WO2007000986A1 - 血液分離フィルタ装置、および真空検体採取管 - Google Patents

血液分離フィルタ装置、および真空検体採取管 Download PDF

Info

Publication number
WO2007000986A1
WO2007000986A1 PCT/JP2006/312772 JP2006312772W WO2007000986A1 WO 2007000986 A1 WO2007000986 A1 WO 2007000986A1 JP 2006312772 W JP2006312772 W JP 2006312772W WO 2007000986 A1 WO2007000986 A1 WO 2007000986A1
Authority
WO
WIPO (PCT)
Prior art keywords
blood
separation filter
blood separation
flow path
sheet
Prior art date
Application number
PCT/JP2006/312772
Other languages
English (en)
French (fr)
Inventor
Katsuya Togawa
Yutaka Sakakibara
Masahiro Nakaizumi
Ryusuke Okamoto
Takashi Mori
Original Assignee
Sekisui Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005187114A external-priority patent/JP2007000536A/ja
Application filed by Sekisui Chemical Co., Ltd. filed Critical Sekisui Chemical Co., Ltd.
Publication of WO2007000986A1 publication Critical patent/WO2007000986A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/49Blood
    • G01N33/491Blood by separating the blood components

Definitions

  • the present invention relates to a blood separation filter device and a vacuum sample collection tube for separating blood into blood cells and plasma or serum, and more specifically, when separating blood with different hematocrit and viscosity.
  • the present invention also relates to a blood separation filter device and a vacuum sample collection tube that can separate blood into blood cells and plasma or serum in a short time without degrading separation performance.
  • centrifugation has been used to remove blood cells from blood and obtain plasma or serum necessary for clinical examination.
  • the work such as the coagulation process and the process of transferring the supernatant plasma or serum after the separation is complicated.
  • Patent Document 1 has pores having a diameter of 0.05 to 1 ⁇ m, an outer surface opening ratio of 40% or less, an inner surface opening ratio of 60% or more, and a film thickness of 50 to 200.
  • a method of separating and collecting plasma from whole blood using hollow fibers of / ⁇ ⁇ has been proposed. By using this hollow fiber, high! ⁇ Plasma can be separated at the plasma separation rate! /
  • Patent Document 2 plasma or serum is obtained from whole blood using a glass fiber layer having an average fiber diameter of 0.2 to 5 ⁇ m and a density of 0.1 to 0.5 gZ cm 3 . A method of separation is disclosed.
  • Patent Document 3 discloses a plasma or serum separation filter in which a filter medium made of a polymer microfiber assembly or a porous polymer is mounted in a container having an inlet and an outlet. .
  • a hydrophilic polymer is fixed to the polymer ultrafine fiber aggregate or porous polymer which is a filter material in order to make it hydrophilic.
  • Move blood through the filter media And the hydrophilic polymer swells during plasma or serum separation. As the hydrophilic polymer swells, the filter is blocked and the filtration automatically stops. After obtaining a certain amount of plasma or serum, the filtration automatically stops until the blood cells arrive, so that it is possible to automatically prevent blood cells from being mixed into the plasma or serum.
  • Patent Document 4 discloses a blood test container provided with a blood separation membrane capable of separating blood plasma or serum. With reference to FIG. 31, a blood test container disclosed in Patent Document 4 will be described.
  • blood test container 201 has outer tube 202 and cylindrical member 203 inserted into outer tube 202.
  • the outer tube 202 has a bottom and is constituted by a cylindrical container having an opening 202a at the upper end.
  • the cylindrical member 203 has a cylindrical shape and has an opening 203a at the upper end. Further, a downward projecting portion 203b is provided at the lower end of the cylindrical member 203.
  • first to third filter members 204 to 206 are arranged in the cylindrical member 203. Openings 202a and 203a at the upper ends of the outer tube 202 and the cylindrical member 203 are hermetically sealed by a plug 207, and the inside of the blood test container 201 is decompressed.
  • the first to third filter members 204 to 206 are arranged in the cylindrical member 203 in order of the third filter member 206, the first filter member 204, and the second filter member 205 from the top to the bottom.
  • the first filter member 204 is a plasma or serum separation membrane for separating plasma or serum with blood force, and its porosity is 30% or less.
  • the second filter member 205 is configured to prevent passage of blood cells.
  • the third filter member 206 is made of fibers having an average fiber diameter of 3. O / zm or more and a bulk density of 0.3 g / cm 3 or less, and can capture fibrin and the like.
  • blood is inserted into the blood storage section 208 above the third filter member 206 by inserting the plug 207 with a vacuum blood collection needle or the like. Taken.
  • the collected blood passes through the first to third filter members 204 to 206, the blood is separated into blood cells and plasma or serum.
  • the separated plasma or serum flows down from the downward projecting portion 203b of the cylindrical member 203, and is stored in the plasma or serum storage portion 209 located on the bottom side of the outer tube 202.
  • Patent Document 1 Japanese Patent Publication No. 2-23831
  • Patent Document 2 Japanese Patent Publication No. 6-64054
  • Patent Document 3 Japanese Patent Laid-Open No. 11-285607
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2004-344874
  • blood can be separated into blood cells and plasma or serum, but the filtration speed is low and the filtration time is short. It is possible to increase the filtration rate by applying pressure to the glass fiber layer. There was a risk of hemolysis or leakage of red blood cells.
  • the hydrophilic polymer swells while the blood is separated and collected into blood cells and plasma or serum, the filter is blocked, and filtration automatically stops. Therefore, even if the separation filter that captures blood cells after separation is left for a long time, there is no possibility that the components in erythrocytes will be mixed into plasma or serum due to hemolysis.
  • blood is moved in the filter medium, and blood cells in blood and plasma or serum are separated by a difference in moving speed.
  • the difference in the moving speed is different, and in some cases, the filter may be blocked during the separation. If the filter is clogged during the separation, the amount of sample that can be collected is greatly reduced.
  • the third filter member 206 has an average fiber diameter of 3.
  • the blood cells collide with the third filter member 206 at high speed when blood is collected in the blood storage unit 208.
  • the blood cells were easily destroyed.
  • the components in erythrocytes are mixed into plasma or serum stored in plasma or serum storage unit 209.
  • the mixed erythrocyte components greatly affected the test results, and the test results were highly reliable and could not be obtained.
  • An object of the present invention is that it is difficult to cause clogging or hemolysis of the filter during separation even when blood with different hematocrit or viscosity is used.
  • An object of the present invention is to provide a blood separation filter device capable of separating blood into blood cells and plasma or serum, and a vacuum sample collection tube including the device.
  • the blood separation filter device has a blood flow inlet and outlet, a flow path forming member having a flow path through which blood flows, and at least a part of the flow path.
  • a blood separation filter member having first and second blood separation filters for separating blood into blood cells and plasma or serum, and the first blood separation filter is formed of a sheet formed by collecting fibrous bodies. It is laminated so that the sheet surface is substantially parallel to the direction of blood flow, and the second blood separation filter consists of a sheet formed by collecting fibrous bodies, and the second blood separation Filter force
  • the sheet surface of the sheet is installed in the flow path so as to be in a direction substantially perpendicular to the direction of blood flow.
  • the weight ratio represented by the following formula (1) of the first and second blood separation filters is 0. The range is from 001 to 1.
  • Weight ratio second blood separation filter weight Z first blood separation filter weight ' ⁇ ' formula (1)
  • the sheets constituting the first and second blood separation filters Is formed by collecting fibrous bodies having an average fiber diameter in the range of 0.5 to 3.0 m, and the first blood separation filter has an average density of 0 in a state where it is installed in the flow path. Compressed so that the volume ratio represented by the following formula (2) before and after installation in the flow path is in the range of 1.1 to 5.0. It is installed in the flow path in the state of being!
  • volume ratio first blood separation filter volume before installation Z first blood separation filter volume after installation Z
  • the sheet constituting the first blood separation filter has a strip shape, and the laminate has a structure in which at least two sheets having a strip shape are stacked.
  • the sheet constituting the first blood separation filter has an elongated shape, and the sheet having the elongated shape is folded in a zigzag shape.
  • a laminate is configured.
  • the laminate has a structure in which an inner circumferential sheet and an outer circumferential sheet are laminated so as to have a substantially cylindrical shape.
  • the plurality of first blood separation filter forces are arranged along the direction in which blood flows.
  • the second blood separation filter is disposed downstream of the first blood separation filter.
  • a flow path forming member having a blood inlet and outlet and having a flow path through which blood flows, and at least a part of the flow path are installed.
  • a blood separation filter member that separates blood into blood cell components and plasma or serum, and the blood separation filter member accumulates fibrous bodies having an average fiber diameter in the range of 0.5 to 3.0 m.
  • the sheet formed is also laminated, and the sheets are laminated so as to be substantially parallel to the direction of blood flow.
  • the blood separation filter member has an average density in a state of being installed in the flow path.
  • the blood separation filter member has a volume ratio represented by the following formula (2A) before and after being installed in the flow path: 1.1 to 5.0
  • the blood separation is characterized by being installed in the flow path in a compressed state so as to be in the range of Note1 device is provided.
  • volume ratio blood separation filter member volume before installation Z blood separation filter member volume after installation ...
  • the blood separation filter member has only the first blood separation filter of the first and second blood separation filters described above, and does not have the second blood separation filter described above. It may be.
  • the blood separation filter member can take various forms as in the case of the first blood separation filter having the first and second blood separation filters. That is, the sheet constituting the blood separation filter member may have a strip shape, and the laminate may have a configuration in which at least two sheets having the strip shape are stacked. Alternatively, the sheet has a long shape and has a long shape. The laminate may be configured by folding the sheet in a zigzag shape. Furthermore, the laminate may have a structure in which the inner peripheral sheet and the outer peripheral sheet are stacked so as to have a substantially cylindrical shape.
  • the blood separation filter device is further provided with a blood cell stop filter that is disposed downstream of the blood separation filter member and prevents mixing of blood cells.
  • the blood separation filter device is disposed downstream of the blood separation filter member, and swells when contacted with plasma or serum to block water that blocks the flow path.
  • a swellable polymer is further provided.
  • the water-swellable polymer is disposed between the blood separation filter member and the blood cell stop filter.
  • the water-swellable polymer is disposed downstream of the hemocytosis filter.
  • the water-swellable polymer is formed into a sheet shape.
  • a vacuum sample collection tube includes a blood separation filter device configured according to the present invention and a tubular container that houses the blood separation filter device.
  • the first blood separation filter force for separating blood into blood cells and plasma or serum is disposed in at least a part of the flow path of the flow path forming member.
  • the first blood separation filter is a laminated body force of sheets formed by collecting fiber bodies, and is laminated so that the sheet surface is substantially parallel to the direction of blood flow. The pressure loss is small, and the first blood separation filter is not easily blocked during the separation.
  • the second blood separation filter for separating blood into blood cells and plasma or serum is installed in at least a partial region of the flow path of the flow path forming member.
  • the second blood separation filter is composed of a sheet formed by integrating fibrous bodies, and is installed in the flow path so that the sheet surface of the second blood separation filter sheet is substantially perpendicular to the direction in which blood flows. Therefore, it has a size that can pass through the gap between the sheets of the first blood separation filter. It is possible to capture blood cell components that are relatively smaller than the red blood cells that do.
  • the first and second blood separation filters since the weight ratio represented by the above-described formula (1) of the first and second blood separation filters is in the range of 0.001 to 1, the first and second blood The separation filter enhances the separation efficiency between blood cells and plasma or serum, and can effectively capture blood cell components. Furthermore, when separating hematocrit and blood having different viscosities, the separation performance does not deteriorate, and the blood can be separated into blood cells and plasma or serum in a short time. Further, when separating blood in which red blood cells easily aggregate, the pressure loss is small, so that the occurrence of hemolysis due to clogging of red blood cells can be suppressed. Therefore, the obtained plasma or serum strength can also obtain a test result with excellent reliability.
  • the sheets constituting the first and second blood separation filters are formed by integrating fibrous bodies having an average fiber diameter in the range of 0.5 to 3. O ⁇ m, and the first blood
  • the separation filter has an average density in the range of 0.1 to 0.5 gZcm 3 when installed in the flow path, and the volume expressed by the above formula (2) before and after installation in the flow path. Specific force 1.
  • the compressed flow is set in the range of 1 to 5.0, the blood separation effect by the first and second blood separation filters is enhanced.
  • the pressure loss when separating the blood in the first blood separation filter is further reduced. Therefore, blood cells and plasma or serum can be more effectively separated, and the blood filter member is not easily blocked during the separation.
  • the sheet constituting the first blood separation filter has a strip shape
  • the laminate has a configuration in which at least two sheets having a strip shape are stacked, Separation is possible in a short time in which filter clogging and hemolysis are more difficult to occur.
  • the sheet constituting the first blood separation filter has an elongated shape, and the laminate is configured by folding the elongated sheet into a zigzag shape, the sheet Since it is not necessary to cut and laminate the layers, the caulking property is improved.
  • the laminate has a structure in which the inner peripheral sheet and the outer peripheral sheet are stacked so as to have a substantially cylindrical shape
  • the flow path forming member and the blood separation member are separated when filling the flow path forming member.
  • the filling property is less likely to form a gap with the filter, and the filter can be separated in a short time during which the filter is clogged and hemolysis is less likely to occur.
  • each first blood separation filter depends on the installation position of the flow path of the first blood separation filter. It becomes easy to vary the density of the. Therefore, blood separation efficiency can be further improved by appropriately setting the density of the plurality of first blood separation filters.
  • first blood separation filters when multiple first blood separation filters are installed in the flow path, if they are installed in stages, it will be difficult for the sheets constituting the first blood separation filter to become wrinkled after installation. Become. Therefore, blood can be more effectively separated from blood cells and plasma or serum.
  • Second blood separation filter force When the first blood separation filter is arranged downstream of the first blood separation filter, the first blood separation filter captures the first blood after the blood component having a large diameter is captured. Blood cell components such as blood platelets that are relatively smaller than the red blood cells that have passed without being captured by the separation filter are captured by the second blood separation filter. Therefore, serum or plasma can be separated more effectively, and when the obtained plasma or serum is tested, a highly reliable test result can be obtained.
  • the blood cell stop filter is further disposed downstream of the first and second blood separation filters and prevents blood cells from being mixed in, the blood cells are prevented from passing through, and the blood cells are prevented from flowing into plasma or serum. Mixing can be prevented.
  • a blood separation filter member having only a portion corresponding to the first blood separation filter is used instead of the blood separation filter member having the first and second blood separation filters.
  • the average density of the blood separation filter member installed in the flow path of the blood separation filter member is in the range of 0.1 to 0.5 gZcm 3 .
  • the volume ratio represented by the formula (2A) is compressed so as to be in the range of 1.1 to 5.0 and installed in the flow path! Therefore, the blood force by the blood separation filter member to plasma or serum The separation efficiency is effectively increased. Therefore, the pressure loss during blood separation in the blood separation filter member is further reduced. For this reason, plasma or serum can be separated more effectively from blood cells, hemolysis is less likely to occur, and obstruction of the blood separation filter member during separation is less likely to occur.
  • a vacuum sample collection tube comprising a blood separation filter device constructed according to the present invention and a tubular container containing the blood separation filter device is used, blood with different hematocrit, viscosity, and red blood cells can be obtained.
  • plasma or serum free from contamination of blood cells and erythrocyte components can be obtained. Therefore, when the obtained plasma or serum is tested, a highly reliable test result can be obtained.
  • blood collection and blood separation can be performed in the same tubular container, so that the operation is easy. In addition, since there is no need to transfer blood, the risk of infection due to blood adhesion is greatly reduced.
  • FIG. 1 is a front sectional view of a vacuum specimen collection tube according to an embodiment of the present invention.
  • FIG. 2 is an enlarged front sectional view showing a blood separation filter device provided in a vacuum specimen collection tube according to an embodiment of the present invention.
  • FIG. 3 shows the first and second blood separation filters and the flow path forming member constituting the blood separation filter device provided in the vacuum sample collection tube according to one embodiment of the present invention. It is a perspective view disassembled and shown.
  • FIG. 4 is a perspective view for explaining the structure of the first blood separation filter of the blood separation filter device shown in FIG. 3.
  • FIG. 5 is a perspective view for explaining the structure of the first blood separation filter of the blood separation filter device shown in FIG. 3.
  • FIG. 6 is a perspective view for explaining another structural example of the first blood separation filter of the blood separation filter device according to the present invention.
  • FIG. 7 is a perspective view for explaining another structural example of the first blood separation filter of the blood separation filter device according to the present invention.
  • FIG. 8 is a front sectional view of a vacuum specimen collection tube according to another embodiment of the present invention.
  • Fig. 9 shows first and second blood separation filters and a flow path forming member constituting a blood separation filter device provided in a vacuum sample collection tube according to another embodiment of the present invention. It is a perspective view disassembled and shown.
  • FIG. 10 is a perspective view for explaining the structure of the first blood separation filter of the blood separation filter device shown in FIG. 9.
  • FIG. 11 is a perspective view for explaining another structural example of the first blood separation filter.
  • FIG. 12 is a front cross-sectional view of a vacuum specimen collection tube according to another embodiment of the present invention.
  • FIG. 13 shows first and second blood separation filters and a flow path forming part that constitute a blood separation filter device provided in a vacuum sample collection tube according to another embodiment of the present invention. It is a perspective view which decomposes
  • FIG. 14 is a front cross-sectional view of a vacuum specimen collection tube according to still another embodiment of the present invention.
  • FIG. 15 shows first and second blood separation filters and a flow path forming member constituting a blood separation filter device provided in a vacuum sample collection tube according to still another embodiment of the present invention. It is a perspective view which decomposes
  • FIG. 16 is a front cross-sectional view for explaining a vacuum specimen collection tube according to still another embodiment of the present invention.
  • FIG. 17 is a front sectional view of a vacuum specimen collection tube according to still another embodiment of the present invention.
  • FIG. 18 is a schematic perspective view showing a main part of an embodiment in which a buffer material is arranged on the upstream side of the blood separation filter member.
  • FIG. 19 is a schematic perspective view for explaining another example of the shape of the cushioning material.
  • FIG. 20 is a schematic perspective view for explaining still another modified example of the cushioning material used in the present invention.
  • FIG. 21 is a schematic perspective view for explaining still another modified example of the cushioning material used in the present invention.
  • FIG. 22 is a schematic perspective view for explaining still another modification of the cushioning material used in the present invention.
  • FIG. 23 is a schematic perspective view for explaining still another modified example of the cushioning material used in the present invention.
  • FIG. 24 is a schematic perspective view for explaining still another modified example of the cushioning material used in the present invention.
  • FIG. 25 is a schematic perspective view for explaining still another modified example of the cushioning material used in the present invention.
  • FIG. 26 is a schematic perspective view for explaining still another modified example of the cushioning material used in the present invention.
  • FIG. 27 is a schematic perspective view for explaining still another modification of the cushioning material used in the present invention.
  • FIG. 28 is a schematic perspective view for explaining still another modified example of the cushioning material used in the present invention.
  • FIG. 29 is a diagram showing the relationship between blood inflow rate and LDH value.
  • FIG. 30 is a graph showing the relationship between blood inflow rate and hemoglobin absorbance at 415 nm.
  • FIG. 31 is a front sectional view showing an example of a conventional blood test container.
  • Blood separation filter device 5 First blood separation filter 5a ... Upper end
  • Second blood separation filter oa n 1 ⁇ ⁇
  • Vacuum specimen collection tube 32 Tubular container
  • the flow path forming member used in the present invention has a blood flow path through which blood has an inlet and an outlet.
  • the shape “size” of the flow path forming member is not particularly limited, and can be appropriately changed depending on the size “shape” of the first and second blood separation filters and the tubular container described later.
  • the material of the flow path forming member is not particularly limited.
  • a blood separation filter member is constituted by the first and second blood separation filters.
  • the blood separation filter member may have only the first blood separation filter.
  • the first and second blood separation filters also have a laminate strength of sheets formed by collecting fiber bodies.
  • the first and second blood separation filters may be formed by stacking a single sheet formed by stacking fiber bodies or by stacking two or more sheets. A laminated body may be sufficient.
  • the first and second blood separation filters may be made of the same material.
  • the materials of the first and second blood separation filters are not particularly limited as long as they have the property of moving plasma or serum faster than blood cells.
  • Examples of the material having such properties include synthetic high molecular weight fibers such as polyester, polyethylene, polypropylene, and polyamide. Further, glass fibers, porous polymer fibers and the like are also preferably used.
  • the first and second blood separation filters may have a property of adsorbing blood components.
  • the first and second blood separation filters may be subjected to surface treatment.
  • the surface treatment agent is not particularly limited, but is a lubricant such as polyether or silicon, hydrophilic polymers such as polybutyl alcohol or polypyrrole pyrrolidone, natural hydrophilic polymers, high Examples thereof include molecular surfactants.
  • the surfaces of the first and second blood separation filters may be subjected to a hydrophilic treatment by chemical treatment with an oxidizing agent, plasma treatment, or the like.
  • the sheets constituting the first and second blood separation filters are preferably formed by integrating fiber bodies having an average fiber diameter in the range of 0.5 to 3. O ⁇ m.
  • the average fiber diameter is less than 0.5 / z m, hemolysis is likely to occur when blood is separated. If the average fiber diameter is greater than 3. ⁇ ⁇ m, the first and second blood separation filters tend to be formed and used in order to separate blood cells from plasma or serum. There is a risk that the amount of fiber increases and the cost increases.
  • the average fiber diameter is more preferably in the range of 0.5 to 2.5 / z m.
  • the weight ratio represented by the following formula (1) between the first blood separation filter and the second blood separation filter is in the range of 0.001 to 1.
  • Weight ratio Weight of second blood separation filter Z Weight of first blood separation filter ' ⁇ ' Formula (1) If the weight ratio is less than 0.001, red blood cells in the blood by the second blood separation filter It is not possible to obtain a sufficient effect of capturing components such as platelets, which are relatively smaller than the above. Therefore, the reliability of the obtained plasma or serum test results is reduced. If the weight specific force ⁇ is exceeded, the effect of reducing the pressure loss when separating the blood by the first blood separation filter cannot be obtained sufficiently. Furthermore, since the second blood separation filter is often used, the load on the red blood cells increases, and the red blood cells are destroyed and the components in the red blood cells are likely to leak.
  • the sheets constituting the first and second blood separation filters are formed by integrating fiber bodies having an average fiber diameter in the range of 0.5 to 3.0 m, and
  • the blood separation filter 1 has an average density in the range of 0.1 to 0.5 gZcm 3 when installed in the flow path, and is expressed by the following equation (2) before and after installation in the flow path. Installed in the flow path in a compressed state so that the volume ratio is in the range of 1.1 to 5.0.
  • volume ratio first blood separation filter volume before installation Z first blood separation filter volume after installation
  • the average density of the first blood separation filter is in the specific range and the volume ratio is in the specific range, blood plasma or serum can be separated more efficiently. It can be carried out.
  • the volume ratio When the volume ratio is smaller than 1.1, a gap is formed between the plurality of sheets 11 on which the blood separation filter 5 is laminated, and blood easily passes through the gap, so that the blood separation efficiency is lowered. It tends to be. On the other hand, if the volume ratio is larger than 5.0, it becomes difficult to compress the first blood separation filter to a size that is filled when the first blood separation filter is filled, and productivity is lowered.
  • the blood separation filter member may be configured to have only the first blood separation filter.
  • the blood separation filter member as a whole
  • the volume ratio represented by the following formula (2A) is 1. It is composed of a laminate of sheets formed by accumulating fiber bodies having an average fiber diameter in the range of 0.5 to 3.0 m. It is only necessary that the blood separation filter member is installed in the flow path in a compressed state so as to be within the range of 1 to 5.0.
  • Volume ratio Blood separation filter member volume before installation z Blood separation filter member volume after installation Volume ...
  • the buffer material which suppresses being done is arrange
  • the buffer material performs a buffering action so as to reduce the impact when blood collides with the blood separation filter member. More specifically, it may be made of a material that lowers the flow rate of blood and guides the blood to the blood separation filter member, or softens the impact when contacted with the blood.
  • the shape of the cushioning material is not limited as long as it has the above-described buffering action, and can be various shapes as described later.
  • the material of the buffer material is not particularly limited as long as it can suppress the destruction of blood cells in the blood when the blood comes into contact with the material.
  • the synthetic resin, natural resin, metal, Glass, other inorganic materials, etc. can be used.
  • the buffer material is water-soluble, the buffer material may be eluted during blood separation, which may affect the test results, so a buffer material made of a water-insoluble material is preferred.
  • An anticoagulant, a coagulation accelerator, a glycolysis inhibitor, a water repellent or a hydrophilic agent may be applied to the surface of the buffer material.
  • a coagulation promoter is used when obtaining serum, and an anticoagulant is used when obtaining plasma.
  • heparin ethylenediamine tetraacetate or quenate can be used! /.
  • a blood cell stop filter capable of preventing passage of red blood cells is disposed downstream of the blood separation filter member in the flow path of blood.
  • the hemostasis filter is composed of a membrane in which a large number of through-holes are formed so that, for example, plasma or serum can pass therethrough.
  • a filter member other than a membrane may be used.
  • the hole formed in the hemostasis filter it is possible to pass plasma or serum, Moreover, there is no particular limitation as long as it has a pore size within a range that can prevent passage of red blood cells.
  • the pore size is preferably 2 m or less. If the pore size is small, clogging may occur due to protein components in the blood. Therefore, the pore size is preferably 0.05 m or more. In order to effectively prevent the passage of red blood cells, the pore diameter is more preferably in the range of 0.1 to 1.5 / zm.
  • the material constituting the hemocytosis filter is not particularly limited.
  • the surface of the blood cell stop filter is hydrophilized!
  • the method of hydrophilic treatment is a force that includes plasma treatment, coating with a hydrophilic polymer, etc. The method is not limited to these methods, and other methods may be used.
  • a water-swellable polymer that swells when contacted with plasma or serum is disposed in the flow path of blood. More preferably, the water-swellable polymer is disposed further downstream of the blood cell stopping filter, more preferably being disposed between the blood separation filter member and the blood cell stopping filter! /.
  • the material of the water-swellable polymer that can be used in the present invention is not particularly limited, but should have a hydrophilic functional group in the molecular skeleton and can absorb the same amount or more of water relative to its own weight. Fat is preferred.
  • Specific examples of the water-swellable polymer include polyacrylic acid alkali metal salt-based resin or copolymers thereof and cross-linked products thereof, polyacrylamide-based resin or copolymers thereof and cross-linked products thereof, poly N-bule.
  • Acetamide-based resin or a copolymer thereof and a cross-linked product thereof a silicon-based resin or a copolymer thereof and a cross-linked product thereof, a polybutyl ether-based resin and a copolymer thereof and a cross-linked product thereof,
  • Examples thereof include alkylene oxide-based resins or copolymers thereof and cross-linked products thereof, polyvinyl alcohol, polybutylpyrrolidone or copolymers thereof and cross-linked products thereof.
  • the water-swellable polymer a powdered or granular polymer may be used. You can use the one that is molded into the shape. When the water-swellable polymer is formed into a sheet shape, it becomes easy to install the water-swellable polymer in the flow path. As the water-swellable polymer, a paste, slurry, or solution may be used, and this may be added and dried.
  • the water-swellable polymer swells itself when contacted with plasma or serum and blocks the flow path. Therefore, the required amount of the water-swellable polymer varies depending on the channel volume to be blocked, the swelling rate of the water-swellable polymer, and the swelling speed. Therefore, the optimal amount of the water-swellable polymer is calculated from the channel volume to be closed, the swelling rate of the water-swellable polymer and the swelling speed.
  • the channel volume to be occluded is set in a range in which moisture in the blood is absorbed and the collected amount of the specimen does not decrease.
  • the flow path volume is increased, the amount of the water-swellable polymer for blocking is increased, so that the collected amount of the sample may be reduced.
  • the channel volume to be closed is in the range of 0.005 to 1. Ocm 3 .
  • the volume of the water-swellable polymer is preferably in the range of 5 to 95% with respect to the volume of the channel to be blocked. If the volume of the water-swellable polymer is less than 5% of the channel volume to be blocked, the time until the channel is blocked becomes longer, so the components that have leaked erythrocyte power due to hemolysis are mixed into the separated plasma or serum. There is a risk. If the volume of the water-swellable polymer is greater than 95% of the volume of the blocked flow path, the flow path may be blocked before all the plasma or serum is collected, reducing the efficiency of plasma or serum collection. There is a risk.
  • the tubular container used in the vacuum specimen collection tube according to the present invention is not particularly limited, and examples thereof include a bottomed container having a shape such as a rectangular tube shape or a cylindrical shape.
  • the shape of the bottom of the tubular container is not particularly limited.
  • the material of the tubular container is not particularly limited, and, for example, polyethylene, polypropylene, polystyrene, polyethylene terephthalate, polymethylmethacrylate, polyacrylonitrile, amide, acrylonitrile styrene copolymer, ethylene butyl alcohol copolymer.
  • Thermoplastic resins such as polymers, unsaturated polyester resins, epoxy resins, epoxy-atarire Thermosetting resin such as 1 ton resin, modified natural resin such as cellulose acetate, cellulose propionate, ethyl cellulose, ethyl chitin, and key acids such as soda lime glass, phosphosilicate glass, borosilicate glass, etc.
  • Conventionally known materials such as glass such as salt glass and quartz glass, and those containing these as a main component, or combinations thereof may be mentioned.
  • the stopper used in the sample collection tube is attached so as to seal the opening of the container.
  • the plug When the plug is impermeable to air, it can be used as a vacuum specimen collection tube.
  • the material of the plug body is not particularly limited, and includes at least one elastic body selected from natural rubber, synthetic rubber, and thermoplastic elastomer, or a conventionally known material such as an aluminum laminate or an aluminum vapor-deposited sheet. It is done.
  • a vacuum sample collection tube according to an embodiment of the present invention and a blood separation filter device provided in the vacuum sample collection tube will be described with reference to FIGS.
  • FIG. 1 is a front sectional view of a vacuum specimen collection tube according to an embodiment of the present invention.
  • the vacuum sample collection tube 1 has a tubular container 2 having an opening 2a at the upper end and a bottom 2b at the lower end.
  • the tubular container 2 has a rectangular tube shape, and the bottom 2b has a shape tapered to an inverted square frustum shape.
  • a plug 3 is attached to the opening 2a so as to hermetically seal the inside.
  • the plug 3 is attached so as to seal an opening of a cylindrical member to be described later. Note that the vacuum sample collection tube 1 is depressurized.
  • the blood When blood is supplied from above the tubular container 2 to the blood separation filter device 4, the blood passes through the blood separation filter device 4, and at that time, blood is separated into blood cells and plasma or serum.
  • the separated plasma or serum is stored in the bottom 2b of the tubular container 2.
  • FIG. 2 is an enlarged front sectional view of the blood separation filter device 4 provided in the vacuum specimen collection tube 1 described above.
  • FIG. 3 is an exploded perspective view showing the first and second blood separation filters 5 and 6 and the flow path forming member 7 constituting the blood separation filter device 4.
  • the blood separation filter device 4 includes a flow path forming member 7 and first and second blood separation filters 5 and 6. That is, in this embodiment, the blood separation filter member has the first and second blood separation filters 5 and 6.
  • the flow path forming member 7 includes a cylindrical member 8 having a rectangular tube shape, and a bottom member 9 having an outer periphery having the same rectangular shape as the inner periphery of the cylindrical member 8 when viewed from above. .
  • the cylindrical member 8 has an opening 8a at the upper end. Above the lower end 8b of the cylindrical member 8, an annular annular peripheral portion 8c is provided so that the inner peripheral surface force of the cylindrical member 8 also protrudes inward.
  • the annular peripheral edge 8c forms an opening 8d surrounded by the annular peripheral edge 8c.
  • the bottom member 9 includes a main surface portion 9a and a tubular outlet portion 9b extending downward from the center of the main surface portion 9a.
  • the outlet portion 9b has a hollow channel extending vertically.
  • An annular protrusion 9d is provided on the upper surface of the main surface portion 9a.
  • a portion surrounded by the annular protrusion 9d is a recess 9c.
  • the concave portion 9c is connected to the hollow flow path of the outlet portion 9b, and constitutes a part of the flow path.
