WO2007004583A1 - 液体状態検知センサ - Google Patents

液体状態検知センサ Download PDF

Info

Publication number
WO2007004583A1
WO2007004583A1 PCT/JP2006/313139 JP2006313139W WO2007004583A1 WO 2007004583 A1 WO2007004583 A1 WO 2007004583A1 JP 2006313139 W JP2006313139 W JP 2006313139W WO 2007004583 A1 WO2007004583 A1 WO 2007004583A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
electrode
detection sensor
state detection
internal electrode
Prior art date
Application number
PCT/JP2006/313139
Other languages
English (en)
French (fr)
Inventor
Takeo Sasanuma
Yoshikuni Sato
Takashi Yamamoto
Original Assignee
Ngk Spark Plug Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ngk Spark Plug Co., Ltd. filed Critical Ngk Spark Plug Co., Ltd.
Priority to EP06767727.8A priority Critical patent/EP1906176B1/en
Priority to CN2006800239482A priority patent/CN101213443B/zh
Priority to US11/994,191 priority patent/US7712363B2/en
Priority to JP2007524038A priority patent/JP4838247B2/ja
Publication of WO2007004583A1 publication Critical patent/WO2007004583A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/268Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors mounting arrangements of probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/26Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields
    • G01F23/263Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors
    • G01F23/266Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring variations of capacity or inductance of capacitors or inductors arising from the presence of liquid or fluent solid material in the electric or electromagnetic fields by measuring variations in capacitance of capacitors measuring circuits therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/14Arrangements for the supply of substances, e.g. conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/206Adding periodically or continuously substances to exhaust gases for promoting purification, e.g. catalytic material in liquid form, NOx reducing agents

