due to problems such as gripping mistake of the IC under test. May not be available.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-33514
  • the present invention provides an electronic device test apparatus capable of maintaining a balance of pressing pressure and stabilizing an applied temperature even when a plurality of ICs to be tested are simultaneously tested when a plurality of ICs to be tested are absent. With the goal.
  • a predetermined lot is used.
  • N contact arms hold N pieces (N is a natural number of 2 or more), and these N pieces of electronic devices are tested. Touch the N contacts where the pattern is input at the same time.
  • An electronic component testing apparatus that classifies and pays out the electronic components to be tested based on the response pattern and repeats the processing until the predetermined lot is completed.
  • a loader buffer section for temporarily placing an electronic device under test; first detection means for detecting the number and position of the electronic device under test placed on the loader buffer section; and the loader by the first detection means. When it is determined that the number of electronic components to be tested placed in the buffer section is less than N, other electronic components are held at the position of the contact arm corresponding to the absence position of the electronic devices to be tested by the detection means.
  • an electronic component test apparatus characterized by having a control means for sending a command to be executed.
  • N is a natural number of 2 or more
  • each of the N test electronic components is held by the N contact arms, and the N contact electronic components are simultaneously contacted to the N contact portions. If there are not N electronic devices under test in the loader buffer, the number and position of the missing electronic components are detected and other electronic components are held there. Make it. As a result, the N contact arms can always be in contact with the N contact parts at the same time while holding the N electronic devices under test at all times, so that the pressing pressure can be maintained and applied. The temperature can be stabilized.
  • the specific means for holding another electronic component in the position where the contact arm is absent is not particularly limited, but among the N electronic devices to be tested that are held to perform the current test. It is preferable that the electronic device under test at the position of the contact arm corresponding to the position lacking in the loader buffer is held as it is without being dispensed, and this electronic device under test is used for the next test.
  • the test is not performed on the electronic component in the current test process, but the test is performed in the next test process. If multiple tests are performed on one electronic device under test, the total number of electronic devices under test does not match the total number of tests, which complicates test management. In addition, the test results are more reliable when the test is executed in the immediate vicinity of the payout process than when the test is executed in the current test process and the test is not executed in the next test process.
  • the electronic devices to be tested when there is a loader unit that stores a plurality of trays on which a plurality of electronic devices to be tested are mounted before the loader buffer unit, the electronic devices to be tested existing in the tray of the loader unit If it is determined that the number of parts is less than N, temporarily wait while holding the electronic devices under N and replace them with the next tray to hold the electronic devices under test in the missing position. I prefer to do that.
  • N electronic components to be tested are placed on the loader buffer unit, and the absence of the electronic components to be tested in the loader buffer unit described above is reduced as much as possible. be able to.
  • N is 2 or more for a plurality of electronic components to be tested configured in a predetermined lot. N number of electronic components to be tested are held by a natural number of contactarms, and these N pieces of electronic components are simultaneously brought into contact with N contact portions to which test patterns are respectively input, and the response pattern.
  • the electronic component testing apparatus that classifies and pays out the electronic components to be tested on the basis of and repeats the processing until the predetermined lot is completed, and detects the operating state of each of the N contact parts.
  • an electronic component test apparatus characterized by comprising a control means for sending a command to hold a dummy component placed on the dummy storage portion at a position of a contact arm corresponding to a contact portion.
  • a step of holding N electronic devices to be tested by N (N is a natural number of 2 or more) contact arms, A step of bringing these N electronic devices under test into contact with N contact parts to which test patterns are respectively input, and a step of classifying and delivering the electronic devices under test based on the response patterns;
  • An electronic component testing method that repeats the above steps until the predetermined lot is completed, the step of detecting the operating state of each of the N contact parts, and the same shape as the electronic device under test If any of the contact parts is determined to be in the OFF state by the step of placing the dummy parts in the dummy storage part and the detection step, the OFF And a step of holding the dummy component placed on the dummy storage unit at the position of the contact arm corresponding to the contact unit in a state.
  • N pieces of electronic components to be tested are held by N pieces of contact arms, respectively, and N pieces of electronic pieces to be tested are simultaneously brought into contact with N pieces of contact parts. If any of the contact parts are in the OFF state due to various reasons such as maintenance (test pattern turn-off input is paused), the number and position of those parts are detected, and dummy electronic parts with the same shape are detected. Hold. This allows N contact arms In this case, since N electronic parts to be tested can be held at the same time, the N contact parts can be brought into contact with each other simultaneously, so that the balance of pressing pressure can be maintained and the applied temperature can be stabilized. In addition, it is sufficient to keep holding the dummy parts while the contact part is in the OFF state. This eliminates the need for other extra operations and reduces the work time.
  • N is 2 or more for a plurality of electronic components to be tested configured in a predetermined lot. N number of electronic components to be tested are held by a natural number of contactarms, and these N pieces of electronic components are simultaneously brought into contact with N pieces of contact portions to which test patterns are respectively input.
  • a fourth detection means for detecting the total number of the lots, wherein the electronic component test apparatus classifies and delivers the electronic parts under test based on the response pattern and repeats the process until the predetermined lot is completed.
  • a dummy storage part for mounting dummy parts having the same shape as the electronic component to be tested, and a position where the contact arm is missing when the total number of lots is determined to be less than N by the fourth detecting means.
  • a control means for sending a command to hold the dummy part mounted on the dummy storage unit.
  • a step of holding N electronic devices to be tested with N (N is a natural number of 2 or more) contact arms, A step of bringing these N electronic devices under test into contact with N contact parts to which test patterns are respectively input, and a step of classifying and delivering the electronic devices under test based on the response patterns;
  • the total number of lots is determined to be less than N by the step of placing in the storage unit and the detection step, the dummy is placed in the absence position of the contact arm.
  • the method of testing an electronic component characterized in that it comprises a step of holding the placed dummy piece in the storage unit, a is provide.
  • N electronic devices to be tested are held by N contact arms, respectively.
  • the loader of the electronic device under test The number and position of the buffer are detected, and a dummy part with the same shape is held at the position where the electronic part is missing.
  • the N contact arms can always be in contact with the N contact parts at the same time while holding the N electronic devices to be tested, so that the pressing pressure balance can be maintained and the applied temperature can be maintained. Can be stabilized.
  • the cause of the retest is a defect in the contact portion
  • this operation can find a defect in the contact portion.
  • the result of retesting at another contact part is other than retesting, it can be determined that it is caused by the state of the electronic component.
  • FIG. 1 is a plan view showing an embodiment of an electronic device test apparatus of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line ⁇ - ⁇ in FIG.
  • FIG. 3 is a cross-sectional view taken along the line ⁇ - ⁇ in FIG.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG.
  • FIG. 5 is a flowchart showing a control procedure in the embodiment of the electronic device test apparatus of the present invention.
  • FIG. 6 is a flowchart showing a control procedure in another embodiment of the electronic device test apparatus of the present invention.
  • FIG. 7 is a flowchart showing a control procedure in another embodiment of the electronic device test apparatus of the present invention.
  • the electronic component test apparatus 1 of the present embodiment includes a handler 10, a test head 20 and a tester 30, and the test head 20 and the tester 30 are connected via a cable 40. It is.
  • the handler 10 has a supply trust force 101 for stacking and loading trays loaded with ICs to be tested before the test, and an empty trust force 102 for stacking empty trays with the supply tray stock force 101. And a sorting tray force 103 for stacking trays for classifying the ICs to be tested after the test.
  • the tray transporter 104 for transporting the tray emptied by the supply tray stock force 101 to the empty tray stock force 102, or transporting the empty tray of the empty tray stock force 102 to the classification tray stock force 103 It is provided so as to be movable along the forces 102, 103, 104.
  • the tray transfer device 104 includes a rail 104a and a transfer arm 104b provided with a suction device for sucking the tray.
  • each tray stock force 101, 102, 103 is an elevator that raises and lowers the stacked trays in the vertical direction to set the suction position of the tray transport device 104 or the suction position of the XYZ transport device 105 described later.
  • a device is provided.
  • the tray placed in the tray storage 106 is also a classification tray. The operator performs loading and unloading of this classification tray. For example, ICs of a category with a very low frequency are classified. Therefore, the handlers in this example can be classified into five categories.
  • the handler 10 is provided with a frame substrate 107, and the above-mentioned IC devices to be tested 105, 108, 109, 110, 111, 120 are provided on the frame substrate 107. Further, an opening 112 is formed in the frame substrate 107 so that the contact portion 201 of the test head 20 arranged on the back side of the handler 10 faces the IC under test through the opening 112 as shown in FIG. It has become.
  • an XYZ transport device 105 is provided between the two supply tray stock forces 101 and the heat plate 113 (including the loader buffer unit 114) to transport the pre-test IC.
  • the XYZ transport device 105 includes a Y-axis rail 105a provided along the Y-axis direction, and a first base 105b provided so as to be movable along the Y-axis rail 105a and extending in the X-axis direction.
  • the X-axis rail 105c provided along the first base 105b and the X-axis rail 105c
  • a pair of suction devices 105e provided so as to be slightly movable in the X-axis direction along the second base 105d.
  • the Y-axis rail 105a and the first base 105b are indicated by solid lines
  • the pair of suction devices 105e are indicated by dotted lines. The details of this structure are shown in FIG.
  • the suction device 105e moves along the Y-axis rail 105a and the X-axis rail 105c from the tray of the supply tray stocks force 101 to the range from the heat plate 113 and the loader buffer unit 114, and is not shown in the drawing. It can also be moved in the Z-axis direction, that is, up and down by the shaft actuator.
  • the suction device 105f of this example is composed of four suction devices capable of sucking a total of four ICs to be tested, and sucks, conveys and releases the ICs.
  • FIG. 2 shows a view broken along the X-axis direction and viewed in the Y-axis direction, the suction device 105f located in the back is hidden behind the suction device in the foreground.
  • the pitch of each of the two suction devices 105f arranged in the Y-axis direction is set equal to the pitch of the IC under test when mounted on the supply tray,
  • Each of these two suction devices can be moved slightly in the X-axis direction as shown in FIG. This is because the pitch of the IC under test in the contact portion 201 is larger than the IC pitch mounted on the supply tray due to the structure of the socket. It is a mechanism to increase the pitch of the four ICs while transporting one IC.
  • the pitch of IC is increased only in the Y-axis direction, and transferred to the heat plate 113 or the loader buffer unit 114.
  • the XYZ transport device 108 is also substantially similar in structure to the above-described XYZ transport device 105, and can be moved along the Y-axis rail 108a provided along the Y-axis direction and along the Y-axis rail 108a.
  • a first base 108b provided in the X-axis direction
  • an X-axis rail 108c provided along the first base 108b
  • a second base 108d provided movably along the X-axis rail 108c
  • a pair of adsorption devices 108e provided so as to be slightly movable in the Y-axis direction along the second base 108d.
  • FIGS. 4 (A) and 4 (B) are a view taken in the direction of arrow B in Fig. 4 (A).
  • the suction device 108e moves from the loader buffer unit 114 to the two buffer stage units 115 and 116 along the Y-axis rail 108a and the X-axis rail 108c, and a Z-axis actuator (not shown). It is also possible to move in the Z-axis direction, that is, in the vertical direction.
  • the XYZ transport device 105 increases the IC pitch only in the Y-axis direction
  • the XYZ transport device 108 increases the IC pitch in the X-axis direction as shown in FIG. 4B.
  • the XYZ transport device 108 sucks the four ICs mounted on the loader buffer unit 114, and alternately transports them to the two buffer stage units 115 and 116 while increasing the pitch in the X-axis direction. To do.
  • the buffer stage unit 115 is provided in a transfer device 109 including a rail 109a extending in the X-axis direction and a base 109b that reciprocally moves on the rail 109a only in the X-axis direction. At both ends in the X-axis direction of the base 109b, buffer stage portions 115 each including a concave portion having an inclined portion capable of positioning an IC are formed.
  • the buffer stage unit 116 is provided in a transfer device 110 constituted by a rail 110a extending in the X-axis direction and a base 110b that reciprocally moves on the rail 110a only in the X-axis direction. At both ends in the X-axis direction of the base 110b, buffer stage portions 116 each formed of a concave portion having an inclined portion capable of positioning an IC are formed.
  • the left buffer stage unit 115 in FIG. 1 receives the IC transported to the XYZ transport device 108 as shown in FIG. Then, 4 ICs that were absorbed by the contact arm 117 and finished the test are received.
  • the base 109b moves to the right side of the figure
  • the left buffer stage portion 115 approaches the contact arm 117 and the right buffer stage portion 115 approaches the suction device of the XYZ transport device 111.
  • the XYZ transport device 111 is tested with four tests placed on the right buffer stage 115. The next IC is picked up and transported to the Idagit stage section 119.
  • the left buffer stage unit 116 when the base 110b moves to the left side from the position shown in FIG. 1, the left buffer stage unit 116 is transferred to the XYZ transfer device 108.
  • the right buffer stage 116 receives four ICs that have been attracted to the contact arm 118 and finished the test.
  • the left buffer stage 116 approaches the contact arm 118 and the right buffer stage 116 approaches the suction device of the XYZ transport device 111.
  • the contact arm 118 picks up the four pre-test ICs placed on the left buffer stage 116 and performs the test.
  • the XYZ transport device 111 is placed on the right buffer stage 116 4 The IC after each test is picked up and transported to the Idid stage 119.
  • contact arms 117 and 118 are provided so that the contact portion 201 of the test head 20 faces through the opening 112. As shown in Fig. 2, these contact arms 1 17 and 118 are fixed at a fixed pitch to a base 119b that reciprocates in the Y-axis direction along the rail 119a. It can also be moved in the direction. As shown in FIG. 2, when the contact arm 117 faces the buffer stage 115, the contact arm 118 faces the contact part 201, while the positional force shown in FIG. The contact arm 117 faces the S contact portion 201 and the contact arm 118 faces the buffer stage portion 116.
  • the XYZ transport device 111 has substantially the same structure as the XYZ transport device 108 described above, and is movable along the Y-axis rail 11 la provided along the Y-axis direction and the Y-axis rail 11 la.
  • First base 11 lb extending in the X-axis direction
  • X-axis rail 11 lc provided along the first base 11 lb
  • the second base 11 Id and a pair of suction devices 1 lie provided so as to be slightly movable in the Y-axis direction along the second base 11 Id.