  • the bottom member 9 is disposed below the annular peripheral edge 8c. More specifically, the cylindrical member 8 has an opening force at the lower end 8b. The opening member force is also inserted into the bottom member 9 and fixed. That is, the outer peripheral edge of the main surface portion 9a is in close contact with and fixed to the inner peripheral surface of the cylindrical member 8. In this state, the upper surface of the main surface portion 9a is opposed to the annular peripheral edge portion 8c and the opening portion 8d.
  • a blood cell stop filter which will be described later, is in close contact with the lower surface of the annular peripheral edge portion 8c and the upper end surface of the annular protrusion 9d.
  • the second blood separation filter 6 is configured by laminating a plurality of sheets 6a having a strip shape.
  • the second blood separation filter may be composed of a single sheet formed by integrating fibrous bodies.
  • the second blood separation filter 6 is disposed on the annular peripheral edge 8c so that the sheet surfaces of the plurality of sheets 6a are substantially perpendicular to the direction in which blood flows.
  • the outer peripheral surface of the second blood separation filter 6 is in close contact with the inner peripheral surface of the cylindrical member 8.
  • the second blood separation filter 6 is configured by laminating the sheet surfaces of the sheets in a state where sheets having a long shape are folded in a zigzag manner at equal intervals. Well, okay.
  • the first blood separation filter 5 is composed of a laminate of a plurality of sheets having a strip shape.
  • the sheet constituting the first blood separation filter 5 is formed by integrating fiber bodies.
  • the lower surface of the first blood separation filter 5 is in contact with the upper surface of the second blood separation filter 6 so that the outer peripheral surface of the first blood separation filter 5 is in close contact with the inner peripheral surface of the tubular member 8. Is installed. That is, the first blood separation filter 5 is the second blood separation filter 5. Is located upstream.
  • the sheet surfaces of the plurality of sheets are laminated so that they are substantially parallel to the direction in which blood flows.
  • the first blood separation filter device 5 and the second blood separation filter 6 are selected so that the weight ratio represented by the above-described formula (1) is in the range of 0.001 to 1.
  • the blood separation filter device 4 further includes a blood cell stop filter 10 downstream of the first and second blood separation filters 5 and 6.
  • the blood cell stop filter 10 is disposed in a space between the annular peripheral edge 8c and the main surface 9a. More specifically, the blood cell stop filter 10 is disposed so as to be sandwiched between the lower surface of the annular peripheral edge 8c and the upper end surface of the annular protrusion 9d.
  • the blood separation filter device 4 further includes a water-swellable polymer 11 downstream of the first and second blood separation filters 5 and 6.
  • the water-swellable polymer 11 is disposed between the blood cell stop filter 10 and the main surface portion 9a and in the concave portion 9c on the upper surface of the main surface portion 9a.
  • a hole 11a is formed at the center of the water-swellable polymer 11 so as to secure a flow path for plasma or serum to flow in the initial state, that is, before swelling, and the hole 11a is connected to the hollow flow path of the outlet portion 9b.
  • the water-swellable polymer 11 may be disposed between the first and second blood separation filters 5 and 6 and the blood cell stop filter 10. More specifically, it may be disposed in the opening 8d surrounded by the annular peripheral edge 8c.
  • the first blood separation filter 5 is constituted by using a plurality of sheets 15 having a strip shape.
  • the plurality of sheets 15 are laminated to obtain a first blood separation filter 5 made of a laminated body of sheets having a rectangular parallelepiped shape shown in a perspective view in FIG.
  • the cylindrical member 8 is filled from the opening 8a while the first blood separation filter 5 is compressed. At this time, the first blood separation filter 5 is stacked and filled so that the sheet surfaces of the plurality of sheets 15 are substantially parallel to the direction in which blood flows.
  • the first blood separation filter 5 is installed in at least a part of the flow path of the flow path forming member 7. Therefore, blood is supplied to the blood separation filter device 4 installed in the flow path. When supplied, blood will pass through the first blood separation filter 5.
  • the first blood separation filter 5 is installed so that the average density when it is installed in the flow path is preferably in the range of 0.1 to 0.5 g / cm 3 . If the average density force is lower than 0.1 lg / cm 3 , blood separation may not be performed efficiently, and the amount of plasma or serum obtained may be reduced. If the average density is higher than 0.5 gZcm 3 , the load on the red blood cells increases and hemolysis tends to occur. In order to separate blood more efficiently, the average density is preferably in the range of 0.15 to 0.40 g / cm 3 .
  • the first blood separation filter 5 is compressed so that the volume specific force represented by the above-described formula (2) before and after installation in the flow path is in the range of 1.1 to 5.0. And installed in the flow path.
  • the volume ratio is smaller than 1.1, gaps are formed between the plurality of sheets 15 on which the first blood separation filter 5 is laminated, and blood easily passes through the gaps. Efficiency may be reduced.
  • the volume ratio is larger than 5.0, it may be difficult to compress the first blood separation filter 5 to a size that is filled when the first blood separation filter 5 is filled, and productivity may be reduced.
  • FIGS. 1 Another structural example of the first blood separation filter 5 described above is shown in perspective views in FIGS.
  • the first blood separation filter 21 is configured by using a single sheet 22 having an elongated shape.
  • the laminated body is formed by folding the sheet 22 having a long shape into a zigzag shape at equal intervals, a first blood separation filter 21 in which a plurality of sheets are laminated is obtained as shown in FIG.
  • the first blood separation filter 21 When the first blood separation filter 21 is installed, the first blood separation filter 21 is packed while being compressed by the same method as the first blood separation filter 5 described above. At this time, the plurality of sheet surfaces 22a of the first blood separation filter 21 are stacked and filled so as to be substantially parallel to the direction in which blood flows.
  • the blood separation filter 21 is preferably filled so that the folded portion 22b of the sheet 22 folded in a zigzag shape is substantially parallel to the blood flow direction.
  • FIG. 8 is a front sectional view of a vacuum specimen collection tube according to another embodiment of the present invention.
  • the vacuum sample collection tube 31 shown in FIG. 8 is different in shape from the vacuum sample collection tube 1 described above.
  • the first blood separation filter 35 includes an inner peripheral sheet and an outer peripheral sheet. And is made of a laminated body having a laminated structure so as to have a substantially cylindrical shape.
  • a first blood separation filter 35 having a substantially cylindrical shape made of this laminate is installed in the flow path in the flow path forming member 36. Therefore, in this embodiment, the tubular container 32 and the flow path forming member 37 having a shape corresponding to the shape of the first blood separation filter 35 are used instead of the tubular container 2 and the flow path forming member 7 described above. .
  • the blood cell stop filter 10 and the water-swellable polymer 11 described above are installed at the same positions as the vacuum sample collection tube 1.
  • the vacuum specimen collection tube 31 has a tubular container 32 having an opening 32a at the upper end and a round bottom portion 32b at the lower end.
  • the tubular container 32 has a cylindrical shape.
  • a plug 33 is attached to the opening 32a so as to hermetically seal the inside.
  • FIG. 9 is an exploded perspective view of the first and second blood separation filters 35 and 36 and the flow path forming member 37 that constitute the blood separation filter device 34 provided in the vacuum sample collection tube 31 described above. It shows with.
  • the blood separation filter device 34 includes a flow path forming member 37 and first and second blood separation filters 35 and 36.
  • the flow path forming member 37 includes a cylindrical member 38 and a bottom member 39 having a circular outer periphery when viewed in plan.
  • the flow path forming member 37 of the present embodiment is different from the cylindrical member 8 having the above-described square cylindrical shape and the bottom member 9 having a rectangular outer shape when viewed in plan, and the shape of the outer peripheral portion thereof is different.
  • the internal structure is similarly configured.
  • annular peripheral edge 38a is formed so as to protrude inward from the inner peripheral surface of the cylindrical member 38.
  • the second blood separation filter 36 is configured by laminating a plurality of sheets 36a having a disk shape.
  • the second blood separation filter may be formed by a single sheet formed by collecting fibrous bodies.
  • the second blood separation filter 36 is disposed on the annular peripheral edge 38a so that the sheet surfaces of the plurality of sheets 36a are substantially perpendicular to the direction in which blood flows.
  • the outer peripheral surface force of the second blood separation filter 36 is in close contact with the inner peripheral surface of the tubular member 38.
  • the first blood separation filter 35 is a single sheet having an elongated shape.
  • the web is formed in a spiral shape. Therefore, the inner peripheral sheet portion and the outer peripheral sheet portion are laminated.
  • a single sheet may be wound in a spiral shape to constitute a laminated body in which the inner peripheral sheet portion and the outer peripheral sheet portion are stacked.
  • the lower surface of the first blood separation filter 35 is in contact with the upper surface of the second blood separation filter 36, and the outer peripheral surface of the first blood separation filter 35 is in contact with the inner peripheral surface of the tubular member 38. It is installed in close contact.
  • the inner sheet portion and the outer sheet portion are laminated so as to be substantially parallel to the direction of blood flow.
  • the blood separation filter 35 When the blood separation filter 35 is installed, the above-described cylindrical member 38 is filled while the blood separation filter 35 is compressed. At this time, the blood separation filter 35 is laminated and filled so that the inner peripheral sheet portion and the outer peripheral sheet portion are substantially parallel to the direction of blood flow.
  • the blood separation filter may have a structure in which a plurality of sheets are wound in a substantially concentric shape so that an inner peripheral sheet and an outer peripheral sheet are stacked so as to have a substantially cylindrical shape.
  • FIG. 35 Another structural example of the first blood separation filter 35 described above is shown in a perspective view in FIG.
  • a plurality of first blood separation filters 41A to 41C may also be used.
  • the plurality of first blood separation filters 41A to 41C are arranged along the direction in which blood flows.
  • the plurality of first blood separation filters 41A to 41C may be filled separately in stages, or may be filled at once in a stacked state.
  • the plurality of first blood separation filters 41A to 41C are preferably in contact with each other after being installed in the flow path, but may be in a state of being spaced apart from each other.
  • the density can be varied for each of the plurality of first blood separation filters 41A to 41C. Therefore, blood separation efficiency can be improved by appropriately setting the density.
  • FIG. 12 is a front sectional view showing a vacuum specimen collection tube 51 according to another embodiment of the present invention.
  • FIG. 13 shows the first blood separation filters 41A to 41C, the second blood separation filter 36, and the flow path forming member 37 constituting the blood separation filter device 52 provided in the vacuum sample collection tube 51. Shown in exploded perspective view.
  • a plurality of first blood separation filters 41 are disposed upstream of the second blood separation filter 36.
  • ⁇ 41C may be stacked so as to follow the direction of blood flow, and filled in a state of being in contact with each other so as to overlap.
  • FIG. 14 is a front sectional view of a vacuum sample collection tube 61 according to still another embodiment of the present invention.
  • FIG. 15 shows the first blood separation filters 41A to 41C, the second blood separation filters 63 to 65, and the flow path forming member that constitute the blood separation filter device 62 provided in the vacuum sample collection tube 61. 37 is shown in an exploded perspective view.
  • a plurality of first blood separation filters 41A to 41C, a plurality of second blood separation filters 63 to 65, and force are stacked alternately along the direction of blood flow. And it is filled in a state of touching so as to overlap.
  • a second blood separation filter 65 comprising a plurality of sheets 65a is disposed downstream of the first blood separation filter 41C.
  • a second blood separation filter 64 composed of a plurality of sheets 64a is disposed between the first blood separation filters 41B and 41C, and a second composed of a plurality of sheets 63a is disposed between the first blood separation filters 41A and 41B.
  • the blood separation filter 63 is arranged.
  • the second blood separation filter may be arranged further upstream of the first blood separation filter 41A.
  • the first blood separation filter 5 and the first blood separation filter 21 described above may also be composed of a plurality of blood separation filters!
  • the first blood separation filter is not limited to the above-described shape as long as the sheet surface is laminated in substantially parallel to the direction in which blood flows.
  • the shape of the tubular container used for the flow path forming member and the vacuum sample collection tube can be appropriately changed depending on the shape of the first blood separation filter.
  • the blood separation filter member may be configured using only the first blood liquid separation filter. Such an embodiment is shown in front sectional views in FIGS. 16 and 17 respectively.
  • the vacuum sample collection tube 71 shown in FIG. 16 is configured in substantially the same manner as the vacuum sample collection tube 1 shown in FIG. The difference is that the second blood separation filter 6 is omitted.
  • a blood separation filter member that only has the first blood separation filter 5 is used instead of the first blood separation filter 5 and the second blood separation filter 6 in FIG. 1, a blood separation filter member that only has the first blood separation filter 5 is used. Since the other points are the same as those of the vacuum sample collection tube 1 shown in FIG. 1, the same portions are denoted by the same reference numerals and the description thereof is omitted.
  • a blood separation filter member consisting only of the first blood separation filter 5 may be used.
  • the blood separation filter member is disposed in the flow path.
  • the average density in the state is in the range of 0.1 to 0.5 gZcm 3 and compressed so that the volume ratio represented by the above formula (2A) is in the range of 1.1 to 5.0. It is only necessary to be installed in the flow path.
  • the vacuum sample collection tube 72 of the embodiment shown in FIG. 17 is provided with the vacuum sample collection tube 31 and the second blood separation filter 36 shown in FIG. Are structured similarly. That is, instead of the first and second blood separation filters 35, 36, a blood separation filter member that only has the force of the first blood separation filter 35 is provided. Even in this case, as in the case of the vacuum sample collection tube 71 shown in FIG. 16, the average density in the state of being installed in the flow path of the blood separation filter member is 0.1 to 0.5 gZcm 3 . If the blood separation filter member is installed in the flow path in a compressed state so that the volume ratio represented by the formula (2A) is in the range of 1.1 to 5.0 Oh ,.
  • FIG. 18 is a schematic perspective view showing, in an enlarged manner, a portion where the buffer material 81 is provided in the cylindrical container body.
  • the blood separation filter member 82 A buffer material 81 is disposed on the upstream side.
  • the blood separation filter member 82 may be composed of the first and second blood separation filters described above, or may be a blood separation filter member consisting only of the first blood separation filter.
  • the buffer material 81 is arranged in the container main body so that the blood comes into contact with the blood separation filter member 82 before blood is collected.
  • the buffer material 81 has a shape obtained by deforming one circular sheet having a diameter slightly larger than the inner diameter of the flow path forming member 83.
  • the cushioning material 81 has a structure in which one circular sheet is bent so that the bent portion is a curved surface.
  • the cushioning material 81 is arranged such that the bent portion, that is, the curved outer portion is on the upper opening side.
  • the buffer material 81 is provided to reduce the flow rate of the supplied blood.
  • the cushioning material 81 has a shape obtained by bending a circular sheet as described above, and a pair of inclined surfaces 81a that are inclined with respect to the direction of blood flow on both sides of the bent portion. , 81b are configured. Since the blood flows along the inclined surfaces 81a and 81b, the flow of blood supplied to the blood separation filter member 82 can be delayed as compared with the case where the buffer material 81 is not present.
  • the buffer material 81 may be configured by stacking a plurality of sheets, which may be configured by deforming an elliptical sheet, for example.
  • the thickness of the sheet should be about 0.01 to 2 mm. desirable.
  • the introduced blood spreads along the inclined surfaces 81a and 81b of the buffer material 81 and reaches the blood separation filter member 82 below. That is, the blood does not directly collide with the upper surface 82a of the blood separation filter member 82.
  • the inside of the vacuum sample collection tube is depressurized, blood flows toward the blood separation filter member 82 side at a considerable speed due to the pressure difference. In this case, if the blood collides directly with the blood separation filter member 82, the blood cells may be destroyed.
  • the buffer material 81 since the buffer material 81 is arranged, in this embodiment, the blood first contacts the buffer material 81, and the buffer material 81 has the shape as described above. 81 folded From the curved portion configured as described above, it flows along the inclined surfaces 8 la and 81 b while spreading outward in the radial direction. Therefore, destruction of blood cells in the blood can be reliably suppressed. That is, since blood reaches the upper surface 82a of the blood separation filter member 82 at a lower speed, hemolysis can be reliably prevented.
  • the shape of the cushioning material 81 is not particularly limited as long as the cushioning action for suppressing the destruction of blood cells is achieved. Variation examples of the shape of the cushioning material 81 are shown in FIGS. In FIG. 19 to FIG. 28, various modifications of the cushioning material 81 are denoted by the same reference numerals and each cushioning material is indicated.
  • Each of the cushioning materials 84 shown in FIGS. 19 and 20 has a plurality of through holes 84a.
  • a plurality of through holes 84 a are formed in a disk-shaped cushioning material 84 that is substantially the same as the inner diameter of the flow path forming member 83.
  • the blood moves to a portion where the force through-hole 84a that is in contact with the upper surface of the cushioning material 84 is present and flows downward. Therefore, the impact of blood colliding with the upper surface 82a of the blood separation filter member 82 is reduced.
  • Each of the cushioning materials 85 to 87 shown in FIGS. 21 to 23 has inclined surfaces 85a to 87a, and the moving speed of the inflowed blood is thereby reduced.
  • the buffer material may have a structure in which the positioning holder is integrated so as to have a positioning holder for positioning the blood separation filter member.
  • a buffer material 91 is disposed above the blood separation filter member that only the first blood separation filter 95 can provide.
  • the buffer material 91 is formed by partially cutting a circular sheet-like member. That is, the ring-shaped positioning holder 91c is left outside the notch.
  • a substantially circular inclined surface 91a surrounded by the ring-shaped positioning holder 91c is connected to the positioning holder 91c at one end 91b. As shown in the figure, the inclined surface 91a also has the positioning holder 91c force cut upward.
  • the inclined surface 91a is inclined in the direction of blood flow as described above to achieve a buffering action.
  • the positioning holder 91c also functions to position the blood separation filter member. That is, the ring-shaped positioning holder 91c abuts on the upper surface 95a of the lower blood separation filter 95, thereby positioning the blood separation filter 95! /.
  • the cushioning material 92 shown in FIG. 26 is also not in a ring shape, but has an arcuate positioning holder 92c that leaves a part of the ring and a shape in which the inclined surface 92a is connected to one end 92b of the inclined surface 92a.
  • the cushioning materials 93 and 94 of the modified example shown in FIGS. 27 and 28 similarly have ring-shaped positioning honorders 93c and 94c and inclined surfaces 93a and 94a.
  • the shape of the inclined surfaces 93a, 94a is not particularly limited!
  • Blood force reaching the upper end 5a of the first blood separation filter 5 When passing through the first blood separation filter 5, plasma or serum moves faster than blood cells.
  • the blood that has passed through the first blood separation filter 5 reaches the second blood separation filter 6, and plasma or serum moves faster in the second blood separation filter 6 than in blood cells.
  • the second blood separation filter 6 effectively captures blood cell components such as platelets that are relatively smaller than red blood cells.
  • Plasma or serum that has moved relatively quickly reaches the blood cell stop filter 10 first, and passes through the blood cell stop filter 10.
  • the plasma or serum passes through the hollow channel of the outlet portion 9b through the concave portion 9c and is accommodated in the tubular container 2.
  • Blood cells that have moved at a lower speed than plasma or serum do not pass through the hemostasis filter 10 even if they reach the hemostasis filter 10. Therefore, blood cells should not be mixed into the plasma or serum stored below!
  • the water-swellable polymer 11 gradually swells by contact with plasma or serum, and closes the flow path after the plasma or serum to be stored has passed. More specifically, plasma or blood moved relatively fast in the first and second blood separation filters 5 and 6. After the liquid passes through the flow path portion where the water-swellable polymer 11 is disposed, the water-swellable polymer 11 swells. That is, the hole 11a of the water-swellable polymer 11 is closed, and the water-swellable polymer 11 expands so as to seal the recess 9c. Therefore, the flow path is blocked by the expansion of the water-swellable polymer 11.
  • the pressure in the tube can be adjusted, so that a necessary amount of blood can be collected easily, Effectively blood can be separated into blood cells and plasma or serum.
  • Example 1 the tubular container 2 and the flow path forming member 7 having the rectangular tube shape described above were used.
  • Example 3 to 10 and Comparative Examples 1 to 12 the tubular container 32 and the flow path forming member 37 having the cylindrical shape described above were used.
  • the inner space above the annular peripheral edge 38a of the cylindrical member 38 of the flow path forming member 37 had an inner diameter of lmm and a height of 48mm.
  • Examples 1 to 6 and Comparative Examples 1 to 8 a blood cell stop filter was arranged on the flow path forming member 7, and the force was applied.
  • a blood cell stop filter was disposed at the same position as the blood cell stop filter 10 described above.
  • a product name “Bi-Pore HTTP” manufactured by Millipore
  • a pore size of 0. punched out to a size of 8 mm was used.
  • Examples 1 to 8 and Comparative Examples 1 to 10 the water-swellable polymer was not placed on the flow path forming member 7, and the force was applied.
  • a water-swellable polymer was disposed at the same position as the water-swellable polymer 11 described above.
  • a water-swellable polymer a sheet obtained by molding the product name “Aqua Coke TWB” (manufactured by Sumitomo Seika Co., Ltd.) to a thickness of 0.2 mm Diameter 6. Omm punched, with a 0.6mm hole in the center.
  • the flow path volume of the space formed by the blood cell stop filter and the bottom member 39 was about 0.053 cm 3 , and the volume of the water-swellable polymer was about 23% of the flow path volume.
  • a second blood separation filter consisting of a sheet was prepared.
  • a first blood separation filter was prepared by laminating these 58 strip-shaped sheets.
  • the weight of the second blood separation filter is 0.004 g
  • the weight of the first blood separation filter is 0.5 Og
  • the weight ratio represented by the above formula (1) is 0.008 ( 0. 004g / 0.50g).
  • the second blood separation filter was compressed and filled into the rectangular tube-shaped flow path forming member 7 so that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter was compressed and filled into the square channel-shaped flow path forming member 7 so that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the portion filled with the first blood separation filter was an area of 10 mm ⁇ 10 mm ⁇ 21 mm.
  • the volume ratio represented before and after the above equation to install a first blood separating filter in the flow path (2) is 2.4 (58 sheets X 10. 5 X 21 X 0. 39mm 3/10 X 10 X 21 mm 3 ).
  • the average density after installation of the first blood separation filter was 0.24 gZcm 3 .
  • a second blood separation filter was prepared by laminating five sheets.
  • the accumulated fiber has an average fiber diameter of 1.9 / ⁇ ⁇ , a basis weight of 39 g / m 2 , a length of 600 mm, a width of 21 mm, and a thickness of 0.39 mm.
  • One sheet was prepared. This long sheet was folded into a zigzag shape every 10 mm, and the sheets were stacked. A first blood separation filter was prepared.
  • the weight of the second blood separation filter is 0.02 g
  • the weight of the first blood separation filter is 0.49 g
  • the weight ratio represented by the above formula (1) is 0.04 ( 0. 02g / 0. 49g).
  • the second blood separation filter was compressed and filled into the square tube-shaped flow path forming member 7 so that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter was compressed and filled into the square channel-shaped flow path forming member 7 so that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the part filled with the first blood separation filter is 10mm
  • the area was X 10 mm X 21 mm.
  • the volume ratio represented before and after the above equation to install a first blood separating filter in the flow path (2) is, 2. 3 (600 X 21 X 0. 39mm 3/10 X 10 X 21mm 3 )Met.
  • the average density after installation of the first blood separation filter was 0.23 gZcm 3 .
  • the average fiber diameter of the accumulated fibers is 1.9 m, the basis weight is 39 gZm 2 , and the size is diameter 11.
  • a second blood separation filter was prepared by laminating 10 sheets having a disk shape of 5 mm and a thickness of 0.39 m.
  • Two sheets were prepared. Two long sheets are overlapped and wound in a spiral shape to form a substantially cylindrical shape with a diameter of about 13 mm, and a first blood separation filter in which the inner and outer sheet portions are laminated. I prepared one.
  • the weight of the second blood separation filter is 0.04 g
  • the weight of the first blood separation filter is 0.51 g
  • the weight ratio represented by the above formula (1) is 0.08 ( 0.04 g / 0.51 g).
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 so that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the portion filled with the first blood separation filter was an area with an inner diameter of l lmm and a height of 27 mm.
  • volume ratio represented by the above formula (2) before and after installing the first blood separation filter in the flow path was 2.0 (2 sheets x 240 x 27 x 0. 39 mm so 5.5 x 5.5 x 5 x 3. 14 x 27 mm 3 ).
  • the average density after installation of the first blood separation filter was 0.20 gZcm 3 .
  • the second blood separation in which 15 sheets of disk-like shape with an average fiber diameter of 1.9 m, a basis weight of 39 gZm 2 , a size of 11.5 mm, and a thickness of 0.39 m are stacked.
  • a filter was prepared.
  • the weight of the second blood separation filter is 0.061 g
  • the weight of the first blood separation filter is 0.5 lg
  • the weight ratio represented by the above formula (1) is 0.12 (0.061 g / 0.51 g)
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the portion filled with the first blood separation filter was a region with an inner diameter of llmm and a height of 22 mm.
  • the volume ratio represented by equation (2) before and after the first blood separation filter is installed in the flow path is 2.4 (2 sheets x 3 stages x 240 x 9 x 0.39 mm) 5.5 x 5. 5 x 3. 14 X 22mm 3 ).
  • the average density after installation of the first blood separation filter was 0.24 g / cm 3 .
  • the second blood in which five sheets of disk-shaped shapes with an average fiber diameter of 1.25 m, a basis weight of 38 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.26 m are laminated.
  • a separation filter was prepared.
  • the weight of the second blood separation filter is 0.02 g
  • the weight of the first blood separation filter is 0.49 g
  • the weight ratio represented by the above formula (1) is 0.04 ( 0. 02g / 0. 49g).
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 so that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the portion filled with the first blood separation filter was a region having an inner diameter of l mm and a height of 22 mm.
  • the volume ratio represented by equation (2) before and after installing the first blood separation filter in the flow path is 1.6 (2 sheets x 3 stages x 240 x 9 x 0.26 mm 5 X 5.5 X 3. 14 X 22mm 3 )
  • the average density after installation of the first blood separation filter was 0.24 g / cm 3 .
  • the second blood is a stack of 60 sheets of disk-like shape with an average fiber diameter of 2.20 m, a basis weight of 37 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.22 m.
  • a separation filter was prepared.
  • the average fiber diameter of the accumulated fibers is 2.20 ⁇ m
  • the basis weight is 37 g / m 2
  • the length is 240 mm X width 9 mm X thickness 0.22 mm.
  • Six sheets were prepared.
  • a first blood separation filter in which three long sheets are stacked and wound into a spiral shape to form a substantially cylindrical shape having a diameter of about 13 mm, and an inner sheet portion and an outer sheet portion are laminated. Two were prepared.
  • the weight of the second blood separation filter is 0.230 g
  • the weight of the first blood separation filter is 0.48 g
  • the weight ratio represented by the above formula (1) is 0.48 ( 0.230g / 0.48g)
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter is cylindrically shaped so that the sheet surface is laminated substantially parallel to the direction of blood flow.
  • the flow path forming member 37 was compressed and filled.
  • the portion filled with the first blood separation filter was a region having an inner diameter of l mm and a height of 15 mm.
  • the volume ratio represented by the above-described formula (2) before and after the first blood separation filter is installed in the flow path is 2.0 (3 sheets x 2 stages x 240 x 9 x 0.22 mm). 5 X 5.5 5 3.14 X 15 mm 3 ) The average density after installation of the first blood separation filter was 0.34 g / cm 3 .
  • the average fiber diameter of the accumulated fibers is 1.9 m, the basis weight is 39 gZm 2 , and the size is diameter 11.
  • a second blood separation filter was prepared by laminating 10 sheets having a disk shape of 5 mm and a thickness of 0.39 m.
  • Two sheets were prepared. Two long sheets are overlapped and wound in a spiral shape to form a substantially cylindrical shape with a diameter of about 13 mm, and a first blood separation filter in which the inner and outer sheet portions are laminated. I prepared one.
  • the weight of the second blood separation filter is 0.04 g
  • the weight of the first blood separation filter is 0.51 g
  • the weight ratio represented by the above formula (1) is 0.08 ( 0.04 g / 0.51 g).
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 so that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the portion filled with the first blood separation filter was an area with an inner diameter of l lmm and a height of 27 mm.
  • the volume ratio represented by the above formula (2) before and after installing the first blood separation filter in the flow path is 2.0 (2 sheets X 240 X 27 X 0. 5.5 ⁇ 3.14 ⁇ 27 mm 3 ).
  • the average density after installation of the first blood separation filter was 0.20 gZcm 3 .
  • the second blood in which five sheets of disk-shaped shapes with an average fiber diameter of 1.25 m, a basis weight of 38 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.26 m are laminated.
  • a separation filter was prepared. [0174] with integrated to average fiber diameter of the fibers is that 1. 25 ⁇ m, a basis weight of 38 g / m 2, elongated shape in which the size is 240 mm X width 9 mm X thickness 0. 26 mm length Six sheets were prepared. Two long sheets are overlapped and wound in a spiral shape to form a substantially cylindrical shape having a diameter of about 9 mm. The first blood separation filter is formed by laminating an inner sheet portion and an outer sheet portion. Three were prepared.
  • the weight of the second blood separation filter is 0.020 g
  • the weight of the first blood separation filter is 0.49 g
  • the weight ratio represented by the above formula (1) is 0.04 ( 0.020g / 0.49g)
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 so that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the portion filled with the first blood separation filter was a region having an inner diameter of l mm and a height of 22 mm.
  • the volume ratio represented by the above-mentioned formula (2) before and after installing the first blood separation filter in the flow path is 1.6 (2 sheets x 3 stages x 240 x 9 x 0.26 mm 5 X 5.5 X 3. 14 X 22mm 3 )
  • the average density after installation of the first blood separation filter was 0.24 g / cm 3 .
  • the second blood is a stack of 10 sheets of disk-like shape with an average fiber diameter of 1.9 m, a basis weight of 39 gZm 2 , a size of 11.5 mm, and a thickness of 0.39 m.
  • a separation filter was prepared.
  • the accumulated fiber has an average fiber diameter of 1.9 / ⁇ ⁇ , a basis weight of 39 g / m 2 , a length of 240 mm X width 9 mm X thickness 0.39 mm.
  • Six sheets were prepared. Two long sheets are overlapped and wound in a spiral shape to form a substantially cylindrical shape having a diameter of about 9 mm.
  • the first blood separation filter is formed by laminating an inner sheet portion and an outer sheet portion. Three were prepared.
  • the weight of the second blood separation filter is 0.04 g
  • the weight of the first blood separation filter is 0.51 g
  • the weight ratio represented by the above formula (1) is 0.08 ( 0.04 g / 0.51 g).
  • the sheet surface is in a direction substantially perpendicular to the direction in which blood flows.
  • the cylindrical flow path forming member 37 was compressed and filled.
  • the first blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the portion filled with the first blood separation filter was a region having an inner diameter of l mm and a height of 22 mm.
  • the volume ratio represented by the above-mentioned formula (2) before and after installing the first blood separation filter in the flow path is 2.4 (2 sheets x 3 stages x 240 x 9 x 0. 5 X 5.5 X 3. 14 X 22mm 3 )
  • the average density after installation of the first blood separation filter was 0.24 g / cm 3 .
  • the second blood in which five sheets of disk-shaped shapes with an average fiber diameter of 1.25 m, a basis weight of 38 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.26 m are laminated.
  • a separation filter was prepared.
  • the average fiber diameter of the accumulated fibers is 1.25 ⁇ m, the basis weight is 38 g / m 2 , and the length is 240 mm X width 9 mm X thickness 0.26 mm.
  • Six sheets were prepared. Two long sheets are overlapped and wound in a spiral shape to form a substantially cylindrical shape having a diameter of about 9 mm.
  • the first blood separation filter is formed by laminating an inner sheet portion and an outer sheet portion. Three were prepared.
  • the weight of the second blood separation filter is 0.020 g
  • the weight of the first blood separation filter is 0.49 g
  • the weight ratio represented by the above formula (1) is 0.04 ( 0.020g / 0.49g)
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 so that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the portion filled with the first blood separation filter was a region having an inner diameter of l mm and a height of 22 mm.
  • the volume ratio represented by the above-mentioned formula (2) before and after installing the first blood separation filter in the flow path is 1.6 (2 sheets x 3 stages x 240 x 9 x 0.26mm 5 X 5.5 X 3. 14 X 22mm 3 )
  • the average density after installation of the first blood separation filter was 0.24 g / cm 3 .
  • Example 11 The second blood in which five sheets of disk-shaped shapes with an average fiber diameter of 1.9 m, a basis weight of 39 gZm 2 , a size of 11.5 mm, and a thickness of 0.39 m are laminated. A separation filter was prepared.
  • the average fiber diameter of the accumulated fibers is 1.9 / ⁇ ⁇
  • the basis weight is 39 g / m 2
  • the size is 240 mm long x 10 mm wide x 0.39 mm thick, 240 mm long x 9 mm wide
  • Two sheets of three types each having a long shape of X thickness 0.39 mm or length 240 mm X width 8 mm X thickness 0.39 mm were prepared. Two long sheets of the same width are superposed on each other and wound into a spiral shape to form a substantially cylindrical shape with a diameter of about 13 mm, and the first blood in which the inner and outer sheet portions are laminated.
  • Three separation filters were prepared.
  • the weight ratio represented by 1) was 0.04 (0.02 g / 0.51 g).
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter is placed in a cylindrical flow order in the order of the force of the wide sheet used so that the sheet surface is laminated substantially parallel to the direction of blood flow.
  • the path forming members 37 were each compressed and filled to a height of 7.3 mm.
  • the portion filled with the first blood separation filter was an area having an inner diameter of 11 mm and a height of 22 mm.
  • Equation (2) The volume ratio represented by Equation (2) before and after installing the first blood separation filter in the flow path is 2.4 (2 sheets X 240 X (10 + 9 + 8) X O. 39 mm 3/5. was 5 X 5. 5 X 3. 14 X 22mm 3).
  • First blood mean density after installation of the separation filter is 0. 24gZcm 3 (0. respectively from the upstream side blood is flow toward the downstream side 22, 0. 25, 0. 27gZcm 3 ) was.
  • the second blood in which five sheets of disk-shaped shapes with an average fiber diameter of 1.9 m, a basis weight of 39 gZm 2 , a size of 11.5 mm, and a thickness of 0.39 m are laminated.
  • a separation filter was prepared.
  • the average fiber diameter of the accumulated fibers is 1.9 / ⁇ ⁇
  • the basis weight is 39 gZm 2
  • the size is 240 mm X width l lmm X thickness 0.39 mm
  • length 240 mm X width 10 mm X thickness 0.39mm also Prepared two sheets of three types each having a long shape of 240 mm long x 9 mm wide x 0.39 mm thick. Two long sheets of the same width are overlapped and wound in a spiral shape to form a substantially cylindrical shape with a diameter of about 13 mm, and the inner sheet portion and the outer sheet portion are stacked. Three blood separation filters of 1 were prepared.
  • the weight ratio represented by 1) was 0.04 (0.02 g / 0.57 g).
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 so that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter is placed in a cylindrical flow order in the order of the force of the wide sheet used so that the sheet surface is laminated substantially parallel to the direction of blood flow.
  • the path forming members 37 were each compressed and filled to a height of 7.3 mm.
  • the portion filled with the first blood separation filter was an area having an inner diameter of 11 mm and a height of 22 mm.
  • the volume ratio represented by the above-mentioned formula (2) before and after installing the first blood separation filter in the flow path is 2.7 (2 sheets X 240 X (11 + 10 + 9) X O. 39 mm 3/5. was 5 X 5. 5 X 3. 14 X 22mm 3).
  • the average density after installation of the first blood separation filter was 0.25 g / cm 3 (0.25, 0.27, and 0.30 gZcm 3 from the upstream side to the downstream side where blood flows).
  • the second blood in which five sheets of disk-shaped shapes with an average fiber diameter of 1.9 m, a basis weight of 39 gZm 2 , a size of 11.5 mm, and a thickness of 0.39 m are laminated.
  • a separation filter was prepared.
  • the average fiber diameter of the accumulated fibers is 1.9 / ⁇ ⁇
  • the basis weight is 39 g / m 2
  • the size is length 280 mm X width 9 mm X thickness 0.39 mm, length 260 mm X width 9 mm
  • Two sheets of three kinds each having an elongated shape with an X thickness of 0.39 mm or a length of 240 mm, a width of 9 mm, and a thickness of 0.39 mm were prepared. Two long sheets of the same length are overlapped and wound in a spiral shape to form a substantially cylindrical shape with a diameter of about 13 mm. The first sheet is formed by laminating the inner and outer sheets. Three blood separation filters were prepared.
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter is placed in a cylindrical flow in order from the widest sheet used so that the sheet surface is laminated substantially parallel to the direction of blood flow.
  • the path forming member 37 was compressed and filled.
  • the portion filled with the first blood separation filter was an area having an inner diameter of l mm and a height of 22 mm.
  • the volume ratio expressed by equation (2) before and after installing the first blood separation filter in the flow path is 2.6 (2 (280 + 260 + 240) X 9 X 0. 39mm 3/5. it was 5 X 5. 5 X 3. 14 X 22m m 3).
  • the average density after installation of the first blood separation filter was 0.26 g / cm 3 (0.24, 0.26, and 0.28 gZcm 3 from the upstream side through which the blood flows to the downstream side, respectively).
  • a blood separation filter in which 120 sheets of disk-like shape with an average fiber diameter of 1.9 m, a basis weight of 39 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.39 m are stacked. Prepared.
  • the blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated so as to be along a direction substantially perpendicular to the direction in which blood flows.
  • the area filled with the blood separation filter was an area with an inner diameter of l lmm and a height of 22 mm.
  • the volume ratio expressed by the following formula (3) before and after installing the blood separation filter in the flow path is 2.3 (120 sheets X 5. 75 X 5. 75 X 3. 14 X 0. 39 mm 5.5 x 5.5 x 3.14 x 22mm 3 )
  • the weight of the blood separation filter was 0.49 g, and the average density after installation of the blood separation filter was 0.23 gZcm 3 .
  • the blood separation filter described above before and after installing the flow path equation (3) the volume ratio represented by the 2.4 (125 sheets X5. 75X5. 75X3. 14X0. 39mm 3/5. 5X5. 5X3 14 X 22mm 3 ).
  • the weight of the blood separation filter was 0.49 g, and the average density after installation of the blood separation filter was 0.23 g / cm 3 .
  • the second blood separation in which 70 sheets of disc-shaped shapes with an average fiber diameter of 1.9 m, a basis weight of 39 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.39 m are laminated.
  • a filter was prepared.
  • Two sheets were prepared. Two long sheets are stacked and wound in a spiral shape to form a substantially cylindrical shape with a diameter of about 12 mm, and the first blood separation filter in which the inner and outer sheet portions are laminated I prepared one.
  • the weight of the second blood separation filter is 0.28 g
  • the weight of the first blood separation filter is 0.22 g
  • the weight ratio represented by the above formula (1) is 1.27 ( 0.28 g / 0.22 g).
  • the second blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was in a direction substantially perpendicular to the direction in which blood flows.
  • the first blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the portion filled with the first blood separation filter was a region having an inner diameter of llmm and a height of 11 mm.
  • the volume ratio represented by the above-mentioned formula (2) before and after installing the first blood separation filter in the flow path is 2.2 (2 pieces X 240X12X0. 39mm so 5.5X5. 5X3.14 X 11 mm 3 ).
  • the average density after installation of the first blood separation filter was 0.22 gZcm 3 .
  • the average fiber diameter of the accumulated fibers is 1.25 ⁇ m, the basis weight is 38 gZm 2 , and the size is length 180
  • Six sheets having a long shape of mmX width 9 mmX thickness 0.26 mm were prepared. Two sheets of this long sheet are stacked and wound in a spiral shape to form a roughly cylindrical shape with a diameter of about 11 mm, and three blood separation filters are prepared by laminating the inner and outer sheets. did.
  • the cylindrical flow path forming member 37 was compressed and filled with the blood separation filter so that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the area filled with the blood separation filter was an area with an inner diameter of llmm and a height of 27mm.
  • Blood volume ratio represented before and after the above equation the separation filter is placed in the flow path (3) is 0.99 (two X 3 stages X 180X9X0. 26mm 3/5. 5X5. 5X3. 14 X 27mm 3 ).
  • the weight of the blood separation filter is 0.37g, and the average density after installation of the blood separation filter is 0.14g / cm7.
  • the blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the area filled with the blood separation filter was an area with an inner diameter of llmm and a height of 9mm.
  • the volume ratio of the formula (3) described above before and after installing the blood separation filter in the flow path is, 5. 9 (6 ⁇ X240X9X0 . 39mm 3/5. 5X5. 5X3. 14 X 9mm 3) Met.
  • the weight of the blood separation filter was 0.51 g, and the average density after installation of the blood separation filter was 0.59 g / cm 3 .
  • Two sheets with an elongated shape with an average fiber diameter of 3.5 / ⁇ , a basis weight of 40 gZm 2 , a length of 240 mm X width 27 mm X thickness 0.38 mm are available. did . Two of these long sheets are overlapped and wound into a spiral shape, approximately a cylinder with a diameter of about 12 mm A blood separation filter was prepared in which the inner and outer sheet portions were laminated.
  • the blood separation filter was compressed and filled into the cylindrical flow path forming member 37 so that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the area filled with the blood separation filter was an area with an inner diameter of llmm and a height of 27mm.
  • the average fiber diameter of the accumulated fibers is 1.9 m, the basis weight is 39 gZm 2 , and the size is diameter 11.
  • a blood separation filter was prepared in which 120 sheets having a disk shape of 5 mm and a thickness of 0.39 m were laminated.
  • the blood separation filter was compressed and filled into the cylindrical flow path forming member 37 such that the sheet surface was laminated so as to be along a direction substantially perpendicular to the direction in which blood flows.
  • the area filled with the blood separation filter was an area with an inner diameter of llmm and a height of 22mm.
  • the volume ratio represented before and after the above equation to install a blood separation filter in the flow path (3) is, 2. 1 (120 ⁇ X5 . 5X5. 5X3. 14X0. 39mm 3/5. 5X5. 5X3 14 X 22mm 3 ).
  • the weight of the blood separation filter was 0.51 g, and the average density after installation of the blood separation filter was 0.24 gZcm 3 .
  • a blood separation filter is prepared by stacking 120 sheets of disk-shaped sheets with an average fiber diameter of 1.9 m, basis weight of 39 gZm 2 , size of 11.5 mm, and thickness of 0.39 m. did.
  • the blood separation filter was compressed and filled into the cylindrical flow path forming member 37 so that the sheet surface was laminated so as to be along a direction substantially perpendicular to the direction in which blood flows.
  • the area filled with the blood separation filter was an area with an inner diameter of llmm and a height of 22mm.
  • the volume ratio represented by the above formula (3) before and after installing the blood separation filter in the flow path is 2 1 (120 ⁇ X 5.5 X 5.5 X 3.14 X 0. 39mm 3 /5.5.5 X 5.5 X 3.14 X 22mm 3 ).
  • the weight of the blood separation filter was 0.51 g, and the average density after installation of the blood separation filter was 0.24 gZcm 3 .
  • the blood separation filter devices of Examples 1 and 2 described above were accommodated in the tubular container 2 described above.
  • the blood separation filter devices of Examples 3 to 13 and Comparative Examples 1 to 12 were accommodated in the tubular container 32 described above. After that, the opening of the tubular container 2 was sealed with a plug 3, and the opening of the tubular container 32 was sealed with a plug 33, and the pressure inside the tube was set to 35 kPa to produce a vacuum sample collection tube.
  • Comparative example 1 1 10 250 X (small)
  • the color of the separated specimen is the same when visually compared with the centrifuged serum
  • X The color of the separated specimen is red when visually compared with the centrifuged serum
  • the red blood cells are prevented from passing by the powerful blood cell stop filter in which red blood cells have reached the lower part of the blood separation filter, and contamination of blood cells with plasma or serum is prevented. I could not see it.
  • the blood separation filter device of Examples 7 and 8 the force that red blood cells contained in the separated plasma or serum.
  • Blood separation of Examples 9 to 13 In the filter device, the contamination of the erythrocyte components into the plasma or serum was strong.
  • the water-swellable polymer disposed downstream of the blood separation filter device swells when contacted with plasma or serum, and the flow path is completely blocked. The passage of components in red blood cells was prevented.
  • tubular container 2 and the flow path forming member 7 having the rectangular tube shape shown in Fig. 16 were used.
  • the size of the internal space above the annular peripheral edge 8c of the tubular member 8 of the flow path forming member 7 was 10 mm ⁇ 1 Omm ⁇ 44 mm.
  • Example 16 to 23 and Comparative Examples 13 to 19 the tubular container 32 and the flow path forming member having the cylindrical shape shown in FIG. 17 were used.
  • the size of the internal space above the annular peripheral edge 38a of the cylindrical member 38 of the flow path forming member 37 was set to an inner diameter of lmm and a height of 48mm.
  • the blood separation filter was compressed and filled into the rectangular tube-shaped flow path forming member 7 so that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the flow path forming member 7 was not provided with a blood cell stop filter and a water-swellable polymer.
  • the area filled with the blood separation filter was an area of 10 mm ⁇ 10 mm ⁇ 2 lmm.
  • the volume ratio represented by the above formula (1) before and after installing the blood separation filter in the flow path is 2.4 (58 sheets X 10.5 X 21 X 0.39 mm 3 ZlO X 10 X 21 mm 3 ).
  • the weight of the blood separation filter was 0.50 g, and the average density after installation was 0.24 gZcm 3 .
  • One sheet having an elongated shape in which the average fiber diameter of the accumulated fibers was 1.9 / ⁇ , the basis weight was 39 gZm 2 , the size was 600 mm long, 21 mm wide, and 0.39 mm thick was prepared.
  • a blood separation filter was prepared by folding the long sheet into a zigzag shape every 10 mm and laminating the sheet surfaces.
  • the blood separation filter was compressed and filled into the rectangular tube-shaped flow path forming member 7 so that the sheet surface was laminated substantially in parallel with the direction of blood flow.
  • the flow path forming member 7 was not provided with a blood cell stop filter and a water-swellable polymer.
  • the area filled with the blood separation filter was an area of 10 mm ⁇ 10 mm ⁇ 2 lmm.
  • the volume ratio represented before and after the above equation to install a blood separation filter in the flow path (1) was 2. 3 (600X21X0. 39mm 3 ZlOX 10 X 21mm 3).
  • the weight of the blood separation filter was 0.49 g, and the average density after installation was 0.23 g / cm 3 .
  • Two sheets having an elongated shape in which the average fiber diameter of the accumulated fibers was 1.9 / ⁇ , the basis weight was 39 gZm 2 , the size was 240 mm X width 27 mm X thickness 0.39 mm were prepared.
  • a blood separation filter was prepared in which two long sheets were overlapped and wound in a spiral shape, and an inner sheet portion and an outer sheet portion were laminated in a roll shape having a diameter of about 13 mm.
  • the cylindrical flow path forming member is placed so that the inner sheet portion and the outer sheet portion are laminated substantially parallel to the direction in which blood flows. Compressed and filled. A blood cell stop filter and a water-swellable polymer were not disposed on the flow path forming member.
  • the part filled with the blood separation filter was an area with an inner diameter of llmm and a height of 27mm.
  • the volume ratio represented before and after the above equation to install a blood separation filter in the flow path (1) is, 2 .0 (2 ⁇ X240X27X0. 39mm 3/5. 5X5. 5X3. 14 X 27mm 3) Met.
  • the weight of the blood separation filter was 0.51 g, and the average density after installation was 0.20 gZcm 3 .
  • the average fiber diameter of the accumulated fibers is 1.9 / ⁇
  • the basis weight is 39 gZm 2
  • the size is 240
  • Six sheets having a long shape of mmX width 9 mmX thickness 0.39 mm were prepared. Two sheets of this long sheet were overlapped, wound in a spiral, and used for three blood separation filters in which the inner and outer sheet parts were laminated in a roll shape with a diameter of about 12 mm o
  • the three blood separation filters are separately stepped so that the inner peripheral sheet portion and the outer peripheral sheet portion are laminated substantially parallel to the direction of blood flow.
  • the cylindrical flow path forming member was compressed and filled.
  • a blood cell stop filter and a water-swellable polymer were arranged on the flow path forming member and were forced.
  • the portion filled with the blood separation filter was an area with an inner diameter of llmm and a height of 22 mm.
  • the volume ratio represented by the above formula (1) before and after installing the blood separation filter in the flow path is 2.4 (2 sheets x 3 stages x 240x9x0.39mm 3 /5.5x5.5x3.14 x 22 mm 3 ).
  • the weight of the blood separation filter was 0.51 g, and the average density after installation was 0.24 gZcm 3 .
  • the three blood separation filters are separately stepped so that the inner peripheral sheet portion and the outer peripheral sheet portion are stacked substantially in parallel with the direction of blood flow.
  • the cylindrical flow path forming member was compressed and filled.
  • a blood cell stop filter and a water-swellable polymer were arranged on the flow path forming member and were forced.
  • the portion filled with the blood separation filter was an area with an inner diameter of llmm and a height of 22 mm.
  • the volume ratio represented by the above formula (1) before and after the blood separation filter is installed in the flow path is 1.6 (2 sheets x 3 stages x 240 x 9 x 0.26 mm 3 /5.5 x 5.5 x 3.14 x 22 mm 3 ).
  • the weight of the blood separation filter was 0.49 g, and the average density after installation was 0.24 gZcm 3 .
  • the average fiber diameter of the accumulated fibers is 2.2 / ⁇ , the basis weight is 37 gZm 2 , and the size is 240
  • Nine sheets having a long shape of mmX width 9 mmX thickness 0.22 mm were prepared. Three sheets of this long sheet were stacked, wound in a spiral, and used for three blood separation filters in which an inner sheet part and an outer sheet part were laminated in a roll with a diameter of about 13 mm o
  • the three blood separation filters are separately stepped so that the inner peripheral sheet portion and the outer peripheral sheet portion are stacked substantially parallel to the direction of blood flow.
  • the cylindrical flow path forming member was compressed and filled.
  • a blood cell stop filter and a water-swellable polymer were arranged on the flow path forming member and were forced.
  • the portion filled with the blood separation filter was an area with an inner diameter of llmm and a height of 22 mm.
  • the volume ratio represented by the above formula (1) before and after installing the blood separation filter in the flow path is 2.0 (3 sheets X 3 stages X 240X9X0.22mm 3 /5.5X5.5X3.14 X 22 mm 3 ).
  • the weight of the blood separation filter was 0.72 g, and the average density after installation was 0.34 gZcm 3 .
  • a cylindrical flow path forming member was prepared.
  • a blood cell stop filter 9 is disposed on the flow path forming member.
  • As the blood cell stopping filter a product name “Vaisopore HTTP” (manufactured by Millipore) having a pore diameter of 0.4 ⁇ m was punched out to a diameter of 8 mm.
  • a water-swellable polymer was placed on the flow path forming member to exert its strength.
  • the three blood separation filters are separately stepped in a cylindrical shape so that the inner peripheral sheet portion and the outer peripheral sheet portion are stacked in substantially parallel to the direction of blood flow.
  • the flow path forming member was compressed and filled.
  • the portion filled with the blood separation filter was an area with an inner diameter of llmm and a height of 22 mm.
  • the volume ratio represented by the above formula (1) before and after installing the blood separation filter in the flow path is 2.4 (2 sheets x 3 stages x 240 x 9 x 0.39 mm 3 /5.5 x 5.5 x 3.14 x 22 mm 3 ).
  • the weight of the blood separation filter was 0.51 g, and the average density after installation was 0.24 gZcm 3 .
  • Accumulated fibers have an average fiber diameter of 1.25 ⁇ m, basis weight of 38 gZm 2 , size force S length 240 mm X width 9 mm X thickness 0.26 mm did.
  • Two blood separation filters were prepared by laminating two sheets of this long sheet, winding them in a spiral, and laminating an inner sheet portion and an outer sheet portion in a roll shape having a diameter of about 9 mm.
  • a cylindrical flow path forming member was prepared.
  • a blood cell stop filter was disposed on the flow path forming member.
  • a product name “Bi-Pore HTTP” manufactured by Millipore
  • a water-swellable polymer was placed on the flow path forming member to exert its strength.
  • the three blood separation filters are separately stepped in a cylindrical shape so that the inner peripheral sheet portion and the outer peripheral sheet portion are stacked in substantially parallel to the direction of blood flow.
  • the flow path forming member was compressed and filled.
  • the portion filled with the blood separation filter was an area having an inner diameter of l lmm and a height of 22 mm.
  • the volume ratio represented before and after the above equation to install a blood separation filter in the flow path (1) is 1.6 (two X 3-stage X 240 X 9 X 0. 26mm 3 /5. 5 X 5.5 X 3.14 X 22 mm 3 ).
  • the weight of the blood separation filter was 0.49 g, and the average density after installation was 0.24 gZcm 3 .
  • a cylindrical flow path forming member was prepared.
  • a blood cell stop filter 9 is disposed on the flow path forming member.
  • a product name “Bi-Pore HTTP” manufactured by Millipore
  • a water-swellable polymer was disposed on the flow path forming member.
  • the trade name “Aqua Coke TW” A sheet formed of Bj (manufactured by Sumitomo Seika Co., Ltd.) to a thickness of 0.2 mm was punched to a diameter of 6. Omm and a hole having a diameter of 0.6 mm was formed in the center.
  • the flow path volume of the space formed by the blood cell stop filter and the concave portion 8c of the bottom member is about 0.053 cm 3.
  • the volume of the water-swellable polymer was about 23% of the flow path volume.
  • the three blood separation filters are separately and stepwise formed in a cylindrical shape so that the inner peripheral sheet portion and the outer peripheral sheet portion are laminated substantially in parallel with the direction of blood flow.
  • the flow path forming member was compressed and filled.
  • the portion filled with the blood separation filter was an area having an inner diameter of l lmm and a height of 22 mm.
  • the volume ratio represented before and after the above equation to install a blood separation filter in the flow path (1) is 2.4 (two X 3-stage X 240 X 9 X 0. 39mm 3 /5. 5 X 5.5 X 3.14 X 22 mm 3 ).
  • the weight of the blood separation filter was 0.51 g, and the average density after installation was 0.24 gZcm 3 .
  • Accumulated fibers have an average fiber diameter of 1.25 ⁇ m, basis weight of 38 gZm 2 , size force S length 240 mm X width 9 mm X thickness 0.26 mm Prepared. Two sheets of this long sheet were overlapped, wound in a spiral, and used for three blood separation filters in which the inner and outer sheet parts were laminated in a roll shape with a diameter of about 12 mm o
  • a cylindrical flow path forming member was prepared.
  • a blood cell stop filter was disposed on the flow path forming member.
  • a product name “Bi-Pore HTTP” manufactured by Millipore
  • a water-swellable polymer was disposed on the flow path forming member.
  • a sheet of product name “Aqua Coke TW BJ (manufactured by Sumitomo Seika Co., Ltd.) with a thickness of 0.2 mm was punched out to a diameter of 6.
  • the flow path volume of the space formed by the blood cell stop filter and the recess of the bottom member is about 0.053 cm 3 , and the volume of the water-swellable polymer is about 23% of the flow path volume. there were.
  • the three blood separation filters are separately and stepwise formed in a cylindrical shape so that the inner peripheral sheet portion and the outer peripheral sheet portion are laminated substantially in parallel with the direction of blood flow.
  • the flow path forming member was compressed and filled.
  • the part filled with blood separation filter has an inner diameter of l lmm and a height of 2 The area was 2 mm.
  • the volume ratio represented before and after the above equation to install a blood separation filter in the flow path (1) is 1.6 (two X 3-stage X 240 X 9 X 0. 26mm 3 /5. 5 X 5.5 X 3.14 X 22 mm 3 ).
  • the weight of the blood separation filter was 0.49 g, and the average density after installation was 0.24 gZcm 3 .
  • the average fiber diameter of the accumulated fibers is 1.9 ⁇ ⁇
  • the basis weight is 39 g / m 2
  • the size is length 240 mm X width 11 mm X thickness 0.39 mm, length 240 mm X width 10 mm X thickness 0.
  • Two sheets of 3 types each having a long shape of 39 mm or length 240 mm X width 9 mm X thickness 0.39 mm were prepared. Two long sheets of the same width are stacked on top of each other, wound in a spiral shape, and prepared with three blood separation filters in which the inner and outer sheet portions are laminated in a roll shape with a diameter of about 12 mm did.
  • a cylindrical flow path forming member was prepared.
  • a blood cell stop filter was disposed on the flow path forming member.
  • a product name “Bi-Pore HTTP” manufactured by Millipore
  • a water-swellable polymer was disposed on the flow path forming member 26.
  • the product name “Aqua Coke TWBJ manufactured by Sumitomo Seika Chemicals Co., Ltd.
  • the channel volume of the space formed by the blood cell stop filter and the recess 8c of the bottom member 8 is about 0.053 cm 3
  • the volume of the water-swellable polymer is about the channel volume. It was 23%.
  • each of the cylindrical flow path forming members was compressed and filled to a height of 7.3 mm.
  • the portion filled with the blood separation filter was an area having an inner diameter of l lmm and a height of 22 mm.
  • the volume ratio represented by the above formula (1) before and after installing the blood separation filter in the flow path is 2.7 (2 sheets X 240 X (11 + 10 + 9) X O. 5 X 5.5 X 3. 14 X 22mm 3 )
  • the total weight of the blood separation filters was 0.56 g, and the average density of each blood separation filter after installation was 0.24, 0.27, and 0.30 gZcm 3 from the upstream side to the downstream side of the blood flow.
  • the average fiber diameter of the accumulated fibers is 1.9 ⁇ ⁇
  • the basis weight is 39 g / m 2
  • the size is length 280 mm x width 9 mm x thickness 0.39 mm, length 260 mm x width 9 mm x thickness 0.39 mm.
  • Two sheets of three kinds each having a long open shape of 39 mm or length 240 mm X width 9 mm X thickness 0.39 mm were prepared.
  • a cylindrical flow path forming member was prepared.
  • a blood cell stop filter was disposed on the flow path forming member.
  • a product name “Bi-Pore HTTP” manufactured by Millipore
  • a water-swellable polymer was disposed on the flow path forming member.
  • a sheet of product name “Aqua Coke TW BJ (manufactured by Sumitomo Seika Co., Ltd.) with a thickness of 0.2 mm was punched out to a diameter of 6.
  • the flow path volume of the space formed by the blood cell stop filter and the recess of the bottom member is about 0.053 cm 3 , and the volume of the water-swellable polymer is about 23% of the flow path volume. there were.
  • the force of three blood separation filters having a large length is separately and stepwise, and the inner peripheral sheet portion and the outer peripheral sheet portion are laminated substantially in parallel with the direction of blood flow.
  • the cylindrical flow path forming member was compressed and filled.
  • the portion filled with the blood separation filter was an area with an inner diameter of l lmm and a height of 22 mm.
  • the volume ratio represented by the above formula (1) before and after installing the blood separation filter in the flow path is 2.6 (2 sheets X (280 + 260 + 240) X 9 X O. 39 mm 5 X 5.5 X 3.14 X 22 mm 3 ).
  • Blood total weight of the separation filter is 0. 51 g, average density of each blood separation filter after installation direction force connexion 0.24 from the upstream side to the downstream side of the flow of blood, 0.26, at 0. 28 g / cm 3 there were.
  • 120 sheets having a disk shape with an average fiber diameter of 1.9 m, a basis weight of 39 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.39 mm were prepared.
  • a blood separation filter was prepared by laminating 120 disc-shaped sheets. [0284] After the pressing force, the blood separation filter was compressed and filled into the cylindrical flow path forming member so that the sheet surface was laminated so as to be along the direction substantially perpendicular to the direction in which the blood flows. A blood cell stop filter and a water-swellable polymer were arranged on the flow path forming member and were forced. The area filled with the blood separation filter was an area with an inner diameter of llmm and a height of 22mm.
  • the volume ratio represented before and after the above equation to install a blood separation filter in the flow path (1) is 2.3 (120 sheets X5. 75X5. 75X3. 14X0. 39mm 3/5. 5X5. 5X3 14 X 22mm 3 ). Weight of the blood separation filter is 0.49 g, the average density after installation in dark at 0. 23gZcm 3.
  • 125 sheets having a disk shape having an average fiber diameter of 1.25 m, a basis weight of 38 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.26 mm were prepared.
  • a blood separation filter in which the 125 disc-shaped sheets were laminated was prepared.
  • the blood separation filter was compressed and filled into the cylindrical flow path forming member so that the sheet surface was laminated so as to be along a direction substantially perpendicular to the direction in which the blood flows.
  • a blood cell stop filter and a water-swellable polymer were arranged on the flow path forming member and were forced.
  • the area filled with the blood separation filter was an area with an inner diameter of llmm and a height of 22mm.
  • the volume ratio represented before and after the above equation to install a blood separation filter in the flow path (1) is 1.6 (125 sheets X5. 75X5. 75X3. 14X0. 26mm 3/5. 5X5. 5X3 14 X 22mm 3 ). Weight of the blood separation filter is 0.49 g, the average density after installation in dark at 0. 23gZcm 3.
  • the three blood separation filters are overlapped so that the inner sheet portion and the outer sheet portion are stacked substantially parallel to the direction of blood flow.
  • Flow path The forming member was compression filled.
  • a blood cell stop filter and a water-swellable polymer were placed on the flow path forming member and acted on.
  • the part filled with the blood separation filter was an area with an inner diameter of llmm and a height of 27 mm.
  • Blood volume ratio represented by the above formula before and after installing the separation filter in the flow path (1) is 0.99 (two X 3 stages X 180X9X0. 26mm 3/5. 5X5. 5X3. 14 X 27mm 3 ).
  • the weight of the blood separation filter was 0.37 g, and the average density after installation was 0.14 gZcm 3 .
  • a blood separation filter was prepared by laminating 6 sheets of this long sheet, winding them in a spiral, and laminating an inner sheet part and an outer sheet part into a roll having a diameter of about 13 mm.
  • the cylindrical flow path forming member is placed so that the blood separation filter is in a state in which the inner peripheral sheet portion and the outer peripheral sheet portion are laminated substantially in parallel with the direction of blood flow Compressed and filled.
  • a blood cell stop filter and a water-swellable polymer were not disposed on the flow path forming member.
  • the area filled with the blood separation filter was an area with an inner diameter of llmm and a height of 9mm.
  • the volume ratio of the formula (1) described above before and after installing the blood separation filter in the flow path is, 5. 9 (6 ⁇ X240X9X0 . 39mm 3/5. 5X5. 5X3. 14 X 9mm 3) Met.
  • the weight of the blood separation filter was 0.51 g, and the average density after installation was 0.59 g / cm 3 .
  • a blood separation filter was prepared in which two long sheets were overlapped and wound into a spiral shape, and an inner sheet portion and an outer sheet portion were laminated in a roll shape having a diameter of about 12 mm.
  • the blood separation filter is formed into a cylindrical flow path forming member so that the inner peripheral sheet portion and the outer peripheral sheet portion are laminated in substantially parallel to the direction in which blood flows. Compressed and filled. No blood cell stop filter and water-swellable polymer are placed on the flow path forming member. I got it.
  • the part filled with the blood separation filter was an area with an inner diameter of llmm and a height of 27mm.
  • 120 sheets having a disk shape with an average fiber diameter of 1.9 m, a basis weight of 39 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.39 mm were prepared.
  • a blood separation filter was prepared by laminating 120 disc-shaped sheets.
  • a cylindrical flow path forming member was prepared.
  • a blood cell stop filter was disposed on the flow path forming member.
  • As the blood cell stopping filter a product name “Vaisopore HTTP” (manufactured by Millipore) having a pore diameter of 0.4 ⁇ m was punched out to a diameter of 8 mm.
  • a water-swellable polymer was placed on the flow path forming member to exert its strength.
  • the blood separation filter was compressed and filled into a cylindrical flow path forming member so that the sheet surface was laminated so as to be along a direction substantially perpendicular to the direction in which blood flows.
  • the area filled with the blood separation filter was an area with an inner diameter of llmm and a height of 22mm.
  • the volume ratio represented before and after the above equation to install a blood separation filter in the flow path (1) is 2.3 (120 sheets X5. 75X5. 75X3. 14X0. 39mm 3/5. 5X5. 5X3 14 X 22mm 3 ). Weight of the blood separation filter is 0.49 g, the average density after installation in dark at 0. 23gZcm 3.
  • 125 sheets having a disk shape having an average fiber diameter of 1.25 m, a basis weight of 38 gZm 2 , a diameter of 11.5 mm, and a thickness of 0.26 mm were prepared.
  • a blood separation filter in which the 125 disc-shaped sheets were laminated was prepared.
  • a cylindrical flow path forming member was prepared.
  • a blood cell stop filter was disposed on the flow path forming member.
  • As the blood cell stopping filter a product name “Vaisopore HTTP” (manufactured by Millipore) having a pore diameter of 0.4 ⁇ m was punched out to a diameter of 8 mm.
  • a water-swellable polymer was placed on the flow path forming member to exert its strength.
  • the blood separation filter was compressed and filled into a cylindrical flow path forming member so that the sheet surface was laminated so as to be along a direction substantially perpendicular to the direction in which blood flows.
  • the part filled with the blood separation filter was an area with an inner diameter of l mm and a height of 22 mm.
  • the volume ratio represented by the above formula (1) before and after installing the blood separation filter in the flow path is 2.4 (125 sheets X 5. 75 X 5. 75 X 3. 14 X 0. 39mm 3/5. it was 5 X 5. 5 X 3. 14 X 22mm 3). Weight of the blood separation filter is 0. 49 g, the average density after installation in dark at 0. 23gZcm 3.
  • the blood separation filter devices of Examples 14 and 15 described above were accommodated in the tubular container 2 described above.
  • the blood separation filter devices of Examples 16 to 25 and Comparative Examples 9 to 15 were accommodated in the tubular container 32 described above. Then, the openings of the tubular containers 2 and 32 were sealed with stoppers, and the pressure inside the tubes was set to 35 kPa to produce a vacuum sample collection tube.
  • the water-swellable polymer disposed downstream of the blood separation filter device swells when it comes into contact with plasma or serum, and the flow path is completely blocked. In addition, the passage of components in red blood cells due to hemolysis was prevented.
  • Wing needle Terumo winged intravenous needle 21G (manufactured by Terumo)
  • Terumo needle 22G made by Terumo
  • Injection needle Terumo injection needle 21G (manufactured by Terumo)
  • Thick needle Terumo needle 18G (made by Terumo)
  • Luer ⁇ Luer Adapter S (made by Terumo)
  • the pressure inside the vacuum sample collection tube is set to 35 kPa.
  • X The color of the separated specimen is more reddish when visually compared with the centrifuged serum.
  • Table 7 above the relationship between blood inflow rate and LDH value is shown in Figure 29.
  • FIG. 30 shows the relationship between the velocity and the hemoglobin absorbance at 415 nm.
  • the LDH level increased as the blood inflow rate increased. That is, as the blood inflow rate increases, the impact of red blood cells on the blood separation filter increases, and the red blood cells are destroyed and contained in the red blood cells. As a result of leakage, the LDH value increased. As shown in FIG. 30, the hemoglobin absorbance at 415 nm also increased as the blood inflow rate increased.
  • a buffer material which is difficult to destroy blood cells even when red blood cells collide, is used before the blood separation filter. It arrange
  • the cylindrical container body 2 including the tubular container 3 and the flow path forming member 4 described above was used.
  • the size of the internal space above the annular peripheral edge 5a of the tubular member 5 of the flow path forming member 4 was an inner diameter of l mm and a height of 48 mm.
  • the blood cell stop filter 10 and the flow path blocking member 11 described above are arranged in the flow path forming member 4.
  • Two sheets with a long shape with an average fiber diameter of 1.9 / ⁇ ⁇ , a basis weight of 39 gZm 2 , a length of 240 mm X width 9 mm X thickness 0.39 mm Prepared. Two sheets of this long sheet are overlapped and wound in a spiral shape to form a roughly cylindrical shape with a diameter of about 12 mm, and three blood separation filters are prepared with the inner and outer sheet parts laminated. did.
  • the part filled with the blood separation filter was an area with an inner diameter of 11 mm and a height of 22 mm.
  • a polyethylene terephthalate film having a circular shape with a diameter of 13 mm was prepared.
  • the film is curved so that the buffer material is configured so that the curved outer portion is on the opening side, and the buffer material is separated from the blood separation film so as to have the same arrangement as the buffer material 81 shown in FIG. Arranged on the upper end surface of the filter.
  • the weight of the blood separation filter is 0.51g, and the average density after installation of the blood separation filter is 0.24g / cm7.
  • the configuration was the same as in Example 26 except that the cushioning material was changed.
  • the cushioning material As the cushioning material, a polyethylene sheet having an oval shape with a maximum length of 15 mm, a minimum length of 9 mm, and a thickness of 1 mm was used. This cushioning material was arranged in the same manner as the cushioning material 85 shown in FIG. That is, the buffering is performed so that one end in the longitudinal direction is in contact with the upper end surface of the blood separation filter, and the other end opposite to the one end is positioned obliquely above one end and in contact with the inner peripheral surface of the tubular member 5. Material was placed.
  • the configuration was the same as in Example 26 except that the cushioning material was changed.
  • a polystyrene sheet having a circular shape with a diameter of 10 mm and a thickness of 1 mm and having a plurality of holes with a diameter of 1 mm as shown in the cushioning material 84 shown in FIG.
  • the outer peripheral surface was arranged so as to be spaced apart from the inner peripheral surface of the tubular member so that the lower surface of the buffer material was in contact with the upper end surface of the blood separation filter.
  • the configuration was the same as in Example 26 except that the cushioning material was changed.
  • the buffer material was composed of a plurality of glass beads having a diameter of about 0.8 mm and a weight of lg. In other words, a plurality of glass beads were arranged so as to cover the entire upper end surface of the blood separation filter and to overlap in multiple stages.
  • the configuration was the same as in Example 26 except that the cushioning material was changed.
  • an annular positioning holder having an outer diameter of about 11 mm and a part made of polypropylene having a disk shape in which a part of the positioning holder is joined to the inner peripheral surface of the positioning holder and the coupling partial force is disposed obliquely above.
  • a molded product was used.
  • This cushioning material was arranged in the same manner as the cushioning material 91 shown in Fig. 25 described above.
  • the positioning holder was arranged so that the outer peripheral surface of the positioning holder was in contact with the inner peripheral surface of the cylindrical member.
  • Example 26 The configuration was the same as in Example 26 except that the cushioning material was not arranged.
  • a stopper was press-fitted into the openings of the cylindrical members of the above-described examples and comparative examples.
  • the flow path forming member to which the stopper was attached was housed in a tubular container, and a hermetic vacuum sample collection container was prepared with the same stopper as the opening of the tubular container so that the pressure in the tube of the tubular container was 35 kPa.

Abstract

 ヘマトクリットや粘度などの異なる血液を用いた場合においても、分離途中でのフィルタの閉塞や溶血が生じ難く、短時間で血液を血球成分と血漿または血清とに分離することができる血液分離フィルタ装置および真空検体採取管を提供する。  血液が流れる流路を有する流路形成部材7に、血液を血球と血漿または血清とに分離する第1,第2の血液分離フィルタ5,6が特定の重量比となるように設置されており、第1の血液分離フィルタ5がシートの積層体からなり、シート面が血液が流れる方向と略平行となるように積層されており、第2の血液分離フィルタ6がシート1枚、若しくはシートが2枚以上積層されて構成されており、第2の血液分離フィルタ6が、シートのシート面が血液が流れる方向と略直角方向となるように流路に設置されている、血液分離フィルタ装置4および真空検体採取管1。

Description

明 細 書
血液分離フィルタ装置、および真空検体採取管
技術分野
[0001] 本発明は、血液を血球と血漿または血清とに分離するための血液分離フィルタ装 置および真空検体採取管に関し、より詳細には、へマトクリットや粘度の異なる血液を 分離する際にも、分離性能が低下することがなぐ短時間で血液を血球と血漿または 血清とに分離することができる血液分離フィルタ装置および真空検体採取管に関す る。
背景技術
[0002] 従来、血液から血球を除去し、臨床検査に必要な血漿または血清を得るために、 遠心分離法が用いられてきた。しかし、遠心分離法では、凝固過程や分離後に上澄 みの血漿または血清を移しかえる過程などの作業が煩雑であった。また、検査結果 を得るまでに時間を要し、さらに大型で高価な遠心分離機が必要であった。
[0003] この問題を解決するために、遠心分離機を用いることなぐ血液から血球を除去し、 臨床検査に必要な血漿または血清を得ることを可能とする様々な分離方法が提案さ れている。
[0004] 例えば、下記の特許文献 1には、直径 0. 05〜1 μ mの細孔を有し、外面開孔率 40 %以下、内面開孔率 60%以上、膜厚が 50〜200 /ζ πιである中空繊維を用いて全血 から血漿を分離採取する方法が提案されている。この中空繊維を用いることにより、 高!ヽ血漿分離速度で血漿を分離することができるとされて!/、る。
[0005] 他方、下記の特許文献 2には、平均繊維径 0. 2〜5 μ m、及び密度 0. 1〜0. 5gZ cm3のガラス繊維層を用いて全血から、血漿または血清を分離する方法が開示され ている。
[0006] 一方、下記の特許文献 3には、入口と出口とを有する容器内に高分子極細繊維集 合体または多孔質ポリマーからなる濾過材を装着した血漿または血清分離フィルタ が開示されて 、る。濾過材である高分子極細繊維集合体または多孔質ポリマーには 、親水化するために、親水性ポリマーが固定されている。濾過材中で血液を移動させ 、かつ血漿または血清を分離採取する間に親水性ポリマーは膨潤する。親水性ポリ マーが膨潤することによって、フィルタが閉塞され、濾過が自動停止する。ある所定 量の血漿または血清を得た後、血球が到達するまでに濾過が自動的に停止するた め、血漿または血清への血球の混入を自動的に防ぐことができるとされている。
[0007] 下記の特許文献 4には、血液力 血漿もしくは血清を分離することができる血液分 離膜を備える血液検査用容器が開示されている。図 31を参照して、特許文献 4に示 されて ヽる血液検査用容器を説明する。
[0008] 図 31に縦断面図で示すように、血液検査用容器 201は、外管 202と、外管 202〖こ 挿入された筒状部材 203とを有する。外管 202は有底であり、上端に開口 202aを有 する筒状容器により構成されている。筒状部材 203は、円筒状の形状を有し、上端に 開口 203aを有する。また、筒状部材 203の下端には、下方突出部 203bが設けられ ている。筒状部材 203内には、第 1〜第 3のフィルタ部材 204〜206が配置されてい る。外管 202及び筒状部材 203の上端の開口 202a, 203aが栓体 207により気密封 止されており、かつ血液検査用容器 201内は減圧されて 、る。
[0009] 第 1〜第 3のフィルタ部材 204〜206は、上方から下方にかけて第 3のフィルタ部材 206、第 1のフィルタ部材 204、第 2のフィルタ部材 205の順に筒状部材 203内に配 置されている。第 1のフィルタ部材 204は、血液力も血漿もしくは血清を分離するため の血漿もしくは血清分離膜であり、その空隙率は 30%以下とされている。第 2のフィ ルタ部材 205は、血球の通過を防止するように構成されている。第 3のフィルタ部材 2 06は、平均繊維径 3. O /z m以上、かつ嵩密度 0. 3g/cm3以下の繊維により 構成されており、フイブリン等を捕捉することができる。
[0010] 血液検査用容器 201を用いて血液を分離する際には、栓体 207を真空採血針など で刺通することにより、第 3のフィルタ部材 206の上方の血液収納部 208に血液が採 取される。採取された血液は、第 1〜第 3のフィルタ部材 204〜206を通過する際に、 血液が血球と血漿もしくは血清とに分離される。分離された血漿または血清は、筒状 部材 203の下方突出部 203bより流下し、外管 202の底側に位置する血漿もしくは血 清収納部 209に収容される。
特許文献 1:特公平 2 - 23831号公報 特許文献 2:特公平 6 - 64054号公報
特許文献 3:特開平 11― 285607号公報
特許文献 4:特開 2004 - 344874号公報
発明の開示
[0011] 特許文献 1に記載の方法では、血漿成分を速やかに分離することができ、少量の 検体を短時間で分析することができる。し力しながら、高価な中空繊維を用いている ため、コストが高くならざるを得な力つた。
[0012] 特許文献 2に記載の方法では、血液を血球と血漿または血清とに分離することがで きるが、濾過速度が低ぐ濾過時間を短くできな力つた。ガラス繊維層に圧力を加え ることにより、濾過速度を高めることは可能である力 溶血が生じたり、赤血球が漏れ だしたりするおそれがあった。
[0013] さらに、特許文献 1や特許文献 2に記載の血漿または血清分離方法では、分離後 に赤血球を捕捉した繊維層が長時間放置されると、溶血が起こり、赤血球内成分が 血漿または血清に混入するおそれもあった。
[0014] 一方、特許文献 3に記載の分離フィルタでは、血液を血球と血漿または血清とに分 離採取する間に親水性ポリマーが膨潤し、フィルタが閉塞され、濾過が自動停止する 。よって、分離後に血球を捕捉した分離フィルタが長時間放置された場合でも、溶血 により赤血球内成分が血漿または血清に混入するおそれはない。
[0015] ここでは、濾過材中で血液を移動させ、移動速度差により血液中の血球と血漿また は血清とを分離している。他方、へマトクリットや粘度の異なる血液では、上記移動速 度差が異なるので、場合によっては、分離途中でフィルタが閉塞することがあった。 分離途中でフィルタが閉塞すると、回収できる検体量が大幅に減少することになる。
[0016] 他方、特許文献 4に記載の検体採取容器 201では、第 3のフィルタ部材 206により フイブリン等が捕捉され、第 1のフィルタ部材 204により血液力も血漿もしくは血清が 分離され、第 2のフィルタ部材 205により血球の通過が防止される。
[0017] し力しながら、血液検査用容器 201では、第 3のフィルタ部材 206は平均繊維径 3.
0 m以上、かつ嵩密度 0. 3g/cm3以下の繊維により構成されているため、血液 収納部 208に血液が採取される際に第 3のフィルタ部材 206に血球が高速で衝突す ると、血球が破壊され易かった。血球が破壊されて赤血球内成分が漏洩すると、血漿 もしくは血清収納部 209に収容されている血漿もしくは血清に赤血球内成分が混入 する。この場合、得られた血漿若しくは血清を検査すると、混入した赤血球内成分が 検査結果に大きく影響し、信頼性の高 、検査結果を得ることができな力つた。
[0018] 本発明の目的は、上述した従来技術の現状に鑑み、へマトクリットや粘度などの異 なる血液を用いた場合においても、分離途中でのフィルタの閉塞や溶血が生じ難ぐ 短時間で血液を血球と血漿または血清とに分離することができる血液分離フィルタ装 置および該装置を備える真空検体採取管を提供することにある。
[0019] 本発明に係る血液分離フィルタ装置は、血液の入口と出口とを有し、血液が流れる 流路を有する流路形成部材と、流路の少なくとも一部の領域に設置されており、血液 を血球と血漿または血清とに分離する第 1及び第 2の血液分離フィルタを有する血液 分離フィルタ部材とを備え、第 1の血液分離フィルタが、繊維体が集積されて形成さ れたシートの積層体力 なり、シート面が血液が流れる方向と略平行となるように積層 されており、第 2の血液分離フィルタが、繊維体が集積されて形成されたシートからな り、第 2の血液分離フィルタ力 シートのシート面が血液が流れる方向と略直角方向と なるように流路に設置されており、第 1,第 2の血液分離フィルタの下記式(1)で表さ れる重量比が、 0. 001〜1の範囲にあることを特徴とする。
[0020] 重量比 =第 2の血液分離フィルタ重量 Z第 1の血液分離フィルタ重量' · '式(1) 本発明のある特定の局面では、第 1,第 2の血液分離フィルタを構成するシートは、 平均繊維径が 0. 5〜3. 0 mの範囲にある繊維体が集積されて形成されており、第 1の血液分離フィルタは、流路に設置された状態での平均密度が 0. 1〜0. 5g/cm 3の範囲とされており、流路に設置する前後の下記式 (2)で表される体積比が、 1. 1 〜5. 0の範囲であるように圧縮された状態で流路に設置されて!、る。
[0021] 体積比 =設置前の第 1の血液分離フィルタ体積 Z設置後の第 1の血液分離フィル タ体積 · · ·(¾
本発明の他の特定の局面では、第 1の血液分離フィルタを構成するシートは短冊 状の形状を有し、積層体は、短冊状の形状を有するシートが少なくとも 2枚積層され た構成を有する。 [0022] 本発明のさらに他の特定の局面では、第 1の血液分離フィルタを構成するシートは 長尺状の形状を有し、長尺状の形状を有するシートをジグザグ状に折りたたむことに より積層体が構成されている。
[0023] 本発明のさらに他の特定の局面では、積層体は、内周のシートと外周のシートとが 略円筒形状を有するように積層された構造を有する。
[0024] 本発明のさらに他の特定の局面では、複数の第 1の血液分離フィルタ力 血液が流 れる方向に沿って配置されて 、る。
[0025] 本発明のさらに他の特定の局面では、第 2の血液分離フィルタは、第 1の血液分離 フィルタの下流に配置されて 、る。
[0026] 本発明の別の広い局面によれば、血液の入口と出口とを有し、血液が流れる流路 を有する流路形成部材と、前記流路の少なくとも一部の領域に設置されており、血液 を血球成分と血漿または血清とに分離する血液分離フィルタ部材とを備え、前記血 液分離フィルタ部材が、平均繊維径が 0. 5〜3. 0 mの範囲にある繊維体が集積さ れて形成されたシートの積層体力もなり、シートが血液が流れる方向と略平行となるよ うに積層されており、前記血液分離フィルタ部材は、流路に設置された状態での平均 密度が、 0. 1〜0. 5gZcm3の範囲とされており、前記血液分離フィルタ部材は、流 路に設置する前後の下記式(2A)で表される体積比が、 1. 1〜5. 0の範囲であるよ うに圧縮された状態で前記流路に設置されて 、ることを特徴とする、血液分離フィル タ装置が提供される。
[0027] 体積比 =設置前の血液分離フィルタ部材体積 Z設置後の血液分離フィルタ部材 体積…
上記のように、血液分離フィルタ部材は、前述した第 1,第 2の血液分離フィルタのう ち第 1の血液分離フィルタのみを有し、前述した第 2の血液分離フィルタを有しな ヽ 構成であってもよい。この場合においても、血液分離フィルタ部材は、第 1,第 2の血 液分離フィルタを有する場合の第 1の血液分離フィルタと同様に、様々な形態とされ 得る。すなわち、血液分離フィルタ部材を構成しているシートが短冊状の形態を有し 、積層体が、短冊状の形状を有する上記シートが少なくとも 2枚積層された構成を有 していてもよい。あるいは、上記シートが長尺状の形状を有し、長尺状の形状を有す る上記シートをジグザグ状に折りたたむことにより上記積層体が構成されていてもよい 。さらには、積層体は、内周のシートと外周のシートとが略円筒形状を有するように積 層された構造を有して 、てもよ 、。
[0028] 本発明のさらに他の特定の局面では、血液分離フィルタ装置は、血液分離フィルタ 部材の下流に配置されており、血球の混入を防止する血球停止フィルタをさらに備え ている。
[0029] 本発明のさらに他の特定の局面では、血液分離フィルタ装置は、血液分離フィルタ 部材の下流に配置されており、血漿または血清に接触されることにより膨潤し、流路 を閉塞する水膨潤性ポリマーをさらに備えている。
[0030] 本発明のさらに他の特定の局面では、水膨潤性ポリマーは、血液分離フィルタ部材 と血球停止フィルタとの間に配置されている。
[0031] 本発明のさらに他の特定の局面では、水膨潤性ポリマーは、血球停止フィルタの下 流に配置されている。
[0032] 本発明の別の特定の局面では、水膨潤性ポリマーは、シート状に成形されている。
[0033] 本発明に係る真空検体採取管は、本発明に従って構成された血液分離フィルタ装 置と、血液分離フィルタ装置を収容して!/、る管状容器とを備えて 、る。
(発明の効果)
[0034] 本発明に係る血液分離フィルタ装置では、血液を血球と血漿または血清とに分離 する第 1の血液分離フィルタ力 流路形成部材の流路の少なくとも一部の領域に設 置されている。第 1の血液分離フィルタは、繊維体が集積されて形成されたシートの 積層体力 なり、シート面が血液が流れる方向と略平行となるように積層されているた め、血液を分離する際の圧力損失が小さくされており、分離途中での第 1の血液分 離フィルタの閉塞が生じ難 、。
[0035] また、本発明では、血液を血球と血漿または血清とに分離する第 2の血液分離フィ ルタが、流路形成部材の流路の少なくとも一部の領域に設置されている。第 2の血液 分離フィルタは、繊維体が集積されて形成されたシートからなり、第 2の血液分離フィ ルタカ シートのシート面が血液が流れる方向と略直角方向となるように流路に設置 されているため、第 1の血液分離フィルタのシート間の隙間を通過し得る大きさを有 する赤血球よりも比較的小さい血球成分を捕捉することができる。
[0036] 本発明では、第 1,第 2の血液分離フィルタの上述した式(1)で表される重量比が、 0. 001〜1の範囲にあるため、上記第 1,第 2の血液分離フィルタにより、血球と血漿 または血清との分離効率が高められており、血球成分を効果的に捕捉することができ る。さらに、へマトクリットや粘度の異なる血液を分離する際にも、分離性能が低下す ることがなく、短時間で血液を血球と血漿または血清とに分離することができる。また 、赤血球が凝集し易い血液を分離する際にも、圧力損失が小さいため、赤血球の目 詰まりによる溶血の発生を抑制することができる。よって、得られた血漿若しくは血清 力も信頼性に優れた検査結果を得ることができる。
[0037] 第 1,第 2の血液分離フィルタを構成するシートが、平均繊維径が 0. 5〜3. O ^ m の範囲にある繊維体が集積されて形成されており、第 1の血液分離フィルタは、流路 に設置された状態での平均密度が、 0. 1〜0. 5gZcm3の範囲とされており、流路に 設置する前後の上述した式(2)で表される体積比力 1. 1〜5. 0の範囲であるように 圧縮された状態で流路に設置されている場合には、第 1,第 2の血液分離フィルタに よる血液の分離効果が高められており、第 1の血液分離フィルタにおける血液を分離 する際の圧力損失がより一層低減されている。よって、血球と血漿または血清をより 一層効果的に分離することができ、分離途中での血液フィルタ部材における閉塞も 生じ難い。
[0038] 第 1の血液分離フィルタを構成するシートが短冊状の形状を有し、積層体が短冊状 の形状を有するシートが少なくとも 2枚積層された構成を有する場合には、分離途中 でのフィルタの閉塞や溶血がより一層生じ難ぐ短時間で分離が可能である。
[0039] 第 1の血液分離フィルタを構成するシートが長尺状の形状を有し、長尺状の形状を 有するシートをジグザグ状に折りたたむことにより積層体が構成されている場合には、 シートを切断して積層する必要がな 、ためにカ卩ェ性が向上する。
[0040] 積層体が内周のシートと外周のシートとが略円筒形状を有するように積層された構 造を有する場合には、流路形成部材に充填する際に流路形成部材と血液分離フィ ルタとの間に隙間が形成され難ぐ充填性が向上し、分離途中でのフィルタの閉塞や 溶血が一層生じ難ぐ短時間での分離が可能である。 [0041] 複数の第 1の血液分離フィルタ力 血液が流れる方向に沿って配置されている場合 には、第 1の血液分離フィルタの流路の設置位置によって、それぞれの第 1の血液分 離フィルタの密度を異ならせることが容易となる。よって、複数の第 1の血液分離フィ ルタの密度を適宜設定することで、血液の分離効率をより一層向上させることができ る。さらに、複数の第 1の血液分離フィルタを流路に設置する際に、別々に段階的に 設置すると、設置後に第 1の血液分離フィルタを構成しているシートにシヮなどが発 生し難くなる。よって、血液を血球と血漿または血清とにより一層効果的に分離するこ とが可能となる。
[0042] 第 2の血液分離フィルタ力 第 1の血液分離フィルタの下流に配置されている場合 には、第 1の血液分離フィルタで大きな径を有する血液成分が捕捉された後に、第 1 の血液分離フィルタにより捕捉されずに通過した赤血球よりも比較的小さい例えば血 小板などの血球成分が、第 2の血液分離フィルタに捕捉されることになる。よって、よ り効果的に血清または血漿が分離され、得られた血漿または血清を検査すると、信 頼性の高い検査結果が得られる。第 1,第 2の血液分離フィルタの下流に配置されて おり、血球の混入を防止する血球停止フィルタをさらに備えている場合には、血球の 通過が防止されて、血球の血漿または血清への混入を防ぐことができる。
[0043] 本発明において、上記第 1,第 2の血液分離フィルタを有する血液分離フィルタ部 材に代えて、上記第 1の血液分離フィルタに相当する部分のみを有する血液分離フ ィルタ部材が用いられている場合には、血液分離フィルタ部材の流路に設置された 状態での平均密度が 0. 1〜0. 5gZcm3の範囲とされており、流路に設置する前後 の血液分離フィルタ部材の式(2A)で表される体積比が 1. 1〜5. 0の範囲となるよう に圧縮されて流路に設置されて!、るので、血液分離フィルタ部材による血液力 血 漿もしくは血清への分離効率が効果的に高められる。従って、血液分離フィルタ部材 における血液分離に際しての圧力損失がより一層小さくなる。そのため、血球から血 漿もしくは血清をより一層効果的に分離でき、溶血も生じ難ぐさらに分離途中におけ る血液分離フィルタ部材における閉塞も生じ難 、。
[0044] 血液分離フィルタ部材の下流に配置されており、血漿または血清に接触されること により膨潤し、流路を閉塞する水膨潤性ポリマーをさらに備えている場合には、水膨 潤性ポリマーの膨潤によって流路が閉塞される。従って、溶血により赤血球力 漏洩 してきた成分の血漿または血清への混入を防止することができる。
[0045] 水膨潤性ポリマー力 血液分離フィルタ部材と血球停止フィルタとの間に配置され ている場合には、血液分離フィルタと血球停止フィルタとの間の流路が閉塞されるた め、圧力差を駆動力とした血液成分の移動が停止される。従って、溶血により赤血球 力 漏洩してきた成分の血漿または血清への混入を防止することができる。
[0046] 水膨潤性ポリマー力 血球停止フィルタの下流に配置されている場合には、血球停 止フィルタの下流で流路が閉塞されるため、溶血により漏洩してきた赤血球内成分の 通過を防ぐことができる。
[0047] 水膨潤性ポリマーがシート状に成形されている場合には、水膨潤性ポリマーを流路 に設置することが容易である。
[0048] 本発明に従って構成された血液分離フィルタ装置と、該血液分離フィルタ装置を収 容している管状容器とを備える真空検体採取管を用いれば、へマトクリットや粘度の 異なる血液や、赤血球が凝集し易い血液を分離する際にも、血球や赤血球内成分 の混入のない血漿または血清を得ることができる。よって、得られた血漿または血清 を検査すると、信頼性の高い検査結果を得ることができる。また本発明の真空検体採 取管では、採血と血液分離とを同一の管状容器内で行うことができるため、操作が容 易である。また血液の移し替えが不要であるため、血液の付着による感染の危険性 が極めて小さくなる。
図面の簡単な説明
[0049] [図 1]図 1は、本発明の一実施形態に係る真空検体採取管の正面断面図である。
[図 2]図 2は、本発明の一実施形態に係る真空検体採取管に備えられている血液分 離フィルタ装置を拡大して示す正面断面図である。
[図 3]図 3は、本発明の一実施形態に係る真空検体採取管に備えられている血液分 離フィルタ装置を構成している第 1,第 2の血液分離フィルタおよび流路形成部材を 分解して示す斜視図である。
[図 4]図 4は、図 3に示した血液分離フィルタ装置の第 1の血液分離フィルタの構造を 説明するための斜視図である。 [図 5]図 5は、図 3に示した血液分離フィルタ装置の第 1の血液分離フィルタの構造を 説明するための斜視図である。
[図 6]図 6は、本発明に係る血液分離フィルタ装置の第 1の血液分離フィルタの他の 構造例を説明するための斜視図である。
[図 7]図 7は、本発明に係る血液分離フィルタ装置の第 1の血液分離フィルタの他の 構造例を説明するための斜視図である。
[図 8]図 8は、本発明の他の実施形態に係る真空検体採取管の正面断面図である。
[図 9]図 9は、本発明の他の実施形態に係る真空検体採取管に備えられている血液 分離フィルタ装置を構成している第 1,第 2の血液分離フィルタおよび流路形成部材 を分解して示す斜視図である。
[図 10]図 10は、図 9に示した血液分離フィルタ装置の第 1の血液分離フィルタの構造 を説明するための斜視図である。
[図 11]図 11は、第 1の血液分離フィルタの他の構造例を説明するための斜視図であ る。
[図 12]図 12は、本発明の別の実施形態に係る真空検体採取管の正面断面図である
[図 13]図 13は、本発明の別の実施形態に係る真空検体採取管に備えられている血 液分離フィルタ装置を構成している第 1,第 2の血液分離フィルタおよび流路形成部 材を分解して示す斜視図である。
[図 14]図 14は、本発明のさらに別の実施形態に係る真空検体採取管の正面断面図 である。
[図 15]図 15は、本発明のさらに別の実施形態に係る真空検体採取管に備えられて いる血液分離フィルタ装置を構成している第 1,第 2の血液分離フィルタおよび流路 形成部材を分解して示す斜視図である。
[図 16]図 16は、本発明のさらに他の実施形態に係る真空検体採取管を説明するた めの正面断面図である。
[図 17]図 17は、本発明のさらに別の実施形態に係る真空検体採取管の正面断面図 である。 [図 18]図 18は、血液分離フィルタ部材の上流側に緩衝材が配置されている実施形 態の要部を示す模式的斜視図である。
圆 19]図 19は、緩衝材の他の形状例を説明するための模式的斜視図である。
[図 20]図 20は、本発明において用いられる緩衝材のさらに他の変形例を説明するた めの模式的斜視図である。
[図 21]図 21は、本発明において用いられる緩衝材のさらに別の変形例を説明するた めの模式的斜視図である。
[図 22]図 22は、本発明において用いられる緩衝材のさらに他の変形例を説明するた めの模式的斜視図である。
[図 23]図 23は、本発明において用いられる緩衝材のさらに他の変形例を説明するた めの模式的斜視図である。
[図 24]図 24は、本発明にお ヽて用いられる緩衝材のさらに他の変形例を説明するた めの模式的斜視図である。
[図 25]図 25は、本発明において用いられる緩衝材のさらに他の変形例を説明するた めの模式的斜視図である。
[図 26]図 26は、本発明において用いられる緩衝材のさらに他の変形例を説明するた めの模式的斜視図である。
[図 27]図 27は、本発明において用いられる緩衝材のさらに他の変形例を説明するた めの模式的斜視図である。
[図 28]図 28は、本発明において用いられる緩衝材のさらに他の変形例を説明するた めの模式的斜視図である。
[図 29]図 29は、血液流入速度と LDH値との関係を示す図である。
[図 30]図 30は、血液流入速度と 415nmにおけるヘモグロビン吸光度との関係を示 す図である。
[図 31]図 31は、従来の血液検査用容器の一例を示す正面断面図である。
符号の説明
1…真空検体採取管
2"'管状容¾: 2a…開口
2b…底部
3…栓体
4…血液分離フィルタ装置 5…第 1の血液分離フィルタ 5a…上端
6…第 2の血液分離フィルタ oa…ン1 ~~卜
7…流路形成部材
8…筒状部材
8a…開口
8b…下端
8c…環状周縁部
8(1···開口部
9…底部材
9a…主面咅
9b…出口部
9c…凹部
9d…環状突部
10…血球停止フィルタ
11…水膨潤性ポリマー
11a…孔
15···シート
1…第 1の血液分離フィルタ 2···シート
2a…シー卜面
2b…折返し部分
1···真空検体採取管 32…管状容器
32a…開口
32b…底部
33…栓体
34…血液分離フィルタ装置
35 · · ·第 1の血液分離フィルタ
36…第 2の血液分離フィルタ
36a…シー卜
37···流路形成部材
38…円筒部材
38a…環状周縁部
39···底部材
41···血液分離フィルタ
41A〜41C…第 1の血液分離フィルタ
51···真空検体採取管
52···血液分離フィルタ装置
61···真空検体採取管
62···血液分離フィルタ装置
63〜65…第 2の血液分離フィルタ
63a〜6oa…ン■ ~~卜
発明を実施するための最良の形態
[0051] 以下、本発明の詳細を説明する。
(流路形成部材)
本発明で使用される流路形成部材は、血液の入口と出口とを有し、血液が流れる 流路を有する。流路形成部材の形状'大きさとしては、特に限定されず、後述する第 1,第 2の血液分離フィルタや管状容器の大きさ'形状等によって適宜変更され得る。 流路形成部材の材質も特に限定されなレヽ。
[0052] (第 1,第 2の血液分離フィルタ) 本発明では、第 1 ,第 2の血液分離フィルタにより血液分離フィルタ部材が構成され る。後述するように、血液分離フィルタ部材は、第 1の血液分離フィルタのみを有して いてもよい。第 1 ,第 2の血液分離フィルタは、繊維体が集積されて形成されたシート の積層体力もなる。第 1 ,第 2の血液分離フィルタは、繊維体が集積されて形成され た 1枚シートを折りたたむこと等により積層されたシート積層体でもよぐ若しくは 2枚 以上のシートが積層されて構成された積層体でもよい。第 1 ,第 2の血液分離フィルタ は同じ材料により構成されて 、てもよ 、。
[0053] 第 1 ,第 2の血液分離フィルタは、血球よりも血漿または血清を速く移動させる性質 を有していればよぐその材質は特に限定されない。このような性質を有する材質とし ては、例えば、ポリエステル、ポリエチレン、ポリプロピレンまたはポリアミド等の合成高 分子カゝらなる繊維が挙げられる。また、ガラス繊維や多孔性高分子繊維等も好適に 用いられる。
[0054] 第 1 ,第 2の血液分離フィルタは、血液中の成分を吸着する性質を有していてもよい 。この場合には、第 1 ,第 2の血液分離フィルタに表面処理が施されていてもよい。表 面処理剤としては、特に限定されないが、ポリエーテル系、シリコン系等の潤滑剤、ポ リビュルアルコールまたはポリビュルピロリドン等の親水性高分子類、さらには天然の 親水性高分子類、高分子界面活性剤等が挙げられる。また、第 1 ,第 2の血液分離フ ィルタの表面は、酸化剤による化学処理、プラズマ処理などにより親水化処理がされ ていてもよい。
[0055] 第 1 ,第 2の血液分離フィルタを構成するシートは、平均繊維径が 0. 5〜3. O ^ m の範囲にある繊維体が集積されて形成されていることが好ましい。平均繊維径が 0. 5 /z mより小さいと、血液を分離する際に溶血を起こし易くなる。平均繊維径が 3. Ο μ mより大きいと、血球と血漿または血清とを分離するために、第 1 ,第 2の血液分離フ ィルタを高密度に形成する必要が生じがちとなり、また使用する繊維の量も多くなりコ ストが高くなるおそれがある。血液の分離効果をより一層高めるためには、平均繊維 径は、 0. 5〜2. 5 /z mの範囲にあることがより好ましい。
[0056] 本発明では、第 1の血液分離フィルタと第 2の血液分離フィルタとの下記の式(1)で 表される重量比は、 0. 001〜1の範囲とされる。 重量比 =第 2の血液分離フィルタ重量 Z第 1の血液分離フィルタ重量' · '式(1) 上記重量比が 0. 001未満であると、第 2の血液分離フィルタによる血液中の赤血 球よりも比較的小さい例えば血小板などの成分の捕捉効果を十分に得ることができ ない。よって、得られた血漿若しくは血清の検査結果の信頼性が低下する。重量比 力 ^を超えると、第 1の血液分離フィルタによる血液を分離する際の圧力損失の低減 効果を十分に得ることができない。さらに、第 2の血液分離フィルタが多く用いられる ために赤血球への負荷が大きくなり、赤血球が破壊されて赤血球内成分が漏洩し易 くなる。
[0057] 好ましくは、上記第 1,第 2の血液分離フィルタを構成するシートは、平均繊維径が 0. 5〜3. 0 mの範囲にある繊維体が集積されて形成されており、第 1の血液分離 フィルタは、流路に設置された状態での平均密度が 0. 1〜0. 5gZcm3の範囲とされ ており、流路に設置する前後の下記の式(2)で表される体積比が 1. 1〜5. 0の範囲 であるように圧縮された状態で前記流路に設置されている。
[0058] 体積比 =設置前の第 1の血液分離フィルタ体積 Z設置後の第 1の血液分離フィル タ体積 · · ·(¾
[0059] 第 1の血液分離フィルタの平均密度が上記特定の範囲にあり、かつ上記体積比が 上記特定の範囲内とされていることにより、血液力 血漿もしくは血清の分離をより一 層効率良く行うことができる。
体積比が 1. 1よりも小さいと、血液分離フィルタ 5の積層されている複数のシート 11 間に隙間が形成されて、血液が該隙間を通過し易くなるため、血液の分離効率が低 下しがちとなる。また、体積比が 5. 0よりも大きいと、第 1の血液分離フィルタの充填 時に充填される大きさに圧縮することが困難となり、生産性が低下する。
[0060] また、本発明では、前述したように、血液分離フィルタ部材は、上記第 1の血液分離 フィルタのみを有するように構成されていてもよぐその場合には、血液分離フィルタ 部材全体として、平均繊維径が 0. 5〜3. 0 mの範囲にある繊維体が集積されて形 成されたシートの積層体により構成され、下記の式(2A)で表される体積比が 1. 1〜 5. 0の範囲内となるように圧縮された状態で血液分離フィルタ部材が流路に設置さ れていればよい。 体積比 =設置前の血液分離フィルタ部材体積 z設置後の血液分離フィルタ部材 体積…
[0061] (緩衝材)
本発明では、好ましくは、上記容器本体の開口側力も血液が採取されるときに、血 液が上記血液分離フィルタ部材よりも先に接触されるように、容器本体に、血液中の 血球が破壊されるのを抑制する緩衝材が配置されている。緩衝材は、血液分離フィ ルタ部材へ血液が衝突する際の衝撃を和らげるような緩衝作用を果たす。より具体 的には、血液の流速を低めて血液分離フィルタ部材に血液を導いたり、あるいは血 液と接触された際の衝撃を和らげる材料により構成され得る。
[0062] 緩衝材の形状としては、上記緩衝作用を有する限り限定されず、後述するように、 様々な形状とすることができる。
[0063] 緩衝材の材質にっ ヽては、血液が接触されたときに、血液中の血球が破壊される のを抑制することができれば特に限定されず、合成樹脂、天然榭脂、金属、ガラス、 その他無機材料などを用いることができる。ただし、緩衝材の材質が水溶性である場 合には、血液分離時に緩衝材が溶出し、検査結果に影響を与えることがあるので、 非水溶性材料からなる緩衝材が好まし ヽ。
[0064] 緩衝材の表面には、抗凝固剤、凝固促進剤、解糖阻止剤、撥水化剤、または親水 ィ匕剤などが塗布されていてもよい。なお、血清を得る場合には凝固促進剤が用いら れ、血漿を得る場合には抗凝固剤が用いられる。
上記抗凝固剤としては、へパリン、エチレンジァミン四酢酸塩またはクェン酸などを 用!/、ることができる。
[0065] (血球停止フィルタ)
本発明では血液の流れる流路にお!/、て血液分離フィルタ部材の下流に、赤血球の 通過を防止できる血球停止フィルタが配置されて 、ることが好まし 、。
[0066] 血球停止フィルタは、特に限定されな 、が、例えば血漿または血清が通過し得るよ うに多数の貫通孔が形成された膜からなる。もっとも膜以外のフィルタ部材であっても よい。
[0067] 血球停止フィルタに形成された孔としては、血漿または血清の通過が可能であり、 かつ赤血球の通過を防止できる範囲の孔径を有するものであれば、特に限定される ものではない。赤血球の通過を防止するためには、孔径は 2 m以下であることが好 ましい。孔径が小さいと、血液中のタンパク成分などにより目詰まりを起こす可能性が あるため、孔径は 0. 05 m以上であることが好ましい。赤血球の通過を効果的に防 止するためには、孔径は 0. 1〜1. 5 /z mの範囲にあることがより好ましい。
[0068] 血球停止フィルタを構成する材質は特に限定されず、例えば、ポリビ-リデンジフル オライド、ポリテトラフルォロエチレン、酢酸セルロース、ニトロセルロース、ポリカーボ ネート、ポリエチレンテレフタレート、ポリエチレン、ポリプロピレン、ガラスファイバー、 ポロシリケート、塩ィ匕ビニルまたは銀等を挙げることができる。
[0069] 濾過の速度を高めるために、血球停止フィルタの表面は親水処理されて!、てもよ!/ヽ 。親水処理の方法としては、プラズマ処理、親水性高分子によるコーティング等が挙 げられる力 これらの方法に限定されず、他の方法を用いてもよい。
[0070] (水膨潤性ポリマー)
本発明では血液の流れる流路に、血漿または血清に接触されることにより膨潤する 水膨潤性ポリマーが配置されていることが好ましい。水膨潤性ポリマーは、血液分離 フィルタ部材と血球停止フィルタとの間に配置されていることがより好ましぐ血球停 止フィルタのさらに下流に配置されて 、ることがさらに好まし!/、。
[0071] 本発明で使用され得る水膨潤性ポリマーの材質としては、特に限定されないが、分 子骨格に親水性の官能基を有し、自重に対し同量以上の水を吸収できる性質の榭 脂が好適である。水膨潤性ポリマーの具体例としては、ポリアクリル酸アルカリ金属塩 系榭脂またはその共重合体およびそれらの架橋体、ポリアクリルアミド系榭脂または その共重合体およびそれらの架橋体、ポリ N—ビュルァセトアミド系榭脂またはその 共重合体およびそれらの架橋体、シリコン系榭脂またはその共重合体およびそれら の架橋体、ポリビュルエーテル系榭脂およびその共重合体およびそれら架橋体、ポ リアルキレンオキサイド系榭脂またはその共重合体およびそれらの架橋体、ポリビ- ルアルコール、ポリビュルピロリドンまたはその共重合体およびそれらの架橋体等が 挙げられる。
[0072] 水膨潤性ポリマーとしては、粉末状、粒状としたものを用いてもよぐフィルタゃシー ト状に成形したものを用いてもょ 、。水膨潤性ポリマーがシート状に成形されて 、る 場合には、水膨潤性ポリマーを流路に設置することが容易となる。水膨潤性ポリマー としては、ペースト状、スラリー状または溶液等にしたものを用いてもよぐこれを添カロ し乾燥させるなどしてもよ 、。
[0073] 水膨潤性ポリマーは、血漿または血清に接触されることでそれ自身が膨潤し、流路 を閉塞させる。そのため、水膨潤性ポリマーの必要量は、閉塞させる流路体積、水膨 潤性ポリマーの膨潤率及び膨潤速度によって異なる。よって、閉塞させる流路体積、 水膨潤性ポリマーの膨潤率及び膨潤速度から、水膨潤性ポリマーの最適な量が計 算される。
[0074] 閉塞させる流路体積は、血液中の水分が吸収されかつ検体の回収量が低下しない 範囲で設定される。流路体積が大きくなると、閉塞させるための水膨潤性ポリマーの 量も多くなるため、検体の回収量が低下するおそれがある。
[0075] 従って、閉塞させる流路体積は、 0. 005〜1. Ocm3の範囲にあることが好ましい。
また、水膨潤性ポリマーの体積は閉塞させる流路体積に対し、 5〜95%の範囲にあ ることが好ましい。水膨潤性ポリマーの体積が閉塞させる流路体積に対し 5%より小さ いと、流路を閉塞するまでの時間が長くなるため、溶血により赤血球力 漏洩してきた 成分が、分離した血漿もしくは血清に混入するおそれがある。水膨潤性ポリマーの体 積が閉塞させる流路体積に対し 95%より大きいと、血漿または血清がすべて回収さ れる前に流路が閉塞されてしまうことがあり、血漿または血清の回収効率が低下する おそれがある。
[0076] (真空検体採取管に用いられる管状容器および栓体)
本発明に係る真空検体採取管に用いられる管状容器としては、特に限定されず、 角筒状、円筒状などの形状を有する有底の容器が挙げられる。管状容器の底部の 形状も、特に限定されるものではない。
[0077] 管状容器の材質は特に限定されず、例えば、ポリエチレン、ポリプロピレン、ポリス チレン、ポリエチレンテレフタレート、ポリメチルメタタリレート、ポリアタリロニトリノレ、ポリ アミド、アクリロニトリル スチレン共重合体、エチレン ビュルアルコール共重合体 等の熱可塑性榭脂や、不飽和ポリエステル榭脂、エポキシ榭脂、エポキシ—アタリレ 一ト榭脂等の熱硬化性榭脂、また、酢酸セルロース、プロピオン酸セルロース、ェチ ルセルロース、ェチルキチン等の変性天然榭脂、さらにソーダ石灰ガラス、リンケィ酸 ガラス、ホウケィ酸ガラス等のケィ酸塩ガラス、石英ガラスなどのガラス、及びこれらを 主成分とするもの、あるいはこれらを組み合わせたもの等、従来公知のものが挙げら れる。
[0078] 検体採取管に用いられる栓体は、容器の開口を密封するように取り付けられる。栓 体が空気非透過性であるときは、真空検体採取管として用いることができる。
[0079] 栓体の素材としては、特に限定されず、天然ゴム、合成ゴムおよび熱可塑性エラス トマ一から選ばれる少なくとも一種の弾性体、あるいは、アルミラミネートまたはアルミ 蒸着シート等従来公知のものが挙げられる。
[0080] 以下、本発明の具体的な実施形態を説明することにより本発明を明らかにする。
図 1〜3を用いて、本発明の一実施形態に係る真空検体採取管、および該真空検 体採取管に備えられている血液分離フィルタ装置を説明する。
[0081] 図 1に、本発明の一実施形態に係る真空検体採取管を正面断面図で示す。
図 1に示すように、真空検体採取管 1は、上端に開口 2aを有し、下端に底部 2bを有 する管状容器 2を有する。管状容器 2は角筒状の形状を有し、底部 2bは逆四角錐台 形状に先細りした形状を有する。開口 2aには、内部を気密封止するように栓体 3が取 り付けられている。また栓体 3は後述する筒状部材の開口を封止するように取り付け られている。なお、真空検体採取管 1内は減圧されている。
[0082] 血液が管状容器 2の上方から血液分離フィルタ装置 4に供給されると、血液が血液 分離フィルタ装置 4を通過し、その際に血球と血漿または血清とに分離される。分離 された血漿または血清は、管状容器 2の底部 2bに収容される。
[0083] 図 2に、上述した真空検体採取管 1に備えられている血液分離フィルタ装置 4を拡 大して正面断面図で示す。図 3に、血液分離フィルタ装置 4を構成している第 1,第 2 の血液分離フィルタ 5, 6および流路形成部材 7を分解斜視図で示す。
[0084] 図 2,図 3に示すように、血液分離フィルタ装置 4は、流路形成部材 7と、第 1,第 2の 血液分離フィルタ 5, 6とを備えている。すなわち、本実施形態では、血液分離フィル タ部材は、上記第 1,第 2の血液分離フィルタ 5, 6を有する。 [0085] 流路形成部材 7は、角筒状の形状を有する筒状部材 8と、平面視したときに外周が 筒状部材 8の内周と同じ四角形の形状を有する底部材 9とを有する。筒状部材 8は上 端に開口 8aを有する。筒状部材 8の下端 8bより上方において、筒状部材 8の内周面 力も内側に向って突出するように角環状の環状周縁部 8cが設けられている。この環 状周縁部 8cにより、該環状周縁部 8cに囲まれた開口部 8dが形成されている。
[0086] 底部材 9は、主面部 9aと、主面部 9aの中央から下方に延ばされた管状の出口部 9 bとを有する。出口部 9bは上下に延びる中空流路を有する。主面部 9aの上面には環 状突部 9dが設けられている。環状突部 9dに囲まれた部分が凹部 9cとされている。凹 部 9cは、出口部 9bの中空流路に連ねられており、流路の一部が構成されている。
[0087] 底部材 9は、環状周縁部 8cの下方に配置されている。より具体的には、筒状部材 8 は下端 8bにおいて開口している力 この開口部分力も底部材 9が挿入され、固定さ れている。すなわち、主面部 9aの外周縁が筒状部材 8の内周面に密着され、固定さ れている。この状態において、主面部 9aの上面が、環状周縁部 8c及び開口部 8dに 対向されている。また、環状周縁部 8cの下面、及び環状突部 9dの上端面に後述す る血球停止フィルタが隙間なく密着して 、る。
[0088] 第 2の血液分離フィルタ 6は、短冊状の形状を有するシート 6aが複数枚積層されて 構成されている。なお、第 2の血液分離フィルタは、繊維体が集積されて形成された シート 1枚により構成されていてもよい。第 2の血液分離フィルタ 6は、複数枚のシート 6aのシート面が血液が流れる方向と略直角方向となるように、環状周縁部 8c上に配 置されている。第 2の血液分離フィルタ 6の外周面は、筒状部材 8の内周面と密着し ている。なお、第 2の血液分離フィルタ 6は、長尺状の形状を有するシート長尺状の 形状を有するシートが等間隔にジグザグ状に折りたたまれた状態で、シートのシート 面が積層されて構成されて 、てもよ 、。
[0089] 第 1の血液分離フィルタ 5は、複数枚の短冊状の形状を有するシートの積層体から なる。第 1の血液分離フィルタ 5を構成するシートは、繊維体が集積されて形成されて いる。第 1の血液分離フィルタ 5の下面は第 2の血液分離フィルタ 6の上面に当接され ており、第 1の血液分離フィルタ 5の外周面が、筒状部材 8の内周面と密着するように 設置されている。すなわち、第 1の血液分離フィルタ 5は、第 2の血液分離フィルタ 5 の上流に配置されている。第 1の血液分離フィルタ 5では、複数枚のシートのシート面 が血液が流れる方向と略平行となるように積層されている。
[0090] 第 1の血液分離フィルタ装置 5および第 2の血液分離フィルタ 6は、上述した式(1) で表される重量比が 0. 001〜1の範囲にあるように選ばれている。
本実施形態では、血液分離フィルタ装置 4は、第 1,第 2の血液分離フィルタ 5, 6の 下流に血球停止フィルタ 10をさらに備えている。血球停止フィルタ 10は、環状周縁 部 8cと主面部 9aとの間の空間に配置されている。より具体的には、血球停止フィルタ 10は、環状周縁部 8cの下面および環状突部 9dの上端面に挟持されるように配置さ れている。
[0091] 本実施形態では、血液分離フィルタ装置 4は、第 1,第 2の血液分離フィルタ 5, 6の 下流に水膨潤性ポリマー 11をさらに備えている。水膨潤性ポリマー 11は、血球停止 フィルタ 10と主面部 9aとの間であって、主面部 9aの上面の凹部 9cに配置されている 。初期状態、すなわち膨潤前には血漿または血清が流れる流路を確保するように、 水膨潤性ポリマー 11の中央に孔 11aが形成されており、孔 11aは出口部 9bの中空 流路に連ねられている。なお、水膨潤性ポリマー 11は、第 1,第 2の血液分離フィル タ 5, 6と血球停止フィルタ 10との間に配置されていてもよい。より具体的には、環状 周縁部 8cで囲まれた開口部 8dに配置されて ヽてもよ ヽ。
[0092] 上述した第 1の血液分離フィルタ 5の構造を、図 4, 5を用いてさらに詳細に説明す る。
図 4に斜視図で示すように、第 1の血液分離フィルタ 5は、短冊状の形状を有する複 数枚のシート 15を用いて構成される。この複数枚のシート 15が積層されて、図 5に斜 視図で示す直方体形状を有するシートの積層体からなる第 1の血液分離フィルタ 5が 得られる。
[0093] 第 1の血液分離フィルタ 5を設置する際には、第 1の血液分離フィルタ 5を圧縮しな がら、上述した筒状部材 8に開口 8aから充填する。このとき、第 1の血液分離フィルタ 5は、複数のシート 15のシート面が、血液が流れる方向と略平行となるように積層され かつ充填される。第 1の血液分離フィルタ 5は、流路形成部材 7の流路の少なくとも一 部の領域に設置される。よって、流路に設置された血液分離フィルタ装置 4に血液が 供給されると、血液は第 1の血液分離フィルタ 5を通過することになる。
[0094] 第 1の血液分離フィルタ 5は、流路に設置された状態での平均密度が、好ましくは 0 . 1〜0. 5g/cm3の範囲になるように設置される。平均密度力 0. lg/cm3よりも低 いと、血液の分離を効率的に行えず、得られる血漿または血清の量が少なくなること がある。平均密度が、 0. 5gZcm3よりも高いと、赤血球への負荷が大きくなり、溶血を 起こし易くなる。血液をより一層効率的に分離するためには、平均密度は、 0. 15〜0 . 40g/cm3の範囲にあることが好ましい。
[0095] 第 1の血液分離フィルタ 5は、流路に設置する前後の上述した式(2)で表される体 積比力 好ましくは、 1. 1〜5. 0の範囲であるように圧縮されて流路に設置される。 体積比が 1. 1よりも小さいと、第 1の血液分離フィルタ 5の積層されている複数のシー ト 15間に隙間が形成されて、血液が該隙間を通過し易くなるため、血液の分離効率 が低下することがある。また、体積比が 5. 0よりも大きいと、第 1の血液分離フィルタ 5 の充填時に充填される大きさに圧縮することが困難となり、生産性が低下することが ある。
[0096] 上述した第 1の血液分離フィルタ 5の他の構造例を、図 6, 7に斜視図で示す。
図 6に示すように、第 1の血液分離フィルタ 21は、長尺状の形状を有する 1枚のシ ート 22を用いて構成されている。長尺状の形状を有するシート 22を等間隔にジグザ グ状に折りたたんで積層体を構成すると、図 7に示すように、複数のシートが積層され た第 1の血液分離フィルタ 21が得られる。
[0097] 第 1の血液分離フィルタ 21を設置する際には、上述した第 1の血液分離フィルタ 5と 同様の方法により、第 1の血液分離フィルタ 21を圧縮しながら充填する。このとき、第 1の血液分離フィルタ 21の複数のシート面 22aが、血液が流れる方向と略平行となる ように積層されかつ充填される。なお、血液分離フィルタ 21は、好ましくは、シグザグ 状に折りたたまれたシート 22の折返し部分 22bが、血液が流れる方向と略平行となる ように充填される。
[0098] 図 8に、本発明の他の実施形態に係る真空検体採取管を正面断面図で示す。
図 8に示す真空検体採取管 31は、上述した真空検体採取管 1とその形状が異なる 。本実施形態では、特に第 1の血液分離フィルタ 35が、内周のシートと外周のシート とが略円筒形状を有するように積層された構造を有する積層体からなることを特徴と している。この積層体からなる略円柱形状を有する第 1の血液分離フィルタ 35が、流 路形成部材 36内の流路に設置されている。よって、本実施形態では、上述した管状 容器 2及び流路形成部材 7に変えて、第 1の血液分離フィルタ 35の形状に対応した 形状を有する管状容器 32及び流路形成部材 37を用いている。なお、真空検体採取 管 31では、上述した血球停止フィルタ 10及び水膨潤性ポリマー 11が、真空検体採 取管 1と同様の位置に設置されて 、る。
[0099] 図 8に示すように、真空検体採取管 31は、上端に開口 32aを有し、下端に丸底の 底部 32bを有する管状容器 32を有する。管状容器 32は円筒状の形状を有する。開 口 32aには、内部を気密封止するように栓体 33が取り付けられている。図 9に、上述 した真空検体採取管 31に備えられて 、る血液分離フィルタ装置 34を構成して 、る 第 1,第 2の血液分離フィルタ 35, 36および流路形成部材 37を分解斜視図で示す。
[0100] 図 8,図 9に示すように、血液分離フィルタ装置 34は、流路形成部材 37と第 1,第 2 の血液分離フィルタ 35, 36とを備えている。
流路形成部材 37は、円筒部材 38と、平面視したときに外周が円形の形状を有する 底部材 39とを有する。本実施形態の流路形成部材 37は、上述した角筒状の形状を 有する筒状部材 8及び平面視したときに外周が四角形の形状を有する底部材 9とそ の外周部分の形状が異なっていることにおいてのみ相違しており、内部構造は同様 に構成されている。
[0101] 上記円筒部材 8の環状周縁部 8cと同様の位置において、円筒部材 38の内周面か ら内側に向力つて突出するように環状周縁部 38aが形成されている。
第 2の血液分離フィルタ 36は、円盤状の形状を有するシート 36aが複数枚積層され て構成されている。なお、第 2の血液分離フィルタは、繊維体が集積されて形成され たシート 1枚により形成されていてもよい。第 2の血液分離フィルタ 36は、複数枚のシ ート 36aのシート面が血液が流れる方向と略直角方向となるように、環状周縁部 38a 上に配置されている。第 2の血液分離フィルタ 36の外周面力 筒状部材 38の内周面 と密着している。
[0102] 図 10に示すように、第 1の血液分離フィルタ 35は、長尺状の形状を有する 1枚のシ ートが渦巻き状に巻かれて形成されている。従って、内周のシート部分と外周のシー ト部分とが積層されている。
このように、 1枚のシートを渦巻き状等に卷回し、内周側のシート部分と外周側のシ ート部分が積層された積層体を構成してもよ ヽ。
[0103] 第 1の血液分離フィルタ 35の下面は第 2の血液分離フィルタ 36の上面に当接され ており、第 1の血液分離フィルタ 35の外周面が、筒状部材 38の内周面と密着するよう に設置されている。第 1の血液分離フィルタ 35では、内周のシート部分と外周のシー ト部分とが血液が流れる方向と略平行となるように積層されて 、る。
[0104] 血液分離フィルタ 35の設置に際しては、血液分離フィルタ 35を圧縮しながら、上述 した円筒部材 38に充填する。このとき、血液分離フィルタ 35は、内周のシート部分と 外周のシート部分とが、血液が流れる方向と略平行となるように積層されかつ充填さ れる。なお、血液分離フィルタは、複数のシートを略同心円形状に巻きつけることで、 内周のシートと外周のシートとが略円筒形状を有するように積層された構造を有して いてもよい。
[0105] 上述した第 1の血液分離フィルタ 35の他の構造例を、図 11に斜視図で示す。
図 11に斜視図で示すように、複数の第 1の血液分離フィルタ 41A〜41 C力もなる 血液分離フィルタ 41が用いられてもよい。流路に充填する際には、複数の第 1の血 液分離フィルタ 41A〜41Cは、血液が流れる方向に沿って配置される。充填方法と しては、複数の第 1の血液分離フィルタ 41A〜41Cが別々に段階的に充填されても よいし、積層された状態で一度にまとめて充填されてもよい。複数の第 1の血液分離 フィルタ 41A〜41Cが別々に段階的に充填されると、充填後に第 1の血液分離フィ ルタ 41A〜41Cを構成しているシートにシヮなどが発生し難くなる。なお、複数の第 1 の血液分離フィルタ 41A〜41Cは、流路に設置された後には、好ましくは重なり合う ように接した状態であるが、一定間隔を隔てられた状態であってもよい。
[0106] 流路形成部材 37に、複数の第 1の血液分離フィルタ 41A〜41Cを設置する際には 、複数の第 1の血液分離フィルタ 41A〜41Cごとに密度を異ならせることができる。よ つて、密度を適宜設定することで、血液の分離効率を向上させることができる。
[0107] 図 12に、本発明の別の実施形態に係る真空検体採取管 51を正面断面図で示す。 図 13に、真空検体採取管 51に備えられて ヽる血液分離フィルタ装置 52を構成して いる第 1の血液分離フィルタ 41A〜41C、第 2の血液分離フィルタ 36および流路形 成部材 37を分解斜視図で示す。
[0108] 図 12, 13に示すように、真空検体採取管 51に備えられている血液分離フィルタ装 置 52では、第 2の血液分離フィルタ 36の上流に、複数の第 1の血液分離フィルタ 41
A〜41Cが配置されて!、る。
[0109] 第 2の血液分離フィルタ 36の上流において、複数の第 1の血液分離フィルタ 41 A
〜41Cは、血液が流れる方向に沿うように積層されて、重なり合うように接した状態で 充填されていてもよい。
[0110] 図 14に、本発明のさらに別の実施形態に係る真空検体採取管 61を正面断面図で 示す。図 15に、真空検体採取管 61に備えられている血液分離フィルタ装置 62を構 成している第 1の血液分離フィルタ 41A〜41C、第 2の血液分離フィルタ 63〜65、 および流路形成部材 37を分解斜視図で示す。
[0111] 図 14, 15に示すように、複数の第 1の血液分離フィルタ 41A〜41Cと、複数の第 2 の血液分離フィルタ 63〜65と力 血液が流れる方向に沿うように交互に積層されて、 重なり合うように接した状態で充填されて 、てもよ 、。
[0112] 真空検体採取管 61に備えられている血液分離フィルタ装置 62では、第 1の血液分 離フィルタ 41Cの下流に複数のシート 65aからなる第 2の血液分離フィルタ 65が配置 されており、第 1の血液分離フィルタ 41B, 41C間に複数のシート 64aからなる第 2の 血液分離フィルタ 64が配置されており、第 1の血液分離フィルタ 41 A, 41B間に複数 のシート 63aからなる第 2の血液分離フィルタ 63が配置されている。なお、第 1の血液 分離フィルタ 41Aのさらに上流に、第 2の血液分離フィルタが配置されて 、てもよ 、。
[0113] 上述した第 1の血液分離フィルタ 5及び第 1の血液分離フィルタ 21も血液分離フィ ルタ 41と同様に、複数の血液分離フィルタにより構成されて 、てもよ!/、。
[0114] 本発明では、第 1の血液分離フィルタは、シート面が血液が流れる方向と略平行に 積層されて構成されていればよぐ上述した形状に限定されるものではない。また、 第 1の血液分離フィルタの形状により、流路形成部材及び真空検体採取管に用いる 管状容器の形状も適宜変更することができる。 また、本発明においては、前述したように、血液分離フィルタ部材は、上記第 1の血 液分離フィルタのみを用いて構成されてもよい。このような実施形態を図 16及び図 1 7にそれぞれ正面断面図で示す。
[0115] 図 16に示す真空検体採取管 71は、図 1に示した真空検体採取管 1とほぼ同様に 構成されている。異なるところは、第 2の血液分離フィルタ 6が省略されていることにあ る。すなわち、図 1における第 1の血液分離フィルタ 5及び第 2の血液分離フィルタ 6 に代えて、第 1の血液分離フィルタ 5のみ力 なる血液分離フィルタ部材が用いられ ている。その他の点については、図 1に示した真空検体採取管 1と同様であるため、 同一部分については同一の参照番号を付することによりその説明を省略する。
[0116] このように、本発明においては、第 1の血液分離フィルタ 5のみからなる血液分離フ ィルタ部材を用いてもよぐその場合においては、血液分離フィルタ部材が流路に設 置された状態での平均密度が 0. 1〜0. 5gZcm3の範囲内とされており、前述した式 (2A)で示される体積比が 1. 1〜5. 0の範囲内となるように圧縮された状態で流路に 設置されておればよい。
[0117] また、図 17に示す実施形態の真空検体採取管 72は、図 8に示した真空検体採取 管 31と、第 2の血液分離フィルタ 36が備えられて 、な 、ことを除 、ては同様に構成さ れている。すなわち、第 1,第 2の血液分離フィルタ 35, 36に代えて、第 1の血液分 離フィルタ 35のみ力もなる血液分離フィルタ部材が備えられて 、る。この場合にお ヽ ても、図 16に示した真空検体採取管 71の場合と同様に、血液分離フィルタ部材の流 路に設置された状態での平均密度が 0. 1〜0. 5gZcm3の範囲とされており、式(2 A)で表される体積比が 1. 1〜5. 0の範囲内となるように圧縮された状態で血液分離 フィルタ部材が流路に設置されておればょ 、。
[0118] 図 16及び図 17に示した真空検体採取管 71, 72においても、血液分離フィルタ部 材は、前述した第 1の血液分離フィルタと同様に様々な形態に変形することができる さらに、本発明にお 、て好ましくは備えられる緩衝材がさらに備えられて 、る実施 形態を説明することとする。図 18は、筒状の容器本体内に緩衝材 81が備えられてい る部分を拡大して示す模式的斜視図である。ここでは、血液分離フィルタ部材 82の 上流側に、緩衝材 81が配置されている。血液分離フィルタ部材 82は、前述した第 1 ,第 2の血液分離フィルタより構成されていてもよぐあるいは上記第 1の血液分離フィ ルタのみからなる血液分離フィルタ部材であってもよい。
[0119] 緩衝材 81は、血液が採取されるときに、血液分離フィルタ部材 82よりも先に血液が 接触されるように容器本体内に配置されている。ここでは、緩衝材 81は、流路形成部 材 83の内径よりも僅かに大きな径を有する円形状の 1枚のシートを変形させた形状 を有する。
上記緩衝材 81は、 1枚の円形状のシートを折曲げ部分が曲面状となるように折曲 げられた構造を有する。この折曲げられた部分、すなわち湾曲外側部分が上方の開 口側となるように緩衝材 81が配置されて 、る。
[0120] 上記緩衝材 81は、供給された血液の流れる速度を低めるために設けられている。
この機能を実現するために、緩衝材 81は上記のように円形のシートを折曲げた形状 を有し、折曲げ部分の両側に血液が流れる方向に対して傾斜されている一対の傾斜 面 81a, 81bが構成されている。血液がこの傾斜面 81a, 81bを伝って流れることによ り、緩衝材 81が存在しない場合に比べて、血液分離フィルタ部材 82に向力つて供給 される血液の流れを遅くすることができる。
[0121] 緩衝材 81は、例えば楕円形のシートを変形して構成されてもよぐ複数枚のシート を積層することにより構成されていてもよい。なお、上記のようにシートを変形すること ができ、かつ折曲げられた部分が曲面状に湾曲されている状態を維持するために、 上記シートの厚みは 0. 01〜2mm程度であることが望ましい。
緩衝材 81は上記のような形状を有するため、導入された血液は、緩衝材 81の傾斜 面 81a, 81bを伝って拡がり、下方の血液分離フィルタ部材 82に至る。すなわち、血 液分離フィルタ部材 82の上面 82aに直接血液が衝突しない。特に、真空検体採取 管では、内部が減圧されているので、血液は血液分離フィルタ部材 82側に向力つて 圧力差によりかなりの速度で流れ込むことになる。この場合、血液分離フィルタ部材 8 2に直接血液が衝突すると、血球が破壊するおそれがある。
[0122] これに対して、緩衝材 81が配置されて 、るため、本実施形態では、血液は緩衝材 8 1に先ず接触し、緩衝材 81が上記のような形状を有するため、緩衝材 81の折曲げら れて構成された湾曲部分から傾斜面 8 la, 81bを伝って、径方向外側に拡がりつつ 流入する。従って、血液中の血球の破壊を確実に抑制することができる。すなわち、 より低い速度で血液分離フィルタ部材 82の上面 82aに血液が達することとなるため、 溶血を確実に防止することができる。
[0123] なお、緩衝材 81の形状にっ ヽては、上記血球の破壊を抑制する緩衝作用を果た す限り特に限定されない。このような緩衝材 81の形状の変形例を図 19〜図 28に示 す。図 19〜図 28では、緩衝材 81の様々な変形例について、同じ参照番号を付して 各緩衝材を示すこととする。
図 19及び図 20に示す緩衝材 84は、いずれも複数の貫通孔 84aを有する。すなわ ち、流路形成部材 83の内径とほぼ同等の円板状の緩衝材 84に、複数の貫通孔 84a が形成されている。血液は、一端緩衝材 84の上面に接触する力 貫通孔 84aの存在 する部分に移動して下方に流れることになる。従って、血液分離フィルタ部材 82の上 面 82aに血液が衝突する衝撃が和らげられる。
[0124] 図 21〜図 23に示す緩衝材 85〜87はいずれも傾斜面 85a〜87aを有し、それによ つて流入した血液の下方へ移動する速度が低められる。
また、図 24に示す緩衝材 88は、円板状の形状を有するが、綿状もしくは繊維状の 材質により形成されている。従って、流入した血液の流速が低められ、血球の破壊が 抑制される。
[0125] 好ましくは、上記緩衝材は、血液分離フィルタ部材を位置決めするための位置決め ホルダーを有するように該位置決めホルダーが一体ィ匕されて ヽる構造であってもよ!/ヽ 。図 25に示すように、第 1の血液分離フィルタ 95のみ力 なる血液分離フィルタ部材 の上方に、緩衝材 91が配置されている。この緩衝材 91は、 1枚の円形のシート状部 材に部分的に切り込みを入れることにより形成されている。すなわち、切り込みの外 側に、リング状の位置決めホルダー 91cが残されている。そして、リング状の位置決め ホルダー 91cで囲まれた略円形の傾斜面 91aが、一端 91bにおいて位置決めホルダ 一 91cに連ねられている。この傾斜面 91aは、図示のように、位置決めホルダー 91c 力も上方に切り起こされている。そのため、傾斜面 91aが上記のように、血液の流れる 方向に傾斜され、緩衝作用を実現する。 [0126] 比較的剛性を有する材料により緩衝材 91を構成することにより、位置決めホルダー 91cが、血液分離フィルタ部材の位置決め機能をも果たす。すなわち、リング状の位 置決めホルダー 91cが、下方の血液分離フィルタ 95の上面 95aに当接し、血液分離 フィルタ 95の位置決めを果たして!/、る。
図 26に示す緩衝材 92もまた、リング状ではないが、リングの一部を残した円弧状の 位置決めホルダー 92cと、傾斜面 92aとは傾斜面 92aの一端 92bで連絡された形状 を有する。
[0127] なお、図 27及び図 28に示す変形例の緩衝材 93, 94も、同様に、リング状の位置 決めホノレダー 93c, 94cと、傾斜面 93a, 94aとを有する。このように、傾斜面 93a, 94 aの形状にっ 、ても特に限定されるものではな!/、。
[0128] (真空検体採取管の使用方法)
図 1に示されている真空検体採取管 1を例にとり、その使用方法を以下説明する。
[0129] 使用に際しては、採血針の一端を血管に刺入した後、他端を栓体 3に刺入し、栓体 3を貫通させる。その結果、内部が減圧されている真空検体採取管 1内に血液が流 れ込む。流れ込んだ血液は、第 1の血液分離フィルタ 5の上端 5aに達する。
[0130] 第 1の血液分離フィルタ 5の上端 5aに達した血液力 第 1の血液分離フィルタ 5を通 過する際、血球よりも血漿または血清が速く移動する。第 1の血液分離フィルタ 5を通 過した血液は、第 2の血液分離フィルタ 6に達し、第 2の血液分離フィルタ 6において も血球よりも血漿または血清が速く移動する。第 2の血液分離フィルタ 6では、赤血球 よりも比較的小さい例えば血小板などの血球成分が効果的に捕捉される。
[0131] 相対的に早く移動した血漿または血清は、血球停止フィルタ 10に先に達し、該血 球停止フィルタ 10を通過する。そして、血漿または血清は、凹部 9cを経て出口部 9b の中空流路を通過し、管状容器 2に収容される。血漿または血清よりも低速で移動し た血球は、血球停止フィルタ 10に達しても、血球停止フィルタ 10を通過しない。従つ て、下方にお!/ヽて収容された血漿または血清に血球は混入しな ヽ。
[0132] また、水膨潤性ポリマー 11は、血漿または血清に接触されることにより、次第に膨 潤し、収容されるべき血漿または血清が通過した後に流路を閉塞する。より具体的に は、第 1,第 2の血液分離フィルタ 5, 6において相対的に速く移動した血漿または血 清が、水膨潤性ポリマー 11が配置されている流路部分を通過した後、水膨潤性ポリ マー 11が膨潤する。すなわち、水膨潤性ポリマー 11の孔 11aが塞がるとともに、水膨 潤性ポリマー 11が凹部 9cを密閉するように膨張する。従って、水膨潤性ポリマー 11 の膨張により流路が閉塞されることになる。よって、血漿または血清が管状容器 2の 底部 2bに収容された後、長時間放置された場合でも、流路が閉塞されるため、溶血 により生じた赤血球内成分は下方に滴下しない。また、流路が閉塞されると、水膨潤 性ポリマー 11の下方において、圧力差を駆動力とした血液成分の移動も停止される 。よって赤血球内成分は、血漿または血清に混入しない。
[0133] 本発明において、図 1に示した実施形態のように真空検体採取管とした場合は、管 内の圧力を調整することができるため、簡便に必要量血液を採取することができ、効 果的に血液を血球と血漿または血清とに分離することができる。
[0134] 以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明をより詳細 に説明する。
実施例 1, 2では、上述した角筒状の形状を有する管状容器 2および流路形成部材 7を用いた。流路形成部材 7の筒状部材 8の角環状の環状周縁部 8cより上方の内部 空間の大きさは、 10mm X 1 Omm X 44mmであった。
[0135] 実施例 3〜10及び比較例 1〜12では、上述した円筒状の形状を有する管状容器 3 2および流路形成部材 37を用いた。流路形成部材 37の円筒部材 38の環状周縁部 38aより上方の内部空間の大きさは、内径 l lmm、高さ 48mmであった。
[0136] 実施例 1〜6および比較例 1〜8では、流路形成部材 7に血球停止フィルタを配置 しな力つた。他方、実施例 7〜 13及び比較例 9〜 12では、上述した血球停止フィル タ 10と同様の位置に、血球停止フィルタを配置した。血球停止フィルタとしては、孔 径 0. の商品名「ァイソポア HTTP」(ミリポア社製)を、直径 8mmの大きさに打 ち抜いたものを用いた。
[0137] 実施例 1〜8および比較例 1〜10では、流路形成部材 7に水膨潤性ポリマーを配 置しな力つた。他方、実施例 9〜13及び比較例 11, 12では、上述した水膨潤性ポリ マー 11と同様の位置に、水膨潤性ポリマーを配置した。水膨潤性ポリマーとしては、 商品名「アクアコーク TWB」(住友精化社製)を厚み 0. 2mmに成形したシートを、直 径 6. Ommの大きさに打ち抜き、その中心部に 0. 6mmの大きさの孔を開けたものを 用いた。血球停止フィルタと、底部材 39とで形成される空間の流路体積は、約 0. 05 3cm3であり、水膨潤性ポリマーの体積は、流路体積の約 23%であった。
[0138] (実施例 1)
集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39gZm2、大きさが縦 10. 5m m X横 10. 5mm X厚み 0. 39mmである短冊状の形状を有するシート 1枚からなる 第 2の血液分離フィルタを用意した。
[0139] 集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39gZm2、大きさが縦 10. 5m m X横 21mm X厚み 0. 39mmである短冊状の形状を有するシートを 58枚用意した 。この 58枚の短冊状のシートを積層した第 1の血液分離フィルタを用意した。
[0140] 第 2の血液分離フィルタの重量は 0. 004g、第 1の血液分離フィルタの重量は 0. 5 Ogであり、上述した式(1)で表される重量比は、 0. 008 (0. 004g/0. 50g)であつ た。
[0141] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、角筒状の流路形成部材 7に圧縮充填した。しかる後、第 1の血液分離フィルタ を、シート面が血液が流れる方向と略平行に積層された状態となるように、角筒状の 流路形成部材 7に圧縮充填した。第 1の血液分離フィルタを充填した部分は、 10mm X 10mm X 21mmの領域であった。
[0142] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2. 4 (58枚 X 10. 5 X 21 X 0. 39mm3/10 X 10 X 21mm3)であった。第 1の血 液分離フィルタの設置後の平均密度は 0. 24gZcm3であった。
[0143] (実施例 2)
集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39gZm2、大きさが縦 10. 5m m X横 10. 5mm X厚み 0. 39mmである短冊状の形状を有するシートを 5枚積層し た第 2の血液分離フィルタを用意した。
[0144] 集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39g/m2、大きさが長さ 600 mm X幅 21mm X厚み 0. 39mmである長尺状の形状を有するシートを 1枚用意した 。この長尺状のシートを 10mmごとにジグザグ状に折りたたんでシートが積層された 第 1の血液分離フィルタを用意した。
[0145] 第 2の血液分離フィルタの重量は 0. 02g、第 1の血液分離フィルタの重量は 0. 49 gであり、上述した式(1)で表される重量比は、 0. 04 (0. 02g/0. 49g)であった。
[0146] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、角筒状の流路形成部材 7に圧縮充填した。しかる後、第 1の血液分離フィルタ を、シート面が血液が流れる方向と略平行に積層された状態となるように、角筒状の 流路形成部材 7に圧縮充填した。第 1の血液分離フィルタを充填した部分は、 10mm
X 10mm X 21mmの領域であった。
[0147] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2. 3 (600 X 21 X 0. 39mm3/10 X 10 X 21mm3)であった。第 1の血液分離フ ィルタの設置後の平均密度は 0. 23gZcm3であった。
[0148] (実施例 3)
集積している繊維の平均繊維径が 1. 9 m、目付が 39gZm2、大きさが直径 11.
5mm,厚み 0. 39 mの円盤状の形状を有するシートを 10枚積層した第 2の血液分 離フィルタを用意した。
[0149] 集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39gZm2、大きさが長さ 240 mm X幅 27mm X厚み 0. 39mmである長尺状の形状を有するシートを 2枚用意した 。この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 13mmの略円柱 状の形状とし、内周のシート部分と外周のシート部分とが積層された第 1の血液分離 フィルタを 1個用意した。
[0150] 第 2の血液分離フィルタの重量は 0. 04g、第 1の血液分離フィルタの重量は 0. 51 gであり、上述した式(1)で表される重量比は、 0. 08 (0. 04g/0. 51g)であった。
[0151] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、円筒状 の流路形成部材 37に圧縮充填した。第 1の血液分離フィルタを充填した部分は、内 径 l lmm、高さ 27mmの領域であった。
[0152] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2.0 (2枚 X 240X27X0. 39mmソ 5. 5X5. 5X3. 14 X 27mm3)であった。 第 1の血液分離フィルタの設置後の平均密度は 0. 20gZcm3であった。
[0153] (実施例 4)
集積している繊維の平均繊維径が 1.9 m、目付が 39gZm2、大きさが直径 11. 5mm,厚み 0. 39 mの円盤状の形状を有するシートを 15枚積層した第 2の血液分 離フィルタを用意した。
[0154] 集積している繊維の平均繊維径が 1. 9/ζπι、目付が 39gZm2、大きさが長さ 240 mmX幅 9mmX厚み 0. 39mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 12mmの略円柱状 の形状とし、内周のシート部分と外周のシート部分とが積層された第 1の血液分離フ ィルタを 3個用意した。
[0155] 第 2の血液分離フィルタの重量は 0.061g、第 1の血液分離フィルタの重量は 0. 5 lgであり、上述した式(1)で表される重量比は、 0. 12(0.061g/0. 51g)であった
[0156] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、円筒状 の流路形成部材 37に圧縮充填した。第 1の血液分離フィルタを充填した部分は、内 径 llmm、高さ 22mmの領域であった。
[0157] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2.4(2枚 X 3段 X 240X9X0. 39mmソ 5. 5X5. 5X3. 14 X 22mm3)であ つた。第 1の血液分離フィルタの設置後の平均密度は 0. 24g/cm3であった。
[0158] (実施例 5)
集積している繊維の平均繊維径が 1. 25 m、目付が 38gZm2、大きさが直径 11 . 5mm、厚み 0. 26 mの円盤状の形状を有するシートを 5枚積層した第 2の血液分 離フィルタを用意した。
[0159] 集積している繊維の平均繊維径が 1. 25 ^m,目付が 38g/m2、大きさが長さ 240 mmX幅 9mmX厚み 0. 26mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 9mmの略円柱状の 形状とし、内周のシート部分と外周のシート部分とが積層された第 1の血液分離フィ ルタを 3個用意した。
[0160] 第 2の血液分離フィルタの重量は 0. 02g、第 1の血液分離フィルタの重量は 0. 49 gであり、上述した式(1)で表される重量比は、 0. 04 (0. 02g/0. 49g)であった。
[0161] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、円筒状 の流路形成部材 37に圧縮充填した。第 1の血液分離フィルタを充填した部分は、内 径 l lmm、高さ 22mmの領域であった。
[0162] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 1. 6 (2枚 X 3段 X 240 X 9 X 0. 26mmソ 5. 5 X 5. 5 X 3. 14 X 22mm3)であ つた。第 1の血液分離フィルタの設置後の平均密度は 0. 24g/cm3であった。
[0163] (実施例 6)
集積している繊維の平均繊維径が 2. 20 m、目付が 37gZm2、大きさが直径 11 . 5mm、厚み 0. 22 mの円盤状の形状を有するシートを 60枚積層した第 2の血液 分離フィルタを用意した。
[0164] 集積している繊維の平均繊維径が 2. 20 ^ m,目付が 37g/m2、大きさが長さ 240 mm X幅 9mm X厚み 0. 22mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 3枚重ね合わせて渦巻き状に巻き、直径約 13mmの略円柱状 の形状とし、内周のシート部分と外周のシート部分とが積層された第 1の血液分離フ ィルタを 2個用意した。
[0165] 第 2の血液分離フィルタの重量は 0. 230g、第 1の血液分離フィルタの重量は 0. 4 8gであり、上述した式(1)で表される重量比は、 0. 48 (0. 230g/0. 48g)であった
[0166] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、円筒状 の流路形成部材 37に圧縮充填した。第 1の血液分離フィルタを充填した部分は、内 径 l lmm、高さ 15mmの領域であった。
[0167] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2. 0 (3枚 X 2段 X 240 X 9 X 0. 22mmソ 5. 5 X 5. 5 X 3. 14 X 15mm3)であ つた。第 1の血液分離フィルタの設置後の平均密度は 0. 34g/cm3であった。
[0168] (実施例 7)
集積している繊維の平均繊維径が 1. 9 m、目付が 39gZm2、大きさが直径 11.
5mm,厚み 0. 39 mの円盤状の形状を有するシートを 10枚積層した第 2の血液分 離フィルタを用意した。
[0169] 集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39gZm2、大きさが長さ 240 mm X幅 27mm X厚み 0. 39mmである長尺状の形状を有するシートを 2枚用意した 。この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 13mmの略円柱 状の形状とし、内周のシート部分と外周のシート部分とが積層された第 1の血液分離 フィルタを 1個用意した。
[0170] 第 2の血液分離フィルタの重量は 0. 04g、第 1の血液分離フィルタの重量は 0. 51 gであり、上述した式(1)で表される重量比は、 0. 08 (0. 04g/0. 51g)であった。
[0171] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、円筒状 の流路形成部材 37に圧縮充填した。第 1の血液分離フィルタを充填した部分は、内 径 l lmm、高さ 27mmの領域であった。
[0172] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2. 0 (2枚 X 240 X 27 X 0. 39mmソ 5. 5 X 5. 5 X 3. 14 X 27mm3)であった。 第 1の血液分離フィルタの設置後の平均密度は 0. 20gZcm3であった。
[0173] (実施例 8)
集積している繊維の平均繊維径が 1. 25 m、目付が 38gZm2、大きさが直径 11 . 5mm、厚み 0. 26 mの円盤状の形状を有するシートを 5枚積層した第 2の血液分 離フィルタを用意した。 [0174] 集積している繊維の平均繊維径が 1. 25 ^ m,目付が 38g/m2、大きさが長さ 240 mm X幅 9mm X厚み 0. 26mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 9mmの略円柱状の 形状とし、内周のシート部分と外周のシート部分とが積層された第 1の血液分離フィ ルタを 3個用意した。
[0175] 第 2の血液分離フィルタの重量は 0. 020g、第 1の血液分離フィルタの重量は 0. 4 9gであり、上述した式(1)で表される重量比は、 0. 04 (0. 020g/0. 49g)であった
[0176] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、円筒状 の流路形成部材 37に圧縮充填した。第 1の血液分離フィルタを充填した部分は、内 径 l lmm、高さ 22mmの領域であった。
[0177] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 1. 6 (2枚 X 3段 X 240 X 9 X 0. 26mmソ 5. 5 X 5. 5 X 3. 14 X 22mm3)であ つた。第 1の血液分離フィルタの設置後の平均密度は 0. 24g/cm3であった。
[0178] (実施例 9)
集積している繊維の平均繊維径が 1. 9 m、目付が 39gZm2、大きさが直径 11. 5mm,厚み 0. 39 mの円盤状の形状を有するシートを 10枚積層した第 2の血液分 離フィルタを用意した。
[0179] 集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39g/m2、大きさが長さ 240 mm X幅 9mm X厚み 0. 39mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 9mmの略円柱状の 形状とし、内周のシート部分と外周のシート部分とが積層された第 1の血液分離フィ ルタを 3個用意した。
[0180] 第 2の血液分離フィルタの重量は 0. 04g、第 1の血液分離フィルタの重量は 0. 51 gであり、上述した式(1)で表される重量比は、 0. 08 (0. 04g/0. 51g)であった。
[0181] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、円筒状 の流路形成部材 37に圧縮充填した。第 1の血液分離フィルタを充填した部分は、内 径 l lmm、高さ 22mmの領域であった。
[0182] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2. 4 (2枚 X 3段 X 240 X 9 X 0. 39mmソ 5. 5 X 5. 5 X 3. 14 X 22mm3)であ つた。第 1の血液分離フィルタの設置後の平均密度は 0. 24g/cm3であった。
[0183] (実施例 10)
集積している繊維の平均繊維径が 1. 25 m、目付が 38gZm2、大きさが直径 11 . 5mm、厚み 0. 26 mの円盤状の形状を有するシートを 5枚積層した第 2の血液分 離フィルタを用意した。
[0184] 集積している繊維の平均繊維径が 1. 25 ^ m,目付が 38g/m2、大きさが長さ 240 mm X幅 9mm X厚み 0. 26mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 9mmの略円柱状の 形状とし、内周のシート部分と外周のシート部分とが積層された第 1の血液分離フィ ルタを 3個用意した。
[0185] 第 2の血液分離フィルタの重量は 0. 020g、第 1の血液分離フィルタの重量は 0. 4 9gであり、上述した式(1)で表される重量比は、 0. 04 (0. 020g/0. 49g)であった
[0186] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、円筒状 の流路形成部材 37に圧縮充填した。第 1の血液分離フィルタを充填した部分は、内 径 l lmm、高さ 22mmの領域であった。
[0187] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 1. 6 (2枚 X 3段 X 240 X 9 X 0. 26mmソ 5. 5 X 5. 5 X 3. 14 X 22mm3)であ つた。第 1の血液分離フィルタの設置後の平均密度は 0. 24g/cm3であった。
[0188] (実施例 11) 集積している繊維の平均繊維径が 1. 9 m、目付が 39gZm2、大きさが直径 11. 5mm,厚み 0. 39 mの円盤状の形状を有するシートを 5枚積層した第 2の血液分 離フィルタを用意した。
[0189] 集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39g/m2であり、大きさが長さ 240mm X幅 10mm X厚み 0. 39mm,長さ 240mm X幅 9mm X厚み 0. 39mm, または長さ 240mm X幅 8mm X厚み 0. 39mmである長尺状の形状を有する 3種の シートをそれぞれ 2枚用意した。同じ幅の長尺状のシートをそれぞれ 2枚重ね合わせ て渦巻き状に巻き、直径約 13mmの略円柱状の形状とし、内周のシート部分と外周 のシート部分とが積層された第 1の血液分離フィルタを 3個用意した。
[0190] 第 2の血液分離フィルタの重量は 0. 02g、第 1の血液分離フィルタの重量は 0. 51 g ( = 0. 19 + 0. 17 + 0. 15)であり、上述した式(1)で表される重量比は、 0. 04 (0 . 02g/0. 51g)であった。
[0191] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、用いたシ ートの幅の広いもの力 順に円筒状の流路形成部材 37にそれぞれ 7. 3mmの高さ になるように圧縮充填した。第 1の血液分離フィルタを充填した部分は、内径 11mm 、高さ 22mmの領域であった。
[0192] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2. 4 (2枚 X 240 X (10 + 9 + 8) X O. 39mm3/5. 5 X 5. 5 X 3. 14 X 22mm3) であった。第 1の血液分離フィルタの設置後の平均密度は 0. 24gZcm3 (血液が流 れる上流側から下流側に向かってそれぞれ 0. 22、 0. 25、 0. 27gZcm3)であった。
[0193] (実施例 12)
集積している繊維の平均繊維径が 1. 9 m、目付が 39gZm2、大きさが直径 11. 5mm,厚み 0. 39 mの円盤状の形状を有するシートを 5枚積層した第 2の血液分 離フィルタを用意した。
[0194] 集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39gZm2、大きさが長さ 240 mm X幅 l lmm X厚み 0. 39mm,長さ 240mm X幅 10mm X厚み 0. 39mm,また は長さ 240mm X幅 9mm X厚み 0. 39mmである長尺状の形状を有する 3種のシー トをそれぞれ 2枚用意した。同じ幅の長尺状のシートをそれぞれ 2枚重ね合わせて渦 巻き状に巻き、直径約 13mmの略円柱状の形状とし、内周のシート部分と外周のシ ート部分とが積層された第 1の血液分離フィルタを 3個用意した。
[0195] 第 2の血液分離フィルタの重量は 0. 02g、第 1の血液分離フィルタの重量は 0. 57 g ( = 0. 21 + 0. 19 + 0. 17)であり、上述した式(1)で表される重量比は、 0. 04 (0 . 02g/0. 57g)であった。
[0196] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、用いたシ ートの幅の広いもの力 順に円筒状の流路形成部材 37にそれぞれ 7. 3mmの高さ になるように圧縮充填した。第 1の血液分離フィルタを充填した部分は、内径 11mm 、高さ 22mmの領域であった。
[0197] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2. 7 (2枚 X 240 X (11 + 10 + 9) X O. 39mm3/5. 5 X 5. 5 X 3. 14 X 22mm3 )であった。第 1の血液分離フィルタの設置後の平均密度は 0. 27g/cm3 (血液が流 れる上流側から下流側に向かってそれぞれ 0. 25、 0. 27、 0. 30gZcm3)あった。
[0198] (実施例 13)
集積している繊維の平均繊維径が 1. 9 m、目付が 39gZm2、大きさが直径 11. 5mm,厚み 0. 39 mの円盤状の形状を有するシートを 5枚積層した第 2の血液分 離フィルタを用意した。
[0199] 集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39g/m2であり、大きさが長さ 280mm X幅 9mm X厚み 0. 39mm,長さ 260mm X幅 9mm X厚み 0. 39mm、ま たは長さ 240mm X幅 9mm X厚み 0. 39mmである長尺状の开状を有する 3種のシ ートをそれぞれ 2枚用意した。同じ長さの長尺状のシートをそれぞれ 2枚重ね合わせ て渦巻き状に巻き、直径約 13mmの略円柱状の形状とし、内周のシート部分と外周 のシート部分とが積層された第 1の血液分離フィルタを 3個用意した。
[0200] 第 2の血液分離フィルタの重量は 0. 02g、第 1の血液分離フィルタの重量は 0. 55 g ( = 0. 20 + 0. 18 + 0. 17)であり、上述した式(1)で表される重量比は、 0. 04 (0 . 02g/0. 55g)であった。
[0201] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、用いたシ ートの幅の広いものから順に円筒状の流路形成部材 37に圧縮充填した。第 1の血液 分離フィルタを充填した部分は、内径 l lmm、高さ 22mmの領域であった。
[0202] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2. 6 (2枚 (280 + 260 + 240) X 9 X 0. 39mm3/5. 5 X 5. 5 X 3. 14 X 22m m3)であった。第 1の血液分離フィルタの設置後の平均密度は 0. 26g/cm3 (血液が 流れる上流側から下流側に向かってそれぞれ 0. 24、 0. 26、 0. 28gZcm3)あった。
[0203] (比較例 1)
集積している繊維の平均繊維径が 1. 9 m、目付が 39gZm2、大きさが直径 11. 5mm,厚み 0. 39 mの円盤状の形状を有するシートを 120枚積層した血液分離フ ィルタを用意した。
[0204] 次に、血液分離フィルタを、シート面が血液が流れる方向と略直交する方向に沿う ように積層された状態となるように、円筒状の流路形成部材 37に圧縮充填した。血液 分離フィルタを充填した部分は、内径 l lmm、高さ 22mmの領域であった。
[0205] 血液分離フィルタを流路に設置する前後の下記式(3)で表される体積比は、 2. 3 ( 120枚 X 5. 75 X 5. 75 X 3. 14 X 0. 39mmソ 5. 5 X 5. 5 X 3. 14 X 22mm3)であ つた。血液分離フィルタの重量は 0. 49g、血液分離フィルタの設置後の平均密度は 0. 23gZcm3であった。
体積比 =設置前の血液分離フィルタ体積 Z設置後の血液分離フィルタ体積' · · (3
)
[0206] (比較例 2)
集積している繊維の平均繊維径が 1. 25 m、目付が 38gZm2、大きさが直径 11 . 5mm、厚み 0. 26 mの円盤状の形状を有するシートを 125枚積層した血液分離 フィルタを用意した。 [0207] 次に、血液分離フィルタを、シート面が血液が流れる方向と略直交する方向に沿う ように積層された状態となるように、円筒状の流路形成部材 37に圧縮充填した。血液 分離フィルタを充填した部分は、内径 llmm、高さ 22mmの領域であった。
[0208] 血液分離フィルタを流路に設置する前後の上述した式(3)で表される体積比は、 2 .4(125枚 X5. 75X5. 75X3. 14X0. 39mm3/5. 5X5. 5X3. 14 X 22mm3) であった。血液分離フィルタの重量は 0.49g、血液分離フィルタの設置後の平均密 度は 0. 23g/cm3であった。
[0209] (比較例 3)
集積している繊維の平均繊維径が 1.9 m、目付が 39gZm2、大きさが直径 11. 5mm,厚み 0. 39 mの円盤状の形状を有するシートを 70枚積層した第 2の血液分 離フィルタを用意した。
[0210] 集積している繊維の平均繊維径が 1. 9/ζπι、目付が 39gZm2、大きさが長さ 240 mm X幅 12mm X厚み 0. 39mmである長尺状の形状を有するシートを 2枚用意した 。この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 12mmの略円柱 状の形状とし、内周のシート部分と外周のシート部分とが積層された第 1の血液分離 フィルタを 1個用意した。
[0211] 第 2の血液分離フィルタの重量は 0. 28g、第 1の血液分離フィルタの重量は 0. 22 gであり、上述した式(1)で表される重量比は、 1. 27(0. 28g/0. 22g)であった。
[0212] 次に、第 2の血液分離フィルタを、シート面が血液が流れる方向と略直角方向となる ように、円筒状の流路形成部材 37に圧縮充填した。し力る後、第 1の血液分離フィル タを、シート面が血液が流れる方向と略平行に積層された状態となるように、円筒状 の流路形成部材 37に圧縮充填した。第 1の血液分離フィルタを充填した部分は、内 径 llmm、高さ 11mmの領域であった。
[0213] 第 1の血液分離フィルタを流路に設置する前後の上述した式 (2)で表される体積比 は、 2. 2 (2枚 X 240X12X0. 39mmソ 5. 5X5. 5X3. 14 X 11mm3)であった。 第 1の血液分離フィルタの設置後の平均密度は 0. 22gZcm3であった。
[0214] (比較例 4)
集積している繊維の平均繊維径が 1. 25 ^m,目付が 38gZm2、大きさが長さ 180 mmX幅 9mmX厚み 0. 26mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 11mmの略円柱状 の形状とし、内周のシート部分と外周のシート部分とが積層された血液分離フィルタ を 3個用意した。
[0215] 次に、血液分離フィルタを、シート面が血液が流れる方向と略平行に積層された状 態となるように、円筒状の流路形成部材 37に圧縮充填した。血液分離フィルタを充 填した部分は、内径 llmm、高さ 27mmの領域であった。
[0216] 血液分離フィルタを流路に設置する前後の上述した式(3)で表される体積比は、 0 . 99 (2枚 X 3段 X 180X9X0. 26mm3/5. 5X5. 5X3. 14 X 27mm3)であった 。血液分離フィルタの重量は 0. 37g、血液分離フィルタの設置後の平均密度は 0. 1 4g/ cm あつ 7こ。
[0217] (比較例 5)
集積している繊維の平均繊維径が 1. 9/ζπι、目付が 39gZm2、大きさが長さ 240 mmX幅 9mmX厚み 0. 39mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 6枚重ね合わせて渦巻き状に巻き、直径約 13mmの略円柱状 の形状とし、内周のシート部分と外周のシート部分とが積層された血液分離フィルタ を 1個用意した。
[0218] 次に、血液分離フィルタを、シート面が血液が流れる方向と略平行に積層された状 態となるように、円筒状の流路形成部材 37に圧縮充填した。血液分離フィルタを充 填した部分は、内径 llmm、高さ 9mmの領域であった。
[0219] 血液分離フィルタを流路に設置する前後の上述した式(3)で表される体積比は、 5 . 9(6^X240X9X0. 39mm3/5. 5X5. 5X3. 14 X 9mm3)であった。血液分 離フィルタの重量は 0. 51g、血液分離フィルタの設置後の平均密度は 0. 59g/cm3 であった。
[0220] (比較例 6)
集積している繊維の平均繊維径が 3. 5/ζπι、目付が 40gZm2、大きさが長さ 240 mm X幅 27mm X厚み 0. 38mmである長尺状の形状を有するシートを 2枚用意した 。この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 12mmの略円柱 状の形状とし、内周のシート部分と外周のシート部分とが積層された血液分離フィル タを 1個用意した。
[0221] 次に、血液分離フィルタを、シート面が血液が流れる方向と略平行に積層された状 態となるように、円筒状の流路形成部材 37に圧縮充填した。血液分離フィルタを充 填した部分は、内径 llmm、高さ 27mmの領域であった。
[0222] 血液分離フィルタを流路に設置する前後の上述した式(3)で表される体積比は、 1
. 9(2^X240X27X0. 38mm3/5. 5X5. 5X3. 14 X 27mm3)であった。血液 分離フィルタの重量は 0. 52g、血液分離フィルタの設置後の平均密度は 0. 20g/c m (?めった。
[0223] (比較例 7)
集積している繊維の平均繊維径が 1.9 m、目付が 39gZm2、大きさが直径 11.
5mm,厚み 0. 39 mの円盤状の形状を有するシートを 120枚積層した血液分離フ ィルタを用意した。
[0224] 次に、血液分離フィルタを、シート面が血液が流れる方向と略直交する方向に沿う ように積層された状態となるように、円筒状の流路形成部材 37に圧縮充填した。血液 分離フィルタを充填した部分は、内径 llmm、高さ 22mmの領域であった。
[0225] 血液分離フィルタを流路に設置する前後の上述した式(3)で表される体積比は、 2 . 1(120^X5. 5X5. 5X3. 14X0. 39mm3/5. 5X5. 5X3. 14 X 22mm3)で あった。血液分離フィルタの重量は 0. 51g、血液分離フィルタの設置後の平均密度 は 0. 24gZcm3であった。
[0226] (比較例 8)
集積している繊維の平均繊維径が 1.9 m、目付が 39gZm2、大きさが直径 11. 5mm,厚み 0. 39 mの円盤状の形状を有するシートを 120枚積層した血液分離フ ィルタを用意した。
[0227] 次に、血液分離フィルタを、シート面が血液が流れる方向と略直交する方向に沿う ように積層された状態となるように、円筒状の流路形成部材 37に圧縮充填した。血液 分離フィルタを充填した部分は、内径 llmm、高さ 22mmの領域であった。
[0228] 血液分離フィルタを流路に設置する前後の上述した式(3)で表される体積比は、 2 . 1 (120^ X 5. 5 X 5. 5 X 3. 14 X 0. 39mm3/5. 5 X 5. 5 X 3. 14 X 22mm3)で あった。血液分離フィルタの重量は 0. 51g、血液分離フィルタの設置後の平均密度 は 0. 24gZcm3であった。
[0229] (真空検体採取管の作製)
上述した実施例 1, 2の血液分離フィルタ装置は、上述した管状容器 2内に収容し た。他方、実施例 3〜13および比較例 1〜12の血液分離フィルタ装置は、上述した 管状容器 32内に収容した。しカゝる後、管状容器 2の開口を栓体 3により密栓し、管状 容器 32の開口を栓体 33により密栓し、管内の圧力を 35kPaとし真空検体採取管を 作製した。
[0230] (血液分離フィルタ装置の評価)
•実施例 1〜6および比較例 1〜6の血液分離フィルタ装置の評価
上述した実施例 1〜6および比較例 1〜6の血液分離フィルタ装置に、ボランティア 1名力 採血したへマトクリットが 46. 0%である血液約 2mLをそれぞれ注入し、血液 の分離を行った。
[0231] 赤血球が漏出する直前に血液の分離を中止し、得られた検体量および溶血の有 無を確認した。結果を表 1に示した。
[0232] [表 1] ポランティア A (へマトクリット 4 6 . 0 % )
分離終了時間 検体回収量 溶血による
(秒) ( i L ) 赤血球内成分の混入の有無 実施例 1 93 240 〇
実施例 2 84 250 〇
実施例 3 79 210 〇
実施例 4 86 230 〇
実施例 5 102 320 〇
実施例 6 69 200 〇
比較例 1 1 10 250 X (少)
比較例 2 150 310 X (多)
比較例 3 120 240 X (少)
比較例 4 45 50 〇
比較例 5 分離せず 分離せず - 比較例 6 分離せず 分離せず 一
〇:遠心分離した血清と目視で比較した際に、 分離した検体の色が同等 X :遠心分離した血清と目視で比較した際に、 分離した検体の色の方が赤い
(多,少は、 赤血球内成分混入の程度を示す。 ) [0233] ·実施例 7〜13および比較例 7, 8の血液分離フィルタ装置の評価 実施例 7〜13および比較例 7, 8の血液分離フィルタ装置に、ボランティア 1名から 採血したへマトクリットが 47. 6%である血液約 2mLをそれぞれ注入し、血液の分離 を行った。
[0234] 血液の分離が終了した時点から、 2分間放置したとき、および 30分間放置したとき の溶血の有無を確認した。結果を表 2に示した。
[0235] [表 2]
Figure imgf000047_0001
[0236] (血液分離フィルタ装置の評価結果)
•実施例 1〜6および比較例 1〜6の血液分離フィルタ装置の評価結果 実施例 1〜6の血液分離フィルタ装置では、いずれも溶血が認められず、溶血によ り赤血球力 漏洩してきた成分が血漿または血清に混入することなぐ血漿または血 清のみ分離することができた。
[0237] 他方、比較例 1〜3の血液分離フィルタ装置では溶血により赤血球から漏洩してき た成分の混入が認められた。また比較例 4の血液分離フィルタ装置では溶血は認め られなかった力 血漿または血清の量が極めて少量であった。比較例 5, 6の血液分 離フィルタ装置では、血液分離フィルタの最下部に血球が到達する前に分離が停止 していた。 [0238] ·実施例 7〜13および比較例 7, 8の血液分離フィルタ装置の評価結果 実施例 7〜13の血液分離フィルタ装置では、分離終了後 2分間経過するまでは、 血漿または血清のみが採取された。また、分離終了後 2分間経過した後には、血液 分離フィルタの下方部分に赤血球が到達している力 血球停止フィルタによって赤血 球の通過が防止されており、血球の血漿または血清への混入は見られな力つた。分 離終了後 30分間経過した後には、実施例 7, 8の血液分離フィルタ装置では、赤血 球内成分が分離した血漿または血清中に混入していた力 実施例 9〜 13の血液分 離フィルタ装置では、赤血球内成分の血漿または血清への混入は見られな力つた。 実施例 9〜 13の血液分離フィルタ装置では、血液分離フィルタ装置の下流に配置さ れた水膨潤性ポリマーが、血漿または血清に接触されることにより膨潤し、流路が完 全に閉塞されて、赤血球内成分の通過が防止されていた。
[0239] 実施例 14, 15では、図 16に示した角筒状の形状を有する管状容器 2および流路 形成部材 7を用いた。流路形成部材 7の筒状部材 8の環状周縁部 8cより上方の内部 空間の大きさは、 10mm X 1 Omm X 44mmであった。
[0240] 他方、実施例 16〜23及び比較例 13〜19では、図 17に示した円筒状の形状を有 する管状容器 32および流路形成部材を用いた。流路形成部材 37の円筒部材 38の 環状周縁部 38aより上方の内部空間の大きさは、内径 l lmm、高さ 48mmとした。
[0241] (実施例 14)
集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39gZm2、大きさが縦 10. 5m m X横 21mm X厚み 0. 39mmである短冊状の形状を有するシートを 58枚用意した 。この 58枚の短冊状のシートを積層した血液分離フィルタを用意した。
[0242] し力る後、血液分離フィルタを、シート面が血液が流れる方向と略平行に積層され た状態となるように、角筒状の流路形成部材 7に圧縮充填した。流路形成部材 7には 、血球停止フィルタ及び水膨潤性ポリマーを配置しなカゝつた。血液分離フィルタを充 填した部分は、 10mm X 10mm X 2 lmmの領域であった。
[0243] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 . 4 (58枚 X 10. 5 X 21 X 0. 39mm3ZlO X 10 X 21mm3)であった。血液分離フィ ルタの重量は 0. 50g、設置後の平均密度は 0. 24gZcm3であった。 [0244] (実施例 15)
集積している繊維の平均繊維径が 1.9/ζπι、目付が 39gZm2、大きさが長さ 600 mm X幅 21mm X厚み 0. 39mmである長尺状の形状を有するシートを 1枚用意した 。この長尺状のシートを 10mmごとにジグザグ状に折りたたんでシート面が積層され た血液分離フィルタを用意した。
[0245] し力る後、血液分離フィルタを、シート面が血液が流れる方向と略平行に積層され た状態となるように、角筒状の流路形成部材 7に圧縮充填した。流路形成部材 7には 、血球停止フィルタ及び水膨潤性ポリマーを配置しなカゝつた。血液分離フィルタを充 填した部分は、 10mm X 10mm X 2 lmmの領域であった。
[0246] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 . 3(600X21X0. 39mm3ZlOX 10 X 21mm3)であった。血液分離フィルタの重 量は 0.49g、設置後の平均密度は 0. 23g/cm3であった。
[0247] (実施例 16)
集積している繊維の平均繊維径が 1.9/ζπι、目付が 39gZm2、大きさが長さ 240 mm X幅 27mm X厚み 0. 39mmである長尺状の形状を有するシートを 2枚用意した 。この長尺状のシートを 2枚重ね合わせて、渦巻き状に巻き、直径約 13mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを用意し た。
[0248] し力る後、血液分離フィルタを、内周のシート部分と外周のシート部分とが血液が流 れる方向と略平行に積層された状態となるように、円筒状の流路形成部材に圧縮充 填した。流路形成部材には、血球停止フィルタ及び水膨潤性ポリマーを配置しなか つた。血液分離フィルタを充填した部分は、内径 llmm、高さ 27mmの領域であった
[0249] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 .0(2^X240X27X0. 39mm3/5. 5X5. 5X3. 14 X 27mm3)であった。血液 分離フィルタの重量は 0. 51g、設置後の平均密度は 0. 20gZcm3であった。
[0250] (実施例 17)
集積している繊維の平均繊維径が 1. 9/ζπι、目付が 39gZm2、大きさが長さ 240 mmX幅 9mmX厚み 0.39mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて、渦巻き状に巻き、直径約 12mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを 3個用 总した o
[0251] し力る後、血液分離フィルタ 3個を別々に段階的に、内周のシート部分と外周のシ ート部分とが血液が流れる方向と略平行に積層された状態となるように、円筒状の流 路形成部材に圧縮充填した。流路形成部材には、血球停止フィルタ及び水膨潤性 ポリマーを配置しな力つた。血液分離フィルタを充填した部分は、内径 llmm、高さ 2 2mmの領域であった。
[0252] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 .4(2枚 X 3段 X 240X9X0.39mm3/5.5X5.5X3.14 X 22mm3)であった。 血液分離フィルタの重量は 0.51g、設置後の平均密度は 0.24gZcm3であった。
[0253] (実施例 18)
集積している繊維の平均繊維径が 1.25 ^m,目付が 38gZm2、大きさ力 S長さ 240 mmX幅 9mmX厚み 0.26mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて、渦巻き状に巻き、直径約 12mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを 3個用 总した o
[0254] し力る後、血液分離フィルタ 3個を別々に段階的に、内周のシート部分と外周のシ ート部分とが血液が流れる方向と略平行に積層された状態となるように、円筒状の流 路形成部材に圧縮充填した。流路形成部材には、血球停止フィルタ及び水膨潤性 ポリマーを配置しな力つた。血液分離フィルタを充填した部分は、内径 llmm、高さ 2 2mmの領域であった。
[0255] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 1 .6 (2枚 X 3段 X 240X9X0.26mm3/5.5X5.5X3.14 X 22mm3)であった。 血液分離フィルタの重量は 0.49g、設置後の平均密度は 0.24gZcm3であった。
[0256] (実施例 19)
集積している繊維の平均繊維径が 2.2/ζπι、目付が 37gZm2、大きさが長さ 240 mmX幅 9mmX厚み 0.22mmである長尺状の形状を有するシートを 9枚用意した。 この長尺状のシートを 3枚重ね合わせて、渦巻き状に巻き、直径約 13mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを 3個用 总した o
[0257] し力る後、血液分離フィルタ 3個を別々に段階的に、内周のシート部分と外周のシ ート部分とが血液が流れる方向と略平行に積層された状態となるように、円筒状の流 路形成部材に圧縮充填した。流路形成部材には、血球停止フィルタ及び水膨潤性 ポリマーを配置しな力つた。血液分離フィルタを充填した部分は、内径 llmm、高さ 2 2mmの領域であった。
[0258] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 .0(3枚 X 3段 X 240X9X0.22mm3/5.5X5.5X3.14 X 22mm3)であった。 血液分離フィルタの重量は 0.72g、設置後の平均密度は 0.34gZcm3であった。
[0259] (実施例 20)
集積している繊維の平均繊維径が 1.9/ζπι、目付が 39gZm2、大きさが長さ 240 mmX幅 9mmX厚み 0.39mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて、渦巻き状に巻き、直径約 13mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを 3個用 总した o
[0260] 次に、円筒状の流路形成部材を用意した。流路形成部材には、血球停止フィルタ 9 を配置した。血球停止フィルタとしては、孔径 0.4 μ mの商品名「ァイソポア HTTP」 ( ミリポア社製)を、直径 8mmに打ち抜いたものを用いた。流路形成部材には、水膨潤 性ポリマーを配置しな力つた。
[0261] 次に、血液分離フィルタ 3個を別々に段階的に、内周のシート部分と外周のシート 部分とが血液が流れる方向と略平行に積層された状態となるように、円筒状の流路 形成部材に圧縮充填した。血液分離フィルタを充填した部分は、内径 llmm、高さ 2 2mmの領域であった。
[0262] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 .4(2枚 X 3段 X 240X9X0.39mm3/5.5X5.5X3.14 X 22mm3)であった。 血液分離フィルタの重量は 0. 51g、設置後の平均密度は 0. 24gZcm3であった。
[0263] (実施例 21)
集積している繊維の平均繊維径が 1. 25 ^ m,目付が 38gZm2、大きさ力 S長さ 240 mm X幅 9mmX厚み 0. 26mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて、渦巻き状に巻き、直径約 9mmのロール状 に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを 3個用意 した。
[0264] 次に、円筒状の流路形成部材を用意した。流路形成部材には、血球停止フィルタ を配置した。血球停止フィルタとしては、孔径 0. 4 μ mの商品名「ァイソポア HTTP」 ( ミリポア社製)を、直径 8mmに打ち抜いたものを用いた。流路形成部材には、水膨潤 性ポリマーを配置しな力つた。
[0265] 次に、血液分離フィルタ 3個を別々に段階的に、内周のシート部分と外周のシート 部分とが血液が流れる方向と略平行に積層された状態となるように、円筒状の流路 形成部材に圧縮充填した。血液分離フィルタを充填した部分は、内径 l lmm、高さ 2 2mmの領域であった。
[0266] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 1 . 6 (2枚 X 3段 X 240 X 9 X 0. 26mm3/5. 5 X 5. 5 X 3. 14 X 22mm3)であった。 血液分離フィルタの重量は 0. 49g、設置後の平均密度は 0. 24gZcm3であった。
[0267] (実施例 22)
集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39gZm2、大きさが長さ 240 mm X幅 9mmX厚み 0. 39mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて、渦巻き状に巻き、直径約 12mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを 3個用 总した o
[0268] 次に、円筒状の流路形成部材を用意した。流路形成部材には、血球停止フィルタ 9 を配置した。血球停止フィルタとしては、孔径 0. 4 μ mの商品名「ァイソポア HTTP」 ( ミリポア社製)を、直径 8mmに打ち抜いたものを用いた。さらに、流路形成部材には、 水膨潤性ポリマーを配置した。水膨潤性ポリマーとしては、商品名「アクアコーク TW Bj (住友精化社製)を厚み 0. 2mmに成形したシートを、直径 6. Ommに打ち抜き、 中心部に 0. 6mmの孔を開けたものを用いた。血球停止フィルタと、底部材の凹部 8 cとで形成される空間の流路体積は、約 0. 053cm3であ
り、水膨潤性ポリマーの体積は、流路体積の約 23%であった。
[0269] 次に、血液分離フィルタ 3個を別々に段階的に、内周のシート部分と外周のシート 部分とが血液が流れる方向と略平行に積層された状態となるように、円筒状の流路 形成部材に圧縮充填した。血液分離フィルタを充填した部分は、内径 l lmm、高さ 2 2mmの領域であった。
[0270] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 . 4 (2枚 X 3段 X 240 X 9 X 0. 39mm3/5. 5 X 5. 5 X 3. 14 X 22mm3)であった。 血液分離フィルタの重量は 0. 51g、設置後の平均密度は 0. 24gZcm3であった。
[0271] (実施例 23)
集積している繊維の平均繊維径が 1. 25 ^ m,目付が 38gZm2、大きさ力 S長さ 240 mm X幅 9mm X厚み 0. 26mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて、渦巻き状に巻き、直径約 12mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを 3個用 总した o
[0272] 次に、円筒状の流路形成部材を用意した。流路形成部材には、血球停止フィルタ を配置した。血球停止フィルタとしては、孔径 0. 4 μ mの商品名「ァイソポア HTTP」 ( ミリポア社製)を、直径 8mmに打ち抜いたものを用いた。さらに、流路形成部材には、 水膨潤性ポリマーを配置した。水膨潤性ポリマーとしては、商品名「アクアコーク TW BJ (住友精化社製)を厚み 0. 2mmに成形したシートを、直径 6. Ommに打ち抜き、 中心部に 0. 6mmの孔を開けたものを用いた。血球停止フィルタと、底部材の凹部と で形成される空間の流路体積は、約 0. 053cm3であり、水膨潤性ポリマーの体積は 、流路体積の約 23%であった。
[0273] 次に、血液分離フィルタ 3個を別々に段階的に、内周のシート部分と外周のシート 部分とが血液が流れる方向と略平行に積層された状態となるように、円筒状の流路 形成部材に圧縮充填した。血液分離フィルタを充填した部分は、内径 l lmm、高さ 2 2mmの領域であった。
[0274] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 1 . 6 (2枚 X 3段 X 240 X 9 X 0. 26mm3/5. 5 X 5. 5 X 3. 14 X 22mm3)であった。 血液分離フィルタの重量は 0. 49g、設置後の平均密度は 0. 24gZcm3であった。
[0275] (実施例 24)
集積している繊維の平均繊維径が 1. 9 ^ πι,目付が 39g/m2であり、大きさが長さ 240mm X幅 11mm X厚み 0. 39mm,長さ 240mm X幅 10mm X厚み 0. 39mm, または長さ 240mm X幅 9mm X厚み 0. 39mmである長尺状の形状を有する 3種の シートをそれぞれ 2枚用意した。それぞれ同じ幅の長尺状のシートを 2枚重ね合わせ て、渦巻き状に巻き、直径約 12mmのロール状に内周のシート部分と外周のシート 部分とが積層された血液分離フィルタを 3個用意した。
[0276] 次に、円筒状の流路形成部材を用意した。流路形成部材には、血球停止フィルタ を配置した。血球停止フィルタとしては、孔径 0. 4 μ mの商品名「ァイソポア HTTP」 ( ミリポア社製)を、直径 8mmに打ち抜いたものを用いた。さら〖こ、流路形成部材 26に は、水膨潤性ポリマーを配置した。水膨潤性ポリマーとしては、商品名「アクアコーク TWBJ (住友精化社製)を厚み 0. 2mmに成形したシートを、直径 6. Ommに打ち抜 き、中心部に 0. 6mmの孔を開けたものを用いた。血球停止フィルタと、底部材 8の 凹部 8cとで形成される空間の流路体積は、約 0. 053cm3であり、水膨潤性ポリマー の体積は、流路体積の約 23%であった。
[0277] 次に、血液分離フィルタ 3個を幅の大きいもの力 別々に段階的に、内周のシート 部分と外周のシート部分とが血液が流れる方向と略平行に積層された状態となるよう に、円筒状の流路形成部材にそれぞれが 7. 3mmの高さになるよう圧縮充填した。 血液分離フィルタを充填した部分は、内径 l lmm、高さ 22mmの領域であった。
[0278] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 . 7 (2枚 X 240 X (11 + 10 + 9) X O. 39mmソ 5. 5 X 5. 5 X 3. 14 X 22mm3)であ つた。血液分離フィルタの総重量は 0. 56g、設置後の各血液分離フィルタの平均密 度は血液の流れる上流側から下流側に向かって 0. 24、 0. 27、 0. 30gZcm3であつ た。 [0279] (実施例 25)
集積している繊維の平均繊維径が 1. 9 ^ πι,目付が 39g/m2であり、大きさが長さ 280mm X幅 9mm X厚み 0. 39mm,長さ 260mm X幅 9mm X厚み 0. 39mm、ま たは長さ 240mm X幅 9mm X厚み 0. 39mmである長尺状の开状を有する 3種のシ ートをそれぞれ 2枚用意した。それぞれ同じ長さの長尺状のシートを 2枚重ね合わせ て、渦巻き状に巻き、直径約 12mmのロール状に内周のシート部分と外周のシート 部分とが積層された血液分離フィルタを 3個用意した。
[0280] 次に、円筒状の流路形成部材を用意した。流路形成部材には、血球停止フィルタ を配置した。血球停止フィルタとしては、孔径 0. 4 μ mの商品名「ァイソポア HTTP」 ( ミリポア社製)を、直径 8mmに打ち抜いたものを用いた。さらに、流路形成部材には、 水膨潤性ポリマーを配置した。水膨潤性ポリマーとしては、商品名「アクアコーク TW BJ (住友精化社製)を厚み 0. 2mmに成形したシートを、直径 6. Ommに打ち抜き、 中心部に 0. 6mmの孔を開けたものを用いた。血球停止フィルタと、底部材の凹部と で形成される空間の流路体積は、約 0. 053cm3であり、水膨潤性ポリマーの体積は 、流路体積の約 23%であった。
[0281] 次に、血液分離フィルタ 3個を長さの大きいもの力 別々に段階的に、内周のシート 部分と外周のシート部分とが血液が流れる方向と略平行に積層された状態となるよう に、円筒状の流路形成部材に圧縮充填した。血液分離フィルタを充填した部分は、 内径 l lmm、高さ 22mmの領域であった。
[0282] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 . 6 (2枚 X (280 + 260 + 240) X 9 X O. 39mmソ 5. 5 X 5. 5 X 3. 14 X 22mm3) であった。血液分離フィルタの総重量は 0. 51g、設置後の各血液分離フィルタの平 均密度は血液の流れる上流側から下流側に向力つて 0. 24、 0. 26、 0. 28g/cm3 であった。
[0283] (比較例 9)
集積している繊維の平均繊維径が 1. 9 m、目付が 39gZm2、大きさが直径 11. 5mm、厚み 0. 39mmである円盤状の形状を有するシートを 120枚用意した。この 1 20枚の円盤状のシートを積層した血液分離フィルタを用意した。 [0284] し力る後、血液分離フィルタを、シート面が血液が流れる方向と略直交する方向に 沿うように積層された状態となるように、円筒状の流路形成部材に圧縮充填した。流 路形成部材には、血球停止フィルタ及び水膨潤性ポリマーを配置しな力つた。血液 分離フィルタを充填した部分は、内径 llmm、高さ 22mmの領域であった。
[0285] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 . 3(120枚 X5. 75X5. 75X3. 14X0. 39mm3/5. 5X5. 5X3. 14 X 22mm3) であった。血液分離フィルタの重量は 0.49g、設置後の平均密度は 0. 23gZcm3で めつに。
[0286] (比較例 10)
集積している繊維の平均繊維径が 1. 25 m、目付が 38gZm2、大きさが直径 11 . 5mm、厚み 0. 26mmである円盤状の形状を有するシートを 125枚用意した。この 125枚の円盤状のシートを積層した血液分離フィルタを用意した。
[0287] し力る後、血液分離フィルタを、シート面が血液が流れる方向と略直交する方向に 沿うように積層された状態となるように、円筒状の流路形成部材に圧縮充填した。流 路形成部材には、血球停止フィルタ及び水膨潤性ポリマーを配置しな力つた。血液 分離フィルタを充填した部分は、内径 llmm、高さ 22mmの領域であった。
[0288] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 1 . 6(125枚 X5. 75X5. 75X3. 14X0. 26mm3/5. 5X5. 5X3. 14 X 22mm3) であった。血液分離フィルタの重量は 0.49g、設置後の平均密度は 0. 23gZcm3で めつに。
[0289] (比較例 11)
集積している繊維の平均繊維径が 1. 25 ^m,目付が 38gZm2、大きさが長さ 180 mmX幅 9mmX厚み 0. 26mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 2枚重ね合わせて、渦巻き状に巻き、直径約 11mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを 3個用 总した o
[0290] し力る後、血液分離フィルタ 3個を重ね合わせて、内周のシート部分と外周のシート 部分とが血液が流れる方向と略平行に積層された状態となるように、円筒状の流路 形成部材に圧縮充填した。流路形成部材には、血球停止フィルタ及び水膨潤性ポリ マーを配置しな力つた。血液分離フィルタを充填した部分は、内径 llmm、高さ 27m mの領域であった。
[0291] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 0 . 99 (2枚 X 3段 X 180X9X0. 26mm3/5. 5X5. 5X3. 14 X 27mm3)であった 。血液分離フィルタの重量は 0. 37g、設置後の平均密度は 0. 14gZcm3であった。
[0292] (比較例 12)
集積している繊維の平均繊維径が 1. 9/ζπι、目付が 39gZm2、大きさが長さ 240 mmX幅 9mmX厚み 0. 39mmである長尺状の形状を有するシートを 6枚用意した。 この長尺状のシートを 6枚重ね合わせて、渦巻き状に巻き、直径約 13mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを用意し た。
[0293] し力る後、血液分離フィルタを、内周のシート部分と外周のシート部分とが血液が流 れる方向と略平行に積層された状態となるように、円筒状の流路形成部材に圧縮充 填した。流路形成部材には、血球停止フィルタ及び水膨潤性ポリマーを配置しなか つた。血液分離フィルタを充填した部分は、内径 llmm、高さ 9mmの領域であった。
[0294] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 5 . 9(6^X240X9X0. 39mm3/5. 5X5. 5X3. 14 X 9mm3)であった。血液分 離フィルタの重量は 0. 51g、設置後の平均密度は 0. 59g/cm3であった。
[0295] (比較例 13)
集積している繊維の平均繊維径が 3. 5/ζπι、目付が 40gZm2、大きさが長さ 240 mm X幅 27mm X厚み 0. 38mmである長尺状の形状を有するシートを 2枚用意した 。この長尺状のシートを 2枚重ね合わせて、渦巻き状に巻き、直径約 12mmのロール 状に内周のシート部分と外周のシート部分とが積層された血液分離フィルタを用意し た。
[0296] し力る後、血液分離フィルタを、内周のシート部分と外周のシート部分とが血液が流 れる方向と略平行に積層された状態となるように、円筒状の流路形成部材に圧縮充 填した。流路形成部材には、血球停止フィルタ及び水膨潤性ポリマーを配置しなか つた。血液分離フィルタを充填した部分は、内径 llmm、高さ 27mmの領域であった
[0297] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 1 . 9(2^X240X27X0. 38mm3/5. 5X5. 5X3. 14 X 27mm3)であった。血液 分離フィルタの重量は 0. 52g、設置後の平均密度は 0. 20g/cm3であった。
[0298] (比較例 14)
集積している繊維の平均繊維径が 1.9 m、目付が 39gZm2、大きさが直径 11. 5mm、厚み 0. 39mmである円盤状の形状を有するシートを 120枚用意した。この 1 20枚の円盤状のシートを積層した血液分離フィルタを用意した。
[0299] 次に、円筒状の流路形成部材を用意した。流路形成部材には、血球停止フィルタ を配置した。血球停止フィルタとしては、孔径 0.4 μ mの商品名「ァイソポア HTTP」 ( ミリポア社製)を、直径 8mmに打ち抜いたものを用いた。流路形成部材には、水膨潤 性ポリマーを配置しな力つた。
[0300] 次に、血液分離フィルタを、シート面が血液が流れる方向と略直交する方向に沿う ように積層された状態となるように、円筒状の流路形成部材に圧縮充填した。血液分 離フィルタを充填した部分は、内径 llmm、高さ 22mmの領域であった。
[0301] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 . 3(120枚 X5. 75X5. 75X3. 14X0. 39mm3/5. 5X5. 5X3. 14 X 22mm3) であった。血液分離フィルタの重量は 0.49g、設置後の平均密度は 0. 23gZcm3で めつに。
[0302] (比較例 15)
集積している繊維の平均繊維径が 1. 25 m、目付が 38gZm2、大きさが直径 11 . 5mm、厚み 0. 26mmである円盤状の形状を有するシートを 125枚用意した。この 125枚の円盤状のシートを積層した血液分離フィルタを用意した。
[0303] 次に、円筒状の流路形成部材を用意した。流路形成部材には、血球停止フィルタ を配置した。血球停止フィルタとしては、孔径 0.4 μ mの商品名「ァイソポア HTTP」 ( ミリポア社製)を、直径 8mmに打ち抜いたものを用いた。流路形成部材には、水膨潤 性ポリマーを配置しな力つた。 [0304] 次に、血液分離フィルタを、シート面が血液が流れる方向と略直交する方向に沿う ように積層された状態となるように、円筒状の流路形成部材に圧縮充填した。血液分 離フィルタを充填した部分は、内径 l lmm、高さ 22mmの領域であった。
[0305] 血液分離フィルタを流路に設置する前後の上述した式(1)で表される体積比は、 2 . 4 (125枚 X 5. 75 X 5. 75 X 3. 14 X 0. 39mm3/5. 5 X 5. 5 X 3. 14 X 22mm3) であった。血液分離フィルタの重量は 0. 49g、設置後の平均密度は 0. 23gZcm3で めつに。
[0306] (真空検体採取管の作製)
上述した実施例 14, 15の血液分離フィルタ装置は、上述した管状容器 2内に収容 した。他方、実施例 16〜25および比較例 9〜15の血液分離フィルタ装置は、上述し た管状容器 32内に収容した。しカゝる後、管状容器 2, 32の開口を栓体により密栓し、 管内の圧力を 35kPaとし真空検体採取管を作製した。
[0307] (血液分離フィルタ装置の評価)
•実施例 14〜 19および比較例 9〜 13の血液分離フィルタ装置の評価
上述した実施例 14〜 19および比較例 9〜 13の血液分離フィルタ装置に、ボランテ ィァ 2名力 採血したへマトクリットの異なる血液約 2mLをそれぞれ注入し、血液の分 離を行った。
[0308] 赤血球が漏出する直前に血液の分離を中止し、得られた検体量および溶血の有 無を確認した。
結果を表 3,表 4に示した。
[0309] [表 3]
ボランティア A (へマトクリット 4 5 . 0 % )
分離終了時間 検体回収量 溶血による
(秒) (; -i L ) 赤血球内成分の混入の有無 実施例 1 4 73 230 〇
実施例 1 5 78 220 〇
実施例 1 6 80 230 〇
実施例 1 7 81 250 〇
実施例 1 8 87 330 〇
実施例 1 9 88 200 〇
比較例 9 121 230 〇
比較例 1 0 198 270 X
比較例 1 1 分離せず 分離せず 一
比較例 1 2 385 290 X
比較例 1 3 分離せず 分離せず ―
〇:遠心分離した血清と目視で比較した際に、 分離した検体の色が同等
X :遠心分離した血清と目視で比較した際に、 分離した検体の色の方が赤い
[0310] [表 4]
Figure imgf000060_0001
[0311] ·実施例 20〜25および比較例 14, 15の血液分離フィルタ装置の評価
上述した実施例 20〜25および比較例 14, 15の血液分離フィルタ装置に、ボラン ティア 2名力 採血したへマトクリットの異なる血液約 2mLをそれぞれ注入し、血液の 分離を行った。
[0312] 血液の分離が終了した時点から、 2分間放置したとき、および 30分間放置したとき の溶血の有無を確認した。
結果を表 5,表 6に示した。
[表 5]
Figure imgf000061_0001
[表 6]
Figure imgf000061_0002
(血液分離フィルタ装置の評価結果)
•実施例 14〜 19および比較例 9〜 13の血液分離フィルタ装置の評価結果 実施例 14〜 19の血液分離フィルタ装置では、いずれも溶血が認められず、溶血に より赤血球から漏洩してきた成分が血漿または血清に混入せず、血漿または血清の み分離することができた。
[0316] 他方、比較例 9, 10, 12の血液分離フィルタ装置では、使用した血液のいずれか 一方、もしくは両方で強度の溶血が認められた。特に、ボランティア B力も採血した血 液では、血液が凝集しやすい傾向が見られ、溶血し易力つた。
比較例 11〜13の血液分離フィルタ装置では、使用した血液のいずれか一方、もし くは両方で、血液が十分に分離されなかった。
[0317] ·実施例 20〜25および比較例 14, 15の血液分離フィルタ装置の評価結果
実施例 20〜25の血液分離フィルタ装置では、分離終了後 2分間経過するまでは、 血漿または血清のみが採取された。また、分離終了後 2分間経過した後には、血液 分離フィルタの下層に赤血球が到達して 、るが、血球停止フィルタによって赤血球の 通過が防止されており、血球成分の血漿または血清への混入が生じなかった。分離 終了後 30分間経過した後には、実施例 20, 21の血液分離フィルタ装置では、赤血 球内成分が分離した血漿または血清中に混入して ヽたが、実施例 22〜25の血液分 離フィルタ装置では、赤血球内成分の血漿または血清への混入は見られな力つた。 実施例 22, 23の血液分離フィルタ装置では、血液分離フィルタ装置の下流に配置さ れた水膨潤性ポリマーが、血漿または血清に接触されることにより膨潤し、流路が完 全に閉塞されて、溶血による赤血球内成分の通過が防止されていた。
[0318] 他方、比較例 14の血液分離フィルタ装置では、ボランティア Aから採血した血液の 分離の際には溶血がみられず、血漿または血清のみが採取された。また、分離終了 後 2分間経過した後には、血球成分の血漿または血清への混入は見られな力つた。 しかしながら、ボランティア B力 採血した血液を分離する際には、分離途中から溶血 が確認された。
[0319] 他方、比較例 15の血液分離フィルタ装置では、ボランティア A, B力も採血した血液 を分離する際には、どちらの血液においても分離途中から溶血が確認された。
真空検体採取容器に緩衝材が備えられて ヽな ヽ場合に、採血針を用いて血液を 流入した際の溶血の有無を確認した実験例を示す。すなわち、血液が採取される際 に、血球が血液分離フィルタに直接衝突される場合における赤血球内成分の漏洩の 有無を確認した実験例を以下に示す。
[0320] 下記表 7に示す針の太さ及び長さが異なる採血針を用いて、緩衝材が備えられて いない真空検体採取容器内に血液 2mLを流入させた。 2mLの血液の流入時間、血 液の流入速度、血液力 分離され第 2の内部空間 A2に収容された血漿若しくは血 清の LDH値 (乳酸脱水酵素)と 415nmにおけるヘモグロビン吸光度、及び溶血の有 無を評価した結果を下記表 7に示す。なお、吸光度の測定は、検体を精製水で 50倍 に希釈して測定した。
[0321] [表 7]
Figure imgf000063_0001
翼状針:テルモ翼付静注針 21G (テルモ社製)
細い注射針:テルモ注射針 22G (テルモ社製)
注射針:テルモ注射針 21G (テルモ社製)
短い注射針:テルモ注射針 21G (テルモ社製)
太い注射針:テルモ注射針 18G (テルモ社製)
ルアー釙:ルアーアダプタ S (テルモ社製)
*) 真空検体採取容器の管内の圧力は 35kPaに設定
*1 ) チューブ内径 1 長さ 300
*2) O:遠心分離した血清と目視で比較した際に、 分離した検体の色が同等
X :遠心分離した血清と目視で比較した際に、 分離した検体の色の方が明らかに赤みを帯びている 上記表 7において、血液流入速度と LDH値との関係を図 29に、血液流入速度と 4 15nmにおけるヘモグロビン吸光度との関係を図 30に示す。
図 29に示すように、血液流入速度が上昇するに従って、 LDH値の上昇が認められ た。すなわち、血液流入速度が上昇するに従って、血液分離フィルタに対する赤血 球の衝突時の衝撃が大きくなり、赤血球が破壊されて赤血球内に多く含まれる LDH が漏洩したため、 LDH値が上昇したものである。図 30に示すように、血液流入速度 が上昇するに従って、 415nmにおけるヘモグロビン吸光度も上昇した。
[0323] 真空検体採取容器内に血液を流入させる際には、針の太さ及び長さの異なる多種 多様の採血針やシリンジが用いられる。し力しながら、採血針やシリンジの針の太さ や長さによって血液流入速度が高くなると、血液分離フィルタに対する赤血球の衝突 時の衝撃が大きくなり、赤血球が破壊され易力つた。
[0324] 血液流入時に血球が衝突して血球が破壊されるのを防止するために、本発明では 、赤血球が衝突しても血球が破壊され難い緩衝材を、血液分離フィルタよりも先に血 液が接触されるように第 1の内部空間に配置した。
以下、本発明の具体的な実施例及び比較例を挙げることにより、本発明をより詳細 に説明する。
[0325] 実施例及び比較例では、上述した管状容器 3および流路形成部材 4からなる筒状 の容器本体 2を用いた。流路形成部材 4の筒状部材 5の環状周縁部 5aより上方の内 部空間の大きさは、内径 l lmm、高さ 48mmであった。
実施例および比較例では、流路形成部材 4内に上述した血球停止フィルタ 10と、 流路閉塞部材 11とを配置した。
[0326] (実施例 26)
集積している繊維の平均繊維径が 1. 9 /ζ πι、目付が 39gZm2、大きさが長さ 240 mm X幅 9mm X厚み 0. 39mmである長尺状の形状を有するシートを 2枚用意した。 この長尺状のシートを 2枚重ね合わせて渦巻き状に巻き、直径約 12mmの略円柱状 の形状とし、内周のシート部分と外周のシート部分とが積層された血液分離フィルタ を 3個用意した。この血液分離フィルタ 3個を別々に段階的に、内周のシート部分と 外周のシート部分とが血液が流れる方向と略平行に積層された状態となるように、円 筒状の流路形成部材圧縮充填した。血液分離フィルタを充填した部分は、内径 11m m、高さ 22mmの領域であった。
[0327] 次に、直径 13mmの円形状を有するポリエチレンテレフタレート製のフィルムを用意 した。このフィルムを湾曲させて、湾曲外側部分が開口側となるように緩衝材を構成し 、上述した図 18で示す緩衝材 81と同様の配置となるように、緩衝材を血液分離フィ ルタの上端面に配置した。
血液分離フィルタの重量は 0. 51g、血液分離フィルタの設置後の平均密度は 0. 2 4g/ cm あつ 7こ。
[0328] (実施例 27)
緩衝材を変更したこと以外は実施例 26と同様に構成した。
緩衝材としては、最大長さ 15mm、最小長さ 9mm、厚さ lmmの長円形の形状を有 するポリエチレンシートを用いた。この緩衝材を上述した図 21で示す緩衝材 85と同 様の配置となるように配置した。すなわち、長手方向の一端が血液分離フィルタの上 端面に接するように、一端とは反対側の他端が、一端力 斜め上方に位置されて筒 状部材 5の内周面と接するように、緩衝材を配置した。
[0329] (実施例 28)
緩衝材を変更したこと以外は実施例 26と同様に構成した。
緩衝材としては、直径 10mm、厚さ lmmの円形状を有し、かつ上述した図 19に示 す緩衝材 84のように、直径 lmmの孔が複数形成されて!/ヽるポリスチレン製シートを 用いた。緩衝材の下面が血液分離フィルタの上端面に当接するように、外周面が筒 状部材の内周面と一定間隔を隔られるように配置した。
[0330] (実施例 29)
緩衝材を変更したこと以外は実施例 26と同様に構成した。
直径約 0. 8mm,重さ lgの複数のガラスビーズを用いて緩衝材を構成した。すなわ ち、複数個のガラスビーズを、血液分離フィルタの上端面全体を覆うように、かつ複数 段に重なり合うように配置した。
[0331] (実施例 30)
緩衝材を変更したこと以外は実施例 26と同様に構成した。
緩衝材としては、外径約 11mmの環状の位置決めホルダーと、位置決めホルダー の内周面と一部分が結合されており、かつ結合部分力 斜め上方に配置された円盤 形状を有するフィルム力 なるポリプロピレン製の成形品を用いた。
[0332] この緩衝材を上述した図 25で示す緩衝材 91と同様の配置となるように配置した。
すなわち、位置決めホルダーの下端が血液分離フィルタの上端面と当接するように、 位置決めホルダーの外周面が筒状部材の内周面と当接するように配置した。
[0333] (比較例 16)
緩衝材を配置しなカゝつたこと以外は実施例 26と同様に構成した。
[0334] (真空検体採取容器の作製)
上述した実施例および比較例の筒状部材の開口に栓体を圧入した。この栓体が取 付けられた流路形成部材を管状容器内に収容し、管状容器の管内の圧力が 35kPa となるように管状容器の開口を同じ栓体で密栓真空検体採取容器を作製した。
[0335] (真空検体採取容器の評価)
上述した実施例および比較例の真空検体採取容器に、ボランティア 2名から採血し た血液約 2mLを太 、注射針 (テルモ注射針 18G、テルモ社製)を取り付けたシリンジ を用いてそれぞれ注入し、血液の分離を行った。得られた検体の回収量および溶血 による赤血球内成分混入の有無を確認した。結果を下記表 8,表 9に示した。
[0336] [表 8]
Figure imgf000066_0001
[0337] [表 9] ボランティア 2 (へマ卜クリソ卜 4 2
分離終了時間 検体回収量 溶血による
(秒) ( li L ) 赤血球内成分の混入の有無 実施例 2 6 150 250 〇
実施例 2 7 145 240 〇
実施例 2 8 135 250 〇
実施例 2 9 150 230 〇
実施例 3 0 140 240 〇
比較例 1 6 145 250 X
〇:遠心分離した血清と目視で比較した際に、 分離した検体の色が同等
Δ:遠心分離した血清と目視で比較した際に、 分離した検体の色の方が僅か に赤みを帯びている
X :遠心分離した血清と目視で比較した際に、 分離した検体の色の方が明ら かに赤みを帯びている

Claims

請求の範囲
[1] 血液の入口と出口とを有し、血液が流れる流路を有する流路形成部材と、
前記流路の少なくとも一部の領域に設置されており、血液を血球と血漿または血清 とに分離する第 1,第 2の血液分離フィルタ部材とを備え、
前記第 1の血液分離フィルタが、繊維体が集積されて形成されたシートの積層体か らなり、シート面が血液が流れる方向と略平行となるように積層されており、
前記第 2の血液分離フィルタが、繊維体が集積されて形成されたシートからなり、前 記第 2の血液分離フィルタ力 シートのシート面が血液が流れる方向と略直角方向と なるように前記流路に設置されており、
前記第 1,第 2の血液分離フィルタの下記式(1)で表される重量比力 0. 001〜1 の範囲にあることを特徴とする、血液分離フィルタ装置。
重量比 =第 2の血液分離フィルタ重量 Z第 1の血液分離フィルタ重量' · · (1)
[2] 前記第 1,第 2の血液分離フィルタを構成するシートは、平均繊維径が 0. 5〜3. 0 μ mの範囲にある繊維体が集積されて形成されており、
前記第 1の血液分離フィルタは、流路に設置された状態での平均密度が 0. 1〜0. 5g/cm3の範囲とされており、流路に設置する前後の下記式(2)で表される体積比 力 1. 1〜5. 0の範囲であるように圧縮された状態で前記流路に設置されている、請 求項 1に記載の血液分離フィルタ装置。
体積比 =設置前の第 1の血液分離フィルタ体積 Z設置後の第 1の血液分離フィル タ体積 · · ·(¾
[3] 前記第 1の血液分離フィルタを構成するシートが短冊状の形状を有し、
前記積層体は、短冊状の形状を有する前記シートが少なくとも 2枚積層された構成 を有する、請求項 1または 2に記載の血液分離フィルタ装置。
[4] 前記第 1の血液分離フィルタを構成するシートが長尺状の形状を有し、
長尺状の形状を有する前記シートをジグザグ状に折りたたむことにより前記積層体 が構成されて 、る、請求項 1または 2に記載の血液分離フィルタ装置。
[5] 前記積層体は、内周側のシートと外周側のシートとが略円筒形状を有するように積 層された構造を有する、請求項 1または 2に記載の血液分離フィルタ装置。
[6] 複数の前記第 1の血液分離フィルタ力 血液が流れる方向に沿って配置されている
、請求項 1〜5のいずれか 1項に記載の血液分離フィルタ装置。
[7] 前記第 2の血液分離フィルタが、前記第 1の血液分離フィルタの下流に配置されて いる、請求項 1〜6のいずれか 1項に記載の血液分離フィルタ装置。
[8] 血液の入口と出口とを有し、血液が流れる流路を有する流路形成部材と、
前記流路の少なくとも一部の領域に設置されており、血液を血球成分と血漿または 血清とに分離する血液分離フィルタ部材とを備え、
前記血液分離フィルタ部材が、平均繊維径が 0. 5〜3. 0 mの範囲にある繊維体 が集積されて形成されたシートの積層体力 なり、シートが血液が流れる方向と略平 行となるように積層されており、前記血液分離フィルタ部材は、流路に設置された状 態での平均密度が、 0. 1〜0. 5gZcm3の範囲とされており、
前記血液分離フィルタ部材は、流路に設置する前後の下記式(2A)で表される体 積比が、 1. 1〜5. 0の範囲であるように圧縮された状態で前記流路に設置されてい ることを特徴とする、血液分離フィルタ装置。
体積比 =設置前の血液分離フィルタ部材体積 Z設置後の血液分離フィルタ部材 体積…
[9] 前記シートが短冊状の形状を有し、
前記積層体は、短冊状の形状を有する前記シートが少なくとも 2枚積層された構成 を有する、請求項 8に記載の血液分離フィルタ装置。
[10] 前記シートが長尺状の形状を有し、
長尺状の形状を有する前記シートをジグザグ状に折りたたむことにより前記積層体 が構成されて ヽる、請求項 8に記載の血液分離フィルタ装置。
[11] 前記積層体は、内周の前記シートと外周の前記シートとが略円筒形状を有するよう に積層された構成を有する、請求項 8に記載の血液分離フィルタ装置。
[12] 複数の前記血液分離フィルタ部材が、血液が流れる方向に沿って配置されている
、請求項 8〜: L 1の 、ずれか 1項に記載の血液分離フィルタ装置。
[13] 前記血液分離フィルタ部材の下流に配置されており、血球の混入を防止する血球 停止フィルタをさらに備える、請求項 1〜12のいずれか 1項に記載の血液分離フィル タ装置。
[14] 前記血液分離フィルタ部材の下流に配置されており、血漿または血清に接触される ことにより膨潤し、前記流路を閉塞する水膨潤性ポリマーをさらに備える、請求項 1〜
13の 、ずれか 1項に記載の血液分離フィルタ装置。
[15] 前記水膨潤性ポリマーが、前記血液分離フィルタ部材と前記血球停止フィルタとの 間に配置されている、請求項 14に記載の血液分離フィルタ装置。
[16] 前記水膨潤性ポリマーが、前記血球停止フィルタの下流に配置されて 、る、請求項
14に記載の血液分離フィルタ装置。
[17] 前記水膨潤性ポリマーが、シート状に成形されている、請求項 14〜16のいずれか
1項に記載の血液分離フィルタ装置。
[18] 請求項 1〜17のいずれか 1項に記載の血液分離フィルタ装置と、前記血液分離フ ィルタ装置を収容して 、る管状容器とを備えることを特徴とする、真空検体採取管。
PCT/JP2006/312772 2005-06-27 2006-06-27 血液分離フィルタ装置、および真空検体採取管 WO2007000986A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-187113 2005-06-27
JP2005187115 2005-06-27
JP2005-187114 2005-06-27
JP2005187114A JP2007000536A (ja) 2005-06-27 2005-06-27 真空検体採取容器
JP2005-187115 2005-06-27
JP2005187113 2005-06-27

Publications (1)

Publication Number Publication Date
WO2007000986A1 true WO2007000986A1 (ja) 2007-01-04

Family

ID=37595236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312772 WO2007000986A1 (ja) 2005-06-27 2006-06-27 血液分離フィルタ装置、および真空検体採取管

Country Status (1)

Country Link
WO (1) WO2007000986A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7927563B1 (en) 2009-10-13 2011-04-19 Cytomedix, Inc. Kit for separation of biological fluids
WO2014025490A1 (en) * 2012-08-10 2014-02-13 Montagu Jean I Filtering blood
US8794452B2 (en) 2009-05-15 2014-08-05 Becton, Dickinson And Company Density phase separation device
US9339741B2 (en) 2008-07-21 2016-05-17 Becton, Dickinson And Company Density phase separation device
US9694359B2 (en) 2014-11-13 2017-07-04 Becton, Dickinson And Company Mechanical separator for a biological fluid
US10989706B2 (en) 2014-08-01 2021-04-27 Siemens Healthcare Diagnostics Inc. Vacuum-assisted plasma separation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577556A (en) * 1980-05-12 1982-01-14 American Hospital Supply Corp Filter element and apparatus containing thereof and method of use
JP2000338103A (ja) * 1999-05-26 2000-12-08 Fujirebio Inc 分離装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577556A (en) * 1980-05-12 1982-01-14 American Hospital Supply Corp Filter element and apparatus containing thereof and method of use
JP2000338103A (ja) * 1999-05-26 2000-12-08 Fujirebio Inc 分離装置

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9339741B2 (en) 2008-07-21 2016-05-17 Becton, Dickinson And Company Density phase separation device
US9919307B2 (en) 2009-05-15 2018-03-20 Becton, Dickinson And Company Density phase separation device
US10456782B2 (en) 2009-05-15 2019-10-29 Becton, Dickinson And Company Density phase separation device
US9919308B2 (en) 2009-05-15 2018-03-20 Becton, Dickinson And Company Density phase separation device
US9079123B2 (en) 2009-05-15 2015-07-14 Becton, Dickinson And Company Density phase separation device
US11351535B2 (en) 2009-05-15 2022-06-07 Becton, Dickinson And Company Density phase separation device
US9364828B2 (en) 2009-05-15 2016-06-14 Becton, Dickinson And Company Density phase separation device
US10807088B2 (en) 2009-05-15 2020-10-20 Becton, Dickinson And Company Density phase separation device
US8794452B2 (en) 2009-05-15 2014-08-05 Becton, Dickinson And Company Density phase separation device
US9731290B2 (en) 2009-05-15 2017-08-15 Becton, Dickinson And Company Density phase separation device
US9919309B2 (en) 2009-05-15 2018-03-20 Becton, Dickinson And Company Density phase separation device
US8998000B2 (en) 2009-05-15 2015-04-07 Becton, Dickinson And Company Density phase separation device
US11786895B2 (en) 2009-05-15 2023-10-17 Becton, Dickinson And Company Density phase separation device
US9802189B2 (en) 2009-05-15 2017-10-31 Becton, Dickinson And Company Density phase separation device
US10343157B2 (en) 2009-05-15 2019-07-09 Becton, Dickinson And Company Density phase separation device
US10376879B2 (en) 2009-05-15 2019-08-13 Becton, Dickinson And Company Density phase separation device
US10413898B2 (en) 2009-05-15 2019-09-17 Becton, Dickinson And Company Density phase separation device
US7927563B1 (en) 2009-10-13 2011-04-19 Cytomedix, Inc. Kit for separation of biological fluids
US10531822B2 (en) 2012-08-10 2020-01-14 Jean I. Montagu Filtering in pre-evacuated containers
US9427707B2 (en) 2012-08-10 2016-08-30 Jean I. Montagu Filtering blood
WO2014025490A1 (en) * 2012-08-10 2014-02-13 Montagu Jean I Filtering blood
US10989706B2 (en) 2014-08-01 2021-04-27 Siemens Healthcare Diagnostics Inc. Vacuum-assisted plasma separation
US11371983B2 (en) 2014-08-01 2022-06-28 Siemens Healthcare Diagnostics Inc. Vacuum-assisted plasma separation
US9694359B2 (en) 2014-11-13 2017-07-04 Becton, Dickinson And Company Mechanical separator for a biological fluid

Similar Documents

Publication Publication Date Title
JP3890066B2 (ja) 血液分離器具及び血液分離装置
JP2007000536A (ja) 真空検体採取容器
AU749358B2 (en) Biological fluid treatment system
WO2007000986A1 (ja) 血液分離フィルタ装置、および真空検体採取管
AU2007277384B2 (en) Membrane-based double-layer tube for sample collections
EP1579838A1 (en) Virus-removing bag and virus-removing method using the same
JP2007518978A (ja) 血漿用オンデマンドチューブ
EP2497506A1 (en) Plasma filter with laminated prefilter
JP2007003478A (ja) 血液分離材、血液分離装置および真空検体採取容器
EP3053610A1 (en) Blood processing filter and blood processing method
JP2007006973A (ja) 血液採取及び分離装置
JP2000180443A (ja) 血液濾過残留物の回収方法
JP2008232876A (ja) 血球停止膜、血液分離フィルタ、血液分離装置及び検体採取容器
JP2007003479A (ja) 血液分離装置
JP2007040985A (ja) 血液分離フィルタ装置、および真空検体採取管
JP2006003340A (ja) 血液分離フィルタ装置、および真空検体採取管
JP3890068B2 (ja) 検体採取容器
JP3551080B2 (ja) 分離装置
JP2007003481A (ja) 血液分離装置
CN108635629A (zh) 血液处理过滤器
JP2007000537A (ja) 真空検体採取器具
JP3890067B2 (ja) 検体採取容器
JP2007000842A (ja) 血液分離フィルタユニット、および真空検体採取容器
WO2007057947A1 (ja) 血液分離フィルタ装置、および真空検体採取管
JP2002508698A (ja) 流体サンプルを濾過するためのフィルタを組み込んだ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06767389

Country of ref document: EP

Kind code of ref document: A1