Definitions

  • the present invention relates to a liquid state detection sensor that detects the level of a liquid stored in a liquid storage container and at least the concentration of a specific component contained in the liquid.
  • a level sensor for detecting the level (liquid level) of a liquid has been known.
  • it is used for measurement of the remaining amount of automobile fuel or the like (for example, see Patent Document 1).
  • This capacitance-type liquid meter is formed between an elongated cylindrical electrode (outer cylinder electrode) made of a conductor and a cylindrical electrode (inner electrode) provided along the axial direction within the cylinder ( (Hereinafter referred to as “gap-to-gap”) a capacitor is constructed and its capacitance is measured.
  • the capacitance-type liquid meter is attached to a tank that stores liquid so that the axial direction of the outer cylinder electrode is in the vertical direction of the liquid level.
  • the capacitance of the part not immersed in the liquid depends on the dielectric constant of the air between the gears, and the capacitance of the part immersed in the liquid depends on the dielectric constant of the liquid filled between the gaps.
  • the measured capacitance increases as the liquid level increases. For this reason, it is possible to detect the liquid level based on the capacitance.
  • NOx selective reduction catalyst SCR
  • Nx nitrogen oxides
  • An aqueous solution is used.
  • a coating of an insulating film made of a dielectric is used. The capacitance of the portion not immersed in the liquid is the combined capacitance of the capacitance of the air layer between the gap and the capacitance of the insulating coating of the internal electrode.
  • the capacitance of the portion immersed in the liquid becomes the capacitance of the insulating coating because the conductive liquid has substantially the same potential as the outer cylinder electrode.
  • the sum of both capacitances is It is measured as the overall capacitance of the device. Since the thickness of the insulating coating is sufficiently small compared to the thickness of the air layer, the amount of change in capacitance due to the decrease in the portion not immersed in the liquid is the capacitance due to the increase in the immersed portion. The amount of change is sufficiently small. For this reason, the capacitance of the entire sensor is almost directly proportional to the increase or decrease of the capacitance of the portion immersed in the liquid, and the level can be detected from the magnitude of the measured capacitance.
  • a concentration sensor for detecting the concentration of the urea aqueous solution is provided in the urea water tank, and a warning or the like is issued according to the output of each of the level sensor and the concentration sensor (see, for example, Patent Document 2).
  • a concentration sensor one used for an indirectly heated concentration detection unit including a heating resistor and a temperature sensing element has been proposed (for example, see Patent Document 3).
  • Patent Document 1 JP-A-9 152368
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2002-371831
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-84026
  • the present invention has been made to solve the above problems, and a level detection unit for detecting the level of a liquid and a concentration detection unit for detecting the concentration of at least a specific component contained in the liquid are integrally connected.
  • An object of the present invention is to provide a liquid state detection sensor.
  • a liquid state detection sensor for detecting a state of a liquid contained in a storage container, and is provided in a longitudinal direction.
  • a liquid property detecting element for detecting at least the concentration of a specific component contained in the liquid, the tip of which is located closer to the tip than the tip in the longitudinal direction of the level detector. Liquid Characterized in that it comprises a Jo detecting element.
  • the liquid property detection element has a heat generation pattern that generates heat when energized, and A heating resistor pattern is located on the tip side of the longitudinal tip of the level detection unit, and based on the change in electrical characteristics of the heating resistor pattern, the concentration of the specific component contained in the liquid is determined. It is characterized by having a detection circuit for detection.
  • the liquid state detection sensor of the invention according to claim 3 is the configuration according to claim 2, wherein the liquid is a conductive liquid, and the liquid property detection element is the heating resistor.
  • a body pattern is embedded in an insulating ceramic substrate, and an outer surface of a portion of the insulating ceramic substrate on which the heating resistor pattern is disposed contacts the liquid.
  • the liquid state detection sensor of the invention according to claim 4 is the configuration according to claim 2 or 3.
  • the detection circuit energizes the heating resistor pattern for a certain period of time, and obtains a first corresponding value and a second corresponding value corresponding to the resistance value of the heating resistor pattern at different timings within the certain period of time. And acquiring the concentration of the specific component in the liquid based on the first corresponding value and the second corresponding value.
  • the liquid state detection sensor of the invention according to claim 5 is a cylindrical outer cylinder electrode made of a conductor.
  • the second electrode is an internal electrode made of a conductor provided along the longitudinal direction in the outer cylinder electrode.
  • the internal electrode has a cylindrical shape, and the internal electrode A lead wire electrically connected to the liquid property detecting element is passed through.
  • the liquid state detection sensor according to the invention of claim 7 is attached to the tip of the internal electrode. It is characterized by being held by an insulating holder.
  • the liquid is a conductive liquid
  • the holder is a tip of the internal electrode.
  • An insulating coating is formed on the surface of the internal electrode, mounted on the outside of the internal electrode via a seal ring, at least from the position of the seal ring with respect to the internal electrode to the outside of the rear end of the internal electrode. It is characterized by.
  • the liquid is a conductive liquid
  • the internal electrode has a cylindrical shape.
  • the holder is mounted via a seal ring inside the tip of the internal electrode, and at least the position of the seal ring relative to the internal electrode is extended from the rear end of the internal electrode to the outside of the internal electrode.
  • An insulating film is formed on the surface of the substrate.
  • the liquid state detection sensor according to the invention according to claim 10 has at least one bus bar shape on the outer peripheral surface of the outer cylinder electrode. One or a plurality of slits are formed. [0017]
  • the liquid state detection sensor of the invention according to claim 11 is provided between the outside of the internal electrode and the inside of the outer cylinder electrode. And a rubber support member interposed between the inner electrode and the inner electrode. The inner electrode is elastically supported on the inner side of the outer cylinder electrode by the support member.
  • the liquid state detection sensor of the invention according to claim 12 is characterized in that the liquid property detection element has an insulating property attached to the tip of the internal electrode.
  • the holder is held by a holder, and the support member further supports the holder so as not to move to the tip side.
  • the liquid state detection sensor of the invention according to claim 13 includes the liquid present on the front end side of the support member and the liquid present in the support member. In addition, a flow passage for allowing the liquid existing on the rear end side of the support member to flow therethrough is formed.
  • the flow path is provided with a groove on the outer surface of the support member.
  • the flow path is grooved on the inner surface of the support member. It is a feature.
  • the tip portion of the outer cylinder electrode has a radial direction to the liquid property detection element. It is characterized by being surrounded by the surroundings.
  • the liquid state detection sensor according to the invention according to claim 17 has a configuration in which a liquid circulation hole through which the liquid flows is formed. And an enclosing member that covers the liquid property detecting element, and the enclosing member is connected to the level detecting unit in an insulated state.
  • the liquid state detection sensor of the invention of claim 18 has a liquid flow hole through which the liquid flows, and the liquid property detection element.
  • the surrounding member is connected in an insulated state to the level detection, and the tip of the outer cylinder electrode is ahead of the tip of the surrounding member. It is located on the end side.
  • the liquid is an aqueous urea solution, and the specific component is urea. It is characterized by being.
  • the level detection unit for detecting the level of the liquid and the liquid property detection element for detecting the concentration of at least the specific component contained in the liquid are insulated. It is integrated in the state. Therefore, if two of these are provided separately, it is sufficient to provide one installation site for the storage container. Therefore, the labor for installing the installation part is reduced, and the airtightness between the installation part and the storage container is reduced. The structure for maintaining water and water tightness can be simplified. Further, since the sensor structure in which the level detection unit and the liquid property detection element are integrated is used, the level sensor and the concentration sensor are separately provided in the storage container as in the conventional case. The volume of the sensor occupying can be made relatively small.
  • the liquid property detection element has a heating resistor pattern, and the heating resistor pattern is positioned on the front end side of the front end of the level detection unit. is doing.
  • a heating resistor pattern in other words, a liquid property detecting element.
  • the tendency of temperature rise is different for liquids with different concentrations. Therefore, in the present invention, a detection circuit for detecting the degree of temperature rise of the heating resistor pattern is provided based on a change in electrical characteristics of the heating resistor pattern (for example, a change in resistance value).
  • the concentration of specific components contained in the liquid is detected. With such a configuration, the concentration of the specific component contained in the liquid can be detected well.
  • the liquid property detection element has a configuration in which the heating resistor pattern is embedded in an insulating ceramic substrate. As a result, even when the liquid is a conductive liquid, the outer surface of the insulating ceramic substrate can be brought into contact with the liquid, and the element itself can be directly immersed in the liquid. Therefore, it is possible to further increase the sensitivity for detecting the concentration of the specific component.
  • the detection circuit energizes the heating resistor pattern for a certain period of time, and sets the resistance value of the heating resistor pattern at different timings within the certain period of time.
  • the first corresponding value and the second corresponding value corresponding to each other are acquired, and the concentration of the specific component is detected based on the first corresponding value and the second corresponding value.
  • the first corresponding value and the second corresponding value in the present invention may be a value in the same unit corresponding to the resistance value of the heating resistor pattern.
  • the voltage value, current value, temperature Increase the conversion value S.
  • the difference value obtained by specifically subtracting both corresponding values can be used by using the ratio of both corresponding values. .
  • the first electrode is a cylindrical outer cylinder electrode
  • the second electrode is an internal electrode provided in the outer cylinder electrode.
  • the internal electrode is formed in a cylindrical shape, and a lead wire for the liquid property detection element is passed through the inside.
  • the internal electrode without providing a separate protective member for protecting the lead wire is also used as the lead wire protective member, so that the liquid state detection sensor can be effectively reduced in size and cost.
  • the liquid property detection element is held by an insulating holder and the holder is attached to the tip of the internal electrode, the liquid property can be easily obtained. It is possible to connect the detection element and the level detection unit in an insulated state.
  • the holder is attached to the tip of the internal electrode via the seal ring, and at least with respect to the internal electrode. If an insulating film is formed on the surface of the internal electrode from the position where the seal ring is disposed to the outside of the rear end, the surface of the internal electrode can be obtained even if the liquid property detecting element and the level detecting unit are immersed in the liquid.
  • the liquid can be circulated between the outer side and the inner side of the outer cylinder electrode through the slit provided in the outer cylinder electrode.
  • the change in the liquid level in the outer cylinder electrode can be made to follow the change in the liquid level.
  • the pressure generated by the volume expansion accompanying the freezing of the liquid can be released to the outside of the outer cylinder electrode through the slit. . For this reason, it is possible to suppress the deformation of the outer cylinder electrode and the inner electrode due to the freezing of the liquid.
  • the internal electrode is elastically supported on the inner side of the outer cylindrical electrode by a rubber support member, thereby generating internal stress due to vibration or the like.
  • the occurrence of resonance and the like can be suppressed, and when an insulating film is formed on the surface of the internal electrode or on the surface of the internal electrode, the risk of damage to the film can be reduced.
  • a holder for holding the liquid property detection element is supported by the support member. For this reason, when the holder is attached to the tip end portion of the internal electrode, the holder is prevented from falling off without being fixed by bonding, caulking, screwing, screwing, etc. it can.
  • the liquid existing on the front end side and the liquid existing on the rear end side of the support member are passed through the liquid flow passage formed in the support member. It is distributed. Then, when the flow passage is provided in the support member, as in the invention according to claim 14, a groove may be provided on the outer surface of the support member to secure the flow passage between the outer cylinder electrode, As in the invention according to claim 15, a groove is formed on the inner surface of the support member, A flow path may be secured between the partial electrodes.
  • the liquid property detection element is surrounded from the periphery in the radial direction by the outer cylindrical electrode having the tip portion extended.
  • the outer cylinder electrode serves as a barrier and protects the liquid property detecting element, so that it is possible to prevent the pressure accompanying the flow from being applied directly to the liquid property detecting element. This improves the durability of the liquid property detection element.
  • the concentration detection of the specific component can be stably performed.
  • the surroundings of the liquid property detection element are covered by the surrounding member in which the liquid circulation hole is formed.
  • the surrounding member acts as a barrier and protects the liquid property detecting element, so that it is difficult to directly apply the pressure accompanying the flow.
  • the liquid surrounding the liquid property detecting element does not change violently, the ability to continue to detect the concentration of a specific component stably can be achieved.
  • the liquid property detecting element is covered with the surrounding member in which the liquid circulation hole is formed, and the surrounding member is covered with the tip portion of the outer cylindrical electrode. It is configured as follows. Thereby, since both the front-end
  • FIG. 1 is a partially cutaway longitudinal sectional view of a liquid state detection sensor 100.
  • FIG. 1 is a partially cutaway longitudinal sectional view of a liquid state detection sensor 100.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the liquid property detection unit 30 of the liquid state detection sensor 100.
  • FIG. 3 is a schematic diagram showing a heater pattern 115 of the ceramic heater 110.
  • FIG. 4 is a side view of protector 130.
  • FIG. 5 is a bottom view of the protector 130.
  • FIG. 6 is a perspective view of the rubber bush 80 as viewed obliquely from below.
  • FIG. 7 is a side view of rubber bush 80.
  • FIG. 8 is a plan view of the rubber bush 80.
  • FIG. 9 is a cross-sectional view of the rubber bushing 80 as viewed in the direction of the arrow in the dashed line AA in FIG.
  • FIG. 10 is a bottom view of the liquid state detection sensor 100 when the liquid state detection sensor 100 shown in FIG. 1 is viewed from the front end side in the axis O direction.
  • FIG. 11 is an enlarged cross-sectional view near the water surface of a urea aqueous solution filled in the gap between the outer cylinder electrode 10 and the inner electrode 20.
  • FIG. 12 is an enlarged cross-sectional view of the vicinity of a liquid property detection unit 430 of a liquid state detection sensor 300 as a modified example.
  • FIG. 13 is a diagram showing a configuration of an internal electrode 400 of a liquid state detection sensor as a modified example.
  • FIG. 14 is a block diagram showing an electrical configuration of the liquid state detection sensor 100.
  • FIG. 1 is a partially cutaway longitudinal sectional view of the liquid state detection sensor 100.
  • FIG. 2 is an enlarged cross-sectional view of the vicinity of the liquid property detection unit 30 of the liquid state detection sensor 100.
  • FIG. 3 is a schematic diagram showing the heater pattern 115 of the ceramic heater 110.
  • FIG. 4 is a side view of the protector 130.
  • FIG. 5 is a bottom view of the protector 130.
  • FIG. 6 is a perspective view of the rubber bush 80 viewed obliquely downward.
  • FIG. 7 is a side view of the rubber bush 80.
  • FIG. 8 is a plan view of the rubber bush 80.
  • FIG. 9 is a cross-sectional view of the rubber bushing 80 as viewed from the direction of the arrows along the one-dot chain line AA in FIG.
  • FIG. 10 shows the liquid state detection sensor 100 shown in FIG.
  • FIG. 3 is a bottom view of the liquid state detection sensor 100 as viewed in the direction of the force axis O.
  • the longitudinal direction of the level detection unit 70 (capacitor composed of the outer cylinder electrode 10 and the internal electrode 20) is the axis O direction
  • the side where the liquid property detection unit 30 is provided is the tip side
  • the side where the mounting portion 40 is provided is the rear end side.
  • the liquid state detection sensor 100 of the present embodiment is configured so that the state of the urea aqueous solution used for the reduction of nitrogen oxides (Nx) contained in the exhaust gas of the diesel vehicle, that is, the level of the urea aqueous solution.
  • This is a sensor for detecting the concentration of urea as a specific component contained in the aqueous urea solution.
  • the liquid state detection sensor 100 includes a cylindrical outer cylinder electrode 10 and a cylinder provided inside the outer cylinder electrode 10 along the direction of the axis O of the outer cylinder electrode 10.
  • a urea water tank as a container for containing an aqueous urea solution comprises a level detection unit 70 composed of a cylindrical internal electrode 20, a liquid property detection unit 30 provided on the tip side of the internal electrode 20, and a liquid state detection sensor 100. And an attachment portion 40 for attachment to (not shown).
  • the outer cylinder electrode 10 is made of a metal material and has a long and thin cylindrical shape extending in the direction of the axis O.
  • a plurality of narrow slits 15 are intermittently opened along each bus bar on three bus bars that are equally spaced in the circumferential direction on the outer periphery of the outer cylindrical electrode 10. Further, at the distal end portion 11 of the outer cylinder electrode 10, an opening portion 16 for preventing the rubber bush 80 interposed between the inner electrode 20 (described later) from coming off on each bus bar where the slit 15 is formed. Are provided. Furthermore, one air vent hole 19 is formed on a bus bar different from each bus bar where the slits 15 are formed at a position close to the base end portion 12 on the rear end side of the outer cylinder electrode 10.
  • the distal end portion 11 of the outer cylindrical electrode 10 extends further to the distal end side in the direction of the axis O from the position of the opening portion 16 so as to surround the radial direction periphery of the ceramic heater 110 of the liquid property detection portion 30 described later. .
  • the distal end portion 11 also surrounds the circumference of the protector 130 covering the ceramic heater 110 in the radial direction, and extends so that its own distal end is located on the distal end side with respect to the distal end of the protector 130. And the front-end
  • the outer cylindrical electrode 10 is welded in a state where the base end portion 12 is engaged with the outer periphery of the electrode support portion 41 of the metal mounting portion 40.
  • the mounting part 40 is placed in the urea water tank (not shown) to check the liquid state.
  • An attachment hole (not shown) for functioning as a pedestal for fixing the intelligent sensor 100 and through which the attachment bolt is inserted is formed in the collar portion 42.
  • a relay is provided for electrical connection between the liquid state detection sensor 100 and an external circuit (not shown).
  • a housing portion 43 for housing the circuit board 60 and the like is formed.
  • the mounting portion 40 is connected to the circuit board 60 so as to have the same potential as a wiring portion (not shown) that forms the ground potential. Therefore, the outer cylindrical electrode 10 is grounded via the mounting portion 40.
  • the circuit board 60 is accommodated in the mounting portion 40, and is specifically placed on a substrate placement portion (not shown) protruding from the four corners of the inner wall surface of the accommodation portion 43.
  • the housing part 43 is covered and protected by a cover 45, and the cover 45 is fixed to the flange part 42.
  • a connector 62 is fixed to the side surface of the cover 45, and a connection terminal (not shown) of the connector 62 and a pattern on the circuit board 60 are connected by a wiring cable 61.
  • the circuit board 60 and an external circuit (not shown) are connected via the connector 62.
  • the internal electrode 20 of the present embodiment is made of a metal material having a long and thin cylindrical shape that extends in the direction of the axis O.
  • an insulating film 23 made of a fluorine resin such as PTFE, PFA, ETFE, an epoxy resin, a polyimide resin or the like is formed on the outer peripheral surface of the internal electrode 20, an insulating film 23 made of a fluorine resin such as PTFE, PFA, ETFE, an epoxy resin, a polyimide resin or the like is formed.
  • the insulating coating 23 is formed in the form of a resin coating layer by applying such a resin to the outer surface of the internal electrode 20 by dating or electrostatic powder coating and heat-treating it.
  • a level detection unit 70 is formed by forming a capacitor whose capacitance changes according to the level of the urea aqueous solution between the internal electrode 20 and the outer cylinder electrode 10.
  • the insulating coating 23 of 0 is formed at least from the position of contact with the seal ring 140 described later to the position of contact with the O-ring 54, and the inner electrode 20 does not contact the urea aqueous solution in the outer cylindrical electrode 10. As described above, the outer peripheral surface of the internal electrode 20 is coated.
  • a pipe guide 55 and an inner case 50 for fixing the internal electrode 20 to the mounting portion 40 are engaged with the base end portion 22 of the internal electrode 20 on the rear end side in the direction of the axis O.
  • the pipe guide 55 is an annular guide member joined near the end edge of the base end portion 22 of the internal electrode 20.
  • the case 50 is a flanged cylindrical resin member that positions and supports the inner electrode 20 so that the inner electrode 20 and the outer cylinder electrode 10 are reliably insulated, and the tip side of the electrode supporting portion 41 of the mounting portion 40 Engage with hole 46.