  • FIG. 1 shows the Y-axis rail 11 la, the first base 11 lb as a solid line, and the pair of suction devices 1 l ie as a dotted line. Details of this structure are shown in Figs. 4 (A) and (B). Indicated by the reference numerals with parentheses.
  • Fig. 4 (B) is a view taken in the direction of arrow B in Fig. 4 (A).
  • the suction device 1 l ie extends from the two buffer stage portions 115 and 116 to the exit stage portion 119 and a dummy storage portion 121 described later. It moves along the rail 1 l ie, and can be moved in the Z-axis direction, that is, in the vertical direction by a Z-axis actuator (not shown).
  • the IC pitch is reduced in the Y-axis direction to match the tray pitch as shown in FIG. 4 (B).
  • the XYZ transport device 111 sucks the four ICs placed on the notfer stage units 115 and 116, transports them to the idle stage unit 119, and releases them while reducing the pitch in the Y-axis direction.
  • the XYZ transport device 120 includes a Y-axis rail 120a provided along the Y-axis direction, a first base 120b provided movably along the Y-axis rail 120a and extending in the X-axis direction, An X-axis rail 120c provided along the first base 120b, a second base 120d provided so as to be movable along the X-axis rail 120c, and a slight amount in the X-axis direction along the second base 120d. And a pair of adsorption devices 120e provided to be movable.
  • the Y-axis rail 120a and the first base 120b are indicated by solid lines
  • the pair of suction devices 120e are indicated by dotted lines. Details of this structure are indicated by reference numerals in parentheses in FIG.
  • the suction device 120e moves along the Y-axis rail 120a and the X-axis rail 120c from the duct stage part 119 to the range of the classification tray stocks force 103, and the V- and Z-axis actuators not shown in the figure. It is possible to move in the Z-axis direction, that is, up and down!
  • the IC pitch is reduced in the X-axis direction to match the tray pitch. That is, the XYZ transport device 120 sucks the four ICs mounted on the Idagit stage unit 119 and transports them to any tray of the classification tray stocker 103 while reducing the pitch in the X-axis direction. Open.
  • a dummy storage unit 121 for storing dummy ICs is provided adjacent to the educt stage unit 119, and four dummy ICs are placed at the same pitch as the educt stage unit 119.
  • the dummy IC is preferably an object that has at least the same external shape as the IC under test and has the same heat capacity.
  • An IC that is determined to be defective may be used as a dummy IC, but it is preferable to mark or color the dummy IC so that the manufacturer can visually recognize that it is a dummy IC.
  • a heat plate 113 is provided at a position close to the loader buffer unit 114.
  • the heat plate 113 is, for example, a metal plate, and has a plurality of recesses into which the IC to be tested is dropped. ICs before the test that have been conveyed from the supply tray stocks force 101 are placed in the recesses.
  • a heating element for applying a predetermined thermal stress to the IC under test is provided. After being heated or cooled to a predetermined temperature by heat from the heating element transmitted through 113, it is pressed against the contact portion 201 of the test head 20 through the loader buffer portion 114.
  • the XYZ transport device 105 places the IC under test on the predetermined position of the heat plate 113 from the supply tray stocks force 101, and the IC that has passed the previously determined standing time has passed. Is transferred to the loader buffer unit 114. However, when performing a normal temperature test, the transfer tray stock force 101 may be directly transferred to the loader buffer unit 114.
  • the ICs to be tested which are mounted on the tray having the supply tray stocks force 101 of 101, are sucked and held four by four by the XYZ transport device 105 and transferred to the IC storage recesses of the heat plate 113. At this time, the pitch in the X-axis direction is increased with respect to the pitch of the tray and placed on the heat plate 113.
  • the IC under test Since the IC under test is heated to a predetermined temperature by being left for a predetermined time here, the IC under test before being heated is transferred from the tray 101 of the supply tray stock force to the heat plate 113. After releasing the IC under test, the XYZ transport device 105 is left on the heat plate 113 and sucked and held as it is, and transferred to the loader buffer unit 114.
  • the four ICs to be tested placed in the loader buffer unit 114 are sucked and held by the suction device 108e of the XYZ transport device 108, the pitch in the Y-axis direction is increased, and one of the buffer stage units 115 is placed. , 116 to be placed. Since the buffer stage portions 115 and 116 are provided with a precursor function (positioning function), the positional relationship with the contact portion 201 is appropriately adjusted here.
  • the XYZ transport device 108 is configured to transfer, for example, one of the four ICs to be tested held by suction. When transferred to the stage stage 115, the next four ICs to be held by suction are transferred to the other stage stage 116.
  • the notfer stage 115 and 116 alternately move back and forth in FIG.
  • the IC under test held by adsorption by the contact arm 117 is mounted on the right buffer stage 115.
  • the base 109b moves to the right side
  • the IC under test mounted on the left buffer stage 115 is sucked and held by the contact arm 117, and at the same time, the XYZ transport device 111 puts it on the right notch stage 115.
  • the mounted IC under test after completion of the test is held by suction and transported to the exit stage 119.
  • the buffer stage unit 116 operates symmetrically with the buffer stage unit 115 described above.
  • the contact arm 117 that sucks and holds the IC under test before the test operates in the horizontal direction shown in FIG. 2 in synchronization with the other contact arm 118 that sucks and holds the IC under test after the test ends.
  • 117 faces the contact part 201 of the test head 20, it descends in the Z-axis direction and presses the IC under test against the contact part 201.
  • the test pattern is sent from the tester 30 to the IC under test via the contact part 201. Based on the response pattern, the test results such as pass / fail judgment of the IC under test and performance ranking are output.
  • the IC under test that has been tested by being pressed against the contact portion 201 moves to the right side as shown in FIG. 2 while being sucked and held by the contact arm 117, and is mounted on the right noffer stage portion 115, and then this buffer.
  • the stage unit 115 moves to the right side shown in FIG.
  • the IC under test after completion of the test mounted on the right notfer stage unit 115 is sucked and held by the XYZ transport device 111 and transferred to the ididge stage unit 119. At this time, the pitch in the Y-axis direction is reduced to match the tray pitch.
  • the control device (not shown) of the handler 10 recognizes the test result of the four ICs transferred to the Ididt stage unit 119. Yes.
  • the XYZ transport device 120 classifies the four ICs to be tested transferred on the Ididt stage unit 119 into trays according to the test results.
  • This tray is placed in three trays stored in tray tray force 103 and in tray storage 116. For example, when there are almost all non-defective products for defective products, a tray with a classification tray stock strength of 103 is set as a non-defective product and any of the tray locations 106 One tray is a tray classified as defective and the other tray is a tray classified as retest. Non-defective products may be further subdivided into ranks of high, medium, and low operating speeds, and each of the three columns of classification tray stocks force 103 may be IC trays according to the subclassification.
  • FIG. 5 is a flowchart showing a control procedure in the first embodiment of the electronic device test apparatus of the present invention.
  • the position of the contact arm 117 or 118 corresponding to the absence position of the ICs to be tested Execute control to hold other ICs.
  • the case where the number of ICs to be tested placed in the loader buffer 114 is less than 4 means that, for example, the last IC is always generated when it is not a multiple of the number of lots to be tested. In addition, this may occur when the IC is dropped while being transported from the supply tray stock force 101 to the loader buffer unit 114.
  • the number and position of the ICs to be tested placed on the loader buffer unit 114 are transferred from the heat plate 113 to the loader buffer unit 114 by the XYZ transport device 105, or the supply tray stocks force 101
  • it is detected using a vacuum pressure sensor provided in the suction device 105e of the XYZ transport device 105. If the IC under test does not exist in any of the four adsorption devices 105e during this transfer, the vacuum pressure sensor does not show an appropriate negative pressure, and the number and position of the vacuum pressure sensor can be detected.
  • step ST1 of FIG. 5 the trays having the supply tray stocking force 101 also suck and hold four ICs to be tested using the XYZ transport device 105.
  • the XYZ transport device 105 has four Determine whether the test IC is attracted. XYZ transport device 105 If it is less than the number of ICs held by suction, the process proceeds to step ST3, and it is determined whether or not ICs remain in the tray stacked on the uppermost stage of the supply tray stocks force 101. If an IC remains in another place on the top tray, the IC is picked up (step ST6), but if an IC remains on the top tray, it is not the last tray.
  • Step ST4 the XYZ transport device 105 stands by at that position, and uses the tray transport device 104 to transfer the uppermost tray to the empty tray stock force 102 (Step ST5).
  • the IC mounted on the next tray with force 101 is sucked (step ST6). If it is the last tray of the lot, go directly to step ST7.
  • ICs can be adsorbed by 4 pieces each. Therefore, when one of the 4 pieces is adsorbed by the XYZ transport device 105, it is transferred to the heat plate 113 and released (step ST7). Subsequently, the four ICs to be tested that are mounted on the heat plate 113 and have passed a predetermined time are sucked and held, and transferred to the loader buffer unit 114. During this operation, it is determined whether or not four ICs are attracted to the suction device 105e of the XYZ transport device 105, and this is regarded as the number and position of ICs in the loader buffer 114 (step ST8).
  • step ST8 if the number of IC forces to be tested being transferred to the loader buffer 114 is four, the process proceeds to step ST9 where the contact arm 117 or 118 sucks and holds the contact to the contact 201. Force to pay out the IC that has been tested by pressing it to the Idagit stage section 119 via the buffer stage 11 5 or 116 The number of ICs being transferred to the loader buffer section 114 is less than 4 which is the number of simultaneous measurements If so, go to step ST10.
  • step ST10 the tester 30 tests the IC corresponding to the position of the missing IC in the loader buffer 114 out of the four ICs currently held by the contact arm 117 or 118. Test is performed only for other ICs without sending a pattern. For example, if the loader buffer unit 114 shown in Fig. 1 lacks the IC in the lower left position, the test is not performed for the IC that is attracted and held in the lower left contact arm among the four contact arms 117 or 118. .
  • the handler 10 shown in Fig. 1 has buffer stage portions 115 and 116, and also has two contact arms 117 and 118, which operate alternately. For example, when an IC of the loader buffer unit 114 is missing at a certain time, less than four ICs of the loader buffer unit 114 in which this IC is in a missing state are currently being tested in the contact unit 201. The IC will be tested next (after 2 times). Therefore, the process of step ST10 in FIG. 5 is executed when less than four ICs in the absence state are transferred from the loader buffer unit 114 to the buffer stage unit 115 or 116 by the XYZ transport device 108.
  • step ST11 in FIG. 5 when the test is completed for the ICs other than the missing IC in step ST10, only the IC for which the test has been completed is transferred to the buffer stage 115 or 116 and released, and then transferred to the XYZ. After the device 111 has paid out to the educt stage unit 119, it is classified. On the other hand, the IC that has not been tested moves in order to adsorb and hold the next IC on the noffer stage 115 or 116 while adsorbing and holding the contact arm 117 or 118 as it is (step ST12).
  • step ST14 the four ICs attracted and held by the contact arm 117 or 118 are pressed against the contact part 201 and a test is executed (step ST14).
  • a test is executed (step ST14).
  • four ICs are paid to the exit stage unit 119 via the buffer stage unit 115 or 116, and are classified into the classification tray.
  • step ST15 The above processing is repeated until there is no IC mounted on the tray having the supply tray stocking force 101, that is, until the lot is completed (step ST15) force.
  • the power is not a multiple of the lot power as described above Since the last remaining IC is always less than 4, the test is executed through the processing from step ST10 to step ST12 as described above.
  • the four contact arms 117 and 118 can always be in contact with the four contact parts 201 while the four ICs to be tested are always held, so that the pressing is performed.
  • the terminal provided in the socket of the contact part 201 As a result, the reliability of the socket can be maintained.
  • the pressing surface is inclined, and the positional relationship between the IC terminal of the IC under test and the corresponding socket terminal is likely to be shifted. As a result, it is possible to reduce the difficulty that causes an out-of-contour error.
  • the contact arm pressing surface and the pressure-receiving surface of the IC under test can be tilted, so that the difficulty of deteriorating the heat conduction conditions with the IC under test can be eliminated, so that a stable applied temperature can be maintained. Can maintain test quality.
  • 6 and 7 are flowcharts showing the control procedure in the second embodiment of the electronic device test apparatus of the present invention.
  • dummy positions are placed at the positions of the contact arms 117 and 118 corresponding to the contact portion 201 in the OFF state. Control to hold the dummy parts placed in the storage unit 121 is executed. In addition, when the total number of ICs under test to be tested does not reach the simultaneous measurement number of 4, the dummy parts placed in the dummy storage unit 121 are placed at the positions of the contact arms 117 and 118 where the IC is missing. Execute the control to be held.
  • any one of the contact parts 201 is in the OFF state, in any of a plurality of contact sockets provided in the contact part 201, the contact terminal of the socket becomes defective and the test is normally performed. There may be sockets that have become difficult. Also, there may be a failure due to a failure on the tester 30 side. In such a case, during the period until the replacement or maintenance of the contact portion, the test pattern is temporarily transmitted to the specific contact portion 201 that is difficult to perform the test among the plurality of contact portions 201. Occurs when stopping.
  • Such a contact portion 201 being in an OFF state is a “contact test function” for confirming by the tester 30 that, for example, all IC pins are connected to the tester. The total number of lots can be confirmed by the operator.
  • step ST51 and 52 it is confirmed whether or not there are four dummy ICs in the dummy storage unit 121 (steps ST51 and 52). If there are no dummy ICs or if there are no dummy ICs, an alarm is generated to alert the operator. Wake up (step ST53).
  • step ST54 If there are four dummy ICs in dummy storage section 121, contact section 2 in step ST54.
  • Step ST55 Check if any of 01 is OFF (contact selected) and if all contacts 201 are ON, then check if the total number of lots is less than ( Step ST55).
  • step ST64 When contact selection is not performed and the total number of lots is 4 or more, the process proceeds to step ST64 and normal operation is performed. However, when contact selection is performed and the total number of lots is less than the total number of lots, Normal operations are performed after executing the processing of steps ST56 to ST63 described below.
  • step ST56 the dummy IC placed on the dummy storage unit 121 is sucked using the XYZ transport device 111. At this time, the dummy IC at the position corresponding to the position where the contact is selected is held by suction.
  • the dummy IC is transferred to the unloader side of the buffer stage 115 or 116 by the XYZ transport device 11 (step ST57, 58), and the buffer stage 115 or 116 on which the dummy IC is mounted.
  • the unloader side is moved to a position close to the contact portion 201 (step ST59), and the dummy IC is sucked and held by the contact arm 117 or 118 (step ST60).
  • the buffer stage unit 115 or 116 is moved in the reverse direction, and the dummy IC is mounted earlier, and the dummy IC is mounted on the opposite side of the buffer stage loader (steps ST61 and 62).
  • the loader side of the chopper stage has an IC positioning function (preciser function).
  • FIG. 7 is a flowchart showing a procedure for returning the dummy ICs to the dummy storage unit 121 after the test is completed for all the ICs.
  • the unloader side of the buffer stage 115 or 116 is brought close to the contact 201 (step ST71), and the dummy IC held by the contact arms 117 and 118 is moved to the buffer stage 115 or 116. Transfer to the unloader side (step ST72).
  • the buffer stage unit 115 or 116 is moved to the XYZ transport device 111 (step ST73), the dummy IC is sucked and held by the XYZ transport device 111 (step ST74), and the dummy storage unit 121 is further moved. And return the dummy IC here (step ST75).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

