WO2007003135A1 - Ligand de complexe de ruthenium, complexe de ruthenium, catalyseur supporte a base de complexe de ruthenium, leurs procedes de fabrication et leur utilisation - Google Patents

Ligand de complexe de ruthenium, complexe de ruthenium, catalyseur supporte a base de complexe de ruthenium, leurs procedes de fabrication et leur utilisation Download PDF

Info

Publication number
WO2007003135A1
WO2007003135A1 PCT/CN2006/001551 CN2006001551W WO2007003135A1 WO 2007003135 A1 WO2007003135 A1 WO 2007003135A1 CN 2006001551 W CN2006001551 W CN 2006001551W WO 2007003135 A1 WO2007003135 A1 WO 2007003135A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ruthenium complex
derivative
aryl
ester
Prior art date
Application number
PCT/CN2006/001551
Other languages
English (en)
French (fr)
Inventor
Zheng-Yun Zhan
Original Assignee
Zheng-Yun Zhan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37604089&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2007003135(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zheng-Yun Zhan filed Critical Zheng-Yun Zhan
Priority to JP2008519782A priority Critical patent/JP5406525B2/ja
Priority to CA2614073A priority patent/CA2614073C/en
Priority to KR1020087002957A priority patent/KR101269568B1/ko
Priority to EP06761350.5A priority patent/EP1905777B2/en
Publication of WO2007003135A1 publication Critical patent/WO2007003135A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/068Polyalkylene glycols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • B01J31/1666Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins the linkage established via an olefin metathesis reaction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/165Polymer immobilised coordination complexes, e.g. organometallic complexes
    • B01J31/1658Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins
    • B01J31/1683Polymer immobilised coordination complexes, e.g. organometallic complexes immobilised by covalent linkages, i.e. pendant complexes with optional linking groups, e.g. on Wang or Merrifield resins the linkage being to a soluble polymer, e.g. PEG or dendrimer, i.e. molecular weight enlarged complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2269Heterocyclic carbenes
    • B01J31/2273Heterocyclic carbenes with only nitrogen as heteroatomic ring members, e.g. 1,3-diarylimidazoline-2-ylidenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2265Carbenes or carbynes, i.e.(image)
    • B01J31/2278Complexes comprising two carbene ligands differing from each other, e.g. Grubbs second generation catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/40Regeneration or reactivation
    • B01J31/4015Regeneration or reactivation of catalysts containing metals
    • B01J31/4023Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper
    • B01J31/403Regeneration or reactivation of catalysts containing metals containing iron group metals, noble metals or copper containing iron group metals or copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C315/00Preparation of sulfones; Preparation of sulfoxides
    • C07C315/04Preparation of sulfones; Preparation of sulfoxides by reactions not involving the formation of sulfone or sulfoxide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/50Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
    • B01J2231/54Metathesis reactions, e.g. olefin metathesis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/821Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/30Non-coordinating groups comprising sulfur
    • B01J2540/34Sulfonyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/40Non-coordinating groups comprising nitrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2540/00Compositional aspects of coordination complexes or ligands in catalyst systems
    • B01J2540/60Groups characterized by their function
    • B01J2540/62Activating groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/06Systems containing only non-condensed rings with a five-membered ring
    • C07C2601/10Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a ruthenium complex catalyst, and more particularly to a ruthenium complex ligand, a ruthenium complex, a supported ruthenium complex catalyst, a process for the preparation thereof and use thereof.
  • the Grubbs-Hoveyda catalyst has problems such as insufficient catalytic activity and stability, decomposition and the like at a relatively high temperature, and low catalytic activity in the olefin metathesis metathesis reaction of a multi-substituted substrate. Summary of the invention
  • the present invention significantly increases the catalytic activity of the ruthenium complex by changing the substituent of the Hoveyda complex ligand.
  • the ruthenium complex ligand of the present invention is characterized in that the substituent is an electron withdrawing substituent such as a sulfamoyl group, a sulfonamide substituent or a carbonyl group, and the sulfamoyl group is introduced into the sulfonium complex ligand. , sulfonamide substituent, carbonyl group and other electron withdrawing substituents, thereby greatly improving the catalytic activity of the ruthenium complex
  • Y is oxygen, sulfur, nitrogen or phosphorus
  • Z is methylene, oxygen or p-toluenesulfonate
  • R is hydrogen, halogen, nitro, nitrile group, -C alkyl group, d-o alkoxy group, -C 2 o sulfide group, - o silyl group, Ci-C ⁇ siloxy group, C 6 -C 2G Aryl, C 6 -C 2 o aryloxy, C 2 -C 2C heterocyclyl, C 2 -C 2 .
  • a heterocyclic aryl group a sulfoxide group, a sulfone group, a formaldehyde group, a Q-ocarbonyl group, a -C20 ester group, a d-o-amide group, a d-oureido group or a derivative thereof or a CC ⁇ sulfonamide group;
  • R 1 and R 2 are independently hydrogen, bromine (Br), iodine (1), an alkyl group or a derivative thereof, -C ⁇ methoxy group, -C 20 thioether group. ! ⁇ siloxy, C 6 -C 2Q aryloxy, C 6 -C 2Q aryl, C 2 -C 2Q heterocyclic, C 2 -C 2Q heteroaryl, Ci-C ⁇ , -C a 2Q amide group, a d-oureido group or a derivative thereof or a -C 2 () sulfonamide group;
  • R 3 is hydrogen, -C20 alkyl or a derivative thereof, a decyloxy group, a dC thioether group, a d-o silicon fluorenyl group, a C, a C 20 siloxy group, a C 6 -C 2Q aryl group, a C 6 -C 2Q aryloxy, C 2 -C 2Q heterocyclic group, C 2 -C 2Q heterocyclic aryl, sulfoxide group, sulfone group, C o carbonyl group, -C ⁇ ester group, Q- o amide group, - a C 2 Q ureido group or a derivative thereof or a Cr o sulfonamide group;
  • 6 ⁇ is - o aminosulfonyl (R 2 NS0 2 ), formaldehyde group, -C carbonyl, dC ⁇ ester group, dC 2 o aminocarbonyl (R 2 NCO), amide group, chlorine, fluorine, urea group or Its derivative or d- o sulfonamide group.
  • Y is oxygen or sulfur
  • Z is oxygen, methylene or p-toluenesulfonyl hydrazide
  • R is hydrogen, halogen, nitro, nitrile group, - s alkyl group, QC 15 alkoxy group, QC 15 thioether group, -Qs silyl group, C!-d ⁇ i oxy group, C 6 -C 15 aryl group , C 6 -C 15 aryloxy, C 2 -C 15 heterocyclic, C 2 -C 15 heteroaryl, sulfoxide, sulfone, formate, CC 15 carbonyl, dC 15 ester, 15 amide a group, a 15 ureido group or a derivative thereof or a C r C] 5 sulfonamide group;
  • R 1 and R 2 are independently hydrogen, bromine (Br), iodine (1), dC 15 alkyl or a derivative thereof, QC 15 decyloxy group, QC 15 thioether group, dC 15 siloxy group, C 6 - C 15 aryloxy, C 6 -C 15
  • R 3 is hydrogen, Cj-ds alkyl or a derivative thereof, Cj-ds alkoxy, CrC 15 thioether, CC 15 silicon fluorenyl, C, -C 15 siloxy, C 6 -C 15 aryl , C 6 -C 15 aryloxy, C 2 -C 15 heterocyclic, C 2 -C 15 heterocyclic aryl, dC 15 carbonyl, dC 15 amide, -C 15 ureido or a derivative thereof or -C 15 sulfonamide;
  • EWG is dC 15 aminosulfonyl (R 2 NS0 2 ), formaldehyde group, C r C 15 carbonyl, dC 15 ester group, dC 15 aminocarbonyl (NCO), 15 amide group, chlorine, fluorine, -C 15 urea group or Its derivative or dC 15 sulfonamide group.
  • Y is oxygen;
  • Z is methylene or p-toluenesulfonate;
  • R 1 and R 2 are independently hydrogen;
  • R 3 is isopropyl or isobutyl, and the like.
  • R is hydrogen, chlorine, fluorine, -C 8 carbonyl, dC 8 ester group, -C 8 aminocarbonyl group (R 2 NCO), C r C 8 amide group, ureido group or derivative thereof Or CC s sulfonamide;
  • EWG is an electron withdrawing group d-do aminosulfonyl (R 2 NS0 2 ), formaldehyde group, -C 8 carbonyl, dC 8 ester group, CC 8 aminocarbonyl group (R 2 NCO), dC 8 Amido, chloro, fluoro, dC 8 ureido or a derivative thereof or Ci-ds sulfonamide.
  • a second object of the present invention is to provide a ruthenium complex of the formula II:
  • M is ruthenium (Ru) ;
  • X 1 and X 2 are chlorine or RCOO by themselves, and R is a decyl group of dC 2 c or a derivative thereof;
  • L is an electron-donating complex ligand; wherein, L and X 1 are not bonded into a cyclic structure or a cyclic structure;
  • Y, R, RR 2 , R 3 , and EWG are as defined above.
  • the structural formula of L is the following formula IIIa, IIIb, IIIc or Illd:
  • R 4 and R 5 are independently - o alkyl, C 6 - C 2Q aryl, C 2 - C 2 o heterocyclic aryl, dC 2 o heterocyclic, C!- o carbonyl, d- o Amido, d-oureido or a derivative thereof or -C sulfonamide;
  • R 6 and R 7 are independently hydrogen, -C20 decyl, - o alkoxy, -C20 thioether, d-Czosilyl, siloxy, C 6 -C 2G aryl, C 6 -C 2Q Aryloxy, C 2 -C 2C heterocyclic aryl, C 2 -C 2Q heterocyclic, sulfoxide, sulfone, Cr o carbonyl, C r C 2 () ester, -C 2Q amide, - C ureido or a derivative thereof, dC sulfonylamino, halogen, nitro or nitrile;
  • R 8 and R 9 are independently an alkyl group or a derivative thereof, a decyloxy group, a C 6 -C 2Q aryl group, a C 6 -C 2 () aryloxy group, c 2 -c 2 . Heterocyclic aryl or C 2 -C 2Q heterocyclic group.
  • L has the formula Ilia or IIId
  • R 4 and R 5 are independently 2,4,6-trimethylphenyl
  • R 6 and R 7 are independently hydrogen or 111d
  • R 8 and R 9 are independently cyclohexyl.
  • X 1 and X 2 are chlorine by themselves;
  • L is Ilia or Illd
  • Y is oxygen
  • R is hydrogen, halogen, nitro, nitrile, d-ds alkyl, QC 15 alkoxy, thioether, ⁇ silyl, 15 silyloxy, C 6 -C 15 aryl, C 6 - C 15 aryloxy, C 2 -C 15 heterocyclic group, C 2 -C 15 heterocyclic aryl, sulfoxide group, sulfone group, formaldehyde group, -C 15 carbonyl group, -ds ester group, 15 amide group, - C 15 ureido or a derivative thereof or CC 15 sulfonamide;
  • R 1 and R 2 are independently hydrogen, bromine (Br), iodine (1), dC 15 alkyl or a derivative thereof, -C 15 decyloxy group, dC 15 thioether group, -C 15 siloxy group, C 6- C 15 aryloxy, C 6 -C 15 aryl, C 2 -C I5 heterocyclic, C 2 -5 heterocyclic aryl, -ds ester, QC 15 amide, -ds ureido or Derivative or dC 15 sulfonamide;
  • R 3 is hydrogen, CrC 15 alkyl or a derivative thereof, C-ds alkoxy, dC 15 thioether, CC 15 silane, QC 15 siloxy, c 6 -c 12 aryl, C 6 -C 12 aryloxy, 12 heterocyclic, C 2 -C 12 heteroaryl, CC 12 carbonyl, dC 12 amide, C!-Cu ureido or a derivative thereof or -C 12 sulfonamide;
  • R 4 and R 5 are independently aryl; R 6 and R 7 are independently hydrogen.
  • R 1 and R 2 are independently hydrogen;
  • R 3 is a -C 6 alkyl derivative such as isopropyl or isobutyl;
  • R is hydrogen, chlorine, fluorine, -Cs carbonyl, dC 8 ester, dC 8 aminocarbonyl (R 2 NCO), C, -C 8 amide, -C 8 ureido or its derivatives or d-Cs sulfonamide;
  • EWG is an electron withdrawing group Cr o sulfamoyl (R 2 NS0 2 ), formaldehyde group, dC 8 carbonyl, -C 8 ester group, C r C 8 aminocarbonyl group (R 2 NCO), C r C 8 amide group, chlorine, fluorine, q- Cs ureido or a derivative thereof or a -C 15 sulfonamide group.
  • the ruthenium complex catalyst of the present invention When the ruthenium complex catalyst of the present invention is bonded to the surface of a polymer material such as a resin, polyethylene glycol, polystyrene or silica gel through a surface functional group "X", a corresponding supported ruthenium complex catalyst product is obtained.
  • the supported ruthenium complex catalyst is beneficial to the treatment and purification of the product after the reaction, and can be repeatedly used repeatedly to reduce the production cost and avoid environmental pollution.
  • a third object of the present invention is to provide a supported ruthenium complex catalyst of the formula IVa-IVd -
  • G is a polymer material having a functional group "X 3 " on the surface, a resin, polyethylene glycol (PEG), silica gel, diatomaceous earth, etc.; the surface functional group ""X 3 "" is a hydroxyl group, an amino group, a mercaptan , carboxyl group, alkyl group or derivative thereof, -C20 alkoxy group, -C20 thioether group, 2() silicon fluorenyl group, d-Cao siloxy group, C 6 -C 2Q aryloxy group, C 2 -C 2Q Heterocyclic group, sulfone group, sulfoxide group, -C20 carbonyl group, dC 2Q ester group, amine group, -C20 amide group, dC ureido group or derivative thereof or -4040 sulfonamide group;
  • X 1 , X 2 , R, RR 2 , R 3 , Y, L, EWG, and M are as defined above.
  • the polymer in the structural formula may be a hydroxyl group-containing resin (1.2-2.0 mmol/g, Tianjin Nankai Hecheng Technology) Co., Ltd. produces), silica gel and polyethylene glycol (PEG molecular weight 200-4000, Shanghai Reagent Company) and other substances. It is preferably a polystyrene high polymer or a crosslinked polystyrene resin.
  • the present invention uses a crosslinked polystyrene resin as a support material, and the sulfonamide-substituted ruthenium complex ligand is attached to the surface of the anchor material by a coupling reaction, and then the ruthenium complex 1 is passed through the network.
  • the reaction was carried out to produce novel supported ruthenium complex catalysts 18 and 19.
  • the ruthenium catalysts 18 and 19 supported by the polystyrene ruthenium polymer are relatively effectively involved in the olefin metathesis reaction as a solid-state resin catalyst, and the catalyst can be recovered by precipitation with a solvent such as methanol, and can be repeatedly used.
  • L of the structural formula IV of the supported ruthenium complex catalyst is of the following formula IIIa, III b, IIIc or Hid:
  • R 4 and R 5 are independently! ⁇ alkyl, C 6 -C 20 aryl, C 2 -C 20 heterocyclic aryl, -C20 heterocyclyl, -C carbonyl, 2 (3 amide, QC 2Q ureido or its derivatives or Q-Cso Sulfonamide group;
  • R 6 and R 7 are independently hydrogen, dC ⁇ alkyl, -C decyloxy, thioether, d-Czosilyl, d-o siloxy, C 6 -C 2G aryl, C 6 -C 2 o aryloxy, C 2 -C 2Q heterocyclic aryl, C 2 -C 2 () heterocyclyl, sulfoxide, sulfone, -C20 carbonyl, -C 20 ester, C o amide, - C ureido or a derivative thereof, - 0 sulfonylamino, halogen, nitro or nitrile;
  • R 8 and R 9 are independently -0 fluorenyl or a derivative thereof, d-CM alkoxy group, C 6 -C 2Q aryl group, C 6 -C 2Q aryloxy group, C 2 -C 2D heterocyclic aryl group Or a C 2 -C 2C) heterocyclic group.
  • L has the formula Ilia, R 4 and R 5 are independently aryl; R 6 and R 7 are independently hydrogen or Hid, and R 8 and R 9 are independently a ring. Has been based.
  • a fourth object of the present invention is to provide a method for preparing a ruthenium complex catalyst, which comprises the following steps: 1) generating p-toluenesulfonylhydrazine in an ethanol solution of sodium ethoxide or sodium methoxide under an inert gas atmosphere. O-alkoxycarbene, which is then reacted with RuCl 2 P(Ph 3 ) 3 to form the following ruthenium complex V:
  • a fifth object of the present invention is to provide a method for preparing a supported ruthenium complex catalyst, which comprises the steps of: 1) electrifying an ester group-substituted 4-hydroxybenzenesulfonamide to obtain an o-phenol ethene product; ;
  • step 2) etherifying the o-phenol vinylation product of step 1) to obtain an etherified product;
  • step 6) The supported ruthenium complex of step 5) is combined with a tricyclohexylphosphine ligand or another ligand H 2 IMes (Ilia) to form the final product.
  • the ethyleneation of step 1) is: 2 to 3 times the volume of the tertiary amine is added to the mixture containing 1 time under the protection of an inert gas at -30 ° C to -50 ° C
  • Step 2) etherification: the etherification reaction of the o-phenol vinylation product of step 1) with a halogenated hydrazine;
  • Step 5) The supported ruthenium complex ligand of step 4) The reaction of CuCl and an alkyl halide is carried out in a solvent.
  • the inert gas described in the step 1) is argon, and 2 volumes of the tertiary amine are dropped into the volume containing 1 volume of tin tetrachloride and 3.5 at -40 °C.
  • a volumetric solution of 1,2-dichloroacetamidine acetylene is introduced for 6 hours, and an ester group-substituted 4-hydroxybenzenesulfonamide is added at room temperature, and the product is reacted at 80 ° C to obtain a phenol ortho-ethylated product;
  • the etherification of step 2) is: etherification reaction of the o-phenol vinylation product of step 1) with iodoisopropyl hydrazine in dimethylformamide;
  • step 3 The hydrolysis of step 3) is carried out in an alcohol or aqueous solution of NaOH;
  • Step 4) then coupling the hydrolyzate of step 3) with a hydroxyl group or an amino group-containing polystyrene under the action of dicyclohexylcarbodiimide to obtain a supported ruthenium ligand;
  • Step 6) The supported ruthenium complex of step 5) is reacted with a tricyclohexylphosphine ligand or another ligand H 2 IMes (Ilia) in a dichloromethane solvent to form the final product.
  • L tricyclohexylphosphine 3
  • Cy cyclohexyl
  • Ts p-toluenesulfonyl
  • Z is a methylene group (CH 2 )
  • the present invention employs the above simple synthetic route 1-3, effectively from sulfamoyl group.
  • the substituted o-alkoxybenzaldehyde substituted with an electron withdrawing group such as an aminosulfonyl group and a sulfonamide may be first reacted with p-toluenesulfonylhydrazide to form p-toluenesulfonylhydrazide, and then Under the protection of inert gas, p-toluenesulfonylhydrazine is formed into a solution of o-alkoxycarbene in sodium ethoxide or sodium methoxide in ethanol, and then reacted with RuCI 2 P(Ph 3 ) 3 to form a ruthenium complex containing triphenylphosphine.
  • an electron withdrawing group such as an aminosulfonyl group and a sulfonamide
  • the ruthenium complex V is further reacted with tricyclohexylphosphine under inert gas to form ruthenium complex VI, and the complex V or complex VI prepared according to chemical activity is under inert gas protection.
  • the ruthenium complex catalyst II is formed by reaction with a five-membered ring ligand ruthenium.
  • a sixth object of the present invention is to provide a use of the ruthenium complex of the above formula II as a catalyst in an olefin metathesis metathesis reaction.
  • the olefin metathesis reaction is an olefin metathesis metathesis reaction in an intramolecular ring closure, an intermolecular olefin metathesis metathesis reaction or an olefin metathesis metathesis reaction in a polymerization reaction.
  • a seventh object of the present invention is to provide a use of the supported ruthenium complex catalyst of the above formula IV to catalyze the metathesis of an olefin metathesis.
  • the olefin metathesis metathesis reaction is an olefin metathesis metathesis reaction in an intramolecular closed loop, an intermolecular olefin metathesis metathesis reaction or an olefin metathesis metathesis reaction in a polymerization reaction.
  • the positive progress of the present invention is as follows: 1.
  • the present invention fully studies the catalytic activity and stability of the substituents of different ligands and their substitution positions by designing and synthesizing ruthenium complex ligands and corresponding ruthenium complexes.
  • the results show that the ortho-oxystyrene complex ligand substituted with an electron withdrawing group such as sulfamoyl group, sulfonamide group, carbonyl group or chlorine significantly improves the catalytic activity and stability of the corresponding ruthenium complex catalyst.
  • the high-efficiency catalyst can be used for olefin metathesis metathesis reaction, intermolecular olefin metathesis metathesis reaction and polymerization reaction in molecularly closed loops, and has wide industrial application value.
  • the novel high-efficiency olefin metathesis metathesis reaction catalyst of the invention provides a new method for the fields of chemical new materials and drug synthesis.
  • the invention connects the ruthenium complex ligand to a polymer material such as a hydroxyl group-containing resin, polydiethanol, polystyrene or silica gel, and forms a new complex catalyst with the ruthenium complex, that is, the immobilization Ruthenium complex catalyst.
  • a polymer material such as a hydroxyl group-containing resin, polydiethanol, polystyrene or silica gel.
  • the invention designs and synthesizes the novel ruthenium complex catalyst of the invention by deeply studying the catalytic activity of various substrates, and the performance indexes thereof are obviously improved compared with the Gmbbs-Hoveyda catalyst, and the ruthenium catalyst is further optimized.
  • the preparation method greatly reduces the preparation cost, and provides an effective and practical new way for the industrial production of the ruthenium complex catalyzed olefin metathesis reaction. Detailed ways:
  • the present invention is first based on the information reported (Hoveyda et al., published in U.S. Patent No. US20020107138 A1, US Pat. No. 6,921,735 B2 and J. Chem. Soc. 1999, 121, 791-799, J. Am. Chem. Soc. 2000, 122, 8168-8179), a series of ruthenium complexes 7a-n, 9a small 34a and 35a-b containing different electron-withdrawing substituents were synthesized by the following preparations of complexes, and a new type of catalysis was synthesized.
  • the active and easily recoverable supported ruthenium complex catalysts 18a-b and 19a-b, and two new preparation methods were developed for different 5-EWG substituent groups.
  • acetylene gas (6 hours) was introduced into the reaction liquid at -50 Torr, and the starting material o-chlorophenol (6.50 g, 50 mmol) was added at room temperature, and then heated to 70 ° C for 2 hours to obtain a product of phenol ortho-ethylation.
  • the vinylated product (1.55 g, 10 mmol) was dissolved in 15 mL of dimethylformamide (DMF) and K 2 C0 3 (3.9 g, 30 mmol) and iodoisopropane (1.5 mL, 15 mmol, 1.5 equiv) Stir at 65 ° C overnight (15 hours) and HPLC. After the completion of the reaction, the solvent was removed by suction, and then filtered, washed with diethyl ether (2 ⁇ 100 mL), and the organic phase was combined, dried and purified to give a yellow solid. (82%), purity 98%.
  • DMF dimethylformamide
  • K 2 C0 3 3.9 g, 30 mmol
  • iodoisopropane 1.5 mL, 15 mmol, 1.5 equiv
  • the preparation method of the complex under the protection of argon, the ruthenium complex la (290 mg, 0.30 mmol) and CuCl (75 mg, 0.75 mmol) was weighed into a round bottom flask and 5.0 mL of dichloromethane was added. Then the ruthenium complex ligand 4a (60 mg, 0.30 mmol) was dissolved in 1.0 mL of dichloromethane and then added to the reaction. The reaction mixture was stirred at room temperature (20 ° C) for 30 minutes, and the reaction was completed.
  • reaction results were unexpected, and there was no starting material in the reaction liquid, but the corresponding complex product 5a was not obtained after the complexation reaction, and no molecular ion peak in the reaction liquid was observed by the mass spectrometer (MS). No purple product 5a was found in thin plate chromatography (TLC).
  • ruthenium complex lb 260 mg, 0.30 mmol was added to the round bottom flask instead of la and CuCl (75 mg, 0.75 mmol), and 5.0 mL of dichloromethane was added.
  • the ruthenium complex ligand 4a 60 mg, 0.30 mmol was then dissolved in 1.0 mL of dichloromethane and added to the reaction system. The reaction mixture was stirred at room temperature (20 ° C) for 30 minutes, and the reaction was completed.
  • 5.0 mL of 'dichloromethane was added.
  • the complex ligand 6f (0.5 mmol, 1.0 eq) was then dissolved in 1.0 mL of dichloromethane, and the complexation reaction conditions were the same as in Example 4.
  • 213 mg of a green ruthenium complex solid (7f) was obtained with a yield of 63% and a purity of 98%.
  • the complex ligand 6k (0.5 mmol, 1.0 eq) was then dissolved in 1.0 mL of dichloromethane, and the complexation reaction conditions were the same as in Example 4. After purification by complexation, 247 mg of green ruthenium complex solid (7k) was obtained, yield 66%, purity 98%.
  • the ruthenium complex (H 2 IMES) (PCy 3 )Cl 2 Ru HPh (lb, 450 mg, 0.5 mmol) and CuCl (135 mg, 1.25 mmol, 2.5 eq) were weighed into a circle under argon protection. In the bottom flask, 5.0 mL of dichloromethane was further added. The complex ligand 6n (0.5 mmol, 1.0 eq) was then dissolved in 1.0 mL of dichloromethane, and the complexation reaction conditions were the same as in Example 4. After purification by complexation, 171 mg of a green ruthenium complex solid (7n) was obtained, yield 52%, purity 97%.
  • the present invention successfully developed a solid supported ruthenium complex catalyst which is easy to recycle and reused many times, and opened up a new way for the industrialized cost control and environmental protection of the product.
  • the following are the synthetic routes for the supported ruthenium complex catalysts 18a-b and 19a-b:
  • a solution of methylene chloride 15 mL
  • PCy 3 in dichloromethane 15 mL
  • the resin was washed with DMF (20 mL ⁇ 3), THF (20 mL ⁇ 3), DCM (20 mL ⁇ 3), and dried to give product 18a .
  • Resin 18a (0.90 g, 1.5 mmol, 1.0 eq.) was added to a toluene solution containing H 2 IMes(H)(CCl 3 ) (Ilia), stirred at 80 ° C overnight, then with DMF (20 mL ⁇ 3), THF ( 20mLx3), DCM (20mLx3), 1/1 DCM/Et 2 0 (20mLx l), Et 2 O (20mLx3) (20mL), the resin was washed, and after drying, the resin 19a with ruthenium catalyst attached to the surface was obtained.
  • the following two different synthetic routes are used for several major ruthenium catalysts.
  • the 5-substituent is C1 or F
  • the triphenylphosphine ligand of the unstable ruthenium complex 28a-b can be directly substituted by another ligand H 2 IMes (Ilia) to form a more stable and catalytic activity.
  • Ruthenium catalyst 30a-b is
  • the triphenylphosphine ligand of the unstable ruthenium complex 33a-b cannot be directly substituted by another ligand H 2 IMes (Ilia), first by Mr. PCy. 3 substituted into PPh 3 complexes 34a-b, then substituted by the ligand PCy H 2 IMes (Ilia) 3 produce more stable and more catalytically active ruthenium catalysts 7k and 10e: the following is a 5-C1 and Synthesis route of 5-F-substituted-2-alkoxybenzylidene ligand ruthenium complex 30a-b-
  • p-Toluenesulfonylhydrazide (26.5 g, 142 mmol, 1.0 eq.) was dissolved in 100 mL of methanol, and compound 26a (29 g, 146 mmol, 1.0 eq, half an hour was added rapidly with stirring, and the reaction system was cooled to 0 ° C to form The solid was suction filtered and dried to give a white crystal solid (50.4 g, yield: 96%).
  • RuCl 2 (PPh 3 ) 3 (7 g, 7.3 mmol, 1.0 eq.) was dissolved in 50 mL of dichloromethane, cooled to -78 ° C, and then added to -78 ° C of diazo 10 (3.1 g, 14.7 Ment, 2.0 eq.) in pentane ( ⁇ 20 mL). After 5 minutes, the reaction temperature slowly rose to the chamber. At room temperature, CuCl (2.9 g, 29.3 mmol, 4.0 eq.) was added. After 15 minutes, filter. After concentration of the filtrate, it was purified by column chromatography using gradient eluting solvent (2: 1 n-hexane/dichloromethane to pure dichloromethane). The product was partially concentrated, washed with n-hexane and dried in vacuo to yield 2.9 g of red solid powder 28a.
  • the complexation reaction conditions were the same as in Example 38. After purification by reaction, the purple ruthenium complex solid (34b) was obtained in a yield of 71%.
  • this patent designs a substrate 13 with two electron-withdrawing fluoro, olefin and two methyl substitutions.
  • Substrate 13 is difficult to translocate. The nature of the metathesis cyclization allows the difference in activity between the catalysts to be more clearly determined.
  • Intramolecular translocation cyclization reaction of olefin 50 mg of the reaction substrate polysubstituted styrene ether olefin 13 was added to a 25 ml two-necked flask, and the inside was filled with argon gas by a three-way replacement, and 1.0 ml of dichloromethane was added by a syringe. After stirring at room temperature to completely dissolve, 3 mol% of the above ruthenium complex catalyst was separately added. Samples were taken at 10 min, 30 min, 1.0 hr, 3.0 hr, 5.0 hr, 8.0 hr, 15.0 hr, respectively, and the reaction was followed by HPLC and LC-MS. Calculate production using normalized methods The conversion rate of the materials, the relevant kinetic results are listed in Table 2.
  • the ruthenium complex catalyst of the present invention has most of the aminosulfonyl groups (R 2 NS0 2 ) of the present invention, compared with the like products of the Globebs catalyst (10d) and the Hoveyda catalyst (10b).
  • the catalytic activity of carbonyl-substituted ruthenium complex catalysts is significantly better than other similar ruthenium catalyst products, of which six catalysts (7j, 7k, 9a, %, 9c, 9i) are superior in catalytic activity, and are currently in the field.
  • the best catalytic activity of a class of olefins Bit metathesis reaction catalyst is provided.
  • the supported ruthenium complexes (19a and 19b) synthesized in Examples 28 and 29 were subjected to a metathesis metathesis cyclization reaction of the olefin substrate 20. Catalytic activity was tested.
  • Intramolecular translocation cyclization reaction of olefin 50 mg of the reaction substrate styrene allyl ether 20 was added to a 25 ml two-necked flask, and the inside was filled with argon gas by a three-way replacement, and the column was added with LOml dichloromethane at room temperature. After stirring to completely dissolve, 3 mol% of the above ruthenium complex catalyst was separately added. Samples were taken at 10 min, 30 min, 1.0 hr, 3.0 hr, 5.0 hr, 8.0 hr, 15.0 hr, respectively, and the reaction was followed by HPLC and LC-MS. The conversion rate of the product was calculated using a normalized method.
  • the supported ruthenium complexes (19a and 19b) synthesized in Examples 28 and 29 were subjected to translocation of the substrate 22 in which the olefin was alkyl-substituted. The catalytic activity of the metathesis cyclization reaction was tested.
  • Intramolecular translocation cyclization reaction of olefin 50 mg of the reaction substrate styrene allyl ether 20 was added to a 25 ml two-necked flask, and the inside was filled with argon gas by a three-way replacement, and 1.0 ml of dichloromethane was added by a syringe. Stirring at room temperature to complete After dissolution, 3 mol% of the above ruthenium complex catalyst was separately added. Samples were taken at 10 min, 30 min, 1.0 hr, 3.0 hr, 5.0 hr, 8.0 hr, 15.0 hr, respectively, and the reaction was followed by HPLC and LC-MS. The conversion of the product was calculated using a normalized method.
  • Intermolecular translocation cyclization reaction of olefin 50 mg of the reaction substrate styrene 39 was added to a 25 ml two-necked flask, and the inside was filled with argon gas by a three-way replacement, and 1.0 ml of dichloromethane was added by a syringe, and stirred at room temperature to complete After dissolution, 3 mol% of the above ruthenium complex catalyst was separately added. Samples were taken at 10 min, 30 min, 1.0 hr, 3.0 hr, 5.0 hr, 8.0 hr, 15.0 hr, respectively, and the reaction was followed by HPLC and LC-MS. The conversion of the product was calculated using a normalized method.
  • the intermediate complex 34a containing tricyclohexylphosphine is also catalytically active in the preparation of the highly active catalyst 7k, and the complexes of different substituents (34a, 35a, The relative catalytic activity of 35b) is compared.
  • the present invention contemplates a further catalytic activity comparison of rhodium catalysts 34a and 35b with a substrate 38 having two methyl groups on the olefin.
  • the ruthenium complex catalyst of the present invention has a substituted ruthenium complex catalyst (7a-7n) of the aminosulfonyl group (R 2 NS0 2 ), a carbonyl group or the like of the present invention, compared with the Hoveyda catalyst (10b) of the same type.
  • the catalytic activity of 9a-9j) is obviously superior to other similar ruthenium catalyst products.
  • the aminosulfonyl-substituted ruthenium catalysts 7k and 9a-9d are currently the most catalytically active olefin metathesis reaction catalysts in this field.
  • the present invention is designed to synthesize a substituted styrene ruthenium complex ligand (6a-6n, 8a-8j) such as a sulfamoyl group (R 2 NS0 2 ), a carbonyl group or the like, which is formed for the first time for the synthesis of a ruthenium complex.
  • a substituted styrene ruthenium complex ligand (6a-6n, 8a-8j) such as a sulfamoyl group (R 2 NS0 2 ), a carbonyl group or the like, which is formed for the first time for the synthesis of a ruthenium complex.
  • the four rhodium complexes (7k, 9a, 9b, 9i) are not only very stable green solids, but also have significant catalytic activity for the metathesis reaction of anthraquinones.
  • the ruthenium complex catalyst of the present invention is substituted with most of the aminosulfonyl groups (
  • the catalytic activity of the ruthenium complex catalyst is significantly better than other similar ruthenium catalyst products, among which the six catalysts (7j, 7k, 9a, 9b, 9c, 9i) are superior in catalytic activity, and are currently the most catalytically active in the field.
  • the supported ruthenium complex catalyst of the present invention has a single product, and the reaction liquid is filtered to remove the solvent to obtain a product 23 having a purity higher than 95%.
  • the post-reaction treatment is very convenient, and the pure product is obtained after filtration to remove the supported rhodium catalyst and solvent.
  • the infrared spectrum data is obtained by Thermo Nicolet's Fourier Transform AVATARTM 360 ESPTM infrared spectrometer, expressed in units of cm- 1 .
  • the nuclear magnetic resonance spectrum was obtained by a Varian Mercury Plus 400 (400 MHz) nuclear magnetic analyzer.
  • the recorded data information is as follows: Chemical shift and its split and coupling constant (s: singlet peak ; d : doublet; t: triplet; q: quartet; bn broad; m: multiplet).
  • Mass spectrometry data was analyzed by the Finnigan LCQ Advantage LC/MS, among other needs, and all reactions were operated under dry argon-protected anhydrous anaerobic conditions.
  • the solid metal organic compound is stored in an argon-protected dry box.
  • Tetrahydrofuran and diethyl ether are obtained by distillation, and sodium metal and benzophenone are added thereto during distillation.
  • Dichloromethane, pentane and hexane are treated with calcium hydride.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pyrane Compounds (AREA)
  • Pyrrole Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

钌络合物配体、 钌络合物、 固载钌络合物催化剂及其制备方法和用途 技术领域
本发明涉及一种钌络合物催化剂, 尤其涉及一种钌络合物配体、 钌络合物、 固载钌 络合物催化剂及其制备方法和用途。 背景技术
钌络合物催化剂的研究和开发及其在烯烃易位复分解反应 (Metathesis)中的催化作 用, 在该领域中引起了广泛的关注, 并在全球有机药物领域得到了越来越广泛的应用。 该领域中钌络合物催化剂的创始人 Gmbbs等课题组报导了不同类型的钌络合物催化剂, 但是其催化活性和稳定性等存在一定的局限性, 为了扩大应用范围, 催化剂的催化活性 有待于进一步优化。 例如, Grubbs等人报道的钌络合物中的 RuCl2(=CHPh)(PCy3)2在烯 烃的易位复分解反应中虽然比较有效, 但这类钌络合物对空气及水有一定的敏感度, 其 缺点是催化活性和稳定性较差, 在较高的温度下易发生分解。
在上述钌络合物催化剂的基础上, Hoveyda等科研小组在分子中引入具有较大体积 的亲核性络合物配体, 其可以明显提高了催化剂的热稳定性, 在多取代的烯烃易位复分 解反应中表现出较高的催化活性。 但这些催化剂的缺点仍是催化活性不够理想, 并且反 应结束后催化剂不易从反应体系中分离出来。
因此, Grubbs-Hoveyda催化剂存在着催化活性和稳定性不足, 在较高的温度下易发 生分解等问题, 而且在多取代底物的烯烃易位复分解反应中, 其催化活性偏低。 发明内容
本发明为了解决上述现有技术的缺点, 通过改变 Hoveyda络合物配体的取代基来显 著地提高钌络合物的催化活性。 本发明的钌络合物配体的特征是所述的取代基为氨基磺 酰基、 磺酰胺取代基、 羰基等吸电子取代基, 由于本发明在钌络合物配体上引入了氨基 磺酰基、 磺酰胺取代基、 羰基等吸电子取代基, 从而大大地提高了钌络合物的催化活性
1
确认本 和稳定性。
因此, 本发明的目的之一是提供一种结构式为式 I的钌络合物配体:
Figure imgf000004_0001
其中, Y为氧、 硫、 氮或磷;
Z为亚甲基、 氧或对甲苯磺腙;
R为氢、 卤素、 硝基、 腈基、 -C 烷基、 d- o烷氧基、 -C2o硫醚基、 - o硅 烷基、 Ci-C^硅氧基、 C6-C2G芳基、 C6-C2o芳氧基、 C2-C2C杂环基、 C2-C2。杂环芳基、 亚 砜基、 砜基、 甲醛基、 Q- o羰基、 -C20酯基、 d- o酰胺基、 d- o脲基或其衍生物 或 C C^磺酰胺基;
R1和 R2独立地为氢、 溴 (Br)、 碘 (1)、 烷基或其衍生物、 -C^垸氧基、 -C20 硫醚基、 。! ^硅氧基、 C6-C2Q芳氧基、 C6-C2Q芳基、 C2-C2Q杂环基、 C2-C2Q杂环芳基、 Ci-C^酯基、 -C2Q酰胺基、 d- o脲基或其衍生物或 -C2()磺酰胺基;
R3为氢、 -C20烷基或其衍生物、 垸氧基、 d-C^硫醚基、 d- o硅垸基、 C,-C20 硅氧基、 C6-C2Q芳基、 C6-C2Q芳氧基、 C2-C2Q杂环基、 C2-C2Q杂环芳基、 亚砜基、 砜基、 C o羰基、 -C^酯基、 Q- o酰胺基、 -C2Q脲基或其衍生物或 Cr o磺酰胺基;
6\\^为 - o氨基磺酰基 (R2NS02)、 甲醛基、 -C 羰基、 d-C^酯基、 d-C2o氨 基羰基 (R2NCO)、 酰胺基、 氯、 氟、 脲基或其衍生物或 d- o磺酰胺基。
在本发明的一较佳实施例的式 I中,
Y为氧或硫; Z为氧、 亚甲基或对甲苯磺酰腙基;
R为氢、 卤素、 硝基、 腈基、 - s烷基、 Q-C15烷氧基、 Q-C15硫醚基、 -Qs硅 烷基、 C!-d^i氧基、 C6-C15芳基、 C6-C15芳氧基、 C2-C15杂环基、 C2-C15杂环芳基、 亚 砜基、 砜基、 甲酸基、 C C15羰基、 d-C15酯基、 15酰胺基、 15脲基或其衍生物 或 CrC】5磺酰胺基; R1和 R2独立地为氢、 溴 (Br)、 碘 (1)、 d-C15烷基或其衍生物、 Q-C15垸氧基、 Q-C15 硫醚基、 d-C15硅氧基、 C6-C15芳氧基、 C6-C15芳基、 C2-C15杂环基、 C2-C15杂环芳基、 -C15酯基、 15酰胺基、 d-C15脲基或其衍生物或 Q-C15磺酰胺基;
R3为氢、 Cj-ds烷基或其衍生物、 Cj-ds烷氧基、 CrC15硫醚基、 C C15硅垸基、 C,-C15 硅氧基、 C6-C15芳基、 C6-C15芳氧基、 C2-C15杂环基、 C2-C15杂环芳基、 d-C15羰基、 d-C15 酰胺基、 -C15脲基或其衍生物或 -C15磺酰胺基;
EWG为 d-C15氨基磺酰基 (R2NS02)、 甲醛基、 CrC15羰基、 d-C15酯基、 d-C15氨 基羰基 ( NCO)、 15酰胺基、 氯、 氟、 -C15脲基或其衍生物或 d-C15磺酰胺基。
本发明的另一较佳实施例中的式 I , Y为氧; Z为亚甲基或对甲苯磺腙; R1和 R2独 立地为氢; R3为异丙基或异丁基等 -C6垸基衍生物; R为氢、氯、氟、 -C8羰基、 d-C8 酯基、 -C8氨基羰基 (R2NCO)、 CrC8酰胺基、 脲基或其衍生物或 C Cs磺酰胺基; EWG为吸电子基团 d-do氨基磺酰基 (R2NS02)、 甲醛基、 -C8羰基、 d-C8酯基、 C C8 氨基羰基 (R2NCO)、 d-C8酰胺基、 氯、 氟、 d-C8脲基或其衍生物或 Ci-ds磺酰胺基。
本发明的目的之二是提供一种结构式为式 II的钌络合物:
Figure imgf000005_0001
其中, M为钌 (Ru);
X1和 X2独自地为氯或 RCOO, R为 d-C2c的垸基或其衍生物;
L是一种给电子的络合物配体; 其中, L与 X1不联成环状结构或联成环状结构;
Y、 R、 R R2、 R3、 EWG的定义同上。
本发明的一较佳实施例的结构式中 L的结构式为下列式 IIIa、 IIIb、 IIIc或 Illd:
R
— N
Figure imgf000005_0002
其中, R4和 R5独立地为 - o烷基、 C6-C2Q芳基、 C2-C2o杂环芳基、 d-C2o杂环基、 C!- o羰基、 d- o酰胺基、 d- o脲基或其衍生物或 -C 磺酰胺基;
R6和 R7独立地为氢、 -C20垸基、 - o烷氧基、 -C20硫醚基、 d-Czo硅烷基、 硅氧基、 C6-C2G芳基、 C6-C2Q芳氧基、 C2-C2C杂环芳基、 C2-C2Q杂环基、 亚砜基、 砜基、 Cr o羰基、 CrC2()酯基、 -C2Q酰胺基、 -C^脲基或其衍生物、 d-C^磺酰胺 基、 卤素、 硝基或腈基;
R8 和 R9独立地为 烷基或其衍生物、 垸氧基、 C6-C2Q芳基、 C6-C2()芳氧 基、 c2-c2。杂环芳基或 C2-C2Q杂环基。
本发明的另一较佳实施例中, L的结构式为式 Ilia或 IIId, R4和 R5独立地为 2,4,6-三 甲苯基, R6和 R7独立地为氢或 Illd, R8和 R9独立地为环已基。
本发明的又一较佳实施例中, 式 II中,
X1和 X2独自地为氯;
L为 Ilia或 Illd;
Y为氧;
R为氢、 卤素、 硝基、 腈基、 d-ds烷基、 Q-C15烷氧基、 ^硫醚基、 ^硅 垸基、 15硅氧基、 C6-C15芳基、 C6-C15芳氧基、 C2-C15杂环基、 C2-C15杂环芳基、 亚 砜基、 砜基、 甲醛基、 -C15羰基、 -ds酯基、 15酰胺基、 -C15脲基或其衍生物 或 C C15磺酰胺基;
R1和 R2独立地为氢、 溴 (Br)、 碘 (1)、 d-C15烷基或其衍生物、 -C15垸氧基、 d-C15 硫醚基、 -C15硅氧基、 C6-C15芳氧基、 C6-C15芳基、 C2-CI5杂环基、 C2- 5杂环芳基、 -ds酯基、 Q-C15酰胺基、 -ds脲基或其衍生物或 d-C15磺酰胺基;
R3为氢、 CrC15烷基或其衍生物、 C-ds烷氧基、 d-C15硫醚基、 C C15硅烷基、 Q-C15 硅氧基、 c6-c12芳基、 C6-C12芳氧基、 12杂环基、 C2-C12杂环芳基、 C C12羰基、 d-C12 酰胺基、 C!-Cu脲基或其衍生物或 -C12磺酰胺基;
EWG d- s氨基磺酰基 (R2NS02)、 甲醛基、 Q-C15羰基、 C!-ds酯基、 d-C15氨 基羰基 (R2NCO)、 15酰胺基、 氯、 氟、 d-C15脲基或其衍生物或 磺酰胺基。 本发明的一较佳实施例中, 式 Ilia中, R4和 R5独立地为芳基; R6和 R7独立地为氢。 本发明的最佳实施例中,式 II中, R1和 R2独立地为氢; R3为异丙基或异丁基等 -C6 烷基衍生物; R为氢、 氯、 氟、 -Cs羰基、 d-C8酯基、 d-C8氨基羰基 (R2NCO)、 C,-C8 酰胺基、 -C8脲基或其衍生物或 d-Cs磺酰胺基; EWG为吸电子基团 Cr o氨基磺酰 基 (R2NS02)、 甲醛基、 d-C8羰基、 -C8酯基、 CrC8氨基羰基 (R2NCO)、 CrC8酰胺基、 氯、 氟、 q-Cs脲基或其衍生物或 -C15磺酰胺基。
若将本发明的钌络合物催化剂通过表面功能团 " X"连接在树脂、 聚乙二醇、 聚苯乙 烯、 硅胶等高分子材料的表面得到相应的固载钌络合物催化剂产物, 该固载钌络合物催 化剂有利于反应结束后产物的处理及纯化, 可反复多次使用, 降低生产成本, 避免环境 污染。
因此, 本发明的目的之三是提供一种结构式为式 IVa-IVd的固载钌络合物催化剂-
Figure imgf000007_0001
IVd
其中, G为表面含有功能团 "X3"的高分子材料、 树脂、 聚乙二醇 (PEG)、 硅胶、 硅 藻土等; 表面功能团 ""X3""是羟基、氨基、硫醇、羧基、 烷基或其衍生物、 -C20 烷氧基、 -C20硫醚基、 2()硅垸基、 d-Cao硅氧基、 C6-C2Q芳氧基、 C2-C2Q杂环基、 砜基、 亚砜基、 -C20羰基、 d-C2Q酯基、 胺基、 -C20酰胺基、 d-C^脲基或其衍生物 或 -¾0磺酰胺基;
X1、 X2、 R、 R R2、 R3、 Y、 L、 EWG和 M的定义同上。
其中结构式中的聚合物可以为表面含羟基的树脂 (1.2-2.0mmol/g, 天津南开和成科技 有限公司生产)、 硅胶和聚乙二醇 (PEG分子量 200-4000, 上海试剂公司)等物质。 较佳地 为聚苯乙烯高聚物或交联的聚苯乙烯树脂。 本发明较佳地釆用交联的聚苯乙烯树脂为固 载材料, 将磺酰胺类取代的钌络合物配体通过偶合反应连接到固载材料表面, 再与钌络 合物 1通过络合反应制成新型的固载钌络合物催化剂 18和 19。聚苯乙烯髙聚物固载的钌 催化剂 18和 19作为固载树脂催化剂等比较有效地参与烯烃易位反应, 并可用甲醇等溶 剂沉淀回收固载树脂催化剂, 可重复使用。
在本发明的一较佳实施例中, 固载钌络合物催化剂的结构式 IV的 L为下列式 IIIa、 III b、 IIIc或 Hid:
Figure imgf000008_0001
其中, R4和 R5独立地为 !^ 烷基、 C6-C20芳基、 C2-C20杂环芳基、 -C20杂环基、 -C 羰基、 2(3酰胺基、 Q-C2Q脲基或其衍生物或 Q-Cso磺酰胺基;
R6和 R7独立地为氢、 d-C^烷基、 -C 垸氧基、 硫醚基、 d-Czo硅烷基、 d- o硅氧基、 C6-C2G芳基、 C6-C2o芳氧基、 C2-C2Q杂环芳基、 C2-C2()杂环基、 亚砜基、 砜基、 -C20羰基、 -C20酯基、 C o酰胺基、 -C^脲基或其衍生物、 - 0磺酰胺 基、 卤素、 硝基或腈基;
R8和 R9独立地为 - 0垸基或其衍生物、 d-CM烷氧基、 C6-C2Q芳基、 C6-C2Q芳氧 基、 C2-C2D杂环芳基或 C2-C2C)杂环基。
在本发明的一较佳实施例中, L的结构式为式 Ilia, R4和 R5独立地为芳基; R6和 R7 独立地为氢或 Hid, R8和 R9独立地为环已基。
在本发明的最佳实施例中, 式 IVa中, X为氧; G为表面含羟基的聚苯乙烯树脂或聚 乙二醇; Y为氧; R1和 R2独立地为氢; R3为异丙基或 -C6烷基; R为氢、氯、氟、 d-C8 羰基、 酯基、 -¾氨基羰基 (R2NCO)、 -¾酰胺基、 d-C8脲基或其衍生物或 -C8 磺酰胺基; EWG为吸电子基团 Q-do氨基磺酰基 (R2NS02)、 甲醛基、 CrC8羰基、 Q-C8 酯基、 - 氨基羰基 (R2NCO)、 -Cs酰胺基、 氯、 氟、 -C8脲基或其衍生物或 -C15 磺酰胺基; R4和 R5独立地为 2,4,6-三甲苯基。
本发明的目的之四是提供一种钌络合物催化剂的制备方法,该方法包括如下步骤: 1 ) 在惰性气体保护下,将对甲苯磺酰腙在乙醇钠或甲醇钠的乙醇溶液中生成邻烷氧基卡宾, 之后与 RuCl2P(Ph3)3反应生成下列钌络合物 V:
Figure imgf000009_0001
V
其中 X1, X2, Y, R, R1, R2, R3 和 EWG与权利要求 4-9同。
2)将步骤 1 ) 的钌络合物产物 V在惰性气体保护下与三环己基磷反应生成下列钌络 合物 VI:
Figure imgf000009_0002
VI
其中 X1, X2, Y, R, R1, R2, R3 和 EWG与权利要求 4-9同。
3) 根据化学活性将步骤 1)的络合物 V或步骤 2) 的络合物 VI在惰性气体保护下反 应生成权利要求 4的钌络合物催化剂 II。
本发明的目的之五是提供一种固载钌络合物催化剂的制备方法, 该方法包括如下步 骤: 1 ) 将含酯基取代的 4-羟基苯磺酰胺进行乙烯化得到邻苯酚乙烯化产物;
2) 将步骤 1 ) 的邻苯酚乙烯化产物进行醚化得到醚化产物;
3 ) 将醚化产物进行水解得到水解产物;
4) 然后将步骤 3 ) 的水解产物在偶合试剂的作用下与表面含羟基或胺基的高分子物 质偶合得到固载钌配体; 5) 将步骤 4) 的固载钌配体与 RuCl2(= HPh)(PPh3)2反应得到中间产物;
6) 将步骤 5) 的固载钌络合物与三环己基磷配体或另一配体 H2IMes (Ilia)生成最终 产物。
在本发明的较佳实施例中, 步骤 1 ) 的乙烯化为: 在惰性气体保护下, 于 -30°C至 -50 °C下, 将 2至 3倍体积的叔胺滴入含有 1倍体积的四氯化锡和 3至 6倍体积 1,2-二氯乙 烷溶液中,通入乙炔 4-6小时,室温下加入含酯基取代的 4-羟基苯磺酰胺,于 6(TC至 100 Ό反应得到苯酚邻位乙烯化的产物;
步骤 2) 醚化: 将步骤 1 ) 的邻苯酚乙烯化产物与卤代垸进行醚化反应;
步骤 5) 将步骤 4) 的固载钌络合物配体与
Figure imgf000010_0001
CuCl和 卤代烷的溶剂中反应。
在本发明的较佳实施例中, 步骤 1 ) 中所述的惰性气体为氩气, 于 -40°C下, 将 2倍 体积的叔胺滴入含有 1倍体积的四氯化锡和 3.5倍体积的 1,2-二氯乙垸溶液中,通入乙炔 6小时, 室温下加入含酯基取代的 4-羟基苯磺酰胺, 于 80°C反应得到苯酚邻位乙烯化的 产物;
步骤 2) 的醚化为: 将步骤 1 ) 的邻苯酚乙烯化产物与碘代异丙垸在二甲基甲酰胺中 进行醚化反应;
步骤 3 ) 的水解在 NaOH的醇或水溶液中进行;
步骤 4)然后将步骤 3 )的水解产物在二环己基碳二亚胺的作用下与表面含羟基或胺 基的聚苯乙烯偶合得到固载钌配体;
步骤 5)将步骤 4)的固载钌络合物配体与 RuCl2(=CHPhXPPh3)2在 CuCl和二氯甲烷 溶剂中反应得到固载钌络合物。
步骤 6) 将步骤 5) 的固载钌络合物与三环己基磷配体或另一配体 H2IMes (Ilia)在二 氯甲烷溶剂中反应生成最终产物。
本发明的钌络合物配体和钌络合物的四种制备过程见如下所示的流程图: 制备方法一:
Figure imgf000011_0001
V(Z = CH2)
Figure imgf000011_0002
la, 2a: L =三环己基磷 3, Cy =环己基,
ΓΛ
lb, 2b: L = (Mes = 2,4,6- es' 三甲基苯) 'N /N~ es
r
制备方法二:
Figure imgf000011_0003
la, 2a: L =三环己基磷 3, Cy =环己基
lb, 2b: L MeS yN、Mes (Mes = 2,4,6-三甲基苯)
制备方法
Figure imgf000012_0001
二氯甲垸
V(Z = CH2)
Figure imgf000012_0002
2
la, 2a: L =三环己基磷 3, Cy =环己基,
ΓΛ
lb,2b:L
es' Mes (Mes = 2,4,6-三甲基苯) 制备方法四:
Figure imgf000012_0003
V(Z = TsNHN)
Figure imgf000012_0004
2a 2b
2a: L =三环己基磷 3, Cy =环己基, Ts =对甲苯磺酰
2b: L= ,ϊ (Mes = 2,4,6-三甲基苯)
Mes -'、丫 '、、Mes 上述流程图中原料 SM-1、 SM-2和 SM-3结构式中的 R, R1, R2, R3 和 EWG的定义同 上 c
若 Z为亚甲基(CH2) 时, 本发明采用上述简便的合成路线 1-3, 有效地从氨基磺酰 基、 磺酰胺取代基、 羰基等吸电子基取代的苯酚合成了本发明的氨基磺酰基和磺酰胺等 吸电子基取代的邻烷氧基苯乙烯所形成的钌络合物配体及钌络合物。 (合成路线一参考文 献: M. Yamaguchi et al, J. Org. Chem. 1998, 63, 7298-7305; 合成路线二参考文献: Jason S. Kingsbury, Joseph P. A. Harrity, Peter J. Bonitatebus, Jr., Amir H. Hoveyda*, J. Am. Chem. Soc. 1999, 121 , 791(美国化学会杂志 1999年 121卷 791页)。
若 Z为氧时, 可通过合成路线四, 从氨基磺酰基和磺酰胺等吸电子基取代的取代的 邻烷氧基苯甲醛先与对甲苯磺酰肼反应生成对甲苯磺酰腙, 再在惰性气体保护下, 将对 甲苯磺酰腙在乙醇钠或甲醇钠的乙醇溶液中生成邻烷氧基卡宾, 之后与 RuCI2P(Ph3)3反 应生成含三苯基磷的钌络合物 (V),钌络合物 V在惰性气体保护下再与三环己基磷反应生 成钌络合物 VI, 根据化学活性将制得的的络合物 V或络合物 VI在惰性气体保护下与五 元环配体 Π反应生成钌络合物催化剂 II。
本发明的目的之六是提供上述式 II的钌络合物在烯烃易位复分解反应中作催化剂的 用途。
其中, 所述的烯烃易位反应为分子内关环的烯烃易位复分解反应、 分子间的烯烃易 位复分解反应或聚合反应中的烯烃易位复分解反应。
本发明的目的之七是提供上述式 IV的固载钌络合物催化剂催化烯烃易位复分解反应 的用途。
其中, 所述的烯烃易位复分解反应为分子内关环的烯烃易位复分解反应、 分子间的 烯烃易位复分解反应或聚合反应中的烯烃易位复分解反应。
本发明的积极进步效果在于: 1、本发明通过设计和合成钌络合物配体和相应的钌络 合物, 充分研究不同配体的取代基及其取代位置对催化剂的催化活性和稳定性的影响, 结果表明具有氨基磺酰基、 磺酰胺基、 羰基、 氯等吸电子基取代的邻垸氧苯乙烯络合物 配体明显提高了相应钌络合物催化剂的催化活性和稳定性, 作为高效的催化剂可用于分 子内关环的烯烃易位复分解反应、 分子间的烯烃易位复分解反应和聚合反应等, 具有广 泛的产业应用价值。 本发明的新型高效烯烃易位复分解反应催化剂为化工新材料和药物 合成等领域提供了一种新方法。
2、 本发明将钌络合物配体连接到表面含羟基的树脂、 聚二乙醇、 聚苯乙烯、 硅胶等 高分子材料上, 与钌络合物形成新的络合物催化剂, 即固载钌络合物催化剂。 本发明的 固载钌络合物催化剂的优点是后处理比较容易、 易回收、 并可重复使用, 是一种环保型 催化剂。
3、本发明通过深入研究各类底物的催化活性, 设计合成了本发明的新型钌络合物催 化剂, 其各项性能指标较 Gmbbs-Hoveyda催化剂有明显地提高, 并进一步优化了钌催化 剂的制备方法, 很大程度地降低了制备成本, 为钌络合物催化烯烃易位反应的产业化生 产提供一条有效实用的新途径。 具体实施方式:
本发明首先根据有关报导的资料 (Hoveyda等, 发表在美国专利 US 20020107138 A1 , US 6921735 B2和化学会杂志 J Am. Chem. Soc. 1999, 121 , 791-799, J. Am. Chem. Soc. 2000, 122, 8168-8179), 通过下列络合物的制备反应合成一系列含不同吸电子取代基的钌 络合物 7a-n、 9a小 34a和 35a-b, 并合成了新型的有催化活性又易回收的固载钌络合物 催化剂 18a-b和 19a-b, 再针对不同的 5-EWG取代基团研发了二种新的制备方法。
以下为 3-EWG-2-烷氧基苯亚甲基钌络合物 5a-5i的合成
Figure imgf000014_0001
4a: R1 = CI, EWG = H; la: L = PCy3; 没有得到产物 5a- 4b: R1 = CI, EWG = H; lb: L = H2IMes; 反应过程中发现
中间过渡态分解。
4c: R1 = CI, EWG = CI; la: L = PCy3;
4d: R1 = CI, EWG = CI; lb: L = H2IMes;
4e: R1 = F, EWG = H; la: L =PCy3;
4f: R1 = F, EWG = H; lb: L = H2IMes;
4g: R1 = C02Me, EWG = H; lb: L = H2IMes;
4h: R1 = N02, EWG = H; lb: L = H2IMes;
4i: R1 = S02NMe2, EWG = H; lb: L = H2IMes; la: L = PCy3,三环己基磷 3, Cy =环己基, EWG =吸电子取代基 lb: L 2,4,6-三甲基苯)
Figure imgf000014_0002
实施例 1 1-氯 -2-异丙氧基 -3-乙烯基-苯及其钌络合物 5a和 5b的合成
在氩气保护下, 向一个装有滴液漏斗, 机械搅拌和温度计的 1升三口瓶中加入四氯 化锡 (36ml 25mL, 0.2mol)、 1,2-二氯乙垸 (240ml 200mL), 并用干冰丙酮浴冷却至 -50°C。 开始滴加三丁胺 (72ml 50mL, 0.2mol), 滴加过程中保持反应液温度不超过 -50°C, 滴加完 毕后继续搅拌 1小时。随后在 -50Ό下向反应液中通入乙炔气体 (6小时),室温下加入原料 邻氯苯酚 (6.50g, 50mmol), 然后加热至 70°C反应 2小时得到苯酚邻位乙烯化的产物。
反应结束后, 加入碳酸钾 (25g)、 甲醇 (100 mL), 加热至 60°C反应 1小时, 然后在冰 浴下滴加 2N HC1, 以调整 pH小于 2。 用乙酸乙酯萃取 (2x300ml), 用无水硫酸钠干燥, 旋转除去大部分溶剂, 用乙酸乙酯和石油醚的混合液 (l :l, 2x300nil) 萃取, 无水硫酸钠 干燥, 旋转除去溶剂, 硅胶柱层析纯化得到乙烯化产物 4.83g (63%), 纯度 98%。
得到的产物经检测为钌络合物配体, 其 1 HNMR (400 MHz, CDC13 : δ = 7.26 ppm): 7.87 (d, 1Η, J = 2.35Hz), 7.59 (dd, 1H, J = 2.35, 8.22Hz), 7.14 (m 2H), 6.86 (m, 2H), 6.28 (m, 2H), 5.82 (d, 1H, J = 17.22Hz), 5.44 (d, 1H, J = 11.35Hz)。 分子量 (M+H+): m/z理论计算 值为 250.05, 测试值为 250.1。
将乙烯化产物 (1.55g, lO mmol)溶于 15mL二甲基甲酰胺 (DMF),加入 K2C03 (3.9g, 30 mmol)和碘代异丙烷 (1.5mL, 15 mmol, 1.5 equiv), 65°C下搅拌过夜 (15小时), HPLC检 测。 反应结束后抽滤除去 DMF溶剂, 然后水洗, 用乙醚 (2xl00mL)萃取二次, 合并有 机相, 干燥, 纯化得到的产物为黄色的固体, 硅胶柱层析纯化得到醚化产物 (4a)1.69g (82%), 纯度 98%。
得到的产物经检测,钌络合物配体 (4a)的 1HNMR (CDC13 : δ = 7.26 ppm): 7.42 (dd, 1H, J = 1.56, 7.82Hz), 7.29 (dd, 1H, J = 1.56, 7.83Hz), 7.02 (m, 2H), 5.73 (d, 1H, J = 17.60Hz), 5.56 (d, 1H, J = 11.34Hz), 4.43 (m, 1H), 1.32 (d, 6H, J = 6.26Hz)。 分子量 (M+H+): m/z理论 计算值为 197.1, 测试值为 197.2。
按文献 (Hoveyda et al, 其合成方法发表在美国化学会杂志 2001年 123卷 749页) 报导的络合物制备方法,在氩气保护下,将钌络合物 la (290mg, 0.30mmol)和 CuCl (75mg, 0.75mmol)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后将钌络合物配体 4a (60mg, 0.30 mmol) 溶于 1.0 mL二氯甲烷中, 再加入反应体系。 反应混合物在室温 (20°C) 搅拌反应 30分钟, 反应结束。 反应结果出乎意料, 反应液中己没有原料, 但在络合反应 后没有得到相应的络合产物 5a, 质谱仪 (MS)没有观察到反应液中的分子离子峰。 薄板色 谱 (TLC)也没发现紫色的产物 5a。
实施例 2 钌络合物 5b的合成
在氩气保护下,将更稳定的钌络合物 lb (260mg, 0.30mmol) 代替 la和 CuCl (75mg, 0.75mmol)称量好加入圆底烧瓶中, 再加入 5.0 mL 二氯甲烷。 然后将钌络合物配体 4a (60mg, 0.30 mmol)溶于 1.0 mL二氯甲垸中, 再加入反应体系。 反应混合物在室温 (20°C) 搅拌反应 30分钟, 反应结束。 结果还是出乎意料, 反应液中己没有原料 lb, 但在络合 反应后没有得到相应的络合产物 5b, 质谱仪 (MS)没有观察到反应液中的分子离子峰。 薄 板色谱 (TLC)也没发现绿色的产物 5a。
实施例 3 钌络合物 5e-5i的合成
用氟 (4e)、脂基 (4g)、硝基 (4h)、氨基磺酰基 (4i)等代替氯的异丙氧基邻位的取代位置, 同样没有得到相应的络合物 5e-5i, 质谱仪没有观察到反应液中的分子离子峰, 薄板色谱 (TLC)也没发现绿色的产物 5e-5i。 其结论可归纳为异丙氧基的邻位若有吸电子功能团卤 素、 脂基、 硝基、 氨基磺酰基等, 其取代的苯乙烯不能生成稳定的钌络合物。 由此可见, 虽然 Hoveyda等人首先制备了异丙氧基苯乙烯配体所生成的钌络合物 (10a和 10b),但没 有深入研究不同取代基对该类络合物稳定性的显著影响。
试验结果证明: 在异丙氧基的邻位不宜有氯、 氟、 脂基、 硝基、 氨基磺酰基等吸电 子基团, 而吸电子基团最佳的取代位置是异丙氧基的对位, 这个结果与一般的电子效应 不一致, 目前无法用完善的理论来解释为何氯在异丙氧基对位的稳定性明显优于邻位。
以下为 5-EWG-2-烷氧基苯亚甲基钌络合物 7a-k和 7m、 7n的合成
Figure imgf000016_0001
以下为络合物 7a-k和 7m、 7n的结构式:
Figure imgf000017_0001
实施例 4 钌络合物 7a的合成
在氩气保护下, 将钌络合物 (¾IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 6a (105 mg, 0.5mraol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 再加入反应体系。反 应混合物在室温搅拌反应 30分钟, 反应结束。 反应结束后, 加入 5mL正己垸, 过滤。 滤液浓缩后, 加入 lOmL甲醇将产物沉淀析出, 过滤后用 3ml甲醇洗涤三次, 得到绿色 固体。 经硅胶柱层析纯化, 得到钌络合物产物 (7a) 223mg (68%), 纯度 98%。
经检测, 钌络合物 (13)的 iHNMR (400 MHz, CDC13): δ = 16.44 (s, 1Η, Ru=CH), 7.46 (dd, IH, J = 2.74, 9.00Hz), 7.08 (s, 4H), 6.89 (d, 1H, J = 2.74Hz), 6.72 (d, 1H, J = 8.61Hz), 4.85 (m, IH), 2.46 (s, 12H), 2.41 (s, 6H), 1.25 (d, 6H, J = 6.26Hz). (M+H+): m/z calculated: 66U ; found: 661.2。
实施例 5 钌络合物 7b的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲垸。 然后 将络合物配体 6b (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲垸中, 络合反应条件同实施例 4。 经络合纯化后得到 203mg绿色钌络合物固体 (7b),产率 56%, 纯度 97%。
经检测,钌络合物 (7b)的 iHNMR (400 MHz, CDC13): δ = 16.37 (s, IH, Ru=CH), 7.07 (s, 4H), 6.98 (s, IH), 6.88 (s, IH), 4.82 (m, IH), 4.18 (s, 4H), 2.45 (s, 12H), 2.40 (s, 6H), 1.25 (d, 6H, J = 6.26Hz). (M+H+): m/z calculated: (M+H+): m/z calculated: 695.1 ; founded: 695.2. 实施例 6 钌络合物 7c的合成
在氩气保护下, 将钌络合物 (¾IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 6c (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲垸中, 络合反应条件同实施例 4。 经络合纯化后得到 198mg绿色钌络合物固体 (7c), 产率 63%, 纯度 97%。
经检测, 钌络合物 (7c)的 ifiNMR (300 MHz, CDC13): δ = 16.49 (s, IH, Ru=CH), 7.26-7.20 (m, IH), 7.13 (s, 4H), 6.71 (dd, J = 3.0, 9.0 Hz, IH), 6.62 (dd, J = 3.1, 7.9 Hz, IH), 4.85-4.81 (m, IH, OCHMe2), 4.19 (s, 4H), 2.47 (s,12H), 2.27 (s, 6H), 1.26 (d, J = 6.2 Hz, 6H). 19F-NMR (300 MHz, CDC13): δ = -41.66.
实施例 7 钌络合物 7d的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲垸。 然后 将络合物配体 6d (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施^ 4。 经络合纯化后得到 173mg绿色钌络合物固体 (7d), 产率 51%, 纯度 97%。
经检测,钌络合物 (7d)的 1HNMR (300 MHz, CDC13): δ = 16.21 (s, 1Η, Ru=CH), 7.07 (s,
4H), 6.72 (t, J = 9.4 Hz, 1H), 6.65-6.59 (m, 1H), 4.78-4.74 (m, 1H, OCHMe2), 4.17 (s, 4H),
2.45 (s, 12H), 2.40 (s, 6H), 1.23 (d, J= 6.1 Hz, 6H)。
实施例 8 钌络合物 7e的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 6e (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲垸中, 络合反应条件同实施例 4。 经络合纯化后得到 152mg绿色钌络合物固体 (7e), 产率 44%, 纯度 98%。
经检测, 钌络合物 (7e)的 'HNMR (300 MHz, CDC13): δ = 16.72 (s, 1H), 7.27 (s, 1H), 7.06 (s, 4H), 6.32 (t, 1H, J= 10.15 Hz) 1 6.36-6.28 (m, 2H), 4.80 (m, 1H), 4.18 (s, 4H), 2.47 (s, 12H), 2.37 (s, 6H), 1.28 (d, 6H, J= 6.23 Hz)。
实施例 9 钌络合物 7f的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25nimol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL'二氯甲垸。 然后 将络合物配体 6f (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲垸中,络合反应条件同实施例 4。经 络合纯化后得到 213mg绿色钌络合物固体 (7f), 产率 63%, 纯度 98%。
经检测,钌络合物 (7f)的 1HNMR (300 MHz, CDC13): δ = 16.55 (s, 1Η, Ru=CH), 7.93 (d, J= 6.9 Hz, 1H), 7.34 (d, J= 1.4 Hz, 1H), 7.09 (s, 4H), 6.81 (d, J = 8.8 Hz, 1H), 4.94-4.90 (m, 1H, OCHMe2), 4.19 (s, 4H), 2.47 (s,12H), 2.42 (s, 6H), 1.27 (d, J= 5.9 Hz, 6H)。
实施例 10 钌络合物 7g的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 6g (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲垸中, 络合反应条件同实施例 4。 经络合纯化后得到 197mg绿色钌络合物固体 (7g), 产率 56%, 纯度 98%。
经检测, 钌络合物 (7g)的 iHNMR (300 MHz, CDC13): δ = 16.45 (s, 1Η, Ru=CH), 8.20 (dd, J = 2.2, 8.8 Hz, 1H), 7.63 (d, J = 2.2 Hz, 1H), 7.09 (s, 4H), 6.84 (d, J = 8.8 Hz, 1H), 4.97-4.93 (m, 1H, OCHMe2), 4.20 (s, 4H), 3.90 (s, 3H), 2.47 (s,12H), 2.43 (s, 6H), 1.29 (d, J= 6.2 Hz, 6H)。 实施例 11 钌络合物 7h的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 6h (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 178mg绿色钌络合物固体 (7h), 产率 52%, 纯度 98%。
经检测,钌络合物 (7h)的 iHNMR (300 MHz, CDC13): δ = 16.61 (s, 1Η, Ru=CH), 9.89 (s, IH, CHO), 8.17 (dd, J= 2.2, 8.8 Hz, IH), 7.44 (d, J= 2.2 Hz, IH), 7.09 (s, 4H), 6.95 (d; J = 8.8 Hz, IH), 5.01-4.97 (m, IH, OCHMe2), 4.19 (s, 4H), 2.47 (s,12H), 2.43 (s, 6H), 1.31 (d, J = 6.3 Hz, 6H)。
实施例 12 钌络合物 7i的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲垸。 然后 将络合物配体 6i (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。经 络合纯化后得到 189mg绿色钌络合物固体 (7i),产率 55%, 纯度 98%。
经检测,钌络合物 (7i)的 iHNMR (300 MHz, CDC13): δ = 16.49 (s, IH, Ru=CH), 8.16 (dd, J= 1.9, 8.8 Hz, IH), 7.53 (d, J= 1.9 Hz, 1H), 7.09 (s, 4H), 6.87 (d, J= 8.8 Hz, IH), 4.98-4.94 (m, IH, OCHMe2), 4.21 (s, 4H), 2.52 (s, 3H), 2.48 (s,12H), 2.43 (s, 6H), 1.29 (d, J = 5.9 Hz, 6H)。
实施例 13 钌络合物 7j的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 6j (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲垸中,络合反应条件同实施例 4。经 络合纯化后得到 199mg绿色钌络合物固体 (7j), 产率 53%, 纯度 97%。
经检测,钌络合物 (7j)的 iHNMR (300 MHz, CDC13): δ = 16.39 (s, IH, Ru=CH), 8.10 (dd; J= 1.8, 8.4 Hz, IH), 7.75-7.72 (m, 2H), 7.63-7.58 (m, 1H), 7.52-7.47 (m, 2H), 7.35 (d, J= 1.8 Hz, 1H), 7.02 (s, 4H), 6.92 (d, J- 8.4 Hz, IH), 5.01-4.97 (m, IH, OCHMe2), 4.19 (s, 4H), 2.46 (s, 12H), 2.24 (s, 12H), 1.29 (d, J= 8.1 Hz, 6H)。
实施例 14 钌络合物 7k的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mtnol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 6k (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 247mg绿色钌络合物固体 (7k), 产率 66%, 纯度 98%。
经检测, 钌络合物 (7k)的 'HNMR (400 MHz, CDC13): δ = 16.39 (s, 1Η, Ru=CH), 7.93 (dd, J = 2.2, 8.8 Hz, 1H), 7.32 (d, J = 2.2 Hz, 1H), 7,08 (s, 4H), 6.91 (d, J = 8.8 Hz, 1H), 4.97-4.94 (ra, 1H, OCHMe2), 4.21 (s, 4H), 2.71 (s, 6H), 2.46 (s,12H), 2.40 (s, 6H), 1.29 (d, J=
Figure imgf000021_0001
实施例 15 钌络合物 7m的合成
在氩气保护下, 将钌络合物 (¾IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 6m (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲垸中, 络合反应条件同实施例 4。 经络合纯化后得到 193mg绿色钌络合物固体 (7m), 产率 56%, 纯度 97%。
经检测, 钌络合物 (7m)的 iHNMR (300 MHz, CDC13): δ = 16.42 (s, 2Η, Ru-CH), 7.87 (dd, J = 2.2, 8.8 Hz, 2H), 7.53 (d, J = 2.2 Hz, 2H), 7.07 (s, 8H), 6.87 (d, J = 8.8 Hz, 2H), 4.96-4.92 (m, 2H, OCHMe2), 3.15 (s, 8H), 2.45 (s, 24H), 2.41 (s, 12H), 1.27 (d, J = 5.9 Hz, 实施例 16 钌络合物 7n的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru= HPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 6n (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 171mg绿色钌络合物固体 (7n), 产率 52%, 纯度 97%。
经检测, 钌络合物 (7n)的 'HNMR (300 MHz, CDC13): δ = 16.44 (s, 2Η, Ru-CH), 7.93 (dd, J = 2.0, 8.4 Hz, 2H), 7.30 (d, J = 2.0 Hz, 2H), 7.03 (s, 8H), 6.88 (d, J = 8.4 Hz, 2H), 5.01-4.97 (m, 2H, OCHMe2), 4.19 (s, 8H), 2.47 (s, 24H), 2.26 (s, 12H), 1.33 (d, J = 6.2 Hz, 12H)。 以下为 5-(R2NS02)-2-嫁氧基苯亚甲基钌络合物 9a-9j的合成路线:
Figure imgf000022_0001
以下为络合物 9a-j的结构式-
Figure imgf000022_0002
9i 9j 实施例 17 钌络合物 9a的合成
在氩气保护下, 将钌络合物 (¾IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 8a (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 211mg绿色钌络合物固体 (9a), 产率 62%, 纯度 97%。
经检测, 钌络合物 (9a)的 H MR (400 MHz, CDC13): δ = 16.36 (s, 1Η, Ru=CH), 7.98 (dd, 1H, J= 2.35, 8.81Hz), 7.40 (d, 1H, J= 2.35Hz), 7.10 (m, 2H), 7.08 (s, 4H), 6.87 (d, 1H, J= 9.00Hz), 6.31 (m, 2H), 4.92 (m, 1H, OCHMe2), 4.20 (s, 4H), 2.44 (s, 腦), 1.13 (d, 6H, J= 5.87Hz)。
实施例 18 钌络合物 9b的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲垸。 然后 将络合物配体 8b (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 158mg绿色钌络合物固体 (9b), 产率 41%, 纯度 97%。
经检测,钌络合物 (9b)的!HNMR (300 MHz, CDC13): δ = 16.34 (s, 1Η, Ru=CH), 7.45 (d, 1H, J = 1.83 Hz), 7.17 (s, 4H), 6.92 (d, 1H, J= 2.20 Hz,), 5.80 (m, 1H, OCHMe2), 4.20 (s, 4H): 3.81 (s, 3H), 2.73 (s, 6H), 2.47 (s, 12H), 2.40 (s, 6H), 1.31 (d, 6H, J= 6.22 Hz)。
实施例 19 钌络合物 9c的合成
在氩气保护下, 将钌络合物 (¾IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲垸。 然后 将络合物配体 8c (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 165mg绿色钌络合物固体 (9c), 产率 44%, 纯度 97%。
经检测,钌络合物 (9c)的!HNMR (300 MHz, CDC13): δ = 16.37(s, 1Η, Ru=CH), 7.94 (dd, 1H, J = 2.20, 8.79 Hz), 7.29 (d, 1H, J = 2.20 Hz), 7.09 (s, 4H), 7.06 (d, 1H, J= 8.79 Hz), 4.34 (t, 2H, J= 5.85 Hz), 4.18 (s, 4H), 3.61 (t, 2H, J= 5.94 Hz), 3.13 (s, 3H), 2.70 (s, 6H), 2.47 (s, 12H), 2.42 (s, 6H)。
实施例 20 钌络合物 9d的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 8d (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 195mg绿色钉络合物固体 (9d), 产率 54%, 纯度 97%。
经检测, 钌络合物 (9d)的 iHNMR (400 MHz, CDC13): δ = 16.39 (s, IH, Ru=CH), 7.97 (dd, IH, J = 2.35, 8.61Hz), 7.37 (d, IH, J = 1.96Hz), 7.08 (s, 4H), 6.90 (d, IH, J = 9.00Hz), 4.95 (m, IH, OCHMe2), 4.21 (s, 4H), 3.21 (m, 4H), 2.46 (s, 12H), 2.41 (s, 6H), 1.83 (m, 4H), 1.29 (d, 6H, J = 5.87Hz)。
实施例 21 钌络合物 9e的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲垸。 然后 将络合物配体 8e (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 176mg绿色钌络合物固体 (9e), 产率 47%, 纯度 97%。
经检测,钌络合物 (9e)的 1HNMR (300 MHz, CDC13): δ = 16.40 (s, IH, Ru=CH), 7.93 (dd: IH, J = 2.20, 8.79 Hz), 7.33 (d, IH, J = 2.19 Hz), 7.08 (s, 4H), 6.87 (d, 1H, J= 8.79 Hz), 4.66 (m, IH, OCHMe2), 4.21 (s, 4H), 2.72 (s, 6H), 2.47 (s, 12H), 2.42 (s, 6H), 1.45 (m, 2H), 1.27 (d; 3H, J= 5.86 Hz), 0.80 (t, 3H, J= 7.69 Hz)。
实施例 22 钌络合物 9f的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 8f (0.5mmol, l.O eq)溶于 l.O mL二氯甲烷中,络合反应条件同实施例 4。经 络合纯化后得到 196mg绿色钌络合物固体 (9f), 产率 52%, 纯度 97%。
经检测,钌络合物 (9f)的 iHNMR (400 MHz, CDC13): δ = 16.39 (s, IH, Ru=CH), 8.04 (dd: IH, J= 1.95, 8.60 Hz), 7.41 (d, IH, J= 2.35 Hz), 7.10 (s, 4H), 6.89 (d, IH, J= 8.61 Hz), 4.95 (m, IH, OCHMe2), 4.24 (m, 1H), 4.21 (s, 4H), 3.66 (s, 3H), 3.48 (m, IH), 3.24 (m, 1H), 2.46 (s: 12H), 2.42 (s, 6H), 1.81-2.13 (m, 5H), 1.28 (d, 6H, J = 5.87 Hz)。
实施例 23 钌络合物 9g的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲垸。 然后 将络合物配体 8g (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 226mg绿色钌络合物固体 (9g), 产率 56%, 纯度 98%。 经检测, 钌络合物 (9g)的 1HNMR (300 MHz, CDC13): δ = 16.39 (s, IH, Ru=CH), 7.90 (dd, 1H, J = 2.20, 8.79 Hz), 7.30 (d, 1H, J = 1.83 Hz), 7.08 (s, 4H), 6.90 (d, 1H, J= 8.79 Hz,), 4.95 (m, 1H, OCHMe2), 4.21 (s, 4H), 3.69 (s, 3H), 3.63 (m, 1H), 2.47 (s, 12H), 2.41 (s, 6H), 2.09 (dd, 4H, J= 3.29, 13.55 Hz), 1.85 (m, 4H), 1.30 (d, 6H , J= 6.22 Hz)。
实施例 24 钌络合物 9h的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲烷。 然后 将络合物配体 8h (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。 经络合纯化后得到 193mg绿色钌络合物固体 (9h), 产率 52%, 纯度 98%。
经检测, 钌络合物 (9h)的 1HNMR (300 MHz, CDCI3): δ = 16.31 (s, 1H, Ru=CH), 7.83 (dd, 1H, J = 2.19, 8.79 Hz), 7.24 (d, 1H, J = 2.20 Hz), 7.00 (s, 4H), 6.85 (d, 1H, J= 8.79 Hz), 4.89 (m, 1H, OCHMe2), 4.13 (s, 4H), 3.68 (t, 4H, J= 4.77 Hz ), 2.95 (t, 4H, J= 4.76 Hz), 2.39 (s, 12H), 2.33 (s, 6H), 1.23 (d, 6H, J= 6.23 Hz)。
实施例 25 钌络合物 9i的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg, 1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲垸。 然后 将络合物配体 8i (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中, 络合反应条件同实施例 4。经 络合纯化后得到 216mg绿色钌络合物固体 (9i), 产率 54%, 纯度 97%。
经检测,钌络合物 (9i)的!HNMR (300 MHz, CDC13): δ = 16.36 (s, 1H, Ru=CH), 7.90 (dd: 1H, J = 2.20, 8.79 Hz), 7.32 (d, 1H, J = 2.20Hz), 7.09 (s, 4H), 6.88 (d, 1H, J= 8.78 Hz), 4.66 (m, 1H, OCHMe2), 4.21 (s, 4H), 3.77 (t, 4H, J= 4.76 Hz), 3.03 (t, 4H, J= 4.84), 2.47 (s, 12H), 2.42 (s, 6H), 1.38 (m, 2H), 1.30 (d, 3H, J= 9.15 Hz), 0.90 (t, 3H, J= 7.69 Hz)。
实施例 26 钌络合物 9j的合成
在氩气保护下, 将钌络合物 (H2IMES)(PCy3)Cl2Ru=CHPh (lb, 450mg, 0.5mmol)和 CuCl (135 mg,1.25mmol, 2.5 eq)称量好加入圆底烧瓶中, 再加入 5.0 mL二氯甲垸。 然后 将络合物配体 8j (0.5mmol, 1.0 eq)溶于 1.0 mL二氯甲烷中,络合反应条件同实施例 4。经 络合纯化后得到 186mg绿色钌络合物固体 (9j), 产率 47%, 纯度 97%。
经检测,钌络合物 (9j)的 iHNMR (300 MHz, CDC13): δ = 16.36 (s, 1Η, Ru=CH), 7.90 (dd: 1H, J= 2.20, 8.79 Hz), 7.32 (d, 1H, J= 2.20 Hz), 7.09 (s, 4H), 6.88 (d, 1H, J= 8.78 Hz), 4.66 (m, 1H, OCHMe2), 4.21 (s, 4H), 3.77 (t, 4H, J= 4.76 Hz), 3.03 (t, 4H, J= 4.84), 2.47 (s, 12H), 2.42 (s, 6H), 1.48 (m, 2H), 1.30 (d, 3H, J= 9.15 Hz), 0.80 (t, 3H, J= 7.69 Hz)。
为了节约、 重复有效地使用贵金属钌催化剂,本发明成功研发了易回收多次反复使用 的固载钌络合物催化剂,为产品的产业化的成本控制及环境保护开拓了一条新路。 以下为固载钌络合物催化剂 18a-b和 19a-b的合成路线:
Figure imgf000026_0001
实施例 27 络合物配体 15的合成
将化合物 8g (1.8g, 4.8mmol)溶于 25mL MeOH和 10mL水, 向其中加入 NaOH (1.0g, 25mmol), 搅拌下室温反应 4 hrs. 减压蒸去溶剂, 向其中加入 20mL水, 用 40mL乙醚萃取, 水相用稀盐酸调到 pH = 2, 用 EtOAc (3X50mL)萃取, 合并的有机相用饱和食盐水洗涤, 干燥后, 旋干得产物 1.6g, 收率: 92% (HPLC: 98%)。
经检测,钌络合物配体 (15)的 'HNMR (300 MHz, CDC13): δ = 7.80 (d, 1H, 2.47Hz), 7.60 (dd, 1H, J-2.47, 8.79Hz), 7.00 (dd, 1H, 11.26, 17.85Hz), 6.95 (d, 1H, J=8.79Hz), 5.81 (dd, 1H, J=l . l, 17.58Hz), 5.39 (dd, 1H, J=l . l , 11.27Hz), 4.66 (m, 1H), 3.64 (m, 2H), 2.43 (m, 2H),2.26 (m, 1H), 2.00 (m, 2H), 1.87 (m, 2H), 1.42 (d, 6H, J=6.05Hz). 分子量 (M+H+): m/z理论计算 值为:352.1, 测试值为: 352.1。
实施例 28 固载钌催化剂 19a的合成
在氩气保护下, 化合物 15(0.80g, 2.3mmol)溶于二氯甲垸中, 加入 HOBt (0.32g, 2.4mmol), 然后搅拌过夜, 反应结束后过滤浓缩后得到 1.20g产品, 再加到含有 0.85g聚 苯乙烯树脂 (1.44mmol, l .Oeq.)和 DMAP (0.2g, 1.44mmol, l .Oeq.)的 DMF溶液中,反应搅拌 过夜,偶合反应结束后,用 DMF (20mLx3), THF (20ml 3), DCM (20mLx3), 1/1 DCM/Et20 (20mLx l), Et20 (20mLx3)清洗树脂, 再干燥后得 0.98g树脂 16a。
将树脂 16a (0.90g, 1.5mmol, l .Oeq.)加入到含有 (PPh3)2Cl2Ru =CHPh (1.95g, 2.25mmol, 1.5eq.)和 CuCl (0.39g, 3.75mmol, 2.5eq.)的二氯甲垸 (15mL)中,溶液搅拌 2小时后得到产 物 17a。 反应结束后再加入含有 PCy3的二氯甲烷 (15 mL) 溶液中, 搅拌 5小时后, 再用 DMF (20mLx3), THF (20mLx3), DCM (20mL <3)清洗树脂, 干燥后得到产物 18a。
将树脂 18a (0.90g, 1.5mmol, l .Oeq.) 加入到含有 H2IMes(H)(CCl3) (Ilia)的甲苯溶液 中, 80°C搅拌过夜后用 DMF (20mLx3), THF (20mLx3), DCM (20mLx3), 1/1 DCM/Et20 (20mLx l), Et2O (20mLx3) (20mL)清洗树脂, 干燥后得到 l . l lg表面附有钌催化剂的树脂 19a。
红外分析结果: IR: 3454.20 (w), 2921.47 (br), 1733.20 (m), 1613.66 (s), 1112,85 (m)。 实施例 29 固载钌催化剂 19b的合成
络合反应条件同实施例 28。 经多步反应络合纯化后得到 0.36g黑绿色钌络合物固体 (19b), 经检测, 钌络合物 (9h)的 1H NMR (300 MHz, CDC13): δ = 16.38 (s, 1H, Ru=CH), 7.92 (dd, lH, J = 2.20, 8.79 Hz), 7.30 (d, 1H, J = 1.83 Hz), 7.08 (s, 4H), 6.90 (d, 1H, J= 8.79 Hz,), 4.95 (m, 1H, OCHMe2), 4.21 (s, 4H), 3.70-1.30 (broad peaks, PEG proton peaks overlapped)。
红外结果: IR: 3441.82 (w), 2925.79 (m), 1732.10 (s), 1633.66 (s), 1263.83 (s), 1106.00
(m)。
为充分有效地优化各类钌催化剂的合成方法, 降低成本和资源消耗, 下列对几类主 要的钌催化剂釆用了下列两种不同的合成路线。 当 5-取代基是 C1或 F时, 不稳定的钌络 合物 28a-b的三苯基磷配体可被另一配体 H2IMes (Ilia)直接取代生成更稳定且催化活性更 高的钌催化剂 30a-b。 但当 5-取代基是 R2NS02和 N02时, 则不稳定的钌络合物 33a-b 的三苯基磷配体不能被另一配体 H2IMes (Ilia)直接取代,必须先由 PCy3取代 PPh3先生成 络合物 34a-b, 再由配体 H2IMes (Ilia)取代 PCy3生成更稳定且催化活性更高的钌催化剂 7k和 10e: 以下为 5-C1和 5-F取代 -2-烷氧苯亚甲基配体钌络合物 30a-b的合成路线-
Figure imgf000028_0001
26a: EWG = CI 27a: EWG = CI
26b: EWG = F 27b: EWG = F
Figure imgf000028_0002
28a: EWG = CI
Figure imgf000028_0003
Cy =环己基, Ts =对甲苯磺酰
ΓΛ
30a-b: L = wies一 Nv-N、Mes (Mes = 2,4,6-三甲基苯) 以下为络合物 30a-b合成中产物核磁共振氢、 磷化学位移的变化:
Figure imgf000029_0001
实施例 30 钌络合物配体 27a的合成
对甲苯磺酰肼 (26.5g, 142mmol, l .Oeq.)溶于 lOOmL甲醇中, 搅拌下迅速加入化合物 26a(29g,146mmol,1.0eq 半小时后, 将反应体系冷却到 0°C, 将生成的固体抽滤, 干燥 得白色晶状固体 50.4g, 产率 96%, HPLC纯度 99%。
经检测,钌络合物 (27a)的 1H NMR (300 MHz, CDC13): δ = 8.08 (d, J= 1.6 Hz, 1H), 7.88 (d, J= 8.5 Hz, 1H), 7.77 (d, J= 2.8 Hz, 2H), 7.33 (d, J= 7.9 Hz, 1H), 7.25 (dd, J= 2.8, 7.9 Hz, 1H), 6.79 (d, J= 8.8 Hz, 2H), 4.52-4.48 (m, 1H, OCHMe2), 2.42 (s, 3H), 1.29 (d, J = 6.1 Hz, 6H). (M+Pf): m/z calculated: 366.1 ; found: 366.1.
实施例 31 钌络合物 28a的合成
化合物 27a(10g, 27.3mmol, l .Oeq)溶于 NaOEt (5.0eq.)的乙醇 (150mL)溶液中, 加热到 60°C反应半小时。 30分钟后再加入 120mL水, 用戊垸萃取 (50mL X 3)。 合并萃取液, 用 饱和碳酸钠溶液洗涤 (50mLX 2), 饱和食盐水洗涤 (50mL X 2), 无水硫酸钠干燥后在 0°C 浓缩至大约 20mL。 产率按 55%计算。
将 RuCl2(PPh3)3 (7g, 7.3mmol, l .Oeq.)溶于 50mL二氯甲垸中,冷却到 -78°C,再加入 -78 °C的重氮 10(3.1g, 14.7mmol, 2.0eq.)的戊烷溶液 (~20mL)。 5分钟后, 反应温度缓慢升至室 温, 加入 CuCl(2.9g, 29.3mmol,4.0eq.)。 15分钟后, 过滤。 滤液浓缩后, 柱层析纯化, 用 梯度淋洗剂 (2: 1正己烷 /二氯甲烷至纯二氯甲垸)。 将产物部分浓缩, 正己烷洗涤, 真空 干燥得到 2.9g红色固体粉末 28a, 产率 64%。
经检测, 钌络合物 (28a)的 1H NMR (300 MHz, CDC13): 5 = 16.60 (d, JPH = 6.8 Hz, 1H, Ru=CH), 7.63-7.44 (m, 17H), 7.14 (d, J= 8.5 Hz, 1H), 5.41-5.38 (m, 1H, OCHMe2), 1.90 (d, J = 6.4 Hz, 6H).31P-NMR (121 MHz, CDC13): δ = 56.350 (s, PPh3)。
实施例 32 钌络合物 30a的合成
化合物 28a(1.0g, 1.62mmol, l .Oeq.)和 H2IMes(H)(CCl3) (1.38g, 3.24mmol, 2.0eq.)溶于 甲苯中, 加热到 80QC, 1.5小时冷却结晶后过滤纯化, 柱层析后得到深绿色固体, 用甲醇 和正己烷洗涤干燥后得到 533mg绿色产品 30a。 产率 51%
经检测, 钌络合物 (30a)的 1H NMR (300 MHz, CDCI3): 6 = 16.46 (s, 1H, Ru=CH), 7.46 (dd, J = 2.6, 8.7 Hz, 1H), 7.08 (s, 4H), 6.89 (d, J = 2.6 Hz, 1H), 6.72 (d, J = 8.7 Hz, 1H), 4.88-4.82 (m, 1H, OCHMe2), 4.18 (s, 4H), 2.46 (s,12H), 2.41 (s, 6H), 1.25 (d, J= 6.2 Hz, 6H)。
实施例 33 钌络合物 27b的合成
缩合反应条件同实施例 30。 经反应纯化后得到钌络合物配体 (27b), 产率 95% 经检测,钌络合物 (27b)的 1H NMR (300 MHz, CDC13): δ = 8.10 (d, J= 1.9 Hz, 1H), 7.97 (s, 1H), 7.87 (d, J = 8.2 Hz, 2H), 7.50 (dd, J = 3.0, 9.0 Hz, 1H), 7.32 (d, J = 8.2 Hz, 2H), 7.02-6.95 (m, 1H), 6.80 (dd, J= 4.4, 9.1 Hz, 1H), 4.53-4.42 (m, 1H), 2.41 (s, 3H), 1.29 (d, J = 6.1 Hz, 6H). 19F-NMR (282 MHz, CDC13): δ = -40.25. (M+H+): m/z calculated: 350.1; found: 350.2。
实施例 34 钌络合物 28b的合成
络合反应条件同实施例 31。 经反应络合纯化后得到紫色钌络合物固体 (28b),产率 57%。
经检测, 钌络合物 (28b)的 1H NMR (300 MHz, CDC13): δ = 16.59 (d, JPH = 6.6 Hz, 1H, Ru=CH), 7.55-7.26 (m, 17H), 7.09 (dd, J = 3.9, 9.0 Hz, 1H), 5.37-5.32 (m, 1H, OCHMe2), 6Z ■ ■^ m^m ^w m ^^^ n ^ 土
Figure imgf000031_0001
綱敏 *Efe½ = s丄 '*3^ = ^0
ON = OAV3 :301
Figure imgf000031_0002
i¾NzOS = OAV3: K££
Figure imgf000031_0003
Figure imgf000031_0004
-篛剁 ^ ^ 301 嗨导崁 ί #¾¾ώ¾*¾¾ a^¾SM¾-S 止!^
·ε99·ΐί7- = §: (ει α ' n ζ·&ζ) -^6l
•(Η9 'ΖΗ Γ9 =Γ 'Ρ) 9 Ι '(Η9 cs) LZZ '(H 's) LYZ \m 's) 6t '( 麵 00 'HI '∞) t8 -S8 '(HI 'ZH GL 'V£ =Γ 'PP)乙 9·9 '(ΗΪ 0·6 Ό'Ε = 'ΡΡ) \L9 \ cs) ZVL '(HI '∞) Q L-9ZL H。=n ¾l 's) 6t7'9l = 9: ( CD 'z顏 00£)爾 N Ex (q0£)嗨导 ¾f J¾ '隨^
^En ιζ n H-dlf svop- = 9 -(HDQD ' z z) Ή Ν-¾, '(Η9 'ΖΗ 9 =Γ 'Ρ) 9
ISST00/900ZN3/X3d scicoo/.ooz OAV οε
Figure imgf000032_0001
'•^ ^ q-Bs£、 ε呦导崁 三^鹿據 :丄 r
301
Figure imgf000032_0002
Figure imgf000032_0003
ISST00/900ZN3/X3d SCIC00/.00Z OAV IE
§ra?89 mnm ^ u ^ n Όο08 'Ψ¾ώ 士缀 (·&90·Ζ 'louiraS-£ '8ΐ7·ΐ) ( OD)(H)sa ¾ ύ^Ο'Ι mra9'i ' ·Ι) ^£啄
^导 ¾9 嗨导崁 6ε^¾¾
9 :(¾XD 'ΖΗΙΜ ΐΠ) ¾IA[K-die '(Η6Ε 8Γΐ"6ε '(Η9 's) 6 Z z uDo 'HI '∞) οε·5-9ε·5 '(HI 'ΖΗ 9·8
Figure imgf000033_0001
'ΗΙ 'ΖΗ ε = Udf 'Ρ) 0ΐ· = S :(¾)GD 'ΖΗΗ 00£) Wi ^ ί^ )啄 ^丄
• %L9 傘^
Figure imgf000033_0002
um oj d )
Μ 'ψ 镊 (-^0 oraras-g ο·1ζ) %ε呦 ^ '丄 ς$褂 骘¾
's) so-9S = § (£ιοαο 'mn III) ¾HM-d-(H9 ¾I ^9 = "p) '(H9 es) '(^WHOO 'HI 'w) βνς-ίξ-ς '(HI ¾i 0·6 = "P) *Z. 'tot '∞) IVL-L^L XUZ ' ) 90·8-60·8 '(HC ^i 'HI 'ZH 6·9 = ΗΆΓ 'Ρ) 69·9ΐ = δ :(εΏ(Ί ¾Η 00£) Ή Ν Η, (Βεε)呦导 ¾J¾ '隨^ ¾
°%£9 6£ : unojiiW
-. siBpoiBO z/m: (+H+N) '(H9 '^H 0·9 = " 'Ρ) S£"I C(H£ 's) O^Y '(H9 's) OL'Z '(^WHDO 'HI 09 -89 '(Hi 'ZH 8'8 =f'P) W9 ΧΚΖ ¾Η Γ8 =f 'Ρ) Οί'ί '(HI ¾ ί3· L_\L' L '(HZ ¾H Γ8 =
/■ 'p) LXL m irs-ws = δ :(ειοαο 'ΖΗΙΜ οοε) Ή ΝΗ1 ^(Βεε)ϋ导 J¾ '隨
°%96 :^ 啄导 /「ig giW^^ ¾ °οε ρ ¾^( 1Φ^¥ ^ 驟
iss丽籠 f /J d ≤eieoo/Loo∑; OAV 经检测, 钌络合物 (7k)的 1H NMR (300 MHz, CDCI3): δ = 16.39 (s, IH, Ru=CH), 7.93 (dd, J = 2.2, 8.8 Hz, 1H), 7.32 (d, J = 2.2 Hz, IH), 7.08 (s, 4H), 6.91 (d, J = 8.8 Hz, IH), 4.97-4.94 (m, IH, OCHMe2), 4.21 (s, 4H), 2.71 (s, 6H), 2.46 (s,12H), 2.40 (s, 6H), 1.29 (d, J = 5.9 Hz, 6H).
实施例 40 钌络合物 32b的合成
缩合反应条件同实施例 30。 经反应纯化后得到钌络合物配体 (32b), 产率 93%。
经检测,钌络合物 (32b)的 ¾ NMR (300 MHz, CDC13): δ = 8.62 (d, J= 3.0 Hz, IH), 8.18 (dd, J = 3.0, 9.4 Hz, IH), 8.16 (s, IH), 7.91 (d, J = 8.3 Hz, 2H), 7.36 (d, J = 8.3 Hz, 2H), 6.91 (d, J = 9.4 Hz, IH), 4.74-4.66 (m, IH, OCHMe2), 2.42 (s, 3H), 1.38 (d, J = 6.0 Hz, 6H). (M+H+): m/z calculated: 378.1 ; found: 378.1.
实施例 41 钌络合物 33b的合成
络合反应条件同实施例 31。 经反应络合纯化后得到紫色钌络合物固体 (33b),产率 66%。
经检测, 钌络合物 (33b)的 1H NMR (300 MHz, CDC13): δ = 16.62 (d, JPH = 6.8 Hz, IH, Ru=CH), 8.53 (dd, J = 2.6, 9.0 Hz, IH), 7.55-7.39 (m, 16H), 7.27 (d, J = 9.0 Hz, IH), 5.52-5.47 (m, IH, OCHMe2), 1.91 (d, J= 6.0 Hz, 6H).
实施例 42 钌络合物 34b的合成
络合反应条件同实施例 38。 经反应络合纯化后得到紫色钌络合物固体 (34b),产率 71%。
经检测, 钌络合物 (34b)的 ¾ NMR (300 MHz, CDC13): δ = 17.38 (d, JPH = 4.7 Hz, IH, Ru=CH), 8.53 (dd, J = 2.6, 8 Hz, IH), 7.49 (m, IH), 7.27 (d, J = 8.0 Hz, IH), 5.37 (m, IH, OCHMe2), 2.35-1.26 (m, 39H).
实施例 43 钌络合物 lOe的合成
络合反应条件同实施例 39。 经反应络合纯化后得到绿色固体产物 10e,产率 61% 。 经检测, 钌络合物 (10e)的 1H NMR (300 MHz, CDC13): δ = 16.47 (s, IH, Ru=CH), 8.43 (dd, J = 2.5, 9.2 Hz, IH), 7.82 (d, J = 2.5 Hz, IH), 7.10 (s, 4H), 6.89 (d, J = 9.2 Hz, IH), εε
301
Figure imgf000035_0001
• ■^ s-m嗨导 ^ '挲 ¾·¾旮褂 s i目 ^丄 w i^Dd 's) 6εο"95 = δ :(εΐ αο ' n ιζι) wK-dK i( }-o ίζ^0ά Ήιρ '∞) iO'i-wz Xm 'ΖΗ =r \Υ£ P =Γ 'Ι) 8//ε 'too 'm '^) IOS-WS
'(HI 'ZH Z/8 =f 'V) LVL '(Ηΐ Z/8 '8·1 = f 'PP) 00'8 '(HI 8'ΐ =Γ 'Ρ) ΪΓ8 '(Η。=η¾[ 'HI 'ZH Y = f 'Ρ) 8£·/-ΐ = 9 :(£DOD 'ΖΗ^ 00ε) "HWN Ht (qS£)嗨 ^工 'W ^
°%ίς 隶 y(qs£)#園 导 慕 导 ¾ °8ε m^M^ws^
•(Η6ε '∞) 6ζ·ι-ςζτ X 9ft =r 'm ire '(ZH LL' =r 'm ¾ 6L'z '(HI
'ra) ς£·ς '(ZH 6乙 ·8 =Γ ¾ΐ 'Ρ) ZZ L '(ζΗ 6 8 'ΟΖ'Ζ =Γ 'HI 'ΡΡ) ΐθ'8 '( ΟΖΤ =Γ 'Ηΐ 'Ρ) ZV% '(ΖΗ 6£·17 = "Ηΐ 'Ρ) 8£·Αΐ = 9 -(HDQD '2丽 00ε)環 Ν Η, 导 ¾J¾ '隨^
°%89
'(Η9 'ΖΗ Γ9 =Γ 'Ρ) 0£·ΐ '(Η9 's) WZ '(H2l's) 9VZ '(m £s) ΖΓΡ '(¾HHDO 'HI S6 - IO'S
ISST00/900ZN3/X3d SCIC00/.00Z OAV 钌络合物催化剂在烯烃易位复分解反应中的应用实施例:
钌络合物催化的烯烃易位复分解反应实验步骤:将 50mg的底物置于 25mL二口圆底 烧瓶中, 用氩气置换 5次后加入 lmL新蒸的二氯甲垸和 5mg的催化剂。 在氩气保护下, 反应混合物在室温下搅拌至反应完全。 反应的转化率由 HPLC监测得到。 以下是钌络合 物在不同烯烃的易位复分解反应中的催化活性研究:
效果实施例 1 :
为了对比含有不同取代基的钌络合物的催化活性, 现对实施例 4-26合成的不同钌络 合物 (7a-7n和 9a-9j)、 含三环己基磷而没有异丙氧基苯乙烯配体的 Grabbs钌络合物 (10d) 以及 Hoveyda报导的异丙氧基苯乙烯上没有取代基的钌络合物 (10b)进行烯烃 11易位反 应的催化活性和相对催化活性进行比较。
Figure imgf000036_0001
烯烃分子内易位环化反应实验: 在 25ml 二颈瓶中分别加入 50mg反应底物 11, 用 三通置换使内部充满氩气, 用针筒加入 1.0ml二氯甲烷, 室温搅拌使完全溶解后, 分别 加入 2 mol %的上述钌络合物催化剂。 分别于 10min、 30min、 1.0hr、 3.0hr、 5.0hr、 8.0hr、 15.0hr取样, 用 HPLC和 LC-MS跟踪反应。 用归一化的方法计算产物的转化率, 反应结 果见表 1。
烯烃易位复分解环化产物 (12) ]HNMR (400 MHz, CDC13): δ = 7.78 (d, 2Η, J= 8.21Hz), 7.31 (m, 7Η), 6.01 (m, 1H), 4.47 (m, 2H), 4.30 (m, 2H), 2.41 (s, 3H). 分子量 (M+H+): m/z 理论计算值为 300.1, 测试值为 300.2.
表 1. 烯烃 11的分子内关环反应催化活性评估
序 转化产率 (% by HPLC)
催化剂
号 10 min 30 min 1.5 hr 3.0 hr
1 7a 85 96 100
2 7b 88 100
3 7c 81 87 94 >97
4 7d 83 91 >97 5 7e 51 82 92 100
6 7f 83 94 100
7 7g 84 >97
8 7h 87 98
9 7i 88 >97
10 7j 90 >98
11 91 100
7k
12 7m 89 94 >98
13 7n 80 91 94 >97
14 9g 66 84 92 >98
15 9h 90 95 100
16 9j 82 91 97 100
17 10b 71 88 95 >97
18 lOd 12 23 37 81
表 1结果表明, 本发明的各类催化剂对烯烃 11的活性都比较好, 关环反应大部分在 30-60分钟内结束。 其中 5-二甲氨磺酰取代的络合物 7k的活性最高, 其余 7j、 7b、 7i、 7h、 7i、 7m、 7f的活性也相当高。 . ,
效果实施例 2:
为了更好地测定不同高活性催化剂之间的差异, 本专利设计了一个既有二个吸电子 氟代、烯上又有二个甲基取代的底物 13,底物 13效难发生易位复分解环化的特性使催化 剂之间的活性差异比较明显地测定出来。
Figure imgf000037_0001
烯烃分子内易位环化反应实验:在 25ml二颈瓶中分别加入 50mg反应底物多取代苯 乙烯醚烯烃 13, 用三通置换使内部充满氩气, 用针筒加入 1.0ml二氯甲烷, 室温搅拌使 完全溶解后, 分别加入 3 mol %的上述钌络合物催化剂。 分别于 10min、 30min、 1.0hr、 3.0hr、 5.0hr、 8.0hr、 15.0hr取样, 用 HPLC和 LC-MS跟踪反应。 用归一化的方法计算产 物的转化率, 相关动力学结果列于表 2。
烯烃易位复分解环化产物 (14) 'HNMR (CDC13: δ= 7.26 ppm): 7.15 (d, 1H, J = 2.74Hz),
6.84 (d, 1H, J = 2.34Hz), 6.34 (dt, 1H, J = 1.95, 9.78Hz), 5.86 (d, 1H, J = 9.78Hz), 4.95 (m,
2H;)。 分子量 (M+H+): m/z理论计算值为 200.99, 测试值为 201.1。
表 2. 烯烃 13的分子内关环反应催化活性评估
转化产率 (Q/o by HPLC)
惟 m 」
10 min 30 min 1.5 hr 3.0 hr Overnight
1 7a 26 51 76 86 100
2 7f 28 54 89 >98
3 7i 23 47 75 88 >96
4 7k 76 92 100
5 9a 45 59 89 100
6 9b 85 >98
7 9c 55 81 94 100
8 9d 31 49 67 84 100
9 9e 48 82 94 100
10 9f 20 43 71 86 >97
11 9g 32 59 78 89 100
12 9h 28 61 86 92 100
13 9i 60 81 94 >98
14 9j 32 60 79 86 >97
15 19a 2 5 23 46 100
16 19b 7 28 61 75 100
17 10b 9 18 32 63 >95
18 lOd 3 7 16 52 92
19 lOe 49 77 89 100
上述效果实施例 1和 2结果表明:本发明的钌络合物催化剂与同类产品 Gmbbs催化 剂 (10d)和 Hoveyda催化剂 (10b)相比, 本发明的大多数氨基磺酰基 (R2NS02)、 羰基等取 代的钌络合物催化剂的催化活性明显优于其它同类钌催化剂产品, 其中六个催化剂 (7j、 7k、 9a、 %、 9c、 9i)在催化活性上更胜一筹, 是目前该领域中催化活性最好的一类烯烃易 位复分解反应催化剂。
烯烃易位复分解环化产物 (14) 1HNMR (400 MHz, CDC13): δ = 7.15 (d, 1H, J = 2.74Hz), 6.84 (d, 1H, J = 2.34Hz), 6.34 (dt, 1H, J = 1.95, 9.78Hz), 5.86 (d, 1H, J = 9.78Hz), 4.95 (m, 2H). 分子量 (M+H+): m/z理论计算值为 201.1,测试值为 201.1
效果实施例 3:
为了评估固载钌络合物 (19a和 19b)的催化活性,现对实施例 28和 29合成的固载钌 络合物 (19a和 19b)进行烯烃底物 20的易位复分解环化反应的催化活性进行测试。
烯烃分子内易位环化反应实验:在 25ml二颈瓶中分别加入 50mg反应底物苯乙烯烯 丙基醚 20, 用三通置换使内部充满氩气, 用针筒加入 LOml二氯甲烷, 室温搅拌使完全 溶解后, 分别加入 3 mol %的上述钌络合物催化剂。分别于 10min、 30min、 1.0hr、 3.0hr、 5.0hr、 8.0hr、 15.0hr取样, 用 HPLC和 LC-MS跟踪反应。用归一化的方法计算产物的转 化率。
Figure imgf000039_0001
19a: 5hr,转化率: >98%
19b: 3hr,转化率: >98% 结果表明: 在本发明的固载钌络合物催化剂的催化作用下, 反应分别于于 3hr、 5hr 小时内完成, 单一产物, 反应液呈浅色, 反应液过滤后除去溶剂即得到纯度高于 95%的 产物 14。
本例的产物及其核磁和质谱结果与上述效果实施例 2相同。 效果实施例 4:
为了评估固载钌络合物 (19a和 19b)的催化活性, 现对实施例 28和 29合成的固载钌 络合物 (19a和 19b)进行烯烃有烷基取代的底物 22的易位复分解环化反应的催化活性进 行测试。
烯烃分子内易位环化反应实验:在 25ml二颈瓶中分别加入 50mg反应底物苯乙烯烯 丙基醚 20, 用三通置换使内部充满氩气, 用针筒加入 1.0ml二氯甲烷, 室温搅拌使完全 溶解后, 分别加入 3 mol %的上述钌络合物催化剂。 分别于 10min、 30min、 1.0hr、 3.0hr、 5.0hr、 8.0hr、 15.0hr取样, 用 HPLC和 LC-MS跟踪反应。 用归一化的方法计算产物的转 化率。
Ru Catalyst 19
(3 mol%)
二氯甲垸
Figure imgf000040_0001
19a: 8hr,转化率: >98%
19b: 2hr,转化率: >98% 结果表明: 在本发明的固载钌络合物催化剂的催化作用下, 反应分别于于 2hr、 8hr 小时内完成, 单一产物, 反应液呈浅色, 反应液过滤后除去溶剂即得到纯度髙于 95%的 产物 23。 反应后处理非常方便, 过滤除去固载钌催化剂和溶剂后即得到纯产物。
烯烃易位环化产物 (23) ^MR (400 MHz, CDC13): δ = 7.70 (d, 2Η, J= 8.19Hz), 7.31 (d, 1H, J = 8.61Hz), 5.21 (d, 1H, J = 1.17Hz), 4.06 (m, 2H), 3.96 (s, 2H), 2.42 (s, 3H), 1.70 (s, 3H).
分子量 (M+H+): m/z理论计算值为 238.1, 测试值为 238.2 效果实施例 5:
为了评估钌络合物的催化活性, 现对实施例 17和 20合成的钌络合物 (9a和 9d)进行 分子间的烯烃易位复分解反应的催化活性进行测试。
烯烃分子间易位环化反应实验: 在 25ml 二颈瓶中分别加入 50mg反应底物苯乙烯 39, 用三通置换使内部充满氩气, 用针筒加入 1.0ml二氯甲烷, 室温搅拌使完全溶解后, 分别加入 3 mol %的上述钌络合物催化剂。 分别于 10min、 30min、 1.0hr、 3.0hr、 5.0hr、 8.0hr、 15.0hr取样, 用 HPLC和 LC-MS跟踪反应。 用归一化的方法计算产物的转化率。
Figure imgf000040_0002
9a:反式: Sn/o by !H MR
9d:反式: >95% by !HNMR 结果表明: 在本发明的钌络合物催化剂 (9a或 9d)的催化作用下, 反应于 1小时内完 成, 反式烯烃的产物 25的产率高于 95%。
烯烃易位环化产物 (25) ^INMR (CDC13: δ= 7.26 ppm): 7.54 (d, 4H, J = 7.24Hz), 7.39 (t, 4H, J = 7.43Hz), 7.28 (t, 2H, J = 7.43Hz), 7.14 (s, 2H)。 分子量 (M+H+): m/z理论计算值为 181.1, 测试值为 181.2。
效果实施例 6:
除了上述既稳定又有高活性的新型钌催化剂,制备高活性催化剂 7k时含三环己基磷 的中间体络合物 34a也具有催化活性, 并对不同取代基的络合物 (34a、 35a, 35b)的相对 催化活性进行比较。
烯烃分子内易位环化反应实验: 在 25ml 二颈瓶中分别加入 50mg反应底物 11, 用 三通置换使内部充满氩气, 用针筒加入 1.0ml 二氯甲烷, 室温搅拌使完全溶解后, 分别 加入 2 mol %的上述钌络合物催化剂。 分别于 10min、 30min、 1.0hr、 3.0hr、 5.0hr、 8.0hr、 15.0hr取样, 用 HPLC和 LC-MS跟踪反应。 用归一化的方法计算产物的转化率, 反应结 果见表 3。
Figure imgf000041_0001
表 3. 烯烃 36的分子内关环反应催化活性评估
m 转化产率 (%by HPLC)
序号 催化剂
10 min 30 min 1.5 hr 3.0 hr
1 34a 71 82 86 91
2 35a 73 92 100
3 35b 95 100
烯烃易位环化产物 (37) 1HNMR (300 MHz, CDC13): δ = 7.72 (d, J= 8.2 Hz„ 1H), 7.32 (d J= 8.0 Hz, 1H), 5.66 (d, J= 4.4 Hz, 1H), 4.11 (d, J= 4.4 Hz, 1H), 2.42 (s, 3H). 分子量 (M+H+): m/z理论计算值为 222.1, 测试值为 222.2.
效果实施例 7:
本发明设计了一个烯上有二个甲基取代的底物 38对钌催化剂 34a和 35b做进一步的 催化活性比较。
烯烃分子内易位环化反应实验: 在 25ml二颈瓶中分别加入 50mg反应底物 11, 用 三通置换使内部充满氩气, 用针筒加入 1.0ml二氯甲烷, 室温搅拌使完全溶解后, 分别 加入 2 mol %的上述钉络合物催化剂。 分别于 10min、 30min、 1.0hr、 3.0hr、 5.0hr、 8.0hr、 15.0hr取样, 用 HPLC和 LC-MS跟踪反应。 用归一化的方法计算产物的转化率, 反应结 果见表 4。结果表明:新型含三环己基磷配体的钌络合物催化剂 35b的催化催化活性明显 高于其它二个催化剂 34a和 35a。
Figure imgf000042_0001
表 4. 烯烃 38的分子内关环反应催化活性评估
序号 催化剂 ^ ^ (% by HPLC)
lO min 30min 1.5 hr 3.0 hi-
1 34a 5 28 71 86
2 35b 24 63 89 99
本例的产物及其核磁和质谱结果与上述效果实施例 6相同。
上述不同结果表明:本发明的钌络合物催化剂与同类产品 Hoveyda催化剂 (10b)相比, 本发明的氨基磺酰基 (R2NS02)、 羰基等取代的钌络合物催化剂 (7a-7n、 9a-9j)的催化活性 明显优于其它同类钌催化剂产品, 氨基磺酰基取代的钌催化剂 7k、 9a-9d是目前该领域 中催化活性最好的一类烯烃易位反应催化剂。
本发明设计合成氨基磺酰基 (R2NS02)、 羰基等取代的苯乙烯钌络合物配体 (6a-6n, 8a-8j), 是首次用于钌络合物的合成, 所形成的四个钌络合物 (7k、 9a、 9b、 9i)不仅是很 稳定的绿色固体, 而且对娣烃易位反应具有显著的催化活性。 本发明的钌络合物催化剂与同类产品 Gmbbs催化剂 (lOd) 、 Hoveyda催化剂 (10b) 和 Grela催化剂 (10e)相比, 本发明的大多数氨基磺酰基 (R2NS02)、 羰基等取代的钌络合物 催化剂的催化活性明显优于其它同类钌催化剂产品, 其中六个催化剂 (7j、 7k、 9a、 9b、 9c、 9i)在催化活性上更胜一筹, 是目前该领域中催化活性最好的一类烯烃易位复分解反 应催化剂。 本发明的固载钌络合物催化剂, 产物单一, 反应液过滤后除去溶剂即得到纯 度高于 95%的产物 23。 反应后处理非常方便, 过滤除去固载钌催化剂和溶剂后即得到纯 产物。
下面对实施例中涉及到的仪器及原料说明如下- 红外光谱数据是采用 Thermo Nicolet 公司的 Fourier Transform AVATAR™ 360 E.S.P™红外仪分析得到, 以 cm—1为单位来表示。
核磁共振氢谱是 Varian Mercury Plus 400 (400MHz) 核磁仪分析得到。 化学位移以 四甲基硅烷为内标来记录, 以 ppm为单位来表示(CHC13 : δ= 7.26 ppm) o 记录的数据信 息如下: 化学位移及其裂分和偶合常数 (s: 单重峰; d : 双重峰; t: 三重峰; q: 四重峰; bn 宽峰; m: 多重峰)。
质谱数据除其他需要, 都釆用菲尼根 Finnigan LCQ Advantage液质联用仪进行分析, 所有反应都在干燥氩气保护的无水无氧条件下进行操作。 固体金属有机化合物在氩气保 护干燥箱中进行储藏。
所有的柱色谱硅胶 (200-300目)从青岛海洋化工厂购买。
四氢呋喃和乙醚是经过蒸馏得到, 蒸馏时在其中加入金属钠和二苯甲酮。二氯甲烷, 戊烷和己垸是用氢化钙来处理。
Figure imgf000043_0001
S. Kingsbury, Joseph P. A. Harrity, Peter J. Bonitatebus, Jr., Amir H. Hoveyda*, J. Am. Chem. Soc. 1999, 121, 791; 美国化学会杂志 1999年 121卷 791页)。 其他所有化学试剂从上海 试剂公司购买。

Claims

权利要求
1、 一种结构式为式 I的钌络合物配体:
Figure imgf000044_0001
I
其中, Y为氧、 硫、 氮或磷;
Z为亚甲基、 氧或对甲苯磺腙;
R为氢、 卤素、 硝基、 腈基、 烷基、 -C20烷氧基、 -C 硫醚基、 d-Czo硅 垸基、 - 硅氧基、 C6-C2。芳基、 C6-C2。芳氧基、 C2-C2。杂环基、 C2-C2()杂环芳基、 亚 砜基、 砜基、 甲醛基、 d-Cso羰基、 -C20酯基、 d- o酰胺基、 脲基或其衍生物 或 CrGo磺酰胺基;
R1和 R2独立地为氢、 溴 (Br)、 碘 (1)、 烷基或其衍生物、 d_C2Q垸氧基、 C!-C 硫醚基、 d-Co硅氧基、 C6-C2Q芳氧基、 C6-C2Q芳基、 C2-C2Q杂环基、 C2-C2Q杂环芳基、 -C 酯基、 d-C^酰胺基、 -C^脲基或其衍生物或 d-C^磺酰胺基;
R3为氢、 CrCzo垸基或其衍生物、 -C 烷氧基、 d- o硫醚基、 Q-C^硅垸基、 CrC20 硅氧基、 C6-C2Q芳基、 C6-C2Q芳氧基、 C2-C2Q杂环基、 C2-C2Q杂环芳基、 亚砜基、 砜基、 C o羰基、 CrQto酯基、 CrC2()酰胺基、 CrC2D脲基或其衍生物或 - o磺酰胺基;
EWG为 Q- o氨基磺酰基 (R2NS02)、 甲醛基、 d-Cao羰基、 CrC^)酯基、 C^ o氨 基羰基 (¾NCO)、 酰胺基、 氯、 氟、 -C20脲基或其衍生物或 -C2a磺酰胺基。
2、 根据权利要求 1所述的钌络合物配体, 其特征在于: 式 I中,
Y为氧或硫; Z为氧、 亚甲基或对甲苯磺酰腙基;
R为氢、 卤素、 硝基、 腈基、 CrCi5烷基、 C|-CI5垸氧基、 Q-CI5硫醚基、 Q-C15硅 烷基、 15硅氧基、 C6-C15芳基、 C6-C15芳氧基、 C2-C15杂环基、 C2-C15杂环芳基、 亚 砜基、 砜基、 甲醛基、 d-C15羰基、 CrC15酯基、 d- s酰胺基、 d- s脲基或其衍生物 或 C C15磺酰胺基; R1和 R2独立地为氢、 溴 (Br)、 碘 (1)、 -C15垸基或其衍生物、 15烷氧基、 -CI5 硫醚基、 ^硅氧基、 C6-C15芳氧基、 C6-C15芳基、 C2-C15杂环基、 C2-C15杂环芳基、 酯基、 d-C15酰胺基、 d-C15脲基或其衍生物或 -C15磺酰胺基;
R3为氢、 CrC15烷基或其衍生物、 Cj-Cs垸氧基、 C,-C15硫醚基、 C C,5硅垸基、 C CI5 硅氧基、 C6-C15芳基、 C6-C15芳氧基、 C2-C15杂环基、 C2-C15杂环芳基、 -C15羰基、 d-C15 酰胺基、 -C15脲基或其衍生物或 d-C15磺酰胺基;
EWG为 d-C15氨基磺酰基 (R2NS02)、 甲醛基、 Ci-C15羰基、 -C15酯基、 ^氨 基羰基 (R2NCO)、 -C15酰胺基、 氯、 氟、 d-C15脲基或其衍生物或 d-C15磺酰胺基。
3、 根据权利要求 2所述的钌络合物配体, 其特征在于: 式 I中, Y为氧; Z为亚甲 基或对甲苯磺腙; R1和 R2独立地为氢; R3为异丙基或异丁基等 C :6垸基衍生物; R为 氢、 氯、 氟、 Ci-C8羰基、 - 酯基、 -C8氨基羰基 (R2NCO)、 -C8酰胺基、 d- 脲 基或其衍生物或 Cj- 磺酰胺基; EWG为吸电子基团 - o氨基磺酰基 (R2NS02)、 甲 醛基、 -C8羰基、 -C8酯基、 。1-¾氨基羰基 (R2NCO)、 d-C8酰胺基、 氯、 氟、 C,-C8 脲基或其衍生物或 - s磺酰胺基。
4、 一种结构式为式 II的钌络合物:
Figure imgf000045_0001
其中, M为钌 (Ru);
X1和 X2独自地为氯或 RCOO, R为 d-Cso的烷基或其衍生物;
L是一种给电子的络合物配体; 其中, L与 X1不联成环状结构或联成环状结构;
Y、 R、 R2、 R3、 EWG的定义同权利要求 1。
5、 根据权利要求 4所述的钌络合物, 其特征在于 L的结构式为下式 IIIa、 IIIb、 IIIc 或 Hid:
Figure imgf000046_0001
Ma fflb Hie Hid
其中, R4和 R5独立地为 烷基、 C6-C2Q芳基、 C2-C2G杂环芳基、 -C 杂环基、 -C20羰基、 Q-C 酰胺基、 d- o脲基或其衍生物或 -C 磺酰胺基;
R6和 R7独立地为氢、 d-Cso垸基、 -C 垸氧基、 硫醚基、 d-C^硅烷基、 -C 硅氧基、 C6-C2Q芳基、 C6-C2Q芳氧基、 C2- C2Q杂环芳基、 C2-C2Q杂环基、 亚砜基、 砜基、 -C2Q羰基、 Q-C 酯基、 CrC2()酰胺基、 d-C2Q脲基或其衍生物、 -C 磺酰胺 基、 卤素、 硝基或腈基;
R8和 R9独立地为 CrC2。烷基或其衍生物、 C o烷氧基、 C6-C2Q芳基、 C6-C2G芳氧 基、 C2-C2Q杂环芳基或 C2-C2Q杂环基。
6、根据权利要求 5所述的钌络合物, 其特征在于 L的结构式为式 IIIa, R4和 R5独立 地为 2,4,6-三甲苯基, R6 和 R7独立地为氢或 Illd, R8和 R9独立地为环已基。
7、 根据权利要求 5所述的钌络合物, 其特征在于: 式 Π中,
X1和 X2独自地为氯;
L为 Ilia或 Illd;
Y为氧;
R为氢、 卤素、 硝基、 腈基、 d-C15烷基、 15烧氧基、 ^硫醚基、 ^ ^硅 烷基、 d-C15硅氧基、 C6-C15芳基、 。6 15芳氧基、 C2-C15杂环基、 C2-Cl5杂环芳基、 亚 砜基、 砜基、 甲醛基、 C C15羰基、 -C15酯基、 d- s酰胺基、 15脲基或其衍生物 或 -C15磺酰胺基;
R1和 R2独立地为氢、 溴 (Br)、 碘 (1)、 -ds烷基或其衍生物、 15烷氧基、 Q-C15 硫醚基、 15硅氧基、 C6-C15芳氧基、 C6-C15芳基、 。2 15杂环基、 C2-C15杂环芳基、 - s酯基、 15酰胺基、 d-C15脲基或其衍生物或 CrC15磺酰胺基;
R3为氢、 Crds烷基或其衍生物、 d-Cl5烷氧基、 Ci-C15硫醚基、 d-C15硅烷基、 -C15 硅氧基、 -C12芳基、 C6-C12芳氧基、 C2-C12杂环基、 C2-C12杂环芳基、 CrC12羰基、 x- n 酰胺基、 Q-C12脲基或其衍生物或 磺酰胺基;
EWG为 Q-C15氨基磺酰基 ( NS02)、 甲醛基、 -C15羰基、 -C15酯基、 d-Qs氨 基羰基 ( NCO)、 15酰胺基、 氯、 氟、 Q-C15脲基或其衍生物或 -C15磺酰胺基。
8、 根据权利要求 7所述的钌络合物, 其特征在于 Ilia中, R4和 R5独立地为芳基; R6和 R7独立地为氢。
9、 根据权利要求 8所述的钌络合物, 其特征在于式 II中, Y为氧; R1和 R2独立地 为氢; R3为异丙基或 CrC6垸基; R为氢、 氯、 氟、 C C8羰基、 - 酯基、 d-C8氨基 羰基 (R2NCO)、 -¾酰胺基、 d-C8脲基或其衍生物或 d-C8磺酰胺基; EWG为吸电子 基团 Ci-C1()氨基磺酰基 (R2NS02)、 甲醛基、 -C8羰基、 Q-C8酯基、 -Cs氨基羰基 (R2NCO)、 -¾酰胺基、 氯、 氟、 -C8脲基或其衍生物或 CrC15磺酰胺基; R4和 R5独 立地为 2,4,6-三甲苯基。
10、一种结构式为式 IVa、 IVb、 Wc或 Wd的固载钌络合物催化剂:
Figure imgf000047_0001
IVa
Figure imgf000047_0002
IVc
其中, G为表面含有功能团 "X3"的高分子材料、 树脂、 聚乙二醇 (PEG)、 硅胶、 硅藻土等; 表面功能团 ""X3""是羟基、 氨基、 硫醇、 羧基、 -C 垸基或其衍生物、 烷氧基、 -C20硫醚基、 d- o硅烷基、 -C 硅氧基、 C6-C2()芳氧基、 C2-C20杂 环基、 砜基、 亚砜基、 Q-C2Q羰基、 d-Ca)酯基、 胺基、 -C20酰胺基、 - o脲基或其 衍生物或 磺酰胺基; M、 L、 X1、 X2、 Y、 R、 R R2、 R3和 EWG的定义同权利要求 4。
11、根据权利要求 10所述的固载钌络合物催化剂, 其特征在于 L的结构式为下式 III a、 膨、 IIIc或 ΠΜ:
Figure imgf000048_0001
其中, R4和 R5独立地为 CrC2Q烷基、 C0-C2Q芳基、 C2-C2。杂环芳基、 - o杂环基、 -Czo羰基、 d- o酰胺基、 -C20脲基或其衍生物或 -Czo磺酰胺基;
R6和 R7独立地为氢、 Q-C2Q烷基、 d-C^垸氧基、 -C20硫醚基、 -C20硅垸基、 -C 硅氧基、 C6-C2D芳基、 C6-C2C芳氧基、 C2-C2Q杂环芳基、 C2-C2Q杂环基、 亚砜基、 砜基、 -C2Q羰基、 d- o酯基、 d-Cso酰胺基、 脲基或其衍生物、 d-C^磺酰胺 基、 卤素、 硝基或腈基; ·
R8和 R9独立地为 -¾0垸基或其衍生物、 -C20垸氧基、 C6-C2Q芳基、 C6-C2Q芳氧 基、 c2-c2。杂环芳基或 C2-C2Q杂环基。
12、根据权利要求 11所述的固载钌络合物催化剂, 其特征在于 L的结构式为式 IIIa, R4和 R5独立地为芳基; R6和 R7独立地为氢或 IIId, R8和 R9独立地为环已基。
13、 根据权利要求 11 所述的固载钌络合物催化剂, 其特征在于: 式 IVa、 Wb、 IVc 或 Wd中,
Y为氧;
X1和 X2独自地为氯;
L为 Ilia或 Hid;
G为表面含有羟基、 氨基、 硫醇、 羧基的树脂、 橡胶、 硅胶或聚乙二醇;
R为氢、 卤素、 硝基、 腈基、 -C15烷基、 Q-C15垸氧基、 Q-C15硫醚基、 Q-Qs硅 烷基、 ^ ^硅氧基、 C6-C15芳基、 C6-C15芳氧基、 。2 15杂环基、 C2-C15杂环芳基、 亚 砜基、 砜基、 甲醛基、 -C15羰基、 -C15酯基、 d-C15酰胺基、 15脲基或其衍生物 或 - 5磺酰胺基; R1和 R2独立地为氢、 溴 (Br)、 碘 (1)、 d-C15垸基或其衍生物、 15烷氧基、 d-C15 硫醚基、 d-C15硅氧基、 C6-C15芳氧基、 C6-C15芳基、 C2-C15杂环基、 C2-C15杂环芳基、 CrQs酯基、 -C15酰胺基、 CrC15脲基或其衍生物或 CrC15磺酰胺基;
R3为氢、 CrC15烷基或其衍生物、 Cj-C.5垸氧基、 -C15硫醚基、 d-ds硅烷基、 d-C15 硅氧基、 C6-C12芳基、 C6-C12芳氧基、 C2-C12杂环基、 C2-C12杂环芳基、 -C12羰基、 d-Cn 酰胺基、 CrC12脲基或其衍生物或 -C12磺酰胺基;
EWG为 Ci-C15氨基磺酰基 (R2NS02)、 甲醛基、 d-CI5羰基、 Q-C15酯基、 ^^氨 基羰基 (R2NCO)、 -C15酰胺基、 氯、 氟、 -C15脲基或其衍生物或 d-C15磺酰胺基。
14、 根据权利要求 13所述的固载钌络合物催化剂, 其特征在于式 Ilia中, 该 R4和 R5独立地为芳基; R0 和 R7独立地为氢或 IIId, R8和 R9独立地为环已基。
15、 根据权利要求 14所述的固载钌络合物催化剂, 其特征在于式 IVa中, G为表面 含羟基的聚苯乙烯树脂或聚二乙醇; Y为氧; R1和 R2独立地为氢; R3为异丙基或 C,-C6 垸基; R为氢、氯、氟、 CrC8羰基、 d-C8酯基、 -¾氨基羰基 (R2NCO)、 -¾酰胺基、 CrC8脲基或其衍生物或 CrC8磺酰胺基; EWG为吸电子基团 -do氨基磺酰基 (R2NS02)、 甲醛基、 -Cs羰基、 -Cs酯基、 -¾氨基羰基 (R2NCO)、 -C8酰胺基、 氯、 氟、 CrC8 脲基或其衍生物或 CrC15磺酰胺基; R4和 R5独立地为 2,4,6-三甲苯基。
16、 一种权利要求 4所述的钌络合物催化剂的制备方法, 该方法包括如下步骤: 1 ) 在惰性气体保护下,将对甲苯磺酰腙在乙醇钠或甲醇钠的乙醇溶液中生成邻垸氧基卡宾, 之后与 RuCl2P(Ph3)3反应生成下列钌络合物 V:
Figure imgf000049_0001
V
其中 X1, X2, Y, R, R1, R2, R3 和 EWG与权利要求 4-9同。
2)将步骤 1 ) 的钌络合物产物 V在惰性气体保护下与三环己基磷反应生成下列钌络 合物 VI:
Figure imgf000050_0001
其中 X1, X2, Y, R, 1, R2, R3和 EWG与权利要求 4-9同。
3)裉据化学活性将步骤 1)的络合物 V或步骤 2) 的络合物 VI在惰性气体保护下反 应生成权利要求 4的钌络合物催化剂 II。
17、一种权利要求 10所述的固载钌络合物催化剂的制备方法,该方法包括如下步骤: 1 )将含酯基取代的 4-羟基苯磺酰胺进行乙烯化得到邻苯酚乙烯化产物;
2)将步骤 1 ) 的邻苯酚乙烯化产物进行醚化得到醚化产物;
3)将步骤 2) 醚化产物进行水解得到水解产物;
4)然后将步骤 3 ) 的水解产物在偶合试剂的作用下与表面含羟基或胺基的高分子物 质偶合得到固载钌配体;
5 )将步骤 4 ) 的固载钌配体与 RuCl2(=CHPh)(PPh3)2反应得到固载钌络合物产物;
6) 将步骤 5) 的固载钌 合物与三环己基磷配体或另一配体 Ilia (H2IMes)生成最终 产物。
18、 根据权利要求 17所述的制备方法, 其特征在于: 步骤 1 ) 的乙烯化为: 在惰性 气体保护下,于 -30Ό至 -50Ό下,将 2至 3倍体积的叔胺滴入含有 1倍体积的四氯化锡和 3至 6倍体积 1,2-二氯乙垸溶液中,通入乙炔 4-6小时, 室温下加入含酯基取代的 4-径基 苯磺酰胺, 于 60°C至 100Ό反应得到苯酚邻位乙烯化的产物;
步骤 2)醚化: 将步骤 1 ) 的邻苯酚乙烯化产物与卤代烷进行醚化反应;
步骤 5)将步骤 4) 的固载钌络合物配体与 RuCl2(=CHPhXPCy3)(H2IMes)在 CuCl和 卤代烷的溶剂中反应。
19、 根据权利要求 18所述的制备方法, 其特征在于: 步骤 1 ) 中所述的惰性气体为 氩气, 于 -40°C下, 将 2倍体积的叔胺滴入含有 1倍体积的四氯化锡和 3.5倍体积的 1,2- 二氯乙嫁溶液中, 通入乙炔 6小时, 室温下加入含酯基取代的 4-羟基苯磺酰胺, 于 80°C 反应得到苯酚邻位乙烯化的产物;
步骤 2) 的醚化为: 将步骤 1 ) 的邻苯酚乙烯化产物与碘代异丙烷在二甲基甲酰胺中 进行醚化反应;
步骤 3) 的水解在 NaOH的醇或水溶液中进行;
步骤 4)然后将步骤 3) 的水解产物在二环己基碳二亚胺的作用下与表面含羟基或胺 基的聚苯乙烯偶合得到固载钌配体;
步骤 5)将步骤 4)的固载钌络合物配体与 Rua2(-CHPh)(PPh3)2在 CuCl和二氯甲烷 溶剂中反应得到固载钌络合物催化剂。
步骤 6) 将步骤 5) 的固载钌络合物与三环己基磷配体或另一配体 Ilia (H2IMes)生成 最终产物。 ,
20、 权利要求 4所述的钌络合物在烯烃复分解反应中作催化剂的用途。
21、 根据权利要求 20所述的用途, 其特征在于所述的烯烃复分解反应为分子内关环 的烯烃易位复分解反应、 分子间的烯烃易位复分解反应或聚合反应中的烯烃易位复分解 反应。
22、 权利要求 10所述的固载钌络合物催化剂在催化烯烃易位反应中的用途。
23、 根据权利要求 22所述的用途, 其特征在于所述的烯烃易位复分解反应为分子内 关环的烯烃易位复分解反应、 分子间的烯烃易位反应或聚合反应中的烯烃易位复分解反 应。
PCT/CN2006/001551 2005-07-04 2006-07-03 Ligand de complexe de ruthenium, complexe de ruthenium, catalyseur supporte a base de complexe de ruthenium, leurs procedes de fabrication et leur utilisation WO2007003135A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008519782A JP5406525B2 (ja) 2005-07-04 2006-07-03 ルテニウム錯体配位子、ルテニウム錯体、固定化ルテニウム錯体触媒及びその調製方法と用途
CA2614073A CA2614073C (en) 2005-07-04 2006-07-03 Ruthenium complexes comprising chelating alkylidene ligands
KR1020087002957A KR101269568B1 (ko) 2005-07-04 2006-07-03 루테늄 착물 리간드, 루테늄 착물, 고정 루테늄 착물 촉매및 그의 제조방법과 용도
EP06761350.5A EP1905777B2 (en) 2005-07-04 2006-07-03 Ruthenium complex ligand, ruthenium complex, carried ruthenium complex catalyst and the preparing methods and the use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510080379.2 2005-07-04
CN200510080379 2005-07-04

Publications (1)

Publication Number Publication Date
WO2007003135A1 true WO2007003135A1 (fr) 2007-01-11

Family

ID=37604089

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001551 WO2007003135A1 (fr) 2005-07-04 2006-07-03 Ligand de complexe de ruthenium, complexe de ruthenium, catalyseur supporte a base de complexe de ruthenium, leurs procedes de fabrication et leur utilisation

Country Status (9)

Country Link
US (3) US7632772B2 (zh)
EP (2) EP2886549A1 (zh)
JP (2) JP5406525B2 (zh)
KR (1) KR101269568B1 (zh)
CN (1) CN102643175B (zh)
CA (1) CA2614073C (zh)
HK (1) HK1173719A1 (zh)
RU (1) RU2435778C2 (zh)
WO (1) WO2007003135A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011079799A1 (en) * 2009-12-30 2011-07-07 Zannan Scitech Co., Ltd. Highly active metathesis catalysis selective for romp and rcm
WO2012013208A1 (en) 2010-07-30 2012-02-02 Ecole Nationale Superieure De Chimie De Rennes Novel stable and highly tunable metathesis catalysts
WO2013007561A1 (de) 2011-07-12 2013-01-17 Basf Se Verfahren zur herstellung von cyclohepten
US8552191B2 (en) 2007-03-22 2013-10-08 Opko Health, Inc. Process and intermediates for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds
WO2013186238A1 (de) 2012-06-13 2013-12-19 Basf Se Verfahren zur herstellung makrocyclischer ketone
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
US9249144B2 (en) 2008-09-05 2016-02-02 Opko Health, Inc. Process and intermediates for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006008521A1 (de) * 2006-02-22 2007-08-23 Lanxess Deutschland Gmbh Verwendung von Katalysatoren mit erhöhter Aktivität für die NBR-Metathese
FR2909382B1 (fr) * 2006-11-30 2009-01-23 Enscr Complexes catalytiques a base de ruthenium et utilisation de tels complexes pour la metathese d'olefines
UY32099A (es) 2008-09-11 2010-04-30 Enanta Pharm Inc Inhibidores macrocíclicos de serina proteasas de hepatitis c
CA2737921C (en) 2008-09-22 2019-01-15 Aileron Therapeutics, Inc. Methods for preparing purified alpha-helical peptidomimetic macrocycle compositions with low metal ppm levels
US8309737B2 (en) 2009-02-03 2012-11-13 Idenix Pharmaceuticals, Inc. Phosphinate ruthenium complexes
US8232246B2 (en) * 2009-06-30 2012-07-31 Abbott Laboratories Anti-viral compounds
US8329921B2 (en) 2009-11-09 2012-12-11 Exxonmobil Chemical Patents Inc. Metathesis catalyst and process for use thereof
US9024034B2 (en) * 2009-11-09 2015-05-05 Exxonmobil Chemical Patents Inc. Metathesis catalysts and processes for use thereof
EP2498909B1 (en) * 2009-11-09 2014-08-27 ExxonMobil Chemical Patents Inc. Metathesis catalyst and process for use thereof
US8237003B2 (en) * 2009-11-09 2012-08-07 Exxonmobil Chemical Patents Inc. Metathesis catalyst and process for use thereof
US8809563B2 (en) 2009-11-09 2014-08-19 Exxonmobil Chemical Patents Inc. Metathesis catalyst and process for use thereof
PL2506972T3 (pl) * 2009-12-03 2019-09-30 Umicore Ag & Co. Kg Nośnikowe katalizatory metatezy olefin
US8592618B2 (en) * 2010-01-08 2013-11-26 Zannan Scitech Co., Ltd. Highly active metathesis catalysts selective for ROMP and RCM reactions
WO2011135029A1 (en) 2010-04-28 2011-11-03 Dsm Ip Assets B.V. Metathesis crosslinkable coating compositions
US8227371B2 (en) 2010-09-24 2012-07-24 Exxonmobil Chemical Patents Inc. Class of olefin metathesis catalysts, methods of preparation, and processes for the use thereof
CN103402628B (zh) 2011-01-14 2015-12-23 加州理工学院 Z-选择性烯烃复分解催化剂及其合成步骤
PL216649B1 (pl) * 2011-06-06 2014-04-30 Univ Warszawski Nowe kompleksy rutenu, sposób ich wytwarzania oraz zastosowanie w reakcji metatezy olefin
US9181360B2 (en) 2011-08-12 2015-11-10 Exxonmobil Chemical Patents Inc. Polymers prepared by ring opening / cross metathesis
WO2013056400A1 (en) 2011-10-21 2013-04-25 Lanxess Deutschland Gmbh Catalyst compositions and their use for hydrogenation of nitrile rubber
WO2013056461A1 (en) 2011-10-21 2013-04-25 Lanxess Deutschland Gmbh Catalyst compositions and their use for hydrogenation of nitrile rubber
WO2013056459A1 (en) 2011-10-21 2013-04-25 Lanxess Deutschland Gmbh Catalyst compositions and their use for hydrogenation of nitrile rubber
CN103890012B (zh) * 2011-10-21 2016-12-14 朗盛德国有限责任公司 催化剂组合物及它们的用于氢化丁腈橡胶的用途
WO2013056463A1 (en) 2011-10-21 2013-04-25 Lanxess Deutschland Gmbh Catalyst compositions and their use for hydrogenation of nitrile rubber
WO2013098052A2 (en) 2011-12-28 2013-07-04 Lanxess Deutschland Gmbh Metathesis of nitrile rubbers in the presence of transition metal complex catalysts
WO2013098056A1 (en) 2011-12-28 2013-07-04 Lanxess Deutschland Gmbh Purification of optionally hydrogenated nitrile rubber
KR102049820B1 (ko) 2012-03-16 2020-01-22 제온 코포레이션 개환 메타세시스 중합체 수소화물의 제조 방법 및 수지 조성물
PL400162A1 (pl) * 2012-07-27 2014-02-03 Apeiron Synthesis Spólka Z Ograniczona Odpowiedzialnoscia Nowe kompleksy rutenu, ich zastosowanie w reakcjach metatezy oraz sposób prowadzenia reakcji metatezy
EP2725030A1 (en) * 2012-10-29 2014-04-30 Umicore AG & Co. KG Ruthenium-based metathesis catalysts, precursors for their preparation and their use
BR112015013580A2 (pt) 2012-12-12 2017-07-11 California Inst Of Techn catalisador de metátese z-seletiva
US9908901B2 (en) 2013-03-13 2018-03-06 Massachusetts Institute Of Technology Articles and methods comprising persistent carbenes and related compositions
WO2014160471A2 (en) * 2013-03-13 2014-10-02 Massachusetts Institute Of Technology Articles and methods comprising persistent carbenes and related compositions
PL3008078T3 (pl) 2013-06-12 2019-06-28 Trustees Of Boston College Katalizatory do wydajnej, Z-selektywnej metatezy
US9926822B2 (en) * 2013-08-16 2018-03-27 Cummins Emission Solutions, Inc. Air curtain for urea mixing chamber
CN103483349B (zh) * 2013-09-05 2015-05-13 北京大学深圳研究生院 具有重要生物活性的Cladiellin类天然产物Pachycladin D的合成方法
CZ305564B6 (cs) 2013-11-07 2015-12-09 MORAVSKĂť VĂťZKUM, s.r.o. Robotické mobilní modifikovatelné lůžko
KR101621699B1 (ko) * 2014-03-31 2016-05-19 이스켐주식회사 폴리 d c p d의 중합방법
HUE056896T2 (hu) 2014-04-10 2022-03-28 California Inst Of Techn Reakciók ruténium komplexek jelenlétében
US9592477B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (Ib)
US9193835B1 (en) 2014-05-30 2015-11-24 Pall Corporation Self-assembling polymers—IV
US9162189B1 (en) 2014-05-30 2015-10-20 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (Ia)
US9616395B2 (en) 2014-05-30 2017-04-11 Pall Corportaion Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (Ic)
US9593218B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IIIa)
US9163122B1 (en) 2014-05-30 2015-10-20 Pall Corporation Self-assembling polymers—II
US9328206B2 (en) 2014-05-30 2016-05-03 Pall Corporation Self-assembling polymers—III
US9598543B2 (en) 2014-05-30 2017-03-21 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (VIa)
US9593219B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spin coating (IIa)
US9765171B2 (en) 2014-05-30 2017-09-19 Pall Corporation Self-assembling polymers—V
US9469733B2 (en) 2014-05-30 2016-10-18 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (IVa)
US9593217B2 (en) 2014-05-30 2017-03-14 Pall Corporation Self-assembled structure and membrane comprising block copolymer and process for producing the same by spin coating (Va)
US9592476B2 (en) 2014-05-30 2017-03-14 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by hybrid casting (IIb)
US9441078B2 (en) 2014-05-30 2016-09-13 Pall Corporation Self-assembling polymers—I
US9604181B2 (en) 2014-05-30 2017-03-28 Pall Corporation Membrane comprising self-assembled block copolymer and process for producing the same by spray coating (IIc)
US9169361B1 (en) 2014-05-30 2015-10-27 Pall Corporation Self-assembling polymers—VI
US9260569B2 (en) 2014-06-30 2016-02-16 Pall Corporation Hydrophilic block copolymers and method of preparation thereof (III)
US9309367B2 (en) 2014-06-30 2016-04-12 Pall Corporation Membranes comprising cellulosic material and hydrophilic block copolymer (V)
US9254466B2 (en) 2014-06-30 2016-02-09 Pall Corporation Crosslinked cellulosic membranes
US9394407B2 (en) 2014-06-30 2016-07-19 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (I)
US9303133B2 (en) 2014-06-30 2016-04-05 Pall Corporation Hydrophilic membranes and method of preparation thereof (IV)
US9962662B2 (en) 2014-06-30 2018-05-08 Pall Corporation Fluorinated polymer and use thereof in the preparation of hydrophilic membranes (vi)
US9718924B2 (en) 2014-06-30 2017-08-01 Pall Corporation Hydrophilic block copolymers and membranes prepared therefrom (II)
CN104230725B (zh) * 2014-09-28 2016-07-06 华东理工大学 一种胺基酚类配体镁、锌络合物及其制备方法和应用
RU2578593C1 (ru) * 2014-12-29 2016-03-27 Роман Витальевич Аширов Рутениевый катализатор, способ его получения и применение в реакции метатезиса
RU2583790C1 (ru) * 2015-05-22 2016-05-10 Открытое акционерное общество "Нефтяная компания "Роснефть" Катализатор метатезисной полимеризации дициклопентадиена, содержащий тиобензилиденовый фрагмент и способ его получения
PL238806B1 (pl) * 2015-09-30 2021-10-04 Apeiron Synthesis Spolka Akcyjna Kompleks rutenu i sposób jego wytwarzania, związek pośredni stosowany w tym sposobie oraz zastosowanie kompleksu rutenu i związku pośredniego w metatezie olefin
CZ306563B6 (cs) 2015-11-10 2017-03-08 Robotsystem, S.R.O. Robotické mobilní a modifikovatelné lůžko s vertikalizací
WO2017135638A1 (ko) 2016-02-01 2017-08-10 서울대학교산학협력단 설폰아미드기 또는 아미드기를 포함하는 올레핀 복분해 반응용 전이금속 착물 및 이의 응용
EP3865495B1 (en) 2016-11-09 2024-10-09 Verbio Vereinigte BioEnergie AG Ruthenium complexes useful for catalyzing metathesis reactions
EP3720885B1 (de) 2017-12-08 2021-12-01 ARLANXEO Deutschland GmbH Verfahren zur herstellung von nitrilkautschuken mit ruthenium-komplexkatalysatoren
CN108531732B (zh) * 2018-01-31 2019-05-17 福州大学 一种活性炭负载钌催化剂废剂中钌的回收方法
RU2755291C1 (ru) * 2021-01-26 2021-09-14 Заур Исмаилович Ашурлы Верхняя одежда с встроенной солнечной батареей

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198752A (zh) * 1995-08-03 1998-11-11 加州理工学院 高置换活性的钌和锇金属卡宾络合物
US20020107138A1 (en) 2000-08-10 2002-08-08 Hoveyda Amir H. Recyclable metathesis catalysts
US6620955B1 (en) * 2001-11-15 2003-09-16 Richard L. Pederson Chelating carbene ligand precursors and their use in the synthesis of metathesis catalysts
WO2004089974A1 (en) * 2003-04-10 2004-10-21 Boehringer Ingelheim International Gmbh Process for the preparation of macrocyclic compounds by ruthenium complex catalysed metathesis reaction
CN1571791A (zh) * 2002-10-15 2005-01-26 贝林格尔·英格海姆国际有限公司 作为复分解反应(预)催化剂的钌络合物
US20050049417A1 (en) * 2003-08-02 2005-03-03 Boehringer Ingelheim International Gmbh Metathesis catalysts
EP1543875A1 (en) * 2003-12-04 2005-06-22 Boehringer Ingelheim Pharma GmbH & Co. KG Novel metathesis ruthenium catalyst

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9205807A (pt) * 1991-03-26 1994-06-28 Pfizer Preparação estéreo-seletiva de piperidinas substituidas
AU691645B2 (en) 1992-04-03 1998-05-21 California Institute Of Technology High activity ruthenium or osmium metal carbene complexes for olefin metathesis reactions and synthesis thereof
AU4224993A (en) * 1992-08-19 1994-03-15 Pfizer Inc. Substituted benzylamino nitrogen containing non-aromatic heterocycles
FR2737494B1 (fr) * 1995-08-04 1997-08-29 Synthelabo Derives de benzenesulfonamide, leur preparation et leur application en therapeutique
BR0010389B1 (pt) 1999-05-24 2011-05-17 catalisadores de metátese de carbeno metálico a base de imidazolidina.
EP1230207B1 (en) * 1999-11-18 2005-06-22 Richard L. Pederson Metathesis syntheses of pheromones or their components
DE10222551A1 (de) * 2002-05-17 2003-11-27 Bayer Ag Neue Übergangsmetall-Komplexe und deren Einsatz in Übergangsmetall-katalysierten Reaktionen
DK1569912T3 (en) * 2002-12-03 2015-06-29 Pharmacyclics Inc 2- (2-hydroxybiphenyl-3-yl) -1h-benzoimidazole-5-carboxamidine derivatives as factor VIIa inhibitors.
WO2004106343A2 (en) * 2003-05-30 2004-12-09 Ufc Limited Agelastatin derivatives of antitumour and gsk-3beta-inhibiting alkaloids
US7034051B2 (en) * 2003-08-28 2006-04-25 Adolor Corporation Fused bicyclic carboxamide derivatives and methods of their use
US7109344B2 (en) * 2003-12-04 2006-09-19 Boehringer Ingelheim International Gmbh Ruthenium catalyst
US20050154400A1 (en) * 2003-12-18 2005-07-14 Asahi Intecc Co., Ltd Medical treating tool
DE102004033312A1 (de) * 2004-07-08 2006-01-26 Boehringer Ingelheim Pharma Gmbh & Co. Kg Kontinuierliches Metatheseverfahren mit Ruthenium-Katalysatoren
EP1817097A2 (en) * 2004-10-21 2007-08-15 Dow Gloval Technologies Inc. Membrane separation of a metathesis reaction mixture
AR057456A1 (es) * 2005-07-20 2007-12-05 Merck & Co Inc Inhibidores de la proteasa ns3 del vhc
BRPI0614205A2 (pt) * 2005-08-01 2016-11-22 Merck & Co Inc composto, composição farmacêutica, e, uso de composto

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1198752A (zh) * 1995-08-03 1998-11-11 加州理工学院 高置换活性的钌和锇金属卡宾络合物
US20020107138A1 (en) 2000-08-10 2002-08-08 Hoveyda Amir H. Recyclable metathesis catalysts
US6921735B2 (en) 2000-08-10 2005-07-26 The Trustees Of Boston College Recyclable metathesis catalysts
US6620955B1 (en) * 2001-11-15 2003-09-16 Richard L. Pederson Chelating carbene ligand precursors and their use in the synthesis of metathesis catalysts
CN1571791A (zh) * 2002-10-15 2005-01-26 贝林格尔·英格海姆国际有限公司 作为复分解反应(预)催化剂的钌络合物
WO2004089974A1 (en) * 2003-04-10 2004-10-21 Boehringer Ingelheim International Gmbh Process for the preparation of macrocyclic compounds by ruthenium complex catalysed metathesis reaction
US20050049417A1 (en) * 2003-08-02 2005-03-03 Boehringer Ingelheim International Gmbh Metathesis catalysts
EP1543875A1 (en) * 2003-12-04 2005-06-22 Boehringer Ingelheim Pharma GmbH & Co. KG Novel metathesis ruthenium catalyst

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
HOVEYDA ET AL., J. AM. CHEM. SOC., vol. 121, 1999, pages 791 - 799
HOVEYDA ET AL., J. AM. CHEM. SOC., vol. 123, 2001, pages 749
J. AM. CHEM. SOC., vol. 121, 1999, pages 791 - 799
J. AM. CHEM. SOC., vol. 122, 2000, pages 8168 - 8179
JASON S. KINGSBURY; JOSEPH P. A. HARRITY; PETER J. BONITATEBUS, JR.; AMIR H. HOVEYDA, J. AM. CHEM. SOC., vol. 121, 1999, pages 791
M. YAMAGUCHI ET AL., J. ORG. CHEM., vol. 63, 1998, pages 7298 - 7305
See also references of EP1905777A4

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9260428B2 (en) 2007-03-22 2016-02-16 Opko Health, Inc. Process and intermediates for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds
US8552191B2 (en) 2007-03-22 2013-10-08 Opko Health, Inc. Process and intermediates for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds
US10000493B2 (en) 2007-03-22 2018-06-19 Opko Health, Inc. Process and intermediates for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds
EP3034493A1 (en) 2008-09-05 2016-06-22 OPKO Health, Inc. Process for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds
US9249144B2 (en) 2008-09-05 2016-02-02 Opko Health, Inc. Process and intermediates for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds
US9822116B2 (en) 2008-09-05 2017-11-21 Opko Health, Inc. Process and intermediates for the synthesis of 8-[{1-(3,5-bis-(trifluoromethyl)phenyl)-ethoxy}-methyl]-8-phenyl-1,7-diaza-spiro[4.5]decan-2-one compounds
WO2011079439A1 (en) * 2009-12-30 2011-07-07 Zannan Scitech Co., Ltd. Highly active metathesis catalysts selective for romp and rcm reactions
RU2546656C2 (ru) * 2009-12-30 2015-04-10 Цзаньнань Сайтек Ко., Лтд. Высокоэффективные метатезистические катализаторы, выбираемые в реакциях romp и rcm
AU2010338707B2 (en) * 2009-12-30 2014-08-14 Zannan Scitech Co., Ltd. Highly active metathesis catalysis selective for ROMP and RCM
WO2011079799A1 (en) * 2009-12-30 2011-07-07 Zannan Scitech Co., Ltd. Highly active metathesis catalysis selective for romp and rcm
EP3064272A1 (en) 2009-12-30 2016-09-07 Zannan Scitech Co., Ltd. Highly active metathesis catalysts selective for romp and rcm reactions
WO2012013208A1 (en) 2010-07-30 2012-02-02 Ecole Nationale Superieure De Chimie De Rennes Novel stable and highly tunable metathesis catalysts
US8835628B2 (en) 2010-07-30 2014-09-16 Ecole Nationale Superieure De Chimie De Rennes Stable and highly tunable metathesis catalysts
WO2013007561A1 (de) 2011-07-12 2013-01-17 Basf Se Verfahren zur herstellung von cyclohepten
US8993819B2 (en) 2011-07-12 2015-03-31 Basf Se Process for preparing cycloheptene
WO2013186238A1 (de) 2012-06-13 2013-12-19 Basf Se Verfahren zur herstellung makrocyclischer ketone
US8940940B2 (en) 2012-06-13 2015-01-27 Basf Se Process for preparing macrocyclic ketones

Also Published As

Publication number Publication date
JP2008546846A (ja) 2008-12-25
CN102643175B (zh) 2014-12-10
US20120016093A1 (en) 2012-01-19
JP2013035840A (ja) 2013-02-21
RU2008113480A (ru) 2009-08-27
EP2886549A1 (en) 2015-06-24
CN102643175A (zh) 2012-08-22
US7632772B2 (en) 2009-12-15
JP5845157B2 (ja) 2016-01-20
EP1905777B2 (en) 2018-06-27
HK1173719A1 (zh) 2013-05-24
US8288576B2 (en) 2012-10-16
RU2435778C2 (ru) 2011-12-10
EP1905777B1 (en) 2015-05-06
US8049025B2 (en) 2011-11-01
KR101269568B1 (ko) 2013-06-04
JP5406525B2 (ja) 2014-02-05
CA2614073A1 (en) 2007-01-11
US20100041844A1 (en) 2010-02-18
EP1905777A1 (en) 2008-04-02
EP1905777A4 (en) 2011-03-23
CA2614073C (en) 2016-05-03
KR20080037009A (ko) 2008-04-29
US20070043180A1 (en) 2007-02-22

Similar Documents

Publication Publication Date Title
WO2007003135A1 (fr) Ligand de complexe de ruthenium, complexe de ruthenium, catalyseur supporte a base de complexe de ruthenium, leurs procedes de fabrication et leur utilisation
EP2350105B1 (en) Method for preparation of ruthenium-indenylidene carbene catalysts
US8816114B2 (en) Method for manufacturing ruthenium carbene complexes
JP2008546846A5 (zh)
JP5551062B2 (ja) シリカ系メソセル発泡体へのクリックケミストリーによる触媒の固定
CN111187219B (zh) 一种磺酰胺咪唑盐化合物及其制备方法和应用
CN1907992B (zh) 钌络合物配体、钌络合物、固载钌络合物催化剂及其制备方法和用途
CN111269132A (zh) 一种制备手性β-三氟甲基-β-羟基-α-氨基酸及其衍生物的方法
Lanari et al. JandaJel as a polymeric support to improve the catalytic efficiency of immobilized-1, 5, 7-triazabicyclo [4.4. 0] dec-5-ene (TBD) under solvent-free conditions
US6753449B2 (en) Cleavable linker for solid phase synthesis
CN113004181B (zh) 一种羰基化制备硫酯化合物的方法
CN111302991B (zh) 立体和大位阻二硫醚化合物及其合成方法和应用
CN114436922B (zh) 含c-s键的化合物及其制备方法和应用
EP2859003B1 (en) N-heterocyclic-carbene-mediated preparation of polyhedral silsesquioxanes
JP3573679B2 (ja) 高分子固定化α−イミノエステル
KR101013147B1 (ko) 신규한 알레닐 설파이드 유도체와 이의 제조방법
KR101335184B1 (ko) 그럽스 담지촉매 및 이의 제조방법
CN116925120A (zh) 一种含有两个硅氢键的邻二硅基化合物及其合成方法和应用
CN115960142A (zh) 一种含环内锇亚乙烯键金属杂环化合物及其合成方法与应用
Herpel The development of high-load, ROMP-derived oligomeric scavengers with tunable properties
CN114539107A (zh) 一种芳香磺酰基修饰的二氟甲基反应砌块及其合成方法
JP2006169400A (ja) ポリマースルホン酸エステルの製造方法
KR20010052929A (ko) 아민의 조합 라이브러리를 제조하는 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2614073

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008519782

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 2006761350

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 427/DELNP/2008

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2008113480

Country of ref document: RU

Ref document number: 1020087002957

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006761350

Country of ref document: EP