  • the inner case 50 is formed with a flange portion 51 that protrudes radially outward.
  • the hole of the electrode support portion 41 from the housing portion 43 side is formed. 46 is passed on. Then, the flange portion 51 abuts against the bottom surface in the housing portion 43, so that the inner case 50 is prevented from passing through the hole 46. Further, although the internal electrode 20 is passed through the inner case 50 from the accommodating portion 43 side, the pipe guide 55 is brought into contact with the flange portion 51, so that the inner electrode 20 is prevented from falling off the inner case 50.
  • an O-ring 53 and an O-ring 54 are provided on the outer periphery and inner periphery of the inner case 50, respectively.
  • the O-ring 53 seals the gap between the outer periphery of the inner case 50 and the hole 46 of the mounting portion 40
  • the ⁇ ring 54 is between the inner periphery of the inner case 50 and the outer periphery of the base end portion 22 of the internal electrode 20. The gap between them is sealed.
  • the pipe guide 55 is pressed against the flange portion 51 of the inner case 50 by the two pressing plates 56, 57.
  • the insulating pressing plate 57 is fixed in the accommodating portion 43 with screws 58 in a state where the pressing plate 56 is sandwiched between the insulating guide plate 55 and the pipe guide 55 is pressed.
  • the internal electrode 20 joined to the pipe guide 55 is fixed to the electrode support portion 41.
  • a hole 59 is opened in the center of each of the holding plates 56 and 57, and two lead wires 90 (in FIG. 1) that make electrical connection between the electrode lead wire 52 of the internal electrode 20 and a ceramic heater 110 described later.
  • a two-core cable 91 containing the lead wire 90 is passed through, and each is electrically connected to the pattern on the circuit board 60.
  • the electrode (not shown) on the ground side of the circuit board 60 is connected to the mounting portion 40, and thus the outer cylinder welded to the mounting portion 40. Electrode 10 is electrically connected to the ground side.
  • the liquid property detection unit 30 is connected to the tip portion 21 of the internal electrode 20.
  • the liquid property detecting unit 30 supports the ceramic heater 110 as a liquid property detecting element for detecting the concentration of urea in the urea aqueous solution and the ceramic heater 110 in the present embodiment, and the internal electrode.
  • a holder 120 made of an insulating resin to be attached to the tip portion 21 of the 20 and a protector 130 that covers and protects the periphery of the ceramic heater 110 exposed by the holder 120 force.
  • the ceramic heater 110 is formed by forming a heater pattern 115 mainly composed of Pt on a plate-shaped ceramic base 111 made of an insulating ceramic (specifically alumina) force.
  • the heater pattern 115 is embedded in a state of being sandwiched between ceramic substrates (not shown).
  • the heating resistor pattern 114 generates heat at the heating resistor pattern 114 mainly during heating by making the cross-sectional area of the pattern that makes up the heating resistor pattern 114 smaller than that of the lead parts 112 and 113 that are the two poles for voltage application. Has been done.
  • the ceramic heater 110 corresponds to the “liquid property detection element” in the present invention.
  • the holder 120 that supports the ceramic heater 110 is configured to cover the distal end portion 21 of the internal electrode 20 with an outer peripheral force.
  • the holder 120 has two cylindrical portions 121 and 122 having different outer diameters, and the cylindrical portions 121 and 122 are connected by a tapered step portion 123. And the ridge angle part of the cylinder end of the small diameter cylindrical part 121 side of the holder 120 is chamfered.
  • the ceramic heater 110 is bonded in a state in which the portion where the heating resistor pattern 114 is disposed is exposed while the lead portions 112 and 113 (see FIG. 3) in the longitudinal direction are inserted into the small-diameter cylindrical portion 121. It is fixed to the holder 120 by fixing members 125 and 126 made of an agent or the like.
  • the inner diameter of the large-diameter cylindrical portion 122 is configured to be larger than the outer diameter of the distal end portion 21 of the internal electrode 20.
  • the seal ring 140 is interposed between the inner peripheral surface of the cylindrical portion 122 and the outer peripheral surface of the internal electrode 20.
  • the insulating coating 23 is formed on the outer peripheral surface of the internal electrode 20 from the distal end side to the proximal end portion 22 on the rear end side from the position where the seal ring 140 is disposed at the distal end portion 21 on the distal end side of the internal electrode 20. Even if the level detector 70 is immersed in the urea aqueous solution in the urea water tank (not shown), the internal electrode 20 is not in direct contact with the urea aqueous solution. Absent.
  • the core wires of the two lead wires 90 of the cable 91 are joined to the connector 119 of the ceramic heater 110 by caulking or soldering, respectively. Further, the insulating protective member 95 covers and protects the connector 119 and the lead wire 90 together with the joint portion.
  • the two lead wires 90 are passed through the cylindrical internal electrode 20 and connected to the circuit board 60.
  • the protector 130 shown in FIGS. 4 and 5 is a metal protective member formed in a bottomed cylindrical shape. At the end of the opening side, there is formed a flange 131 extending obliquely with respect to the direction of the axis O, and the ridge angle portion between the bottom 132 and the trunk 133 is chamfered into a curved surface to increase rigidity. ing.
  • a liquid circulation hole 135 that is opened from the bottom portion 132 to the trunk portion 133 and an opening that extends from the trunk portion 133 to the flange portion 131 are opened. Liquid circulation holes 136 are formed respectively. At the bottom 132, the liquid flow holes 135 on the three bus bars are not connected to each other.
  • the protector 130 corresponds to the “enclosing member” in the present invention.
  • the protector 130 has an inner periphery on the opening side fitted to the outer periphery of the small-diameter cylindrical portion 121 of the holder 120, and the flange portion 131 of the step portion 123 of the holder 120 Engage along the slope.
  • the ceramic heater 110 where the portion where the heating resistor pattern 114 is disposed is exposed from the tip of the holder 120 is accommodated in the protector 130, and the portion near the tip of the ceramic heater 110 is directly immersed in the liquid. Become.
  • the liquid property detection unit 30 having such a configuration is connected to the level detection unit 70 in an insulated state by attaching the holder 120 to the distal end portion 21 of the internal electrode 20.
  • the liquid property detection unit 30 is connected to the outer cylinder electrode 10 by a rubber rubber bush 80 interposed between the inner side of the outer cylinder electrode 10 and the outer side of the inner electrode 20 together with the tip 21 of the inner electrode 20. Positioning is supported within.
  • the rubber bush 80 has a cylindrical shape, and each of the outer cylinder electrodes 10 is arranged on three bus bars that are equally spaced in the circumferential direction on the outer peripheral surface 89 thereof.
  • Protrusions 87 are provided which respectively engage with the openings 16 and function as a prevention of disconnection.
  • a plurality of (in this embodiment, five) groove portions 88 are provided between the respective protrusions 87 in the circumferential direction of the outer peripheral surface 89 along the axis O direction.
  • the rubber bush 80 corresponds to the “support member” in the present invention.
  • the inner peripheral surface of the rubber bush 80 has two inner peripheral surfaces 81, 82 having different inner diameters formed so that the outer peripheral surface of the holder 120 is engaged with each other, and a tapered shape connecting the two. And an inner peripheral surface 83. Then, on the inner peripheral surface 8:! To 83, the position corresponding to each bus bar on the outer peripheral surface 89 on which the protrusion 87 is formed is located from the small inner diameter surface 81 side to the larger inner diameter surface 82 side. On the other hand, the groove portions 84 that are continuous on the inner peripheral surfaces 81, 83, 82 are respectively formed. The formation site of the small-diameter inner peripheral surface 81 of the rubber bush 80 is formed thicker than the formation site of the large-diameter inner peripheral surface 82.
  • the groove portion on the inner peripheral surface 81-83 side of the rubber bush 80 is provided.
  • the formation position of the liquid flow hole 135 of the protector 130 is aligned and assembled at the formation position of 84.
  • the internal electrode 20 is pressed toward the front end side in the axis O direction by the two pressing plates 56 and 57 through the pipe guide 55 (see FIG. 1).
  • the stepped portion 123 force of the holder 120 attached to the tip 21 of the internal electrode 20 is pressed against the inner peripheral surface 83 of the rubber bush 80.
  • the protector 130 is elastically held by the flange 131 of the protector 130 being sandwiched between the inner peripheral surface 83 of the rubber bush 80 and the step 123 of the hono-redder 120.
  • the holder 120 and the internal electrode 20 are elastically supported on the inner side of the outer cylinder electrode 10 by the rubber bush 80 positioned and held by the outer cylinder electrode 10.
  • the outer cylinder electrode 10 When the liquid state detection sensor 100 is attached to and used in a urea water tank (not shown), the outer cylinder electrode 10 has a distal end side in the direction of the axis O with respect to the rubber bush 80 as shown in FIG.
  • the urea aqueous solution flows into the B part and the C part on the rear end side through the opening 15 and the slit 15 at the most distal end of the outer cylinder electrode 10 in the axis line O direction.
  • the D part in the protector 130 contains liquid Aqueous urea solution flows from section B through flow holes 135 and 136.
  • the urea aqueous solution that has flowed into the B part and the C part is the flow path 85 formed by the groove part 88 of the rubber bush 80 and the inner peripheral surface of the outer cylinder electrode 10, or the outer peripheral surface of the groove part 84 and the holder 120. It is circulated through a flow passage 86 formed by Further, the flow passage 86 is continuous with the liquid circulation hole 136 (see FIG. 4) of the protector 130 arranged so as to be aligned with the formation position of the groove 84 (see FIG. 10). As a result, the aqueous urea solution is circulated between the B part and the C part and between the D part and the C part via the flow passages 85 and 86.
  • the ceramic heater 110 forming the liquid property detection element is insulated from the level detection unit 70 via the holder 120 and the rubber bush 80 made of an insulating resin. Linked in state. As shown in FIG. 2, the tip of the ceramic heater 110 (specifically, the portion where the heating resistor pattern 114 is disposed) is the tip in the longitudinal direction of the level detector 70 (in this embodiment, This corresponds to the end of the region where the seal ring 140 and the insulating coating 23 formed on the internal electrode 20 are in contact with each other). Thereby, in the liquid state detection sensor 100 of the present embodiment, the urea concentration of the urea aqueous solution can be reliably detected while the level of the aqueous urea solution does not fall below the level detection unit 70.
  • FIG. 14 is a block diagram showing an electrical configuration of the liquid state detection sensor 100.
  • the liquid state detection sensor 100 is attached to the urea water tank 98 via the attachment part 40, and includes a level detection part 70 having a pair of electrodes (the outer cylinder electrode 10 and the inner electrode 20).
  • the liquid property detection unit 30 including the ceramic heater 110 provided with the heating resistor pattern 114 is immersed in the urea aqueous solution.
  • the liquid state detection sensor 100 includes a microcomputer 220 mounted on a circuit board 60, a level detection circuit unit 250 that controls the level detection unit 70, and a liquid property detection circuit unit 280 that controls the liquid property detection unit 30.
  • ECU An input / output circuit unit 290 that communicates with the computer is connected.
  • the input / output circuit unit 290 controls the communication protocol in order to input and output signals between the liquid property detection sensor 100 and the ECU. Further, the level detection circuit unit 250 applies an AC voltage between the outer cylinder electrode 10 and the internal electrode 20 of the level detection unit 70 based on an instruction from the microcomputer 220, and flows through the capacitor forming the level detection unit 70. This is a circuit unit that converts the current to voltage and outputs the voltage signal to the microcomputer 220.
  • the liquid property detection circuit unit 280 applies a constant current to the ceramic heater 110 of the liquid property detection unit 30 based on an instruction from the microcomputer 220, and generates a detection voltage generated at both ends of the heating resistor pattern 114. Is a circuit unit that outputs the signal.
  • the liquid property detection circuit unit 280 includes a differential amplifier circuit unit 230, a constant current output unit 240, and a switch 260.
  • the constant current output unit 240 outputs a constant current that flows through the heating resistor pattern 114.
  • the switch 260 is provided on the energization path to the heating resistor pattern 114, and opens and closes (ON / OFF) according to the instruction of the microcomputer 220.
  • the differential amplifier circuit unit 280 outputs a difference between the potential Pin appearing at one end of the heating resistor pattern 114 and Pout appearing at the other end to the microcomputer 220 as a detection voltage.
  • FIG. 11 is an enlarged cross-sectional view of the vicinity of the water surface of the urea aqueous solution filled in the gap between the outer cylinder electrode 10 and the inner electrode 20.
  • the liquid state detection sensor 100 is assembled in a urea water tank (not shown) containing a urea aqueous solution in a state where the front end side of the outer cylinder electrode 10 and the inner electrode 20 faces the bottom wall side.
  • the level detection unit 70 of the liquid state detection sensor 100 uses the displacement direction of the urea aqueous solution whose volume changes in the urea water tank (not shown) (the level of the urea aqueous solution level) as the axis O direction, and the outer cylinder electrode. 10 and the internal electrode 20 are assembled to a urea water tank (not shown) so that the tip side of the urea aqueous solution has a small volume (low level side). Then, the capacitance between the gap between the outer cylinder electrode 10 and the inner electrode 20 is measured, and the urine present between the two is measured. Detects to what level the aqueous solution is present in the direction of the axis ⁇
  • the distance between the portions where the potential difference occurs between the gaps is the distance between the inner peripheral surface of the outer cylindrical electrode 10 and the insulating coating 23.
  • the distance between the gaps where the urea aqueous solution is filled and the potential difference between the gaps is such that the potential of the outer cylinder electrode 10 and the urea aqueous solution becomes almost equal because the urea aqueous solution shows conductivity.
  • the distance G corresponds to the thickness of the insulating coating 23.
  • the capacitance between gaps in a portion filled with urea aqueous solution is the capacitance of a capacitor in which the distance between the electrodes is F and air is a dielectric (non-conductor). It can be said that this is the combined capacitance of a capacitor in which a distance between electrodes is G and a capacitor having an insulating coating 23 as a dielectric is connected in series.
  • the capacitance between the gaps in the portion filled with the aqueous urea solution can be said to be the capacitance of a capacitor having a distance G between the electrodes and the insulating coating 23 as a dielectric. Then, the capacitance of the capacitor in which both are connected in parallel is measured as the capacitance of the entire level detection unit 70.
  • the capacitance is proportional to the level of the urea aqueous solution.
  • the level of the urea aqueous solution is measured by the microcomputer 220 via the level detection circuit 250 described above, and the obtained level information signal is output from the input / output circuit unit 290 (not shown). Is output to the ECU. Then, the ECU determines whether or not the level (remaining amount) of the urea aqueous solution is appropriate based on the input level information signal. If the level is not appropriate, the ECU performs a process of notifying the driver accordingly. Do as appropriate. [0080] Next, the principle of detecting the concentration of urea as a specific component contained in the urea aqueous solution in the ceramic heater 110 constituting the liquid property detection unit 30 will be described.
  • the thermal conductivity of a liquid varies depending on the concentration of a specific component contained in the liquid.
  • the rate of temperature rise differs for liquids with different concentrations.
  • the resistance value of the heating resistor increases in proportion to the increase in the temperature around the heating resistor. From this, when the heating resistor is used and the surrounding liquid is heated for a certain period of time, if the degree of change in the resistance value of the heating resistor is obtained, the degree of temperature change in the surrounding liquid can be obtained. Concentration can be obtained.
  • the liquid state detection sensor 100 is configured such that a constant current flows through the heating resistor pattern 114 for a certain period of time. A detection voltage Vd is generated accordingly. The detection voltage Vd is measured by the differential amplifier circuit unit 230 as the difference between the potential Pin appearing at one end of the heating resistor pattern 114 and the potential Pout appearing at the other end as described above.
  • the switch 260 is closed according to an instruction from the microcomputer 220 and a constant current starts to flow through the heating resistor pattern 114.
  • the detection voltage Vd immediately after the start of energization of the heating resistor pattern 114 is acquired by the microcomputer 220 via the differential amplifier circuit unit 230, and after a certain time (for example, after 700 ms), the detection voltage Vd is again detected.
  • the acquisition is performed by the microcomputer 220.
  • the microcomputer 220 calculates the concentration of the urea aqueous solution using the difference value between the two detection voltages Vd as a parameter.
  • the switch 260 is opened based on the instruction from the micro computer 220, and the energization to the heating resistor pattern 114 is interrupted. Then, the concentration information signal finally obtained by the microcomputer 220 is output from the input / output circuit unit 290 to the ECU.
  • the ECU judges whether or not the concentration of the urea aqueous solution is within the appropriate range based on the input concentration information signal, and appropriately performs a process of notifying the driver if it is not within the appropriate range.
  • the present invention can be variously modified.
  • a seal ring 340 may be interposed between the cylindrical portion 352 of the holder 350 to be inserted into the distal end portion 321 to secure the water tightness inside the internal electrode 320.
  • the insulating coating 323 is formed so as to be folded back from the outer peripheral side to the inner peripheral side of the internal electrode 320 at the tip 321 of the internal electrode 320.
  • the internal electrode 320 can be obtained even if the level detection unit 70 is immersed in the urea aqueous solution. Does not come in direct contact with aqueous urea.
  • one electrode of the level detection unit 470 and the liquid property detection unit 430 are formed on the same insulating ceramic sheet 410 as an electrode pattern, which is solid or solid.
  • An internal electrode 400 wound around a hollow, rod-shaped support member 420 may be used.
  • Such an internal electrode 400 can be manufactured as follows.
  • the electrode pattern of the inner electrode part 415 constituting the level detection part 470 is formed to have a wide area while leaving a part where the liquid property detection part 430 is arranged on one end side in the longitudinal direction on the rectangular insulating ceramic sheet 410.
  • electrode patterns to be the lead portions 411 and 412 of the liquid property detection unit 430 are formed along the longitudinal direction of the insulating ceramic sheet 410 so as not to contact the inner electrode unit 415.
  • an electrode pattern to be a heating resistor 413 that connects the lead parts 411 and 412 is formed.
  • the insulating ceramic sheet 410 on which these electrode patterns are formed is wound around the support member 420.
  • the support member 420 may be a conductive metal rod. Further, in the case of the insulating support member 420, it may be wound toward the support member 420 side without providing an electrode pattern.
  • the internal electrode 400 is baked and assembled into the outer cylinder electrode 10 of the present embodiment, whereby the level detection unit 470 can be configured between the outer cylinder electrode 10 and the inner electrode part 415. Then, the liquid property detection unit 430 is connected and disposed at the tip of the internal electrode 400 while being isolated from the level detection unit 470.
  • the heating resistor pattern 114 of the ceramic heater 110 and the lead portions 112 and 113 are made of the same material and have different pattern cross-sectional areas. Force S to generate heat S, each material may be different
  • the voltage value corresponding to the resistance value of the heating resistor pattern 114 of the ceramic heater 110 is used, and the urea concentration in the urea aqueous solution is obtained by referring to the table.
  • the concentration of the aqueous urea solution may be calculated by substituting the above into a calculation formula that represents the above relationship obtained in advance through experiments or the like.
  • the insulating coating 23 formed on the internal electrode 20 a material which is not easily corroded in accordance with the characteristics of the liquid (for example, oxidation-reduction properties) may be selected.
  • the insulating film was formed by electrostatic powder coating when dated, but if the air layer is not mixed with the internal electrode, the insulating film can be formed using an insulating tube. You can do it.
  • the outer cylinder electrode 10 and the inner electrode 20 may be formed using a force conductive resin formed of metal.
  • the groove portions 84 and 88 of the rubber bush 80 may be formed as through-holes that penetrate through a thick portion provided in a groove shape on the inner peripheral side or outer peripheral side of the rubber bush 80. Further, the rubber bush 80 may be formed by omitting one of the grooves 84 and 88. Further, although the outer cylindrical electrode 10 and the inner electrode 20 are cylindrical, they may be rectangular.
  • the ceramic heater 110 as a liquid property detecting element is not limited to the concentration detection as long as it detects at least the concentration of a specific component (for example, urea) contained in the liquid. May be used to detect the detection of the lower limit level.
  • a specific component for example, urea
  • the magnitude of the resistance value of the heating resistor pattern 114 immediately after the constant current starts to flow through the heating resistor pattern 114 (more details)
  • the temperature of the liquid can be detected based on the magnitude of the detection voltage Vd generated at both ends of the heating resistor pattern 114. Since the resistance value immediately after energization of the exothermic antibody pattern 114 shows a value corresponding to the temperature of the liquid, the temperature of the liquid can be detected by such a method. Also, since the behavior of the resistance value change of the heating resistor pattern 114 differs greatly between when the liquid is present around the ceramic heater 110 and when it is not present, the lower limit level of the liquid is utilized by utilizing this difference. It is also possible to detect this.
  • the present invention can be applied to a liquid state detection sensor in which a sensor for detecting a liquid level and a sensor for detecting a concentration are integrally connected.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