 コンタクトアーム(117,118)が次回のテストにおいて保持する予定の、ローダバッファ部(114)に載置された被試験電子部品がN個未満であるときは、今回のテストを実行するために保持しているN個の被試験電子部品のうち、ローダバッファ部において欠如している位置に相当する当該コンタクトアームの位置の被試験電子部品を、払い出さないでそのまま保持するとともに、この被試験電子部品を保持したまま、次回のテストを実行するためにローダバッファ部に載置された被試験電子部品を保持し、この状態でテストを実行する。

Description

明 細 書
電子部品試験装置
技術分野
[0001] 本発明は、半導体集積回路素子などの各種電子部品(以下、代表的に ICともいう。
)をテストするための電子部品試験装置に関する。
背景技術
[0002] ハンドラ(handler)と称される電子部品試験装置では、カスタマトレイに収納した多 数の被試験 ICをハンドラ内に搬送し、各被試験 ICをコンタクトアームで吸着してテス トヘッドのコンタクト部に電気的に接触させ、テスタ力も被試験 ICにテストパターンを 入力して動作させ、その応答パターンを検査する。そして、このテストを終了すると各 被試験 ICをテストヘッドのコンタクト部から払い出し、試験結果に応じたトレイに載せ 替えることで、良品や不良品、高速 ·中速 '低速といったカテゴリへの仕分けが行われ る。
[0003] ところで、ハンドラのなかでもテスト時間が比較的短いロジック系 ICに用いられるハ ンドラとして、たとえば特許文献 1に開示されたものがある。この種のハンドラは、 2個 の ICをコンタクトアームで吸着してこれを同時にコンタクト部へ押し付けて接触させる タイプのハンドラであり、高温テストのために、ヒートプレートにて被試験 ICをカ卩温する とともに、コンタクトアームにもヒータが内蔵されて吸着した被試験 ICに熱エネルギー を供給しながらテストを行うようになって ヽる。
[0004] こうしたハンドラにおいて、試験効率を高めるために、 4個、 8個、 16個の ICを同時 に測定することも考えられる。
[0005] し力しながら、たとえば 4個の被試験 ICを同時に吸着し、これらをコンタクト部へ同 時に押し付けてテストを行う場合、以下の問題があった。
[0006] まず、ハンドラにはロット単位で被試験 ICが投入され、そのロットが終了したら次の ロットの被試験 ICが投入されるのが一般的である力 ロット数力 の倍数でな 、場合 には、ロットの最後の被試験 ICは 1個〜 3個の何れかとなる。このため、最終回のテス トにおいては何れかのコンタクトアームの吸着部に被試験 ICが存在しない状態でコ ンタクト部へ押し付けることとなる。また、カスタマトレイの被試験 ICが空となった場合 においても、ロットの最後の状態と同じ状況となるので、ロットの最後とは、被試験 IC が空となった場合も含むものとする。
[0007] また、テストヘッドのコンタクト部は、被試験 ICが物理的に押し付けられて接触する ので、消耗により 4個のコンタクト部の一部についてメンテナンス等が必要となることが 少なくない。こうした場合には、メンテナンスが必要とされるコンタクト部は OFFし (テス タカ テストパターンを送出しない。)、使用できるコンタクト部のみでラインを稼働す ることちある。
[0008] さらに、テスト前の被試験 ICは、三次元ピック &プレイス装置にてカスタマトレイから ヒートプレートへ移載され、さらに他の三次元ピック &プレイス装置にてヒートプレート 力もバッファステージ部へ移載され、このバッファステージ部の被試験 ICがコンタクト アームで吸着されてコンタクト部へ押し付けられる力 コンタクトアームで吸着されるま での間に、被試験 ICの把持ミスなどのトラブルで 4個の ICが揃わないこともある。
[0009] 何れの場合も、正規の 4個同時測定に対して欠如した状態でコンタクト部へ押し付 けるので、押付圧力のバランスがくずれて押圧面が傾いて被試験 ICの IC端子と対応 するソケットの端子との位置関係にずれが生じ易くなる結果、ソケットの端子に対する 無用なストレスとなり、またコンタクトミスの要因となって試験品質の低下を招く難点が ある。ソケットの端子は数十万回以上のコンタクトが行われる為、コンタクトの信頼性が 要求される。また、コンタクトアームに備える加熱源及び Z又は冷却源により被試験 I Cを所定温度に維持して 、るが、コンタクトアームの押圧面と被試験 ICの受圧面とが 傾いて、被試験 ICとの熱伝導条件が悪化する結果、 目的とする温度条件下でのテス トが実行できな 、おそれもある。
特許文献 1:特開 2001— 33514号公報
発明の開示
[0010] 本発明は、複数個の被試験 ICを同時にテストする場合に、被試験 ICが欠如しても 押付圧力のバランスを維持するとともに印加温度を安定させ得る電子部品試験装置 を提供することを目的とする。
[0011] (1)上記目的を達成するために、本発明の第 1の観点によれば、所定のロットで構 成される複数の被試験電子部品に対し、 N個のコンタクトアームにて N個(Nは 2以上 の自然数)の被試験電子部品をそれぞれ保持し、これら N個の被試験電子部品を、 テストパターンがそれぞれ入力される N個のコンタクト部へそれぞれ同時に接触させ
、その応答パターンに基づいて前記被試験電子部品を分類して払い出し、前記所定 のロットが終了するまでこれを繰り返す電子部品試験装置であって、前記コンタクトァ ームにて保持すべき N個の被試験電子部品を一時的に載置するローダバッファ部と 、前記ローダバッファ部に載置された被試験電子部品の個数及び位置を検出する第 1検出手段と、前記第 1検出手段により前記ローダバッファ部に載置された被試験電 子部品が N個未満であると判断されたときは、当該検出手段による被試験電子部品 の欠如位置に相当するコンタクトアームの位置に他の電子部品を保持させる指令を 送出する制御手段と、を有することを特徴とする電子部品試験装置が提供される。
[0012] また、所定のロットで構成される複数の被試験電子部品に対し、 N個のコンタクトァ ームにて N個(Nは 2以上の自然数)の被試験電子部品をそれぞれ保持するステップ と、これら N個の被試験電子部品を、テストパターンがそれぞれ入力される N個のコン タクト部へそれぞれ同時に接触させるステップと、前記被試験電子部品に入力された テストパターンの応答パターンに基づいて前記被試験電子部品を分類して払い出す ステップとを有し、前記所定のロットが終了するまで以上のステップを繰り返す電子部 品の試験方法であつて、前記コンタクトアームにて保持すべき N個の被試験電子部 品をローダバッファ部に一時的に載置するステップと、前記ローダバッファ部に載置 された被試験電子部品の個数及び位置を検出するステップと、前記検出ステップに より前記ローダバッファ部に載置された被試験電子部品が N個未満であると判断され たときは、その被試験電子部品の欠如位置に相当するコンタクトアームの位置に他 の電子部品を保持させるステップと、を有することを特徴とする電子部品の試験方法 が提供される。
[0013] 本発明では、 N個のコンタクトアームにて N個の被試験電子部品をそれぞれ保持し 、これら N個の被試験電子部品を N個のコンタクト部へそれぞれ同時に接触させるに あたり、コンタクトアームにて保持すべき被試験電子部品がローダバッファ部に N個 存在しないときは、欠如している個数と位置を検出し、そこに他の電子部品を保持さ せる。これにより、 N個のコンタクトアームには常に N個の被試験電子部品が保持され た状態で N個のコンタクト部にそれぞれ同時に接触させることができるので、押付圧 力のノ ランスを維持できるとともに印加温度を安定させることができる。
[0014] 上記発明において、コンタクトアームの欠如位置に他の電子部品を保持させる具体 的手段は特に限定されないが、今回のテストを実行するために保持している N個の 被試験電子部品のうち、ローダバッファ部において欠如している位置に相当する当 該コンタクトアームの位置の被試験電子部品を、払い出さないでそのまま保持し、こ の被試験電子部品を次回のテストに充てることが好ましい。
[0015] コンタクトアームは既にその電子部品を保持しているので、その電子部品を充当部 品に利用することで、他の余分な動作が不要となり、制御方法が簡略ィ匕できるととも に動作時間も短縮することができる。
[0016] このとき、その電子部品に対しては今回のテスト工程ではテストを実行せず、次回の テスト工程でテストを実行することが好ましい。 1個の被試験電子部品に対して複数 回のテストを実行すると被試験電子部品の総数と総テスト回数が不一致となり、テスト 管理が複雑となる。また、今回のテスト工程でテストを実行し、次回のテスト工程では テストを実行しな 、と 、う方法に比べ、払い出し工程の直近でテストを実行する方が テスト結果の信頼性が高い。
[0017] また上記発明において、ローダバッファ部の前に、テストすべき複数の被試験電子 部品が搭載されたトレイを複数格納するローダ部がある場合、ローダ部のトレイに存 在する被試験電子部品が N個未満であると判断されたときは、それら N個未満の被 試験電子部品を保持したまま一時的に待機し、次のトレイに交換して欠如した位置 に被試験電子部品を保持することが好まし 、。
[0018] こうすることで、ローダバッファ部には原則として N個の被試験電子部品が載置され ることになり、上述したローダバッファ部における被試験電子部品の欠如状態を可能 な限り少なくすることができる。
[0019] なお、上記発明にお 、て、被試験電子部品を高温でテストする場合には、ローダバ ッファ部の前に被試験電子部品を載置して熱エネルギーを供給するヒートプレートを 設けることができる。 [0020] (2)上記目的を達成するために、本発明の第 2の観点によれば、所定のロットで構 成される複数の被試験電子部品に対し、 N個(Nは 2以上の自然数)のコンタクトァー ムにて N個の被試験電子部品をそれぞれ保持し、これら N個の被試験電子部品を、 テストパターンがそれぞれ入力される N個のコンタクト部へそれぞれ同時に接触させ 、その応答パターンに基づいて前記被試験電子部品を分類して払い出し、前記所定 のロットが終了するまでこれを繰り返す電子部品試験装置であって、前記 N個のコン タクト部それぞれの作動状態を検出する第 3検出手段と、前記被試験電子部品と同 一形状のダミー部品を載置するダミー保管部と、前記第 3検出手段により前記コンタ タト部の何れかが OFF状態であると判断されたときは、当該 OFF状態であるコンタク ト部に相当するコンタクトアームの位置に前記ダミー保管部に載置されたダミー部品 を保持させる指令を送出する制御手段と、を有することを特徴とする電子部品試験装 置が提供される。
[0021] また、所定のロットで構成される複数の被試験電子部品に対し、 N個(Nは 2以上の 自然数)のコンタクトアームにて N個の被試験電子部品をそれぞれ保持するステップ と、これら N個の被試験電子部品を、テストパターンがそれぞれ入力される N個のコン タクト部へそれぞれ同時に接触させるステップと、その応答パターンに基づいて前記 被試験電子部品を分類して払い出すステップとを有し、前記所定のロットが終了する まで以上のステップを繰り返す電子部品の試験方法であって、前記 N個のコンタクト 部それぞれの作動状態を検出するステップと、前記被試験電子部品と同一形状のダ ミー部品をダミー保管部に載置するステップと、前記検出ステップにより前記コンタク ト部の何れかが OFF状態であると判断されたときは、当該 OFF状態であるコンタクト 部に相当するコンタクトアームの位置に前記ダミー保管部に載置されたダミー部品を 保持させるステップと、を有することを特徴とする電子部品の試験方法が提供される。
[0022] 本発明では、 N個のコンタクトアームにて N個の被試験電子部品をそれぞれ保持し 、これら N個の被試験電子部品を N個のコンタクト部へそれぞれ同時に接触させるに あたり、 N個のコンタクト部の何れかがメンテナンス等の諸原因により OFF状態 (テスト ノターンの入力が休止状態)であるときは、その個数と位置を検出し、そこに被試験 電子部品を形状が同じダミー部品を保持させる。これにより、 N個のコンタクトアーム には常に N個の被試験電子部品が保持された状態で N個のコンタクト部にそれぞれ 同時に接触させることができるので、押付圧力のバランスを維持できるとともに印加温 度を安定させることができる。また、コンタクト部が OFF状態である間は、ダミー部品を 継続して保持すればよ!ヽので、それ以外の余分な動作が不要となり作業時間を短縮 できる。
[0023] (3)上記目的を達成するために、本発明の第 3の観点によれば、所定のロットで構 成される複数の被試験電子部品に対し、 N個(Nは 2以上の自然数)のコンタクトァー ムにて N個の被試験電子部品をそれぞれ保持し、これら N個の被試験電子部品を、 テストパターンがそれぞれ入力される N個のコンタクト部へそれぞれ同時に接触させ
、その応答パターンに基づいて前記被試験電子部品を分類して払い出し、前記所定 のロットが終了するまでこれを繰り返す電子部品試験装置であって、前記ロットの総 数を検出する第 4検出手段と、前記被試験電子部品と同一形状のダミー部品を載置 するダミー保管部と、前記第 4検出手段によりロットの総数が N個未満であると判断さ れたときは、前記コンタクトアームの欠如位置に前記ダミー保管部に載置されたダミ 一部品を保持させる指令を送出する制御手段と、を有することを特徴とする電子部品 試験装置が提供される。
[0024] また、所定のロットで構成される複数の被試験電子部品に対し、 N個(Nは 2以上の 自然数)のコンタクトアームにて N個の被試験電子部品をそれぞれ保持するステップ と、これら N個の被試験電子部品を、テストパターンがそれぞれ入力される N個のコン タクト部へそれぞれ同時に接触させるステップと、その応答パターンに基づいて前記 被試験電子部品を分類して払い出すステップとを有し、前記所定のロットが終了する まで以上のステップを繰り返す電子部品の試験方法であって、前記ロットの総数を検 出するステップと、前記被試験電子部品と同一形状のダミー部品をダミー保管部に 載置するステップと、前記検出ステップによりロットの総数が N個未満であると判断さ れたときは、前記コンタクトアームの欠如位置に前記ダミー保管部に載置されたダミ 一部品を保持させるステップと、を有することを特徴とする電子部品の試験方法が提 供される。
[0025] 本発明では、 N個のコンタクトアームにて N個の被試験電子部品をそれぞれ保持し 、これら N個の被試験電子部品を N個のコンタクト部へそれぞれ同時に接触させるに あたり、被試験電子部品のロット総数が N個未満の少量ロットであるときは、その被試 験電子部品のローダバッファ部における個数と位置を検出し、電子部品が欠如した 位置に被試験電子部品を形状が同じダミー部品を保持させる。これにより、 N個のコ ンタクトアームには常に N個の被試験電子部品が保持された状態で N個のコンタクト 部にそれぞれ同時に接触させることができるので、押付圧力のバランスを維持できる とともに印加温度を安定させることができる。
[0026] 上記第 2及び第 3の観点による発明において、ダミー保管部を利用して、ここに再 試験が必要とされた被試験電子部品を移載し、再試験を行う場合には異なるコンタク ト部にて実行するよう〖こ構成することもできる。
[0027] 再試験とされた原因がコンタクト部の不良にある場合は、この操作によりコンタクト部 の不良を発見することができる。また、別のコンタクト部で再試験した結果が再試験以 外であるときは、その電子部品の状態に起因するものと判断することができる。
図面の簡単な説明
[0028] [図 1]本発明の電子部品試験装置の実施形態を示す平面図である。
[図 2]図 1の Π-Π線に沿う断面図である。
[図 3]図 1の ΠΙ-ΠΙ線に沿う断面図である。
[図 4]図 1の IV-IV線に沿う断面図である。
[図 5]本発明の電子部品試験装置の実施形態における制御手順を示すフローチヤ一 トである。
[図 6]本発明の電子部品試験装置の他の実施形態における制御手順を示すフロー チャートである。
[図 7]本発明の電子部品試験装置の他の実施形態における制御手順を示すフロー チャートである。
発明を実施するための最良の形態
[0029] 以下、本発明の実施形態を図面に基づいて説明する。
[0030] 本実施形態の電子部品試験装置 1は、図 1に示すようにハンドラ 10、テストヘッド 2 0およびテスタ 30からなり、テストヘッド 20とテスタ 30とはケーブル 40を介して接続さ れている。
[0031] ハンドラ 10には、試験前の被試験 ICを搭載したトレィを積み重ねて投入する供給ト レイストツ力 101と、供給トレイストツ力 101にて空となったトレィを積み重ねておく空ト レイストツ力 102と、試験後の被試験 ICを分類するためのトレイが積み重ねられる分 類トレイストツ力 103とが設けられている。また、供給トレイストツ力 101で空になったト レイを空トレイストツ力 102に搬送したり、空トレイストツ力 102の空トレイを分類トレイス トツ力 103に搬送したりするためのトレイ搬送装置 104力 各トレイストツ力 102, 103, 104に沿って移動可能に設けられている。このトレィ搬送装置 104はレール 104aと、 トレィを吸着する吸着機を備えた搬送アーム 104bからなる。また、図示は省略するが 、各トレイストツ力 101, 102, 103には積み重ねられたトレィを上下方向に昇降させ てトレイ搬送装置 104の吸着位置や後述する XYZ搬送装置 105の吸着位置に設定 するエレベータ装置が設けられている。なお、トレイ置き場 106に載置されたトレイも 分類トレイである力 この分類トレイの出し入れはオペレータが行うようになっており、 たとえば頻度が極めて低いカテゴリの ICを分類する。したがって、本例のハンドラは 5 種類のカテゴリに分類することができる。
[0032] ハンドラ 10には、フレーム基板 107が設けられており、このフレーム基板 107上に、 上述する被試験 ICの搬送装置 105, 108, 109, 110, 111, 120力設けられている。 また、フレーム基板 107には開口部 112が形成されており、図 2に示すようにハンドラ 10の背面側に配置されたテストヘッド 20のコンタクト部 201が、開口部 112を通じて 被試験 ICに臨むようになつている。
[0033] フレーム基板 107上に設けられた被試験 ICの搬送装置 105, 108, 109, 110, 11 1について説明する。
[0034] まず、 2つの供給トレイストツ力 101とヒートプレート 113 (ローダバッファ部 114を含 む)との間において、試験前の ICを搬送するために XYZ搬送装置 105が設けられて いる。
[0035] この XYZ搬送装置 105は、 Y軸方向に沿って設けられた Y軸レール 105aと、この Y 軸レール 105aに沿って移動可能に設けられ X軸方向に延在する第 1ベース 105bと 、この第 1ベース 105bに沿って設けられた X軸レール 105cと、この X軸レール 105c に沿って移動可能に設けられた第 2ベース 105dと、この第 2ベース 105dに沿って X 軸方向に僅かに移動可能に設けられた一対の吸着装置 105eとを有する。なお、図 1 には Y軸レール 105a,第 1ベース 105bを実線で示し、一対の吸着装置 105eを点線 で示すが、この構造の詳細は図 3に示す。
[0036] すなわち、吸着装置 105eは、供給トレイストツ力 101のトレイからヒートプレート 113 及びローダバッファ部 114に至る範囲までを Y軸レール 105a、X軸レール 105cに沿 つて移動し、また、図示しない Z軸ァクチユエータによって Z軸方向、すなわち上下方 向にも移動可能とされて 、る。
[0037] 本例の吸着装置 105fは合計 4個の被試験 ICを吸着できる 4つの吸着装置で構成 され、 ICを吸着、搬送及び解放する。ただし図 2は、 X軸方向に沿って破断して Y軸 方向に向かって見た図を示すので、それぞれ奥に位置する吸着装置 105fは手前の 吸着装置に隠れている。
[0038] この 4つの吸着装置 105fのうち、 Y軸方向に並んだそれぞれ 2つの吸着装置 105f のピッチは、供給トレイに搭載された状態での被試験 ICのピッチと等しく設定され、一 方、これらそれぞれ 2つずつの吸着装置は、図 2に示すように X軸方向に僅かに移動 可能とされている。これは、供給トレイに搭載された状態の ICのピッチに対して、コン タクト部 201における被試験 ICのピッチは、ソケットの構造上これより大きくなるため、 供給トレイストツ力 101からコンタクト部 201へ 4つの ICを搬送する途中で、 4つの IC のピッチを大きくするための機構である。 XYZ搬送装置 105では、 Y軸方向にのみ I Cのピッチを大きくし、ヒートプレート 113またはローダバッファ部 114に移載する。
[0039] XYZ搬送装置 108も、上述した XYZ搬送装置 105とほぼ同様の構造であり、 Y軸 方向に沿って設けられた Y軸レール 108aと、この Y軸レール 108aに沿って移動可 能に設けられ X軸方向に延在する第 1ベース 108bと、この第 1ベース 108bに沿って 設けられた X軸レール 108cと、この X軸レール 108cに沿って移動可能に設けられた 第 2ベース 108dと、この第 2ベース 108dに沿って Y軸方向に僅かに移動可能に設 けられた一対の吸着装置 108eとを有する。なお、図 1には Y軸レール 108a,第 1ベ ース 108bを実線で示し、一対の吸着装置 108eを点線で示す力 この構造の詳細は 図 4 (A) (B)に示す。図 4 (B)は同図 (A)の B矢視図である。 [0040] そして、吸着装置 108eは、ローダバッファ部 114から 2つのバッファステージ部 115 , 116に至る範囲までを Y軸レール 108a、X軸レール 108cに沿って移動し、また、 図示しない Z軸ァクチユエータによって Z軸方向、すなわち上下方向にも移動可能と されている。
[0041] さらに、 XYZ搬送装置 105が Y軸方向にのみ ICのピッチを大きくするのに対し、図 4 (B)に示すように XYZ搬送装置 108では X軸方向に ICのピッチを大きくする。
[0042] XYZ搬送装置 108は、ローダバッファ部 114に載置された 4つの ICを吸着し、 X軸 方向にピッチを大きくしながら、 2つのバッファステージ部 115, 116へ交互に搬送し 、開放する。
[0043] バッファステージ部 115は、 X軸方向に延在するレール 109aと、このレール 109a 上を X軸方向にのみ往復移動するベース 109bとから構成された搬送装置 109に設 けられている。ベース 109bの X軸方向の両端には、 ICの位置決めが可能な傾斜部 を有する凹部で構成されたバッファステージ部 115がそれぞれ形成されて ヽる。また 、同様にバッファステージ部 116は、 X軸方向に延在するレール 110aと、このレール 110a上を X軸方向にのみ往復移動するベース 110bとから構成された搬送装置 110 に設けられている。ベース 110bの X軸方向の両端には、 ICの位置決めが可能な傾 斜部を有する凹部で構成されたバッファステージ部 116がそれぞれ形成されて ヽる。
[0044] そして、バッファステージ部 115においては、図 1の左側のバッファステージ部 115 が同図に示すように XYZ搬送装置 108に搬送されてきた ICを受け取る一方で、右側 のバッファステージ部 115は、コンタクトアーム 117に吸着されてテストを終了した 4個 の ICを受け取る。そして、ベース 109bが同図の右側に移動すると、左側のバッファス テージ部 115がコンタクトアーム 117に接近するとともに右側のバッファステージ部 1 15は XYZ搬送装置 111の吸着装置に接近するので、コンタクトアーム 117が左側の ノ ッファステージ部 115に載置された 4個のテスト前の ICを吸着してテストを行うと同 時に、 XYZ搬送装置 111は右側のバッファステージ部 115に載置された 4個のテスト 後の ICを吸着してイダジットステージ部 119へ搬送する。
[0045] 同様に、バッファステージ部 116においては、図 1に示す位置からベース 110bが 左側に移動すると、左側のバッファステージ部 116が XYZ搬送装置 108に搬送され てきた ICを受け取る一方で、右側のバッファステージ部 116は、コンタクトアーム 118 に吸着されてテストを終了した 4個の ICを受け取る。そして、ベース 110bが同図に示 すように右側に移動すると、左側のバッファステージ部 116がコンタクトアーム 118に 接近するとともに右側のバッファステージ部 116は XYZ搬送装置 111の吸着装置に 接近するので、コンタクトアーム 118が左側のバッファステージ部 116に載置された 4 個のテスト前の ICを吸着してテストを行うと同時に、 XYZ搬送装置 111は右側のバッ ファステージ部 116に載置された 4個のテスト後の ICを吸着してイダジットステージ部 119へ搬送する。
[0046] これら 2つのバッファステージ部 115と 116は交互に往復移動する。
[0047] 図 1及び図 2に示すように、テストヘッド 20のコンタクト部 201が開口部 112を介して 対面するように、コンタクトアーム 117, 118が設けられている。このコンタクトアーム 1 17, 118は、図 2に示すようにレール 119aに沿って Y軸方向に往復移動するベース 119bに定ピッチで固定され、 ICを吸着したり開放したりする際には Z軸方向にも移 動可能になっている。そして、図 2に示すとおり、コンタクトアーム 117がバッファステ ージ部 115に対面しているときは、コンタクトアーム 118がコンタクト部 201に対面す る一方で、同図に示す位置力もベース 119bが左側に移動すると、コンタクトアーム 1 17力 Sコンタクト部 201に対面し、コンタクトアーム 118がバッファステージ部 116に対 面すること〖こなる。
[0048] XYZ搬送装置 111は、上述した XYZ搬送装置 108とほぼ同様の構造であり、 Y軸 方向に沿って設けられた Y軸レール 11 laと、この Y軸レール 11 laに沿って移動可 能に設けられ X軸方向に延在する第 1ベース 11 lbと、この第 1ベース 11 lbに沿って 設けられた X軸レール 11 lcと、この X軸レール 11 lcに沿って移動可能に設けられた 第 2ベース 11 Idと、この第 2ベース 11 Idに沿って Y軸方向に僅かに移動可能に設 けられた一対の吸着装置 1 l ieとを有する。なお、図 1には Y軸レール 11 la,第 1ベ ース 11 lbを実線で示し、一対の吸着装置 1 l ieを点線で示す力 この構造の詳細は 図 4 (A) (B)に括弧を付した符号で示す。図 4 (B)は同図 (A)の B矢視図である。
[0049] そして、吸着装置 1 l ieは、 2つのバッファステージ部 115, 116からィグジットステ ージ部 119及び後述するダミー保管部 121に至る範囲までを Y軸レール 11 la、 X軸 レール 1 l ieに沿って移動し、また、図示しない Z軸ァクチユエータによって Z軸方向 、すなわち上下方向にも移動可能とされている。
[0050] さらに、 XYZ搬送装置 111では図 4 (B)に示すように Y軸方向に ICのピッチを小さく し、トレイのピッチに合わせる。すなわち、 XYZ搬送装置 111は、ノ ッファステージ部 115, 116に載置された 4つの ICを吸着し、 Y軸方向にピッチを小さくしながら、イダ ジットステージ部 119へ搬送し、開放する。
[0051] XYZ搬送装置 120は、 Y軸方向に沿って設けられた Y軸レール 120aと、この Y軸 レール 120aに沿って移動可能に設けられ X軸方向に延在する第 1ベース 120bと、 この第 1ベース 120bに沿って設けられた X軸レール 120cと、この X軸レール 120cに 沿って移動可能に設けられた第 2ベース 120dと、この第 2ベース 120dに沿って X軸 方向に僅かに移動可能に設けられた一対の吸着装置 120eとを有する。なお、図 1に は Y軸レール 120a,第 1ベース 120bを実線で示し、一対の吸着装置 120eを点線で 示すが、この構造の詳細は図 3に括弧を付した符号で示す。
[0052] そして、吸着装置 120eは、イダジットステージ部 119から分類トレイストツ力 103に 至る範囲までを Y軸レール 120a、 X軸レール 120cに沿って移動し、また、図示しな V、Z軸ァクチユエータによって Z軸方向、すなわち上下方向にも移動可能とされて!/ヽ る。
[0053] さらに、 XYZ搬送装置 120では図 3に示すように X軸方向に ICのピッチを小さくし、 トレイのピッチに合わせる。すなわち、 XYZ搬送装置 120は、イダジットステージ部 11 9に載置された 4つの ICを吸着し、 X軸方向にピッチを小さくしながら、分類トレイスト ッカ 103の何れかのトレイへ搬送し、開放する。
[0054] なお、イダジットステージ部 119に隣接してダミー ICを保管するためのダミー保管部 121が設けられており、イダジットステージ部 119と同じピッチで 4個のダミー ICが置 かれる。ダミー ICとは、被試験 ICと少なくとも外形形状が同じ物体で、熱容量も等し いことが望ましい。ダミー ICとして不良品であると判断された ICを用いてもよいが、作 業者がダミー ICであることが目視で認識できるようにマーク付与又は着色しておくこと 力 り好ましい。
[0055] また、ローダバッファ部 114に近接した位置にヒートプレート 113が設けられている。 このヒートプレート 113は、たとえば金属製プレートであって、被試験 ICを落とし込む 複数の凹部が形成されており、この凹部に供給トレイストツ力 101から搬送されてきた 試験前の ICが載置される。
[0056] ヒートプレート 113の下面には、被試験 ICに所定の熱ストレスを印加するための発 熱体 (加熱装置又は Z及び冷却装置)が設けられており、被試験 ICは、ヒートプレー ト 113を介して伝達される発熱体からの熱によって所定の温度に加熱又は冷却され たのち、ローダバッファ部 114を介してテストヘッド 20のコンタクト部 201へ押し付けら れる。
[0057] なお、高温試験を行う場合に、 XYZ搬送装置 105は、供給トレイストツ力 101から被 試験 ICをヒートプレート 113の所定位置に載置し、予め求められている放置時間を経 過した ICを吸着し、これをローダバッファ部 114へ移載する。ただし、常温試験を行う 場合には、供給トレイストツ力 101から直接ローダバッファ部 114へ移載してもよい。
[0058] 次に通常動作を説明する。
ノ、ンドラ 10の供給トレイストツ力 101のトレイに搭載された試験前の被試験 ICは、 X YZ搬送装置 105によって 4個ずつ吸着保持され、ヒートプレート 113の IC収納用凹 部に移送される。このとき、トレイのピッチに対して X軸方向のピッチが大きくされてヒ ートプレート 113に置かれる。
[0059] ここで所定の時間だけ放置されることにより、被試験 ICは所定の温度に昇温するの で、供給トレイストツ力のトレィ 101からヒートプレート 113へ昇温前の被試験 ICを移送 した XYZ搬送装置 105は、被試験 ICを放したのちヒートプレート 113に放置され所 定の温度に昇温した被試験 ICをそのまま吸着保持してローダバッファ部 114に移送 する。
[0060] ローダバッファ部 114に置かれた 4個の被試験 ICは、 XYZ搬送装置 108の吸着装 置 108eによって吸着保持され、 Y軸方向のピッチが大きくされ、何れか一方のバッフ ァステージ部 115, 116に移送されて置かれる。このバッファステージ部 115, 116に はプリサイサ機能 (位置決め機能)が設けられているので、ここでコンタクト部 201との 位置関係が適正に調整されることになる。
[0061] なお、 XYZ搬送装置 108は、吸着保持した 4個の被試験 ICをたとえば一方のバッ ファステージ部 115に移送したときは、次に吸着保持する 4個の被試験 ICは他方の ノ ッファステージ部 116に移送する。
[0062] ノ ッファステージ部 115と 116は、図 1において互いに交互に、左右に往復移動す る力 XYZ搬送装置 108によってテスト前の被試験 ICが左側のバッファステージ部 1 15に搭載されると、これと同時に、コンタクトアーム 117により吸着保持されたテスト終 了後の被試験 ICを右側のバッファステージ部 115に搭載する。そして、ベース 109b が右側に移動すると、左側のバッファステージ部 115に搭載されたテスト前の被試験 ICをコンタクトアーム 117で吸着保持し、これと同時に XYZ搬送装置 111により右側 のノ ッファステージ部 115に搭載されたテスト終了後の被試験 ICを吸着保持して、ィ グジットステージ部 119へ搬送する。バッファステージ部 116の方は、上述したバッフ ァステージ部 115とは対称的に動作する。
[0063] テスト前の被試験 ICを吸着保持したコンタクトアーム 117は、テスト終了後の被試験 ICを吸着保持した他方のコンタクトアーム 118と同期して図 2に示す左右方向に動作 し、コンタクトアーム 117がテストヘッド 20のコンタクト部 201に対面すると Z軸方向に 下降して被試験 ICをコンタクト部 201へ押し付け、この状態でテスタ 30からテストパタ ーンを、コンタクト部 201を介して被試験 ICへ送出し、それに対する応答パターンに 基づいて、被試験 ICの良否判定や性能のランク分け等のテスト結果を出力する。
[0064] コンタクト部 201へ押し付けてテストを終了した被試験 ICは、コンタクトアーム 117に 吸着保持されたまま図 2に示す右側に移動し、右側のノッファステージ部 115に搭載 され、次いでこのバッファステージ部 115は図 1に示す右側に移動する。ここで、 XY Z搬送装置 111により右側のノッファステージ部 115に搭載されたテスト終了後の被 試験 ICが吸着保持され、イダジットステージ部 119へ移送される。このとき、 Y軸方向 のピッチがトレイのピッチに合致するよう小さくされる。
[0065] テスタ 30からハンドラ 10へテスト結果が出力されるので、イダジットステージ部 119 に移載された 4個の ICについて、ハンドラ 10の制御装置 (不図示)はそのテスト結果を 認識している。これを受けて、 XYZ搬送装置 120は、イダジットステージ部 119に移 載された 4個の被試験 ICをそれぞれテスト結果に応じたトレイに分類する。この分類ト レイは、分類トレイストツ力 103に格納された 3分類のトレイと、トレイ置き場 116に置か れた 2分類のトレイの合計 5分類のトレイであり、たとえば不良品に対して良品が殆ど であるときは、分類トレイストツ力 103のトレイを良品に分類されるトレイとし、トレイ置き 場 106の何れか一方のトレィを不良品に分類されるトレイにするとともに他方のトレイ を再試験に分類されるトレイにする。また、良品を、動作速度が高速、中速、低速とい うランク別にさらに細分類し、分類トレイストツ力 103の 3列それぞれを細分類に応じた ICトレイにしてもよい。
[0066] 以上力 本実施形態の主たる動作である力 次にコンタクトアーム 117, 118で吸着 保持される被試験 ICが 4個未満になってしまう場合の処理を説明する。
[0067] 《第 1実施形態の処理》
図 5は本発明の電子部品試験装置の第 1実施形態における制御手順を示すフロー チャートである。
[0068] 本実施形態では、ローダバッファ部 114に載置された被試験 ICが 4個未満であると 判断されたときは、この被試験 ICの欠如位置に相当するコンタクトアーム 117または 118の位置に他の ICを保持させる制御を実行する。
[0069] ローダバッファ部 114に載置された被試験 ICが 4個に満たない場合とは、たとえば テストを行うロット数力 の倍数でない場合の最後の ICについは必ず発生し、またこ れ以外にも、供給トレイストツ力 101からローダバッファ部 114へ搬送している途中で I Cを落下させてしまった場合に生じ得る。
[0070] 具体的には、ローダバッファ部 114に載置された被試験 ICの個数と位置を、 XYZ 搬送装置 105によりヒートプレート 113からローダバッファ部 114へ移送する際、また は供給トレイストツ力 101から直接ローダバッファ部 114へ移送する際に、当該 XYZ 搬送装置 105の吸着装置 105eに設けられたバキューム圧力センサを用いて検出す る。この移送時に 4つの吸着装置 105eの何れかに被試験 ICが存在しないと、バキュ ーム圧力センサが適正な負圧を示さないので、その個数と位置を検出することができ る。
[0071] 図 5のステップ ST1において、 XYZ搬送装置 105を用いて供給トレイストツ力 101の トレイカも被試験 ICを 4個ずつ吸着保持し、このときステップ ST2において、 XYZ搬 送装置 105に 4個の被試験 ICを吸着した力どうかを判断する。 XYZ搬送装置 105に 吸着保持された IC力 個未満であるときは、ステップ ST3へ進み、供給トレイストツ力 101の最上段に積まれたトレイに ICが残っているかどうかを判断する。最上段のトレ ィの他の場所に ICが残って 、るときはその ICを吸着するが (ステップ ST6)、最上段 のトレイに ICが残って ヽな 、ときは、最終トレイでな 、ことを確認したうえで (ステップ S T4)、 XYZ搬送装置 105はその位置で待機するとともに、トレイ搬送装置 104を用い て最上段のトレィを空トレイストツ力 102に移載し (ステップ ST5)、供給トレイストツ力 10 1の次段のトレイに搭載された ICを吸着する(ステップ ST6)。なお、ロットの最終トレ ィであるときは、そのままステップ ST7へ進む。
[0072] ロットの最後以外は、 4個ずつ ICを吸着できるので、 XYZ搬送装置 105で4個の1じ を吸着したら、これをヒートプレート 113へ移送し、開放する (ステップ ST7)。そして続 けて、ヒートプレート 113に搭載されて所定時間が経過した 4個の被試験 ICを吸着保 持し、ローダバッファ部 114へ移載する。この動作の際に、 XYZ搬送装置 105の吸 着装置 105eに 4個の ICが吸着されたかどうかを判断し、これをローダバッファ部 114 における ICの存在個数と位置にみなす (ステップ ST8)。
[0073] ステップ ST8において、ローダバッファ部 114へ搬送された被試験 IC力 同時測定 数である 4個であるときは、ステップ ST9へ進んで、コンタクトアーム 117または 118で 吸着保持しコンタクト部 201に押し付けてテストを終了した ICをバッファステージ部 11 5または 116を介してイダジットステージ部 119へ払い出す力 ローダバッファ部 114 へ搬送された被試験 ICが、同時測定数である 4個未満であるときは、ステップ ST10 へ進む。
[0074] ステップ ST10では、現在コンタクトアーム 117または 118で吸着保持している 4個 の ICのうち、ローダバッファ部 114で欠如している ICの位置に相当する ICに対しては テスタ 30からテストパターンを送らず、その他の ICに対してのみテストを実行する。た とえば、図 1に示すローダバッファ部 114の、左下の位置の ICが欠如しているときは、 4つのコンタクトアーム 117または 118のうち左下のコンタクトアームに吸着保持した I Cに対するテストは実行しない。
[0075] なお、図 1に示すハンドラ 10においては、バッファステージ部 115, 116力 つあり、 またコンタクトアーム 117, 118も 2つあり、それぞれが交互に動作するので、厳密に いえば、ある時間においてローダバッファ部 114の ICが欠如しているとき、この ICが 欠如状態となったローダバッファ部 114の 4個未満の ICは、現在コンタクト部 201に おいてテストされている ICの、次の次(2回後)にテストされることになる。したがって、 図 5のステップ ST10の処理は、欠如状態となった 4個未満の ICが XYZ搬送装置 10 8によってローダバッファ部 114からバッファステージ部 115または 116に移送された ときに実行される。
[0076] 図 5のステップ ST11に戻り、ステップ ST10にて欠如部分の IC以外の ICについて テストを終了したら、テストを終了した ICのみをバッファステージ部 115または 116に 移送して開放し、 XYZ搬送装置 111によりイダジットステージ部 119へ払い出したの ち分類する。これに対して、テストを行わなかった ICはコンタクトアーム 117または 11 8でそのまま吸着保持した状態で、ノ ッファステージ部 115または 116に次の ICを吸 着保持するために移動する (ステップ ST12)。
[0077] このとき、そのバッファステージ部 115または 116には 4個未満の ICしか搭載されて おらず、またその欠如位置は、コンタクトアーム 117または 118の ICを吸着した位置 に一致するので、ノ ッファステージ部 115または 116の ICを吸着保持すると (ステツ プ ST13)、そのコンタクトアーム 117または 118にはちようど 4個の ICが吸着保持され ることになる。
[0078] この状態でコンタクトアーム 117または 118に吸着保持した 4個の ICをコンタクト部 2 01へ押し付け、テストを実行する (ステップ ST14)。このテストが終了したら、バッファ ステージ部 115または 116を介してィグジットステージ部 119へ 4個の ICを払 、出し、 分類トレイに分類する。
[0079] 以上の処理を、供給トレイストツ力 101のトレイに搭載された ICがなくなるまで、すな わちロットが終了するまで繰り返す (ステップ ST15)力 上述したようにロット数力 の 倍数でないときは、最後に残る ICは必ず 4個未満になるので、上述したとおりステツ プ ST10からステップ ST12の処理を経て、テストを実行する。
[0080] こうすることで、 4個のコンタクトアーム 117, 118には常に 4個の被試験 ICが保持さ れた状態で 4個のコンタクト部 201にそれぞれ同時に接触させることができるので、押 付圧力のバランスを維持できる結果、コンタクト部 201のソケットに備える端子に対し て過度な押圧力が加わるのを防止できる結果、ソケットの信頼性が維持できる。また、 従来のように、押圧面が傾 、て被試験 ICの IC端子と対応するソケットの端子との位 置関係にずれが生じ易くなる結果、コンタ外ミスの要因となる難点を低減できる。更 に、従来のように、コンタクトアームの押圧面と被試験 ICの受圧面とが傾く結果、被試 験 ICとの熱伝導条件が悪化する難点も解消できる結果、安定した印加温度を維持で きるので、試験品質の維持も計れる。
[0081] 《第 2実施形態の処理》
図 6及び図 7は本発明の電子部品試験装置の第 2実施形態における制御手順を示 すフローチャートである。
[0082] 本実施形態では、テストヘッド 20のコンタクト部 201の何れかが OFF状態であると 判断されたときは、当該 OFF状態であるコンタクト部 201に相当するコンタクトアーム 117, 118の位置にダミー保管部 121に載置されたダミー部品を保持させる制御を 実行する。また、テストすべき被試験 ICのロット総数が同時測定数である 4個に達しな いときも、 ICが欠如したコンタクトアーム 117, 118の位置にダミー保管部 121に載置 されたダミー部品を保持させる制御を実行する。
[0083] コンタクト部 201の何れかが OFF状態である場合とは、コンタクト部 201に備える複 数個のコンタクト用のソケットの何れかにおいて、ソケットの接触端子が不良となって 正常に試験実施が困難となったソケットが存在する場合がある。また、テスタ 30側の 不具合に伴う不良となる場合もある。このような場合、コンタクト部の交換や保守が行 われる迄の期間において、一時的に、複数のコンタクト部 201のうちの、試験実施が 困難な特定のコンタクト部 201へテストパターンを送出することを停止する場合に生じ る。
[0084] このようなコンタクト部 201が OFF状態であること(コンタクトセレクト状態ともいう。 ) は、テスタ 30により、例えば全 ICピンがテスタへ接続されていることを確認する「コン タクト試験機能」を実行させることで検出でき、またロット総数はオペレータにより確認 できる。
[0085] まず、ダミー保管部 121に 4個のダミー ICがあるかどうかを確認し (ステップ ST51, 52)、ダミー ICがない場合または不足している場合はアラームを発しオペレータに喚 起する(ステップ ST53)。
[0086] ダミー保管部 121に 4個のダミー ICがある場合は、ステップ ST54にてコンタクト部 2
01の何れかが OFF状態(コンタクトセレクトされている)であるかどうかを確認し、全て のコンタクト部 201が ON状態であるときは、次にロット総数力 個未満であるかどうか を確認する (ステップ ST55)。
[0087] コンタクトセレクトされず、またロット総数も 4個以上であるときは、ステップ ST64へ進 んで通常の動作を行うが、コンタクトセレクトがされている力、ロット総数力 個未満で あるときは、以下説明するステップ ST56〜ST63の処理を実行した上で通常の動作 を行う。
[0088] ステップ ST56では、 XYZ搬送装置 111を用いてダミー保管部 121に載置されたダ ミー ICを吸着する。このとき吸着保持するのは、コンタクトセレクトされた位置に対応 する位置のダミー ICである。
[0089] ダミー ICを吸着保持したら、 XYZ搬送装置 11によりダミー ICをバッファステージ部 115または 116のアンローダ側に移送し (ステップ ST57, 58)、このダミー ICが搭載 されたバッファステージ部 115または 116のアンローダ側をコンタクト部 201に近接す る位置に移動させ (ステップ ST59)、コンタクトアーム 117または 118にてダミー ICを 吸着保持する (ステップ ST60)。
[0090] そして、バッファステージ部 115または 116を逆方向に移動させ、先ほどダミー ICを 搭載して 、たのとは逆のバッファステージ部ローダ側にダミー ICを搭載する (ステップ ST61, 62)。ノ ッファステージ部ローダ側は、 ICの位置決め機能 (プリサイサ機能) を有するので、再度コンタクトアーム 117または 118にてダミー ICを吸着保持すること により、適切な状態でコンタクトアーム 117または 118にダミー ICを吸着保持すること ができる。
[0091] 以上の処理を終了したら、通常動作に移行するが、ダミー ICを吸着した位置に対 応するローダバッファ部 114には、テスト前の被試験 ICは搬送しないものとする。
[0092] こうすることで、 4個のコンタクトアーム 117, 118には常に 4個の被試験 ICが保持さ れた状態で 4個のコンタクト部 201にそれぞれ同時に接触させることができるので、押 付圧力のノ ランスを維持できるとともに印加温度を安定させることができる。 [0093] なお、図 7は全ての ICについてテストを終了したのち、ダミー ICをダミー保管部 121 に戻す手順を示すフローチャートである。
[0094] この場合、まずバッファステージ部 115または 116のアンローダ側をコンタクト部 20 1に近接させ (ステップ ST71)、コンタクトアーム 117, 118に保持しているダミー ICを このバッファステージ部 115または 116のアンローダ側に移載する(ステップ ST72)。
[0095] そして、バッファステージ部 115または 116を XYZ搬送装置 111のところまで移動さ せ (ステップ ST73)、この XYZ搬送装置 111でダミー ICを吸着保持し (ステップ ST7 4)、さらにダミー保管部 121まで移動してここにダミー ICを戻す (ステップ ST75)。
[0096] なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたも のであって、本発明を限定するために記載されたものではない。したがって、上記の 実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や 均等物をも含む趣旨である。

Claims

請求の範囲
[1] 所定のロットで構成される複数の被試験電子部品に対し、 N個(Nは 2以上の自然 数)のコンタクトアームにて N個の被試験電子部品をそれぞれ保持し、これら N個の 被試験電子部品を、テストパターンがそれぞれ入力される N個のコンタクト部へそれ ぞれ同時に接触させ、その応答パターンに基づいて前記被試験電子部品を分類し て払い出し、前記所定のロットが終了するまでこれを繰り返す電子部品試験装置であ つて、
前記コンタクトアームにて保持すべき N個の被試験電子部品を一時的に載置する ローダバッファ部と、
前記ローダバッファ部に載置された被試験電子部品の個数及び位置を検出する第 1検出手段と、
前記第 1検出手段により前記ローダバッファ部に載置された被試験電子部品が N 個未満であると判断されたときは、当該検出手段による被試験電子部品の欠如位置 に相当するコンタクトアームの位置に他の電子部品を保持させる指令を送出する制 御手段と、を有することを特徴とする電子部品試験装置。
[2] 前記制御手段は、
前記コンタクトアームが次回のテストにおいて保持する予定の、前記ローダバッファ 部に載置された被試験電子部品が N個未満であるときは、
今回のテストを実行するために保持している N個の被試験電子部品のうち、前記口 ーダバッファ部において欠如している位置に相当する当該コンタクトアームの位置の 被試験電子部品を、払い出さないでそのまま保持する指令を送出するとともに、 この被試験電子部品を保持したまま、次回のテストを実行するために前記ローダバ ッファ部に載置された被試験電子部品を保持する指令を送出することを特徴とする 請求項 1記載の電子部品試験装置。
[3] 前記制御手段は、
今回のテストを実行するために保持している N個の被試験電子部品のうち、前記口 ーダバッファ部において欠如している位置に相当する当該コンタクトアームの位置の 被試験電子部品に対しては、今回のテストは実行せず、次回のテストにおいてテスト を実行する指令を送出する請求項 2記載の電子部品試験装置。
[4] テストすべき複数の被試験電子部品が搭載されたトレイを複数格納するローダ部と 前記ローダ部のトレイカも前記ローダバッファ部へ直接または間接的に N個の被試 験電子部品を移載する移載手段と、
前記ローダ部のトレイに残留した被試験電子部品の個数を検出する第 2検出手段 と、を有し、
前記制御手段は、
前記第 2検出手段により前記ローダ部のトレィに存在する被試験電子部品が N個 未満であると判断されたときは、それら N個未満の被試験電子部品を前記移載手段 で保持する指令を送出するとともに、欠如した移載手段の位置に次のトレイに搭載さ れた被試験電子部品を保持する指令を送出することを特徴とする請求項 1〜3の何 れかに記載の電子部品試験装置。
[5] テスト前の被試験電子部品を載置して熱エネルギーを供給するヒートプレートを有 し、
前記移載手段は、前記ローダ部のトレイに搭載された被試験電子部品をヒートプレ 一トに移載するとともに、当該ヒートプレートに載置された被試験電子部品を前記ロー ダバッファ部に移載することを特徴とする請求項 4記載の電子部品試験装置。
[6] 所定のロットで構成される複数の被試験電子部品に対し、 N個(Nは 2以上の自然 数)のコンタクトアームにて N個の被試験電子部品をそれぞれ保持し、これら N個の 被試験電子部品を、テストパターンがそれぞれ入力される N個のコンタクト部へそれ ぞれ同時に接触させ、その応答パターンに基づいて前記被試験電子部品を分類し て払い出し、前記所定のロットが終了するまでこれを繰り返す電子部品試験装置であ つて、
前記 N個のコンタクト部それぞれの作動状態を検出する第 3検出手段と、 前記被試験電子部品と同一形状のダミー部品を載置するダミー保管部と、 前記第 3検出手段により前記コンタクト部の何れかが OFF状態であると判断された ときは、当該 OFF状態であるコンタクト部に相当するコンタクトアームの位置に前記ダ ミー保管部に載置されたダミー部品を保持させる指令を送出する制御手段と、を有 することを特徴とする電子部品試験装置。
[7] 所定のロットで構成される複数の被試験電子部品に対し、 N個(Nは 2以上の自然 数)のコンタクトアームにて N個の被試験電子部品をそれぞれ保持し、これら N個の 被試験電子部品を、テストパターンがそれぞれ入力される N個のコンタクト部へそれ ぞれ同時に接触させ、その応答パターンに基づいて前記被試験電子部品を分類し て払い出し、前記所定のロットが終了するまでこれを繰り返す電子部品試験装置であ つて、
前記ロットの総数を検出する第 4検出手段と、
前記被試験電子部品と同一形状のダミー部品を載置するダミー保管部と、 前記第 4検出手段によりロットの総数力 個未満であると判断されたときは、前記コ ンタクトアームの欠如位置に前記ダミー保管部に載置されたダミー部品を保持させる 指令を送出する制御手段と、を有することを特徴とする電子部品試験装置。
[8] 前記制御手段は、
テストを終了して再検査が必要とされた被試験電子部品を前記ダミー保管部へ移 載する指令を送出するとともに、
この再検査が必要と判断されたテストを実行したときに保持していたコンタクトァー ム以外のコンタクトアームに、前記ダミー保管部へ移載された再検査が必要な被試 験電子部品を保持する指令を送出し、
再検査を実施する指令を送出することを特徴とする請求項 6または 7記載の電子部 品試験装置。
[9] 前記 Nは、 2m (mは 2以上の自然数)であることを特徴とする請求項 1〜8の何れか に記載の電子部品試験装置。
[10] 所定のロットで構成される複数の被試験電子部品に対し、 N個(Nは 2以上の自然 数)のコンタクトアームにて N個の被試験電子部品をそれぞれ保持するステップと、こ れら N個の被試験電子部品を、テストパターンがそれぞれ入力される N個のコンタクト 部へそれぞれ同時に接触させるステップと、前記被試験電子部品に入力されたテス トパターンの応答パターンに基づいて前記被試験電子部品を分類して払い出すステ ップとを有し、前記所定のロットが終了するまで以上のステップを繰り返す電子部品 の試験方法であって、
前記コンタクトアームにて保持すべき N個の被試験電子部品をローダバッファ部に 一時的に載置するステップと、
前記ローダバッファ部に載置された被試験電子部品の個数及び位置を検出するス テツプと、
前記検出ステップにより前記ローダバッファ部に載置された被試験電子部品が N個 未満であると判断されたときは、その被試験電子部品の欠如位置に相当するコンタク トアームの位置に他の電子部品を保持させるステップと、を有することを特徴とする電 子部品の試験方法。
[11] 前記コンタクトアームが次回のテストにおいて保持する予定の、前記ローダバッファ 部に載置された被試験電子部品が N個未満であるときは、
今回のテストを実行するために保持している N個の被試験電子部品のうち、前記口 ーダバッファ部において欠如している位置に相当する当該コンタクトアームの位置の 被試験電子部品を、払い出さないでそのまま保持するとともに、
この被試験電子部品を保持したまま、次回のテストを実行するために前記ローダバ ッファ部に載置された被試験電子部品を保持することを特徴とする請求項 10記載の 電子部品の試験方法。
[12] 今回のテストを実行するために保持している N個の被試験電子部品のうち、前記口 ーダバッファ部において欠如している位置に相当する当該コンタクトアームの位置の 被試験電子部品に対しては、今回のテストは実行せず、次回のテストにおいてテスト を実行することを特徴とする請求項 11記載の電子部品の試験方法。
[13] テストすべき複数の被試験電子部品が搭載された複数のトレィをローダ部に格納す るステップと、
前記ローダ部のトレイカも前記ローダバッファ部へ直接または間接的に N個の被試 験電子部品を移載手段により移載するステップと、
前記ローダ部のトレイに残留した被試験電子部品の個数を検出するステップと、を 有し、 前記検出ステップにより前記ローダ部のトレィに存在する被試験電子部品が N個未 満であると判断されたときは、それら N個未満の被試験電子部品を移載手段で保持 したまま待機するとともに、欠如した移載手段の位置に次のトレイに搭載された被試 験電子部品を保持することを特徴とする請求項 10〜12の何れかに記載の電子部品 の試験方法。
[14] テスト前の被試験電子部品をヒートプレートに載置して熱エネルギーを供給するス テツプを有し、
前記移載手段により、前記ローダ部のトレィに搭載された被試験電子部品を前記ヒ ートプレートに移載するとともに、当該ヒートプレートに載置された被試験電子部品を 前記ローダバッファ部に移載することを特徴とする請求項 13記載の電子部品の試験 方法。
[15] 所定のロットで構成される複数の被試験電子部品に対し、 N個(Nは 2以上の自然 数)のコンタクトアームにて N個の被試験電子部品をそれぞれ保持するステップと、こ れら N個の被試験電子部品を、テストパターンがそれぞれ入力される N個のコンタクト 部へそれぞれ同時に接触させるステップと、その応答パターンに基づ 、て前記被試 験電子部品を分類して払い出すステップとを有し、前記所定のロットが終了するまで 以上のステップを繰り返す電子部品の試験方法であって、
前記 N個のコンタクト部それぞれの作動状態を検出するステップと、
前記被試験電子部品と同一形状のダミー部品をダミー保管部に載置するステップ と、
前記検出ステップにより前記コンタクト部の何れかが OFF状態であると判断されたと きは、当該 OFF状態であるコンタクト部に相当するコンタクトアームの位置に前記ダミ 一保管部に載置されたダミー部品を保持させるステップと、を有することを特徴とする 電子部品の試験方法。
[16] 所定のロットで構成される複数の被試験電子部品に対し、 N個(Nは 2以上の自然 数)のコンタクトアームにて N個の被試験電子部品をそれぞれ保持するステップと、こ れら N個の被試験電子部品を、テストパターンがそれぞれ入力される N個のコンタクト 部へそれぞれ同時に接触させるステップと、その応答パターンに基づ 、て前記被試 験電子部品を分類して払い出すステップとを有し、前記所定のロットが終了するまで 以上のステップを繰り返す電子部品の試験方法であって、
前記ロットの総数を検出するステップと、
前記被試験電子部品と同一形状のダミー部品をダミー保管部に載置するステップ と、
前記検出ステップによりロットの総数が N個未満であると判断されたときは、前記コ ンタクトアームの欠如位置に前記ダミー保管部に載置されたダミー部品を保持させる ステップと、を有することを特徴とする電子部品の試験方法。
[17] テストを終了して再検査が必要とされた被試験電子部品を前記ダミー保管部へ移 載するステップと、
この再検査が必要と判断されたテストを実行したときに保持していたコンタクトァー ム以外のコンタクトアームに、前記ダミー保管部へ移載された再検査が必要な被試 験電子部品を保持するステップと、
再検査を実施するステップと、を有することを特徴とする請求項 15または 16記載の 電子部品の試験方法。
[18] 前記 Nは、 2m (mは 2以上の自然数)であることを特徴とする請求項 10〜 17の何れ かに記載の電子部品の試験方法。
[19] 被試験電子部品を吸着保持して押圧する複数 N個のコンタクトアームを備えて、 N 個の被試験電子部品をコンタクト部へ電気的に接触させて複数 N個を同時測定する 電子部品試験装置であって、
コンタクトアームへ供給する被試験電子部品が N個未満となる場合には、被試験電 子部品が欠如する位置へ、代わりとなるダミー部品を供給し、又は次回の試験実施 時まで当該欠如位置に保持されている被試験電子部品を保持し続ける、ことにより実 質的に複数 N個のコンタクトアームの全てに対して、被試験電子部品又はダミー部品 を吸着してコンタクト部へ押圧する、ことを特徴とする電子部品試験装置。
PCT/JP2005/012947 2005-07-13 2005-07-13 電子部品試験装置 WO2007007406A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/JP2005/012947 WO2007007406A1 (ja) 2005-07-13 2005-07-13 電子部品試験装置
TW095125451A TW200720675A (en) 2005-07-13 2006-07-12 Electronic component test device
PCT/JP2006/313962 WO2007007835A1 (ja) 2005-07-13 2006-07-13 電子部品試験装置
CNA2006800164255A CN101176007A (zh) 2005-07-13 2006-07-13 电子部件试验装置
KR1020077025767A KR100922145B1 (ko) 2005-07-13 2006-07-13 전자부품 시험장치
JP2007524704A JP4934033B2 (ja) 2005-07-13 2006-07-13 電子部品試験装置
US11/911,202 US7859286B2 (en) 2005-07-13 2006-07-13 Electronic device test system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/012947 WO2007007406A1 (ja) 2005-07-13 2005-07-13 電子部品試験装置

Publications (1)

Publication Number Publication Date
WO2007007406A1 true WO2007007406A1 (ja) 2007-01-18

Family

ID=37636814

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2005/012947 WO2007007406A1 (ja) 2005-07-13 2005-07-13 電子部品試験装置
PCT/JP2006/313962 WO2007007835A1 (ja) 2005-07-13 2006-07-13 電子部品試験装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313962 WO2007007835A1 (ja) 2005-07-13 2006-07-13 電子部品試験装置

Country Status (5)

Country Link
US (1) US7859286B2 (ja)
KR (1) KR100922145B1 (ja)
CN (1) CN101176007A (ja)
TW (1) TW200720675A (ja)
WO (2) WO2007007406A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013620B2 (en) * 2006-01-25 2011-09-06 Techwing Co. Ltd. Test handler and loading method thereof

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011197203A (ja) * 2010-03-18 2011-10-06 Renesas Electronics Corp ドライバ及び表示装置
JP4955792B2 (ja) * 2010-04-28 2012-06-20 シャープ株式会社 電子部品動作機能測定装置および電子部品動作機能測定方法
TWI416652B (zh) * 2010-08-20 2013-11-21 Chroma Ate Inc With a single through the shuttle shuttle of the semiconductor components test machine
TWI398654B (zh) * 2011-11-22 2013-06-11 Chroma Ate Inc Semiconductor automation testing machine with temperature control system
KR101235285B1 (ko) 2012-11-15 2013-02-21 유호전기공업주식회사 3차원 패턴을 이용한 부분방전 검출장치의 시험 방법
JP6094733B2 (ja) * 2012-11-26 2017-03-15 澁谷工業株式会社 物品分類装置
TWI472778B (zh) * 2013-08-30 2015-02-11 Chroma Ate Inc System - level IC test machine automatic retest method and the test machine
CN104670892B (zh) * 2013-11-29 2017-02-08 鸿富锦精密工业(深圳)有限公司 取放料装置
CN104880618B (zh) * 2014-02-28 2019-06-07 惠州市德赛西威汽车电子股份有限公司 一种复合并行测试系统及方法
JP6245445B2 (ja) * 2014-07-07 2017-12-13 Smc株式会社 アクチュエータのタクト計測装置及びセンサ信号検知装置
KR102656451B1 (ko) * 2016-03-18 2024-04-12 (주)테크윙 전자부품 테스트용 핸들러
CN106017727B (zh) * 2016-05-16 2018-11-06 合肥市芯海电子科技有限公司 一种多芯片温度测试及标定系统及方法
KR102538843B1 (ko) 2016-07-21 2023-05-31 세메스 주식회사 반도체 소자 테스트 방법
KR102548782B1 (ko) 2016-07-26 2023-06-27 세메스 주식회사 반도체 소자 테스트 장치
KR102538845B1 (ko) 2016-07-28 2023-05-31 세메스 주식회사 반도체 소자 테스트 장치
KR102548788B1 (ko) 2016-08-10 2023-06-27 세메스 주식회사 반도체 소자 테스트 장치
KR102270760B1 (ko) * 2019-11-29 2021-06-30 에이엠티 주식회사 미세 피치를 갖는 디바이스의 테스트장치
TWI832311B (zh) * 2022-06-30 2024-02-11 美商金士頓數位股份有限公司 用於積體電路裝置的自動化測試系統及自動化測試方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230481A (ja) * 2000-02-21 2001-08-24 Sharp Corp 半導体レーザチップのスクリーニング装置
JP2002207062A (ja) * 2001-01-09 2002-07-26 Advantest Corp 電子部品試験装置におけるソケットの電気特性相関取得方法、ハンドラ、ハンドラの制御方法および電子部品試験装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001033514A (ja) 1999-07-23 2001-02-09 Advantest Corp 電子部品試験装置用加熱板

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001230481A (ja) * 2000-02-21 2001-08-24 Sharp Corp 半導体レーザチップのスクリーニング装置
JP2002207062A (ja) * 2001-01-09 2002-07-26 Advantest Corp 電子部品試験装置におけるソケットの電気特性相関取得方法、ハンドラ、ハンドラの制御方法および電子部品試験装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8013620B2 (en) * 2006-01-25 2011-09-06 Techwing Co. Ltd. Test handler and loading method thereof

Also Published As

Publication number Publication date
TWI303719B (ja) 2008-12-01
KR100922145B1 (ko) 2009-10-19
TW200720675A (en) 2007-06-01
KR20080004579A (ko) 2008-01-09
CN101176007A (zh) 2008-05-07
WO2007007835A1 (ja) 2007-01-18
US7859286B2 (en) 2010-12-28
US20090058439A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
WO2007007406A1 (ja) 電子部品試験装置
KR100910355B1 (ko) 전자 부품 시험 장치
JP4458447B2 (ja) 電子部品試験用保持装置、電子部品試験装置および電子部品試験方法
JP5186370B2 (ja) 電子部品移送方法および電子部品ハンドリング装置
JP2008514962A (ja) 半導体デバイスのテスト方法およびその装置
JP2004361399A (ja) トレイトランスファーユニット及びそれを備える自動テストハンドラ
JPH08248095A (ja) 検査装置
WO2008050443A1 (fr) Plateau client et appareil de test de composant électronique
JP2000088918A (ja) Icハンドラ
KR101032598B1 (ko) 테스트 핸들러 및 그 부품 이송방법
JP4934033B2 (ja) 電子部品試験装置
KR100402311B1 (ko) 반도체 소자 테스트 시스템과 그의 제어방법
WO2009116165A1 (ja) トレイ搬送装置およびそれを備えた電子部品試験装置
KR101262113B1 (ko) 다이 검사 지원용 핸들링시스템
JPH10340937A (ja) 複合icテストシステム
TWI811770B (zh) 輸送機構、測試裝置、檢知方法及其應用之作業機
KR102329230B1 (ko) 메모리 모듈 실장 테스트 장치
CN108273758B (zh) 电子部件分选系统
KR20210086181A (ko) 전자부품 테스트용 인라인 시스템
KR20200143064A (ko) 소자검사장치 및 그에 사용되는 소자가압툴
KR20080032523A (ko) Ic 소팅 핸들러 및 그 제어방법
WO2007135709A1 (ja) 部品搬送装置及び電子部品試験装置
JP2002311088A (ja) オートハンドラ及び半導体集積回路の予熱方法
KR20200057201A (ko) 전자부품 테스트용 핸들러
KR20080028614A (ko) 테스트 핸들러

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05765752

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP