WO2007003490A1 - Verfahren zur herstellung eines beschichteten bauteils - Google Patents

Verfahren zur herstellung eines beschichteten bauteils Download PDF

Info

Publication number
WO2007003490A1
WO2007003490A1 PCT/EP2006/063185 EP2006063185W WO2007003490A1 WO 2007003490 A1 WO2007003490 A1 WO 2007003490A1 EP 2006063185 W EP2006063185 W EP 2006063185W WO 2007003490 A1 WO2007003490 A1 WO 2007003490A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermediate layer
layer
thermoplastic
component
plasma
Prior art date
Application number
PCT/EP2006/063185
Other languages
English (en)
French (fr)
Inventor
Wilfried Aichele
Paeivi Lehtonen
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2008519893A priority Critical patent/JP2009500200A/ja
Priority to US11/922,053 priority patent/US20100065195A1/en
Priority to CN2006800246382A priority patent/CN101218082B/zh
Priority to BRPI0612725-8A priority patent/BRPI0612725A2/pt
Priority to EP06777322A priority patent/EP1901906A1/de
Publication of WO2007003490A1 publication Critical patent/WO2007003490A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C45/14311Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles using means for bonding the coating to the articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/14Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor incorporating preformed parts or layers, e.g. injection moulding around inserts or for coating articles
    • B29C2045/1486Details, accessories and auxiliary operations
    • B29C2045/14868Pretreatment of the insert, e.g. etching, cleaning
    • B29C2045/14885Pretreatment of the insert, e.g. etching, cleaning by plasma treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0078Measures or configurations for obtaining anchoring effects in the contact areas between layers

Definitions

  • the invention relates to a method for producing a component coated with a thermoplastic layer.
  • thermoplastic layer Components that are coated with a thermoplastic layer, you will find numerous in industrial production.
  • the known injection molding can be used, in which plastic molded parts are generally made from molding materials.
  • powdered or granular injection molding materials are plasticized by an injection molding machine and injected at high pressure into the shaping cavity of an injection mold.
  • Thermoplast melt impinges on metal parts whose temperature is well below the melting point of the thermoplastic. Immediately a thin layer of solidified material forms in the melt at the interface with the metal. H. A detonated thermoplastic material which does not adhere to the metal. Since in addition the further melt in the injection molding tool solidifies while reducing its volume during the further cooling process, this results in at least partial detachment of the thermoplastic layer from the metal surface. Although this effect ensures on the one hand a good mold release of thermoplastics from metallic injection molds, but on the other hand it makes it difficult to liquid-or gas-tight encapsulation of metallic inserts such as the pins in plugs and controllers.
  • thermosetting epoxy molding compounds In comparison with an adhesive bond or an encapsulation with thermosetting epoxy molding compounds, there is no appreciable adhesion between the thermoplastic and the metal insert during extrusion coating with thermoplastics. The only slight adhesion does not allow transmission of tensile or shear stress. In addition, thin gaps between the overmolded metal parts and the thermoplastic arise.
  • thermoplastic layer Another way to solve the problem of poor adhesion is to provide a primer layer between the component and the outer thermoplastic layer.
  • a method is described in the unpublished DE-103 61 096.0, after which a primer layer is applied to metallic components in a first step.
  • the encapsulation of the thermoplastic layer is carried out on the now coated with the adhesive layer component, wherein the adhesive layer is welded to the thermoplastic layer such that between the metallic component and the thermoplastic layer no gaps occur and a frictional connection between the thermoplastic layer and the adhesion promoter layer and thus ultimately also between the thermoplastic layer and the metallic component is present.
  • the interface temperature between the thermoplastic melt and the bonding agent layer occurring during the encapsulation process must be sufficiently high for the welding process. moreover both layers to be joined must be compatible with each other, ie in principle be welded together.
  • the softening temperature of the primer layer should be sufficiently low to ensure a good weld with the thermoplastic encapsulation, on the other hand sufficiently high enough to have a good temperature and media resistance.
  • the primer layer must be elastic and its thermal expansion coefficient and thickness must be in definite relation to the corresponding values of the metal and thermoplastic layers.
  • the primer layer could be made volume-compressible.
  • US Pat. No. 6,620,517 B2 discloses a layer composite on a metallic component, wherein a rubber, an adhesion and a thermoplastic layer are applied one after the other on the component for its production. It is provided, after the application of the rubber layer to vulcanize these and optionally perform a plasma treatment on the surface of the vulcanized rubber layer.
  • plasma treatments primarily with delacid plasmas, are known for surface cleaning of the layer to be treated, wherein the molecules of the treated layer itself are not changed in structure, but typically impurities are removed from the layer.
  • the method for producing a component coated with a thermoplastic layer according to claim 1 has the advantage that the adhesion of the thermoplastic layer to the component is substantially increased or only made possible. In fact, experimental studies have shown that even with material combinations that are otherwise incompatible, good adhesion could be achieved with the method according to the invention. This results in a wider choice of usable materials. It is advantageous that the method requires no additional, large technical effort, so that it can be carried out in an economical manner. The high quality of the finished components also contributes to the economic efficiency of the method.
  • the components coated with a thermoplastic layer are gas-tight and liquid-tight after encapsulation, so that subsequent processing to seal the components is not necessary.
  • the method is not only suitable for metallic components, but also for components made of thermosetting materials.
  • Figure 1 is a produced according to the invention, coated
  • FIG. 2 shows another coated component produced according to the invention with an intermediate layer between the component and the thermoplastic layer, wherein the intermediate layer is provided with a thin adhesive layer.
  • FIG. 1 shows a component produced by the method. The following steps are provided for the production of a component coated with a thermoplastic layer:
  • step a) providing the component (10), b) applying an intermediate layer (20) of a plastic on at least one part of the component (10), c) performing a plasma treatment of the intermediate layer (20) with a plasma gas, wherein the molecules or the structure the molecules of the intermediate layer (20) are modified at least on the surface of the intermediate layer (20), and d) injection molding of the thermoplastic layer (30) in such a way that the thermoplastic layer (30) and the component (10) provided with the intermediate layer (20) are frictionally engaged stick to each other.
  • the component to be coated (10) is provided.
  • the component is made of a metallic material, but may also consist of a thermosetting material.
  • an intermediate layer (20) made of a plastic is applied to at least one part of the component (10).
  • the plastic may be a thermoplastic such as polyamide, a thermoplastic elastomer (TPE) such as polyether block amide (PEBA), an elastomer such as vulcanized rubber or a cross-linked silicone.
  • TPE thermoplastic elastomers
  • PEBA polyether block amide
  • elastomer such as vulcanized rubber or a cross-linked silicone.
  • TPE thermoplastic elastomers
  • fluororubber or fluorosilicone are also interesting because they are resistant to media and high temperatures.
  • the intermediate layer (20) ideally has a thickness of 10 ⁇ m up to a few 100 ⁇ m, a maximum of about 1 mm. This large selection of materials for the intermediate layer (20) and thus to the substance combination intermediate layer (20) / thermoplastic layer (30) is only made possible by the subsequent plasma treatment of the intermediate layer (20).
  • the molecules or the structure of the molecules of the intermediate layer (20) are modified at least on the surface of the intermediate layer (20).
  • the intermediate layer (20) can be treated with a low pressure or atmospheric pressure plasma.
  • the process pressure in the former case is advantageously about 0.1 to 0.5 mbar, in particular 0.3 mbar. If, on the other hand, one works with an atmospheric pressure plasma, it is possible to dispense with a vacuum chamber and to move components directly on an injection molding machine, for example with a robot through a plasma lance.
  • a plasma gas for the plasma treatment is a gas mixture containing, for example, silane, or purer Used oxygen. Next can be added as a protective gas argon.
  • the modification of the plastic surface can be done in different ways depending on the composition of the plasma gas.
  • a surface layer may be formed from constituents of the plasma gas.
  • fragments of the plasma gas for example oxygen (oxidation)
  • oxygen oxygen
  • Intermediate layer (20) shows an improved frictional connection in the subsequent overmolding with a thermoplastic material in step d).
  • gas and liquid-tight components are obtained by this method.
  • the plasma-treated intermediate layer (20) between the steps c) and d) with a thin, reactive adhesive layer (25) provided with a thickness of a few microns In the case of two-component adhesives, this is often possible already at room temperature the adhesive also meets the requirements for temperature and media resistance.
  • Example 2 Interlayer (20): TPE-E layer, "Hytrel 5555 HS” with a thickness of 1.0 mm
  • Plasma treatment O 2 plasma, 2 times 180 sec at 0.3 mbar tensile shear strength with plasma pretreatment: 15.9 MPa
  • Plasma treatment O 2 plasma, 2 times 180 sec at 0.3 mbar tensile shear strength with plasma pretreatment: 4.1 MPa
  • Example 6 Interlayer (20): polyamide 12-GF15, "Vestamid L-GF15" with a thickness of 1.0 mm
  • Intermediate layer (20) Fluorosilicone layer, "Type 4-9060” from Dow Corning with a thickness of 1.0 mm
  • Thermoplastic layer (30): Polyphenylene sulfide (PPS), "Ryton R4-200” Plasma treatment: O 2 plasma, 2 times 180 sec at 0.3 mbar tensile shear strength without adhesive: 0 MPa tensile shear strength with adhesive: 2.5 MPa