 液体のレベルを検知するレベル検知部と液体に含まれる特定成分の濃度を検知する濃度検知部を一体化した液体状態検知センサを提供する。  尿素水溶液のレベルと尿素濃度を測定できる液体状態検知センサ100は、レベル検知部70と液体性状検知部30が絶縁した状態で連結される。レベル検知部70をなす外筒電極10と内部電極20はコンデンサを形成し、両者間に存在する尿素水溶液のレベルに応じて変化する静電容量に基づきレベル検知を行う。内部電極20の先端部21にはセラミックヒータ110を保持するホルダ120が装着され、ホルダ120がゴムブッシュ80により外筒電極10の先端部11内で支持される。そして、尿素濃度は、セラミックヒータ110に設けられる発熱抵抗体パターンに一定時間通電し、このとき得られる発熱抵抗体パターンの抵抗値に対応した電圧値に基づき、回路基板60の液体性状検知回路部にて求められる。

Description

明 細 書
液体状態検知センサ
技術分野
[0001] 本発明は、液体収容容器内に収容される液体のレベルと、少なくともその液体に 含まれる特定成分の濃度とを検知する液体状態検知センサに関するものである。 背景技術
[0002] 従来、液体の状態を検知するセンサの一例として、例えば液体のレベル (液位)を 検知するためのレベルセンサが知られており、その一例としての静電容量型液量計 は、例えば自動車の燃料などの残量の測定に用いられる(例えば、特許文献 1参照。
)。この静電容量型液量計は、導体からなる細長い筒状の電極 (外筒電極)と、その 筒内にて軸線方向に沿って設けられた筒状の電極(内部電極)との間(以下、「ギヤッ プ間」という。)でコンデンサを構成し、その静電容量を測定するものである。静電容 量型液量計は、外筒電極の軸線方向が液体のレベルの上下方向となるように、液体 を収容するタンクに取り付けられる。液体に浸漬していない部分の静電容量はギヤッ プ間の空気の誘電率に依存し、液体に浸漬した部分の静電容量がギャップ間に満 たされた液体の誘電率に依存することから、液体のレベルが高くなるに従って測定さ れる静電容量が大きくなる。このため、静電容量に基づき、液体のレベルを検知する こと力 sできる。
[0003] 近年、例えばディーゼル自動車から排出される窒素酸化物(N〇x)を無害なガスに 還元する排ガス浄化装置に NOx選択還元触媒(SCR)を用いる場合があるが、その 還元剤として尿素水溶液が用いられる。この尿素水溶液のように導電性を示す液体 のレベルを測定する場合、上記レベルセンサの外筒電極と内部電極との間でのショ ートの防止のために、内部電極の外表面上には誘電体からなる絶縁性の被膜をコー ティングしたものが用いられる。液体に浸漬していない部分の静電容量は、ギャップ 間の空気層の静電容量と内部電極の絶縁性被膜の静電容量との合成容量となる。 一方、液体に浸漬している部分の静電容量は、導電性の液体が外筒電極と略同電 位となるため、絶縁性被膜の静電容量となる。そして両者の静電容量の合計が、セン サ全体の静電容量として測定される。空気層の厚みにくらべ絶縁性被膜の厚みは十 分に小さいので、液体に浸漬していない部分の減少に伴う静電容量の変化量は、浸 漬している部分の増加に伴う静電容量の変化量と比べ十分に小さい。このため、セン サ全体の静電容量は液体に浸漬している部分の静電容量の増減にほぼ正比例する こととなり、測定される静電容量の大小からレベルを検知することができる。
[0004] このようなレベルセンサを尿素水タンクに組み付けて使用すれば、尿素水溶液の残 量が少なレ、場合に警告等を発し、排ガス浄化装置による窒素酸化物の還元が適切 に行えなくなつていることを運転者に知らせることができる。ところで、尿素水溶液は、 窒素酸化物を効果的に還元するにあたって、適正な濃度 (溶液中に含まれる尿素濃 度)の範囲があることが知られている。そのため、尿素水溶液の残量が適量であって も、経時変化等によって尿素水溶液の濃度が適正範囲から逸脱してしまった場合や 適正な尿素水溶液以外の液体 (軽油や水)が尿素水タンクに収容された場合には、 窒素酸化物の還元を良好に行えない虞がある。そこで、尿素水タンクに尿素水溶液 の濃度を検知する濃度センサを併設し、レベルセンサおよび濃度センサのそれぞれ の出力に応じて警告等を発することが提案されている (例えば、特許文献 2参照。)。 なお、このような濃度センサとして、発熱抵抗体及び感温体を含んでなる傍熱型濃度 検出部に用いたものが提案されている(例えば、特許文献 3参照。)。
特許文献 1:特開平 9 152368号公報
特許文献 2 :特開 2002— 371831号公報
特許文献 3:特開 2005— 84026号公報
発明の開示
発明が解決しょうとする課題
[0005] し力しながら、特許文献 2のように、尿素水タンクにレベルセンサと濃度センサとを 別体で設けた場合、尿素水タンクにそれぞれの取り付け位置を設ける必要が生じたり 、両センサの占める容積の影響により尿素水タンクを大きくしなければ、尿素水溶液 の収容量を増やすことができないという問題があった。また、特許文献 1、特許文献 3 に示された比較的容積の大きいレベルセンサと濃度センサとを尿素水タンク内に別 体で取り付けた場合、尿素水タンク内に占めるセンサの熱容量が大きくなつてしまう ため、尿素水溶液の凍結時に解凍するまでの時間がかかり、液体の状態検知を迅速 に行えないという問題があった。
[0006] 本発明は上記問題点を解決するためになされたものであり、液体のレベルを検知 するレベル検知部と少なくとも液体に含まれる特定成分の濃度を検知する濃度検知 部とを一体に連結した液体状態検知センサを提供することを目的とする。
課題を解決するための手段
[0007] 上記目的を達成するために、請求項 1に係る発明の液体状態検知センサは、収 容容器内に収容される液体の状態を検知するための液体状態検知センサであって、 長手方向に延びる第 1電極および第 2電極を有し、前記第 1電極と前記第 2電極との 間で前記収容容器内に収容される前記液体のレベルに応じて静電容量が変化する コンデンサを形成してなるレベル検知部と、前記レベル検知部の前記長手方向の後 端側に位置し、前記収容容器に前記液体状態検知センサを取り付けるための取付 部と、前記レベル検知部に絶縁された状態で連結されると共に、少なくとも前記液体 に含まれる特定成分の濃度を検出するための液体性状検出素子であって、 自身の 先端が前記レベル検知部の前記長手方向の先端よりも先端側に位置してなる液体 性状検出素子とを備えていることを特徴とする。
[0008] また、請求項 2に係る発明の液体状態検知センサは、請求項 1に記載の発明の構 成に加え、前記液体性状検出素子は、通電により発熱する発熱パターンを有すると 共に、前記発熱抵抗体パターンが前記レベル検知部の前記長手方向の先端よりも 先端側に位置しており、この発熱抵抗体パターンの電気的特性の変化に基づき、前 記液体に含まれる特定成分の濃度を検出する検出回路を備えていることを特徴とす る。
[0009] また、請求項 3に係る発明の液体状態検知センサは、請求項 2に記載の構成に加 え、前記液体は導電性の液体であって、前記液体性状検出素子は、前記発熱抵抗 体パターンを絶縁性セラミック基体内に埋設させた構成をなし、前記絶縁性セラミック 基体のうち前記発熱抵抗体パターンが配置された部位の外表面が前記液体に接触 することを特徴とする。
[0010] また、請求項 4に係る発明の液体状態検知センサは、請求項 2又は 3に記載の構成 に加え、前記検出回路は、前記発熱抵抗体パターンを一定時間通電すると共に、前 記一定時間内の異なるタイミングにおける前記発熱抵抗体パターンの抵抗値に対応 する第 1対応値及び第 2対応値を取得し、前記第 1対応値及び第 2対応値に基づき 前記液体中の特定成分の濃度を検出することを特徴とする。
[0011] また、請求項 5に係る発明の液体状態検知センサは、請求項 1乃至 4のいずれかに 記載の発明の構成に加え、前記第 1電極は、導体からなる筒状の外筒電極である一 方、前記第 2電極は、前記外筒電極内でその長手方向に沿って設けられた導体から なる内部電極であることを特徴とする。
[0012] また、請求項 6に係る発明の液体状態検知センサは、請求項 5に記載の発明の構 成に加え、前記内部電極は筒状をなしており、前記内部電極の内側に、前記液体性 状検出素子と電気的に接続されるリード線が揷通されていることを特徴とする。
[0013] また、請求項 7に係る発明の液体状態検知センサは、請求項 5または 6に記載の発 明の構成に加え、前記液体性状検出素子は、前記内部電極の先端部に装着される 絶縁性のホルダに保持されていることを特徴とする。
[0014] また、請求項 8に係る発明の液体状態検知センサは、請求項 7に記載の発明の構 成に加え、前記液体は導電性の液体であって、前記ホルダは前記内部電極の先端 部外側にてシールリングを介して装着され、少なくとも前記内部電極に対する前記シ ールリングの配置位置から前記内部電極の後端部外側にかけて、前記内部電極の 表面上に絶縁性被膜が形成されていることを特徴とする。
[0015] また、請求項 9に係る発明の液体状態検知センサは、請求項 7に記載の発明の構 成に加え、前記液体は導電性の液体であって、前記内部電極は筒状をなしており、 前記ホルダは前記内部電極の先端部内側にてシールリングを介して装着され、少な くとも前記内部電極に対する前記シールリングの配置位置から前記内部電極の後端 部外側にかけて、前記内部電極の表面上に絶縁性被膜が形成されていることを特徴 とする。
[0016] また、請求項 10に係る発明の液体状態検知センサは、請求項 5乃至 9のいずれか に記載の発明の構成に加え、前記外筒電極の外周面の少なくとも一の母線状に、 1 または複数のスリットが形成されていることを特徴とする。 [0017] また、請求項 11に係る発明の液体状態検知センサは、請求項 5乃至 10のいずれ かに記載の発明の構成に加え、前記内部電極の外側と前記外筒電極の内側との間 に介在するゴム製の支持部材を有し、前記支持部材によって前記内部電極が前記 外筒電極の内側に弾性的に支持されていることを特徴とする。
[0018] また、請求項 12に係る発明の液体状態検知センサは、請求項 11に記載の発明の 構成に加え、前記液体性状検出素子は、前記内部電極の先端部に装着される絶縁 性のホルダに保持されており、前記支持部材は、さらに、前記ホルダを先端側に移動 しなレ、ように支持することを特徴とする。
[0019] また、請求項 13に係る発明の液体状態検知センサは、請求項 11または 12に記載 の発明の構成に加え、前記支持部材には、前記支持部材の先端側に存在する前記 液体と、前記支持部材の後端側に存在する前記液体とを流通させる流通路が形成さ れていることを特徴とする。
[0020] また、請求項 14に係る発明の液体状態検知センサは、請求項 13に記載の発明の 構成に加え、前記流通路は、支持部材の外側面に溝設されていることを特徴とする。
[0021] また、請求項 15に係る発明の液体状態検知センサは、請求項 13または 14に記載 の発明の構成に加え、前記流通路は、支持部材の内側面に溝設されていることを特 徴とする。
[0022] また、請求項 16に係る発明の液体状態検知センサは、請求項 5乃至 15のいずれ かに記載の構成に加え、前記外筒電極の先端部は、前記液体性状検出素子を径方 向周囲から包囲してレ、ることを特徴とする。
[0023] また、請求項 17に係る発明の液体状態検知センサは、請求項 1乃至 16のいずれ 力、に記載の発明の構成に加え、前記液体が流通する液体流通孔が形成されると共 に、前記液体性状検出素子を覆う包囲部材を有し、前記包囲部材は、前記レベル検 知部に絶縁された状態で連結されていることを特徴とする。
[0024] また、請求項 18に係る発明の液体状態検知センサは、請求項 16に記載の発明の 構成に加え、前記液体が流通する液体流通孔が形成されると共に、前記液体性状 検出素子の周囲を覆う包囲部材を有し、前記包囲部材は、前記レベル検知に絶縁さ れた状態で連結されており、前記外筒電極の先端は、前記包囲部材の先端よりも先 端側に位置していることを特徴とする。
[0025] また、請求項 19に係る発明の液体状態検知センサは、請求項 1乃至 18のいずれ 力に記載の発明の構成に加え、前記液体は尿素水溶液であって、前記特定成分が 尿素であることを特徴とする。
発明の効果
[0026] 請求項 1に係る発明の液体状態検知センサでは、液体のレベルを検知するための レベル検知部と、少なくとも液体に含まれる特定成分の濃度を検出するための液体 性状検出素子とが絶縁された状態で一体化されている。従って、これらを別体に設け た場合に 2つ必要となる収容容器の取り付け部位は、 1つ設ければ足りるため、取付 部を設ける手間が軽減され、取付部と収容容器との間の気密性および水密性維持の ための構成を簡易にすることができる。また、レベル検知部と液体性状検出素子とが 一体となったセンサ構造を採るため、従来のようにレベルセンサと濃度センサとを別 体で収容容器内に設ける場合と比較して、収容容器内に占めるセンサの容積を相対 的に小さくすることができる。これにより、収容容器内に収容可能な液体 (例えば、尿 素水溶液)の最大量を従来のように別体で設置する場合よりも増やすことが可能とな る。また、液体 (例えば、尿素水溶液)が凍結していた際の解凍時においても、センサ の熱容量が従来よりも減ることから早期に解凍が行え、迅速な液体の状態検知が可 能となる。
[0027] また、請求項 2に係る発明の液体状態検知センサでは、液体性状検出素子が発熱 抵抗体パターンを有しており、この発熱抵抗体パターンがレベル検知部の先端より先 端側に位置している。ここで、液体に含まれる特定成分の濃度によって液体の熱伝 導率が異なることが知られており、発熱抵抗体パターン (換言すれば、液体性状検出 素子)によりその周囲の液体を加熱した場合、濃度の異なる液体では温度上昇の傾 向が異なってくる。そこで、本発明では、発熱抵抗体パターンの電気的特性の変化( 例えば、抵抗値の変化)に基づいて当該発熱抵抗体パターンの温度上昇の度合を 捉えるための検出回路を設け、この検出回路によって液体に含まれる特定成分の濃 度を検出するようにしている。このような構成を図ることにより、液体に含まれる特定成 分の濃度を良好に検知することができる。 [0028] また、請求項 3に係る液体状態検知センサでは、液体性状検出素子が、上記発熱 抵抗体パターンを絶縁セラミック基体内に埋設させた構成としている。これにより、液 体が導電性の液体である場合にも、絶縁性セラミック基体の外表面を液体に接触さ せることができ、素子自身を直接液体に浸漬させることができる。従って、特定成分の 濃度検知の感度をより高めることができる。
[0029] また、請求項 4に係る液体状態検知センサでは、上記検出回路が、発熱抵抗体パ ターンを一定時間通電すると共に、この一定時間内の異なるタイミングにて発熱抵抗 体パターンの抵抗値に対応した第 1対応値及び第 2対応値を取得し、この第 1対応 値及び第 2対応値に基づき特定成分の濃度を検出するよう構成されている。このよう な構成を図ることにより、発熱抵抗体パターンの温度上昇の度合いを的確に捉えるこ とができ、特定成分の濃度検知を安定して行うことができる。
[0030] なお、本発明における第 1対応値及び第 2対応値としては、発熱抵抗体パターンの 抵抗値に対応した同じ単位の値であればよぐ具体的には電圧値や電流値、温度換 算値を上げること力 Sできる。また、第 1対応値と第 2対応値とに基づいて、特定成分の 濃度検知を行うにあたっては、具体的に両対応値を差分した差分値ゃ両対応値の 比を用いて行うことができる。
[0031] さらに、請求項 5に係る発明の液体状態検知センサでは、第 1電極を筒状の外筒電 極とし、第 2電極をその外筒電極内に設けた内部電極としたので、簡易的な構成であ りながら、精度よく液体のレベルに応じて変化する静電容量を検出可能なレベル検 知部を構成することができる。
[0032] また、請求項 6に係る発明の液体状態検知センサでは、内部電極を筒状にし、内側 に液体性状検出素子のためのリード線を揷通させている。このように、リード線を保護 する保護部材を別途に設けることなぐ内部電極をリード線の保護部材として兼用さ せることで、液体状態検知センサの小型化とコストダウンを効果的に図ることができる
[0033] また、請求項 7に係る発明の液体状態検知センサのように、絶縁性のホルダに液体 性状検出素子を保持させ、そのホルダを内部電極の先端部に装着すれば、容易に 液体性状検出素子とレベル検知部とを絶縁した状態で連結することができる。 [0034] さらに、請求項 8や請求項 9に係る発明の液体状態検知センサのように、シールリン グを介して内部電極の先端部へのホルダの装着を行うと共に、少なくともその内部電 極に対してシールリングが配置される位置から後端部外側にかけての内部電極の表 面上に絶縁性被膜を形成すれば、液体性状検出素子およびレベル検知部が液体に 浸漬されても、内部電極の表面が液体に接触することがなレ、。このため、導電性の液 体のレベル検知を正確に行うことができる。また、シールリングにより内部電極の内側 に液体が浸入することがないため、内部回路等が液体に浸漬されることがなぐショ ートゃ腐食などの虞がなレ、。
[0035] また、請求項 10に係る発明の液体状態検知センサでは、外筒電極に設けたスリット を介し外筒電極の外側と内側との間で液体を流通させることができ、収容容器内の 液体のレベルの変化に対し外筒電極内の液体のレベルの変化を追従させることがで きる。また、液体状態検知センサを寒冷地などで使用し、液体が急冷された場合に、 液体の凍結に伴う体積膨張により生じた圧力を、スリットを介し外筒電極の外側に逃 がすことができる。このため、液体の凍結に起因した外筒電極、内部電極の変形を抑 制すること力 Sできる。
[0036] また、請求項 11に係る発明の液体状態検知センサでは、内部電極をゴム製の支持 部材により外筒電極の内側に弾性的に支持することで、振動等による内部応力の発 生や共振等の発生を抑制することができ、内部電極の変形や内部電極の表面に絶 縁性被膜が形成される場合にはその被膜の損傷等の虞を低減することができる。
[0037] また、請求項 12に係る発明の液体状態検知センサでは、上記支持部材により液体 性状検出素子を保持するホルダを支持している。このため、ホルダを内部電極の先 端部に装着する場合、接着、加締め、螺合、ねじ止めなどにより固定しなくともホルダ の脱落が防止されるので、製造過程における手間を低減することができる。
