WO2006137475A1 - 表面改質ナノフィラー及び高分子複合材料 - Google Patents

表面改質ナノフィラー及び高分子複合材料 Download PDF

Info

Publication number
WO2006137475A1
WO2006137475A1 PCT/JP2006/312491 JP2006312491W WO2006137475A1 WO 2006137475 A1 WO2006137475 A1 WO 2006137475A1 JP 2006312491 W JP2006312491 W JP 2006312491W WO 2006137475 A1 WO2006137475 A1 WO 2006137475A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
group
polymer
composite material
polymer composite
Prior art date
Application number
PCT/JP2006/312491
Other languages
English (en)
French (fr)
Inventor
Hideto Nakagawa
Haruhiko Mohri
Hirokazu Aoyama
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP06767149.5A priority Critical patent/EP1908801A4/en
Priority to JP2007522357A priority patent/JP5228486B2/ja
Priority to US11/993,446 priority patent/US7989535B2/en
Publication of WO2006137475A1 publication Critical patent/WO2006137475A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/005Reinforced macromolecular compounds with nanosized materials, e.g. nanoparticles, nanofibres, nanotubes, nanowires, nanorods or nanolayered materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances

Definitions

  • the present invention relates to a surface-modified nanofiller and a polymer composite material using the surface-modified nanofiller.
  • Non-Patent Document 1 Yuhito Yui and two others, 43rd Annual Meeting of the Japan Oil Chemists' Society CFOCS—MPOB Joint Symposium) (Abstracts of lectures, November 1, 2004, p. 156)
  • Non-Patent Document 2 Tetsu Yonezawa, 2 others Langmuir 2001, 17, 229-2293
  • Patent Document 1 Patent No. 3284552
  • Patent Document 2 JP-A-9-87432
  • Patent Document 3 Special Table 2001-523278
  • Patent Document 4 Japanese Patent Laid-Open No. 10-81785
  • Patent Document 5 US Patent No. 5840796
  • Patent Document 6 Pamphlet of International Publication No. 99Z50340
  • Patent Document 7 Japanese Unexamined Patent Publication No. 2000-204214
  • Patent Document 8 US Patent No. 6414069
  • Patent Document 9 US Patent No. 6734229
  • Patent Document 10 Japanese Patent Application Laid-Open No. 2004-10891
  • Patent Document 11 Japanese Unexamined Patent Application Publication No. 2005-146081
  • Patent Document 12 Special Table 2005-500409
  • Patent Document 13 Japanese Unexamined Patent Application Publication No. 2005-146081
  • Patent Document 14 Japanese Unexamined Patent Application Publication No. 2005-200272
  • the polymer composite material according to the present invention contains a nanofiller, a fluorine compound, and a polymer.
  • the fluorine compound is bonded to the surface of the nanofiller.
  • the “bond” here includes, for example, an ionic bond, a covalent bond, a coordination bond, an intermolecular force (dipole interaction, dispersion force, hydrogen bond) and the like.
  • the nanofiller is preferably at least one selected from the group consisting of a nanocarbon material, a metal heteroatom compound, and metal nanoparticles.
  • the fluorine compound is preferably an organic ion containing a hetero atom and having a fluorine-containing alkyl group having 1 to 50 carbon atoms.
  • the organic ions are represented by the following general formula (1);
  • L 1 is P, N, S, Si ⁇ 0, Se, Te, As, Sb, Bi ⁇ F, Cl, Br, or I.
  • s is 2, 3, 4 or 5 is a value determined by the valence of the element L 1.
  • R 1 is the same or different, and may contain a “hydrogen atom” or “hetero atom, or a part thereof may be substituted with a fluorine atom.
  • R 2 represents “heteroatom and It may contain a saturated bond and may be partially substituted with a fluorine atom! /,
  • u is an integer of 0 to 3 determined by the valence of L 2.
  • R 3 and R 4 are the same or different, "Hydrogen atom", "Alkyl group which may contain a hetero atom and may be partially substituted with a fluorine atom", and "Fluorine-containing alkyl group having 1 to 50 carbon atoms which may contain a hetero atom” at least one substituent "heteroatom of the forces R 3 and R 4 is either!, it also, fluorinated alkyl having 1 to 50 carbon atoms It is preferably also has a structure represented by a group ").
  • the organic ion is at least selected from the group consisting of an organic ammonium ion, an organic phosphorous ion, and a nitrogen-containing heterocyclic ion force. More preferably, it is one kind of organic ion.
  • the fluorine-containing alkyl group preferably has 4 to 50 carbon atoms! /.
  • the polymer is preferably a fluoropolymer.
  • the molded product according to the present invention is made of a polymer composite material as described above.
  • the surface-modified nanofiller according to the present invention contains a nanofiller and a fluorine compound.
  • the fluorine compound is bonded to the surface of the nanofiller.
  • “combined” here is an example. Examples include ionic bonds, covalent bonds, coordination bonds, and intermolecular forces (dipole interactions, dispersion forces, hydrogen bonds).
  • the nanofiller is at least one selected from a group power consisting of a nanocarbon material, a metal heteroatom compound, and metal nanoparticles.
  • a surface modified nanofiller containing a double hydroxide and a fluorine compound bonded to the surface of the double hydroxide, or a clay mineral, and a clay mineral More preferred is a surface-modified nanofiller containing a fluorine compound (excluding organic ammonium ions) that binds to the surface.
  • the fluorine compound preferably contains a hetero atom, but is preferably an organic ion having a fluorine-containing alkyl group having 1 to 50 carbon atoms.
  • the organic ion is represented by the following general formula (1);
  • L 1 is P ⁇ N ⁇ S ⁇ Si ⁇ 0, Se ⁇ Te ⁇ As, Sb ⁇ Bi ⁇ F ⁇ Cl, Br ⁇ or I.
  • s is 2, 3, 4 or 5 is a value determined by the valence of the element L 1.
  • R 1 is the same or different, and may contain a “hydrogen atom” or “hetero atom, or a part thereof may be substituted with a fluorine atom.
  • L 2 is P ⁇ N ⁇ S ⁇ Si ⁇ 0, Se ⁇ Te ⁇ As, Sb ⁇ Bi ⁇ F ⁇ Cl, Br ⁇ or I.
  • R 2 represents “hetero atom And may be partially substituted with a fluorine atom! /, An alkylene group ”or“ a chain group composed of an atom other than carbon ”.
  • T is a numerical value equal to or less than the number of atoms constituting the chain portion of R 2.
  • u is an integer of 0 to 3 determined by the valence of L 2.
  • R 3 and R 4 are the same or different.
  • Haldrogen atom alkyl group which may contain a hetero atom and may be partially substituted with a fluorine atom
  • fluorinated alkyl group having 1 to 50 carbon atoms which may contain a hetero atom at least one substituent of the force R 3 and R 4 is any of "not contain” heteroatom !
  • fluorine-containing Al of 1 to 50 carbon atoms It is also preferably in a having a structure represented by Le group "and is).
  • the organic ion is more preferably at least one of an organic phosphorous ion and a nitrogen-containing heterocyclic ion, and the surface modification according to the present invention.
  • the fluorine-containing alkyl group preferably has 4 to 50 carbon atoms! /.
  • the polymer composite material according to the present invention has excellent heat resistance, mechanical properties, substance permeation blocking properties, flame retardancy, electrical conductivity, and the like.
  • the partially novel surface-modified nanofilar according to the present invention has good compatibility with a polymer, particularly a fluorine-containing polymer, it provides a polymer material that is uniformly dispersed in the polymer and has excellent characteristics as described above. be able to.
  • the surface-modified nanofiller according to the present invention contains a nanofiller and a fluorine compound that binds to the surface of the nanofiller.
  • This surface-modified nanofilar may contain other components as long as the effects of the present invention are not lost.
  • Some of the surface-modified nanofillers containing the nanofiller and the fluorine compound that binds to the surface of the nanofiller are novel compounds.
  • the nanofiller and the fluorine compound for surface modification contained in the surface modified nanofiller according to the present invention will be described in detail.
  • nanofillers employed in this embodiment include nanocarbon materials, metal heteroatom compounds, and metal nanoparticles. In this embodiment, one or more of these should be selected and used. Can do.
  • nano-level 0.1 nm to lOOOnm
  • nano-level 0.1 nm to lOOOnm
  • a compound composed of carbon atoms having a nano-level structure is as follows.
  • fibrous carbon structure It is synthesized by using a metal catalyst such as iron or cobalt and thermally decomposing a gaseous carbon source under appropriate conditions.
  • a metal catalyst such as iron or cobalt
  • fibrous carbon structures There are three known types of fibrous carbon structures: parallel (ribbon type), vertical (platelet type), and inclined (herringbone type) orientation of the carbon mesh surface with respect to the fiber axis.
  • the six-membered ring network (graphen sheet) made of carbon has become a single-layer or multilayer coaxial tube
  • Single-walled nanotubes are single-walled nanotubes (SWNT), and multi-walled ones are multi-walled nanotubes (MWNT)!
  • SWNT single-walled nanotubes
  • MWNT multi-walled nanotubes
  • DWNT double wall nanotube
  • these nanocarbon materials include those described in Chemical Industry 56, P50-62 (2005), and Langmuir, 11, P3682-3866 (1995). Of these carbon nanomaterials, carbon nanofibers are preferred, and carbon nanotubes are particularly preferred.
  • Metals include alkali metals (lithium, sodium, potassium, etc.), alkaline earth metals (calcium, magnesium, barium, etc.), transition metals (titanium, vanadium, niobium, chromium, molybdenum, tungsten, iron, manganese, ruthenium) , Connort, Nickel, Non-Radium, Platinum, Copper, Silver, Gold, Zinc, Cadmium, Mercury, Lannoid Group Metals, Actinoid Group Metals, etc. , Lead, etc.).
  • Hetero atoms include boron of Periodic Table 13 Group, nitrogen of Periodic Table 15 Group, phosphorus, arsenic, oxygen of Periodic Table 16 Group, sulfur, selenium, tellurium, etc., Periodic Table 17 Group of fluorine, chlorine, Examples include bromine and iodine.
  • the hetero atom is preferably boron, nitrogen, phosphorus, oxygen, or sulfur.
  • Examples of the metal heteroatom compound include metal oxides (clay minerals, double hydroxides, perovskites, and other metal oxides), metal phosphates, and metal force rugogenates. Of these, metal oxides are preferred. Among these metal heteroatom compounds, metal heteroatom compounds having a particulate structure, metal heterocompounds having a layered or sheet-like structure, needles, rods, fibers, cylinders, etc. A metal hetero-compound having a shape structure is preferred. Of these, layered metal heteroatom compounds are particularly preferred. Specific examples of the metal heteroatom compound include the following.
  • the clay mineral (hereinafter sometimes referred to as “clay”) is, for example, a silicate mineral having a layered structure formed by laminating a large number of sheets.
  • the sheet forming the layer may be one in which a large number of tetrahedrons composed of caustic acid are bonded along a plane, or a large number of octahedrons containing aluminum or magnesium are bonded along a plane. It may have been made.
  • this clay mineral is of natural origin, processed natural products, A synthetic product such as a swellable fluorinated My power may be used.
  • Specific examples of the clay mineral are not particularly limited. , Stevensite, vermiculite, halloysite, bolconskite, sconite, magadite, and kenyalite. In the present embodiment, one or more of these can be selected and used.
  • sheet (layered) clay minerals are preferred.
  • one layer of a sheet (layer) of sheet (layer) clay mineral has a thickness of several nanometers or less. Sheets (layers) with a thickness of 2 nm or less are particularly preferred.
  • the double hydroxide is, for example, the following general formula (3):
  • M is a divalent metal
  • M 1 is a trivalent metal
  • is the valence of the ⁇ ⁇
  • X is 0
  • It is one of layered compounds in which positively charged divalent / trivalent metal hydroxide sheets represented by a value of ⁇ 0.4 and y is a real number greater than 0 are stacked in layers. is there. In order to compensate for the positive charge of the hydroxide sheet, ions are incorporated between the layers.
  • particulate double hydroxides layered or sheet-like double hydroxides, needle-like, rod-like, and fibrous double hydroxides are particularly preferred.
  • a layered double hydroxide is particularly preferred.
  • perovskite structure A type of tetragonal crystal structure.
  • the same crystal structure as perovskite is called the perovskite structure.
  • the perovskite structure For example, like TiO (barium titanate), the ternary force called RMO
  • Transition metal oxides and the like take this crystal structure. Ideally, it has a cubic unit cell, with a metal R at each apex of the cubic crystal, a metal M at the body center, and oxygen O centered on the metal M at each face center of the cubic crystal.
  • perovskites include catalysts, those described in 47, P. 29 0-294 (2005), and the like. In the present embodiment, among these, particularly perovskite in the form of particles, perovskite in the form of layers or sheets, needles, rods, Fibrous perovskites are preferred, and layered perovskites are particularly preferred.
  • metal oxides other than those classified above include those having nano-sized particle, layer, sheet, needle, rod, fiber, and cylindrical structures.
  • metal oxides other than those classified above include silica, alumina, iron oxide, zinc oxide, zirconium oxide, titanium, and the like.
  • a catalyst, a catalyst described in 47, P. 279 294 (2005), and the like can be mentioned.
  • metal phosphate examples include the following general formula (4):
  • R represents H, Rh, or Me
  • particulate metal phosphates layered and sheet metal phosphates, needle-like, rod-like, and fiber-like metal phosphates are preferred, and layered metal phosphates are particularly preferred. Is particularly preferred.
  • metal chalcogenide materials include the following general formula (6):
  • M is Mg, V, Mn, Fe, Co, Ni, Zn, Cd, or In, and X is S or Se).
  • the metal nanoparticles consist of Ag, Au, Cu, Pt, Pd, W, Ni, Ta, In, Sn, Zn, Cr, Fe, Co, and Si. 2 or more metals or It is an alloy of at least two kinds of these metals, and is selected appropriately according to the purpose.
  • the fluorine compound for surface modification employed in the present embodiment includes a hetero atom, an organic cation having a fluorine-containing alkyl group having 1 to 50 carbon atoms, and a hetero atom.
  • Other examples include organic groups having a fluorine-containing alkyl group having 1 to 50 carbon atoms, and organic groups having a heteroalkyl atom and having a fluorine-containing alkyl group having 1 to 50 carbon atoms. In the embodiment, one or more of these can be selected and used.
  • These surface modifying fluorine compounds are physically or chemically bonded to the surface of the nanofiller.
  • the organic cation may contain a hetero atom and may have a fluorine-containing alkyl group having 1 to 50 carbon atoms.
  • the organic cation is preferably one that ionically bonds to the surface of the nanofiller. Only one organic cation may be used, or two or more organic cations may be used in combination.
  • L 1 is P, N, S, Si ⁇ 0, Se, Te, As, Sb, Bi ⁇ F, Cl, Br, or I.
  • s is 2, 3, 4 or 5 is a value determined by the valence of the element L 1.
  • R 1 is the same or different, and may contain a “hydrogen atom” or “hetero atom, or a part thereof may be substituted with a fluorine atom.
  • L 2 is P ⁇ N ⁇ S ⁇ Si ⁇ 0, Se ⁇ Te ⁇ As, Sb ⁇ Bi ⁇ F ⁇ Cl, Br ⁇ or I.
  • R 2 represents "heteroatom And may be partially substituted with a fluorine atom! /, An alkylene group ”or“ a chain group composed of an atom other than carbon ”.
  • T is a numerical value equal to or less than the number of atoms constituting the chain portion of R 2.
  • u is an integer of 0 to 3 determined by the valence of L 2.
  • R 3 and R 4 are the same or different.
  • cation cations such as H + —1 ⁇ 5, SbH + —1 ⁇ 5, BiH + —1 ⁇ 5.
  • Examples of the organic cation having the structure represented by the general formula (1) include, for example, the following general formula (8);
  • R 1 is the general formula the same as R 1 is in (1)
  • examples of the organic cation having the structure represented by the general formula (2) include, for example, the following general formula (9);
  • R 3 and R 4 the general formula (2) in is the same as R 3 and R 4 also is preferably represented by.
  • L 1 and L 2 in the general formulas (1) and (2) are P (phosphorus atom) or N (nitrogen atom) are preferable. More preferably, phospho L 1 and L 2 is P - Umuion, or, O L 2 is a N with L 2 R 2 constitute a homocyclic heterocycle or N - is Umuion . That is, the organic ion is preferably at least one of a phosphonium ion, a nitrogen-containing heterocyclic ion, and a nitrogen allocyclic ion.
  • the organic ion is at least one of a phosphonium ion, a nitrogen-containing heterocyclic onium ion, and a nitrogen allocyclic ionic ion, it is possible to impart much more excellent heat resistance.
  • the nitrogen-containing heterocyclic ion is an oxygen ion having a nitrogen-containing heterocyclic ring.
  • Examples of the phosphonium ion include the following general formula (10);
  • R 1 is the general formula (the same as R 1 is the 1)) those represented by is particularly preferred arbitrariness. More specifically, for example, perfluoroethyl phosphorous ion, perfluorooral propinorephosphonium ion, perfonorerobutinorephosphonium ion, perfonorerobutinoreethinorephosphonium ion, perfunoreohexenorephosphonium ion , Perfonoreo hexinoretinorephospho-muon ion, perfnoreo heptinorephospho-u-mion, perfunoreoctinorephosphonium ion, perfnoreo otachinoreethinorephosphonium ion, perfluorodecylphospho-uum ion and Preferable examples include perfluorodecylethyl phosphonium ion
  • nitrogen-containing heterocyclic ion examples include the following general formula (11); [0042] [Chemical Formula 10]
  • R 3 and R 4 the general formula (2) in is the same as R 3 and R 4
  • it may particularly preferably represented by. More specifically, for example, perfluoroethyl imidazolium, perfluoropropyl imidazolium ion, perfluorobutyl imidazolium ion, perfluorobutyl imidazolium ion, Perfluoro mouth hexyl imidazolium ion, Perfluoro mouth hexyl imidazolium ion, Perfluoro mouth pentyl imidazolium ion, Perfluoro octyl imidazolium ion, Perfluoro ota chilly imidazolium ion, Perfluoro decyl imidazolium ion Ryumu ion, perfluorodecyl chloride imidazolium ion and other imidazolium ions, Rupyridium i
  • the above organic ions are, for example, perfluoronorenomonium ion, perfluoronoleo propynolemonium ion, monofluorobutyl ammonium ion, perfluorobutyl ether ammonium ion.
  • part side in the said alkyl group is (CH2)-(n is 1 or 2). More specifically
  • L 1 and s are the same as L 1 and s in the general formula (1).
  • N is 1 or 2.
  • the organic ion may contain a heteroatom and may be a fluorine-containing alkyl having 1 to 50 carbon atoms. Has a group.
  • the organic ion is preferably one that ionically bonds to the surface of the nanofiller. Note that only one kind of organic cation may be employed, or two or more kinds of organic cation may be used in combination.
  • organic ions for example, those represented by RfCOO_, RfO_, RfSO- are preferred.
  • the Rf group is a perfluoroethyl group, a perfluoropropyl group, a perfluorobutyl group, a perfluorobutylethyl group, a perfluorinated hexyl group, a perfluoro group.
  • Preferred examples include oral hexyl group, perfluoro oral heptyl group, perfluorooctyl group, perfluorooctyl group, perfluorodecyl group, and perfluorodecylethyl group.
  • the organic group may contain a hetero atom, but may have a fluorine-containing alkyl group having 1 to 50 carbon atoms.
  • the organic group those which are covalently bonded to the surface of the nanofiller are preferable.
  • only 1 type may be employ
  • the organic group for example, those represented by Rf-, RfS-, RfO-, RfSi-, RfCOO-, RfCONH- are preferable. Further, those represented by Rf that do not contain a hetero atom in the binding site are more preferred. More specifically, for example, the Rf group is a perfluoroethyl group, a monofluoropropyl group, a perfluorobutyl group, a perfluorobutylethyl group, a perfluorohexyl group, a perfluorohexylethyl group.
  • Preferable examples include perfluoro mouth heptyl group, perfluorooctyl group, perfluorooctylethyl group, perfluorodecyl group, perfluorodecylethyl group and the like.
  • the organic ion (organic cation and organic cation) described above and the hetero atom of the organic group may be included, and the fluorine-containing alkyl group having 1 to 50 carbon atoms may be linear. It may be one having a branched chain or one having a cyclic structure. Among the above fluorine-containing alkyl groups having 1 to 50 carbon atoms, 4 to 50 fluorine-containing alkyl groups are preferred. If the number of carbon atoms is less than 4, the dispersibility of the polymer may be insufficient.
  • the fluorine-containing alkyl group a fluorine-containing alkyl group having 4 to 50 carbon atoms
  • the compatibility with the polymer, particularly the fluorine-containing polymer is further improved, and the polymer in which the nano filler is more uniformly dispersed in the polymer.
  • a composite material can be obtained.
  • the organic ion (organic cation, organic cation), and organic group may have only one kind or two or more kinds of the fluorine-containing alkyl group having 1 to 50 carbon atoms. Good.
  • the organic ion (organic cation and organic cation) and the organic group may have a functional group, and such a form is also one of preferred forms. If functional groups are introduced into the above organic ions (organic cations and organic ions) and organic groups, the compatibility with the polymer can be further improved, and a polymer composite material with better physical properties can be provided. Is possible.
  • the functional group is not particularly limited, and examples thereof include CO H group and NH group.
  • OH group OH group, P (OH) group, SO H group, CN group, halogen group (for example, I, Br, C1) etc. are preferred.
  • organic ion (organic cation, organic cation) or organic group has a halogen, it is co-crosslinked with the polymer when mixed with the polymer to obtain a polymer composite material. The effect will be more fully exhibited.
  • the organic ions (organic cation, organic cation) and organic group may have one kind of functional group, or may have two or more kinds of functional groups. ,.
  • the mixing ratio of the nanofiller and the surface modifying fluorine compound in the surface modified nanofiller is not particularly limited as long as it is appropriately set depending on the type of the surface modifying fluorine compound.
  • the surface modifying fluorine compound is preferably 5 to 50% by mass.
  • One production method is not particularly limited as long as it contains nanofillers and organic ions that modify the nanofillers.
  • nanofillers are dispersed in a solvent such as warm water
  • examples thereof include a method in which an organic ion solution is added to cause precipitation, and the obtained precipitate is filtered, washed with water, and dried to obtain a surface-modifying fluorine compound surface-modified nanofiller. This method is particularly useful when the nanofiller is a clay mineral or a double hydroxide.
  • the method for producing a surface-modified nanofiller when an organic group is employed as the fluorine compound for surface modification is particularly limited as long as it contains a nanofiller and an organic group that modifies the nanofiller.
  • the organic group that modifies the nanofiller is preferably an organic group represented by Rf that does not contain a hetero atom in the binding site.
  • a usual method can be adopted, and examples thereof include a thermal analysis method, an XRD method, elemental analysis, IR, and UV.
  • the thermal analysis method the formation of surface-modified nanofillers can be confirmed by the decrease in the mass of the organic part (for example, alkyl group), and in the XRD method, the interlayer distance of the nanocarbon material is the interlayer distance before modification.
  • the formation of surface-modified nanofillers can be confirmed by confirming that the area is wider than that.
  • the thermal analysis method can use, for example, TGZDTA6200 manufactured by Seiko Electronics Co., Ltd., and the XRD method can use, for example, RAD-RA type manufactured by Rigaku Corporation, while the elemental analysis method uses, for example, «J-SCIENCE JM-10 made by the company can be used, the IR method can use, for example, the 1760 type made by Perkin Elma, and the UV method can use, for example, the U-33310 made by Hitachi .
  • a normal method can be adopted, and examples thereof include a method using water, a thermal analysis method, and an XRD method.
  • the surface-modified nanofiller organized clay mineral
  • the formation of the surface-modified nanofiller can be confirmed.
  • the formation of surface-modified nanofillers can be confirmed by a decrease in the mass of the organic part (for example, alkyl group), and the XRD method shows that the interlayer distance of the clay mineral is wider than the interlayer distance before modification.
  • generation of surface modification nanofiller can be confirmed.
  • TGZDTA6200 manufactured by Seiko Electronics can be used in the thermal analysis method
  • RAD-RA type manufactured by Rigaku Corporation can be used in the XRD method.
  • a normal method can be adopted, and examples thereof include a method using water, a thermal analysis method, and an XRD method.
  • the surface modified nanofilar organic double hydroxide
  • the formation of the surface modified nanofilar can be confirmed.
  • the formation of surface-modified nanofillers can be confirmed by the decrease in the mass of organic parts (for example, alkyl groups) in the interior.
  • the XRD method the interlayer distance of double hydroxides is the interlayer distance before modification. It is possible to confirm the generation of the surface-modified nanofiller by confirming that it has a broader strength.
  • the thermal analysis method for example, TGZDTA6200 manufactured by Seiko Electronics can be used, and in the XRD method, for example, RAD-RA type manufactured by Rigaku Corporation can be used.
  • a usual method can be adopted, and examples thereof include a thermal analysis method, an XRD method, elemental analysis, IR, and UV.
  • the thermal analysis method the formation of surface-modified nanofillers can be confirmed by the decrease in the mass of the organic part (for example, alkyl group), and in the XRD method, the interlayer distance of the mouth bumskite is the interlayer distance before modification.
  • the formation of the surface modified nanofiller can be confirmed by confirming that it is wider.
  • TGZDTA6200 manufactured by Seiko Electronics is used.
  • RAD-RA type manufactured by Rigaku Corporation can be used in the XRD method
  • JM-10 manufactured by JCI SCIENCE can be used in the elemental analysis method
  • IR method can be used.
  • Model 1760 manufactured by Perkin Elma can be used
  • U-3310 manufactured by Hitachi for example, can be used in the UV method.
  • a usual method can be adopted, and examples thereof include a thermal analysis method, an XRD method, elemental analysis, IR, and UV.
  • the thermal analysis method the formation of surface-modified nanofillers can be confirmed by reducing the mass of the organic part (for example, alkyl group), and in the XRD method, the interlayer distance of the metal oxide is the same as before the modification.
  • the generation of surface modified nanofillers can be confirmed by confirming that the distance is larger than the interlayer distance.
  • thermal analysis methods for example, TGZDTA6200 made by Seiko Electronics can be used.
  • XRD methods for example, RAD-RA type made by Rigaku Corporation can be used, and for elemental analysis methods, for example, «J-SCIENCE JM-10 made by the company can be used.
  • IR method for example, Model 1760 made by Perkin Elma can be used, and for the UV method, U-33310 made by Hitachi, for example, can be used.
  • a usual method can be adopted, and examples thereof include a thermal analysis method, an XRD method, elemental analysis, IR, and UV.
  • the thermal analysis method the formation of surface-modified nanofillers can be confirmed by the decrease in the mass of the organic part (for example, alkyl group), and in the XRD method, the interlayer distance of the metal phosphate is the interlayer before the modification.
  • the generation of the surface modified nanofiller can be confirmed by confirming that it is wider than the distance.
  • thermal analysis methods for example, TGZDTA6200 made by Seiko Electronics can be used.
  • XRD methods for example, RAD-RA type made by Rigaku Corporation can be used, and for elemental analysis methods, for example, «J-SCIENCE JM-10 made by the company can be used.
  • IR method for example, Model 1760 made by Perkin Elma can be used, and for the UV method, U-33310 made by Hitachi, for example, can be used.
  • a normal method can be adopted, for example, thermal analysis method, XRD Methods, elemental analysis, IR, UV, etc.
  • the thermal analysis method confirms the formation of surface-modified nanofillers by reducing the mass of the organic part (for example, alkyl group), and the XRD method determines the interlayer distance of the metal chalcogenide between the layers before modification.
  • the generation of the surface-modified nanofiller can be confirmed by confirming that it is wider than the distance.
  • TGZDTA6200 manufactured by Seiko Denshi can be used in the thermal analysis method.
  • RAD-RA type manufactured by Rigaku Corporation can be used in the XRD method.
  • «J— SCIENCE JM-10 can be used
  • IR method can use, for example, Perkin Elma 1760 type
  • UV method can use, for example, Hitachi U-3310 .
  • a normal method can be adopted, and examples thereof include a thermal analysis method, elemental analysis, IR, and UV.
  • the thermal analysis method the production of the surface modified nanofiller can be confirmed by confirming the production of the surface modified nanofiller by reducing the mass of the organic part (for example, alkyl group).
  • the thermal analysis method can use, for example, TGZDTA6200 manufactured by Seiko Electronics
  • the elemental analysis method can use, for example, JM-10 manufactured by J-SCIENCE
  • the IR method can use, for example, Perkin Elmer.
  • Model 1760 can be used.
  • U 3310 manufactured by Hitachi can be used in the UV method.
  • the polymer composite material according to the present invention contains a surface-modified nanofiller and a polymer.
  • the surface modified nanofiller contains a nanofiller and a surface modifying fluorine compound, the details of which are as described above.
  • the surface-modified nanofiller and the polymer may be used alone or in combination of two or more.
  • the polymer composite material according to the present invention may contain other additives as long as the effects of the present invention are not lost.
  • the polymer may be a homopolymer or a copolymer.