Abstract

Es wird ein Verfahren zur Herstellung eines mit einer Thermoplastschicht (30) beschichteten Bauteils (10) vorgeschlagen, wobei das Verfahren umfasst: a) Bereitstellen des Bauteils (10), b) Aufbringen einer Zwischenschicht (20) aus einem Kunststoff auf wenigstens einem Teil des Bauteils (10), c) Durchführen einer Plasmabehandlung der Zwischenschicht (20) mit einem Plasmagas, wobei die Moleküle oder die Struktur der Moleküle der Zwischenschicht (20) zumindest an der Oberfläche der Zwischenschicht (20) modifiziert werden, und d) Spritzgießen der Thermoplastschicht (30) derart, dass die Thermoplastschicht (30) und das mit der Zwischenschicht (20) versehene Bauteil (10) kraftschlüssig aneinander haften.

Description

Verfahren zur Herstellung eines beschichteten Bauteils
Stand der Technik
Die Erfindung betrifft ein Verfahren zur Herstellung eines mit einer Thermoplastschicht beschichteten Bauteils.
Bauteile, die mit einer Thermoplastschicht überzogen sind, findet man zahlreich in der industriellen Fertigung. Zu ihrer Herstellung kann das bekannte Spritzgießverfahren eingesetzt werden, bei denen grundsätzlich Kunststoffformteile aus Formmassen hergestellt werden. Dabei werden beispielsweise pulver- oder granulatförmige Spritzgießmassen durch eine Spritzgießmaschine plastifiziert und mit hohem Druck in die formgebende Höhlung eines Spritzgießwerkzeuges gespritzt.
Darüber hinaus eignen sich Spritzgießverfahren in besonderer Weise dazu, mehrere Komponenten in einem Arbeitsgang zu verbinden, wobei sowohl unterschiedliche als auch gleiche Werkstoffe miteinander verbunden werden. Mehrere miteinander zu verbindende Einzelteile können vorgefertigt sein und dann mit Kunststoff zusammen gefügt werden. In diesem Zusammen- hang wird auf die sogenannte Hybrid-, Insert- und die Out- serttechnik hingewiesen, die auf dem Einlegen von metallischen Strukturen in die Spritzgießwerkzeuge und einem anschließendem Über- oder Umspritzen der metallischen Strukturen mit thermoplastischen Kunstoffen beruhen. Stellvertre- tend seien hier Karosserieteile im Automobilbau wie Fron- tends, mit thermoplastischen Kunststoffen umspritzte Metallbuchsen oder metallische Pins für elektronische Schaltgeräte verschiedenster Art genannt.
Technische Probleme können sich dabei ergeben, wenn die
Thermoplastschmelze auf Metallteile auftrifft, deren Temperatur deutlich unterhalb des Schmelzpunktes des Thermoplasts liegt. Sofort bildet sich in der Schmelze an der Grenzfläche zum Metall eine dünne Schicht aus erstarrtem, d. h. abge- schrecktem thermoplastischen Material aus, welche nicht am Metall haftet. Da zusätzlich beim weiteren Kühlvorgang die gesamte Schmelze im Spritzgießwerkzeug unter Verringerung ihres Volumens erstarrt, resultiert daraus ein zumindest teilweises Ablösen der thermoplastischen Schicht von der Me- talloberflache . Dieser Effekt gewährleistet zwar einerseits eine gute Entformbarkeit der Thermoplaste aus metallischen Spritzgießwerkzeugen, aber anderseits erschwert er eine flüssigkeits- oder gasdichte Umspritzung von metallischen Einlegeteilen wie beispielsweise den Pins in Steckern und Steuergeräten. Im Vergleich zu einer Klebeverbindung oder einer Umspritzung mit duroplastischen Epoxidformmassen bildet sich bei der Umspritzung mit Thermoplasten keine nennenswerte Adhäsion zwischen Thermoplast und dem metallischen Einlegeteil aus. Die allenfalls geringe Adhäsion lässt keine Übertragung von Zug- oder Scherspannung zu. Zudem entstehen auch dünne Spalte zwischen den umspritzten Metallteilen und dem Thermoplast.
Dadurch werden Nachbearbeitungen an bereits beschichteten Bauteilen notwendig. Häufig werden niedrigviskose Gießmassen auf Basis von Epoxydharzen oder Silikonen eingesetzt, die in die unerwünschten Spalte eindringen und im Idealfall auf den Metallen und Thermoplasten haften. Alternativ kann zunächst eine Schicht aus einem Schmelzkleber auf heiße metallische Bauteile aufgebracht werden, um anschließend die Bauteile mit Thermoplast zu umspritzen. Nachteilig an dieser Lösung ist jedoch die geringe Tempera- tur- und Lösungsmittelbeständigkeit der Schmelzkleber. Zwar lassen sich beide Eigenschaften bei Verwendung eines thermisch nachvernetzenden Schmelzklebers verbessern, doch muss dann nach dem Umspritzen der Bauteile mit Thermoplast das gesamte Verbundbauteil einige Zeit lang bei erhöhter Tempe- ratur gelagert werden. Unter Umständen entstehen bei sehr hohen Temperaturen Schäden im Verbundbauteil, beispielsweise an elektronischen Komponenten innerhalb des Verbundbauteils.
Eine weitere Möglichkeit, die Problematik der schlechten Haftung zu lösen, besteht darin, eine Haftvermittlerschicht zwischen dem Bauteil und der äußeren Thermoplastschicht vorzusehen. So wird in der nicht vorveröffentlichten DE-103 61 096.0 ein Verfahren beschrieben, wonach in einem ersten Schritt eine Haftvermittlerschicht auf metallische Bauteile aufgebracht wird. Anschließend wird in einem zweiten Schritt die Umspritzung der Thermoplastschicht auf das nun mit der Haftvermittlerschicht überzogenes Bauteil durchgeführt, wobei die Haftvermittlerschicht mit der Thermoplastschicht derart verschweißt wird, dass zwischen dem me- tallischen Bauteil und der Thermoplastschicht keine Spalte auftreten und eine kraftschlüssige Verbindung zwischen der Thermoplastschicht und der Haftvermittlerschicht und damit letztendlich auch zwischen der Thermoplastschicht und dem metallischen Bauteil vorliegt.
Hierfür müssen mindestens zwei Bedingungen erfüllt sein: Die beim Umspritzvorgang auftretende Grenzflächentemperatur zwischen der Thermoplastschmelze und der Haftvermittlerschicht muss für den Verschweißprozess ausreichend hoch sein. Zudem müssen beide zu verbindende Schichten miteinander verträglich, d. h. grundsätzlich miteinander verschweißbar sein.
In vielen Anwendungen sind darüber hinaus noch weitere An- forderungen, wie etwa Beständigkeit gegenüber umgebenden Medien insbesondere bei hohen Temperaturen, an die zu verbindenden Werkstoffe zu stellen. Teilweise führen diese unterschiedlichen Bedingungen zu konträren Anforderungen an die Werkstoffe. Einerseits sollte die Erweichungstemperatur der Haftvermittlerschicht ausreichend niedrig sein, um eine gute Verschweißung mit der Thermoplastumspritzung zu gewährleisten, andererseits ausreichend hoch genug, um eine gute Temperatur- und Medienbeständigkeit aufzuweisen.
Schließlich muss die Haftvermittlerschicht elastisch sein und ihr thermischer Ausdehnungskoeffizient und ihre Dicke in bestimmter Relation stehen zu den entsprechenden Werten der Metall- und Thermoplastschicht. Alternativ könnte die Haftvermittlerschicht volumenkompressibel ausgeführt sein.
Aus den oben ausgeführten Randbedingungen resultiert eine deutliche Einschränkung der Auswahl der Materialien für die Haftvermittlerschicht und die Thermoplastschicht.
Weiter ist aus US 6,620,517 B2 ein Schichtverbund auf einem metallischen Bauteil bekannt, wobei zu seiner Herstellung auf dem Bauteil nacheinander eine Kautschuk-, eine Adhäsi- ons- und eine Thermoplastschicht aufgebracht werden. Dabei ist es vorgesehen, nach dem Aufbringen der Kautschukschicht diese zu vulkanisieren und gegebenenfalls an der Oberfläche der vulkanisierten Kautschukschicht eine Plasmabehandlung durchzuführen. Solche Plasmabehandlungen, vorwiegend mit E- delgas-Plasmen, dienen bekannter Weise zur Oberflächenreinigung der zu behandelnden Schicht, wobei die Moleküle der zu behandelnden Schicht selbst nicht in ihrer Struktur verändert werden, sondern typischerweise Verunreinigungen von der Schicht entfernt werden.
Vorteile der Erfindung
Das Verfahren zur Herstellung eines mit einer Thermoplastschicht beschichteten Bauteils nach Anspruch 1 hat den Vor- teil, dass die Haftung der Thermoplastschicht auf dem Bauteil wesentlich verstärkt oder erst ermöglicht wird. In experimentellen Untersuchungen konnte nämlich gezeigt werden, dass selbst bei Materialkombinationen, die sonst unverträglich sind, mit dem erfindungsgemäßen Verfahren eine gute Haftung erzielt werden konnte. Daraus resultiert eine größere Auswahl an verwendbaren Materialien. Dabei ist es vorteilhaft, dass das Verfahren keinen zusätzlichen, großen technischen Aufwand erfordert, so dass es auf eine wirtschaftliche Weise durchgeführt werden kann. Zur Wirtschaft- lichkeit des Verfahrens trägt auch die hohe Qualität der fertigen Bauteile bei: Die mit einer Thermoplastschicht beschichteten Bauteile sind nach dem Umspritzen gas- und flüssigkeitsdicht, so dass eine nachträgliche Bearbeitung zur Abdichtung der Bauteile nicht notwendig ist.
Im übrigen hat es sich gezeigt, dass das Verfahren nicht nur für metallische Bauteile geeignet ist, sondern auch für Bauteile aus duroplastischen Materialien.
Vorteilhafte Weiterbildungen des Verfahrens sind in den Unteransprüchen angegeben und in der Beschreibung beschrieben.
Zeichnung Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen und der nachfolgenden Beschreibung näher erläutert. Es zeigen jeweils im Schnitt:
Figur 1 ein erfindungsgemäß hergestelltes, beschichtetes
Bauteil mit einer Zwischenschicht zwischen dem Bauteil und der Thermoplastschicht, und
Figur 2 ein weiteres erfindungsgemäß hergestelltes, be- schichtetes Bauteil mit einer Zwischenschicht zwischen dem Bauteil und der Thermoplastschicht, wobei die Zwischenschicht mit einer dünnen KlebstoffSchicht versehen ist.
Beschreibung der Ausführungsbeispiele
Das erfindungsgemäße Verfahren beruht auf der Erkenntnis, dass die Haftung einer Thermoplastschicht auf einem Bauteil stark verbessert oder erst ermöglicht wird durch eine gezielte Plasmabehandlung einer Zwischenschicht zwischen dem Bauteil und der Thermoplastschicht. Figur 1 zeigt ein mit dem Verfahren hergestelltes Bauteil. Folgende Schritte sind für die Herstellung eines mit einer Thermoplastschicht beschichteten Bauteils vorgesehen:
a) Bereitstellen des Bauteils (10) , b) Aufbringen einer Zwischenschicht (20) aus einem Kunststoff auf wenigstens einem Teil des Bauteils (10) , c) Durchführen einer Plasmabehandlung der Zwischenschicht (20) mit einem Plasmagas, wobei die Moleküle oder die Struktur der Moleküle der Zwischenschicht (20) zumindest an der Oberfläche der Zwischenschicht (20) modifiziert werden, und d) Spritzgießen der Thermoplastschicht (30) derart, dass die Thermoplastschicht (30) und das mit der Zwischenschicht (20) versehene Bauteil (10) kraftschlüssig aneinander haften. Im Schritt a) wird das zu beschichtende Bauteil (10) bereitgestellt. Üblicherweise ist das Bauteil aus einem metallischen Material, kann aber auch aus einem duroplastischen Material beste- hen.
Nachfolgend wird im Schritt b) eine Zwischenschicht (20) aus einem Kunststoff auf wenigstens einem Teil des Bauteils (10) aufgebracht. Der Kunststoff kann ein Thermoplast wie Polya- mid, ein thermoplastisches Elastomer (TPE) wie Polyetherblo- ckamid (PEBA) , ein Elastomer wie vulkanisierter Kautschuk oder ein vernetztes Silikon sein. Besonders wichtig sind dabei thermoplastische Elastomere (TPE) , Fluorkautschuk oder auch Fluorsilikon. Diese Stoffe sind daher interessant, weil sie gegen Medien und hohe Temperaturen beständig sind. Die Zwischenschicht (20) weist idealer Weise eine Dicke von 10 μm bis zu einigen 100 μm auf, maximal etwa 1 mm. Diese große Auswahl an Materialien für die Zwischenschicht (20) und damit an Stoffkombination Zwischenschicht (20) /Thermoplastschicht (30) wird nur ermöglicht durch die anschließende Plasmabehandlung der Zwischenschicht (20) .
Während der Plasmabehandlung im Schritt c) werden die Moleküle oder die Struktur der Moleküle der Zwischenschicht (20) zumin- dest an der Oberfläche der Zwischenschicht (20) modifiziert. Grundsätzlich kann die Zwischenschicht (20) mit einem Niederdruck- oder Atmosphärendruck-Plasma behandelt werden. Der Prozessdruck beträgt im ersteren Fall vorteilhaft etwa 0,1 bis 0,5 mbar, insbesondere 0,3 mbar. Arbeitet man hingegen mit einem Atmosphärendruck-Plasma, kann auf eine Vakuumkammer verzichtet werden und Bauteile direkt an einer Spritzgießmaschine, beispielsweise mit einem Roboter durch eine Plasmalanze, bewegt werden. Als Plasmagas für die Plasmabehandlung wird ein Gasgemisch, welches beispielsweise Silan enthält, oder reiner Sauerstoff verwendet. Weiter kann als Schutzgas Argon zugegeben werden .
Die Modifizierung der KunststoffOberfläche kann je nach Zusammensetzung des Plasmagases auf verschiedene Weise erfolgen. Bei reaktiven Plasmen kann sich eine Oberflächenschicht aus Bestandteilen des Plasmagases ausbilden. Durch die Plasmabehandlung können Fragmente des Plasmagases, beispielsweise Sauerstoff (Oxidation) , zumindest im Oberflächen- bereich der Zwischenschicht (20) eingebaut werden. Durch den
Einbau von Fremdatomen bzw. Molekülgruppen aus dem Plasmagas in die Kunststoffoberflache ist es auch möglich, durch die Plasmabehandlung die Moleküle der Zwischenschicht (20) in einen Zustand mit einer höheren Polarität zu überführen. Weist die Struktur der Moleküle der Zwischenschicht (20) lineare Molekülketten auf, können die Molekülketten durch die Plasmabehandlung verkürzt werden. Schließlich besteht auch die Möglichkeit, durch die Plasmabehandlung reaktive Gruppen, beispielsweise reaktive Ionen, oder Radikale zumindest im Oberflächenbereich der Zwi- schenschicht (20) selbst zu bilden, welche sich mit der überspritzten Thermoplastschicht chemisch verbinden. Plasmagase werden also derart eingesetzt, dass Plasmagasfragmente reaktive oder haftfördernde Gruppen auf der Kunststoffoberflache bilden.
Eine derart mit einem Plasma oberflächenbehandelte
Zwischenschicht (20) zeigt beim nachfolgenden Überspritzen mit einem thermoplastischen Material im Schritt d) eine verbesserte, kraftschlüssige Verbindung. Insbesondere erhält man durch dieses Verfahren gas- und flüssigkeitsdichte Bauteile.
In einer weiteren Ausführung des Verfahrens kann, wie in Fig. 2 erkennbar, bei Bedarf die plasmabehandelte Zwischenschicht (20) zwischen den Schritten c) und d) mit einer dünnen, reaktiven KlebstoffSchicht (25) mit einer Dicke von einigen μm versehen werden („Spritzkleben") . Vorteilhaft besteht die KlebstoffSchicht (25) aus einem Epoxidkleber . Nach Schritt d) findet ein Aushärten der KlebstoffSchicht (25) statt. Im Falle von Zweikomponenten-Klebstoffen ist dies häufig bereits bei Raumtemperatur möglich. Nach dem Aushärten erfüllt der Klebstoff ebenfalls die Anforderungen an Temperatur- und Medienbeständigkeit .
Die zum Teil stark verbesserte Haftung der plasmabehandelten Zwischenschichten (20) im Vergleich zu nicht plasmabehandelten Zwischenschichten (20) wurde durch Haftungsuntersuchungen wiederholt bestätigt. Stellvertretend für alle möglichen Ausführungen seien hier einige Beispiele mit Sauerstoff-Plasmabehandlung genannt. Die Materialbezeichnungen sind Typbezeichnungen von kommerziell erhältlichen Kunststoffen.
In den Beispielen 1 bis 5 wurden Materialkombinationen geprüft, die ohne Plasmabehandlung unverträglich sind, d. h. keine bzw. nur eine vernachlässigbar kleine Haftung miteinander zeigen. Nach der Plasmabehandlung konnte jedoch eine gute Haftung gemessen werden.
Beispiel 1:
Zwischenschicht (20) : TPE-E-Schicht, „Arnitel PL 380" mit einer Dicke von 1,0 mm
Thermoplastschicht (30) : PA66-GF35, „Ultramid A3HG7" Plasmabehandlung: O2-Plasma, 2 mal 180 sec bei 0,3 mbar Zugscherfestigkeit mit Plasmavorbehandlung: größer als 1,5 MPa Zugscherfestigkeit ohne Plasmavorbehandlung: 0 MPa
Beispiel 2: Zwischenschicht (20) : TPE-E-Schicht, „Hytrel 5555 HS" mit einer Dicke von 1,0 mm
Thermoplastschicht (30) : PA66-GF35, „Ultramid A3HG7" Plasmabehandlung: O2-Plasma, 2 mal 180 sec bei 0,3 mbar Zugscherfestigkeit mit Plasmavorbehandlung: größer als 6 MPa Zugscherfestigkeit ohne Plasmavorbehandlung: 0 MPa
Beispiel 3:
Zwischenschicht (20) : Polyamid 12-GF15, „Vestamid L-GF15" mit einer Dicke von 1,0 mm
Thermoplastschicht (30) : Polyphenylensulfid (PPS), „Ryton R4-200" Plasmabehandlung: O2-Plasma, 2 mal 180 sec bei 0,3 mbar Zugscherfestigkeit mit Plasmavorbehandlung: 12,7 MPa
Beispiel 4:
Zwischenschicht (20) : Polyamid 12-GF15, „Vestamid L-GF15" mit einer Dicke von 1,0 mm Thermoplastschicht (30) : Polyamid 46, „Stanyl TW 300"
Plasmabehandlung: O2-Plasma, 2 mal 180 sec bei 0,3 mbar Zugscherfestigkeit mit Plasmavorbehandlung: 15,9 MPa
Beispiel 5:
Zwischenschicht (20) : Polyamid 12-GF15, „Vestamid L-GF15" mit einer Dicke von 1,0 mm
Thermoplastschicht (30) : Polyphenylensulfid (PPS), „Ryton R4-200"
Plasmabehandlung: O2-Plasma, 2 mal 180 sec bei 0,3 mbar Zug- Scherfestigkeit mit Plasmavorbehandlung: 4,1 MPa
Beispiel 6: Zwischenschicht (20) : Polyamid 12-GF15, „Vestamid L-GF15" mit einer Dicke von 1,0 mm
Thermoplastschicht (30) : Polyamid 46, „Stanyl TW 300" Plasmabehandlung: O2-Plasma, 2 mal 180 sec bei 0,3 mbar Zug- Scherfestigkeit mit Plasmavorbehandlung: 4,7 MPa
In den folgenden Beispielen 7 und 8 wurden vergleichbare Messungen ohne und mit einer zusätzlichen, wenigen μm dicken KlebstoffSchicht (25) durchgeführt. Der Klebstoff bestand aus „EP1", einer Mischung von „Araldit LY 1413 BD" und „HY 840-1" im Verhältnis von 1:1. Die Härtung der KlebstoffSchicht (25) erfolgte nach dem Umspritzen der Thermoplastschicht (30) etwa 4 Stunden lang bei 80 0C. Wie erkennbar aus den Messergebnissen, kann eine zusätzliche KlebstoffSchicht (25) nach der Plasmabehandlung der Zwischenschicht (20) die Haftung weiter verstärken.
Beispiel 7:
Zwischenschicht (20) : Fluorsilikon-Schicht, „Typ 4-9060" der Fa. Dow Corning mit einer Dicke von 1,0 mm
Thermoplastschicht (30) : Polyamid 46, „Stanyl TW 300" Plasmabehandlung: O2-Plasma, 2 mal 180 sec bei 0,3 mbar Zugscherfestigkeit ohne Klebstoff: 2,6 MPa Zugscherfestigkeit mit Klebstoff: 3,2 MPa
Beispiel 8:
Zwischenschicht (20) : Viton-Schicht, „Typ V747" der Fa. Parker mit einer Dicke von 1,0 mm Thermoplastschicht (30) : Polyphenylensulfid (PPS), „Ryton R4-200" Plasmabehandlung: O2-Plasma, 2 mal 180 sec bei 0,3 mbar Zugscherfestigkeit ohne Klebstoff: 0 MPa Zugscherfestigkeit mit Klebstoff: 2,5 MPa

Claims

Ansprüche
1. Verfahren zur Herstellung eines mit einer Thermoplastschicht (30) beschichteten Bauteils (10), umfassend: e) Bereitstellen des Bauteils (10) , f) Aufbringen einer Zwischenschicht (20) aus einem
Kunststoff auf wenigstens einem Teil des Bauteils (10), g) Durchführen einer Plasmabehandlung der Zwischenschicht (20) mit einem Plasmagas, wobei die Moleküle oder die Struktur der Moleküle der Zwischenschicht
(20) zumindest an der Oberfläche der Zwischenschicht (20) modifiziert werden, und h) Spritzgießen der Thermoplastschicht (30) derart, dass die Thermoplastschicht (30) und das mit der Zwischenschicht (20) versehene Bauteil (10) kraftschlüssig aneinander haften.
2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt a) ein Bauteil (10) aus einem metallischen oder einem duroplastischen Material bereitgestellt wird.
3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt b) eine Zwischenschicht (20) aus einem Thermoplast, thermoplastischem Elastomer (TPE) , Elastomer oder vernetztem Silikon aufgebracht wird.
4. Verfahren nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt b) eine Zwischenschicht (20) aus einem Fluorkautschuk aufgebracht wird.
5. Verfahren nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt b) eine Zwischenschicht (20) aus einem Fluorsilikon aufgebracht wird.
6. Verfahren nach Anspruch 3, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt b) eine Zwischenschicht (20) aus einem vulkanisierten Kautschuk aufgebracht wird.
7. Verfahren nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt b) eine Zwischenschicht (20) mit einer Dicke von 10 μm bis zu einigen 100 μm aufgebracht wird.
8. Verfahren nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt c) die Zwischenschicht (20) mit einem Niederdruck-Plasma behandelt wird.
9. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt c) der Druck 0,1 bis 0,5 mbar, insbesondere
0,3 mbar, beträgt.
10. Verfahren nach einem der Ansprüche 1 bis 7, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt c) die Zwischenschicht (20) mit einem Atmosphärendruck-Plasma behandelt wird.
11. Verfahren nach einem der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt c) für die Plasmabehandlung ein Gasgemisch oder reiner Sauerstoff verwendet wird.
12. Verfahren nach Anspruch 11, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt c) ein Gasgemisch aus einem inerten Trägergas wie Argon und einer flüchtigen Verbindung wie Silan verwendet wird.
13. Verfahren nach Anspruch 11 oder 12, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt c) durch die Plasmabehandlung Fragmente des Plasmagases oder Sauerstoff zumindest im Oberflächenbereich der Zwischenschicht (20) eingebaut werden.
14. Verfahren nach einem der Ansprüche 1 bis 13, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt c) durch die Plasmabehandlung die Moleküle der Zwischenschicht (20) in einen Zustand mit einer höheren Polarität überführt werden.
15. Verfahren nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt c) die Struktur der Moleküle der Zwischenschicht (20) Molekülketten aufweisen, die durch die Plasmabehandlung verkürzt werden.
16. Verfahren nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t, dass im Schritt c) durch die Plasmabehandlung reaktive Gruppen zumindest im Oberflächenbereich der Zwischenschicht (20) gebildet werden.
17. Verfahren nach einem der Ansprüche 1 bis 16, d a d u r c h g e k e n n z e i c h n e t, dass zwischen den Schritten c) und d) die Zwischenschicht (20) mit einer dünnen KlebstoffSchicht (25) mit einer Dicke von einigen μm versehen wird.
18. Verfahren nach Anspruch 17, d a d u r c h g e k e n n z e i c h n e t, dass die KlebstoffSchicht (25) aus einem Epoxidkleber besteht.
19. Verfahren nach Anspruch 17 oder 18, d a d u r c h g e k e n n z e i c h n e t, dass nach Schritt d) ein Aushärten der KlebstoffSchicht (25) stattfindet .
PCT/EP2006/063185 2005-07-06 2006-06-14 Verfahren zur herstellung eines beschichteten bauteils WO2007003490A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2008519893A JP2009500200A (ja) 2005-07-06 2006-06-14 被覆部材の製造方法
US11/922,053 US20100065195A1 (en) 2005-07-06 2006-06-14 Method for manufacturing a coated component
CN2006800246382A CN101218082B (zh) 2005-07-06 2006-06-14 生产涂覆零件的方法
BRPI0612725-8A BRPI0612725A2 (pt) 2005-07-06 2006-06-14 processo para a produção de um componente revestido
EP06777322A EP1901906A1 (de) 2005-07-06 2006-06-14 Verfahren zur herstellung eines beschichteten bauteils

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005031606A DE102005031606A1 (de) 2005-07-06 2005-07-06 Verfahren zur Herstellung eines beschichteten Bauteils
DE102005031606.9 2005-07-06

Publications (1)

Publication Number Publication Date
WO2007003490A1 true WO2007003490A1 (de) 2007-01-11

Family

ID=36930429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/063185 WO2007003490A1 (de) 2005-07-06 2006-06-14 Verfahren zur herstellung eines beschichteten bauteils

Country Status (7)

Country Link
US (1) US20100065195A1 (de)
EP (1) EP1901906A1 (de)
JP (1) JP2009500200A (de)
CN (1) CN101218082B (de)
BR (1) BRPI0612725A2 (de)
DE (1) DE102005031606A1 (de)
WO (1) WO2007003490A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012214491A1 (de) * 2012-08-14 2014-02-20 Osram Gmbh Leuchtmodul und Verfahren zur Herstellung eines derartigen Leuchtmoduls
JP5505484B2 (ja) * 2012-10-22 2014-05-28 Nok株式会社 樹脂ゴム複合体
CN104822527A (zh) * 2012-11-01 2015-08-05 Nok株式会社 树脂橡胶复合物
CN108602220A (zh) * 2016-01-27 2018-09-28 等离子体处理有限公司 具有嵌入件的注塑构件,其生产方法和应用
CN108995126A (zh) * 2018-06-20 2018-12-14 北京航数车辆数据研究所有限公司 一种金属塑料混合结构的制造方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349749A1 (de) * 1988-07-02 1990-01-10 Audi Ag Verwendung einer Plasma-Vorbehandlung zur Erhöhung der Haftfähigkeit einer nachfolgend aufzubringenden zweiten Lackschicht
JPH11320609A (ja) * 1998-05-18 1999-11-24 Seiko Epson Corp 射出成形方法
EP1197316A1 (de) * 1999-03-31 2002-04-17 Alcan Technology & Management AG Kunststoffbauelement mit Einlegeteilen
US6620517B2 (en) 2000-03-09 2003-09-16 Toyo Tire & Rubber Co., Ltd. Method for producing rubber-resin composite
DE10343259A1 (de) 2002-09-19 2004-04-01 Weidmann Plastics Technology Ag Verfahren und Anordnung zum Herstellen hinterspritzter Folien
DE10308989A1 (de) * 2003-03-01 2004-09-16 Krauss-Maffei Kunststofftechnik Gmbh Verfahren und Vorrichtung zur Herstellung von Verbund-Kunststoffteilen
WO2004103680A1 (de) * 2003-05-23 2004-12-02 Krauss-Maffei Kunststofftechnik Gmbh Herstellung von hybridbauteilen durch einlegeteil-spritzgiessen mit plasmabehandelten einlegeteilen
DE10333197A1 (de) * 2003-07-22 2005-02-10 Krauss-Maffei Kunststofftechnik Gmbh Verfahren zur Herstellung eines Kunststoff-Verbundbauteils

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1322260A (fr) * 1962-02-14 1963-03-29 Saint Gobain Chalumeau à flamme de plasma
US3339850A (en) * 1965-09-21 1967-09-05 Allied Chem Pulverized polyethylene
JPS5814453B2 (ja) * 1979-07-16 1983-03-19 信越化学工業株式会社 プラスチツク成形品の表面処理方法
JPS5944756B2 (ja) * 1980-06-18 1984-10-31 三菱電機株式会社 結線部分の絶縁処理方法
US4390678A (en) * 1982-01-07 1983-06-28 H. B. Fuller Company One-package heat curable aromatic polyurethane composition useful for joining substrates and as an in-mold coating comprising an isocyanate terminated prepolymer and a polyhydroxy compound
JPS6148386A (ja) * 1984-08-13 1986-03-10 株式会社ブリヂストン ゴルフボールの表面処理装置
JP2839890B2 (ja) * 1988-08-27 1998-12-16 東海興業株式会社 ガラス塩化ビニル樹脂一体成形物の製造方法
CA2021887A1 (en) * 1989-07-26 1991-01-27 Shigeru Nedzu Polyalkylene terephthalate resin molded article having pictorial pattern formed thereon and process for preparation thereof
US5419861A (en) * 1990-02-15 1995-05-30 Elf Aquitaine Production Method for improving the paintability of objects fashioned from polyamide and polyolefin blends
JPH04133709A (ja) * 1990-09-26 1992-05-07 Aisin Seiki Co Ltd 樹脂製装飾部品
US5316739A (en) * 1991-08-20 1994-05-31 Bridgestone Corporation Method and apparatus for surface treatment
DE4204082A1 (de) * 1992-02-12 1993-08-19 Leybold Ag Verfahren zur herstellung einer haftvermittelnden schicht auf werkstueckoberflaechen
JP3269165B2 (ja) * 1993-03-01 2002-03-25 日本ゼオン株式会社 複合部材、その製造方法、及びそれを用いた複合成形品
CA2221922C (en) * 1996-08-20 2004-01-27 Presstek, Inc. Self-cleaning, abrasion-resistant, laser-imageable lithographic printing constructions
JP3734587B2 (ja) * 1997-03-14 2006-01-11 本田技研工業株式会社 ポリプロピレン系樹脂製外板及びその製造方法
US6428645B1 (en) * 1997-06-02 2002-08-06 Delphi Technologies, Inc. Vehicular mount assembly with bonded rubber
EP0989172A1 (de) * 1998-09-24 2000-03-29 Hitachi Chemical Co., Ltd. Kleber für metallische Folien, mit diesem Kleber überzogene metallische Folie, mit der metallischen Folie überzogene Schichtplatte und daraus hergestellte Erzeugnisse
JP3594884B2 (ja) * 1999-07-09 2004-12-02 エア・ウォーター株式会社 複合材の製法およびそれによって得られる複合材
JP2001239548A (ja) * 2000-03-02 2001-09-04 Bridgestone Corp 樹脂・金属複合成形体の作成方法及び複合成形体
IT1318558B1 (it) * 2000-06-08 2003-08-27 Ausimont Spa Poliuretani a basso coefficiente di attrito.
US6936205B2 (en) * 2000-11-22 2005-08-30 Acushnet Company Method of making golf balls
US6645088B2 (en) * 2001-04-13 2003-11-11 Acushnet Company Reaction injection moldable compositions, methods for making same, and resultant golf articles
US6793759B2 (en) * 2001-10-09 2004-09-21 Dow Corning Corporation Method for creating adhesion during fabrication of electronic devices
DE10212304C1 (de) * 2002-03-20 2003-12-04 Bayer Ag Verfahren zur Herstellung von metallisierten Kunststoffformteilen und deren Verwendung
JP2003286357A (ja) * 2002-03-28 2003-10-10 Nichias Corp フッ素ゴム成形体及びフッ素ゴム成形体の非粘着化処理法
JP2004009675A (ja) * 2002-06-11 2004-01-15 Konica Minolta Holdings Inc 製品素材の処理方法
JP3843915B2 (ja) * 2002-08-29 2006-11-08 株式会社ノーリツ 燃焼装置
EP1462183A1 (de) * 2003-03-28 2004-09-29 Sulzer Markets and Technology AG Verfahren zur oberflächenbehandlung eines substrats sowie mit einem solchen verfahren behandeltes substrat
WO2004111109A1 (ja) * 2003-06-11 2004-12-23 Daikin Industries, Ltd. 含フッ素グラフトまたはブロックポリマー
JP4485301B2 (ja) * 2003-09-24 2010-06-23 富士フイルム株式会社 セルロースエステルフイルムおよび積層位相差板
JP2005153244A (ja) * 2003-11-21 2005-06-16 Kaneka Corp 積層性に優れたボンディングシートおよび片面金属張積層板

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0349749A1 (de) * 1988-07-02 1990-01-10 Audi Ag Verwendung einer Plasma-Vorbehandlung zur Erhöhung der Haftfähigkeit einer nachfolgend aufzubringenden zweiten Lackschicht
JPH11320609A (ja) * 1998-05-18 1999-11-24 Seiko Epson Corp 射出成形方法
EP1197316A1 (de) * 1999-03-31 2002-04-17 Alcan Technology & Management AG Kunststoffbauelement mit Einlegeteilen
US6620517B2 (en) 2000-03-09 2003-09-16 Toyo Tire & Rubber Co., Ltd. Method for producing rubber-resin composite
DE10343259A1 (de) 2002-09-19 2004-04-01 Weidmann Plastics Technology Ag Verfahren und Anordnung zum Herstellen hinterspritzter Folien
DE10308989A1 (de) * 2003-03-01 2004-09-16 Krauss-Maffei Kunststofftechnik Gmbh Verfahren und Vorrichtung zur Herstellung von Verbund-Kunststoffteilen
WO2004103680A1 (de) * 2003-05-23 2004-12-02 Krauss-Maffei Kunststofftechnik Gmbh Herstellung von hybridbauteilen durch einlegeteil-spritzgiessen mit plasmabehandelten einlegeteilen
DE10333197A1 (de) * 2003-07-22 2005-02-10 Krauss-Maffei Kunststofftechnik Gmbh Verfahren zur Herstellung eines Kunststoff-Verbundbauteils

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AMESOEDER S ET AL: "PLASMA SORGT FUER FESTEN VERBUND", KUNSTSTOFFE, CARL HANSER VERLAG, MUNCHEN, DE, vol. 93, no. 9, 2003, pages 124 - 129, XP001171704, ISSN: 0023-5563 *
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 02 29 February 2000 (2000-02-29) *

Also Published As

Publication number Publication date
EP1901906A1 (de) 2008-03-26
BRPI0612725A2 (pt) 2010-11-30
JP2009500200A (ja) 2009-01-08
CN101218082B (zh) 2010-11-10
US20100065195A1 (en) 2010-03-18
CN101218082A (zh) 2008-07-09
DE102005031606A1 (de) 2007-01-11

Similar Documents

Publication Publication Date Title
EP1699612B2 (de) Bauteil mit kunststoff-metall-verbund und herstellung des bauteils
EP1920451B1 (de) Verfahren zur herstellung von schalterpolteilen für nieder-, mittel- und hochspannungsschaltanlagen, sowie schalterpolteil selbst
EP1361261A2 (de) Dichtung
WO2007003490A1 (de) Verfahren zur herstellung eines beschichteten bauteils
DE2853767A1 (de) Verfahren zum abdichten von leuchten oder scheinwerfern von kraftfahrzeugen o.dgl.
DE102016218930A1 (de) Abriebfester und hydrolysebeständiger Encoder, Lagereinheit mit Encoder und Verfahren zur Herstellung des Encoders
DE102009048877A1 (de) Kabeldurchführung in Steckverbindergehäusen
DE4442081C2 (de) Dichtung für bewegte Bauteile
DE102015218142A1 (de) Verfahren zur Herstellung eines Verbundbauteils
DE102009006363A1 (de) Verfahren zum Herstellen eines zumindest bereichsweise galvanisierten Kunststoffformteils
DE102009003958B4 (de) Verfahren zum Herstellen eines mit einer Durchführung versehenen MIM-Formteils
DE102015206730B4 (de) Umlenkelement für einen Sicherheitsgurt
DE102006014606A1 (de) Verfahren zur Herstellung eines gekapselten Hochdruckaktors
EP1248815B1 (de) Mediendichte kontaktdurchführungen
DE102007028076A1 (de) Verfahren zur Herstellung stabiler und mediendichter Metall-Kunststoff-Spritzgussverbunde
DE10323480A1 (de) Verfahren zur Herstellung eines Hybridbauteils
EP3132861A2 (de) Verfahren zur beschichtung eines substrats und beschichtung für ein substrat
DE4035657A1 (de) Verfahren zur herstellung eines dichtungselements
DE19964627B4 (de) Dichtung und Verfahren zu deren Herstellung
DE10148909A1 (de) Bauteile, Halbzeuge und Profile, ganz oder teilweise aus Kunststoff
DE102009030423A1 (de) Verfahren zum Herstellen eines Verbundbauteils
DE102007040096B4 (de) Bauteil und Verfahren zur Herstellung
DE102007026938A1 (de) Verfahren zur Herstellung eines Hybridbauteils
DE102016220591A1 (de) Baugruppe und Verfahren zu deren Herstellung
DE102013006081A1 (de) Hybridbauteil und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006777322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680024638.2

Country of ref document: CN

Ref document number: 76/CHENP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008519893

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2006777322

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11922053

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0612725

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20080104