[0038] また、請求項 13に係る発明の液体状態検知センサでは、支持部材に形成された液 体流通路を介し、支持部材の先端側に存在する液体と後端側に存在する液体とを 流通させている。そして、この流通路を支持部材に設けるにあたっては、請求項 14に 係る発明のように、支持部材の外側面に溝設し、外筒電極との間で流通路を確保し てもよいし、請求項 15に係る発明のように、支持部材の内側面に溝設し、ホルダや内 部電極との間で流通路を確保してもよい。このように支持部材に流通路を設けたこと で、レベル検知部における液体の変動を良好に確保することできる。従って、支持部 材を設けたことでレベル検知部にて液溜まりが生ずるようなことはなぐレベル検知の 範囲を広く確保しつつレベル検知の精度を高めることができる。
[0039] また、流通路を介し、支持部材の先端側に残る気泡を後端側に逃がすことも可能で ある。これにより、液体性状検出素子を液体に浸漬させる場合に、その周囲に気泡が 残らないようにすることができるので、液体の特定成分の濃度の検知を正確に行うこ とができる。
[0040] さらに、請求項 16に係る発明の液体状態検知センサでは、先端部が延設された外 筒電極により、径方向周囲から液体性状検出素子が包囲している。これにより、振動 等により収容容器内で液体が流動しても外筒電極が防壁となり液体性状検出素子を 保護するので、流動に伴う圧力が液体性状検出素子に直接力かるのを抑制すること ができ、液体性状検出素子の耐久性が高められる。また、液体性状検出素子の周囲 を取り巻く液体が激しく入れ換わることがないため、特定成分の濃度検知を安定して 行い続けることができる。
[0041] また、請求項 17に係る発明の液体状態検知センサでは、液体流通孔が形成された 包囲部材により液体性状検出素子の周囲を覆っている。これにより、振動等により収 容容器内で液体が流動しても包囲部材が防壁となり液体性状検出素子を保護する ので、流動に伴う圧力が直接かかりにくい。また、液体性状検出素子の周囲を取り巻 く液体が激しく入れ換わることがないため、特定成分の濃度検知を安定して行い続け ること力 Sできる。
[0042] また、請求項 18に係る発明の液体状態検知センサでは、液体流通孔が形成された 包囲部材にて液体性状検出素子を覆いつつ、この包囲部材を上記外筒電極の先端 部により覆うように構成している。これにより、外筒電極の先端部と包囲部材の両者が 液体性状検出素子を保護する防壁として機能するため、液体性状検出素子の耐久 性をより高めることができる。また、液体性状検出素子の周囲を取り巻く液体の激しい 入れ換わりを効果的に抑えることができ、特定成分の濃度検知をより安定して行える メリットがある。 [0043] さらに、請求項 19に係る発明の液体状態検知センサは、尿素水溶液のレベルと、 尿素水溶液に含まれる尿素の濃度を検知することができる。
図面の簡単な説明
[0044] [図 1]液体状態検知センサ 100の一部切欠縦断面図である。
[図 2]液体状態検知センサ 100の液体性状検知部 30付近の拡大断面図である。
[図 3]セラミックヒータ 110のヒータパターン 115を示す模式図である。
[図 4]プロテクタ 130の側面図である。
[図 5]プロテクタ 130の底面図である。
[図 6]ゴムブッシュ 80を斜め下方からみた斜視図である。
[図 7]ゴムブッシュ 80の側面図である。
[図 8]ゴムブッシュ 80の平面図である。
[図 9]図 8の一点鎖線 A— Aにおいて矢視方向力 みたゴムブッシュ 80の断面図であ る。
[図 10]図 1に示す液体状態検知センサ 100を先端側から軸線 O方向に見た液体状 態検知センサ 100の底面図である。
[図 11]外筒電極 10と内部電極 20とのギャップ間に満たされた尿素水溶液の水面近 傍の拡大断面図である。
[図 12]変形例としての液体状態検知センサ 300の液体性状検知部 430付近の拡大 断面図である。
[図 13]変形例としての液体状態検知センサの内部電極 400の構成を示す図である。
[図 14]液体状態検知センサ 100の電気的な構成を示すブロック図である。
符号の説明
[0045] 10 外筒電極
11 先端部
15 スリット
20, 320, 400 内部電極
21 先端部
23, 323 絶縁性被膜 30 液体性状検知部
40 取付部
60 回路基板
70 レベル検知部
80 ゴムブッシュ
85, 86 流通路
90 リード線
100, 300 液体状態検知センサ
110 セラミックヒータ
114 発熱抵抗体パターン
115 ヒータパターン
120, 350 ホノレダ
130 プロテクタ
135, 136 液体流通孔
140, 340 シーノレリング
220 マイクロコンピュータ
280 液体性状検知回路部
発明を実施するための最良の形態
[0046] 以下、本発明を具体化した液体状態検知センサの一実施の形態について、図面 を参照して説明する。図 1〜図 10を参照し、一例としての液体状態検知センサ 100 の構造について説明する。
[0047] 図 1は、液体状態検知センサ 100の一部切欠縦断面図である。図 2は、液体状態 検知センサ 100の液体性状検知部 30付近の拡大断面図である。図 3は、セラミックヒ ータ 110のヒータパターン 115を示す模式図である。図 4は、プロテクタ 130の側面図 である。図 5は、プロテクタ 130の底面図である。図 6は、ゴムブッシュ 80を斜め下方 力 みた斜視図である。図 7は、ゴムブッシュ 80の側面図である。図 8は、ゴムブッシ ュ 80の平面図である。図 9は、図 8の一点鎖線 A— Aにおいて矢視方向からみたゴム ブッシュ 80の断面図である。図 10は、図 1に示す液体状態検知センサ 100を先端側 力 軸線〇方向に見た液体状態検知センサ 100の底面図である。なお、液体状態検 知センサ 100においてレベル検知部 70 (外筒電極 10および内部電極 20から構成さ れるコンデンサ)の長手方向を軸線〇方向とし、液体性状検知部 30が設けられる側 を先端側、取付部 40が設けられる側を後端側とする。
[0048] 本実施の形態の液体状態検知センサ 100は、ディーゼル自動車の排気ガス中に 含まれる窒素酸化物(N〇x)の還元に使用される尿素水溶液の状態、つまりは尿素 水溶液のレベルと、その尿素水溶液に含まれる特定成分としての尿素の濃度を検知 するためのセンサである。図 1に示すように、液体状態検知センサ 100は、円筒形状 を有する外筒電極 10、および、その外筒電極 10の内部にて外筒電極 10の軸線 O方 向に沿って設けられた円筒状の内部電極 20から構成されるレベル検知部 70と、内 部電極 20の先端側に設けられた液体性状検知部 30と、液体状態検知センサ 100を 、尿素水溶液の収容容器としての尿素水タンク(図示外)に取り付けるための取付部 40とを備えて構成される。
[0049] 外筒電極 10は金属材料からなり、軸線〇方向に延びる長細い円筒形状を有する。
外筒電極 10の外周上にて周方向に等間隔となる 3本の母線上には、各母線に沿つ てそれぞれ複数の細幅のスリット 15が断続的に開口されている。また、外筒電極 10 の先端部 11において、上記スリット 15が形成された各母線上には、後述する内部電 極 20との間に介在されるゴムブッシュ 80の抜け防止のための開口部 16がそれぞれ 設けられている。さらに、外筒電極 10の後端側の基端部 12に近い位置で、スリット 1 5が形成された各母線とは異なる母線上には、 1つの空気抜孔 19が形成されている 。また、外筒電極 10の先端部 11は、後述する液体性状検知部 30のセラミックヒータ 1 10の径方向周囲を包囲するように、開口部 16の位置よりさらに軸線〇方向先端側に 延びている。なお、この先端部 11は、セラミックヒータ 110を覆うプロテクタ 130の径 方向周囲をも包囲しており、 自身の先端がプロテクタ 130の先端よりも先端側に位置 するように延びている。そして、外筒電極 10の先端は開口されており、プロテクタ 130 が開口側から視認可能な状態となっている。
[0050] 次に、外筒電極 10は、基端部 12が金属製の取付部 40の電極支持部 41の外周に 係合した状態で溶接されている。取付部 40は尿素水タンク(図示外)に液体状態検 知センサ 100を固定するための台座として機能し、取り付けボルトを挿通するための 取り付け孔(図示外)が鍔部 42に形成されている。また、取付部 40の鍔部 42を挟ん で電極支持部 41の反対側には、液体状態検知センサ 100と外部回路(図示外)との 電気的な接続を行うために設けられた中継用の回路基板 60などを収容する収容部 4 3が形成されている。なお、この取付部 40は、回路基板 60に対し、そのグランド電位 をなす配線部(図示しない)と同電位となるように接続されている。そのため、外筒電 極 10はこの取付部 40を介して接地されている。
[0051] 回路基板 60は、取付部 40に収容されており、具体的には収容部 43の内壁面の四 隅より突出する基板載置部(図示外)上に載置されている。収容部 43はカバー 45に 覆われ保護されており、そのカバー 45は、鍔部 42に固定されている。また、カバー 4 5の側面にはコネクタ 62が固定されており、コネクタ 62の接続端子(図示外)と回路 基板 60上のパターンとが配線ケーブル 61によって接続されている。このコネクタ 62 を介し、回路基板 60と外部回路(図示外)との接続が行われる。
[0052] 取付部 40の電極支持部 41には収容部 43内に貫通する孔 46が開口されており、こ の孔 46内に、内部電極 20の基端部 22が挿通されている。本実施の形態の内部電 極 20は軸線〇方向に延びる長細い円筒形状をした金属材料からなる。この内部電 極 20の外周面上には、 PTFE、 PFA、 ETFE等のフッ素系樹脂やエポキシ樹脂、ポ リイミド樹脂などからなる絶縁性被膜 23が形成されている。絶縁性被膜 23は、このよ うな樹脂をデイツビングもしくは静電粉体塗装により内部電極 20の外表面上に塗布し 、熱処理することにより、樹脂コーティング層の形態で形成される。後述するが、この 内部電極 20と外筒電極 10との間で、尿素水溶液のレベルに応じて静電容量が変化 するコンデンサを形成してなるレベル検知部 70が構成されている。なお、内部電極 2
0の絶縁性被膜 23は、少なくとも、後述するシールリング 140との接触位置から Oリン グ 54との接触位置にかけて形成されており、外筒電極 10内で内部電極 20が尿素水 溶液と接しなレ、ように、内部電極 20の外周面上を被膜してレ、る。
[0053] 内部電極 20の軸線〇方向後端側の基端部 22には、内部電極 20を取付部 40に固 定するためのパイプガイド 55とインナーケース 50が係合されている。パイプガイド 55 は、内部電極 20の基端部 22の端縁寄りに接合された環状のガイド部材である。イン ナーケース 50は内部電極 20と外筒電極 10とが確実に絶縁されるように内部電極 20 を位置決め支持する鍔付き筒状の樹脂製部材であり、先端側が取付部 40の電極支 持部 41の孔 46に係合する。インナーケース 50には径方向外側に向かって突出する 鍔部 51が形成されており、インナーケース 50が電極支持部 41に係合される際には、 収容部 43側から電極支持部 41の孔 46に揷通される。そして、鍔部 51が収容部 43 内の底面に当接することで、インナーケース 50が孔 46内を通り抜けることが防止され る。また、内部電極 20は、収容部 43側からインナーケース 50の内側に揷通されるが 、パイプガイド 55が鍔部 51に当接することで、インナーケース 50からの脱落が防止さ れる。
[0054] さらに、インナーケース 50の外周と内周とには、それぞれ、 Oリング 53と〇リング 54 とが設けられている。 Oリング 53は、インナーケース 50の外周と取付部 40の孔 46と の間の隙間を密閉し、〇リング 54は、インナーケース 50の内周と内部電極 20の基端 部 22の外周との間の隙間を密閉している。これにより、液体状態検知センサ 100が 尿素水タンク(図示外)に取り付けられた際に、尿素水タンクの内部と外部とが収容部 43を介して連通しないようにその水密性および気密性が保たれる。なお、取付部 40 の鍔部 42の先端側の面には図示外の板状のシール部材が装着され、液体状態検 知センサ 100を尿素水タンクに取り付けた際に、鍔部 42と尿素水タンクとの間の水密 性および気密性が保たれるようになってレ、る。
[0055] そして、内部電極 20の取付部 40への組み付けの際には、 2枚の押さえ板 56, 57 によって、パイプガイド 55がインナーケース 50の鍔部 51に対して押圧される。絶縁 性の押さえ板 57は、ノ イブガイド 55との間に押さえ板 56を挟み、パイプガイド 55を 押圧した状態で、ネジ 58によって収容部 43内に固定される。これにより、パイプガイ ド 55に接合された内部電極 20が電極支持部 41に固定されることとなる。押さえ板 56 , 57には中央に孔 59が開口されており、内部電極 20の電極引出線 52と、後述する セラミックヒータ 110との電気的な接続を行う 2本のリード線 90 (図 1では一方のリード 線 90のみを表示している。)を内包する 2芯のケーブル 91とが揷通され、それぞれ回 路基板 60上のパターンに電気的に接続されている。回路基板 60のグランド側の電 極(図示外)は取付部 40に接続されており、これにより、取付部 40に溶接された外筒 電極 10がグランド側に電気的に接続される。
[0056] 次に、液体性状検知部 30は、内部電極 20の先端部 21に連結されている。図 2に 示すように、液体性状検知部 30は、本実施の形態では尿素水溶液中の尿素の濃度 検出を行う液体性状検出素子としてのセラミックヒータ 110と、セラミックヒータ 110を 支持すると共に、内部電極 20の先端部 21に装着される絶縁性樹脂製のホルダ 120 と、ホルダ 120力 露出されたセラミックヒータ 110の周囲を覆って保護するプロテクタ 130とを備えて構成される。
[0057] 図 3に示すように、セラミックヒータ 110は、絶縁性セラミック(具体的にはアルミナ) 力、らなる板状のセラミック基体 111上に Ptを主体とするヒータパターン 115を形成し、 対となるセラミック基体(図示せず)で挟んだ状態でヒータパターン 115を埋設した状 態で形成したものである。発熱抵抗体パターン 114を構成するパターンの断面積を、 電圧印加のための両極となるリード部 112, 113のそれよりも小さくするようにして、通 電時、主に発熱抵抗体パターン 114において発熱が行われるようにしている。また、 リード部 112, 113の両端には、一方のセラミック基体の表面に設けられた電極パッド に導通するビア導体(図示外)が設けられており、 2本のリード線 90との接続を中継す る 2つのコネクタ 119 (図 2では共に一方のみを表示している。)のそれぞれと電気的 に接続されている。なお、セラミックヒータ 110が、本発明における「液体性状検出素 子」に相当する。
[0058] 次に、図 2に示すように、セラミックヒータ 110を支持するホルダ 120は、内部電極 2 0の先端部 21を外周力 覆うように構成されている。ホルダ 120は外径の異なる 2つ の円筒部 121, 122を有し、テーパー状の段部 123により円筒部 121 , 122が接続さ れている。そしてホルダ 120の小径の円筒部 121側の筒端の稜角部分は面取りされ ている。セラミックヒータ 110は、長手方向のリード部 112, 113 (図 3参照)側を小径 の円筒部 121内に挿入しつつ、発熱抵抗体パターン 114が配置された部位を露出さ せた状態で、接着剤等からなる固定部材 125, 126によりホルダ 120に固定される。
[0059] また、大径の円筒部 122の内径は、内部電極 20の先端部 21外径より大きく構成さ れている。ホルダ 120が円筒部 122側から内部電極 20の先端部 21に装着される際 には、円筒部 122の内周面と内部電極 20の外周面との間にシールリング 140が介在 され、内部電極 20の内部の水密性が確保される。絶縁性被膜 23は、内部電極 20の 外周面において、内部電極 20先端側の先端部 21にてこのシールリング 140が配置 される位置よりも先端側から、後端側の基端部 22にて Oリング 54が配置される位置 にかけて形成されており、尿素水タンク(図示外)内にてレベル検知部 70が尿素水溶 液に浸漬されても、内部電極 20が尿素水溶液に直接接触することはない。
[0060] ところで、ホルダ 120の装着前に、セラミックヒータ 110のコネクタ 119にはケーブル 91の 2本のリード線 90の芯線がそれぞれ加締めまたは半田付けにより接合される。さ らに絶縁性の保護部材 95により、コネクタ 119とリード線 90とが接合部位ごと覆われ 保護される。そして、 2つのリード線 90は筒形状の内部電極 20内を揷通され、上記 回路基板 60に接続されている。
[0061] 次に、図 4,図 5に示す、プロテクタ 130は、有底円筒形状に形成された金属製の 保護部材である。開口側の端部には軸線 O方向に対し斜め方向に広がり形状の鍔 部 131が形成されており、底部 132と胴部 133との間の稜角部分は曲面状に面取り され、剛性が高められている。また、プロテクタ 130の外周上にて周方向に等間隔と なる 3本の母線上に、底部 132から胴部 133にかけて開口された液体流通孔 135と、 胴部 133から鍔部 131にかけて開口された液体流通孔 136とがそれぞれ形成されて いる。底部 132において、 3つの母線上の液体流通孔 135は、互いに連接されてい なレ、。なお、プロテクタ 130が、本発明における「包囲部材」に相当する。
[0062] そして、図 2に示すように、プロテクタ 130は、ホルダ 120の小径の円筒部 121の外 周に、開口側の内周が嵌合され、鍔部 131はホルダ 120の段部 123の斜面に沿うよ うに係合される。発熱抵抗体パターン 114の配置された部位がホルダ 120の先端か ら露出されたセラミックヒータ 110は、プロテクタ 130内に収容され、このセラミックヒー タ 110の先端寄り部位は直接液体に浸漬されることになる。