  • the monomer used as a raw material for such a polymer is not particularly limited, and examples thereof include tetrafluoroethylene (TFE), hexafluoropropylene (HFP), and trifluoroethylene (TrFE). ), Giff Non-fluorine-containing monomers such as fluorine-containing monomers such as fluoroethylene (VdF), monomers having double bonds such as ethylene, propylene, butylene, pentene, hexene and styrene, or monomers having triple bonds such as acetylene and propylene Etc. In the polymerization of this polymer, one type of monomer may be used, or two or more types of monomers may be used.
  • Polymers obtained using these monomers include, for example, fluorine-containing polymers (polymers containing fluorine atoms), polystyrene (PS), polypropylene (PP), polyethylene (PE), polyethylene oxide (PEO). And ordinary polymers such as polyethylene terephthalate (PET) and silicone polymer.
  • fluorine-containing polymers polymers containing fluorine atoms
  • PS polystyrene
  • PP polypropylene
  • PE polyethylene
  • PEO polyethylene oxide
  • ordinary polymers such as polyethylene terephthalate (PET) and silicone polymer.
  • the polymer preferably has a functional group.
  • the compatibility with the surface-modified nanofiller is improved, and it becomes possible to obtain a polymer composite material that is more excellent in various physical properties.
  • the functional group is not particularly limited, and is, for example, COH group, NH group, OH group, P (OH) group, SOH group, CN group, halogen group (for example, I,
  • the polymer may have one type of functional group, or may have two or more types of functional groups.
  • the polymer may be a crystalline polymer or an amorphous polymer by appropriately changing the monomer composition and polymerization method, and has a crystalline part and an amorphous part in the molecular chain. Also good as a thermoplastic elastomer.
  • the polymer is more preferably a fluorine-containing polymer.
  • the polymer is a fluorine-containing polymer, it is possible to obtain a polymer composite material that is more excellent in various properties such as compatibility, mechanical properties, and substance permeation blocking properties.
  • the fluorine-containing polymer may be a homopolymer of various fluorine-containing monomers, a copolymer obtained by copolymerizing a plurality of types of fluorine-containing monomers, or a fluorine-containing polymer. It may be a copolymer obtained by copolymerizing a monomer and other non-fluorine-containing monomer not containing fluorine.
  • the fluorine-containing homopolymer is preferably a polymer obtained by polymerizing a monomer containing a fluorine atom partially such as difluoroethylene and containing a carbon atom not bonded to the fluorine atom. Better ,.
  • the fluorine-containing polymer has a reactive functional group on at least one of the main chain terminal and the side chain terminal.
  • Preferred is a polymer having a group.
  • reactive functional groups include halogen groups (for example, I, Br, C1, etc.), carboxyl groups, water-free carboxyl groups, carbodioxy groups, haloformyl groups, hydroxyl groups, isocyanate groups, alkoxycarbonyl groups, epoxy groups, and the like. Z, an amino group, etc. are mentioned.
  • R 5 may contain an etheric oxygen atom !, an alkyl group having 1 to 20 carbon atoms, or a group 17 element).
  • R 5 may contain an etheric oxygen atom !, an alkyl group having 1 to 20 carbon atoms, or a group 17 element).
  • the reactive functional group is a carboxyl group such as a carboxyl group, an anhydrous carboxyl group, a carbodioxy group, a haloformyl group, an isocyanate group, or an alkoxycarbo group, from the viewpoint of heat resistance and mechanical properties.
  • a functional group containing a carbonyl group, particularly a carbodioxy group or a haloformyl group is more preferable.
  • the reactive site or the site that can be converted to the reaction site during polymerization of the fluoropolymer is used.
  • examples thereof include a method of copolymerizing monomers and a method using a polymerization initiator having a site that can be converted to the reactive site.
  • the reactive functional group is added to the end of the main chain.
  • the fluorine-containing polymer generally has superior heat resistance, mechanical properties, and chemical resistance, and is advantageous in terms of productivity and cost. From the point of view, the latter method is preferable.
  • Examples of a method for introducing a haloformyl group into a fluoropolymer include a method of thermally decomposing (decarboxylating) the terminal of a fluoropolymer having a carbodioxy group or an ester group at the terminal.
  • the heating temperature at this time is a carbonyldioxy group or Power that varies depending on the type of ester group and the type of fluoropolymer
  • the heating temperature is preferably 200 ° C or higher, preferably 220 ° C or higher, particularly preferably 230 ° C or higher.
  • the upper limit of the temperature is preferably 400 ° C or less, more preferably 350 ° C or less, preferably less than the thermal decomposition temperature of the portion other than the carbodioxy group or ester group of the fluoropolymer. .
  • the number of reactive functional groups in the fluoropolymer is preferably 3 to: LOOO per 1 X 10 6 main chain carbon atoms of the fluoropolymer. More preferably, the number is 10 to 300. When the number of reactive functional groups is less than 3 per 1 ⁇ 10 6 main chain carbon atoms of the fluoropolymer, there is a tendency that the surface-modified nanofiller does not sufficiently react.
  • the fluorine-containing polymer according to the present invention is preferably at least one fluorine-containing ethylenic polymer capable of fluorination resin or fluororubber, and the fluorine-containing ethylenic polymer is at least one fluorine-containing ethylenic polymer.
  • Any material having a structural unit derived from a monomer may be used.
  • the structure of the main chain and Z or side chain of this fluoropolymer is not particularly limited.
  • the fluorine resin or fluororubber that also has the above-mentioned fluorine-containing ethylenic polymer power is preferably a polymer having a reactive functional group at the main chain terminal and at the Z or side chain terminal.
  • reactive functional groups include halogen groups (e.g., I, Br, C1), carboxyl groups, anhydrous carboxyl groups, carbodioxy groups, haloformyl groups, hydroxyl groups, isocyanate groups, alkoxycarbonyl groups, epoxy groups, and epoxy groups. Z, an amino group, etc. are mentioned.
  • fluorine-containing ethylenic monomer examples include tetrafluoroethylene, general formula (14)
  • R 1 is —CF or —OR 2
  • R 2 is a perfluoroalkyl having 1 to 5 carbon atoms.
  • Perfluoroethylenically unsaturated compounds such as perfluoroethylenically unsaturated compounds, black trifluoroethylene, trifluoroethylene, hexafluoroisobutene, and vinylidene fluoride.
  • x 2 is a hydrogen atom or a fluorine atom
  • X 3 is a hydrogen atom, a fluorine atom, or a chlorine atom
  • n is an integer of 1 to 10
  • the fluorine-containing ethylenic polymer may have a structural unit derived from a monomer copolymerizable with the fluorine-containing ethylenic monomer. Mention may be made of non-fluorinated ethylenic monomers other than fluororefin. Examples of the non-fluorine ethylenic monomer include ethylene, propylene, and alkyl butyl ethers.
  • the alkyl butyl ether refers to an alkyl butyl ether having an alkyl group having 1 to 5 carbon atoms.
  • ETFE ethylene-tetrafluoroethylene copolymer
  • R 1 is —CF or OR 2
  • R 2 is a perfluoroalkyl having 1 to 5 carbon atoms, f 3 ff
  • Tetrafluoroethylene perfluoro (alkyl butyl ether) copolymer PFA
  • tetrafluoroethylene monohexafluoropropylene copolymer FEP
  • a perfluoroethylenically unsaturated compound represented by the following formula:
  • R 1 is CF or OR 2
  • R 2 is a perfluoroalkyl having 1 to 5 carbon atoms, f 3 ff
  • ETFE fluorine-containing ethylenic polymer because it can impart low fuel permeability and flexibility to the polymer composite material.
  • Containing tetrafluoroethylene unit and ethylene unit ktt is preferably 20:80 to 90:10, more preferably 62:38 to 90:10, 63:37 to 80:20 I like it.
  • This ETFE may also contain a third component.
  • the third component is not limited as long as it is copolymerizable with tetrafluoroethylene and ethylene.
  • the following general formulas (18) to (2 1) are usually:
  • the fluorine-containing polymer represented by the general formula (18) is used.
  • R 3 monomers having 1 to 8 carbon atoms are particularly preferred.
  • fluorine-containing butyl monomer represented by the general formulas (18) to (21) include 1,1 dihydroperfunoleole propylene 1, 1,1-dihydroperfunoleolobutene 1, 1, 1 , 7 Trihydroperfluoroheptene 1, 1, 1, 2—Trihydroperfluorohexahexene 1, 1, 1, 2 Trihydronophenore otaten 1, 2, 2, 3, 3, 4, 4 , 5, 5—Ottaf Nore Mouth Pentinolevi-Noleete Nore, Nofno Leo Mouth (Methinorebi-Noleete Nore), Nofno Leo Mouth (Propylvininole Ether), Hexafnoreo Mouth Propene, Perfno Leobutene 1, 3, 3, 3, Trifluoro 2 Trifluro Romethylpropene-1, 2, 3, 3, 4, 4, 5, 5 Heptafluoro-1-pentene (CH
  • the fluorine-containing ethylenic polymer is composed of 90 to 99 mol% of tetrafluoroethylene units and 1 to 10 mol of perfluoroethylenically unsaturated compound units represented by the general formula (16). It is more preferable that the fluorine-containing ethylenic polymer comprising tetrafluoroethylene and the perfluoroethylenically unsaturated compound represented by the general formula (16) may contain a third component.
  • the type of the third component is not particularly limited as long as it is copolymerizable with tetrafluoroethylene and the perfluoroethylenically unsaturated compound represented by the general formula (16).
  • the fluorine-containing ethylenic polymer is an Et-TFE-PAVE copolymer or EFEP because it can provide excellent permeability and flexibility to the polymer composite material.
  • PA Full O b ethylene represented by the fluorine-containing ethylenic polymer physical tetrafluoropropoxy O b ethylene units 20 to 70 mole 0/0, E Ji Ren units 20 to 60 mole 0/0, and the general formula (17) More preferably, the unsaturated unsaturated compound unit is 1 to 60 mol%.
  • the fluorine-containing ethylenic polymer ( a ) having tetrafluoroethylene, ethylene, and the perfluoroethylenically unsaturated compound represented by the general formula (17) may contain an additional component.
  • the content is preferably 0.1 to 3 mol% with respect to the fluorine-containing ethylenic polymer.
  • PVDF fluorine-containing ethylenic polymer because it can impart excellent flexibility and mechanical properties to the polymer composite material.
  • fluorine-containing rubber examples include VdF / HFP copolymer, VdF / HFP / TFE copolymer, VdFZCTFE copolymer, VdFZCTFEZTFE copolymer, VdFZPAVE copolymer, VdFZTFEZPAVE copolymer, VdFZHFPZPAVE copolymer, VdFZ HFPZTFEZPAVE copolymer, VdFZTFEZPr copolymer, VdFZEtZHFP copolymer, VdFZEtZHFP copolymer and the like are preferable.
  • TFE, HFP, and Z or PAVE as other monomers
  • VdF ZHFP copolymer, VdFZHFPZTFE copolymer, VdFZPAVE copolymer, VdFZ TFEZPAVE copolymer, VdFZHFPZPAVE copolymer, and VdFZHFPZTFEZP AVE copolymer are preferred.
  • the VdFZHFP copolymer preferably has a compositional power of VdFZHFP of 45 to 85 55 to 15 mol%, more preferably 50 to 80 Z 50 to 20 mol%, and still more preferably 60 to 80 ⁇ 40. it is 20 mol 0/0.
  • VdFZHFPZTFE copolymer composition VdFZHFPZTFE is, preferably from 30 ⁇ 80 3 5 ⁇ 20Z35 ⁇ 0 mol 0/0.
  • the composition of VdFZPAVE are preferably those 65 ⁇ 90ZlO ⁇ 3 5 mole 0/0! /,.
  • VdFZTFEZPAVE copolymer the composition of VdFZTFEZPAVE is 40-80 / 3-40 / 15-35 Monore 0/0 preferably force later! / ⁇ .
  • the composition of VdFZHFPZPAVE is, preferably from 65 ⁇ 90Z3 ⁇ 25Z3 ⁇ 25 mol 0/0.
  • VdFZHFPZTFEZPAVE has a yarn strength of 40 to 90/0 to 25/0 to 40/3 to 35 S, preferably 40 to 80/3 to 25 Z3 to 40Z3 to 25 mol those of the 0/0 is more preferable.
  • the fluorine-containing polymer preferably has a charge bias in the molecule.
  • the fluorine-containing polymer will be surface-modified This is because the interaction between the layers in the layered structure of the filler causes interaction with the surface-modified nanofiller.
  • Fluorine-containing heavy The molecular chains that make up the union are constrained by the sheet derived from the surface-modified nanofiller, and the bonding force between the molecular chains becomes stronger.
  • the clay mineral sheet is uniformly and finely dispersed in the fluorine-containing polymer by hybridization. For this reason, even if chemicals and fuel come into contact with the polymer composite material, the chemicals and fuel are blocked by these sheets, and chemical erosion and fuel penetration are unlikely to occur. Therefore, physical properties such as substance permeation blocking properties (for example, chemical resistance and fuel barrier properties) of the polymer material containing the fluoropolymer are further improved.
  • the fluorine content in the fluoropolymer is preferably 10 to 90% by mass in 100% by mass of the fluoropolymer U, and 30 to 90% by mass. A more preferred range is 50 to 90% by mass, and a further preferred range is 50 to 80% by mass. This is because it is possible to provide a material exhibiting excellent characteristics by satisfying both the improvement of the dispersibility of the surface-modified nanofiller and the substance permeation blocking property of the polymer itself.
  • the fluorine content in the fluorine-containing polymer is less than 10% by mass, physical properties such as the substance permeation blocking property of the polymer itself may be deteriorated. When the content exceeds 90% by mass, There is a risk of deterioration of the caulking property.
  • the polymer preferably has a weight average molecular weight of 5,000-1,000,000, more preferably 10,000 to 1,000,000! / !. If the weight average molecular weight force is 5,000 to 1,000,000, it is a force capable of achieving both mechanical properties and cache properties. If the weight average molecular weight is less than 5,000, the mechanical properties may decrease, and if it exceeds 1,000,000, the cache properties may decrease.
  • the layered material is dispersed in the polymer as a surface-modified nanofiller
  • the molecular chains constituting the polymer inter-act between the layers of the layered structure constituting the surface-modified nanofiller.
  • the interface force increases the interface between the surface of the surface-modified nanofiller and the polymer, and the strength of the polymer can be increased by the surface-modified nanofiller.
  • the polymer and the surface-modified nanofiller are combined to increase the interlayer distance of the layers constituting the surface-modified nanofiller from the original state.
  • the spread of the interlayer distance can be confirmed by X-ray diffraction or the like.
  • the interlayer distance when the inter force rate occurs is preferably more than 5 angstroms than the interlayer distance before the inter force rate occurs. More preferably, it is more than 100 angstroms wider than the interlayer distance before the inter force rate occurs more preferably 30 angstroms or more than the interlayer distance before the one force rate occurs. This is because the dispersibility of the surface-modified nanofiller is improved, the ratio of the polymer to be constrained is increased, and the reinforcing effect is increased, so that the substance permeation blocking property and the mechanical property can be improved. If it is narrower than 5 angstroms, the dispersibility of clay minerals may be reduced.
  • the layered structure of the surface modified nanofiller disappears, and the sheet constituting the layered structure becomes a single layer and is in a molecularly dispersed state. It is preferable to become.
  • the ratio of the molecular chain of the polymer constrained by the surface-modified nanofiller is maximized, and the reinforcing effect of the surface-modified nanofiller is greatly increased. For this reason, it is possible to obtain a sufficient effect on the present invention.
  • the polymer composite material may contain additives such as a crosslinking agent and a filler.
  • the mixing ratio of the surface-modified nanofiller and the polymer is preferably 0.01 to 300 parts by weight of the surface-modified nanofiller with respect to 100 parts by weight of the polymer.
  • 0.1 to: L00 parts by weight are more preferable 0.1 to 1 to 30 parts by weight Force S is most preferable. This is because it is possible to achieve both improvement in physical properties such as material permeation blocking properties and workability. If the amount of the surface-modified nanofiller is less than 0.01 parts by weight, there is a risk that improvement in physical properties such as a substance permeation blocking property may not be recognized, and if it exceeds 300 parts by weight, the workability is deteriorated. May decrease.
  • the method for obtaining the polymer composite material is not particularly limited as long as it contains a surface-modified nanofiller and a polymer.
  • these and additives added as necessary are mixed.
  • the method is As a mixing method, for example Typical examples include solution method, polymerization type intercalation method after monomer insertion, polymer insertion type intercalation method, and two-dimensional insertion type nanocomposite method. From the viewpoint of dispersibility and work efficiency, polymer insertion type An intercalation method is preferred.
  • the polymer composite material of the present invention can be formed into a molded body by various molding methods such as injection molding, extrusion molding, press molding, professional molding, and film molding.
  • a molded body (molded article) using the polymer composite material of the present invention is also one of the preferred embodiments of the present invention.
  • the polymer composite and molded article of the present invention can be suitably used in the following fields.
  • semiconductor-related fields such as semiconductor manufacturing equipment, liquid crystal panel manufacturing equipment, plasma panel manufacturing equipment, plasma addressed liquid crystal panels, field emission display panels, solar cell substrates, etc., o (square) rings, packing, sealing materials, tubes, rolls, Coatings, linings, gaskets, diaphragms, hoses, etc., which include CVD equipment, dry etching equipment, wet etching equipment, oxidation diffusion equipment, sputtering equipment, ashing equipment, cleaning equipment, ion implantation equipment, exhaust equipment, chemical piping Can be used for gas piping.
  • CVD equipment dry etching equipment, wet etching equipment, oxidation diffusion equipment, sputtering equipment, ashing equipment, cleaning equipment, ion implantation equipment, exhaust equipment, chemical piping Can be used for gas piping.
  • a gate valve O ring or seal material as a quartz window O ring or seal material, as a chamber O ring or seal material, as a gate O ring or seal material, as a bell jar O ring
  • a sealing material as a coupling O-ring or sealing material, as a pump O-ring, sealing material, or as a diaphragm, as an O-ring or sealing material of a semiconductor gas control device, as a resist developer 'O for stripping solution
  • a ring or sealing material as a hose or tube for wafer cleaning liquid, as a roll for wafer transfer, as a lining or coating for a resist developer tank, a stripping liquid tank, as a lining or coating for a wafer cleaning liquid tank, or as a wet etch It can be used as a lining or coating for the bath tank.
  • sealing material in addition, sealing material 'sealing agent, quartz coating material for optical fiber, electronic parts for insulation, vibration proofing, waterproofing, moisture proofing, circuit board potting, coating It is used as a sealant for sealing materials such as adhesives, adhesive seals, gaskets for magnetic storage devices, epoxy and other sealing materials, and clean rooms.
  • gaskets, shaft seals, valve stem seals, sealing materials and hoses can be used for engines and peripheral devices, and hoses and sealing materials can be used for AT devices.
  • Rings, tubes, packings, valve cores, hoses, seals and diaphragms can be used in fuel systems and peripheral devices.
  • On-seal, universal joint gasket, speedometer pinion seal, foot brake piston cup, torque transmission O-ring, oil seal, exhaust gas re-burning unit scenery, bearing Shinore, EGR tubes, twin key bush tube for sensors Daiafuramu carburetor, rubber vibration isolator (engine mount, exhaust part, etc.), afterburners hoses, can be used as an oxygen sensor bush.
  • a developing roll of a film developing machine / coiled film developing machine a gravure roll of a printing roll, a guide roll, a gravure roll of a magnetic tape manufacturing coating line of a coating roll, and a guide of a magnetic tape manufacturing coating line It can be used as a roll, various coating rolls, and the like.
  • dry copying machine seals printing equipment printing rolls, scrapers, tubes, valve parts, coating, coating equipment coating rolls, scrapers, tubes, valve parts, printer ink tubes, rolls, belts, dry copying machine belts It can be used as a roll, a roll for a printing press, a belt, or the like.
  • the tube can be used in the field of analysis and science machines.
  • linings, valves, knockers, rolls, hoses, diaphragms, ⁇ (square) rings, tubes, sealing materials, belts, etc. can be used for food manufacturing processes. Specifically, it can be used as a plate-type heat exchanger seal, a solenoid valve seal of a vending machine, or the like.
  • a sealing material between electrodes and separators is used as a seal for hydrogen 'oxygen' production water piping.
  • a heat-dissipating material raw material an electromagnetic shielding material raw material, a modified material for printed wiring board pre-preda resin such as epoxy, an anti-scattering material such as a light bulb, and a hard disk drive gasket of a computer.
  • the molded article of the present invention can be suitably used for the various applications described above, and is particularly suitable as a fuel peripheral part.
  • the molded article of the present invention is particularly useful as a sealing material, knock, roller, tube or hose.
  • conductive materials with excellent surface resistance such as capacitors, as coating materials for fuel cell separators, as antistatic materials for actuators, as piezoelectric conversion composite materials such as sensors, as conductive films, as electronic materials It can also be used as a conductive material for photographic equipment. In these applications, polymer composite materials are used. It is necessary to provide conductivity.
  • heat resistance was evaluated by the following method.
  • TG / DTA Thermal analysis
  • the 1% mass loss temperature was 250 ° C (see Table 1).
  • the heat resistance of the obtained sample 3 was determined according to the method described above. As a result, the 1% mass loss temperature was 350 ° C (see Table 1).
  • Sample 5 was obtained.
  • the heat resistance of Sample 5 obtained was determined according to the method described above.
  • the 1% mass loss temperature was 330 ° C (see Table 1).
  • Example 6 1H, 1H, 2H, 2H—Organized with perfluordecanethiol, “Rf—Au” (Sample 6) was obtained.
  • the heat resistance of Sample 6 obtained was determined according to the method described above. As a result, the 1% mass reduction temperature was 320 ° C (see Table 1).
  • Sample 7 The heat resistance of Sample 7 obtained was determined according to the method described above. As a result, the 1% mass loss temperature was 350 ° C (see Table 1).
  • a comparative sample 3) was obtained.
  • the heat resistance of the obtained comparative sample 3 was determined according to the method described above.
  • the 1% mass loss temperature was 300 ° C (see Table 1).
  • Hyde mouth talcite (DHT-4A, manufactured by Kyowa Chemical Industry Co., Ltd.) was weighed and dispersed in 5 ° C. of water at 80 ° C. and OOOmL. Next, weigh out 28.5 g of CH (CH) COO—NH +80.
  • HTSJ Comparative Sample 5
  • the heat resistance of the comparative sample 5 obtained was determined according to the method described above.
  • the 1% mass loss temperature was 240 ° C (see Table 1).
  • NaBH aqueous solution was added dropwise to the solution and stirred for 3 hours. Then filter the solution and filter
  • the dispersion state of the surface-modified nanofiller in the molded body was evaluated using an X-ray diffractometer (XRD) and a transmission electron microscope (TEM).
  • XRD X-ray diffractometer
  • TEM transmission electron microscope
  • an ultrathin section was cut out from the molded body with a microtome, and this ultrathin section was converted to JEOL eol-200CX. Set It was.
  • a micro dumbbell described in ASTM D 4895-94 was punched out of the molded body to obtain a tensile test piece.
  • the tensile test was performed using an autograph AG-300kNI manufactured by Shimadzu Corporation at a tension rate of 50 mmZ to determine strength, elastic modulus, and elongation.
  • a polymer composite material was prepared by melt-kneading the amount part with a twin screw extruder. The kneading temperature at this time was 150 ° C, and the shaft rotation speed was 50 rpm.
  • a cross-linking agent Nippon Kasei Co., Ltd., trade name TAIC
  • baroxide Nippon Yushi Co., Ltd., trade name Perhexa 25B
  • Example 12 Part by weight and 20 parts by weight of carbon (manufactured by CANCARB) were added, mixed using a roll, and then cross-linked at 160 ° C for 10 minutes while pressing with a hot press to obtain a molded body (sample 12). It was. Various physical properties of the obtained molded body were determined according to the method described above. The results are shown in Table 2.
  • Example 13 Part by weight and 20 parts by weight of carbon (manufactured by CANCARB) were added, mixed using a roll, and then cross-linked at 160 ° C for 10 minutes while pressing with a hot press to obtain a molded body (Sample 13). It was. Various physical properties of the obtained molded body were determined according to the method described above. The results are shown in Table 2.
  • the mixture was melt kneaded using a twin screw extruder to prepare a polymer composite material.
  • the kneading temperature at this time was 150 ° C., and the shaft rotation speed was 50 rpm.
  • a cross-linking agent Nippon Kasei Co., Ltd., trade name TAIC
  • baroxide Nippon Yushi Co., Ltd., trade name Perhexa 25B
  • Example 15 Part by weight, 20 parts by weight of carbon (manufactured by CANCA RB) were added, mixed using a roll, and then cross-linked at 160 ° C for 10 minutes while pressing with a hot press to form a compact (Sample 14). Obtained. Various physical properties of the obtained molded body were determined according to the method described above. The results are shown in Table 2.
  • the mixture was melt kneaded using a twin screw extruder to prepare a polymer composite material.
  • the kneading temperature at this time was 150 ° C., and the shaft rotation speed was 50 rpm.
  • a cross-linking agent Nippon Kasei Co., Ltd., trade name TAIC
  • baroxide Nippon Yushi Co., Ltd., trade name Perhexa 25B
  • a polymer composite material was prepared by melt-kneading the amount part with a twin screw extruder. The kneading temperature at this time was 210 ° C, and the shaft rotation speed was 80 rpm. Then, a compact (sample 16) was obtained at 190 ° C. while the obtained polymer composite material was pressed by hot pressing. Various physical properties of the obtained molded body were determined according to the method described above. The results are shown in Table 2.
  • Comparative Sample 1 1 part by weight was melt-kneaded using a twin-screw extruder to prepare a polymer composite material. The kneading temperature at this time was 150 ° C., and the shaft rotation speed was 50 rpm. Then, 1 part by weight of a cross-linking agent (Nippon Kasei Co., Ltd., trade name TAIC) and peroxide (Nippon Yushi Co., Ltd., trade name Perhexa 25B) are added to 100 parts by weight of the obtained polymer composite material.
  • a cross-linking agent Nippon Kasei Co., Ltd., trade name TAIC
  • peroxide Nippon Yushi Co., Ltd., trade name Perhexa 25B
  • a polymer composite material was prepared by melt-kneading the parts by weight with a twin screw extruder. The kneading temperature at this time was 150 ° C., and the shaft rotation speed was 50 rpm. For 100 parts by weight of the resulting polymer composite material, 4 parts by weight of Tachibana (Nippon Kasei, trade name TAIC) and 1 part of peroxide (Nippon Yushi Co., Ltd., trade name Perhexa 25B) are added.
  • Tachibana Natural Kasei, trade name TAIC
  • peroxide Nippon Yushi Co., Ltd., trade name Perhexa 25B
  • a polymer composite material was prepared by melt-kneading 100 parts by weight of the polymer A and 1 part by weight of Rh-CNT (Comparative Sample 4) using a twin screw extruder. The kneading temperature at this time was 150 ° C., and the shaft rotation speed was 50 rpm.
  • a cross-linking agent Nippon Kasei Co., Ltd., trade name TAIC
  • peroxide Nippon Yushi Co., Ltd., trade name Perhexa 25B
  • a polymer composite material was prepared by melt-kneading 100 parts by weight of the polymer A and 1 part by weight of Rh-HTS (Comparative Sample 5) using a twin screw extruder. The kneading temperature at this time was 150 ° C., and the shaft rotation speed was 50 rpm.
  • a cross-linking agent Nippon Kasei Co., Ltd., trade name TAIC
  • peroxide Nippon Yushi Co., Ltd., trade name Perhexa 25B
  • a polymer composite material was prepared by melt-kneading 100 parts by weight of the polymer A and 1 part by weight of Rh—Au (Comparative Sample 6) using a twin screw extruder. The kneading temperature at this time was 150 ° C., and the shaft rotation speed was 50 rpm. Then, for 100 parts by weight of the resulting polymer composite material, 4 parts by weight of the crosslinking agent (Nippon Kasei Co., Ltd., trade name TAIC) and peroxide (Nippon Yushi Co., Ltd., trade name Perhexa 25B) 1.
  • the crosslinking agent Nippon Kasei Co., Ltd., trade name TAIC
  • peroxide Nippon Yushi Co., Ltd., trade name Perhexa 25B
  • the surface-modified nanofilament constrains the molecular chain constituting the fluoropolymer in the fluoropolymer! It is considered a thing. This seems to be mainly due to the high polarity of the surface-modified nanofiller and the fact that the fluoropolymer has a charge bias.
  • the fluorine-containing polymer interacts between the layers forming the layer structure of the surface-modified nanofiller, and the surface-modified nanofiller is hybridized with the fluorine-containing polymer. Conceivable. Therefore, even if chemicals and fuel come into contact with the polymer composite, it is assumed that the chemical and fuel are hindered by these surface-modified nanofillers, so that polymer erosion and fuel permeation are unlikely to occur. Is done.
  • the organically modified clay mineral surface modified nanofiller according to the present invention can impart excellent heat resistance, material permeation blocking property, flame retardancy, conductivity, etc. to the polymer.
  • a polymer composite material used for an application can be provided.
  • the polymer composite material according to the present invention is excellent in heat resistance, mechanical properties, substance permeation blocking properties, flame retardancy, conductivity, etc., and can be used for various applications in addition to fuel tubes. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

 本発明の課題は、優れた耐熱性、機械的物性、物質透過遮断性、難燃性、導電性等を備える高分子複合材料を提供することにある。また、本発明の別の課題は、そのような高分子複合材料に有用となる新規な表面改質ナノフィラーを提供することにある。高分子複合材料は、ナノフィラー、フッ素化合物、およびポリマーを含有する。フッ素化合物は、ナノフィラーの表面に結合する。フッ素化合物が表面に結合されたナノフィラーは、ポリマー中に混合・分散される。

Description

表面改質ナノフィラー及び高分子複合材料
技術分野
[0001] 本発明は、表面改質ナノフィラー及び表面改質ナノフィラーを利用した高分子複合 材料に関する。
背景技術
[0002] 従来より、高分子材料の種々の物性を改良する目的で、高分子材料に粘土鉱物等 のナノフィラーを添加する等の手法が検討されている(例えば、特許文献 1〜13参照 )。しかし、特に高分子材料の物質透過遮断性、機械的物性、耐熱性、難燃性、導電 性については、更なる改良が望まれている。
一方、粘土鉱物等のナノフィラーの表面改質にっ 、ても様々な検討が行われてお り、例えば、分子内にフッ化炭素を有するフッ素化界面活性剤との複合ィ匕について 報告されている(例えば非特許文献 1および 2ならびに特許文献 14参照)。
非特許文献 1 :由井榭人、外 2名、第 43回日本油化学会年会 CFOCS— MPOBジョイ ントシンポジウム併催)講演要旨集、平成 16年 11月 1日、 p. 156)
非特許文献 2 :Tetsu Yonezawa,外 2名 Langmuir 2001, 17, 229—2293 特許文献 1:特許第 3284552号明細書
特許文献 2:特開平 9— 87432号公報
特許文献 3:特表 2001— 523278号公報
特許文献 4:特開平 10— 81785号公報
特許文献 5:米国特許第 5840796号明細書
特許文献 6:国際公開第 99Z50340号パンフレット
特許文献 7:特開 2000— 204214号公報
特許文献 8:米国特許第 6414069号明細書
特許文献 9:米国特許第 6734229号明細書
特許文献 10 :特開 2004— 10891号公報
特許文献 11 :特開 2005— 146081号公報 特許文献 12:特表 2005 - 500409号公報
特許文献 13 :特開 2005— 146081号公報
特許文献 14:特開 2005 - 200272号公報
発明の開示
発明が解決しょうとする課題
[0003] 本発明の課題は、優れた耐熱性、機械的物性、物質透過遮断性、難燃性、導電性 等を備える高分子複合材料を提供することにある。また、本発明の別の課題は、その ような高分子複合材料に有用となる新規な表面改質ナノフィラーを提供することにあ る。
課題を解決するための手段
[0004] 本発明に係る高分子複合材料は、ナノフィラー、フッ素化合物、およびポリマーを 含有する。フッ素化合物は、ナノフィラーの表面に結合する。なお、ここにいう「結合」 には、例えば、イオン結合、共有結合、配位結合、分子間力 (双極子相互作用、分散 力、水素結合)等が含まれる。
また、本発明に係る高分子複合材料において、ナノフイラ一は、ナノカーボン材、金 属ヘテロ原子化合物、および金属ナノ粒子より成る群力 選択される少なくとも一つ であることが好ましい。
また、本発明に係る高分子複合材料において、フッ素化合物は、ヘテロ原子を含 んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基を有する有機イオンであることが 好ましい。
[0005] また、本発明に係る高分子複合材料において、有機イオンは、下記一般式(1); [0006] [化 1]
L1 ©—— R1s (1 )
[0007] (式中、: L1は、 P、 N、 S、 Siゝ 0、 Se、 Te、 As、 Sb、 Biゝ F、 Cl、 Br、又は Iである。 sは 、 2、 3、 4、又は 5であり、元素 L1の価数によって決まる値である。 R1は、同一若しくは 異なり、「水素原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていて もよ 、アルキル基」、及び「ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素ァ ルキル基」のいずれかであり、互いに結合していてもよいが、少なくとも 1つの R1は「 ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表さ れる構造、又は、下記一般式 (2);
[0008] [化 2]
Figure imgf000004_0001
[0009] (式中、: ま、 P、 N、 S、 Siゝ 0、 Se、 Te、 As, Sb、 Biゝ F、 Cl、 Br、又は Iである。 R2 は、「ヘテロ原子および不飽和結合を含んでもよく一部がフッ素原子に置換されてい てもよ!/、アルキレン基」または「不飽和結合を含んでもょ 、炭素以外の原子で構成さ れる鎖状基」である。 tは、 R2の鎖状部分を構成する原子の数以下の数値である。 uは 、 L2の価数によって決まる 0〜3の整数である。 R3、 R4は、同一若しくは異なり、「水素 原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていてもよいアルキ ル基」、及び「ヘテロ原子を含んでいてもよい炭素数 1〜50の含フッ素アルキル基」 のいずれかである力 R3及び R4のうち少なくとも 1つの置換基は「ヘテロ原子を含ん で!、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表される構造を有するも のであることが好ましい。
[0010] また、本発明に係る高分子複合材料にお!、て、有機イオンは、有機アンモ-ゥムィ オン、有機ホスホ-ゥムイオン、及び含窒素複素環ォ -ゥムイオン力も成る群より選択 される少なくとも 1種の有機イオンであることがより好ましい。
また、本発明に係る高分子複合材料において、含フッ素アルキル基は、炭素数が 4 〜50であることが好まし!/、。
また、本発明に係る高分子複合材料において、ポリマーは、含フッ素重合体である ことが好ましい。
また、本発明に係る成形品は、上記に示されるような高分子複合材料からなる。 本発明に係る表面改質ナノフイラ一は、ナノフィラー及びフッ素化合物を含有する。 フッ素化合物は、ナノフィラーの表面に結合する。なお、ここにいう「結合」には、例え ば、イオン結合、共有結合、配位結合、分子間力 (双極子相互作用、分散力、水素 結合)等が含まれる。
[0011] また、本発明に係る表面改質ナノフィラーにおいて、ナノフイラ一は、ナノカーボン 材、金属へテロ原子化合物、金属ナノ粒子より成る群力 選択される少なくとも一つ であることが好ましい。
また、本発明に係る表面改質ナノフイラ一としては、複水酸化物と、複水酸化物の 表面に結合するフッ素化合物とを含有する表面改質ナノフィラー、あるいは、粘土鉱 物と、粘土鉱物の表面に結合するフッ素化合物 (有機アンモニゥムイオンを除く)とを 含有する表面改質ナノフィラーであることがより好ましい。
また、本発明に係る表面改質ナノフィラーにおいて、フッ素化合物は、ヘテロ原子 を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基を有する有機イオンであるこ とが好ましい。
[0012] また、本発明に係る表面改質ナノフィラーにおいて、有機イオンは、下記一般式(1 );
[0013] [化 3] © _ R1S (1 )
[0014] (式中、: L1は、 Pゝ Nゝ Sゝ Siゝ 0、 Seゝ Teゝ As, Sbゝ Biゝ Fゝ Cl、 Brゝ又は Iである。 sは 、 2、 3、 4、又は 5であり、元素 L1の価数によって決まる値である。 R1は、同一若しくは 異なり、「水素原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていて もよ 、アルキル基」、及び「ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素ァ ルキル基」のいずれかであり、互いに結合していてもよいが、少なくとも 1つの R1は「 ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表さ れる構造、又は、下記一般式 (2);
[0015] [化 4]
Figure imgf000005_0001
[0016] (式中、: L2は、 Pゝ Nゝ Sゝ Siゝ 0、 Seゝ Teゝ As, Sbゝ Biゝ Fゝ Cl、 Brゝ又は Iである。 R2 は、「ヘテロ原子および不飽和結合を含んでもよく一部がフッ素原子に置換されてい てもよ!/、アルキレン基」または「不飽和結合を含んでもょ 、炭素以外の原子で構成さ れる鎖状基」である。 tは、 R2の鎖状部分を構成する原子の数以下の数値である。 uは 、 L2の価数によって決まる 0〜3の整数である。 R3、 R4は、同一若しくは異なり、「水素 原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていてもよいアルキ ル基」、及び「ヘテロ原子を含んでいてもよい炭素数 1〜50の含フッ素アルキル基」 のいずれかである力 R3及び R4のうち少なくとも 1つの置換基は「ヘテロ原子を含ん で!、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表される構造を有するも のであることが好ましい。
[0017] また、本発明に係る表面改質ナノフィラーにおいて、有機イオンは、有機ホスホ-ゥ ムイオン及び含窒素複素環ォ -ゥムイオンの少なくとも一方であることがより好ましい また、本発明に係る表面改質ナノフィラーにおいて、含フッ素アルキル基は、炭素 数が 4〜50であることが好まし!/、。
発明の効果
[0018] 本発明に係る高分子複合材料は、優れた耐熱性、機械的物性、物質透過遮断性、 難燃性、導電性等を備える。
また、本発明に係る一部新規な表面改質ナノフイラ一は、ポリマー、特に含フッ素ポ リマーとの相溶性がよいため、ポリマーに均一に分散し、上記特性に優れた高分子 材料を提供することができる。
発明を実施するための最良の形態
[0019] <表面改質ナノフイラ一 >
本発明に係る表面改質ナノフイラ一は、ナノフィラー、及びナノフィラーの表面に結 合するフッ素化合物を含有する。なお、この表面改質ナノフイラ一は、本発明の作用 効果を失わない限り、他の成分を含有してもよい。また、このナノフィラー及びナノフィ ラーの表面に結合するフッ素化合物を含有する表面改質ナノフィラーの一部は新規 化合物である。 以下、本発明に係る表面改質ナノフィラーに含有されるナノフィラー及び表面改質 用フッ素化合物について詳述する。
〔ナノフィラー〕
本実施の形態に採用されるナノフイラ一としては、ナノカーボン材、金属へテロ原子 化合物、および金属ナノ粒子が挙げられ、本実施の形態ではこれらのうち一種又は 二種以上を選択して用いることができる。ここにいう「ナノフィラー」とは、少なくとも 1つ の部分がナノレベル (0. lnmから lOOOnm)の構造 (粒子状、シート状、層状、針状 、棒状、繊維状、筒状)を有するフィラーを意味する。以下、上記各ナノフイラ一につ いて詳述する。
[0020] (A)ナノカーボン材
ナノレベルの構造を有する炭素原子から構成される化合物で、具体的には以下の とおりである。
a)フラーレン
球状に結合した構造をもつ炭素 60個以上力もなる炭素分子である。
b)カーボンナノボーノレ(カーボンブラック)
炭化水素の不完全燃焼が熱分解して生成される黒色か帯灰黒色の粉末である。 c)カーボンナノファイバー
鉄やコバルト等の金属触媒を用いて,気相の炭素源を適切な条件下で熱分解する こと〖こより合成される。繊維状炭素の組織としては,炭素網面の繊維軸に対する配向 力 平行(リボン型),垂直 (プレートレット型),傾斜(ヘリングボーン型)の 3種類が主 に知られている。
[0021] d)カーボンナノチューブ
カーボンナノファイバーの一種である。炭素によって作られる六員環ネットワーク(グ ラフエンシート)が単層あるいは多層の同軸管状になった
1150940486981—8
の一種である。単層のものをシングルウォールナノチューブ(SWNT)、複層のものを マルチウォールナノチューブ(MWNT)と!、う。 特に二層のものはダブルウォールナ ノチューブ(DWNT)とも呼ばれる。 なお、これらのナノカーボン材としては、化学工業 56卷、 P50— 62 (2005)に記載 されるものや、 Langmuir、 11卷、 P3682— 3866 (1995)に記載のもの等も挙げら れる。そして、これらカーボンナノ材の中では、カーボンナノファイバーが好ましぐさ らにカーボンナノチューブが特に好ましい。
[0022] (B)金属へテロ原子化合物
金属とヘテロ原子とを主成分とする化合物である。金属としては、アルカリ金属(リチ ゥム、ナトリウム、カリウム等)、アルカリ土類金属(カルシウム、マグネシウム、バリウム 等)、遷移金属(チタン、バナジウム、ニオブ、クロム、モリブデン、タングステン、鉄、 マンガン、ルテニウム、コノルト、ニッケル、ノ《ラジウム、白金、銅、銀、金、亜鉛、カド ミゥム、水銀、ランノイド群金属、ァクチノイド群金属等)、典型金属元素 (アルミニウム 、ケィ素、ガリウム、インジウム、錫、ビスマス、鉛等)が挙げられる。また、ヘテロ原子と しては、周期表 13属のホウ素、周期表 15属の窒素、リン、ヒ素、周期表 16属の酸素 、硫黄、セレン、テルル等、周期表 17属のフッ素、塩素、臭素、ヨウ素等が挙げられる 。なお、本実施の形態において、ヘテロ原子としては、ホウ素、窒素、リン、酸素、硫 黄が好ましい。
[0023] この金属へテロ原子化合物としては、金属酸化物 (粘土鉱物、複水酸化物、ぺロブ スカイト、その他金属酸化物)、金属リン酸塩、金属力ルゴゲン化物が挙げられる。こ れらの中でも金属酸ィ匕物が好ましい。そして、これらの金属へテロ原子化合物の中で も、特に粒子状の構造を有する金属へテロ原子化合物、層状やシート状の構造を有 する金属へテロ化合物や針状、棒状、繊維状、筒状の構造を有する金属へテロ化合 物が好ましい。また、これらの中でも層状金属へテロ原子化合物が特に好ましい。 金属へテロ原子化合物としては、具体的に以下のものが挙げられる。
a)粘土鉱物
粘土鉱物(以下、「クレイ」ということもある。)とは、例えば、多数のシートが積層され て形成される層状構造を有するケィ酸塩鉱物等である。ここで、層を形成するシート は、ケィ酸で構成された四面体が平面に沿って多数結合されたものであってもよいし 、アルミニウムやマグネシウムを含有する八面体が平面に沿って多数結合されたもの であってもよい。また、この粘土鉱物は天然由来のものでも、天然物の処理品でも、 膨潤性のフッ素化マイ力のような合成品でもよい。
[0024] 上記粘土鉱物の具体例としては、特に限定されるものではな 、が、例えば、モンモ リロナイト、ベントナイト、カオリナイト、ィモゴライト、マイ力、ヘクトライト、フルォロヘクト ライト、サボナイト、ベイデライト、ノントロナイト、ステベンサイト、バーミキユライト、ハロ ィサイト、ボルコンスコイト、スコナイト、マガダイト及びケニアライト等が挙げられ、本実 施の形態ではこれらのうち一種又は二種以上を選択して用いることができる。
これら粘土鉱物のなかでは、シート状 (層状)粘土鉱物が好ましい。通常、シート状( 層状)粘土鉱物のシート (層)の 1層は数ナノメートル以下の厚みをもつ。シート (層) は厚み 2nm以下のものが特に好まし 、。
b)複水酸化物
複水酸化物とは、例えば、下記一般式 (3):
[M" M1" (OH) ]x+ [An" -yH 0]χ" (3)
l -x x 2 x/n 2
(式中、 M"は 2価金属、 M1"は 3価金属、 ΑηΊま芳香族ァミノカルボン酸のァ-オン を含むァ-オン、 ηは前記ァ-オンの価数、 Xは 0〜0. 4の値、 yは 0より大きい実数で ある)で表される正に帯電した二価 ·三価金属の水酸ィ匕物シートが層状に積み重なつ た層状化合物の一つである。なお、層間には,水酸化物シートの正電荷を補うため にァ-オンが取り込まれて 、る。
[0025] 本実施の形態では、これらの中でも、特に粒子状の複水酸化物、層状やシート状 の複水酸化物や針状、棒状、繊維状の複水酸化物が好ましぐさらには層状複水酸 化物が特に好ましい。
c)ぺロブスカイト
正方晶系結晶構造の一種である。ぺロブスカイトと同じ結晶構造をぺロブスカイト構 造と呼ぶ。例えば、 BaTiO (チタン酸バリウム)の様に、 RMOという 3元系力 成る
3 3
遷移金属酸化物等がこの結晶構造をとる。理想的には立方晶系の単位格子をもち、 立方晶の各頂点に金属 Rが、体心に金属 Mが、そして金属 Mを中心として酸素 Oが 立方晶の各面心に配置している。なお、ぺロブスカイトとしては、触媒、 47卷、 P. 29 0—294 (2005)に記載されるもの等が挙げられる。本実施の形態では、これらの中 でも、特に粒子状のぺロブスカイト、層状やシート状のぺロブスカイトや針状、棒状、 繊維状のぺロブスカイトが好ましぐさらには層状ぺロブスカイトが特に好ましい。
[0026] d)その他金属酸化物
上記に分類されるもの以外の金属酸ィ匕物で、ナノレベル大きさの粒子状、層状、シ ート状、針状、棒状、繊維状、筒状の構造を有するものが挙げられる。
上記に分類されるもの以外の金属酸化物としては、シリカ、アルミナ、酸化鉄、酸ィ匕 亜鉛、ジルコユア、チタ-ァ等が挙げられる。その他、例えば、触媒、 47卷、 P. 279 294 (2005)記載のもの等が挙げられる。
e)金属リン酸塩
金属リン酸塩としては、例えば、下記一般式 (4):
M (HPO ) (4)
4 2
(式中、 Mは、 Ti, Zr, Ce,又は Snである)で示されるものや、下記一般式(5): Zr(ROPO ) (5)
3 2
(式中、 Rは、 H, Rh,又は Meである)で示されるもの等が挙げられる。
[0027] これらの中でも、特に、粒子状の金属リン酸塩、層状やシート状の金属リン酸塩や 針状、棒状、繊維状の金属リン酸塩が好ましぐさらには層状金属リン酸塩が特に好 ましい。
f)金属カルコゲン (硫黄、セレン、テルル)化物
金属カルコゲンィ匕物としては、例えば、下記一般式 (6):
MX (6)
2
(式中、 Mは Ti、 Zr、 Hf、 V、 Nb、 Ta、 Mo、又は Wであり、 Xは S又は Seである)で示 されるものや、下記一般式 (7):
MPX (7)
3
(式中、 Mは Mg、 V、 Mn、 Fe、 Co、 Ni、 Zn、 Cd、又は Inであり、 Xは S又は Seである )で示されるもの等が挙げられる。
[0028] (C)金属ナノ粒子
粒径が 1〜: L00ナノメートル(1ナノメートル = 100万分の 1ミリメートル)の金属粒子 である。金属ナノ粒子の構成金属は、 Ag、 Au、 Cu、 Pt、 Pd、 W、 Ni、 Ta、 In、 Sn、 Z n、 Cr、 Fe、 Co、及び Si等力もなる群力も選ばれた 1種若しくは 2種以上の金属又は これら金属の少なくとも 2種力 なる合金であり、 目的'用途に合わせて適宜選定する 〔表面改質用フッ素化合物〕
本実施の形態に採用される表面改質用フッ素化合物としては、ヘテロ原子を含ん で 、てもよ 、炭素数 1〜50の含フッ素アルキル基を有する有機カチオン、ヘテロ原 子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基を有する有機ァ-オン、 ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基を有する有機基 等が挙げられ、本実施の形態ではこれらのうち一種又は二種以上を選択して用いる ことができる。なお、これらの表面改質用フッ素化合物は、ナノフィラーの表面に物理 的あるいは化学的に結合する。
[0029] 以下、上記各表面改質用フッ素化合物について詳述する。
(A)有機カチオン
有機カチオンは、ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル 基を有する。有機カチオンとしては、ナノフィラーの表面にイオン結合するものが好ま しい。なお、有機カチオンは一種のみを採用してもよいし、二種以上のものを併用し てもよい。
上記有機カチオンとしては、特にォ-ゥムカチオンが好ましぐ中でも、下記一般式 (1);
[0030] [化 5]
L1 ©—— R s (1 )
[0031] (式中、: L1は、 P、 N、 S、 Siゝ 0、 Se、 Te、 As、 Sb、 Biゝ F、 Cl、 Br、又は Iである。 sは 、 2、 3、 4、又は 5であり、元素 L1の価数によって決まる値である。 R1は、同一若しくは 異なり、「水素原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていて もよ 、アルキル基」、及び「ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素ァ ルキル基」のいずれかであり、互いに結合していてもよいが、少なくとも 1つの R1は「 ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表さ れる構造、又は、下記一般式 (2);
[0032] [化 6]
Figure imgf000012_0001
[0033] (式中、: L2は、 Pゝ Nゝ Sゝ Siゝ 0、 Seゝ Teゝ As, Sbゝ Biゝ Fゝ Cl、 Brゝ又は Iである。 R2 は、「ヘテロ原子および不飽和結合を含んでもよく一部がフッ素原子に置換されてい てもよ!/、アルキレン基」または「不飽和結合を含んでもょ 、炭素以外の原子で構成さ れる鎖状基」である。 tは、 R2の鎖状部分を構成する原子の数以下の数値である。 uは 、 L2の価数によって決まる 0〜3の整数である。 R3、 R4は、同一若しくは異なり、「水素 原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていてもよいアルキ ル基」、及び「ヘテロ原子を含んでいてもよい炭素数 1〜50の含フッ素アルキル基」 のいずれかである力 R3及び R4のうち少なくとも 1つの置換基は「ヘテロ原子を含ん で!、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表される構造を有するも のであることが好ましい。このような構造を有するものであることにより、本発明に係る 高分子複合材料等に更に優れた耐熱性を付与することが可能となるからである。な お、一般式(1)には、 FH+— や、 C1H+— 1^5、 BrH+— 1^5、 I^ -R's, OH +
2 SH + R SeH + R TeH + R NH +
2 2 2 3 R PH +
3 R AS
H +—1^5、 SbH +—1^5、 BiH +—1^5等のォ-ゥムカチオンも含まれる。
3 3 3
[0034] 上記一般式(1)で表される構造を有する有機カチオンとしては、例えば、下記一般 式 (8) ;
[0035] [化 7]
Figure imgf000012_0002
[0036] (式中、 R1は、上記一般式(1)における R1と同様である)で表されるものが好ましい。 また、上記一般式 (2)で表される構造を有する有機カチオンとしては、例えば、下 記一般式(9) ;
[0037] [化 8]
Figure imgf000013_0001
[0038] (式中、 R3及び R4は、上記一般式(2)における R3及び R4と同様である)で表されるも のが好ましい。
本発明では、上述した有機カチオンの中でも、上記一般式(1)および(2)における L1および L2が P (リン原子)や N (窒素原子)であるものが好ましい。より好ましくは、 L1 および L2が Pであるホスホ-ゥムイオン、又は、 L2が Nであって L2と共に R2が複素環 または Nの同素環を構成しているォ-ゥムイオンである。すなわち、上記有機イオン は、ホスホ-ゥムイオン、含窒素複素環ォ -ゥムイオン、および窒素同素環ォ-ゥムィ オンの少なくとも 1つであることが好ましい。有機イオンがホスホ-ゥムイオン、含窒素 複素環ォ -ゥムイオン、および窒素同素環ォ -ゥムイオンの少なくとも 1つであること により、更に格段に優れた耐熱性を付与することが可能となるからである。なお、含窒 素複素環ォ -ゥムイオンとは、窒素を含む複素環を有するォ -ゥムイオンである。 [0039] 上記ホスホ-ゥムイオンとしては、例えば、下記一般式(10);
[0040] [化 9]
Figure imgf000014_0001
[0041] (式中、 R1は、上記一般式(1)における R1と同様である)で表されるものが特に好ま しい。より具体的には、例えば、パーフルォロェチルホスホ-ゥムイオン、パーフルォ 口プロピノレホスホニゥムイオン、パーフノレオロブチノレホスホニゥムイオン、パーフノレオ ロブチノレエチノレホスホ -ゥムイオン、パーフノレオ口へキシノレホスホ-ゥムイオン、パー フノレオ口へキシノレェチノレホスホ -ゥムイオン、パーフノレオ口へプチノレホスホ-ゥムィォ ン、パーフノレォロォクチノレホスホニゥムイオン、パーフノレオ口オタチノレエチノレホスホニ ゥムイオン、パーフルォロデシルホスホ -ゥムイオン及びパーフルォロデシルェチル ホスホ-ゥムイオン等が好ましく挙げられる。
上記含窒素複素環ォ -ゥムイオンとしては、例えば、下記一般式(11); [0042] [化 10]
Figure imgf000014_0002
[0043] (式中、 R3及び R4は、上記一般式(2)における R3及び R4と同様である)で表されるも のが特に好ましい。より具体的には、例えば、パーフルォロェチルイミダゾリウムィォ ン、パーフルォロプロピルイミダゾリゥムイオン、パーフルォロブチルイミダゾリウムィォ ン、パーフルォロブチルェチルイミダゾリゥムイオン、パーフルォ口へキシルイミダゾリ ゥムイオン、パーフルォ口へキシルェチルイミダゾリゥムイオン、パーフルォ口へプチ ルイミダゾリゥムイオン、パーフルォロォクチルイミダゾリゥムイオン、パーフルォロオタ チルェチルイミダゾリゥムイオン、パーフルォロデシルイミダゾリゥムイオン、パーフル ォロデシルェチルイミダゾリゥムイオン等のイミダゾリゥムイオンや、パーフルォロェチ ルピリジ -ゥムイオン、パーフルォロプロピルピリジ-ゥムイオン、パーフルォロブチル ピリジ-ゥムイオン、パーフルォロブチルェチルピリジ-ゥムイオン、パーフルォ口へ キシルピリジ-ゥムイオン、パーフルォ口へキシルェチルピリジ-ゥムイオン、パーフ ルォ口へプチルピリジ -ゥムイオン、パーフルォロォクチルピリジ -ゥムイオン、パーフ ルォロォクチルェチルピリジ-ゥムイオン、パーフルォロデシルピリジ -ゥムイオン及 びパーフルォロデシルェチルピリジ-ゥムイオン等のピリジ-ゥムイオン等が好ましく 挙げられる。
[0044] なお、本発明に係る高分子複合材料にお!ヽては、上記有機イオンは、例えば、パ ーフノレォロェチノレアンモニゥムイオン、パーフノレオ口プロピノレアンモニゥムイオン、 一フルォロブチルアンモ -ゥムイオン、パーフルォロブチルェチルアンモ-ゥムィォ ン、パーフルォ口へキシルアンモ -ゥムイオン、パーフルォ口へキシルェチルアンモ -ゥムイオン、パーフルォ口へプチルアンモ -ゥムイオン、パーフルォロォクチルアン モ -ゥムイオン、パーフルォロォクチルェチルアンモ -ゥムイオン、パーフルォロデシ ルアンモ -ゥムイオン及びパーフルォロデシルェチルアンモ -ゥムイオン等の有機ァ ンモ -ゥムイオンであってもよ 、。
また、炭素数 1〜50の含フッ素アルキル基としては、上記アルキル基中のカチオン 部位側が、 (CH ) - (nは、 1又は 2である。)であることが好ましい。より具体的に
2 n
は、上記有機カチオンが、下記一般式(12);
[0045] [化 11]
L^ CH^R^ (12)
[0046] (式中、 L1及び sは、上記一般式(1)における L1及び sと同様である。 nは、 1又は 2で ある。 (CH ) -R'は、上記一般式(1)における R1と同様である。)で表される構造
2 n
を有するものであることが好まし 、。
有機カチオンと組み合わせが好適なナノフイラ一としては、粘土鉱物、ぺロブスカイ ト、金属リン酸塩などが挙げられる。
(B)有機ァ-オン
有機ァ-オンは、ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル 基を有する。有機ァ-オンとしては、ナノフィラーの表面にイオン結合するものが好ま しい。なお、有機ァ-オンは一種のみを採用してもよいし、二種以上のものを併用し てもよい。
[0047] 有機ァ-オンとしては、例えば、 RfCOO_、 RfO_、 RfSO—で表されるものが好ま
3
しい。より具体的には、例えば、 Rf基がパーフルォロェチル基、パーフルォロプロピ ル基、パーフルォロブチル基、パーフルォロブチルェチル基、パーフルォ口へキシ ル基、パーフルォ口へキシルェチル基、パーフルォ口へプチル基、パーフルォロオタ チル基、パーフルォロォクチルェチル基、パーフルォロデシル基、及びパーフルォロ デシルェチル基等が好ましく挙げられる。
なお、有機ァ-オンと組み合わせが好適なナノフィラーとしては、複水酸化物など が挙げられる。
(C)有機基
有機基は、ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基を 有する。有機基としては、ナノフィラーの表面に共有結合するものが好ましい。なお、 有機基は一種のみを採用してもよいし、二種以上のものを併用してもよい。
[0048] 有機基としては、例えば、 Rf—、 RfS―、 RfO -、 Rf Si―、 RfCOO -、 RfCONH —で表されるものが好ましい。なお、ヘテロ原子を結合部位に含まない Rfで表される ものがさらに好ましい。より具体的には、例えば、 Rf基がパーフルォロェチル基、 一フルォロプロピル基、パーフルォロブチル基、パーフルォロブチルェチル基、パー フルォ口へキシル基、パーフルォ口へキシルェチル基、パーフルォ口へプチル基、パ 一フルォロォクチル基、パーフルォロォクチルェチル基、パーフルォロデシル基及び パーフルォロデシルェチル基等が好ましく挙げられる。
なお、有機基と組み合わせが好適なナノフィラーとしては、ナノカーボン材、金属力 ルコゲンィ匕物などが挙げられる。
そして、以上説明した有機イオン (有機カチオン及び有機ァ-オン)、有機基が有 するヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基は、直鎖状 のものであってもよいし、分岐鎖を有するものであってもよいし、環状構造を有するも のであってもよい。上記炭素数 1〜50の含フッ素アルキル基の中でも、特に、炭素数 4〜50の含フッ素アルキル基が好ましい。炭素数 4未満ではポリマーに対する分散 性が充分でなくなることがある力もである。そして、含フッ素アルキル基を炭素数 4〜5 0の含フッ素アルキル基とすることにより、ポリマー、特に含フッ素ポリマーとの相溶性 が更に向上され、ナノフィラーがポリマー中により均一に分散した高分子複合材料を 得ることが可能となる。なお、有機イオン (有機カチオン、有機ァ-オン)、有機基は、 上記炭素数 1〜50の含フッ素アルキル基を、 1種のみ有していてもよいし、 2種以上 有していてもよい。
[0049] また、上記有機イオン (有機カチオン及び有機ァ-オン)、有機基は官能基を有す るものであってもよく、このような形態も好ましい形態の 1つである。上記有機イオン( 有機カチオン及び有機ァ-オン)、有機基に官能基を導入すれば、ポリマーとの相 溶性を更に向上することができ、各種物性についてより優れた高分子複合材料を与 えることが可能となる。官能基としては、特に限定されず、例えば、 CO H基、 NH基
2 2
、 OH基、 P (OH)基、 SO H基、 CN基、ハロゲン基 (例えば、 I、 Br、 C1)等が好まし
3 3
く挙げられる。なお、上記有機イオン (有機カチオン、有機ァ-オン)、有機基がハロ ゲンを有する場合には、ポリマーと混合して高分子複合材料を得る際にポリマーと共 架橋するため、本発明の作用効果が更に充分に発揮されることとなる。また、上記有 機イオン (有機カチオン、有機ァ-オン)、有機基は、 1種の官能基を有するものであ つてもょ 、し、 2種以上の官能基を有するものであってもよ 、。
[0050] <ナノフィラーと表面改質用フッ素化合物との混合比率 >
上記表面改質ナノフィラーにおけるナノフィラーと表面改質用フッ素化合物との混 合比率は、表面改質用フッ素化合物の種類等によって適宜設定すればよく特に限 定されるものではないが、例えば、ナノフィラーと表面改質用フッ素化合物との合計 量を 100質量%とすると、表面改質用フッ素化合物が 5〜50質量%であることが好ま しい。
<表面改質ナノフィラーの製造方法 >
(A)表面改質用フッ素化合物として有機イオン (有機カチオン及び有機ァ-オン) が採用される場合
表面改質用フッ素化合物として有機イオンが採用される場合の表面改質ナノフイラ 一の製造方法としては、ナノフィラーと、ナノフィラーを修飾する有機イオンとを含有 するものとなる限り特に限定されるものではないが、例えば、ナノフィラーを温水等の 溶媒に分散させた後、有機イオン溶液を加えて沈殿を生じさせ、得られた沈殿物をろ 過して水洗し、乾燥して表面改質用フッ素化合物表面改質ナノフィラーを得る方法が 挙げられる。なお、この方法は、ナノフィラーが粘土鉱物、複水酸化物である場合に 特に有用である。
[0051] (B)表面改質用フッ素化合物として有機基が採用される場合
表面改質用フッ素化合物として有機基が採用される場合の表面改質ナノフィラーの 製造方法としては、ナノフィラーと、ナノフィラーを修飾する有機基とを含有するものと なる限り特に限定されるものではないが、ナノフィラーを修飾する有機基はへテロ原 子を結合部位に含まない Rfで表されるものが好ましい。例えば、有機基を含有する 化合物を適当な溶媒に溶解させた後、ナノフィラーを加えてアルゴン雰囲気下で攪 拌しつつ低圧水銀灯を照射した後、溶媒を除去、洗浄、乾燥して表面改質ナノフイラ 一を得る方法が挙げられる。なお、この方法は、ナノフィラーがナノカーボン材である 場合に特に有用である。
<表面改質ナノフイラ一の同定方法 >
(A)ナノフィラーとしてナノカーボン材が採用される場合
同定方法としては、通常の方法を採用することができ、例えば、熱分析方法、 XRD 方法、元素分析、 IR、 UV等が挙げられる。熱分析方法では有機質部分 (例えば、ァ ルキル基)の質量が減少することによって表面改質ナノフィラーの生成を確認するこ とができ、 XRD方法ではナノカーボン材の層間距離が修飾前の層間距離よりも広が つていることを確認することによって表面改質ナノフィラーの生成を確認することがで きる。なお、熱分析方法では例えばセイコー電子社製の TGZDTA6200を使用す ることができ、 XRD方法では例えば理学電機社製の RAD—RA型を使用することが でき、元素分析方法では例え «J— SCIENCE社製の JM— 10を使用することができ 、 IR方法では例えばパーキンエルマ一社製の 1760型を使用することができ、 UV方 法では例えば日立社製の U— 3310を使用することができる。
[0052] (B)ナノフイラ一として粘土鉱物が採用される場合 同定方法としては、通常の方法を採用することができ、例えば、水を使用する方法、 熱分析方法、 XRD方法等が挙げられる。水を使用する方法では表面改質ナノフイラ 一 (有機化粘土鉱物)が水に膨潤せずに析出することによって表面改質ナノフィラー の生成を確認することができ、熱分析方法では有機イオン中の有機質部分 (例えば、 アルキル基)の質量が減少することによって表面改質ナノフィラーの生成を確認する ことができ、 XRD方法では粘土鉱物の層間距離が修飾前の層間距離よりも広がって いることを確認することによって表面改質ナノフィラーの生成を確認することができる。 なお、熱分析方法では例えばセイコー電子社製の TGZDTA6200を使用すること ができ、 XRD方法では例えば理学電機社製の RAD—RA型を使用することができる
[0053] (C)ナノフイラ一として複水酸化物が採用される場合
同定方法としては、通常の方法を採用することができ、例えば、水を使用する方法、 熱分析方法、 XRD方法等が挙げられる。水を使用する方法では表面改質ナノフイラ 一 (有機化複水酸化物)が水に膨潤せずに析出することによって表面改質ナノフイラ 一の生成を確認することができ、熱分析方法では有機イオン中の有機質部分 (例え ば、アルキル基)の質量が減少することによって表面改質ナノフィラーの生成を確認 することができ、 XRD方法では複水酸ィ匕物の層間距離が修飾前の層間距離よりも広 力 Sつていることを確認することによって表面改質ナノフィラーの生成を確認することが できる。なお、熱分析方法では例えばセイコー電子社製の TGZDTA6200を使用 することができ、 XRD方法では例えば理学電機社製の RAD—RA型を使用すること ができる。
[0054] (D)ナノフイラ一としてぺロブスカイトが採用される場合
同定方法としては、通常の方法を採用することができ、例えば、熱分析方法、 XRD 方法、元素分析、 IR、 UV等が挙げられる。熱分析方法では有機質部分 (例えば、ァ ルキル基)の質量が減少することによって表面改質ナノフィラーの生成を確認するこ とができ、 XRD方法ではべ口ブスカイトの層間距離が修飾前の層間距離よりも広がつ ていることを確認することによって表面改質ナノフィラーの生成を確認することができ る。なお、熱分析方法では例えばセイコー電子社製の TGZDTA6200を使用する ことができ、 XRD方法では例えば理学電機社製の RAD— RA型を使用することがで き、元素分析方法では例え «J— SCIENCE社製の JM— 10を使用することができ、 I R方法では例えばパーキンエルマ一社製の 1760型を使用することができ、 UV方法 では例えば日立社製の U— 3310を使用することができる。
[0055] (E)ナノフイラ一としてその他の金属酸化物が採用される場合
同定方法としては、通常の方法を採用することができ、例えば、熱分析方法、 XRD 方法、元素分析、 IR、 UV等が挙げられる。熱分析方法では有機質部分 (例えば、ァ ルキル基)の質量が減少することによって表面改質ナノフィラーの生成を確認するこ とができ、 XRD方法では金属酸ィ匕物の層間距離が修飾前の層間距離よりも広がつ ていることを確認することによって表面改質ナノフィラーの生成を確認することができ る。なお、熱分析方法では例えばセイコー電子社製の TGZDTA6200を使用する ことができ、 XRD方法では例えば理学電機社製の RAD— RA型を使用することがで き、元素分析方法では例え «J— SCIENCE社製の JM— 10を使用することができ、 I R方法では例えばパーキンエルマ一社製の 1760型を使用することができ、 UV方法 では例えば日立社製の U— 3310を使用することができる。
[0056] (F)ナノフイラ一として金属リン酸塩が採用される場合
同定方法としては、通常の方法を採用することができ、例えば、熱分析方法、 XRD 方法、元素分析、 IR、 UV等が挙げられる。熱分析方法では有機質部分 (例えば、ァ ルキル基)の質量が減少することによって表面改質ナノフィラーの生成を確認するこ とができ、 XRD方法では金属リン酸塩の層間距離が修飾前の層間距離よりも広がつ ていることを確認することによって表面改質ナノフィラーの生成を確認することができ る。なお、熱分析方法では例えばセイコー電子社製の TGZDTA6200を使用する ことができ、 XRD方法では例えば理学電機社製の RAD— RA型を使用することがで き、元素分析方法では例え «J— SCIENCE社製の JM— 10を使用することができ、 I R方法では例えばパーキンエルマ一社製の 1760型を使用することができ、 UV方法 では例えば日立社製の U— 3310を使用することができる。
[0057] (G)ナノフィラーとして金属カルコゲンィ匕物が採用される場合
同定方法としては、通常の方法を採用することができ、例えば、熱分析方法、 XRD 方法、元素分析、 IR、 UV等が挙げられる。熱分析方法では有機質部分 (例えば、ァ ルキル基)の質量が減少することによって表面改質ナノフィラーの生成を確認するこ とができ、 XRD方法では金属カルコゲンィ匕物の層間距離が修飾前の層間距離よりも 広がっていることを確認することによって表面改質ナノフィラーの生成を確認すること ができる。なお、熱分析方法では例えばセイコー電子社製の TGZDTA6200を使 用することができ、 XRD方法では例えば理学電機社製の RAD—RA型を使用するこ とができ、元素分析方法では例え «J— SCIENCE社製の JM— 10を使用することが でき、 IR方法では例えばパーキンエルマ一社製の 1760型を使用することができ、 U V方法では例えば日立社製の U— 3310を使用することができる。
[0058] (H)ナノフイラ一として金属ナノ粒子が採用される場合
同定方法としては、通常の方法を採用することができ、例えば、熱分析方法、元素 分析、 IR、 UV等が挙げられる。熱分析方法では有機質部分 (例えば、アルキル基) の質量が減少することによって表面改質ナノフィラーの生成を確認することによって 表面改質ナノフィラーの生成を確認することができる。なお、熱分析方法では例えば セイコー電子社製の TGZDTA6200を使用することができ、元素分析方法では例 え «J— SCIENCE社製の JM— 10を使用することができ、 IR方法では例えばパーキ ンエルマ一社製の 1760型を使用することができ、 UV方法では例えば日立社製の U 3310を使用することができる。
〔高分子複合材料〕
本発明に係る高分子複合材料は、表面改質ナノフィラー及びポリマーを含有する。 表面改質ナノフイラ一は、ナノフィラー及び表面改質用フッ素化合物を含有し、詳細 は先述のとおりである。なお、表面改質ナノフィラー及びポリマーは、それぞれ一種の みを用いてもよいし二種以上用いてもよい。また、本発明に係る高分子複合材料に は、本発明の作用効果を失わない限り、その他の添加物が含有されていてもよい。
[0059] (A)ポリマー
ポリマーは、単独重合体であってもよいし、共重合体であってもよい。また、このよう な重合体の原料となる単量体としては、特に限定されず、例えば、テトラフルォロェチ レン(TFE)、 へキサフルォロプロピレン(HFP)、トリフルォロエチレン(TrFE)、ジフ ルォロエチレン(VdF)等の含フッ素モノマーや、エチレン、プロピレン、ブチレン、ぺ ンチン、へキセン、スチレン等の二重結合を有するモノマー又はアセチレンやプロピ ン等の三重結合を有するモノマー等の非含フッ素モノマー等が挙げられる。なお、こ のポリマーの重合には、 1種の単量体が用いられてもよ 、し 2種以上の単量体が用い られてちよい。
これらの単量体を用いて得られる重合体としては、例えば、含フッ素重合体 (フッ素 原子を含む重合体)、ポリスチレン(PS)、ポリプロピレン(PP)、ポリエチレン(PE)、 ポリエチレンオキサイド(PEO)、ポリエチレンテレフタラート(PET)、シリコーンポリマ 一等の通常の重合体が挙げられる。
[0060] また、上記ポリマーは官能基を有することが好ましい。ポリマーが官能基を有するこ とにより、表面改質ナノフィラーとの相溶性が向上され、各種物性についてより優れる 高分子複合材料を得ることが可能となる。官能基としては、特に限定されず、例えば 、 CO H基、 NH基、 OH基、 P (OH)基、 SO H基、 CN基、ハロゲン基(例えば、 I、
2 2 3 3
Br、 C1)等が好ましく挙げられる。なお、ポリマーは、 1種の官能基を有するものであ つてもょ 、し、 2種以上の官能基を有するものであってもよ 、。
また、上記ポリマーは、モノマー組成及び重合方法を適宜変更することにより、結晶 性重合体としてもよいし、非晶性重合体としてもよいし、分子鎖中に結晶部と非晶部 とを有する熱可塑性エラストマ一としてもよ ヽ。
上記ポリマーは、含フッ素重合体であることがより好ましい。ポリマーが含フッ素重 合体であることにより、相溶性や、機械的特性、物質透過遮断性等の各種物性につ いてより優れる高分子複合材料を得ることが可能となる。
[0061] なお、上記含フッ素重合体は、各種の含フッ素モノマーの単独重合体であってもよ いし、複数種類の含フッ素モノマーを共重合した共重合体であってもよいし、含フッ 素モノマーとフッ素を含まない他の非含フッ素モノマー等と共重合した共重合体であ つてもよい。なお、含フッ素単独重合体としては、ジフルォロエチレン等のフッ素原子 を部分的に含有し且つフッ素原子と結合していない炭素原子を含有するモノマーを 単独で重合させたものであることが好まし 、。
上記含フッ素重合体は、主鎖末端および側鎖末端の少なくとも一方に反応性官能 基を有する重合体であることが好ま 、。
反応性官能基としては、ハロゲン基 (例えば、 I, Br, C1など)、カルボキシル基、無 水カルボキシル基、カルボ-ルジォキシ基、ハロホルミル基、水酸基、イソシァネート 基、アルコキシカルボ-ル基、エポキシ基および Zまたはアミノ基等が挙げられる。
[0062] カルボ-ルジォキシ基は O— C ( = 0)— O で示される構造を有する基であり、 具体的には、一般式 (13) :
O— C ( = 0)— O— R5 (13)
(式中 R5は、エーテル結合性酸素原子を含んでもよ!、炭素数 1〜20のアルキル基、 又は 17族元素である)で示される基等を挙げることができる。一般式( 13)で示される 基としては、一 O— C ( = 0)— OCH 、 一 O— C ( = 0)— OC H 、 一 O— C ( = 0)—
3 3 7
OC H 、— O— C ( = 0)— OCH CH CH OCH CH等が挙げられる。
8 17 2 2 2 2 3
ハロホルミル基は—c (=o)—X1で示される構造を有する基であり、 X1としては、フ ッ素原子、塩素原子等が挙げられる。
[0063] 反応性官能基は、これらの中でも耐熱性及び機械特性の点から、カルボキシル基 、無水カルボキシル基、カルボ-ルジォキシ基、ハロホルミル基、イソシァネート基、 アルコキシカルボ-ル基等のカルボ-ル基含有基であることが好ましぐその中でも カルボ二ル基を含む官能基、特にカルボ二ルジォキシ基、ハロホルミル基がより好ま しい。
含フッ素重合体の主鎖末端および Zまたは側鎖末端に上記反応性官能基を導入 する方法としては、含フッ素重合体の重合時に前記反応性部位あるいは前記反応部 位に変換可能な部位を有する単量体を共重合する方法や、前記反応性部位ある ヽ は前記反応性部位に変換可能な部位を有する重合開始剤を用いる方法が挙げられ るが、主鎖末端に上記反応性官能基を有する含フッ素重合体が側鎖末端に上記反 応性官能基を有する含フッ素重合体と比較して一般的に耐熱性、機械特性、耐薬品 性に優れる点、及び生産性やコスト面で有利である点から、後者の方法が好ましい。
[0064] また、含フッ素重合体にハロホルミル基を導入する方法としては、例えば、カルボ- ルジォキシ基またはエステル基を末端に有する含フッ素重合体の末端を熱分解 (脱 炭酸)させる方法が挙げられる。このときの加熱温度は、カルボ二ルジォキシ基または エステル基の種類や含フッ素重合体の種類によって異なる力 重合体自体が 200°C 以上、好ましくは 220°C以上、特に好ましくは 230°C以上になるように加熱することが 好ましぐ加熱温度の上限は、含フッ素重合体のカルボ-ルジォキシ基またはエステ ル基以外の部位の熱分解温度以下にすることが好ましぐ具体的には 400°C以下、 より好ましくは 350°C以下である。
含フッ素重合体中の反応性官能基の数は、含フッ素重合体の主鎖炭素数 1 X 106 個あたり、 3〜: LOOO個であることが好ましぐ 3〜500個であることがより好ましぐ 10 〜300個であることがさらに好ましい。反応性官能基の数が、含フッ素重合体の主鎖 炭素数 1 X 106個あたり 3個未満であると、表面改質ナノフィラーと充分に反応しない 傾向がある。
本発明に係る含フッ素重合体は少なくとも 1種の含フッ素エチレン性重合体力 な るフッ素榭脂またはフッ素ゴムであることが好ましく、含フッ素エチレン性重合体は少 なくとも 1種の含フッ素エチレン性単量体由来の構造単位を有するものであればよい 。なお、この含フッ素重合体の主鎖および Zまたは側鎖の構造は特に限定されるも のではない。また、上記含フッ素エチレン性重合体力もなるフッ素榭脂またはフッ素 ゴムは、主鎖末端および Zまたは側鎖末端に反応性官能基を有する重合体であるこ とが好ましい。反応性官能基としては、ハロゲン基 (例えば、 I、 Br、 C1)、カルボキシ ル基、無水カルボキシル基、カルボ-ルジォキシ基、ハロホルミル基、水酸基、イソシ ァネート基、アルコキシカルボ-ル基、エポキシ基および Zまたはアミノ基等が挙げら れる。
(フッ素榭脂の具体例)
含フッ素エチレン性単量体としては、例えば、テトラフルォロエチレン、一般式(14)
CF =CF-R 1 (14)
2 f
(式中、 R 1は— CFまたは— OR 2であり、 R 2は炭素数 1〜5のパーフルォロアルキル
f 3 f f
基である)で表されるパーフルォロエチレン性不飽和化合物等のパーフルォロォレフ イン、クロ口トリフルォロエチレン、トリフルォロエチレン、へキサフルォロイソブテン、ビ ユリデンフルオライド、フッ化ビュル、一般式(15): CH =CX2 (CF ) X3 (15)
2 2 n
(式中、 x2は水素原子またはフッ素原子であり、 X3は水素原子、フッ素原子、または 塩素原子であり、 nは 1〜10の整数である)で表されるフルォロォレフイン等を挙げる ことができる。
そして、含フッ素エチレン性重合体は上記含フッ素エチレン性単量体と共重合可能 な単量体由来の構造単位を有してもよぐこのような単量体としては、上記フルォロォ レフイン、パーフルォロォレフイン以外の非フッ素エチレン性単量体を挙げることがで きる。非フッ素エチレン性単量体としては、例えば、エチレン、プロピレン、またはアル キルビュルエーテル類等を挙げることができる。ここで、アルキルビュルエーテルは、 炭素数 1〜5のアルキル基を有するアルキルビュルエーテルをいう。
これらの中でも、
(a)テトラフルォロエチレンとエチレンとからなるエチレンーテトラフルォロエチレン 共重合体 (ETFE)、
(b)テトラフルォロエチレンと一般式(16):
CF =CF— R 1 (16)
2 f
(式中、 R 1は—CFまたは OR 2であり、 R 2は炭素数 1〜5のパーフルォロアルキル f 3 f f
基である)で表されるパーフルォロエチレン性不飽和化合物とからなるテトラフルォロ エチレン パーフルォロ(アルキルビュルエーテル)共重合体(PFA)、テトラフルォ 口エチレン一へキサフルォロプロピレン共重合体(FEP)、又はテトラフルォロェチレ ン一へキサフルォロプロピレン パーフルォロ(アルキルビュルエーテル)共重合体
(c)テトラフルォロエチレン、エチレン、及び一般式(17):
CF =CF— R 1 (17)
2 f
(式中、 R 1は CFまたは OR 2であり、 R 2は炭素数 1〜5のパーフルォロアルキル f 3 f f
基である)で表されるパーフルォロエチレン性不飽和化合物からなるエチレンーテト ラフルォロエチレン パーフルォロ(アルキルビュルエーテル)共重合体(Et—TFE PAVE共重合体)またはエチレンーテトラフルォロエチレン へキサフルォロプロ ピレン共重合体(EFEP)、 (d)ポリフッ化ビニリデン(PVDF)
の!、ずれかであることが好まし 、。次に(a)〜(d)の好ま U、含フッ素エチレン性重合 体にっ 、てそれぞれ説明する。
[0067] (a) ETFE
含フッ素エチレン性重合体を ETFEとすることは、高分子複合材料に低燃料透過 性および柔軟性を付与できる点で好ま 、。テトラフルォロエチレン単位とエチレン 単位との含有モノ kttは、 20 : 80〜90 : 10カ 子ましく、 62 : 38〜90 : 10カ^ょり好ましく 、 63 : 37〜80 : 20カ特に好ましぃ。また、この ETFEは、第 3成分を含有していてもよ V、。第 3成分としてはテトラフルォロエチレンおよびエチレンと共重合可能なものであ ればよぐその種類は限定されない。第 3成分としては、通常、下記一般式(18)〜(2 1):
CX4 =CX4R 3 (18)、
2 f
CX4 =CFR 3 (19)、
2 f
CX4 =CFOR 3 (20)、
2 f
CX4 =C (R 3) (21)
2 f 2
(式中、 X4は水素原子またはフッ素原子であり、 R 3はフルォロアルキル基である) f
で示されるモノマーが用いられ、これらの中でも、一般式(18)で示される含フッ素ビ
-ルモノマーがより好ましぐ R 3の炭素数が 1〜8のモノマーが特に好ましい。
f
[0068] 一般式(18)〜(21)で示される含フッ素ビュルモノマーの具体例としては、 1, 1 ジヒドロパーフノレオ口プロペン 1、 1, 1ージヒドロパーフノレオロブテン 1、 1, 1, 7 トリヒドロパーフルォロヘプテン 1、 1, 1, 2—トリヒドロパーフルォ口へキセン 1、 1, 1, 2 トリヒドロノ ーフノレオ口オタテン一 1、 2, 2, 3, 3, 4, 4, 5, 5—オタタフノレォ 口ペンチノレビ-ノレエーテノレ、ノ ーフノレオ口(メチノレビ-ノレエーテノレ)、ノ ーフノレオ口( プロピルビニノレエーテル)、へキサフノレオ口プロペン、パーフノレオロブテン 1、 3, 3 , 3 トリフルォロ 2 トリフルォロメチルプロペン— 1、 2, 3, 3, 4, 4, 5, 5 ヘプタ フルォロ— 1—ペンテン(CH =CFCF CF CF H)が挙げられる。
2 2 2 2
第 3成分の含有量としては、含フッ素エチレン性重合体に対して 0. 1〜: L0モル% 力 S好ましく、 0. 1〜5モル0 /0がより好ましぐ 0. 2〜4モル0 /0が特に好ましい。 [0069] (b) PFAまたは FEP
含フッ素エチレン性重合体を PFAまたは FEPとすることは、とりわけ高分子複合材 料に優れた耐熱性および物質透過遮断性を付与することができる点で好ま ヽ。な お、このとき、含フッ素エチレン性重合体は、テトラフルォロエチレン単位 90〜99モ ル%と一般式(16)で表されるパーフルォロエチレン性不飽和化合物単位 1〜10モ ル%とからなることがより好ましい。また、テトラフルォロエチレンと一般式(16)で表さ れるパーフルォロエチレン性不飽和化合物とからなる含フッ素エチレン性重合体は、 第 3成分を含有して 、てもよ 、。第 3成分としてはテトラフルォロエチレンおよび一般 式(16)で表されるパーフルォロエチレン性不飽和化合物と共重合可能なものであれ ばよぐその種類は特に限定されない。
[0070] (c) Et— TFE— PAVE共重合体または EFEP
含フッ素エチレン性重合体を Et—TFE— PAVE共重合体または EFEPとすること は、高分子複合材料に優れた物質透過遮断性および柔軟性を付与することができる 点で好ましい。なお、このとき、含フッ素エチレン性重合体は、テトラフルォロエチレン 単位 19〜90モル0 /0、エチレン単位 9〜80モル0 /0、及び一般式(17)で表されるパー フルォロエチレン性不飽和化合物単位 1〜72モル%からなることがより好ましい。ま た、含フッ素エチレン性重合体力 テトラフルォロエチレン単位 20〜70モル0 /0、ェチ レン単位 20〜60モル0 /0、および一般式(17)で表されるパーフルォロエチレン性不 飽和化合物単位 1〜60モル%力 なることがさらに好ましい。
また、テトラフルォロエチレン、エチレン、および一般式(17)で表されるパーフルォ 口エチレン性不飽和化合物力もなる含フッ素エチレン性重合体 (a)は、追加成分を 含有していてもよい。追カロ成分としては、 2, 3, 3, 4, 4, 5, 5 ヘプタフノレオロー 1 ペンテン (CH =CFCF CF CF H)等が挙げられる。なお、追加成分の含有量とし
2 2 2 2
ては、含フッ素エチレン性重合体に対して 0. 1〜3モル%であることが好ましい。
[0071] (d) PVDF
含フッ素エチレン性重合体を PVDFとすることは、高分子複合材料に優れた柔軟 性および力学物性を付与することができる点で好ましい。
(フッ素ゴムの具体例) 上記含フッ素ゴムとしては、例えば、 VdF/HFP共重合体、 VdF/HFP/TFE共 重合体、 VdFZCTFE共重合体、 VdFZCTFEZTFE共重合体、 VdFZPAVE共 重合体、 VdFZTFEZPAVE共重合体、 VdFZHFPZPAVE共重合体、 VdFZ HFPZTFEZPAVE共重合体、 VdFZTFEZPr共重合体、 VdFZEtZHFP共 重合体、 VdFZEtZHFP共重合体等が好ましい。なお、その他の単量体として、 T FE、 HFP、及び Z又は、 PAVEを有するものであることがより好ましぐ特には、 VdF ZHFP共重合体、 VdFZHFPZTFE共重合体、 VdFZPAVE共重合体、 VdFZ TFEZPAVE共重合体、 VdFZHFPZPAVE共重合体、 VdFZHFPZTFEZP AVE共重合が好ましい。
[0072] 上記 VdFZHFP共重合体は、 VdFZHFPの組成力 45〜85 55〜15モル% であることが好ましぐより好ましくは、 50〜80Z50〜20モル%であり、更に好ましく は、 60〜80Ζ40〜20モル0 /0である。
上記 VdFZHFPZTFE共重合体は、 VdFZHFPZTFEの組成が、 30〜80 3 5〜20Z35〜0モル0 /0のものが好ましい。
上記 VdFZPAVE共重合体としては、 VdFZPAVEの組成が、 65〜90ZlO〜3 5モル0 /0のものが好まし!/、。
上記 VdFZTFEZPAVE共重合体としては、 VdFZTFEZPAVEの組成が、 40 〜80/3〜40/15〜35モノレ0 /0のちの力好まし!/ヽ。
上記 VdFZHFPZPAVE共重合体としては、 VdFZHFPZPAVEの組成が、 65 〜90Z3〜25Z3〜25モル0 /0のものが好ましい。
[0073] 上記 VdFZHFPZTFEZPAVE共重合としては、 VdFZHFPZTFEZPAVE の糸且成力 40〜90/0〜25/0〜40/3〜35のちの力 S好ましく、 40〜80/3〜25 Z3〜40Z3〜25モル0 /0のものがより好ましい。
また、別の観点から、含フッ素重合体は分子内に電荷の偏りを有するものが好まし い。表面改質用フッ素化合物が高い極性を示す、もしくは、ナノフィラーが高い極性 を示す層状物質の場合、含フッ素重合体の分子内に電荷の偏りがあると、含フッ素 重合体が表面改質ナノフィラーの層状構造における層間にインター力レートし、表面 改質ナノフィラーをノヽイブリツドィ匕するからである。このノ、イブリツドィ匕により含フッ素重 合体を構成する分子鎖は表面改質ナノフィラー由来のシートによる拘束を受け、分子 鎖間の結合力が強くなる。また、ハイブリッド化により粘土鉱物のシートは含フッ素重 合体中に均一に微細分散される。このため、薬品や燃料が高分子複合材料に接触 したとしても、薬品や燃料はこれらシートによって阻まれ、薬品による侵食や燃料の透 過が生じ難い。したがって、含フッ素重合体を含有する高分子材料の物質透過遮断 性 (例えば、耐薬品性や燃料バリア性等)等の物性がより向上する。
[0074] また、上記含フッ素重合体におけるフッ素の含有量は、含フッ素重合体の 100質量 %中に 10〜90質量%であることが好ま U、が、 30〜90質量%であることがより好ま しぐ 50〜90質量%であることが更に好ましぐ 50〜80質量%であることが最も好ま しい。表面改質ナノフィラーの分散性の向上と重合体そのものの物質透過遮断性の 両立により、優れた特性を示す材料を提供することができるからである。なお、含フッ 素重合体におけるフッ素の含有量が 10質量%未満である場合には重合体そのもの の物質透過遮断性等の物性の低下が生じるおそれがあり、 90質量%を越えた場合 にはカ卩ェ性の低下が生じるおそれがある。
上記ポリマーは、また、重量平均分子量が 5, 000-1, 000, 000であることが好ま し ヽ力 10, 000〜1, 000, 000であること力より好まし!/ヽ。重量平均分子量力 5, 00 0〜1, 000, 000であれば、機械的物性とカ卩ェ性とを両立させることができる力 で ある。なお、重量平均分子量が 5, 000未満である場合には機械的物性が低下する おそれがあり、 1, 000, 000を越えた場合にはカ卩ェ性が低下するおそれがある。
[0075] また、ポリマーに表面改質ナノフイラ一として層状物質を分散させる際、ポリマーを 構成する分子鎖が表面改質ナノフィラーを構成する層状構造の層の間にインター力 レートすることが好ましい。インター力レートにより表面改質ナノフィラーの表面とポリ マーとの界面が大きくなり、表面改質ナノフィラーによるポリマーの補強効果をより多 く得ることができる力らである。なお、このインター力レートが生じると、ポリマーと表面 改質ナノフイラ一とが複合ィヒして表面改質ナノフィラーを構成する層の層間距離が元 の状態より広がる。なお、層間距離の広がりについては X線回折等により確認するこ とができる。また、インター力レートが生じたときの層間距離は、インター力レートが生 じる前の層間距離よりも 5オングストローム以上広がっていることが好ましいが、インタ 一力レートが生じる前の層間距離よりも 30オングストローム以上広がっていることがよ り好ましぐインター力レートが生じる前の層間距離よりも 100オングストローム以上広 力 ていることが更に好ましい。これにより、表面改質ナノフィラーの分散性が向上し 、拘束されるポリマーの割合が増え、補強効果が増すことにより、物質透過遮断性や 機械的物性の向上を図ることができるからである。なお、 5オングストロームより狭い場 合には、粘土鉱物の分散性が低下するおそれがある。そして、更に、表面改質ナノフ イラ一がポリマーに分散した際に、表面改質ナノフィラーの層状構造が消失し、層状 構造を構成していたシートが単層となって、分子分散した状態になることが好ましい。 これにより、表面改質ナノフイラ一により拘束されるポリマーの分子鎖の割合が最も大 きくなり、表面改質ナノフィラーの補強効果が非常に大きくなる。このため、本発明に 力かる効果を充分に得ることができる。ただし、高分子複合材料の物性低下を来さな V、範囲にぉ 、て、高分子複合材料に数層程度の積層状態のものが一部存在して ヽ てもかまわない。
[0076] (B)その他の添カロ物
上記高分子複合材料はまた、表面改質ナノフィラー及びポリマーの他に、架橋剤 や充填材等の添加物を含有して ヽてもかまわな 、。
(C)混合比
上記高分子複合材料にぉ 、て、表面改質ナノフィラーとポリマーとの混合比率は、 ポリマー 100重量部に対して表面改質ナノフィラーが 0. 01〜300重量部であること 力 S好ましく、 0. 1〜: L00重量部であることがより好ましぐ 0. 1〜30重量部であること 力 Sもっとも好ましい。これにより、物質透過遮断性等の物性の向上と加工性との両立 を図ることができるからである。なお、表面改質ナノフィラーの量が 0. 01重量部未満 である場合には物質透過遮断性等の物性の向上が認められなくなるおそれがあり、 300重量部を越えた場合には加工性が低下するおそれがある。
[0077] (D)製造方法
上記高分子複合材料を得る方法としては、表面改質ナノフィラーとポリマーとを含 有するものとなる限り特に限定されるものではないが、例えば、これら及び必要に応じ て添加される添加物を混合する方法によることが好ましい。混合方法としては、例え ば、溶液法、モノマー挿入後重合型層間挿入法、ポリマー挿入型層間挿入法、及び 二次元挿入型ナノコンポジット法等が代表的であるが、分散性や作業効率の観点か ら、ポリマー挿入型層間挿入法が好ましい。
(E)成形体
なお、本発明の高分子複合材料は、射出成形、押出成形、プレス成形、プロ一成 形、フィルム成形等の各種成形方法によって成形体とすることができる。このように、 本発明の高分子複合材料を用いてなる成形体 (成形品)もまた、本発明の好ま U、 実施形態の 1つである。
(F)用途
本発明の高分子複合材及び成形品は、以下に示す分野で好適に用いることがで きる。
半導体製造装置、液晶パネル製造装置、プラズマパネル製造装置、プラズマァドレ ス液晶パネル、フィールドェミッションディスプレイパネル、太陽電池基板等の半導体 関連分野では、 o (角)リング、パッキン、シール材、チューブ、ロール、コーティング、 ライニング、ガスケット、ダイァフラム、ホース等が挙げられ、これらは CVD装置、ドライ エッチング装置、ウエットエッチング装置、酸化拡散装置、スパッタリング装置、アツシ ング装置、洗浄装置、イオン注入装置、排気装置、薬液配管、ガス配管に用いること ができる。具体的には、ゲートバルブの Oリング若しくはシール材として、クォーツウイ ンドウの Oリング若しくはシール材として、チャンバ一の Oリング若しくはシール材とし て、ゲートの Oリング若しくはシール材として、ベルジャーの Oリング若しくはシール材 として、カップリングの Oリング若しくはシール材として、ポンプの Oリング、シール材、 若しくはダイァフラムとして、半導体用ガス制御装置の Oリング若しくはシール材とし て、レジスト現像液'剥離液用の Oリング若しくはシール材として、ウェハー洗浄液用 のホース若しくはチューブとして、ウェハー搬送用のロールとして、レジスト現像液槽' 剥離液槽のライニング若しくはコーティングとして、ウェハー洗浄液槽のライニング若 しくはコーティングとして、又はウエットエッチング槽のライニング又はコーティングとし て用いることができる。さらに、封止材 'シーリング剤、光ファイバ一の石英の被覆材、 絶縁、防振、防水、防湿を目的とした電子部品、回路基盤のポッティング、コーティン グ、接着シール、磁気記憶装置用ガスケット、エポキシ等の封止材料の変性材、タリ ーンルーム.クリーン設備用シーラント等として用いられる。
[0079] 自動車分野では、ガスケット、シャフトシール、バルブステムシール、シール材およ びホースはエンジンならびに周辺装置に用いることができ、ホースおよびシール材は AT装置に用いることができ、 0 (角)リング、チューブ、パッキン、バルブ芯材、ホース 、シール材およびダイアフラムは燃料系統ならびに周辺装置に用いることができる。 具体的には、エンジンヘッドガスケット、メタルガスケット、オイルパンガスケット、クラン クシャフトシール、カムシャフトシール、バルブステムシール、マ-ホールドパッキン、 オイルホース、酸素センサー用シール、 ATFホース、インジェクター Oリング、インジ エタターパッキン、燃料ポンプ Oリング、ダイァフラム、燃料ホース、クランクシャフトシ ール、ギアボックスシール、パワーピストンパッキン、シリンダーライナーのシーノレ、ノ ルブステムのシール、自動変速機のフロントポンプシール、リア一アクスルビ-オンシ ール、ユニバーサルジョイントのガスケット、スピードメーターのピニオンシール、フー トブレーキのピストンカップ、トルク伝達の O—リング、オイルシール、排ガス再燃焼装 置のシーノレ、ベアリングシーノレ、 EGRチューブ、ツインキヤブチューブ、キャブレター のセンサー用ダイァフラム、防振ゴム (エンジンマウント、排気部等)、再燃焼装置用 ホース、酸素センサーブッシュ等として用いることができる。
[0080] 航空機分野、ロケット分野および船舶分野では、ダイァフラム、 O (角)リング、バル ブ、チューブ、ノ ッキン、ホース、シール材等が挙げられ、これらは燃料系統に用いる ことができる。具体的には、航空機分野では、ジェットエンジンバルブステルシール、 燃料供給用ホース、ガスケット、及び O—リング、ローテ一ティングシャフトシール、油 圧機器のガスケット、防火壁シール等に用いられ、船舶分野では、スクリューのプロ ペラシャフト船尾シール、ディーゼルエンジンの吸排気用バルブステムシール、バタ フライバルブのバルブシール、バタフライ弁の軸シール等に用いられる。
プラント等の化学品分野では、ライニング、バルブ、ノ ッキン、ロール、ホース、ダイ ァフラム、 o(角)リング、チューブ、シール材、耐薬品用コーティング等が挙げられ、 これらは医薬、農薬、塗料、榭脂等化学品製造工程に用いることができる。具体的に は、化学薬品用ポンプ、流動計、配管のシール、熱交換器のシール、硫酸製造装置 のガラス冷却器パッキング、農薬散布機、農薬移送ポンプのシール、ガス配管のシー ル、メツキ液用シール、高温真空乾燥機のパッキン、製紙用ベルトのコロシール、燃 料電池のシール、風洞のジョイントシール、耐トリクレン用ロール (繊維染色用)、耐酸 ホース (濃硫酸用)、ガスクロマトグラフィー、 pHメーターのチューブ結合部のパッキン 、塩素ガス移送ホース、ベンゼン、トルエン貯槽の雨水ドレンホース、分析機器、理ィ匕 学機器のシール、チューブ、ダイァフラム、弁部品等として用いることができる。
[0081] 医薬品等の薬品分野では、薬栓等として用いることができる。
現像機等の写真分野、印刷機械等の印刷分野および塗装設備等の塗装分野では 、ロール等が挙げられ、それぞれフィルム現像機 ·Χ線フィルム現像機、印刷ロール および塗装ロールに用いることができる。具体的には、フィルム現像機 ·Χ線フィルム 現像機の現像ロールとして、印刷ロールのグラビアロール、ガイドロールとして、塗装 ロールの磁気テープ製造塗工ラインのグラビアロール、磁気テープ製造塗工ラインの ガイドロール、各種コーティングロール等として用いることができる。さらに、乾式複写 機のシール、印刷設備の印刷ロール、スクレーパー、チューブ、弁部品、塗布、塗装 設備の塗布ロール、スクレーパー、チューブ、弁部品、プリンターのインキチューブ、 ロール、ベルト、乾式複写機のベルト、ロール、印刷機のロール、ベルト等として用い ることがでさる。
[0082] またチューブを分析 ·理ィ匕学機分野に用いることができる。
食品プラント機器分野では、ライニング、バルブ、ノ ッキン、ロール、ホース、ダイァ フラム、 ο(角)リング、チューブ、シール材、ベルト等があげられ、食品製造工程に用 いることができる。具体的には、プレート式熱交^^のシール、自動販売機の電磁弁 シール等として用いることができる。
原子力プラント機器分野では、パッキン、 Οリング、ホース、シール材、ダイアフラム 、ノ レブ、ロール、チューブ等が挙げられる。
鉄板加工設備等の鉄鋼分野では、ロール等が挙げられ、鉄板加工ロール等に用い ることがでさる。
一般工業分野では、 ッキング、 Οリング、ホース、シール材、ダイァフラム、バルブ 、ロール、チューブ、ライニング、マンドレル、電線、フレキシブルジョイント、ベルト、ゴ ム板、ウエザーストリップ、 PPC複写機のロール、ロールブレード、ベルト等が挙げら れる。具体的には、油圧、潤滑機械のシール、ベアリングシール、ドライクリーニング 機器の窓、その他のシール、六フッ化ウランの濃縮装置のシール、サイクロトロンのシ ール (真空)バルブ、自動包装機のシール、空気中の亜硫酸ガス、塩素ガス分析用 ポンプのダイアフラム (公害測定器)、印刷機のロール、ベルト、酸洗い用絞りロール 等に用いられる。
[0083] 電気分野では、具体的には、新幹線の絶縁油キャップ、液封型トランスのベンチン ダシール、油井ケーブルのジャケット等として用いられる。
燃料電池分野では、具体的には、電極、セパレーター間のシール材ゃ水素 '酸素' 生成水配管のシール等として用いられる。
電子部品分野では、具体的には、放熱材原料、電磁波シールド材原料、エポキシ 等のプリント配線板プリプレダ榭脂の変性材、電球等の飛散防止材、コンピューター のハードディスクドライブのガスケット等に用いられる。
現場施工型の成形に用いることが可能なものとしては特に限定されず、たとえば、 自動車エンジン用メタルガスケットのコーティング剤、エンジンのオイルパンのガスケ ット、複写機'プリンター用のロール、建築用シーリング剤、磁気記録装置用のガスケ ット、クリーンルーム用フィルターユニットのシーリング剤、プリント基盤のコーティング 剤、電気'電子部品の固定剤、電気機器リード線端子の絶縁防湿処理、電気炉等の オーブンのシール、シーズヒーターの末端処理、電子レンジの窓枠シール、 CRTゥ エッジおよびネックの接着、 自動車電装部品の接着、厨房、浴室、洗面所等の目地 シール等が挙げられる。
[0084] 本発明の成形品は上述の各種用途に好適に用いることができ、特に燃料周辺部品 として好適である。また、本発明の成形品は、特に、シール材、ノ ッキン、ローラー、 チューブまたはホースとして有用である。
その他、コンデンサなどの優れた表面抵抗を有する導電性材料として、燃料電池セ パレータ用のコーティング材として、ァクチユエ一ターの帯電防止材として、センサな どの圧電変換複合材料として、導電性フィルムとして、電子写真機器用導電性材料 としての利用なども考えられる。なお、これらの用途においては、高分子複合材料に 導電性が付与されて 、る必要がある。
以下に、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明はこ れらによって何ら限定されるものではない。なお、特に断りのない限り、「%」とは、「質 量%」を意味する。
[0085] 〔実施例〕
以下の実施例等において、耐熱性は、以下の方法により評価した。
〔耐熱性評価方法〕
熱分析 (TG/DTA)を用いて、上記実施例及び比較例で調製した各試料の耐熱 性を評価した。具体的には、一定の昇温速度で、所定温度まで昇温するように TGZ DTAを設定し、このときに得られた測定チャートより 1%質量減少温度を求め、表面 改質ナノフィラーの耐熱性とした。
実施例 1
[0086] 先ず、 Na—モンモリロナイト(クニミネ工業製クニピア F)を 4g量り取り、 80°Cの水 40 OmLに分散させた。次に、 ICH CF CF OCF (CF ) CONHCH CH NH +C1_を
2 2 2 3 2 2 3
4. 2g量り取り 80°Cの水 20mLに溶解させた後、この溶液を上記のモンモリロナイト 水性分散液中に加えたところ、系内に沈殿物が生じた。得られた沈殿物をろ過し、 8 0°Cの水で 3回洗浄した。その結果、 ICH CF CF OCF (CF ) CONHCH CH N
2 2 2 3 2 2
Hで有機化されたモンモリロナイト、「ICH CF CF OCF (CF ) CONHCH CH N
2 2 2 2 3 2 2
H -MMTj (試料 1)が得られた。得られた試料 1の耐熱性を上述した方法に従って
2
求めた。その結果、 1%質量減少温度は、 250°Cであった (表 1参照)。
実施例 2
[0087] 先ず、 Na—モンモリロナイト(クニミネ工業製クニピア F)を 3g量り取り、 80°Cの水 30 OmLとアセトン lOOmLとの混合溶媒に分散させた。次に、 CF CF CF CF CH CH
3 2 2 2 2
P (C H ) +1—を 3g量り取り 80°Cの水 10mLとアセトン 10mLとの混合溶媒に溶解さ
2 4 9 3
せた後、この溶液を上記のモンモリロナイト分散液中に加えたところ、系内に沈殿物 が生じた。得られた沈殿物をろ過し、 80°Cの水で 3回洗浄した。その結果、 CF CF
3 2
CF CF CH CH P (C H )で有機化されたモンモリロナイト、「CF CF CF CF C
2 2 2 2 4 9 3 3 2 2 2
H CH P (C H ) -MMTJ (試料 2)が得られた。得られた試料 2の耐熱性を上述し 実施例 3
[0088] 先ず、 Na—モンモリロナイト(クニミネ工業製クニピア F)を 2. 6g量り取り、 80°Cの水 260mLに分散させた。化学式(22)に示される CF CF CF CF CH CH— Imi+—
3 2 2 2 2 2
I一を 2g量り取り 80°Cの水 20mLに溶解させた後、この溶液を上記のモンモリロナイト 分散液中に加えたところ、系内に沈殿物が生じた。得られた沈殿物をろ過し、 80°C の水で 3回洗浄した。その結果、 CF CF CF CF CH CH 一 Imiで有機化されたモ
3 2 2 2 2 2
ンモリロナイト、「CF CF CF CF CH CH— Imi— MMT」(試料 3)が得られた。得
3 2 2 2 2 2
られた試料 3の耐熱性を上述した方法に従って求めた。その結果、 1%質量減少温 度は、 350°Cであった(表 1参照)。
[0089] [化 12]
Figure imgf000036_0001
実施例 4
[0090] 合成石英製の反応容器に、ペルフルォロアゾオクタン 4mgをペルフルォ口へキサ ン 4mlに溶解させ、その溶液中にカーボンナノチューブ(CNI製 HiPco単層カーボン ナノチューブ)を投入した。アルゴン雰囲気下で攪拌しつつ低圧水銀灯を室温で 8時 間照射した。その後、ペルフルォ口へキサン溶液を除去し、カーボンナノチューブを ペルフルォ口へキサンおよびへキサンで洗浄して減圧下で乾燥を行った。その結果 、ペルフルォロォクチル基で有機化されたカーボンナノチューブ、「Rf— CNT」(試 料 4)が得られた。なお、表面上にペルフルォロォクチル基が導入されていることは、 上記反応後に元素分析および IR測定を行うことにより確認された。得られた試料 4の 耐熱性を上述した方法に従って求めた。その結果、 1%質量減少温度は、 300°Cで あった (表 1参照)。
実施例 5
[0091] 先ず、ハイド口タルサイト(協和化学工業製 DHT—4A)を 80g量り取り、 80°Cの水 5 , OOOmLに分散させた。次に、 CF (CF ) COO—NH を 28. 5g量り取り 80。Cの
3 2 7 4
水 2, OOOmLに溶解させた後、この溶液を上記のハイド口タルサイト分散液中に加え たところ、系内に沈殿物が生じた。得られた沈殿物をろ過し、 80°Cの水で 3回洗浄し た。その結果、 CF (CF ) COOで有機化されたノヽイド口タルサイト、「Rf— HTS」(
3 2 7
試料 5)が得られた。得られた試料 5の耐熱性を上述した方法に従って求めた。その 結果、 1%質量減少温度は、 330°Cであった (表 1参照)。
実施例 6
[0092] エタノール 30mLに HAuCl 51mgと 1H, 1H, 2H, 2H—ペルフルオデカンチォ
4
一ノレ 795mgとを加えた。次に、その溶液に NaBH水溶液を滴下し、 3時間撹拌した
4
。その後、その溶液をろ過し、ろ過物を超音波洗浄機で水、クロ口ホルム、エタノール により洗浄した。その結果、 1H, 1H, 2H, 2H—ペルフルオデカンチオールで有機 化された Au、「Rf— Au」(試料 6)が得られた。得られた試料 6の耐熱性を上述した方 法に従って求めた。その結果、 1%質量減少温度は、 320°Cであった (表 1参照)。 実施例 7
[0093] 先ず、合成マイ力(コープケミカル製 ME— 100)を 3g量り取り、 80°Cの水 300mLと アセトン lOOmLとの混合溶媒に分散させた。次に、 CF CF CF CF CH CH P (C
3 2 2 2 2 2 4
H ) +Γを 3g量り取り 80°Cの水 10mLとアセトン 10mLとの混合溶媒に溶解させた後、
9 3
この溶液を上記のモンモリロナイト分散液中にカ卩えたところ、系内に沈殿物が生じた
。得られた沈殿物をろ過し、 80°Cの水で 3回洗浄した。その結果、 CF CF CF CF C
3 2 2 2
H CH P (C H )で有機化された合成マイ力、「CF CF CF CF CH CH P (C H )
2 2 4 9 3 3 2 2 2 2 2 4 9 3
-Micaj (試料 7)が得られた。得られた試料 7の耐熱性を上述した方法に従って求 めた。その結果、 1%質量減少温度は、 350°Cであった (表 1参照)。
(比較例 1)
先ず、 Na—モンモリロナイト(クニミネ工業製クニピア F)を 80g量り取り、 80°Cの水 5 , OOOmUこ分散させた。次に、 ICH CH CH OCH (CH ) CONHCH CH NH +
2 2 2 3 2 2 3
Cl_を 28. 5g量り取り 80°Cの水 2, OOOmLに溶解させた後、この溶液を上記のモン モリロナイト分散液中に加えたところ、系内に沈殿物が生じた。得られた沈殿物をろ 過し、 80°Cの水で 3回洗浄した。その結果、 ICH CH CH OCH (CH ) CONHCH CH NHで有機化されたモンモリロナイト、「ICH CH CH OCH (CH ) CONHC
2 2 2 2 2 2 3
H CH NH」(比較試料 1)が得られた。得られた比較試料 1の耐熱性を上述した方
2 2 2
法に従って求めた。その結果、 1%質量減少温度は、 250°Cであった (表 1参照)。 (比較例 2)
先ず、 Na—モンモリロナイト(クニミネ工業製クニピア F)を 80g量り取り、 80°Cの水 5 , OOOmLに分散させた。次に、 CH CH CH CH CH CH P (C H ) +1—を 28. 5g
3 2 2 2 2 2 4 9 3
量り取り 80°Cの水 2, OOOmLに溶解させた後、この溶液を上記のモンモリロナイト分 散液中に加えたところ、系内に沈殿物が生じた。得られた沈殿物をろ過し、 80°Cの 水で 3回洗浄した。その結果、 CH CH CH CH CH CH P (C H ) で有機化され
3 2 2 2 2 2 4 9 3
たモンモリロナイト、「CH CH CH CH CH CH P (C H ) — MMT」(比較試料 2)
3 2 2 2 2 2 4 9 3
が得られた。
(比較例 3)
先ず、 Na—モンモリロナイト(クニミネ工業製クニピア F)を 80g量り取り、 80°Cの水 5 , OOOmLに分散させた。次に、化学式(23)に示される CH CH CH CH CH CH
3 2 2 2 2 2
— Imi+— I—を 28. 5g量り取り 80°Cの水 2, OOOmLに溶解させた後、この溶液を上 記のモンモリロナイト分散液中に加えたところ、系内に沈殿物が生じた。得られた沈 殿物をろ過し、 80°Cの水で 3回洗浄した。その結果、 CH CH CH CH CH CH -
3 2 2 2 2 2
Imiで有機化されたモンモリロナイト、「CH CH CH CH CH CH— Imi— MMT」 (
3 2 2 2 2 2
比較試料 3)が得られた。得られた比較試料 3の耐熱性を上述した方法に従って求め た。その結果、 1%質量減少温度は、 300°Cであった (表 1参照)。
[0094] [化 13]
Figure imgf000038_0001
[0095] (比較例 4)
合成石英製の反応容器に、ァゾオクタン 4mgをへキサン 4mlに溶解させ、カーボン ナノチューブ(CNI製 HiPco単層カーボンナノチューブ)を入れた。アルゴン雰囲気 下で攪拌しつつ低圧水銀灯を室温で 8時間照射した。その後、へキサン溶液を除去 し、カーボンナノチューブをへキサンで洗浄し、減圧下で乾燥を行った。その結果、 ォクチル基で有機化されたカーボンナノチューブ、「Rh— CNT」(比較試料 4)が得ら れた。なお、表面上にォクチル基が導入されていることは、上記反応後に元素分析 および IR測定を行うことにより確認された。得られた比較試料 4の耐熱性を上述した 方法に従って求めた。その結果、 1%質量減少温度は、 250°Cであった (表 1参照)。 (比較例 5)
先ず、ハイド口タルサイト(協和化学工業製 DHT— 4A)を 80g量り取り、 80°Cの水 5 , OOOmLに分散させた。次に、 CH (CH ) COO—NH +を 28. 5g量り取り 80。Cの
3 2 7 4
水 2, OOOmLに溶解させた後、この溶液を上記のハイド口タルサイト分散液中に加え たところ、系内に沈殿物が生じた。得られた沈殿物をろ過し、 80°Cの水で 3回洗浄し た。その結果、 CH (CH ) COO—NH +で有機化されたノ、イド口タルサイト、「Rh—
3 2 7 4
HTSJ (比較試料 5)が得られた。得られた比較試料 5の耐熱性を上述した方法に従 つて求めた。その結果、 1%質量減少温度は、 240°Cであった (表 1参照)。
(比較例 6)
エタノール 30mLに HAuCl 51mgとデカンチオール 300mgとをカ卩えた。次に、そ
4
の溶液に NaBH水溶液を滴下し、 3時間撹拌した。その後、その溶液をろ過し、ろ過
4
物を超音波洗浄機で水、クロ口ホルム、エタノールにより洗浄した。その結果、デカン チオールで有機化された Au、「Rh— Au」(比較試料 6)が得られた。得られた比較試 料 6の耐熱性を上述した方法に従って求めた。その結果、 1%質量減少温度は、 22 0°Cであった (表 1参照)。
(比較例 7)
先ず、合成マイ力(コープケミカル製 ME— 100)を 3g量り取り、 80°Cの水 300mLと アセトン lOOmLとの混合溶媒に分散させた。次に、 CH CH CH CH CH CH P (C
3 2 2 2 2 2 4
H ) +Γを 3g量り取り 80°Cの水 10mLとアセトン 10mLとの混合溶媒に溶解させた後、
9 3
この溶液を上記のモンモリロナイト分散液中にカ卩えたところ、系内に沈殿物が生じた
。得られた沈殿物をろ過し、 80°Cの水で 3回洗浄した。その結果、 CH CH CH CH
3 2 2 2
CH CH P (C H ) で有機化された合成マイ力、「CH CH CH CH CH CH P (C H
2 2 4 9 3 3 2 2 2 2 2 4
) -Micaj (比較試料 7)が得られた。得られた比較試料 7の耐熱性を上述した方法
9 3
に従って求めた。その結果、 1%質量減少温度は、 250°Cであった (表 1参照)。 [0096] 〔実施例及び比較例に係る表面改質ナノフィラーの耐熱性の比較〕 この評価の結果、比較試料 3よりも試料 3の方力 比較試料 4よりも試料 4の方が、比 較試料 5よりも試料 5の方が、比較試料 6よりも試料 6の方が、比較試料 7よりも試料 7 の方が耐熱性に優れることがゎカゝつた。また、試料 1と比較試料 1とは同等の耐熱性 を有することが明らかとなった。また、試料 2は十分に高い耐熱性を有することが明ら カゝとなった。
[0097] [表 1]
Figure imgf000040_0001
Figure imgf000040_0002
r :末- ¾リ定
〔高分子複合材料を用いてなる成形体に関する実施例〕
以下の実施例等において、成形体の物性は、以下の方法により評価した。
〔成形体の物性評価方法〕
(1)成形体中の表面改質ナノフィラーの分散状態の評価方法
成形体中の表面改質ナノフィラーの分散状態は、 X線回折装置 (XRD)及び透過 型電子顕微鏡 (TEM)を用いて評価した。透過型電子顕微鏡 (TEM)により成形体 中の表面改質ナノフィラーの分散状態を観察するにあたっては、成形体からマイクロ トームで超薄切片を切り出し、この超薄切片を日本電子衡 eol— 200CXにセットし た。
(2)成形体の機械的特性の評価方法
成形体から ASTM D 4895— 94に記載のミクロダンベルを打ち抜き、引張試験 片とした。引張試験は (株)島津製作所社製オートグラフ AG— 300kNIを用いて、引 張速度 50mmZ分で行い、強度、弾性率、及び伸びを求めた。
[0099] (3)成形体の燃料透過遮断性の評価方法
先ず、内径 40mm、高さ 20mmのツバ付ステンレス製容器に燃料(CE10 (トルエン Zイソオクタン Zエタノール =45Z45Z10 (容量0 /0) ) )を注 、だ後(このとき、燃料 の重量を計測しておく)、そのステンレス製容器の口およびツバを厚さ 0. 5mmのフィ ルム状サンプルで覆う。次に、その容器のツバにかかっているフィルム状サンプルの 上に、適正な径を有するフッ素ゴム製 O—リングを置く。そして、その O—リングの上 に蓋をかぶせた後、容器と蓋とをネジにより一体化させて透過セルを作製する。その 後、この透過セルを、上下逆さにしてフィルム状サンプルと燃料とが接触する状態に し、 40°Cの恒温槽に放置する。そして、所定時間毎にステンレス容器に残留する燃 料の重量を計測し、燃料透過係数(= (時間当たりの重量減少 Xフィルムの平均厚 み) Z (透過面積))を求める。そして、燃料透過係数が一定となったところで、測定を 終了する。本実施例では、このように定常状態に至ったときの燃料透過係数を、その フィルム状サンプルの燃料透過係数とした。
(4)導電性の測定方法 液体窒素中で引張試験片試料を凍結割断して、 12. 7m m X l . 9mm Xおよそ 20mmの試料を作製した。次いで、その割断面に導電性プラ イマ一を塗布し、試料の一方の端力もその反対の端までの抵抗を測定した。そして、 それら 2つの塗布面の間の距離 (原則として 20mmとされていたが各々の試料につ V、て測定した)をその塗布面の面積およびその抵抗で割ることによってコア導電率を 算出した。
[0100] 〔含フッ素重合体の合成例〕
(合成例 1)
3000mL内容積耐圧反応槽に純水 1500mL、パーフルォロオクタン酸アンモ-ゥ ム 7. 5gを入れ、内部空間を VdFZHFP (45Z55モル比)混合ガスで充填置換後、 14kgZcm2Gに加圧し I (CF CF ) I 0. 3mL (25°C)を注入し、撹拌下に 80°Cとし
2 2 2
て APSO. 2%水溶液 10mLを圧入した。約 0. 5時間の誘導時間後、圧力降下が起 こるので、 15kgZcm2Gまで低下したとき VdFZHFP (78/22モル比)混合ガスで 1 5kgZcm2Gに再加圧する。以降、この方法で 13〜1515kgZcm2Gの圧力範囲で 重合を継続した。 20時間後急速降温、放圧して重合を停止した。生成ディスパージョ ンの固形物濃度は約 25%であり、 7%カリミヨウバン水溶液で凝析後、水洗、乾燥し て得られるゴムのヨウ素含有量は 0. 13%であった。このようにして得られた重合体を 以下、「重合体 A」と称する。
[0101] (合成例 2)
オートクレープに蒸留水 400Lを投入し充分に窒素置換を行った後、 1 フルォロ - 1, 1ージクロ口エタン 75kg、へキサフルォロプロピレン 190kg、及びパーフルォロ (1, 1, 5 トリハイド口 1—ペンテン) 1. 5kgを投入し、系内を 35°Cに保ち、攪拌速 度 200rpmで内容物を攪拌した。その後、テトラフルォロエチレンを 0. 7MPaまで圧 入し、更に引き続いてエチレンを lOkgZcm2まで圧入し、その後にジ— n—プロピル パーォキシジカーボネート 2. 6kgを投入して重合を開始した。重合の進行と共に系 内圧力が低下するので、テトラフルォロエチレン Zエチレン Zへキサフルォロプロピ レン =40. 5/42. 5/17. 0モル0 /0の混合ガスを連続して供給し、系内圧力を 1. 0 MPaに保って 30時間攪拌を継続した。そして、放圧して大気圧に戻した後、反応生 成物を水洗、乾燥して 178kgの粉末を得た。次に、得られた粉末を単軸押出機(田 辺プラクティス機械社製、 VS50- 24)を用いてシリンダ温度 320°Cで押出してペレ ットを得た。このようにして得られた重合体を以下、「重合体 B」と称する。
実施例 8
[0102] 重合体 A100重量部と ICH CF CF OCF (CF ) CONHCH CH NH—MMT(
2 2 2 3 2 2 2 試料 1) 1重量部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。 なお、このときの混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得られた 高分子複合材料 100重量部に対して、架橋剤(日本化成製、商品名 TAIC)を 4重量 部、パーオキサイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、カーボン( CANCARB製)を 20重量部添カ卩し、ロールを用いて混合した後、熱プレスによりプ レスしながら 160°Cで 10分間架橋を行なって、成形体 (試料 8)を得た。得られた成 形体の諸物性を上述した方法に従って求めた。結果を表 2に示す。
実施例 9
[0103] 重合体 A100重量部と CF CF CF CF CH CH P (C H ) MMT (試料 2) 1重
3 2 2 2 2 2 4 9 3
量部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお、このと きの混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得られた高分子複合 材料 100重量部に対して、架橋剤(日本化成製、商品名 TAIC)を 4重量部、バーオ キサイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、カーボン (CANCA RB製)を 20重量部添加し、ロールを用いて混合した後、熱プレスによりプレスしなが ら 160°Cで 10分間架橋を行なって、成形体 (試料 9)を得た。得られた成形体の諸物 性を上述した方法に従って求めた。結果を表 2に示す。
実施例 10
[0104] 重合体 A100重量部と CF CF CF CF CH CH Imi— MMT (試料 3) 1重量部
3 2 2 2 2 2
とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお、このときの 混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得られた高分子複合材 料 100重量部に対して、架橋剤(日本化成製、商品名 TAIC)を 4重量部、パーォキ サイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、カーボン (CANCARB 製)を 20重量部添加し、ロールを用いて混合した後、熱プレスによりプレスしながら 1 60°Cで 10分間架橋を行なって、成形体 (試料 10)を得た。得られた成形体の諸物性 を上述した方法に従って求めた。結果を表 2に示す。
実施例 11
[0105] 重合体 A100重量部と Rf— CNT (試料 4) 1重量部とを二軸押出機を用いて溶融 混練し、高分子複合材料を調製した。なお、このときの混練温度は 150°Cとし、軸回 転数は 50rpmとした。そして、得られた高分子複合材料 100重量部に対して、架橋 剤(日本ィ匕成製、商品名 TAIC)を 4重量部、パーオキサイド(日本油脂製、商品名パ 一へキサ 25B)を 1. 5重量部、カーボン(CANCARB製)を 20重量部添カ卩し、ロー ルを用いて混合した後、熱プレスによりプレスしながら 160°Cで 10分間架橋を行なつ て、成形体 (試料 11)を得た。得られた成形体の諸物性を上述した方法に従って求 めた。結果を表 2に示す。
実施例 12
[0106] 重合体 A100重量部と Rf— HTS (試料 5) 1重量部とを二軸押出機を用いて溶融混 練し、高分子複合材料を調製した。なお、このときの混練温度は 150°Cとし、軸回転 数は 50rpmとした。そして、得られた高分子複合材料 100重量部に対して、架橋剤( 日本化成製、商品名 TAIC)を 4重量部、パーオキサイド(日本油脂製、商品名パー へキサ 25B)を 1. 5重量部、カーボン(CANCARB製)を 20重量部添カ卩し、ロールを 用いて混合した後、熱プレスによりプレスしながら 160°Cで 10分間架橋を行なって、 成形体 (試料 12)を得た。得られた成形体の諸物性を上述した方法に従って求めた 。結果を表 2に示す。
実施例 13
[0107] 重合体 A100重量部と Rf— Au (試料 6) 1重量部とを二軸押出機を用いて溶融混 練し、高分子複合材料を調製した。なお、このときの混練温度は 150°Cとし、軸回転 数は 50rpmとした。そして、得られた高分子複合材料 100重量部に対して、架橋剤( 日本化成製、商品名 TAIC)を 4重量部、パーオキサイド(日本油脂製、商品名パー へキサ 25B)を 1. 5重量部、カーボン(CANCARB製)を 20重量部添カ卩し、ロールを 用いて混合した後、熱プレスによりプレスしながら 160°Cで 10分間架橋を行なって、 成形体 (試料 13)を得た。得られた成形体の諸物性を上述した方法に従って求めた 。結果を表 2に示す。
実施例 14
[0108] 重合体 A100重量部と CF CF CF CF CH CH P (C H ) -Mica (試料 7) 3重量
3 2 2 2 2 2 4 9 3
部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお、このとき の混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得られた高分子複合 材料 100重量部に対して、架橋剤(日本化成製、商品名 TAIC)を 4重量部、バーオ キサイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、カーボン (CANCA RB製)を 20重量部添加し、ロールを用いて混合した後、熱プレスによりプレスしなが ら 160°Cで 10分間架橋を行なって、成形体 (試料 14)を得た。得られた成形体の諸 物性を上述した方法に従って求めた。結果を表 2に示す。 実施例 15
[0109] 重合体 AIOO重量部と CF CF CF CF CH CH P (C H ) MMT (試料 2) 3重量
3 2 2 2 2 2 4 9 3
部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお、このとき の混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得られた高分子複合 材料 100重量部に対して、架橋剤(日本化成製、商品名 TAIC)を 4重量部、バーオ キサイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、カーボン (CANCA RB製)を 20重量部添加し、ロールを用いて混合した後、熱プレスによりプレスしなが ら 160°Cで 10分間架橋を行なって、成形体 (試料 15)を得た。得られた成形体の諸 物性を上述した方法に従って求めた。結果を表 2に示す。
実施例 16
[0110] 重合体 B 100重量部と CF CF CF CF CH CH P (C H ) MMT (試料 2) 1重
3 2 2 2 2 2 4 9 3
量部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお、このと きの混練温度は 210°Cとし、軸回転数は 80rpmとした。そして、得られた高分子複合 材料を熱プレスによりプレスしながら 190°Cで成形体 (試料 16)を得た。得られた成形 体の諸物性を上述した方法に従って求めた。結果を表 2に示す。
(比較例 8)
重合体 A100重量部と ICH CH CH OCH (CH ) CONHCH CH NH—MMT
2 2 2 3 2 2 2
(比較試料 1) 1重量部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製 した。なお、このときの混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得 られた高分子複合材料 100重量部に対して、架橋剤(日本化成製、商品名 TAIC) を 1重量部、パーオキサイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、 カーボン(CANCARB製)を 20重量部添カ卩し、ロールを用いて混合した後、熱プレ スによりプレスしながら 160°Cで 10分間架橋を行なって、成形体 (比較試料 8)を得た 。得られた成形体の諸物性を上述した方法に従って求めた。結果を表 2に示す。 (比較例 9)
重合体 A100重量部と CH CH CH CH CH CH P (C H ) MMT (比較試料
3 2 2 2 2 2 4 9 3
2) 1重量部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお 、このときの混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得られた高分 子複合材料 100重量部に対して、架橋剤(日本化成製、商品名 TAIC)を 4重量部、 パーオキサイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、カーボン (CA NCARB製)を 20重量部添カ卩し、ロールを用いて混合した後、熱プレスによりプレス しながら 160°Cで 10分間架橋を行なって、成形体 (比較試料 9)を得た。
(比較例 10)
重合体 A100重量部と CH CH CH CH CH CH Imi— MMT (比較試料 3) 1
3 2 2 2 2 2
重量部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお、こ のときの混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得られた高分子 複合材料 100重量部に対して、架橘剤(日本化成製、商品名 TAIC)を 4重量部、パ 一オキサイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、カーボン (CAN CARB製)を 20重量部添加し、ロールを用いて混合した後、熱プレスによりプレスし ながら 160°Cで 10分間架橋を行なって、成形体 (比較試料 10)を得た。
(比較例 11)
重合体 A100重量部と Rh— CNT (比較試料 4) 1重量部とを二軸押出機を用いて 溶融混練し、高分子複合材料を調製した。なお、このときの混練温度は 150°Cとし、 軸回転数は 50rpmとした。そして、得られた高分子複合材料 100重量部に対して、 架橋剤 (日本化成製、商品名 TAIC)を 4重量部、パーオキサイド(日本油脂製、商品 名パーへキサ 25B)を 1. 5重量部、カーボン(CANCARB製)を 20重量部添カロし、 ロールを用いて混合した後、熱プレスによりプレスしながら 160°Cで 10分間架橋を行 なって、成形体 (比較試料 11)を得た。得られた成形体の諸物性を上述した方法に 従って求めた。結果を表 2に示す。
(比較例 12)
重合体 A100重量部と Rh—HTS (比較試料 5) 1重量部とを二軸押出機を用いて 溶融混練し、高分子複合材料を調製した。なお、このときの混練温度は 150°Cとし、 軸回転数は 50rpmとした。そして、得られた高分子複合材料 100重量部に対して、 架橋剤 (日本化成製、商品名 TAIC)を 4重量部、パーオキサイド(日本油脂製、商品 名パーへキサ 25B)を 1. 5重量部、カーボン(CANCARB製)を 20重量部添カロし、 ロールを用いて混合した後、熱プレスによりプレスしながら 160°Cで 10分間架橋を行 なって、成形体 (比較試料 12)を得た。得られた成形体の諸物性を上述した方法に 従って求めた。結果を表 2に示す。
(比較例 13)
重合体 A100重量部と Rh— Au (比較試料 6) 1重量部とを二軸押出機を用いて溶 融混練し、高分子複合材料を調製した。なお、このときの混練温度は 150°Cとし、軸 回転数は 50rpmとした。そして、得られた高分子複合材料 100重量部に対して、架 橋剤 (日本化成製、商品名 TAIC)を 4重量部、パーオキサイド(日本油脂製、商品名 パーへキサ 25B)を 1. 5重量部、カーボン(CANCARB製)を 20重量部添カ卩し、口 ールを用いて混合した後、熱プレスによりプレスしながら 160°Cで 10分間架橋を行な つて、成形体 (比較試料 13)を得た。得られた成形体の諸物性を上述した方法に従 つて求めた。結果を表 2に示す。
(比較例 14)
重合体 A100重量部と CH CH CH CH CH CH P (C H ) Mica (比較試料 7)
3 2 2 2 2 2 4 9 3
3重量部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお、こ のときの混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得られた高分子 複合材料 100重量部に対して、架橋剤(日本化成製、商品名 TAIC)を 4重量部、パ 一オキサイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、カーボン (CAN CARB製)を 20重量部添加し、ロールを用いて混合した後、熱プレスによりプレスし ながら 160°Cで 10分間架橋を行なって、成形体 (比較試料 14)を得た。得られた成 形体の諸物性を上述した方法に従って求めた。結果を表 2に示す。
(比較例 15)
重合体 A100重量部と CH CH CH CH CH CH P (C H ) —MMT (比較試料 2
3 2 2 2 2 2 4 9 3
) 3重量部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお、 このときの混練温度は 150°Cとし、軸回転数は 50rpmとした。そして、得られた高分 子複合材料 100重量部に対して、架橋剤(日本化成製、商品名 TAIC)を 4重量部、 パーオキサイド(日本油脂製、商品名パーへキサ 25B)を 1. 5重量部、カーボン (CA NCARB製)を 20重量部添カ卩し、ロールを用いて混合した後、熱プレスによりプレス しながら 160°Cで 10分間架橋を行なって、成形体 (比較試料 15)を得た。得られた成 形体の諸物性を上述した方法に従って求めた。結果を表 2に示す。
(比較例 16)
重合体 B100重量部と CH CH CH CH CH CH P (C H ) MMT (比較試料
3 2 2 2 2 2 4 9 3
2) 1重量部とを二軸押出機を用いて溶融混練し、高分子複合材料を調製した。なお 、このときの混練温度は 210°Cとし、軸回転数は 80rpmとした。そして、得られた高分 子複合材料を熱プレスによりプレスしながら 190°Cで成形体 (比較試料 16)を得た。 得られた成形体の諸物性を上述した方法に従って求めた。結果を表 2に示す。
[0111] 〔実施例及び比較例に係る成形体の諸物性の評価〕
成形体中の表面改質ナノフィラーの分散状態の評価
以上の結果、試料 8〜15のいずれについても、表面改質ナノフィラーが含フッ素重 合体に対しナノレベルで分散していることが明らかになった。また、力学特性は試料 8 〜 15の方が比較試料 8〜 15より優れていることが明らかになった。また、透過係数は 試料 8〜 15の方が比較試料 8〜 15より低ぐ試料 8〜 15の方が比較試料 8〜 15より も燃料透過遮断性に優れることが明らかになった。また、比較試料 11よりも試料 11の 方力 比較試料 13よりも試料 13の方が導電性に優れることが明ら力となった。
以上の結果を考察すると、本実施例に係る高分子複合材料では、表面改質ナノフ イラ一が含フッ素重合体中にお!、て含フッ素重合体を構成する分子鎖を拘束して 、 るものと考えられる。これは、主に、表面改質ナノフィラーの極性が高いこと、及び含 フッ素重合体が電荷の偏りを有していることに起因しているものと思われる。つまり、 含フッ素重合体が表面改質ナノフィラーの層状構造を形成する層の間にインター力 レートし、表面改質ナノフィラーが含フッ素重合体とハイブリッドィ匕されて 、るためであ ると考えられる。したがって、薬品や燃料が高分子複合材料に接触したとしても、薬 品や燃料はこれら表面改質ナノフィラーによって阻まれるため、高分子複合材料では 薬品による侵食や燃料の透過が生じ難いものと推察される。
[0112] [表 2]
Figure imgf000049_0001
の r¾l!J|
© : ¾めて!:' i好、〇;上¾好、 Δ :やや劣る, X; 産業上の利用可能性
本発明に係る有機化粘土鉱物表面改質ナノフイラ一は、ポリマーに対して優れた耐 熱性、物質透過遮断性、難燃性、導電性等を付与することができ、燃料チューブの 他、種々の用途に用いられる高分子複合材料を提供することができる。また、本発明 に係る高分子複合材料は、耐熱性、機械的物性、物質透過遮断性、難燃性、導電 性等に優れており、燃料チューブの他、種々の用途に利用することができる。

Claims

請求の範囲
[1] ナノフィラーと、
前記ナノフィラーの表面に結合するフッ素化合物と、
ポリマーと、
を含有する、高分子複合材料。
[2] 前記ナノフイラ一は、ナノカーボン材、金属へテロ原子化合物、および金属ナノ粒 子より成る群力 選択される少なくとも一つである、
請求項 1に記載の高分子複合材料。
[3] 前記金属へテロ原子化合物は、粘土鉱物または複水酸化物である、
請求項 2に記載の高分子複合材料。
[4] 前記ナノカーボン材は、カーボンナノチューブである、
請求項 2に記載の高分子複合材料。
[5] 前記フッ素化合物は、ヘテロ原子を含んでいてもよい炭素数 1〜50の含フッ素アル キル基を有する有機イオンである、
請求項 1から 4に記載の高分子複合材料。
[6] 前記有機イオンは、下記一般式(1);
[化 1]
L1 ®—— R1 S (1 )
(式中、: L1は、 Pゝ Nゝ Sゝ Siゝ 0、 Seゝ Teゝ As, Sbゝ Biゝ Fゝ Cl、 Brゝ又は Iである。 sは 、 2、 3、 4、又は 5であり、元素 L1の価数によって決まる値である。 R1は、同一若しくは 異なり、「水素原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていて もよ 、アルキル基」、及び「ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素ァ ルキル基」のいずれかであり、互いに結合していてもよいが、少なくとも 1つの R1は「 ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表さ れる構造、又は、下記一般式 (2);
[化 2]
Figure imgf000051_0001
(式中、: L2は、 P、 N、 S、 Siゝ 0、 Se、 Te、 As, Sb、 Biゝ F、 Cl、 Br、又は Iである。 R2 は、「ヘテロ原子および不飽和結合を含んでもよく一部がフッ素原子に置換されてい てもよ!/、アルキレン基」または「不飽和結合を含んでもょ 、炭素以外の原子で構成さ れる鎖状基」である。 tは、 R2の鎖状部分を構成する原子の数以下の数値である。 uは 、 L2の価数によって決まる 0〜3の整数である。 R3、 R4は、同一若しくは異なり、「水素 原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていてもよいアルキ ル基」、及び「ヘテロ原子を含んでいてもよい炭素数 1〜50の含フッ素アルキル基」 のいずれかである力 R3及び R4のうち少なくとも 1つの置換基は「ヘテロ原子を含ん で!、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表される構造を有する、 請求項 5に記載の高分子複合材料。
[7] 前記有機イオンは、有機アンモ-ゥムイオン、有機ホスホ-ゥムイオン、及び含窒素 複素環ォ -ゥムイオン力 成る群より選択される少なくとも 1種の有機イオンである、 請求項 5または 6に記載の高分子複合材料。
[8] 前記含フッ素アルキル基は、炭素数力 〜50である、
請求項 5から 7のいずれかに記載の高分子複合材料。
[9] 前記ポリマーは、含フッ素重合体である、
請求項 1から 8のいずれかに記載の高分子複合材料。
[10] 請求項 1から 9のいずれかに記載の高分子複合材料力 なる成形品。
[11] 複水酸化物と、
前記複水酸化物の表面に結合するフッ素化合物と、
を含有する、表面改質ナノフィラー。
[12] 粘土鉱物と、
前記粘土鉱物の表面に結合するフッ素化合物 (有機アンモニゥムイオンを除く)と、 を含有する、表面改質ナノフィラー。
[13] 前記フッ素化合物は、ヘテロ原子を含んでいてもよい炭素数 1〜50の含フッ素アル キル基を有する有機イオンである、
請求項 11または 12に記載の表面改質ナノフィラー。
[14] 前記有機イオンは、下記一般式(1);
[化 3]
L1 ©—— R s (1 )
(式中、: L1は、 Pゝ Nゝ Sゝ Siゝ 0、 Seゝ Teゝ As, Sbゝ Biゝ Fゝ Cl、 Brゝ又は Iである。 sは 、 2、 3、 4、又は 5であり、元素 L1の価数によって決まる値である。 R1は、同一若しくは 異なり、「水素原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていて もよ 、アルキル基」、及び「ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素ァ ルキル基」のいずれかであり、互いに結合していてもよいが、少なくとも 1つの R1は「 ヘテロ原子を含んで 、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表さ れる構造、又は、下記一般式 (2);
[化 4]
Figure imgf000052_0001
(式中、: ま、 P、 N、 S、 Siゝ 0、 Se、 Te、 As, Sb、 Biゝ F、 Cl、 Br、又は Iである。 R2 は、「ヘテロ原子および不飽和結合を含んでもよく一部がフッ素原子に置換されてい てもよ!/、アルキレン基」または「不飽和結合を含んでもょ 、炭素以外の原子で構成さ れる鎖状基」である。 tは、 R2の鎖状部分を構成する原子の数以下の数値である。 uは 、 L2の価数によって決まる 0〜3の整数である。 R3、 R4は、同一若しくは異なり、「水素 原子」、「ヘテロ原子を含んでもよく一部がフッ素原子に置換されていてもよいアルキ ル基」、及び「ヘテロ原子を含んでいてもよい炭素数 1〜50の含フッ素アルキル基」 のいずれかである力 R3及び R4のうち少なくとも 1つの置換基は「ヘテロ原子を含ん で!、てもよ 、炭素数 1〜50の含フッ素アルキル基」である)で表される構造を有する、 請求項 13に記載の表面改質ナノフィラー。
[15] 前記有機イオンは、有機ホスホ-ゥムイオン及び含窒素複素環ォ -ゥムイオンの少 なくとも一方である、
請求項 13または 14に記載の表面改質ナノフィラー。
[16] 前記含フッ素アルキル基は、炭素数力 〜 50である、
請求項 13から 15のいずれかに記載の表面改質ナノフィラー。
PCT/JP2006/312491 2005-06-24 2006-06-22 表面改質ナノフィラー及び高分子複合材料 WO2006137475A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06767149.5A EP1908801A4 (en) 2005-06-24 2006-06-22 SURFACE TREATED NANO FILLER AND POLYMER COMPOSITE
JP2007522357A JP5228486B2 (ja) 2005-06-24 2006-06-22 高分子複合材料
US11/993,446 US7989535B2 (en) 2005-06-24 2006-06-22 Surface-modified nanofiller and polymer composite material

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005185246 2005-06-24
JP2005-185246 2005-06-24
JP2005-376093 2005-12-27
JP2005376093 2005-12-27

Publications (1)

Publication Number Publication Date
WO2006137475A1 true WO2006137475A1 (ja) 2006-12-28

Family

ID=37570502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/312491 WO2006137475A1 (ja) 2005-06-24 2006-06-22 表面改質ナノフィラー及び高分子複合材料

Country Status (4)

Country Link
US (1) US7989535B2 (ja)
EP (1) EP1908801A4 (ja)
JP (2) JP5228486B2 (ja)
WO (1) WO2006137475A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151272A1 (en) * 2007-06-05 2008-12-11 Lord Corporation High temperature rubber to metal bonded devices and methods of making high temperature engine mounts
JP2009052028A (ja) * 2007-08-02 2009-03-12 Daikin Ind Ltd 樹脂組成物
US20110033647A1 (en) * 2008-04-04 2011-02-10 The Research Foundation Of State University Of New York Novel ionic liquids, functionalized particulates, and fluoropolymer composites
CN101397390B (zh) * 2007-09-26 2011-06-22 中国船舶重工集团公司第七二五研究所 一种可改性的氟橡胶制备方法
KR20130139545A (ko) * 2012-06-13 2013-12-23 주식회사 엘지화학 이모골라이트를 포함하는 전도성 재료 및 상기 전도성 재료를 포함하는 전자 소자

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5228486B2 (ja) * 2005-06-24 2013-07-03 ダイキン工業株式会社 高分子複合材料
US8071875B2 (en) * 2009-09-15 2011-12-06 Xiao-Chang Charles Li Manufacture of thin solar cells based on ink printing technology
US8403332B2 (en) * 2009-12-28 2013-03-26 Nissan Kogyo Co., Ltd Seal member
EP2619254B1 (en) * 2010-09-20 2018-08-22 3M Innovative Properties Company Nanoparticle processing aid for extrusion and injection molding
DE102011006731A1 (de) * 2011-04-04 2012-10-04 Endress + Hauser Flowtec Ag Verfahren zur Herstellung eines Kunststoffs für eine Auskleidung eines Messrohrs eines Durchflussmessgeräts
TWI450759B (zh) * 2012-12-07 2014-09-01 Ind Tech Res Inst 有機分散液及其製法及應用其之塗層組成物
US8604115B1 (en) 2013-03-07 2013-12-10 King Fahd University Of Petroleum And Minerals Ethylene/propylene copolymer nanocomposite
US10329435B2 (en) 2014-07-01 2019-06-25 University Of Utah Research Foundation Electrothermal coating with nanostructures mixture and method for making the same
WO2016071047A1 (en) * 2014-11-03 2016-05-12 Arcelik Anonim Sirketi A household appliance comprising a printed cicuit board
TWI552412B (zh) * 2015-12-28 2016-10-01 財團法人工業技術研究院 有機發光裝置
EP3650497B1 (en) * 2017-07-05 2022-05-04 NOK Corporation Fluororubber composition, production method therefor, and molded crosslinked fluororubber article
BR112021021102A2 (pt) 2019-04-30 2021-12-14 Saint Gobain Performance Plastics Corp Tubulação de bomba peristáltica dissipativa

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146081A (ja) * 2003-11-13 2005-06-09 Junkosha Co Ltd フッ素樹脂組成物
JP2005200272A (ja) * 2004-01-16 2005-07-28 National Institute Of Advanced Industrial & Technology カーボンナノチューブおよびその製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0721078B2 (ja) * 1987-02-26 1995-03-08 株式会社トクヤマ 微多孔性フイルムの製造方法
JP3567494B2 (ja) * 1993-08-27 2004-09-22 旭硝子株式会社 含フッ素溶媒に分散されてなるオルガノゾルからなるコーティング剤
US5726247A (en) * 1996-06-14 1998-03-10 E. I. Du Pont De Nemours And Company Fluoropolymer nanocomposites
JP3324399B2 (ja) 1995-07-14 2002-09-17 株式会社豊田中央研究所 粘土複合ゴム材料及びその製造方法
US5962553A (en) 1996-09-03 1999-10-05 Raychem Corporation Organoclay-polymer composites
JP3377159B2 (ja) 1996-09-04 2003-02-17 株式会社豊田中央研究所 粘土複合ゴム材料の製造方法
US5840796A (en) 1997-05-09 1998-11-24 Xerox Corporation Polymer nanocomposites
JP3284552B2 (ja) 1998-03-30 2002-05-20 株式会社豊田中央研究所 高分子複合材料及びその製造方法
JP2000095517A (ja) * 1998-09-22 2000-04-04 Toray Ind Inc 無機微粒子の製造方法
JP2000204214A (ja) 1999-01-13 2000-07-25 Toyota Central Res & Dev Lab Inc 高分子複合材料
US20040192822A1 (en) * 1999-11-11 2004-09-30 Junji Shirai Thin injection molded articles
US6414069B1 (en) 2000-03-03 2002-07-02 Board Of Trustees Of Michigan University Hybrid mixed ion clay structures for polymer nanocomposite formation
CN1217909C (zh) * 2000-07-27 2005-09-07 株式会社杰姆科 氟化合物的处理方法
US7071250B2 (en) * 2001-01-22 2006-07-04 Kuraray Co., Ltd. Method for producing ethylene-vinyl alcohol copolymer resin composition
WO2003007314A1 (en) 2001-07-11 2003-01-23 Hyperion Catalysis International, Inc. Polyvinylidene fluoride composites and methods for preparing same
US6734229B2 (en) 2001-07-24 2004-05-11 James G. Parsons Composite polymer clay material and process for producing the same
EP1425352B1 (en) * 2001-09-11 2005-01-12 3M Innovative Properties Company Smudge resistant nanocomposite hardcoats and methods for making same
ITMI20021202A1 (it) 2002-06-04 2003-12-04 Ausimont Spa Composizioni di fluoropolimeri e particelle inorganiche nanometriche
CN1318455C (zh) 2003-06-05 2007-05-30 中国科学技术大学 聚合物/层状双氢氧化物插层纳米复合材料及其制备方法
EP1484357A1 (fr) * 2003-06-06 2004-12-08 Université de Liège Procédé de préparation de mousses de polyester biodégradables, mousses de polyester telles qu'ainsi obtenues et leur utilisation, et procédé de modification de nanocharges
TWI370154B (en) * 2003-10-31 2012-08-11 Junkosha Inc A fluoropolymer composition
US7006780B2 (en) * 2003-11-25 2006-02-28 Xerox Corporation Partially fluorinated polymer coated development electrodes
KR20070001237A (ko) * 2004-04-22 2007-01-03 제이에스알 가부시끼가이샤 저굴절률 코팅 조성물
US20060116464A1 (en) * 2004-12-01 2006-06-01 General Electric Company Nanocomposites comprising telechelic polyesters and organoclays
US8431641B2 (en) * 2004-12-01 2013-04-30 Sabic Innovative Plastics Ip B.V. Telechelic polyester/polycarbonate/organoclay nanocomposites, and related methods and articles
JP2006233095A (ja) * 2005-02-25 2006-09-07 Nippon Zeon Co Ltd 含フッ素重合体を含む層状結晶化合物およびその製造方法
US20060236941A1 (en) * 2005-04-20 2006-10-26 Applied Materials, Inc. Passive wafer support for particle free wafer acceleration
JP5228486B2 (ja) * 2005-06-24 2013-07-03 ダイキン工業株式会社 高分子複合材料

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146081A (ja) * 2003-11-13 2005-06-09 Junkosha Co Ltd フッ素樹脂組成物
JP2005200272A (ja) * 2004-01-16 2005-07-28 National Institute Of Advanced Industrial & Technology カーボンナノチューブおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1908801A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008151272A1 (en) * 2007-06-05 2008-12-11 Lord Corporation High temperature rubber to metal bonded devices and methods of making high temperature engine mounts
JP2009052028A (ja) * 2007-08-02 2009-03-12 Daikin Ind Ltd 樹脂組成物
CN101397390B (zh) * 2007-09-26 2011-06-22 中国船舶重工集团公司第七二五研究所 一种可改性的氟橡胶制备方法
US20110033647A1 (en) * 2008-04-04 2011-02-10 The Research Foundation Of State University Of New York Novel ionic liquids, functionalized particulates, and fluoropolymer composites
US8563657B2 (en) * 2008-04-04 2013-10-22 The Research Foundation Of State University Of New York Ionic liquids, functionalized particulates, and fluoropolymer composites
US9255195B2 (en) 2008-04-04 2016-02-09 The Research Foundation For The State University Of New York Ionic liquids, functionalized particulates, and fluoropolymer composites
KR20130139545A (ko) * 2012-06-13 2013-12-23 주식회사 엘지화학 이모골라이트를 포함하는 전도성 재료 및 상기 전도성 재료를 포함하는 전자 소자
KR101603371B1 (ko) 2012-06-13 2016-03-14 주식회사 엘지화학 이모골라이트를 포함하는 전도성 재료 및 상기 전도성 재료를 포함하는 전자 소자

Also Published As

Publication number Publication date
US20100160503A1 (en) 2010-06-24
EP1908801A1 (en) 2008-04-09
JP5387748B2 (ja) 2014-01-15
JPWO2006137475A1 (ja) 2009-01-22
EP1908801A4 (en) 2014-10-22
JP5228486B2 (ja) 2013-07-03
JP2013032281A (ja) 2013-02-14
US7989535B2 (en) 2011-08-02

Similar Documents

Publication Publication Date Title
JP5228486B2 (ja) 高分子複合材料
Gong et al. MXene as emerging nanofillers for high-performance polymer composites: A review
Li et al. Nanostructured ferroelectric‐polymer composites for capacitive energy storage
Wu et al. Largely enhanced energy storage density of poly (vinylidene fluoride) nanocomposites based on surface hydroxylation of boron nitride nanosheets
Saleh et al. Recent trends in functionalized nanoparticles loaded polymeric composites: an energy application
Andritsch Epoxy based nanodielectrics for high voltage DC-applications: synthesis, dielectric properties and space charge dynamics
JP7180738B2 (ja) 含フッ素共重合体組成物、その製造方法、および成形体
Zhang et al. Enhanced thermal conductivity of cellulose nanofibril/aluminum nitride hybrid films by surface modification of aluminum nitride
Bele et al. Ceramic nanotubes-based elastomer composites for applications in electromechanical transducers
Chamakh et al. Vapor sensing performances of PVDF nanocomposites containing titanium dioxide nanotubes decorated multi-walled carbon nanotubes
JP5329921B2 (ja) ポリマー組成物及び該ポリマー組成物を含むノイズ抑制シート
Ghamsarizade et al. A review on recent advances in 2D-transition metal carbonitride-MXenes nano-sheets/polymer composites' electromagnetic shields, mechanical and thermal properties
Ghosh et al. Improved rheological, barrier, antibacterial, and electromagnetic interference shielding properties of graphene and graphene derivatives based linear low density polyethylene nanocomposites
CA2453424C (en) Polyvinylidene fluoride composites and methods for preparing same
Wang et al. A bio-inspired MXene/quaternary chitosan membrane with a “brick-and-mortar” structure towards high-performance photothermal conversion
CN101203572A (zh) 表面改性纳米填料和高分子复合材料
Jasna et al. Novel nanocomposites based on chlorinated styrene butadiene rubber and manganous tungstate: focus on curing, mechanical, electrical and solvent transport properties
WO2008042395A1 (en) Fluoropolymer blends with inorganic layered compounds
Gopika et al. Impact of surface-modified molybdenum disulphide on crystallization, thermal and mechanical properties of polyvinylidene fluoride
KR20210029333A (ko) 전기전도성을 갖는 ptfe-cnt 복합소재
Aguila-Toledo et al. Fluorosilicone composites with functionalized graphene oxide for advanced applications
Yan et al. Flexible and hydrophobic polyimide/MXene-POSS nanocomposite films for electromagnetic interference shielding
Xu et al. Synthesis of Organic Modified SiC w/PVDF Composite Membrane and Its Dielectric Properties under Low Temperature
Aparna et al. Surface-functionalized nanofillers-based fluoropolymer nanocomposites: synthesis, properties, and applications
Mirzaliyev et al. Fluoropolymer nanocomposites for electromagnetic interference shielding application

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680022697.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007522357

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11993446

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006767149

Country of ref document: EP