[0063] このような構成の液体性状検知部 30は、内部電極 20の先端部 21にホルダ 120が 装着されることによって、レベル検知部 70と絶縁された状態で連結される。そして、液 体性状検知部 30は、内部電極 20の先端部 21と共に、外筒電極 10の内側と内部電 極 20の外側との間に介在するゴム製のゴムブッシュ 80によって、外筒電極 10内で位 置決め支持される。 [0064] 図 6〜図 9に示すように、ゴムブッシュ 80は円筒形状を有し、その外周面 89上にて 周方向に等間隔となる 3本の母線上に、外筒電極 10の各開口部 16にそれぞれ係合 し抜け防止として機能する突起部 87が設けられている。さらに、外周面 89の周方向 において各突起部 87間には、それぞれ軸線〇方向に沿った複数 (本実施の形態で は 5本)の溝部 88が溝設されている。なお、ゴムブッシュ 80が、本発明における「支持 部材」に相当する。
[0065] また、ゴムブッシュ 80の内周側の面は、ホルダ 120の外周面が係合するように形成 された内径の異なる 2つの内周面 81 , 82と、両者を接続するテーパー状の内周面 8 3とから構成される。そして、内周面 8:!〜 83上で、突起部 87が形成された外周面 89 上の各母線に対応する位置には、小径の内周面 81側から大径の内周面 82側にか けて各内周面 81 , 83, 82上を連続する溝部 84がそれぞれ溝設されている。なお、 ゴムブッシュ 80の小径の内周面 81の形成部位は、大径の内周面 82の形成部位より も肉厚に形成されている。
[0066] ゴムブッシュ 80が外筒電極 10の内側と内部電極 20の外側との間に配置される際 には、図 10に示すように、ゴムブッシュ 80の内周面 81〜83側の溝部 84の形成位置 に、プロテクタ 130の液体流通孔 135の形成位置が揃えられて組み付けられる。また 、前述したように、内部電極 20はパイプガイド 55を介し 2枚の押さえ板 56, 57により 軸線 O方向先端側に向け押圧される(図 1参照)。これにより、図 2に示すように、その 内部電極 20の先端部 21に装着されたホルダ 120の段部 123力 ゴムブッシュ 80の 内周面 83に押し付けられた状態となる。このとき、プロテクタ 130の鍔部 131がゴムブ ッシュ 80の内周面 83とホノレダ 120の段咅 123との間に挟まれることで、プロテクタ 13 0が弾性保持される。そしてホルダ 120および内部電極 20は、外筒電極 10に位置決 め保持されたゴムブッシュ 80によって、外筒電極 10の内側に弾性的に支持されるこ ととなる。
[0067] 液体状態検知センサ 100が尿素水タンク(図示外)に取り付けられ使用されたとき、 図 2に示すように、外筒電極 10内には、ゴムブッシュ 80よりも軸線〇方向先端側の B 部と、後端側の C部とに、それぞれ外筒電極 10の軸線〇方向最先端部の開口とスリ ット 15とを介して尿素水溶液が流入する。また、プロテクタ 130内の D部には、液体 流通孔 135, 136を介して B部より尿素水溶液が流入する。そして、 B部と C部とに流 入した尿素水溶液は、ゴムブッシュ 80の溝部 88と外筒電極 10の内周面とで形成さ れた流通路 85や、溝部 84とホルダ 120の外周面とで形成された流通路 86を介して 流通される。さらに、溝部 84の形成位置に揃えられて配置されたプロテクタ 130の液 体流通孔 136 (図 4参照)に、流通路 86が連続している(図 10参照)。これにより、流 通路 85, 86を介して B部と C部との間および D部と C部との間で尿素水溶液の流通 が行われる。また、空の尿素水タンクに尿素水溶液を満たした場合に B部や D部に空 気 (気泡)が残る虞がある力 B部に残る空気は流通路 85, 86を通じて C部に到達す ること力 Sできる。このとき、ホルダ 120の小径の円筒部 121側の筒端の稜角部分が面 取りされているので、残留空気が面取り部分に集まりやすぐ液体流通孔 136を介し 流通路 86ヘスムーズに移動されやすレ、。
[0068] なお、本実施の形態の液体状態検知センサ 100では、液体性状検出素子をなす セラミックヒータ 110が、絶縁性樹脂からなるホルダ 120およびゴムブッシュ 80を介し てレベル検知部 70に絶縁された状態で連結されている。そして、図 2に示すように、 セラミックヒータ 110の先端部(詳細には、発熱抵抗体パターン 114が配置された部 位)が、レベル検知部 70の長手方向の先端 (本実施の形態では、シールリング 140と 内部電極 20に形成した絶縁性被膜 23とが接触する領域の最後端に相当)よりも先 端側に位置している。これにより、本実施の形態の液体状態検知センサ 100では、尿 素水溶液のレベルがレベル検知部 70を下回らない間、確実に尿素水溶液の尿素濃 度を検出することができる。
[0069] 次に、図 14を参照して、液体状態検知センサ 100の電気的な構成について説明 する。図 14は、液体状態検知センサ 100の電気的な構成を示すブロック図である。
[0070] 図 14に示すように、液体状態検知センサ 100は尿素水タンク 98に取付部 40を介し て取り付けられ、一対の電極(外筒電極 10及び内部電極 20)を備えたレベル検知部 70と、発熱抵抗体パターン 114が設けられたセラミックヒータ 110を備えた液体性状 検知部 30とが、尿素水溶液に浸漬される。液体状態検知センサ 100は、回路基板 6 0上にマイクロコンピュータ 220を搭載し、レベル検知部 70の制御を行うレベル検知 回路部 250と、液体性状検知部 30の制御を行う液体性状検知回路部 280と、 ECU との通信を行う入出力回路部 290とが接続されている。
[0071] 入出力回路部 290は、液体性状検知センサ 100と ECUとの間での信号の入出力 を行うため、通信プロトコルの制御を行う。また、レベル検知回路部 250は、マイクロコ ンピュータ 220の指示に基づき、レベル検知部 70の外筒電極 10と内部電極 20との 間に交流電圧を印加し、レベル検知部 70をなすコンデンサを流れた電流を電圧変 換して、その電圧信号をマイクロコンピュータ 220に出力する回路部である。
[0072] 液体性状検知回路部 280は、マイクロコンピュータ 220の指示に基づき、液体性状 検知部 30のセラミックヒータ 110に定電流を流し、発熱抵抗体パターン 114の両端に 発生する検出電圧をマイクロコンピュータ 220に出力する回路部である。液体性状検 知回路部 280は、差動増幅回路部 230、定電流出力部 240、スィッチ 260から構成 される。
[0073] 定電流出力部 240は、発熱抵抗体パターン 114に流す定電流を出力する。スイツ チ 260は、発熱抵抗体パターン 114への通電経路上に設けられ、マイクロコンピュー タ 220の指示に従って開閉(オン/オフ)を行う。差動増幅回路部 280は、発熱抵抗 体パターン 114の一端に現れる電位 Pinと他端に現れる Poutとの差分を検出電圧と してマイクロコンピュータ 220に出力する。
[0074] 次に、本実施の形態の液体状態検知センサ 100により、尿素水溶液のレベルおよ び濃度を検知する原理について説明する。まず、図 11を参照し、レベル検知部 70に おいて尿素水溶液のレベルを検知する原理について説明する。図 11は、外筒電極 10と内部電極 20とのギャップ間に満たされた尿素水溶液の水面近傍の拡大断面図 である。
[0075] 液体状態検知センサ 100は、尿素水溶液を収容した尿素水タンク(図示外)に、そ の底壁側に外筒電極 10および内部電極 20の先端側を向けた状態で組み付けられ る。つまり液体状態検知センサ 100のレベル検知部 70は、尿素水タンク(図示外)内 で容量の変化する尿素水溶液の変位方向(尿素水溶液のレベルの高低方向)を軸 線 O方向とし、外筒電極 10および内部電極 20の先端側が尿素水溶液の容量の少な い側(低レベル側)となるように、尿素水タンク(図示外)に組み付けられる。そして、外 筒電極 10と内部電極 20とのギャップ間の静電容量を測定し、両者間に存在する尿 素水溶液が軸線〇方向においてどれだけのレベルまで存在しているか検知している
。これは周知のように、径方向の電位の異なる 2点間において、その経の差が小さく なるほど静電容量の大きさが大きくなることに基づく。
[0076] すなわち、図 11に示すように、尿素水溶液で満たされていない部分においては、ギ ヤップ間で電位差の生じる部位の距離は、外筒電極 10の内周面と絶縁性被膜 23と の間に介在する空気層の厚みに相当する距離 (距離 Fで示す)と、絶縁性被膜 23の 厚みに相当する距離 (距離 Gで示す)との合計の距離 (距離 Eで示す)となる。一方、 尿素水溶液が満たされた部分にぉレ、て、ギャップ間で電位差の生じる部位の距離は 、尿素水溶液が導電性を示すため外筒電極 10と尿素水溶液との電位がほぼ等しく なることから、絶縁性被膜 23の厚みに相当する距離 Gとなる。
[0077] 換言すれば、尿素水溶液で満たされてレ、なレ、部分におけるギャップ間の静電容量 は、電極間の距離が Fで空気を誘電体 (不導体)とするコンデンサの静電容量と、電 極間の距離が Gで絶縁性被膜 23を誘電体とするコンデンサとを直列に接続したコン デンサの合成容量といえる。また、尿素水溶液で満たされた部分におけるギャップ間 の静電容量は、電極間の距離が Gで絶縁性被膜 23を誘電体とするコンデンサの静 電容量といえる。そして両者を並列に接続したコンデンサの静電容量力 レベル検知 部 70全体の静電容量として測定されることとなる。
[0078] ここで、絶縁性被膜 23を挟む電極間の距離 Gと比べ、空気層を挟む電極間の距離 Fは大きく構成されているため、空気を誘電体とする電極間の単位当たりの静電容量 は、絶縁性被膜 23を誘電体とする電極間の単位当たりの静電容量よりも小さい。この ため、尿素水溶液で満たされていない部分の静電容量の変化よりも尿素水溶液で満 たされた部分の静電容量の変化の方が大きぐ外筒電極 10および内部電極 20から なるコンデンサ全体としての静電容量は、尿素水溶液のレベルに比例する。
[0079] 本実施の形態では、尿素水溶液のレベルの測定は、上述したレベル検知回路 250 を介してマイクロコンピュータ 220にて行われ、得られたレベル情報信号は、入出力 回路部 290から図示外の ECUに対して出力される。そして、 ECUは、入力されるレ ベル情報信号に基づき、尿素水溶液のレベル (残量)が適正か否力、を判断し、適正 ではなレ、場合に運転者にその旨を通知する処理を適宜行う。 [0080] 次に、液体性状検知部 30を構成するセラミックヒータ 110において、尿素水溶液に 含まれる特定成分としての尿素の濃度を検知する原理にっレ、て説明する。一般に、 液体に含まれる特定成分の濃度によって、液体の熱伝導率が異なることが知られて いる。つまり、発熱抵抗体を用い、その周囲の液体を一定時間加熱した場合、濃度 の異なる液体では温度上昇率が異なってくる。また、発熱抵抗体に定電流を流した 場合に、発熱抵抗体の周囲の温度の上昇に比例して、発熱抵抗体の抵抗値が上昇 することも知られてレ、る。このことから発熱抵抗体を用レ、、その周囲の液体を一定時 間加熱した場合に、発熱抵抗体の抵抗値変化の度合いが求まれば、周囲の液体の 温度変化の度合いが求まり、液体の濃度を得ることができる。
[0081] 本実施の形態の液体状態検知センサ 100では、発熱抵抗体パターン 114に定電 流を一定時間流すように構成されており、発熱抵抗体パターン 114の両端には自身 の抵抗値の大きさに応じた検出電圧 Vdが発生する。なお、検出電圧 Vdは、上述し たように発熱抵抗体パターン 114の一端に現れる電位 Pinと他端に現れる電位 Pout の差分として、差動増幅回路部 230にて測定される。
[0082] 具体的には、まず、マイクロコンピュータ 220の指示によりスィッチ 260を閉じて発熱 抵抗体パターン 114に定電流を流し始める。そして、発熱抵抗体パターン 114への 通電開始直後の検出電圧 Vdを、差動増幅回路部 230を介してマイクロコンピュータ 220にて取得し、一定時間後(例えば 700ms後)に、再度検出電圧 Vdの取得をマイ クロコンピュータ 220にて行う。そして、予め実験等により作成したテーブル(図示外) を用い、上記 2つの検出電圧 Vdの差分値をパラメータとして、尿素水溶液の濃度の 算出をマイクロコンピュータ 220にて行う。また、一定時間が経過するとマイクロコンビ ユータ 220の指示に基づきスィッチ 260を開き、発熱抵抗体パターン 114への通電を 中断する。そして、マイクロコンピュータ 220にて最終的に得られた濃度情報信号を、 入出力回路部 290から ECUに対して出力される。 ECUは、入力された濃度情報信 号に基づき、尿素水溶液の濃度が適正範囲にあるか否力 ^判断し、適正範囲にない 場合に運転者にその旨を通知する処理を適宜行う。
[0083] なお、本発明は各種の変形が可能なことはいうまでもなレ、。例えば、図 12に示す、 液体状態検知センサ 300のホルダ 350のように、内部電極 320の先端部 321の内周 と、その先端部 321内に挿入させるホルダ 350の円筒部 352との間にシールリング 3 40を介在させ、内部電極 320の内部の水密性を確保してもよい。この場合、内部電 極 320の先端部 321において、絶縁性被膜 323を内部電極 320の外周側から内周 側に折り返すように形成する。そして少なくとも内部電極 320の先端部 321の内周側 に対してシールリング 340が配置される位置まで絶縁性被膜 323の形成を行えば、 レベル検知部 70が尿素水溶液に浸漬されても内部電極 320が尿素水溶液に直接 接触することはない。
[0084] また、図 13に示すように、レベル検知部 470の一方の電極と液体性状検知部 430 とを電極パターンとして同一の絶縁性セラミックシート 410上に形成し、これを中実ま たは中空で棒状の支持部材 420に巻き付けた内部電極 400を用いてもよレ、。このよ うな内部電極 400は、以下のように作製すればよレ、。レベル検知部 470を構成する 内電極部 415の電極パターンは、矩形の絶縁性セラミックシート 410上の長手方向 の一端側で液体性状検知部 430を配置する部位を残し、面積を広く形成する。そし て内電極部 415と接触しないように絶縁性セラミックシート 410の長手方向沿って、液 体性状検知部 430のリード部 411, 412となる電極パターンを形成する。液体性状検 知部 430ではリード部 411, 412同士を接続する発熱抵抗体 413となる電極パター ンを形成する。そしてこれら電極パターンが形成された絶縁性セラミックシート 410を 、支持部材 420に巻き付ける。
[0085] ここで、電極パターンを絶縁性セラミックシート 410中に坦設するのであれば、支持 部材 420は導電性の金属棒であってもよレ、。また絶縁性の支持部材 420であれば、 電極パターンを坦設せずとも支持部材 420側に向けて巻き付ければよい。この状態 で内部電極 400を焼成し、本実施の形態の外筒電極 10内に組み付けることで、外筒 電極 10と内電極部 415との間でレベル検知部 470を構成することができる。そして、 液体性状検知部 430は、この内部電極 400の先端部にて、レベル検知部 470に絶 縁された状態で連結して配置されることとなる。
[0086] また、本実施の形態では、セラミックヒータ 110の発熱抵抗体パターン 114とリード 部 112, 113とは同一の材料を用いパターンの断面積を異ならせたことによって主に 発熱抵抗体 114で発熱が行われるようにした力 S、それぞれの材質を異ならせてもよい [0087] また、本実施の形態ではセラミックヒータ 110の発熱抵抗体パターン 114の抵抗値 に対応する電圧値を用い、テーブル参照により尿素水溶液中の尿素濃度を求めた 、抵抗値に対応する電圧値を変数として、予め実験等により求めた上記関係を表 す計算式に代入することで、尿素水溶液の濃度を算出してもよい。
[0088] また、内部電極 20に形成した絶縁性被膜 23としては、液体の特性 (例えば、酸化- 還元性など)にあわせて腐食されにくい材質のものを選択するとよい。なお、絶縁性 被膜の形成をデイツピングゃ静電粉体塗装により行ったが、内部電極との間で空気 層の混入が全くない状態となるようにすれば、絶縁チューブを用いて絶縁性被膜の 形成を行ってもよレ、。さらに、外筒電極 10,内部電極 20は金属により形成した力 導 電性樹脂を用いて形成してもよレ、。
[0089] また、ゴムブッシュ 80の溝部 84, 88は、ゴムブッシュ 80の内周側や外周側に溝状 に設けた力 肉厚部分を貫通する貫通孔として形成してもよい。さらに、溝部 84, 88 のいずれかを省略してゴムブッシュ 80を形成してもよレ、。また、外筒電極 10や内部 電極 20を円筒形状としたが、角筒状であってもよい。
[0090] さらに、液体性状検出素子としてのセラミックヒータ 110は、液体に含まれる特定成 分 (例えば、尿素)の濃度を少なくとも検出するものであればよぐ濃度検出以外に、 液体の温度や液体の下限レベルの検知を検出するために用いられてもよい。
[0091] 例えば、セラミックヒータ 110にて液体の温度を検出する場合には、発熱抵抗体パ ターン 114に定電流を流し始めた直後の当該発熱抵抗体パターン 114の抵抗値の 大きさ(より詳細には、発熱抵抗体パターン 114の両端に生じる検出電圧 Vdの大きさ )に基づき、液体の温度を検出することができる。発熱抗体パターン 114の通電直後 の抵抗値は、液体の温度に対応した値を示していることから、このような手法により液 体の温度を検出することができるのである。また、セラミックヒータ 110の周囲に液体 が存在する場合と存在しなレ、場合とでは、発熱抵抗体パターン 114の抵抗値変化の 挙動が大きく異なることから、この違いを利用して液体の下限レベルの検知を行うよう にしてもよい。
[0092] 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲 を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明ら かである。
本出願は、 2005年 7月 1日出願の日本特許出願(特願 2005— 193298)、に基づくも のであり、その内容はここに参照として取り込まれる。
産業上の利用可能性
液体のレベル検知を行うセンサと濃度検知を行うセンサとを一体に連結した液体 状態検知センサに適用できる。

Claims

請求の範囲
[1] 収容容器内に収容される液体の状態を検知するための液体状態検知センサであ つて、
長手方向に延びる第 1電極および第 2電極を有し、前記第 1電極と前記第 2電極と の間で前記収容容器内に収容される前記液体のレベルに応じて静電容量が変化す るコンデンサを形成してなるレベル検知部と、
前記レベル検知部の前記長手方向の後端側に位置し、前記収容容器に前記液体 状態検知センサを取り付けるための取付部と、
前記レベル検知部に絶縁された状態で連結されると共に、少なくとも前記液体に含 まれる特定成分の濃度を検出するための液体性状検出素子であって、自身の先端 が前記レベル検知部の前記長手方向の先端よりも先端側に位置してなる液体性状 検出素子と
を備えることを特徴とする液体状態検知センサ。
[2] 前記液体性状検出素子は、 自身の温度に応じて抵抗値が変化する発熱抵抗体パ ターンを有すると共に、前記発熱抵抗体パターンが前記レベル検知部の前記長手方 向の先端よりも先端側に位置しており、
この発熱抵抗体パターンの電気的特性の変化に基づき、前記液体に含まれる特定 成分の濃度を検出する検出回路を備える請求項 1に記載の液体状態検知センサ。
[3] 前記液体は導電性の液体であって、前記液体性状検出素子は、前記発熱抵抗体 パターンを絶縁性セラミック基体内に埋設させた構成をなし、前記絶縁性セラミック基 体のうち前記発熱抵抗体パターンが配置された部位の外表面が前記液体に接触す る請求項 2に記載の液体状態検知センサ。
[4] 前記検出回路は、前記発熱抵抗体パターンを一定時間通電すると共に、前記一定 時間内の異なるタイミングにおける前記発熱抵抗体パターンの抵抗値に対応した第
1対応値及び第 2対応値を取得し、前記第 1対応値及び第 2対応値に基づき前記液 体中の特定成分の濃度を検出することを特徴とする請求項 2又は 3に記載の液体状 態検知センサ。
[5] 前記第 1電極は、導体からなる筒状の外筒電極である一方、前記第 2電極は、前記 外筒電極内でその長手方向に沿って設けられた導体からなる内部電極であることを 特徴とする請求項 1乃至 4のいずれかに記載の液体状態検知センサ。
[6] 前記内部電極は筒状をなしており、前記内部電極の内側に、前記液体性状検出素 子と電気的に接続されるリード線が揷通されていることを特徴とする請求項 5に記載 の液体状態検知センサ。
[7] 前記液体性状検出素子は、前記内部電極の先端部に装着される絶縁性のホルダ に保持されていることを特徴とする請求項 5または 6に記載の液体状態検知センサ。
[8] 前記液体は導電性の液体であって、前記ホルダは前記内部電極の先端部外側 にてシールリングを介して装着され、少なくとも前記内部電極に対する前記シールリ ングの配置位置から前記内部電極の後端部外側にかけて、前記内部電極の表面上 に絶縁性被膜が形成されていることを特徴とする請求項 7に記載の液体状態検知セ ンサ。
[9] 前記液体は導電性の液体であって、前記内部電極は筒状をなしており、前記ホル ダは前記内部電極の先端部内側にてシールリングを介して装着され、少なくとも前記 内部電極に対する前記シールリングの配置位置から前記内部電極の後端部外側に かけて、前記内部電極の表面上に絶縁性被膜が形成されてレ、ることを特徴とする請 求項 7に記載の液体状態検知センサ。
[10] 前記外筒電極の外周面の少なくとも一の母線状に、 1または複数のスリットが形成さ れていることを特徴とする請求項 5乃至 9のいずれかに記載の液体状態検知センサ。
[11] 前記内部電極の外側と前記外筒電極の内側との間に介在するゴム製の支持部材 を有し、
前記支持部材によって前記内部電極が前記外筒電極の内側に弾性的に支持され ていることを特徴とする請求項 5乃至 10のいずれかに記載の液体状態検知センサ。
[12] 前記液体性状検出素子は、前記内部電極の先端部に装着される絶縁性のホルダ に保持されており、
前記支持部材は、さらに、前記ホルダを先端側に移動しないように支持することを 特徴とする請求項 11に記載の液体状態検知センサ。
[13] 前記支持部材には、前記支持部材の先端側に存在する前記液体と、前記支持部 材の後端側に存在する前記液体とを流通させる流通路が形成されていることを特徴 とする請求項 11または 12に記載の液体状態検知センサ。
[14] 前記流通路は、支持部材の外側面に溝設されていることを特徴とする請求項 14に 記載の液体状態検知センサ。
[15] 前記流通路は、支持部材の内側面に溝設されていることを特徴とする請求項 13ま たは 14に記載の液体状態検知センサ。
[16] 前記外筒電極の先端部は、前記液体性状検出素子を径方向周囲から包囲してい ることを特徴とする請求項 5乃至 15のいずれかに記載の液体状態検知センサ。
[17] 前記液体が流通する液体流通孔が形成されると共に、前記液体性状検出素子の 周囲を覆う包囲部材を有し、
前記包囲部材は、前記レベル検知部に絶縁された状態で連結されていることを特 徴とする請求項 1乃至 16のいずれかに記載の液体状態検知センサ。
[18] 前記液体が流通する液体流通孔が形成されると共に、前記液体性状検出素子の 周囲を覆う包囲部材を有し、
前記包囲部材は、前記レベル検知に絶縁された状態で連結されており、 前記外筒電極の先端は、前記包囲部材の先端よりも先端側に位置している請求項
16に記載の液体状態検知センサ。
[19] 前記液体は尿素水溶液であって、前記特定成分が尿素であることを特徴とする請 求項 1乃至 18のいずれかに記載の液体状態検知センサ。
PCT/JP2006/313139 2005-07-01 2006-06-30 液体状態検知センサ WO2007004583A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06767727.8A EP1906176B1 (en) 2005-07-01 2006-06-30 Liquid state sensor
CN2006800239482A CN101213443B (zh) 2005-07-01 2006-06-30 液体状态检测传感器
US11/994,191 US7712363B2 (en) 2005-07-01 2006-06-30 Liquid state detecting sensor
JP2007524038A JP4838247B2 (ja) 2005-07-01 2006-06-30 液体状態検知センサ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005193298 2005-07-01
JP2005-193298 2005-07-01

Publications (1)

Publication Number Publication Date
WO2007004583A1 true WO2007004583A1 (ja) 2007-01-11

Family

ID=37604448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/313139 WO2007004583A1 (ja) 2005-07-01 2006-06-30 液体状態検知センサ

Country Status (5)

Country Link
US (1) US7712363B2 (ja)
EP (1) EP1906176B1 (ja)
JP (1) JP4838247B2 (ja)
CN (1) CN101213443B (ja)
WO (1) WO2007004583A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120485A1 (ja) 2007-03-29 2008-10-09 Nissan Diesel Motor Co., Ltd. 液体還元剤判別装置及びエンジンの排気浄化装置
JP2008248711A (ja) * 2007-03-29 2008-10-16 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
JP2008248712A (ja) * 2007-03-29 2008-10-16 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
JP2009020063A (ja) * 2007-07-13 2009-01-29 Saginomiya Seisakusho Inc 抵抗率計の電極
JP2009025168A (ja) * 2007-07-20 2009-02-05 Ngk Spark Plug Co Ltd 液体状態検知センサ
EP1947451A3 (en) * 2007-01-22 2011-01-12 NGK Spark Plug Co., Ltd. Urea sensor
JP2011112406A (ja) * 2009-11-24 2011-06-09 Ngk Spark Plug Co Ltd ノッキングセンサ
CN102901544A (zh) * 2012-10-19 2013-01-30 上海凡宜科技电子有限公司 物位与温度传感器
US9182309B2 (en) 2011-02-24 2015-11-10 Ngk Spark Plug Co., Ltd. Knocking sensor
KR101620845B1 (ko) 2014-12-08 2016-05-16 현담산업 주식회사 연료펌프모듈의 초음파 레벨센서 및 초음파 농도센서 일체모듈이 장착된 리저브컵
JP2020165743A (ja) * 2019-03-28 2020-10-08 東亜ディーケーケー株式会社 電気伝導率セル

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1887329A3 (en) * 2006-08-09 2008-12-24 Ngk Spark Plug Co., Ltd Liquid state detecting sensor
WO2010077188A1 (en) * 2008-12-29 2010-07-08 Volvo Lastvagnar Ab Urea level metering device.
US20110138787A1 (en) * 2009-12-15 2011-06-16 Delphi Technologies, Inc. Liquid reductant dosing reservoir and method for its manufacture
WO2011078692A1 (en) * 2009-12-21 2011-06-30 Wema System As Quality sensor apparatus
DE102010011151A1 (de) * 2010-03-11 2011-09-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Tank und Verfahren zur Bestimmung des Füllstands im Tank
US20110271754A1 (en) * 2010-05-04 2011-11-10 Rochester Gauges, Inc. Liquid Level Transducer with Heating Unit
CA2806274C (en) 2010-07-22 2017-01-17 Watlow Electric Manufacturing Company Combination fluid sensor system
US9427099B2 (en) * 2010-09-24 2016-08-30 The Marketing Store Worldwide, LP Non-contact liquid sensing device
CN103776511B (zh) * 2014-02-07 2017-01-11 深圳芯邦科技股份有限公司 一种液位信息监测方法、装置和系统
CN105092653A (zh) * 2014-05-23 2015-11-25 翰信科技股份有限公司 用于检测次氯酸钠浓度的检测器
CN104197992B (zh) * 2014-09-17 2016-05-04 太原理工大学 一种乳化液浓度、液位与温度一体化测量装置
LU92639B1 (en) * 2015-01-22 2016-07-25 Luxembourg Patent Co Body of level gauge with electrical lead extending therethrough
EP3168439B1 (en) * 2015-11-16 2019-03-20 Wema System AS Debubbling sleeve for fluid sensors and sensor systems comprising same
US11009383B2 (en) 2016-04-21 2021-05-18 Hewlett-Packard Development Company, L.P. Fluid property sensing with electrodes
DE102017200291A1 (de) * 2017-01-10 2018-07-12 Robert Bosch Gmbh Wassereinspritzvorrichtung, insbesondere einer Brennkraftmaschine, und Verfahren zum Betreiben einer solchen Wassereinspritzvorrichtung
WO2018222145A1 (en) * 2017-05-30 2018-12-06 Puangngernmak Nutdechatorn Sensor plate structure for analyzing mixture of contacted materials
US10895561B2 (en) * 2017-12-15 2021-01-19 Industrial Technology Research Institute Embedded sensor module and sensing device
JP6827915B2 (ja) 2017-12-18 2021-02-10 タツタ電線株式会社 液体検知センサおよび液体検知装置
DE102018101206A1 (de) * 2018-01-19 2019-07-25 Endress+Hauser SE+Co. KG Sondeneinheit
CN108917853B (zh) * 2018-08-28 2024-04-19 山东省科学院海洋仪器仪表研究所 一种温盐深传感器及其控制方法
CN111790535A (zh) * 2019-04-09 2020-10-20 小卫(上海)生物科技有限公司 一种雾化器
WO2021038293A1 (en) * 2019-08-27 2021-03-04 Nvent Services Gmbh Ruggedized sensor for detecting organic liquids

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924702A (en) * 1989-03-10 1990-05-15 Kavlico Corporation Liquid level sensor
JPH11507434A (ja) * 1995-03-29 1999-06-29 ダイムラー−ベンツ アクチエンゲゼルシャフト センサ装置
JP2001524682A (ja) * 1997-12-03 2001-12-04 カヴリコ コーポレイション 高感度容量性オイル劣化およびレベルセンサ
JP2002371831A (ja) * 2001-06-13 2002-12-26 Nissan Diesel Motor Co Ltd 自動車の排ガス浄化装置
JP2004517336A (ja) * 2001-01-19 2004-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 尿素溶液を調量する装置
JP2005084026A (ja) * 2003-09-11 2005-03-31 Mitsui Mining & Smelting Co Ltd 尿素溶液の尿素濃度識別装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5551283A (en) * 1993-08-10 1996-09-03 Ricoh Seiki Company, Ltd. Atmosphere measuring device and flow sensor
CN2238451Y (zh) * 1995-09-08 1996-10-23 北京市孔雀产业公司 液位料位控制器
JPH09152368A (ja) 1995-09-26 1997-06-10 Nissan Motor Co Ltd 静電容量型液量計
CN2304109Y (zh) * 1997-07-25 1999-01-13 清华同方股份有限公司 电容式水位传感器
DE19800054A1 (de) * 1998-01-02 1999-07-08 Volkswagen Ag Meßvorrichtung für eine Kraftstoffanzeige
DE19841770A1 (de) * 1998-09-11 2000-04-06 Siemens Ag Vorrichtung und Verfahren zur Füllstandsmessung
JP2007010587A (ja) * 2005-07-01 2007-01-18 Ngk Spark Plug Co Ltd 液体状態検知センサ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924702A (en) * 1989-03-10 1990-05-15 Kavlico Corporation Liquid level sensor
JPH11507434A (ja) * 1995-03-29 1999-06-29 ダイムラー−ベンツ アクチエンゲゼルシャフト センサ装置
JP2001524682A (ja) * 1997-12-03 2001-12-04 カヴリコ コーポレイション 高感度容量性オイル劣化およびレベルセンサ
JP2004517336A (ja) * 2001-01-19 2004-06-10 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング 尿素溶液を調量する装置
JP2002371831A (ja) * 2001-06-13 2002-12-26 Nissan Diesel Motor Co Ltd 自動車の排ガス浄化装置
JP2005084026A (ja) * 2003-09-11 2005-03-31 Mitsui Mining & Smelting Co Ltd 尿素溶液の尿素濃度識別装置

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1947451A3 (en) * 2007-01-22 2011-01-12 NGK Spark Plug Co., Ltd. Urea sensor
US8137625B2 (en) 2007-01-22 2012-03-20 Ngk Spark Plug Co., Ltd. Urea sensor
US8293180B2 (en) 2007-03-29 2012-10-23 Nissan Diesel Motor Co., Ltd. Apparatus for distinguishing liquid reducing agent and exhaust emission control apparatus of engine
JP2008248711A (ja) * 2007-03-29 2008-10-16 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
JP2008248712A (ja) * 2007-03-29 2008-10-16 Nissan Diesel Motor Co Ltd エンジンの排気浄化装置
WO2008120485A1 (ja) 2007-03-29 2008-10-09 Nissan Diesel Motor Co., Ltd. 液体還元剤判別装置及びエンジンの排気浄化装置
JP2009020063A (ja) * 2007-07-13 2009-01-29 Saginomiya Seisakusho Inc 抵抗率計の電極
JP2009025168A (ja) * 2007-07-20 2009-02-05 Ngk Spark Plug Co Ltd 液体状態検知センサ
JP2011112406A (ja) * 2009-11-24 2011-06-09 Ngk Spark Plug Co Ltd ノッキングセンサ
US9182309B2 (en) 2011-02-24 2015-11-10 Ngk Spark Plug Co., Ltd. Knocking sensor
CN102901544A (zh) * 2012-10-19 2013-01-30 上海凡宜科技电子有限公司 物位与温度传感器
CN102901544B (zh) * 2012-10-19 2015-01-21 上海凡宜科技电子有限公司 物位与温度传感器
KR101620845B1 (ko) 2014-12-08 2016-05-16 현담산업 주식회사 연료펌프모듈의 초음파 레벨센서 및 초음파 농도센서 일체모듈이 장착된 리저브컵
JP2020165743A (ja) * 2019-03-28 2020-10-08 東亜ディーケーケー株式会社 電気伝導率セル
JP7277724B2 (ja) 2019-03-28 2023-05-19 東亜ディーケーケー株式会社 電気伝導率セル

Also Published As

Publication number Publication date
CN101213443B (zh) 2011-12-28
US7712363B2 (en) 2010-05-11
EP1906176A1 (en) 2008-04-02
JP4838247B2 (ja) 2011-12-14
JPWO2007004583A1 (ja) 2009-01-29
CN101213443A (zh) 2008-07-02
EP1906176B1 (en) 2014-04-30
US20090090178A1 (en) 2009-04-09
EP1906176A4 (en) 2012-12-26

Similar Documents

Publication Publication Date Title
JP4838247B2 (ja) 液体状態検知センサ
JP4828936B2 (ja) 液状態検知センサ
US7574900B2 (en) Liquid state detection sensor
US7665347B2 (en) Liquid state detecting apparatus
US8017080B2 (en) Liquid state detecting apparatus
US7735354B2 (en) Liquid-condition detection sensor
EP1947451B1 (en) Urea sensor
US20070193345A1 (en) Liquid-condition detection sensor
JP4704997B2 (ja) 液体状態検知装置
US8627718B2 (en) Sensor arrangement for determining a tank fill level, and method for producing it
JP4594278B2 (ja) 液体状態検知センサ
US7030629B1 (en) In line fluid quality sensor
JP4623668B2 (ja) 液体状態検知素子及び液体状態検知センサ
JP4995598B2 (ja) 液体状態検知センサ
JP2007010587A (ja) 液体状態検知センサ
JP4771480B2 (ja) 液体状態検知センサ
JP4620648B2 (ja) 液体状態検知装置
JP4719570B2 (ja) 液体状態検知センサ
JP5021528B2 (ja) 液体状態検知センサ
JP4944681B2 (ja) 液体状態検知センサ
JP4704891B2 (ja) 液体状態検知装置
JP4897635B2 (ja) 液体状態検知センサ
JP2009103665A (ja) 液体状態検知センサ
JP2004354277A (ja) 液面センサ素子および液面検出装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680023948.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007524038

Country of ref document: JP

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2006767727

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11994191

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE