WO2006137145A1 - ポリエステルの製造方法およびこれを用いて製造されたポリエステル並びにポリエステル成形体 - Google Patents

ポリエステルの製造方法およびこれを用いて製造されたポリエステル並びにポリエステル成形体 Download PDF

Info

Publication number
WO2006137145A1
WO2006137145A1 PCT/JP2005/011591 JP2005011591W WO2006137145A1 WO 2006137145 A1 WO2006137145 A1 WO 2006137145A1 JP 2005011591 W JP2005011591 W JP 2005011591W WO 2006137145 A1 WO2006137145 A1 WO 2006137145A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
acid
aluminum
aluminum compound
compound
Prior art date
Application number
PCT/JP2005/011591
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Kageyama
Tooru Kitagawa
Kenichi Funaki
Masaki Fuchikami
Kazuo Katayose
Takahiro Nakajima
Toshiyuki Tsuchiya
Satoru Nakagawa
Fumikazu Yoshida
Haruhiko Kohyama
Naoki Watanabe
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to US11/795,556 priority Critical patent/US7868126B2/en
Priority to EP05753399A priority patent/EP1842868B1/en
Priority to KR1020077029260A priority patent/KR101018219B1/ko
Priority to AT05753399T priority patent/ATE487752T1/de
Priority to CN2005800502613A priority patent/CN101208371B/zh
Priority to PCT/JP2005/011591 priority patent/WO2006137145A1/ja
Priority to DE200560024716 priority patent/DE602005024716D1/de
Publication of WO2006137145A1 publication Critical patent/WO2006137145A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/84Boron, aluminium, gallium, indium, thallium, rare-earth metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/62Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/16Two dimensionally sectional layer
    • Y10T428/162Transparent or translucent layer or section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component

Definitions

  • Polyester production method polyester produced using the same, and polyester molded article
  • the present invention relates to a method for producing a polyester using a novel polyester polycondensation catalyst that does not use germanium or an antimony compound as a catalyst main component. More specifically, the present invention relates to the content of foreign matter derived from a polycondensation catalyst. Less relates to polyester, polyester products and polyester production methods.
  • Polyesters represented by polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), etc. are excellent in mechanical properties and chemical properties.
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • PEN polyethylene naphthalate
  • bottles with saturated polyester strength, such as PET have excellent mechanical strength, heat resistance, transparency and gas nourishment, so containers for filling beverages such as juice, carbonated drinks and soft drinks, eye drops, cosmetics, etc. Widely used as a container.
  • a polyester comprising aromatic dicarboxylic acid and alkylene glycol as main components which is a typical polyester, is an esterification reaction or transesterification reaction between terephthalic acid or dimethyl terephthalate and ethylene glycol.
  • an oligomer mixture such as bis (2-hydroxyethyl) terephthalate is produced, and this is produced by liquid phase polycondensation using a catalyst at high temperature and under vacuum.
  • antimony or germanium compounds have been widely used as polyester polycondensation catalysts used in such polycondensation of polyesters.
  • Antimony trioxide is an inexpensive catalyst with excellent catalytic activity.
  • the antimony trioxide is used during polycondensation.
  • metal Since antimony is deposited, darkening and foreign matter are generated in the polyester, which may cause surface defects on the film.
  • polyesters that do not contain antimony at all or do not contain antimony as a main catalyst component are desired.
  • Germanium compounds have already been put to practical use as catalysts that provide polyesters having excellent catalytic activity other than antimony compounds and that do not have the above-mentioned problems.
  • this catalyst is very expensive.
  • problems and problems that it is difficult to control the polycondensation by changing the catalyst concentration in the reaction system because it is easy to distill out of the reaction system during the polycondensation. Has a problem.
  • Antimony-based or polycondensation catalysts that replace germanium-based catalysts have been studied, and titanium compounds represented by tetraalkoxy titanates have already been proposed. Has the problem that it is subject to thermal degradation during melt molding and the polyester is colored very quickly.
  • this is a polycondensation catalyst having a metal component other than antimony, germanium, and titanium as the main metal component of the catalyst, and has excellent catalytic activity, excellent color tone and thermal stability, A polycondensation catalyst that gives polyester having excellent transparency is desired.
  • Patent Document 1 JP 2001-131276 A
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-163963
  • Patent Document 3 Japanese Patent Laid-Open No. 2001-163964
  • Patent Document 4 JP 2002-220446 A
  • a polyester polymer comprising a solution obtained by dissolving at least one selected from the group consisting of aluminum carboxylates in water and Z or an organic solvent.
  • a condensation catalyst and a method for producing a polyester using the polycondensation catalyst are disclosed (see Patent Document 5).
  • Patent Document 5 Japanese Unexamined Patent Publication No. 2003-82083 [0010]
  • the polyester obtained by the polycondensation catalyst system has good color tone, transparency and thermal stability, and meets the above requirements.
  • the polyester obtained by this method has a problem that the content of foreign substances insoluble in polyester is always low and cannot be stably obtained at a level.
  • the level of satisfaction with transparent films or ultra-highly transparent molds has not yet been fully satisfied, and their improvement has been strongly desired.
  • the present invention has been made against the background of the problems of the prior art, and is a polycondensation catalyst in which metal components other than antimony, germanium, and titanium are used as the main metal components of the catalyst. Color tone, transparency and thermal stability It exhibits its characteristics in the fields of ultra-fine fibers, highly transparent films for optical use, and ultra-highly transparent molded articles that maintain high performance and have a high polycondensation rate and less foreign matter formation due to polycondensation catalysts.
  • the present invention provides a polyester production method that provides a polyester and a polyester molded article that can achieve both quality and economy.
  • the first invention in the present invention is a method for producing a polyester in the presence of a polyester polycondensation catalyst containing an aluminum compound so that the aluminum compound has a concentration of 2.7 gZl in terms of the amount of aluminum element as the aluminum compound.
  • a method for producing a polyester comprising using an aluminum compound having an absorbance of 0.0132 or less as measured by dissolving an aqueous solution of an aluminum compound obtained by dissolving in pure water at a cell length of 1 cm and a wavelength of 680 nm.
  • the second invention relates to a method for producing a polyester in the presence of a polyester polycondensation catalyst containing an aluminum compound, so that 30 g of an aluminum compound as an aluminum compound is dissolved in 1500 ml of pure water.
  • the third invention provides a polyester polycondensation catalyst containing an aluminum compound.
  • a water-soluble aluminum compound having a water content of 8% by mass or more is used as the aluminum compound.
  • the aluminum compound in the method for producing a polyester in the presence of a polyester polycondensation catalyst containing an aluminum compound, the aluminum compound has a 20 (diffraction angle) of 14.0 ⁇ in X-ray diffraction analysis. 0.1.
  • a polyester production method characterized by using an aluminum compound having a diffraction peak having a maximum value at 1 ° and a half-value width of 0.60 or more.
  • the fifth invention is characterized in that, in the method for producing a polyester in the presence of a polyester polycondensation catalyst containing an aluminum compound, an aluminum compound having the following infrared absorption characteristics is used as the aluminum compound. This is a method for producing polyester.
  • a sixth invention is characterized in that, in the method for producing a polyester in the presence of a polyester polycondensation catalyst containing an aluminum compound, an aluminum compound having the following infrared absorption characteristics is used as the aluminum compound. This is a method for producing polyester.
  • a method for producing a polyester in the presence of a polyester polycondensation catalyst containing an aluminum compound, wherein the aluminum compound contains aluminum containing 25 to 22 LOOOOppm of an aluminum atom comprising using a compound.
  • a method for producing a polyester in the presence of a polyester polycondensation catalyst containing an aluminum compound, wherein the aluminum compound contains aluminum containing 25 to: LOOOOppm of boron atoms relative to the aluminum atom comprising using a compound.
  • the ninth invention is a method for producing a polyester according to any one of the first to eighth inventions, characterized in that the aluminum compound is basic aluminum acetate.
  • the tenth invention is the method for producing a polyester according to any one of the first to ninth inventions, wherein at least one kind of phosphorus compound is used in combination.
  • the eleventh invention is a polyester produced by the production method according to any one of the first to tenth inventions.
  • the twelfth aspect of the invention is a hollow molded article that also has the polyester strength described in the eleventh aspect of the invention.
  • a thirteenth aspect of the invention is a fiber having polyester strength as described in the eleventh aspect of the invention.
  • a fourteenth invention is a film having polyester strength as described in the eleventh invention. The invention's effect
  • the method for producing a polyester according to the present invention is a polycondensation catalyst in which a metal component other than antimony, germanium and titanium is used as the main metal component of the catalyst, and maintains color tone, transparency, thermal stability, etc., and polycondensation.
  • a metal component other than antimony, germanium and titanium is used as the main metal component of the catalyst, and maintains color tone, transparency, thermal stability, etc., and polycondensation.
  • the polyester obtained by the production method of the present invention can be used for, for example, fibers for clothing and industrial materials, films and sheets for packaging, magnetic tape and optics, bottles that are hollow molded articles, and electrical and electronic components. It can be suitably used in a wide range of fields such as casings and other engineering plastic moldings.
  • the polyester of the present invention has a feature that the production of foreign matter due to the polycondensation catalyst is small, and therefore, there are ultrafine fibers and a highly transparent film for optical use! It can be used in various fields.
  • the polyester referred to in the present invention refers to a polyester comprising dicarboxylic acid and Z or an ester-forming derivative thereof and diol and Z or an ester-forming derivative thereof.
  • dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, and dodecanedicarboxylic acid.
  • Acid tetradecanedicarboxylic acid, hexadecanedicarboxylic acid, 1,3 cyclobutanedicarboxylic acid, 1,3 cyclopentanedicarboxylic acid, 1,2 cyclohexanedicarboxylic acid, 1,3 cyclohexanedicarboxylic acid, 1,4-cyclo Saturated aliphatic dicarboxylic acids exemplified by hexanedicarboxylic acid, 2,5-norbornanedicarboxylic acid, dimer acid, etc., or ester-forming derivatives thereof, fumaric acid, maleic acid, itaconic acid, etc.
  • Saturated aliphatic dicarboxylic acids or their ester-forming derivatives orthophthalic acid, isophthalic acid, terephthalic acid, 5- (alkali metal) sulfoisophthalic acid, diphenic acid, 1, 3 naphthalene dicarboxylic acid, 1, 4 naphthalene dicarboxylic acid Acid, 1, 5 phthalene dicarboxylic acid, 2, 6 naphthalene dicarboxylic acid, 2, 7 naphthalene RUBONIC ACID, 4, 4'—Bipheninoresitivity Norevonic Acid, 4, 4'—Bipheninolesnorejon Dicanolevonic Acid, 4, 4′—Biphenyl ether dicarboxylic acid, 1,2-bis (phenoxy) ethane p , p, monodicarboxylic acid, pamoic acid, anthracene dicarboxylic acid and the like, and aromatic dicarboxylic acids and ester-forming derivatives thereof
  • dicarboxylic acids terephthalic acid and naphthalenedicarboxylic acid, especially 2,6 naphthalenedicarboxylic acid, other dicarboxylic acids are used as constituents if necessary in view of the physical properties of the resulting polyester.
  • polycarboxylic acids may be used in combination in small amounts.
  • examples of the polyvalent carboxylic acid include ethanetricarboxylic acid, propanetricarboxylic acid, butanetetracarboxylic rubonic acid, pyromellitic acid, trimellitic acid, trimesic acid, 3, 4, 3, 4, monobiphenyltetracarboxylic acid, and These ester-forming derivatives are exemplified.
  • glycols ethylene glycol, 1, 2 propylene glycol, 1, 3 propylene glycol, diethylene glycol, triethylene glycol, 1, 2-butylene glycol, 1, 3 butylene glycol, 2, 3 butylene glycol, 1 , 4-butylene glycol, 1,5 pentanediol, neopentyl glycol, 1,6 hexanediol, 1,2 cyclohexanediol, 1,3 cyclohexanediol, 1,4-cyclohexanediol, 1, 2 cyclohexane dimethanol, 1,3 cyclohexane dimethanol, 1,4-cyclohexane dimethanol, 1,4-cyclohexane diethanol, 1,10-decamethylene glycol, 1,12-dodecanediol, polyethylene glycol, Politori Aliphatic glycols exemplified by methylene glycol and polytetramethylene glycol, hydroquinon
  • glycols ethylene glycol, 1,3 propylene glycol, 1,4 butylene glycol, and 1,4-cyclohexanedimethanol are preferred.
  • polyhydric alcohols may be used in combination in small amounts.
  • examples of the polyhydric alcohol include trimethylolmethane, trimethylolethane, trimethylolpropane, pentaerythritol, glycerol, hexanetriol and the like.
  • hydroxycarboxylic acid may be used in combination.
  • examples of the hydroxycarboxylic acid include lactic acid, citrate, malic acid, tartaric acid, hydroxyacetic acid, 3-hydroxybutyric acid, p-hydroxybenzoic acid, P- (2 hydroxyethoxy) benzoic acid, and 4-hydroxycyclohexanecarbon.
  • examples thereof include acids or ester-forming derivatives thereof.
  • cyclic ester Use of a cyclic ester is also permitted.
  • the cyclic ester include ⁇ -force prolatatone, j8-propiolatathone, 13-methyl-j8-propiolatathone, ⁇ valerolatatatone, glycolide, and lactide.
  • ester-forming derivatives of polyvalent carboxylic acids or hydroxycarboxylic acids include alkyl esters and hydroxylalkyl esters of these compounds.
  • ester-forming derivatives of diols include esters of diols with lower aliphatic carboxylic acids such as acetic acid.
  • the polyester of the present invention is preferably ⁇ , ⁇ , polypropylene terephthalate, poly (1,4-cyclohexanedimethylene terephthalate), ⁇ , polybutylene naphthalate, polypropylene naphthalate and their copolycondensates.
  • polyethylene terephthalate and this copolycondensate are particularly preferred.
  • the copolycondensate is preferably composed of ethylene terephthalate units of 50 mol% or more, more preferably 70 mol% or more. That's right.
  • the aluminum compound in the present invention is not limited as long as it can be dissolved in water and Z or an organic solvent.
  • the carboxylate aluminum compound is particularly preferred because of its solubility and the ability to corrode equipment.
  • aluminum carboxylate used in the present invention examples include aluminum formate, aluminum acetate, basic aluminum acetate, aluminum propionate, aluminum oxalate, aluminum acrylate, aluminum laurate, Aluminum stearate, aluminum benzoate, aluminum trichloroacetate, aluminum lactate, aluminum citrate, aluminum tartrate, aluminum salicylate, etc.
  • aluminum salts of acetic acid such as aluminum acetate and basic aluminum acetate
  • Those having the following structure and aluminum lactate are preferred from the viewpoint of solubility in the system and catalytic activity.
  • the use of basic aluminum acetate is preferred.
  • Examples of using an aluminum salt of a carboxylic acid as a polyester polycondensation catalyst include vinegar.
  • Aluminum acids, basic aluminum acetates, aluminum lactates, aluminum benzoates, etc. have been exemplified so far. However, these are poor in catalytic activity because they are poorly soluble in polyesters. When insoluble foreign matter is generated, there is a problem when these compounds are used as catalysts as they are.
  • the present inventors can give sufficient catalytic activity by using those previously dissolved in water and Z or an organic solvent as a catalyst. is doing.
  • the present invention is based on the technique disclosed in Patent Document 5.
  • the polyester obtained by this technology has good color tone, transparency and thermal stability, and is highly practical as a polycondensation catalyst having a metal component other than antimony, germanium and titanium as the main metal component of the catalyst. Is.
  • the polyester obtained by this method has a problem that the content of foreign matters insoluble in the polyester cannot always be stably obtained at a low level, such as ultrafine fibers, highly transparent films for optical use, The ultra-highly transparent molded body did not reach a sufficiently satisfactory level, and its improvement was strongly envyed.
  • the present invention has been made by earnestly studying and establishing the technology for suppressing the fluctuation of the content of fine foreign matters insoluble in polyester, and satisfies the demand.
  • an aqueous solution of an aluminum compound obtained by dissolving an aluminum compound as the above-mentioned aluminum compound in pure water so as to have a concentration of 2.7 gZl in terms of the amount of aluminum element has a cell length of lcm and 680 nm.
  • This is characterized by the use of an aluminum compound having an absorbance measured at a wavelength of 0.0132 or less.
  • the method for measuring the absorbance of the aqueous solution of an aluminum compound in the present invention is measured by the following method.
  • An aluminum compound is dissolved in pure water at a concentration of 2.7 gZl in terms of the amount of aluminum element, and the absorbance is measured at a wavelength of 680 ⁇ m. Dissolve by stirring at room temperature for 6 hours, raising the internal temperature to 95 ° C, and stirring for another 3 hours. Absorbance is measured using a quartz cell with a cell length of 1 cm and pure water as a control solution.
  • Absorbance is preferably 0.00088 or less, more preferably 0.0044 or less, more preferably 0.022 or less. Is preferred. An absorbance of 0 is most preferred. If the absorbance exceeds 0.0132, the content of foreign substances insoluble in polyester increases, and for example, when molded as a molded body such as a film or a bottle, the haze of the molded body deteriorates, which is not preferable. It also leads to the problem of increased filter clogging during polyester filtration in the polycondensation and molding processes.
  • the absorbance of the aluminum compound aqueous solution is a measure for evaluating the amount of insoluble components in a very small amount of water contained in the aluminum compound.
  • the generation of the insoluble foreign matter content in the polyester is suppressed because the insoluble component in the form of fine particles, which is an insoluble component in a very small amount of water, contained in the aluminum compound.
  • the insoluble matter is used as a core to suppress the formation of insoluble foreign matter in the polyester due to alteration or aggregation into foreign matters insoluble in the polyester in the polyester polycondensation process. I guess.
  • the method for reducing the absorbance of the aqueous aluminum compound solution to 0.0132 or less is not limited.
  • a water-soluble aluminum compound having a water content of 8% by mass or more as the aluminum compound.
  • the moisture content is preferably 10% by mass or more, more preferably 12% by mass or more.
  • the absorbance of the above aluminum compound aqueous solution increases, which is not preferable.
  • the absorbance of the aqueous aluminum compound solution is suppressed, and the content of foreign matters insoluble in the polyester is further reduced.
  • the mechanism of reducing the amount of water is clear.
  • the drying step of an aluminum compound when an aluminum compound is isolated from a reaction medium if the water content is less than 8% by mass, it is insoluble in water and polyester. This is presumed to be caused by the fact that a very small amount of a modified product or structural transformation of the aluminum compound forming the aluminum compound occurs.
  • a hydrolyzate of an aluminum compound is used as a modified product of an aluminum compound, and a polymer structure in which single molecules are associated as a structural transformation or a composite structural transformation containing crystal water. Therefore, it is presumed that the content of foreign matter insoluble in polyester is suppressed by stopping drying at a high water content. Therefore, the water-soluble aluminum used in the present invention.
  • Preferred compounds are those that have stopped drying when the moisture content is 8% by weight or more.
  • the upper limit of the moisture content is not limited, and an aqueous solution that has not undergone a drying step may be used.
  • the above-mentioned water-soluble aluminum compound is preferably an aluminum compound prepared by an aqueous solution method, which is preferably used as an aqueous solution without isolation! /.
  • the concentration of the aluminum compound in the aqueous solution is adjusted to the above-described method for measuring the absorbance of the aqueous aluminum compound solution, and the absorbance of the adjusted aqueous solution is adjusted. It is preferable to use one that is less than 0.00132.
  • the structure and production method of the aluminum compound is not limited as long as it is water-soluble, but basic aluminum acetate is preferred.
  • Basic aluminum acetate is suitable as an aluminum compound of the above-mentioned technique because it is readily dissolved in water and Z or an organic solvent, and has low stability and low corrosiveness to metals.
  • a product is used, there is a problem that the amount of foreign matter insoluble in the polyester obtained due to differences in the manufacturer or lot of the product varies greatly. It is also an object of the present invention to solve this problem.
  • Production methods for basic aluminum acetate are exemplified, but the present invention is not limited to these methods.
  • a method in which alumina hydrate is contacted with vapor of acetic acid (2) a method in which sodium aluminate or potassium aluminate aqueous solution is reacted with an acetic acid aqueous solution, (3) basic salt-aluminum aqueous solution and Reaction with glacial acetic acid and (4)
  • a basic inorganic acid aluminum solution such as an aqueous solution of basic aluminum chloride, an aqueous solution of basic aluminum amidosulfate, an aqueous solution of basic aluminum nitrate, etc.
  • Examples include a method of exchanging ions and acetate ions.
  • the aqueous solution of basic aluminum acetate obtained by these methods can be used after being concentrated or diluted.
  • the concentration of basic aluminum acetate in the aqueous solution when used as an aqueous solution is not limited !, force Considering the step of distilling water when replacing the liquid with an ethylene glycol solution described later, 1% by mass or more is preferable . 1. 2% by mass or more is more preferable 1. 5% by mass or more Is preferred.
  • the aqueous solution may be concentrated and dried to solidify basic aluminum acetate.
  • the amount of insoluble matter in the water is a value obtained by evaluation by the following method.
  • the insoluble content of the aluminum compound in water was calculated by the following formula.
  • the aluminum compound is an aqueous solution
  • the solid content in the aqueous solution is measured by evaporating the aqueous solution to dryness, and the concentration of the aluminum compound in the aqueous solution is determined by using the solid content as the weight of the aluminum compound. It was determined by filtering an aqueous solution in an amount such that the amount of the aluminum compound in the aqueous solution was 30 g.
  • the concentration of the aluminum compound in the aqueous solution was higher than 2% by mass
  • the pure water was diluted with aluminum so as to be 2% by mass and filtered. The dilution was performed under the same conditions as the dissolution of the solid aluminum compound. The above operation was performed in a clean bench.
  • the insoluble content in water is preferably 900 ppm or less, more preferably 800 ppm or less.
  • the amount of insoluble matter in water exceeds lOOOOppm, the content of foreign matters insoluble in polyester increases.
  • the haze of the molded body deteriorates. It also leads to the problem of increased filter clogging during the filtration of polyester during the polycondensation and molding processes.
  • the main component of the above insoluble amount in water is considered to be composed of an aluminum gel compound.
  • the production method of the aluminum compound having a small amount of insoluble matter in water is not limited, but for example, it is one of the preferred embodiments to produce the aluminum compound by the method described above.
  • the mechanism that the content of foreign matter insoluble in polyester is reduced by using an aluminum compound having a small amount of insoluble matter in water can be clearly understood, but is present in the aluminum compound.
  • Insoluble matter in the form of a minute amount of fine particles that are insoluble in water itself is a foreign substance that is insoluble in polyester due to, for example, the insoluble component becoming a nucleus and denatured or agglomerated into a foreign substance insoluble in polyester in the polyester polycondensation process. I guess it is caused by the suppression of production.
  • basic aluminum acetate has a diffraction peak having a maximum at 2 ⁇ (diffraction angle) force of 0 ⁇ 0.1 degree in X-ray diffraction analysis, and its half-value width is 0.60 or more. It is important to use basic aluminum acetate which is The full width at half maximum is preferably 0.65 or more, more preferably 0.70 or more. When the half width is 0.60, the content of foreign matter insoluble in water and polyester increases.
  • the half width of the diffraction peak obtained by the above X-ray diffraction analysis is a measure of the crystallinity of basic aluminum acetate. The smaller the half width, the higher the crystallinity. It is inferred that the amount of trace components insoluble in water and polyester increases in proportion to crystallinity. Further, it is presumed that the crystallinity increases as the water content of basic aluminum acetate decreases.
  • the absorbance ratio T is preferably 1.7 or less. 1.6 or less Force S More preferably.
  • the measurement is performed by the transmission method.
  • FTS-40 main unit
  • ZUMA300 infrared microscope
  • Absorbance of absorption 985cm around _1 prepared specimen as 1. is 5 or less, the measurement is carried out in the resolution 8 cm _1, 128 cumulative.
  • the baseline for calculating the absorption intensity is determined by the following procedure.
  • Absorption intensity of 3700 cm _1 is the baseline by connecting the sides of the skirt of this absorption.
  • the absorption of 1029cm _1, and the absorption of high wavenumber side hem 1060c m _1, and baseline signed a skirt of the low frequency side of the absorption 985cm _1.
  • the ratio of the height from the above baseline to the peak top of each of 3700 ⁇ 10 cm_1 and 1029 ⁇ 10 cm_1 that is, the absorbance ratio T1 (BZA) of absorbance B and A is used.
  • the absorbance ratio T is preferably 1.7 or less. 1.6 or less Force S is more preferred.
  • the absorbance ratio T exceeds 1.8, the content of foreign substances insoluble in water and polyester increases, leading to the occurrence of the aforementioned problems.
  • the measurement is performed by the transmission method.
  • FTS-40 main unit
  • ZUMA300 infrared microscope
  • the baseline for calculating the absorption intensity is determined by the following procedure.
  • the absorbance of 1062 cm _1 and 1029cm _1, baseline connects the skirt of the higher wavenumber side of absorption of 1060 cm _1, and skirt of the low frequency side of the absorption 985cm _1.
  • the absorption band having an absorption maximum at 1062 ⁇ 10 cm_1 is absorption due to crystals in basic aluminum acetate.
  • 1029 cm- 1 is an absorption independent of crystal and amorphous.
  • Absorbance ratio T2 (C / A) is a value closely related to the crystallinity of basic aluminum acetate. It means that the crystallinity is small. Therefore, it is preferable that the crystallinity in basic aluminum acetate is low and it is easy to dissolve in water and Z or an organic solvent.
  • the basic aluminum acetate it is preferable to use one containing 25 to 10,000 ppm of thio atoms with respect to aluminum atoms.
  • the xio atom content is preferably 50 to 90 OO ppm force, more preferably 100 to 8000 ppm force.
  • the X atom content is less than 25 ppm, the content of foreign matter insoluble in water and polyester increases, It leads to outbreak.
  • the io atom content exceeds lOOOOppm, side reactions in the polycondensation process, for example, the formation of etheric compounds due to the dehydration reaction between glycol components increases, and this leads to a decrease in polyester physical properties. Absent.
  • ethylene glycol is used as the glycol component
  • diethylene glycol is produced and the diethylene glycol is introduced into the polyester chain
  • the melting point of the polyester is lowered, and the heat resistance of the polyester is deteriorated.
  • the introduction of an ether bond leads to the problem that the light resistance of the polyester deteriorates.
  • the thio atom may be in the form of sulfate ion, sulfite ion, hyposulfite ion, sulfonate ion such as methanesulfonic acid or p-toluenesulfonic acid. It is preferable to introduce in! /.
  • the ion group may be introduced in an acid form or a salt form. It is particularly preferred to introduce it as sulfuric acid, sulfonic acid or these aluminum salts.
  • There is no limitation on the method for introducing the thio compound For example, it may be introduced during the basic aluminum acetate production process, or may be added and introduced during the preparation of the basic aluminum acetate solution used in the polyester production process.
  • boron atom content is preferably 50 to 9000 ppm force, more preferably 100 to 8000 ppm force!
  • the boron atom content is less than 25 ppm, the content of foreign matters insoluble in polyester increases, and for example, when molded as a molded body such as a film or a bottle, the haze of the molded body deteriorates. It also leads to the problem of increased filter clogging during polyester filtration in the polycondensation process and molding process.
  • boron atoms in the form of borate ion, hypoborate ion or metaborate ion.
  • the ionic group may be introduced in the form of an acid or may be introduced in the form of a salt.
  • boric acid or aluminum borate It is particularly preferred to introduce it as boric acid or aluminum borate.
  • the method for introducing the compound containing thiol may be introduced during the production process of basic aluminum acetate, or may be added and introduced during preparation of the basic aluminum acetate solution used in the production process of polyester.
  • the present invention it is preferable to use basic aluminum acetate having the above-mentioned characteristics, but it is not limited. Other water-soluble aluminum compounds may be used.
  • the product has a light absorbency characteristic obtained by using the product as an aqueous solution and removing components insoluble in water by filtration, centrifugation, or ultracentrifugation. An aqueous solution may be obtained and used.
  • the aluminum compound of the present invention Before adding the aluminum compound of the present invention to the polycondensation system of the polyester, it is preferable to add the aluminum compound to the polycondensation system after dissolving it in water and Z or an organic solvent in advance.
  • organic solvent glycols are preferred. Ethylene glycol is preferred when producing PET.
  • a solution in which the aluminum compound of the present invention is dissolved in water and Z or an organic solvent is produced. Therefore, it is preferable to use a solution in which an aluminum compound is previously dissolved in water. It is preferable to add an organic solvent such as a diol to the aqueous solution as necessary.
  • the aqueous solution may be added as it is to the polycondensation system, but in order to reduce the heat shock during the addition, a solution obtained by diluting the aqueous solution with a diol such as ethylene glycol is added to the polycondensation system, or It is preferable to add to the polycondensation system a solution obtained by distilling water by replacing the solution diluted with diols with a single solution.
  • the aluminum compound aqueous solution is diluted with a diol such as ethylene glycol, it is preferable to dilute the diol with a volume ratio of 0.5 to 50 times that of water.
  • the concentration of the aluminum compound solution added to the polycondensation system is preferably 0.01 to 1 mol Z liter in terms of aluminum element, since the formation of insoluble foreign matter is particularly suppressed in the obtained polyester. .
  • a case using basic aluminum acetate will be exemplified.
  • the stirring time is preferably 12 hours or longer.
  • the mixture is stirred at 60 ° C or higher for several hours or longer.
  • the temperature in this case is preferably in the range of 60 to 80 ° C.
  • the stirring time is preferably 3 hours or more.
  • the concentration of the aqueous solution is preferably 5 g / l to 100 gZl, particularly preferably 10 gZl to 30 gZl.
  • the basic aluminum acetate satisfying the absorbance within the range of the present invention is evaluated in advance according to the absorbance measurement method of the aluminum compound aqueous solution described above.
  • the aqueous solution dissolved by the above method was purified by removing components insoluble in water by filtration or ultracentrifugation, etc., and a part of the purified solution was sampled and dried by freeze drying. The solid content may be redissolved in pure water and the absorbance may be measured to confirm that the absorbance is within the scope of the present invention.
  • Ethylene glycol is added to the above aqueous solution.
  • the added amount of ethylene glycol is preferably 1 to 5 times the volume of the aqueous solution. More preferably, the amount is 2 to 3 times.
  • the solution is stirred at room temperature for several hours to obtain a uniform water Z ethylene glycol mixed solution. Thereafter, the solution is heated and water is distilled off to obtain an ethylene glycol solution.
  • the temperature is preferably 80 ° C or higher, and preferably 120 ° C or lower. More preferably, it is preferable to distill off water by stirring at 90 to 110 ° C. for several hours.
  • a specific example of a method for preparing an ethylene glycol solution of aluminum lactate is shown below.
  • the preparation may be at room temperature or under heating, but preferably at room temperature.
  • the concentration of the aqueous solution is preferably 20 gZl to 100 gZl, particularly preferably 50 to 80 gZl.
  • Ethylene glycol is added to the aqueous solution.
  • the added amount of ethylene glycol is preferably 1 to 5 times the volume of the aqueous solution. More preferably, the amount is 2 to 3 times.
  • the solution is stirred at room temperature to obtain a uniform water Z ethylene glycol mixed solution, and then the solution is heated to distill water off to obtain an ethylene glycol solution.
  • the temperature is preferably 80 ° C or higher, and preferably 120 ° C or lower. More preferably, the water is distilled off by stirring for several hours at 90 to 110 ° C. Absorbance is evaluated according to the method for preparing the basic aluminum acetate solution described above.
  • the amount of the aluminum compound used is the number of moles of all structural units of the carboxylic acid component such as dicarboxylic acid or polyvalent carboxylic acid of the obtained polyester. 0. as the aluminum atoms from 001 to 0.05 mol 0/0 preferably tool and more preferably from 0.5 005-0. 02 mole% against. If the amount used is less than 0.001 mol%, the catalytic activity may not be fully exerted. If the amount used is more than 0.05 mol%, the thermal stability or thermal oxidation stability will decrease, resulting from aluminum. Occurrence of foreign matter to be generated or increase in coloring may be a problem.
  • the polycondensation catalyst of the present invention has a great feature in that it exhibits a sufficient catalytic activity even if the addition amount of the aluminum component is small. As a result, thermal stability and thermal oxidation stability are excellent, and foreign matters and coloring caused by aluminum are reduced.
  • a polycondensation catalyst it is preferable to use at least one phosphorus compound in combination with the above aluminum compound. Combined use of the phosphorus compound exhibits effects such as increased polycondensation catalytic activity, suppression of side reactions such as coloration of the polyester, and suppression of the formation of foreign substances insoluble in the polyester, compared to the case of the aluminum compound alone system. May be.
  • the phosphorus compound is not limited, but phosphonic acid compounds, phosphinic acid compounds, phosphine oxide compounds, phosphonous acid compounds, phosphinic acid compounds, and phosphine compounds are preferred. ,.
  • the phosphonic acid compound, phosphinic acid compound, phosphine oxide compound, phosphonous acid compound, phosphinic acid compound, and phosphine compound referred to in the present invention are respectively represented by the following chemical formulas This refers to a compound having the structure represented by 6).
  • Examples of the phosphonic acid compound of the present invention include dimethyl methylphosphonate, diphenyl methylphosphonate, dimethyl phosphonate, jetyl phosphonate, diphenyl phosphonate, benzyl phosphonate. And benzyl phosphonate.
  • Examples of the phosphinic acid compound of the present invention include diphenylphosphinic acid, diphenylphosphinic acid methyl, diphenylphosphinic acid phenol, phenol phosphinic acid, phenol phosphinic acid methyl, and phenol. Examples include phosphinic acid phenol.
  • Examples of the phosphine oxide compound of the present invention include diphenylphosphine oxide, methyldiphenylphosphine oxide, triphenylphosphine oxide, and the like.
  • the phosphorus compounds of the present invention are represented by the following chemical formulas (7) to ( The compound represented by Chemical formula 12) is preferred.
  • RR 4 , R 5 , and R 6 are each independently hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group.
  • a hydrocarbon group having 1 to 50 carbon atoms including a group R 2 and R 3 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group having 1 to 50 carbon atoms.
  • Examples of the phosphorus compound of the present invention include, for example, dimethyl methylphosphonate, diphenyl methylphosphonate, dimethyl phenylphosphonate, jetyl phosphonate, diphenyl phosphonate, dimethyl benzylphosphonate, and benzyl. Jetyl phosphonate, diphenylphosphinic acid, methyl diphenylphosphinate, phenyl diphosphine phosphinate, phenylphosphinic acid, methyl phenylphosphinate, phenylphosphinic acid phenyl, diphenylphosphine oxide, Examples thereof include methyl diphenylphosphine oxide and triphenylphosphine oxide. Of these, dimethyl phosphonate and decyl benzylphosphonate are particularly preferred! /.
  • a phosphorus metal salt compound is particularly preferable as the phosphorus compound.
  • the phosphorus metal salt compound is not particularly limited as long as it is a phosphorus compound metal salt.
  • a metal salt of a phosphonic acid compound is used, the polyester which is the subject of the present invention is used.
  • the effect of improving the physical properties and improving the catalytic activity are greatly preferred.
  • metal salts of phosphorus compounds include monometal salts, dimetal salts, and trimetal salts.
  • catalytic activity is obtained when the metal portion of the metal salt is selected from Li, Na, K, Be, Mg, Sr, Ba, Mn, Ni, Cu, and Zn forces.
  • the improvement effect is greatly preferable.
  • Li, Na, and Mg are particularly preferable.
  • the phosphorus metal salt compound of the present invention it is preferable to use at least one selected from the compounds represented by the following chemical formula (Chemical Formula 16), because the physical property improving effect and the catalytic activity improving effect are great.
  • R 1 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group, an alkoxyl group, or an amino group, and a hydrocarbon group having 1 to 50 carbon atoms.
  • R 2 represents , Hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group, and a hydrocarbon group having 1 to 50 carbon atoms
  • R 3 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl
  • + m) represents a valent metal cation
  • n represents an integer of 1 or more
  • the hydrocarbon group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl naphthyl. Good.
  • R 1 examples include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl, 2-biphenyl, and the like.
  • R 2 examples include hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n butyl group, sec butyl group, tert butyl group, long chain aliphatic group, fur group, naphthyl group.
  • R 3 0 examples include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl, 2-biphenyl, and the like.
  • R 2 examples include hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n butyl group, sec butyl group, ter
  • Examples include hydroxide ions, alcoholate ions, acetate ions and cetylacetone ions.
  • R 1 is hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or a halogen atom. Represents a hydrocarbon group having 1 to 50 carbon atoms, including an amine group, an alkoxyl group, or an amino group.
  • R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group, or a hydrocarbon group having 1 to 50 carbon atoms including a sulfonyl group.
  • 1 represents an integer of 1 or more
  • m represents 0 or an integer of 1 or more
  • 1 + m is 4 or less.
  • M represents a (1 + m) valent metal cation.
  • the hydrocarbon group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl naphthyl.
  • R 1 examples include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl, 2-biphenyl, and the like.
  • R 30 examples include hydroxide ions, alcohol ions, acetate ions, acetylacetone ions, and the like.
  • the phosphorus metal salt compound of the present invention includes lithium [(1 naphthyl) methylphosphonate], sodium [(1-naphthyl) methylphosphonate], magnesium bis [(1-naphthinole) methinorephosphone.
  • Acid ethynole potassium [(2-naphthinole) methinorephosphonate], magnesium bis [(2-naphthyl) methylphosphonate], lithium [benzyl phosphonate], sodium [benzylphosphonate], magnesium bis [ Benzylphosphonate], beryllium bis [benzylphosphonate], strontium bis [benzylphosphonate], manganese bis [benzylphosphonate], sodium benzylphosphonate, magnesium bis [benzylphosphonate], sodium [(9 — Anthryl) methylphosphonic acid Ethyl], Magnesium bis [(9 Anthryl) methylphosphonate], Sodium [4-hydroxybenzylphosphonate], Magnesium bis [4-hydroxybenzylphosphonate], Sodium [4-cyclobenzyl phosphonate] -L], magnesium bis [4 ethyl benzyl phosphonate], sodium [methyl 4-amino benzyl phosphonate],
  • [(1 naphthyl) methylphosphonate], sodium [(1naphthyl) methylphosphonate], magnesium bis [(1 naphthyl) methylphosphonate], lithium [benzylphosphonate], sodium [benzylphosphonate], magnesium Bis [benzylphosphonate], sodium benzylphosphonate, and magnesium bis [benzolephosphonic acid] are particularly preferred.
  • a phosphorus compound having at least one P—OH bond is particularly preferred as the phosphorus compound.
  • the effect of improving the physical properties of the polyester is particularly enhanced, and these polyester compounds can be used together with the aluminum compound of the present invention during the polymerization of the polyester.
  • the effect of improving the catalytic activity is significant.
  • the phosphorus compound having at least one P—OH bond is not particularly limited as long as it is a phosphorus compound having at least one P—OH in the molecule.
  • the use of a phosphonic acid compound having at least one POH bond facilitates complex formation with an aluminum compound, thereby improving the physical properties of the polyester and improving the catalytic activity. Largely preferred.
  • the phosphorus compound having at least one P—OH bond of the present invention includes the following general formula (I
  • Use of at least one selected compound power represented by 18) is highly preferred for improving physical properties and improving catalytic activity.
  • R 1 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group, a halogen group, an alkoxyl group, or an amino group.
  • R 2 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms including a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group.
  • n represents an integer of 1 or more.
  • the hydrocarbon group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl naphthyl.
  • R 1 examples include phenyl, 1-naphthyl, 2-naphthyl, 9-anthryl, 4-biphenyl, 2-biphenyl, and the like.
  • R 2 examples include hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n butyl group, sec butyl group, t tert butyl group, long chain aliphatic group, fur group, naphthyl group, Examples thereof include a substituted fur group, a naphthyl group, and a group represented by CH 2 CH OH.
  • the phosphorus compound having at least one P-OH bond of the present invention includes (1 naphthyl) methylphosphonate, (1 naphthyl) methylphosphonate, (2-naphthyl) methylphosphonate, benzylphosphonic acid.
  • (1 naphthyl) methylphosphonate and benzylphosphonate are particularly preferred.
  • a preferred phosphorus compound of the present invention is a phosphorus compound represented by the chemical formula (Chemical Formula 19).
  • R 1 represents a hydrocarbon group having 1 to 49 carbon atoms, or a hydrocarbon group having 1 to 49 carbon atoms including a hydroxyl group, a halogen group, an alkoxyl group, or an amino group
  • R 2 , R 3 each independently represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group, and a hydrocarbon group having 1 to 50 carbon atoms, which is an alicyclic structure, branched structure or aromatic ring. May contain structure.
  • R 1 , R 2 and R 3 in the chemical formula (Chemical Formula 19) contains an aromatic ring structure.
  • the phosphorus compound of the present invention having a large molecular weight is preferable because it is less likely to be distilled off during polymerization.
  • the phosphorus compound of the present invention is preferably a phosphorus compound having a phenol moiety in the same molecule.
  • the use of a phosphorus compound having a phenol moiety in the same molecule during polymerization of polyester The effect of increasing the catalytic activity is greater. Therefore, the productivity of polyester is excellent.
  • the phosphorus compound having a phenol moiety in the same molecule is not particularly limited as long as it is a phosphorus compound having a phenol structure, but a phosphonic acid compound or phosphinic acid compound having a phenol moiety in the same molecule.
  • Compound, phosphine oxide-based compound, phosphonous acid-based compound, phosphinic acid-based compound, phosphine-based compound power Use of one or more compounds selected from the group consisting of polyester improves physical properties and improves catalytic activity Is preferable. Of these, the use of phosphonic acid compounds having one or more phenolic moieties in the same molecule is particularly preferred for improving the physical properties and improving the catalytic activity of polyester.
  • R 1 represents a hydrocarbon group having 1 to 50 carbon atoms including a phenol moiety, a hydroxyl group, a halogen group, an alkoxyl group, an amino group, and the like;
  • R 4 , R 5 and R 6 are each independently hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group, a halogen group or an alkoxyl group.
  • R 2 and R 3 each independently represents a substituent such as hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group; represents a hydrocarbon group having 1 to 50 carbon atoms containing.
  • hydrocarbon group may include alicyclic structure such phenyl Ya aromatic ring structure naphthyl etc. hexyl, etc., to the branch structure Ya cycloalkyl.
  • R 2 and The ends of R 4 may be bonded to each other.
  • Examples of the phosphorus compound having the phenol moiety of the present invention in the same molecule include p-hydroxyphenylphosphonic acid, p-hydroxyphenylphosphonic acid dimethyl, p-hydroxyphenylphosphonic acid jetyl, p —Hydroxyphenol phosphonic acid diphenyl, bis (p-hydroxyphenyl) phosphinic acid, bis (p-hydroxyphenyl) phosphinic acid methyl, bis (p-hydroxyphenyl) phosphinic acid , P-hydroxyphenol phosphinic acid, p-hydroxyphenyl phosphinate methyl, p-hydroxyphenol phosphinate, p-hydroxyphenol phosphinic acid, p- Hydroxyphenyl methyl phosphinate, p-hydroxyphenol phosphinate, bis (p-hydroxyphenyl) phosphine oxide Tris (p - hydroxy Hue - Le) phosphine oxide, bis (p- hydroxy Hue -)
  • SANKO-220 manufactured by Sanko Co., Ltd.
  • the specific phosphorus metal salt represented by 33) is particularly preferred at least one selected.
  • R 2 is independently hydrogen, a hydrocarbon group having 1 to 30 carbon atoms.
  • R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms including a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group.
  • R 4 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group, an alkoxyl group, or a carbocycle.
  • Examples of R 40- include hydroxide ions, alcohol ions, acetate ions and acetylacetone ions.
  • the hydrocarbon group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl naphthyl. )
  • At least one selected from the compound forces represented by the following chemical formula (Chemical Formula 34) is preferable.
  • M n + represents an n-valent metal cation.
  • N represents 1, 2, 3 or 4
  • Specific phosphorus metal salt compounds of the present invention include lithium [3,5g tert butyl
  • lithium [3,5-di-tert-butyl-4-hydroxybenzylphosphonate] sodium [3,5-di-tert-butyl-4-hydroxybenzylphosphonate]
  • magnesium bis [3 , 5-ditert-butyl 4-hydroxybenzylphosphonate] is particularly preferred.
  • a specific phosphorus compound power having at least one P—OH bond represented by the following chemical formula (Chemical Formula 35) is selected: At least one kind Is particularly preferred.
  • R 2 each independently represents hydrogen or a hydrocarbon group having 1 to 30 carbon atoms.
  • R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group.
  • n represents an integer of 1 or more.
  • the hydrocarbon group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl naphthyl.
  • At least one selected from compound power represented by the following chemical formula (Chemical Formula 36) is preferable.
  • R 3 represents hydrogen, a hydrocarbon group having 1 to 50 carbon atoms, a hydrocarbon group having 1 to 50 carbon atoms including a hydroxyl group or an alkoxyl group. It may contain an alicyclic structure such as ruthenium or an aromatic ring structure such as a branched structure or vinyl naphthyl.
  • R 3 examples include hydrogen, methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, long-chain aliphatic group, phenol group, and naphthalene group.
  • Specific phosphorus compounds having at least one P-OH bond of the present invention include ethyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate, 3,5-di-tert-butyl 4- -Methyl hydroxybenzylphosphonate, 3,5-ditert-butyl-4-hydroxybenzylphosphonate isopropyl, 3,5-ditert-butyl-4-hydroxybenzylphosphonate, 3,5-ditert-butyl-4-hydroxy Examples include octadecyl benzylphosphonate and 3,5-ditert-butyl 4-hydroxybenzylphosphonic acid. Of these, methyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate and methyl 3,5-di-tert-butyl-4-hydroxybenzylphosphonate are particularly preferred.
  • phosphorus compounds having the phenol moiety of the present invention in the same molecule, at least one type of phosphorus compound selected from the specific phosphorus compounds represented by the following chemical formula (Chemical Formula 37) is preferred. Yes.
  • R ⁇ R 2 represent independently hydrogen, a hydrocarbon group having 1 to 30 carbon atoms.
  • R 3, R 4 are each independently hydrogen, a hydrocarbon having 1 to 50 carbon atoms Represents a hydrocarbon group having 1 to 50 carbon atoms including a hydrogen group, a hydroxyl group or an alkoxyl group, n represents an integer of 1 or more, and the hydrocarbon group represents an alicyclic structure such as cyclohexyl, a branched structure, or phenyl naphthyl. And may contain an aromatic ring structure such as
  • R 3 and R 4 each independently represent hydrogen, a hydrocarbon group having 1 to 50 carbon atoms including a hydrocarbon group having 1 to 50 carbon atoms, a hydroxyl group or an alkoxyl group.
  • the hydride group may contain an alicyclic structure such as cyclohexyl, a branched structure, or an aromatic ring structure such as phenyl naphthyl.
  • R 3 and R 4 in the above chemical formula include, for example, a short-chain aliphatic group such as hydrogen, methyl group, and butyl group, a long-chain aliphatic group such as octadecyl, a fluorine group, a naphthyl group, and a substituent.
  • a short-chain aliphatic group such as hydrogen, methyl group, and butyl group
  • a long-chain aliphatic group such as octadecyl
  • fluorine group a naphthyl group
  • a substituent examples thereof include aromatic groups such as phenol groups and naphthyl groups, groups represented by CH 2 CH 3 OH, and the like.
  • Specific phosphorus compounds of the present invention include 3,5-di-tert-butyl-4-hydroxybenzil phosphonate diisopropyl, 3,5-di-tert-butyl-4-hydroxybenzylphosphonate di-n-butyl, 3, Examples thereof include dioctadecyl 5-ditert-butyl-4-hydroxybenzylphosphonate and 3,5-ditert-butyl 4-hydroxybenzylphosphonate diphenyl. Of these, dioctadecyl 3,5-ditert-butyl-4-hydroxybenzyl phosphonate and diphenyl 3,5-ditert-butyl-4-hydroxybenzyl phosphonate are particularly preferred!
  • Masui compound is at least one phosphorous compound in which the compound power represented by the chemical formulas (Chemical Formula 39) and (Chemical Formula 40) is also selected.
  • Irganoxl222 (manufactured by Chinoku Specialty Chemicals) is commercially available as the compound represented by the above chemical formula (I ⁇ 39), and Irganoxl425 is represented by the chemical formula (Chemical Formula 40). (Chinoku 'Specialty Chemicals') is sold and can be used.
  • the phosphorus compound represented by the formula (Chemical Formula 41), which is a phosphorus compound having a wide range of linking groups (X) that can be used in the present invention, is as follows.
  • R 1 represents an aromatic ring structure having 6 to 50 carbon atoms or a heterocyclic structure having 4 to 50 carbon atoms, and the aromatic ring structure or the heterocyclic structure is substituted. It may have a group.
  • X is a linking group and is an aliphatic hydrocarbon having 1 to 10 carbon atoms (straight chain, branched structure or alicyclic structure is acceptable), or a substituent containing 1 carbon atom. ⁇ 10 aliphatic hydrocarbons (straight chain, branched or alicyclic structure) 1 O, 1 OCH —, -SO 1, -CO-, — COCH —, 1 C
  • R 2 and R 3 are each independently a hydrogen atom
  • hydrocarbon group having 1 to 20 carbon atoms including a hydrocarbon group having 1 to 20 prime atoms, a hydroxyl group or an alkoxyl group.
  • the hydrocarbon group may have an alicyclic structure, a branched structure, or an aromatic ring structure! /. ]
  • the substituent of the aromatic ring structure and heterocyclic structure of the phosphorus compound represented by the chemical formula (Chemical Formula 41) is a hydrocarbon group having 1 to 50 carbon atoms (even if it is linear, an alicyclic structure or a branched structure)
  • An aromatic ring structure which may be substituted with a halogen atom), a hydroxyl group, a halogen group, an alkoxyl group having 1 to 10 carbon atoms or an amino group (alkyl having 1 to 10 carbon atoms).
  • / Is replaced with an arsenol! Even if it is too powerful!
  • There is a -tro group! / ⁇ has a carboxyl group!
  • Formyl group or acyl group ⁇ is sulfonic acid group, sulfonic acid amide group (may be substituted with alkyl or alkanol having 1 to 10 carbon atoms), phosphoryl-containing group , Nitrile group, cyanoalkyl group, force 1 or 2 types selected Or more.
  • Examples of the phosphorus compound represented by the chemical formula (Chemical Formula 41) include the following. Specifically, benzylphosphonic acid, benzylphosphonic acid monoethyl ester, 1-naphthylmethylphosphonic acid, 1 naphthylmethylphosphonic acid monoethyl ester, 2-naphthylmethylphosphonic acid, 2 naphthylmethylphosphonic acid monoethyl ester 4 phenyl, benzylphosphonic acid, 4 phenyl, benzylphosphonic acid monoethyl ester, 2 phenyl, benzylphosphonic acid, 2 phenyl, benzylphosphonic acid monoethyl ester, 4 chlorine, benzylphosphonic acid, 4 —Chloro, benzylphosphonic acid monoethyl ester, 4-chloro, benzylphosphonic acid jetyl ester, 4-methoxy, benzylphosphonic acid, 4-methoxy, benzylphospho
  • a ligand represented by the chemical formula (Chemical Formula 41) having a linking group (X — (CH 3) —) that can be used in the present invention.
  • the compounds are as follows.
  • R is a hydroxyl group, a C1-C10 alkyl group, a COOH group or —COOR 4 (R 4 represents a C1-C4 alkyl group), an alkylene glycol group or a monoalkoxyalkylene glycol group. (Monoalkoxy represents C1-C4, and alkylene glycol represents C1-C4 glycol).
  • R 1 is benzene, naphthalene, biphenol, diphenenoleethenore, diphenenorethioatenore, diphenenolesnorephone, diphenenoles methane, diphenyldimethylmethane, diphenylketone, anthracene, phenanthrene, and Represents an aromatic ring structure such as pyrene.
  • R 2 and R 3 each independently represent a hydrogen atom or a C1-C4 hydrocarbon group.
  • m represents an integer of 1 to 5, and when R ° is plural, the same substituent or a combination of different substituents may be used.
  • n is 0, and represents an integer of 1 to 5.
  • examples of the phosphorus compound in which the aromatic ring structure having a substituent is benzene include the following. That is, 2-hydroxybenzylphosphonic acid jetyl ester, 2-hydroxybenzylphosphonic acid monoethyl ester, 2 hydroxybenzylphosphonic acid, 4 hydroxybenzylphosphonic acid jetyl ester, 4-hydroxybenzylphosphonic acid monoethyl ester, 4-hydro Examples include benzylphosphonic acids in which a hydroxyl group is introduced into the benzene ring, such as xylbenzylphosphonic acid, 6-hydroxybenzylphosphonic acid jetyl ester, 6-hydroxybenzylphosphonic acid monoethyl ester, and 6-hydroxybenzylphosphonic acid. It is not limited to these.
  • 2 carboxybenzylphosphonic acid jetyl ester 2 carboxybenzylphosphonic acid monoethyl ester, 2 carboxybenzylphosphonic acid, 3 carboxybenzylphosphonic acid jetyl ester, 3-carboxybenzylphosphonic acid monoethyl ester, 3 —Carboxybenzylphosphonic acid, 4 Carboxybenzylphosphonic acid jetyl ester, 4 Carboxybenzylphosphonic acid monoethyl ester, 4 Carboxybenzylphosphonic acid, 2, 5 Dicarboxybenzylphosphonic acid jetyl ester, 2, 5 Dicarboxybenzylphosphonic acid Acid monoethyl ester, 2,5 dicarboxybenzylphosphonic acid, 3,5-dicarboxybenzylphosphonic acid jetyl ester, 3,5-dicarboxybenzylphosphonic acid monoethyl ester, 3, 5- Carboxybenzyl phosphonic acid, 2-methoxycarbonylbenzylphosphonic acid
  • the benzylic phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-mentioned substituent, hydroxyl group, alkyl group, carboxyl group, carboxyester group, 2-hydroxy group. A mixture of ethoxy group and 2-methoxyethoxy group can also be used.
  • examples of the phosphorus compounds represented by the chemical formula (Chemical Formula 42) of the present invention are as follows. That is, 1- (5 -Hydroxy) naphthylmethylphosphonic acid jetyl ester, 1 mono (5 hydroxy) naphthylmethylphosphonic acid monoethyl ester, 1 mono (5 hydroxy) naphthylmethylphosphonic acid, 1 mono (5 hydroxy) naphthylmethylphosphonic acid jetyl ester, 1 -(5-Hydroxy) naphthylmethylphosphonic acid monoethyl ester, 1- (5-hydroxy) naphthylmethylphosphonic acid, 1- (5-n-butyl) naphthylmethylphosphonic acid jetyl ester, 1- (5-n-butyl) naphthyl Methylphosphonic acid monoethyl ester, l- (5-n-butyl) nap
  • the naphthalene-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-described substituent, hydroxyl group, alkyl group, carboxyl group, carboxy ester group, 2- A mixture of hydroxyethoxy group and 2-methoxyethoxy group can also be used.
  • examples of the phosphorus compounds represented by the chemical formula (Chemical Formula 42) of the present invention are biphenyl. Namely, 4- (4-hydroxyphenyl) benzylphosphonic acid jetyl ester, 4- (4-hydroxyphenyl) benzylphosphonic acid monoethyl ester, 4- (4-hydroxyphenyl) benzylphosphonic acid 4- (4-n-butylphenyl) benzylphosphonic acid jetyl ester, 4- (4-n-butylphenyl) benzylphosphonic acid monoethyl ester, 4- (4 n-butylphenyl) benzylphosphone Acid, 4- (4-carboxyphenyl) benzylphosphonic acid jetyl ester, 4- (4-carboxyphenyl) benzylphosphonic acid monoethyl ester, 4- (4-carboxyphenyl) benzylphosphonic acid, 4
  • the biphenyl-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-mentioned substituent, hydroxyl group, alkyl group, carboxyl group, carboxy ester group, 2- A mixture of hydroxyethoxy group and 2-methoxyethoxy group can also be used.
  • examples of the phosphorus compounds represented by the chemical formula (Chemical Formula 42) of the present invention are as follows. That is, 4- (4-hydroxyphenyl) benzylphosphonic acid jetyl ester, 4- (4-hydroxyphenyl) benzylphosphonic acid monoethyl ester, 4- (4-hydroxyphenyl-benzyl) benzylphosphonic acid, 4- (4-n-Butylphenyl) benzylphosphonic acid monoethyl ester, 4- (4- (n-butylphenyl) benzylphosphonic acid monoethyl ester, 4- (4-butylphenyl) benzylphosphonic acid, 41 (4 Carboxyphenoxy) benzylphosphonic acid monoethyl ester, 4- (4-carboxyphenoxy) benzylphosphonic acid monoethyl ester, 4- (4-carboxyphenoxy)
  • the diphenyl ether-based phosphorus compound in the present invention is limited to the above-mentioned single substituent species.
  • a mixture of the above-mentioned substituents, hydroxyl group, alkyl group, carboxyl group, strong carboxyl ester group, 2-hydroxyethoxy group, and 2-methoxyethoxy group can also be used.
  • phosphorus compounds represented by the chemical formula (Chemical Formula 42) of the present invention the following are examples of phosphorus compounds in which the aromatic ring structure having a substituent is diphenyl ether. That is, 4- (4-hydroxyphenylthio) benzylphosphonic acid jetyl ester, 4- (4-hydroxyphenylthio) benzylphosphonic acid monoethyl ester, 4- (4-hydroxyphenylthio) benzylphosphone.
  • the diphenylthioether-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-described substituent, hydroxyl group, alkyl group, carboxyl group, carboxyester group, A 2-hydroxyethoxy group and a 2-methoxyethoxy group are used in combination.
  • examples of the phosphorus compound in which the aromatic ring structure having a substituent is diphenylsulfone include the following.
  • the diphenylsulfone-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-mentioned substituents, hydroxyl groups, alkyl groups, carboxyl groups, strong carboxy ester groups. , 2-hydroxyethoxy group, and 2-methoxyethoxy group hybrids can also be used.
  • examples of the phosphorus compound in which the aromatic ring structure having a substituent is diphenylmethane include the following. That is, 4 -(4-hydroxybenzyl) benzylphosphonic acid jetyl ester, 4- (4-hydroxybenzyl) benzylphosphonic acid monoethyl ester, 4- (4-hydroxybenzyl) benzylphosphonic acid, 4- (4-n-butylbenzyl ) Benzylphosphonic acid monoethyl ester, 4- (4-n-butylbenzyl) benzylphosphonic acid monoethyl ester, 4 (4-butylbenzyl) benzylphosphonic acid, 4 (4-carboxybenzyl) benzylphosphonic acid monoethyl ester 4- (4-Carboxybenzyl) benzylphosphonic acid monoethyl ester, 4- (4-carboxybenzyl) benzylphosphonic acid monoethyl ester, 4- (4-carboxybenzylphospho
  • Phosphonic acids into which a carboxyl group, a carboxylic acid ester group, an alkylene glycol group, a monomethoxyalkylene glycol group and the like have been introduced are not limited thereto.
  • the diphenylmethane-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-mentioned substituent, hydroxyl group, alkyl group, carboxyl group, carboxyl ester group, 2 A mixture of —hydroxyethoxy group and 2-methoxyethoxy group can also be used.
  • examples of the phosphorus compound in which the aromatic ring structure having a substituent is diphenyldimethylmethane include the following. That is, 4- (4-hydroxyphenyldimethyl) benzylphosphonic acid jetyl ester, 4- (4-hydroxyphenyldimethylmethyl) benzylphosphonic acid monoethyl ester, 4- (4-hydroxyphenyldimethylmethyl) ) Benzylphosphonic acid, 4- (4 n-butylphenyldimethylmethyl) benzylphosphonic acid monoethyl ester, 4 (4-n Butylphenyldimethyl) benzylphosphonic acid monoethyl ester, 4- (4-butylphenyldimethylmethyl) benzylphosphonic acid, 4- (4-carboxyphenyldimethylmethyl) benzylphosphonic acid monoethyl ester, 4- ( 4-carboxyphenyldimethyl) benzylphosphonic acid monoethyl ester, 4- ( 4-carbox
  • the diphenyldimethylmethane-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-described substituent, hydroxyl group, alkyl group, carboxyl group, carboxyester group, A 2-hydroxyethoxy group and a 2-methoxyethoxy group are mixed and then used.
  • examples of the phosphorus compounds represented by the chemical formula (Chemical Formula 42) of the present invention include the following. It is done. In other words, 4- (4-hydroxybenzoyl) benzylphosphonic acid jetyl ester, 4- (4-hydroxybenzoyl) benzylphosphonic acid monoethyl ester, 4- (4-hydroxybenzoyl) Benzylphosphonic acid, 4- (4-n-butylbenzoyl) benzylphosphonic acid monoethyl ester, 4- (4-n-butylbenzoyl) benzylphosphonic acid monoethyl ester, 4- (4-butylbenzoyl) benzylphosphonic acid, 4- (4-butylbenzoyl) benzylphosphonic acid, 4- (4 —Carboxybenzo Benzyl) phosphonic acid monoethyl ester, 4- (4-carboxybenzoyl) benzylphosphonic acid monoethyl ester
  • the diphenylketone-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-mentioned substituents, hydroxyl groups, alkyl groups, carboxyl groups, carboxyester groups. , A mixture of 2-hydroxyethoxy group and 2-methoxyethoxy group can also be used.
  • examples of the phosphorus compound in which the aromatic ring structure having a substituent is anthracene include the following. 9- (10-hydroxy) anthrylmethylphosphonic acid jetyl ester, 9- (10-hydroxy) anthrylmethylphosphonic acid monoethyl ester, 9- (10-hydroxy) anthrylmethylphosphonic acid, 9- (10- n-butyl) anthrylmethylphosphonic acid jetyl ester, 9- (10-n-butyl) anthrylmethylphosphonic acid monoethyl ester, 9 (10-n-butyl) anthrylylphosphonic acid, 9- (10-carboxy) anthrylmethy 9- (10-carboxy) anthrylmethylphosphonic acid, 9- (10-carboxy) 9- (2-hydroxyethoxy) anthryl Jetyl ester methylphosphonate, 9-one (2 hydroxyethoxy) Emissions thrill methyl
  • the anthracene-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-mentioned substituent, hydroxyl group, alkyl group, carboxyl group, carboxy ester group, 2- A mixture of hydroxyethoxy group and 2-methoxyethoxy group can also be used.
  • examples of the phosphorus compounds represented by the chemical formula (Chemical Formula 42) of the present invention are as follows. 1 (7-n-butyl) phenanthrylmethylphosphonic acid jetyl ester, 1 (7-n-butyl) phenanthrylmethylphosphonic acid monoethyl ester, 1- (7-n-butyl) phenane 1- (7-carboxy) phenanthrylmethylphosphonic acid, 1- (7-carboxy) phenanthrylmethylphosphonic acid, 1- (7-carboxy) phenanthrylmethylphosphonic acid, 1- (7-carboxy) phenanthrylmethylphosphonic acid, 1- (7-carboxy) phenanthrylmethylphosphonic acid Phenoxyl) phenanthrylmethylphosphonic acid jetyl ester, 1- (7-hydroxyethoxy) phenanthrylmethylphosphonic acid monoethyl ester, 1- (7-hydroxyethoxy
  • the phenanthrene-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-described substituents, hydroxyl group, alkyl group, carboxyl group, carboxyester group, 2-hydroxyl group. A mixture of ethoxy group and 2-methoxyethoxy group can also be used.
  • examples of the phosphorus compounds represented by the chemical formula (Chemical Formula 42) of the present invention include the following. 1- (5-hydroxy) pyrenylmethylphosphonic acid jetyl ester, 1- (5-hydroxy) pyrenylmethylphosphonic acid monoethyl ester, 1- (5-hydroxy) pyrenylmethylphosphonic acid, 1- (5 — N-butyl) pyrylmethylphosphonic acid jetyl ester, 1- (5-n-butyl) pyrylmethylphosphonic acid monoethyl ester, 1- (5-n-butyl) pyrylmethylphosphonic acid, 1 — (5-carboxy) pyrenylmethylphosphonic acid jetyl ester, 1- (5-carboxy) pyrylmethylphosphonic acid monoethyl ester, 1- (5-carboxy) pyrylmethylphosphonic acid, 1— (5— Hydroxyethoxy) pyry
  • the pyrene-based phosphorus compound in the present invention is not limited to the above-mentioned single substituent species, but includes the above-described substituent, hydroxyl group, alkyl group, carboxyl group, carboxyester. Can be used as a hybrid of alkenyl group, 2-hydroxyethoxy group, and 2-methoxyethoxy group
  • Substituents such as hydroxyl group, alkyl group, carboxyl group, carboxyester group, 2-hydroxyethoxy group, and 2-methoxyethoxy group introduced into the series of aromatic rings are an aluminum atom at the time of polymerization of polyester. It is presumed to be deeply involved in complex formation.
  • a carboxyl group or a hydroxyl group that is a functional group at the time of polyester formation is included, and it is easily dissolved or taken into the polyester matrix, so that it is considered to be particularly effective in reducing polymerization activity and foreign matters.
  • Examples of the substituent bonded to the aromatic ring structure include C1 to C10 alkyl groups, carboxyl and carboxy ester groups, alkylene glycols and monoalkoxyalkylene glycols. More preferred in terms of the effect of reducing foreign matter are carboxyl and carboxyl ester groups, alkylene glycols and monoalkoxyalkylene glycols. The reason for this is unknown, but it is presumed to be due to improved compatibility with the polyester and the catalyst medium, alkylendalycol.
  • Linyi compound is as follows.
  • R 1 is an aromatic ring structure having 6 to 50 carbon atoms, and is a complex having 4 to 50 carbon atoms. Represents a ring structure, and the aromatic ring structure or the heterocyclic structure may have a substituent.
  • R 2 and R 3 are each independently hydrogen An atom, a hydrocarbon group having 1 to 20 carbon atoms, a hydrocarbon group having 1 to 20 carbon atoms including a hydroxyl group or an alkoxyl group is represented.
  • the hydrocarbon group may have an alicyclic structure, a branched structure, or an aromatic ring structure.
  • the substituent of the aromatic ring structure and heterocyclic structure of the phosphorus compound represented by the chemical formula may be aromatic ring structures or these may be halogen-substituted), hydroxyl groups, halogen groups, alkoxy groups having 1 to 10 carbon atoms or amino groups (alkyls having 1 to 10 carbon atoms). ! /, Is substituted with an alkanol! It is too powerful!), There is a -tro group! / ⁇ has a carboxyl group! /, Is an aliphatic carboxylic acid having 1 to 10 carbon atoms Is an acid ester group! / Is a formyl group or an acyl group.
  • the aromatic ring structure of the chemical formula (I ⁇ 43) is selected from benzene, naphthalene, biphenyl, diphenyl ether, diphenylthioether, diphenyl sulfone, diphenylmethane, diphenyldimethylmethane, anthracene, phenanthrene, and pyrene power. It is.
  • the heterocyclic structure is selected from furan, benzofuran, isobenzofuran, dibenzofuran, naphthalane and phthalide.
  • at least one of R 2 and R 3 in the above formula (Chemical Formula 43) is a hydrogen atom.
  • Examples of the phosphorus compound represented by the chemical formula (Chemical Formula 43) that can be used in the present invention include the following phosphorus compounds. That is, (3--tro, 5-methyl) phenylphosphonic acid ethyl ester, (3-nitro, 5-methyl) -phenylphosphonic acid monoethyl ester, (3-toro, 5-methyl) monophenyl- L-phosphonic acid, (3-nitro, 5-methoxy) monophenylphosphonic acid jetyl ester, (3-nitro, 5-methoxy) -phenylphosphonic acid monoethyl ester, (3-nitro, 5-methoxy) monophenyl -Luphosphonic acid, (4-Chloro) monophenylphosphonic acid jetyl ester, (4 Chlor) Phenophosphonic acid monoethyl ester, (4-Chloro) monophenylphosphonic acid, (5-Chlor) 1-phenylphosphonic acid jetyl ester, (5-chloro,)-phenyl
  • the phosphorus compound has a slightly lower polymerization activity than the phosphorus compound having the above-mentioned linking group, but it is used as a polyester polymerization catalyst when the catalyst preparation method of the present invention is used. It is possible to do.
  • the above-mentioned phosphorus compound is preliminarily heat-treated in at least one solvent selected from a group power that also has water and alkylene glycol power.
  • the treatment improves the polycondensation catalyst activity by using the above-mentioned phosphorus compound in combination with the above-mentioned aluminum or aluminum compound, and also reduces the formation of foreign matter caused by the polycondensation catalyst.
  • the solvent used when heat-treating the phosphorus compound in advance is not limited as long as it is at least one selected from the group force consisting of water and alkylene glycol force. It is preferable to use a solvent that dissolves the compound.
  • the alkylene glycol it is preferable to use glycol which is a constituent component of the target polyester, such as ethylene glycol.
  • the heat treatment in the solvent is preferably performed by dissolving the phosphorus compound.
  • 1S may not be completely dissolved. Further, after the heat treatment, it is not necessary that the compound retains the original structure, and the modification with the heat treatment may improve the solubility in the solvent.
  • the temperature of the heat treatment is not particularly limited, but is preferably in the range of 20 to 250 ° C. More preferably, it is the range of 100-200 degreeC.
  • the upper limit of the temperature is preferably around the boiling point of the solvent used.
  • the heating time varies depending on conditions such as temperature. If the temperature is near the boiling point of the solvent, it is preferably in the range of 1 minute to 50 hours, more preferably 30 minutes to 10 hours, more preferably 1 to 5 hours. Range.
  • the pressure of the heat treatment system may be normal pressure, higher or lower, and is not particularly limited.
  • the concentration of the solution is preferably 1 to 500 gZl as a phosphorus compound, more preferably 5 to 300 gZl, and even more preferably 10 to: LOOgZl.
  • the heat treatment is preferably performed in an atmosphere of an inert gas such as nitrogen.
  • the storage temperature of the solution or slurry after heating is not particularly limited, but is preferably in the range of 0 ° C to 100 ° C, more preferably in the range of 20 ° C to 60 ° C. It is preferable to store the solution in an atmosphere of an inert gas such as nitrogen.
  • the aluminum of the present invention or a compound thereof may coexist.
  • the aluminum of the present invention or a compound thereof may be added in a powder form, a solution form, or a slurry form to a phosphorus compound that has been previously heat-treated in a solvent. Further, the solution or slurry after addition may be heat-treated. The solution or slurry obtained by these operations can be used as the polycondensation catalyst of the present invention.
  • the amount of Rini ⁇ object in the present invention, 0,001 to 0.1 Monore 0/0 force S preferably 0.5 relative to the total configuration Yuni' Monore number of Bok carboxylic acid component of the polyester obtained, 0 More preferably, it is from 005 to 0.05 mol%.
  • a small amount of an alkali metal, an alkaline earth metal, and the compound strength thereof include at least one selected from the second metal. It is an embodiment that it is preferable to coexist as a component.
  • the coexistence of a powerful second metal-containing component in the catalyst system increases the catalytic activity in addition to the effect of suppressing the formation of diethylene glycol, and thus a catalyst component with a higher reaction rate is obtained, which is effective for improving productivity. It is.
  • the method in which at least one selected from the small amount of alkali metal, alkaline earth metal, and a compound thereof coexists as the second metal-containing component is not limited to the case of an aluminum compound alone system.
  • the present invention can also be applied to a catalyst system in which products are used in combination.
  • a technique in which an alkali metal compound or an alkaline earth metal compound is added to an aluminum compound to form a catalyst having sufficient catalytic activity is known.
  • a known catalyst in combination with an alkali metal compound or an alkaline earth metal compound is used to obtain practical catalytic activity.
  • an alkali metal compound is used, the hydrolysis resistance of the resulting polyester is reduced and the amount of foreign matter resulting from the alkali metal compound increases. Physical properties When used for film, film physical properties may deteriorate.
  • the thermal stability of the obtained polyester decreases when a practical activity is obtained, and the amount of foreign matter that is greatly colored by heating increases, resulting in resistance to hydrolysis. Degradability may also be reduced.
  • alkali metal when adding alkaline earth metals and their compounds, its amount M (mol 0/0), to the number of moles of all the polycarboxylic acids units constituting the polyester, IX 10-6 More preferably, it is less than 0.1 mol%, more preferably 5 X 10 _6 to 0.05 mol%, still more preferably IX 10 5 to 0.03 mol%, particularly preferably IX 10 is 5 to 0.01 mol%. Since the amount of alkali metal and alkaline earth metal added is small, it is possible to increase the reaction rate without causing problems such as deterioration of thermal stability, generation of foreign substances, coloring, and degradation of hydrolysis resistance. Is possible.
  • the amount M of the alkali metal, alkaline earth metal and its compound is 0.1 mol% or more, the thermal stability decreases, the generation of foreign matter and coloring, and the hydrolysis resistance decrease. This happens.
  • the M is less than 1 X 10_ 6, the effect is not clear also be added.
  • the alkali metal or alkaline earth metal constituting the second metal-containing component is preferably at least one selected from Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, and Ba. Of these, at least one selected from Li, Na, Mg and their compound power is more preferred.
  • the alkali metal or alkaline earth metal compound include saturated aliphatic carboxylates such as formic acid, acetic acid, propionic acid, butyric acid, and succinic acid of these metals, and unsaturated aliphatic carboxylates such as acrylic acid and methacrylic acid.
  • Aromatic carboxylates such as acid salts and benzoic acid, halogen-containing carboxylates such as trichlorodiacetic acid, hydroxycarboxylates such as lactic acid, citrate, and salicylic acid, carbonic acid, sulfuric acid, nitric acid, phosphoric acid, phosphonic acid, carbonic acid Inorganic acid salts such as hydrogen, hydrogen phosphate, hydrogen sulfide, sulfurous acid, thiosulfuric acid, hydrochloric acid, hydrobromic acid, chloric acid, bromic acid, 1-propanesulfonic acid, 1-pentanesulfonic acid, naphthalenesulfonic acid, etc.
  • Organic sulfonates organic sulfates such as lauryl sulfate, methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy
  • chelating compounds such as alkoxides and acetylylacetonates, hydrides, oxides and hydroxides.
  • these alkali metals, alkaline earth metals or their compounds when using strongly alkaline substances such as hydroxides, these are difficult to dissolve in diols such as ethylene glycol or organic solvents such as alcohols. Since there is a tendency, it must be added to the polycondensation system as an aqueous solution, which may cause a problem in the polycondensation process.
  • the polyester tends to be subjected to side reactions such as hydrolysis during polycondensation, and the polycondensed polyester tends to be easily colored, resulting in resistance to heat. Water decomposability also tends to decrease. Therefore, the alkali metal of the present invention or a compound thereof or an alkaline earth metal or a compound thereof is preferably an alkali metal or alkaline earth metal saturated aliphatic carboxylate or unsaturated aliphatic carboxylate.
  • saturated aliphatic carboxylic acid salts of alkali metals or alkaline earth metals particularly acetates is preferred.
  • the polycondensation catalyst of the present invention is different from other polycondensation catalysts such as antimony compounds, germanium compounds, and titanium compounds, and the addition of these components has the characteristics and processing of polyester as described above. It is effective to improve the productivity by shortening the polycondensation time, and it is preferable to use the coexisting product within the range of the added amount so as not to cause problems in the product such as property and color tone.
  • the antimony compound is preferably added in an amount of 50 ppm or less as an antimony atom to the polyester obtained by polycondensation.
  • a more preferable amount of additive is 30 ppm or less. If the additive amount of antimony is 50 ppm or more, metal antimony is precipitated, and blackening and foreign matter are generated in the polyester.
  • the germanium compound is preferably added in an amount of 20 ppm or less as a germanium atom to the polyester obtained by polycondensation.
  • a more preferable amount of applied force is 10 ppm or less. If the amount of germanium applied is 20 ppm or more, it is not preferable because it is disadvantageous in terms of cost.
  • the titanium compound is preferably added in an amount of 5 ppm or less as a titanium atom to the polyester obtained by polycondensation.
  • a more preferable addition amount is 3 ppm or less, and further preferably 1 ppm or less. If the amount of added force of titanium is 5 ppm or more, the resulting polyester will be markedly colored, and the thermal stability will be significantly reduced.
  • the antimony compound that can be used in the present invention is not particularly limited, and examples of suitable compounds include antimony trioxide, antimony pentoxide, antimony acetate, antimony glycoxide, and the like. In particular, it is preferable to use antimony trioxide.
  • the germanium compound is not particularly limited, and examples thereof include diacid germanium and tetrasalt germanium, and germanium dioxide is particularly preferable. As the germanium dioxide, both crystalline and amorphous materials can be used.
  • the titanium compound that can be used in the present invention is not particularly limited, but tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutynoretitanate, tetra-tert-butyl titanate, tetracyclohexane.
  • Compound acid and titanium Reaction product consisting of orthoester or condensed orthoester of titanium, orthoester or condensed orthoester of titanium and hydroxycarboxylic acid, reaction product of orthoester or condensation of titanium, hydroxyester and hydroxycarboxylic acid, titanium And reaction products comprising a polyhydric alcohol having at least two hydroxyl groups, a 2-hydroxycarboxylic acid and a base.
  • a complex acid compound of titanium and silicon titanium Preferred is a reaction product comprising a complex oxide of magnesium and magnesium, an ortho ester or condensed ortho ester of titanium, a hydroxycarboxylic acid and a phosphorus compound.
  • tin compounds include dibutyltin oxide, methylphenoltin oxide, tetraethyltin, hexethylditin oxide, triethyltin hydride oxide, monobutylhydroxytin oxide, triisobutyltin acetate, diphenol. -Rustin dilaurate, monobutyltin trichloride, dibutyltin sulfide, dibutylhydroxide oxide, methylstannic acid, ethylstannic acid, etc., with the use of monobutylhydroxytin oxide being particularly preferred.
  • a cobalt compound as a cobalt atom in an amount of less than 10 ppm relative to the polyester for the purpose of improving color tone. More preferably, it is 5 ppm or less, and more preferably 3 ppm or less.
  • the cobalt compound there are no particular limitations on the cobalt compound, but specific examples include cobalt acetate, cobalt nitrate, chlorocone salt, cobalt acetylacetonate, cobalt naphthenate, and hydrates thereof. It is done. Of these, cobalt acetate tetrahydrate is particularly preferred.
  • a color tone improving agent is a substance that changes color tone when added.
  • the color tone improving agent of the present invention is not particularly limited, but inorganic and organic pigments, dyes, fluorescent whitening agents and the like are preferable.
  • the total amount of pigments and dyes used is preferably 20 ppm or less, more preferably 10 ppm or less, and even more preferably 5 ppm or less, based on the polyester obtained. is there. In the region where power is applied, coloring can be effectively eliminated without reducing the brightness of the polycondensate.
  • the fluorescent brightening agent alone or in combination with other color tone improving agents because the color tone is improved and, for example, the amount of the pigment or dye used may be small.
  • the optical brightener one kind of commonly used ones may be used, or two or more kinds may be used in combination.
  • the amount of added force is preferably 50 ppm or less, more preferably 5 to 25 ppm, based on the polyester obtained.
  • the inorganic pigment is not particularly limited as long as it can change the color tone, but for example, titanium dioxide, carbon black, iron black, nickel titanium yellow, yellow iron oxide, force Dom yellow, yellow lead, chromium titanium. Yellow, zinc ferrite pigments, petals, cadmium red, molybdenum red, chromium oxide, spinel green, chrome orange, cadmium orange, ultramarine, bitumen, cobalt blue, and the like. Of these, acid blue chromium, ultramarine blue, bitumen and cobalt blue are preferred, and cobalt blue is more preferred. One or more of these inorganic pigments may be used in combination as necessary.
  • the production of the polyester according to the present invention can be carried out by a method having a conventionally known process except that the polyester polycondensation catalyst of the present invention is used as a catalyst.
  • the polyester polycondensation catalyst of the present invention is used as a catalyst.
  • direct esterification is performed by directly reacting terephthalic acid with ethylene glycol and, if necessary, other copolycondensation components to distill off water and esterify, followed by polycondensation under reduced pressure.
  • transesterification by reacting dimethyl terephthalate with ethylene glycol and, if necessary, other copolycondensation components to distill off methyl alcohol for transesterification and then polycondensation under reduced pressure. .
  • solid phase polycondensation may be performed as necessary to increase the intrinsic viscosity.
  • the molten polycondensed polyester may be subjected to heat crystallization after moisture absorption, or water vapor may be directly sprayed onto a polyester chip to cause heat crystallization.
  • the melt polycondensation reaction may be performed in a batch reactor or a continuous reactor.
  • the esterification reaction or ester exchange reaction may be performed in one step or may be performed in multiple steps.
  • the melt polycondensation reaction may be performed in one stage or may be performed in multiple stages.
  • Solid phase polycondensation The reaction can be carried out in a batch apparatus or a continuous apparatus as in the melt polycondensation reaction.
  • the melt polycondensation and the solid phase polycondensation may be carried out continuously or separately.
  • the catalyst of the present invention has catalytic activity not only in a polycondensation reaction but also in an esterification reaction and a transesterification reaction.
  • polycondensation by an ester exchange reaction between an alkyl ester of a dicarboxylic acid such as dimethyl terephthalate and a dalicol such as ethylene glycol is usually performed in the presence of a transesterification catalyst such as a titanium compound or a zinc compound.
  • a transesterification catalyst such as a titanium compound or a zinc compound.
  • the catalyst of the present invention can be used in place of these catalysts or in the presence of these catalysts.
  • the catalyst of the present invention has catalytic activity not only in melt polycondensation but also in solid phase polycondensation and solution polycondensation, and polyester can be produced by any method.
  • the catalyst of the present invention may be reacted at any stage of the polycondensation reaction, for example, at any stage before or during the esterification reaction or ester exchange reaction, or immediately before or during the reaction. Although it can be added to the system, it is preferably added immediately before the start of the polycondensation reaction.
  • the catalyst solution of the aluminum compound of the present invention and other compounds may be added as a premixed mixture, or these may be added separately. Further, the catalyst solution of the aluminum compound of the present invention and other compounds may be added to the polycondensation system at the same addition time, or each component may be added at different addition times. Further, the entire amount of the catalyst may be added at once or may be added in multiple portions.
  • the polyester obtained by the method of the present invention is under reduced pressure in the solid phase! Heats the polyester resin under an inert gas stream, and further proceeds with polycondensation or the polyester resin.
  • oligomers such as cyclic trimers and by-products such as acetoaldehyde contained therein.
  • the polyester of the present invention may contain organic, inorganic, and organometallic toners, and a fluorescent brightener, and the like, by containing one or more of these. Further, coloring such as yellowing of polyester can be suppressed to a further excellent level.
  • Other optional polycondensates contain antistatic agents, antifoaming agents, dyeability improvers, dyes, pigments, anti-fogging agents, fluorescent brighteners, stabilizers, antioxidants, and other additives. May be.
  • anti-oxidants aromatic amine-based, phenol-based, etc. anti-oxidants can be used.
  • stabilizers phosphoric acid and phosphate ester-based phosphorus-based, sulfur-based, amine-based Stabilizers such as can be used.
  • additives can be added during or after the polycondensation of the polyester or at any stage during the molding of the polyester, and which stage is suitable depends on the structure of the target polyester. It may be selected appropriately according to the required performance of the polyester obtained.
  • the polyester obtained by the method of the present invention has a feature that the content of foreign matter resulting from the polycondensation catalyst is small.
  • This feature is, for example, the following aluminum-based foreign matter evaluation method insoluble in polyester. Can be evaluated.
  • Measurement is performed by measuring ⁇ - ⁇ ⁇ -ray intensity under the conditions of PHA (wave height analyzer) 100-300 using X-ray output 50kV—70mA, using pentaerythritol as spectroscopic crystal and PC (proportional counter) as detector. Carried out. The amount of aluminum element in the PET resin for the calibration curve Quantified by light analysis.
  • PHA wave height analyzer
  • PC proportional counter
  • the amount of aluminum-based foreign matter insoluble in polyester measured by the above evaluation method is preferably 3500 ppm or less! More preferred is 2500 ppm or less, and 1500 ppm or less is more preferred. If the amount of aluminum-based foreign matter insoluble in polyester exceeds 3500 ppm, the content of fine foreign matter insoluble in polyester increases. For example, when molded as a molded body such as a film bottle, the haze of the molded body is increased. This is not preferable because it deteriorates. It also leads to the problem of increased filter clogging during polyester filtration in the polycondensation process and molding process.
  • the polyester obtained by the production method of the present invention preferably has a haze value of 2% or less of a uniaxially stretched film evaluated by the evaluation method shown in the Examples.
  • the haze value is more preferably 1.8% or less, and more preferably 1.6% or less. Haze value is 2
  • a molded product formed by molding involving stretching of a film, bottle or the like is highly transparent and a molded product may not be obtained.
  • the method for setting the haze value of the biaxially stretched film to 2% or less is not limited, but the haze value is greatly affected by the amount of aluminum-based foreign matter insoluble in the polyester. Therefore, the polyester obtained by the method of the present invention has excellent properties.
  • Polyesters polycondensed using the polyester polycondensation catalyst of the present invention can be produced by a conventional melt spinning method, and a method of spinning and drawing in two steps and a single step. The method can be adopted. Furthermore, all known fiber manufacturing methods, such as a manufacturing method of a stable equipped with crimping, heat setting and cutting processes, and monofilament can be applied.
  • the obtained fiber can have various fiber structures such as atypical cross-section yarn, hollow cross-section yarn, composite fiber, and original yarn, and also in yarn processing, for example, known means such as blending and blending Can be adopted.
  • polyester fiber can be made into a fiber structure such as a woven or knitted fabric or a non-woven fabric.
  • polyester fibers are used for clothing fibers, curtains, carpets, futon cotton, Interiors such as fiber fills, etc.
  • the polyester of the present invention is suitably used as a hollow molded article.
  • hollow molded body examples include beverage containers such as mineral water, juice, wine and whiskey, baby bottles, bottled food containers, containers such as hairdressing and cosmetics, housing and dishwashing detergent containers.
  • polyesters are particularly suitable for various beverages as pressure-resistant containers, heat-resistant pressure-resistant containers, and alcohol-resistant containers utilizing the sanitary and strength properties and solvent resistance of polyester.
  • the hollow molded body can be produced by a method in which a polyester chip obtained by melt polycondensation or solid phase polycondensation is dried by a vacuum drying method or the like and then molded by a molding machine such as an extrusion molding machine or an injection molding machine.
  • a bottomed preform is obtained by a direct molding method in which the melt after the polycondensation is introduced into a molding machine in a molten state and molded.
  • a final hollow molded body can be obtained by blow molding such as stretch blow molding, direct blow molding, and extrusion blow molding.
  • a molded body obtained by a molding machine such as the above-described extrusion molding machine or injection molding machine can be used as a final hollow container.
  • the polyester resin collected from the waste resin market generated in the production process can also be mixed. Even with such recycled resin, the polyester resin of the present invention can provide a high-quality hollow molded product with little deterioration.
  • such a container has a multilayer structure in which an intermediate layer is provided with a gas noretic resin layer such as polyvinyl alcohol or polymetaxylylenediamine adipate, a light-shielding resin layer or a recycled polyester layer.
  • a gas noretic resin layer such as polyvinyl alcohol or polymetaxylylenediamine adipate, a light-shielding resin layer or a recycled polyester layer.
  • a metal such as aluminum or a layer of diamond-like carbon using a method such as vapor deposition or CVD (Chemical Vapor Deposit).
  • the polyester of the present invention can also be extruded into a sheet-like material to form a sheet.
  • Such sheets are processed by vacuum forming, pressure forming, stamping, etc., and used as tray containers for food and miscellaneous goods, cups, blister packs, carrier tapes for electronic components, and electronic component delivery trays. Sheets can also be used as various cards.
  • Recycled resin can also be mixed in the same manner. Furthermore, for the purpose of forming a crystalline heat-resistant container, an inorganic nucleating agent such as polyethylene talc and other inorganic nucleating agents can be added to enhance crystallinity.
  • an inorganic nucleating agent such as polyethylene talc and other inorganic nucleating agents can be added to enhance crystallinity.
  • Polyester polycondensed using the polyester polycondensation catalyst of the present invention can be used for a film.
  • polyester is melt-extruded and formed into a sheet shape on a cooling rotating roll from a T-die to produce an unstretched sheet.
  • various functions may be assigned to the core layer and the skin layer, and a laminated film may be formed by a co-extrusion method.
  • the polyester polycondensed using the polyester polycondensation catalyst of the present invention can be used for an oriented polyester Ttel film.
  • the oriented polyester film can be obtained by using a known method by stretching 1.1 to 6 times at least in the uniaxial direction at a temperature not lower than the glass transition temperature of the polyester and lower than the crystallization temperature.
  • a sequential biaxial stretching method in which uniaxial stretching is performed in the longitudinal direction or the transverse direction and then stretching in the orthogonal direction, and simultaneous biaxial stretching in the longitudinal direction and the transverse direction are performed simultaneously.
  • a linear motor as the driving method for simultaneous biaxial stretching
  • horizontal 'longitudinal' longitudinal stretching method, longitudinal 'horizontal' longitudinal stretching method, longitudinal-longitudinal 'horizontal stretching method horizontal-longitudinal 'horizontal stretching method
  • the same A multistage stretching method in which stretching is performed in several directions in the direction can be employed.
  • a heat setting treatment is performed within 30 seconds, preferably within 10 seconds, at a temperature from (melting point 50 ° C) to less than the melting point. 5 ⁇ : It is preferable to apply LO% longitudinal relaxation treatment and lateral relaxation treatment.
  • the obtained oriented polyester film preferably has a thickness of 1 ⁇ m to 1000 ⁇ m, more preferably ⁇ to 5 ⁇ m to 500 ⁇ m, and more preferably ⁇ to 10 ⁇ m to 200 ⁇ m. is there. : Less than L m is difficult to handle due to lack of waist. If it exceeds 1000 m, it is too hard to handle.
  • a high molecular weight resin is applied to the surface of the oriented polyester film by a coating method. May be coated. Moreover, it is good also as a slippery highly transparent polyester film by containing inorganic and Z or organic particles only in a coating layer. Furthermore, an inorganic vapor deposition layer can be provided to provide various barrier functions such as oxygen, water, and oligomer, or a conductive layer can be provided by a sputtering method or the like to provide conductivity.
  • inorganic and organic salt particles or heat-resistant polymer resin particles are added in the polycondensation process of polyester. By adding it, irregularities may be formed on the film surface.
  • these particles may be either inorganic / organic or hydrophilic / hydrophobic surface-treated or non-surface-treated.
  • the particles may be surface-treated for the purpose of improving dispersibility. There are cases where it is preferable to use particles.
  • the inorganic particles include calcium carbonate, kaolin, talc, magnesium carbonate, barium carbonate, calcium sulfate, barium sulfate, lithium phosphate, calcium phosphate, magnesium phosphate, aluminum oxide, silicon oxide, titanium oxide, Zirconium oxide, lithium fluoride, sodium calcium aluminum silicate and the like can be mentioned.
  • organic salt particles examples include calcium oxalate, terephthalates such as calcium, norlium, zinc, manganese, and magnesium.
  • crosslinked polymer particles examples include dibutenebenzene, styrene, acrylic acid, methacrylic acid, acrylic acid or methacrylic acid vinyl monomer alone or a copolycondensate.
  • organic particles such as polytetrafluoroethylene, benzoguanamine resin, thermosetting epoxy resin, unsaturated polyester resin, thermosetting urea resin, and thermosetting phenol resin may be used.
  • the method for incorporating the inert particles into the polyester as the base film is limited.
  • A A method in which inert particles are dispersed in a slurry form in a diol, which is a constituent component of a polyester, and the inert particle slurry is added to a polyester polycondensation reaction system, and (b) a polyester film.
  • C A method in which a water slurry of inert particles dispersed in molten polyester resin is added using a vented twin screw extruder, and (c) a method of kneading polyester resin resin and inert particles in a molten state.
  • d A method of kneading polyester resin and inert resin master resin in a molten state is exemplified.
  • a diol slurry of inert particles to a reaction system having a low melt viscosity before the esterification reaction or transesterification reaction and before the start of the polycondensation reaction.
  • a physical dispersion treatment such as a high-pressure disperser, a bead mill, or ultrasonic dispersion.
  • an appropriate chemical dispersion stabilization treatment according to the type of particles used.
  • the dispersion stabilization treatment for example, in the case of inorganic oxide particles or crosslinked polymer particles having a carboxyl group on the particle surface, sodium hydroxide, potassium hydroxide, hydroxide hydroxide Alkaline compounds such as lithium can be added to the slurry, and reaggregation between particles can be suppressed by electrical repulsion.
  • sodium hydroxide, potassium hydroxide, hydroxide hydroxide Alkaline compounds such as lithium can be added to the slurry, and reaggregation between particles can be suppressed by electrical repulsion.
  • calcium carbonate particles, hydroxyapatite particles, etc. it is preferable to add sodium tripolyphosphate or potassium tripolyphosphate to the slurry.
  • the slurry when the diol slurry of inert particles is added to the polyester polycondensation reaction system, the slurry can be heated to near the boiling point of the diol. The temperature difference between the polycondensation reaction system and the polycondensation reaction system can be reduced.
  • additives can be added during or after the polycondensation of the polyester or at any stage after the formation of the polyester film. Which stage is suitable depends on the characteristics of the compound and the polyester. Different depending on the required performance of the film.
  • the polyester of the present invention is excellent in thermal stability, for example, when a film or the like is produced using the polyester, the ear portion of the film produced in the stretching process or a nonstandard film is melted and re-used. Suitable for use.
  • the oriented polyester film of the present invention is preferably an antistatic film, an easily adhesive film, a card, a dummy can, an agricultural product, a building material, a cosmetic material, a wallpaper, an OHP film, or a printing
  • photoengraving for X-ray film, for photographic negative film, for retardation film, for polarizing film, for polarizing film protection (TAC), for non-prote film, for photosensitive resin film, for field-of-view film,
  • TAC polarizing film protection
  • non-prote film for photosensitive resin film, for field-of-view film
  • the carboxylic acid aluminum salt was dissolved in pure water so as to have a concentration of 2.7 gZl in terms of the amount of aluminum element, and the absorbance was measured at a wavelength of 680 nm. Dissolve after stirring for 6 hours at room temperature (200 rpm) using a 1.5 L flask, increase the internal temperature to 95 ° C over 30 minutes, and then adjust the internal temperature to 95 ⁇ 1 ° C. The mixture was stirred for 3 hours. Absorbance was measured by allowing the aqueous solution to cool to room temperature, using a quartz cell with a cell length of 1 cm, and using pure water as a control solution. As a measuring device, a double beam spectrophotometer (manufactured by Shimadzu Corporation; UV-210A) was used.
  • the insoluble content of the aluminum compound in water was calculated by the following formula. If the aluminum compound is an aqueous solution, collect a portion of the aqueous solution. The solid content in the aqueous solution was measured by evaporating the aqueous solution to dryness, and the concentration of the aluminum compound in the aqueous solution was determined using the solid content as the weight of the aluminum compound. The amount of the aluminum compound in the aqueous solution was 30 g. It was determined by filtering a certain amount of aqueous solution. In the case of the aqueous solution, when the concentration of the aluminum compound in the aqueous solution was higher than 2% by mass, the pure water was diluted with aluminum so as to be 2% by mass and filtered. The dilution was performed under the same conditions as the dissolution of the above solid aluminum compound. The above operation was performed in a clean bench.
  • the L value and b value of the hunter were measured using a polyester resin resin chip (length: about 3 mm, diameter: about 2 mm) and using a color difference meter (manufactured by Tokyo Denshoku Co., Ltd .: Model ND-1001 DP).
  • the amount of aluminum element was quantified on the filtration surface of the membrane filter with a scanning fluorescent X-ray analyzer (manufactured by RI GAKU, ZSX100e, Rh tube 4. OkW). Quantification was performed on a 30 mm diameter part in the center of the membrane filter.
  • the calibration curve of the fluorescent X-ray analysis method was obtained using PET resin having a known aluminum element content, and the apparent aluminum element amount was expressed in ppm. Measurement is X-ray output 50kV—70mA with pentaerythritol as the spectroscopic crystal and PC (proportional counter) as the detector. It was carried out by measuring the Al-Ka line intensity under the conditions of PHA (wave height analyzer) 100-300.
  • the amount of aluminum element in polyethylene terephthalate resin for calibration curve was quantified by high frequency inductively coupled plasma emission spectrometry.
  • the polyester resin is dried under vacuum at 130 ° C for 12 hours, and a 1000 m sheet is created by the heat press method.
  • the heat press temperature, pressure and time were 320 ° C, 100 kgZcm 2 G and 3 seconds, respectively. After pressing, the sheet was put into water and rapidly cooled.
  • the obtained sheet is batch-type stretching machine (TM LONG
  • the stretching temperature was a blow temperature of 95 ° C and a Z plate temperature of 100 ° C.
  • the stretching speed was 15,000% Z min.
  • the haze of the obtained uniaxially stretched film was measured according to JIS-K 7136 using a haze meter (manufactured by Nippon Denshoku Industries Co., Ltd., 300A). The measurement was performed 5 times and the average value was obtained. The haze value was displayed as a converted value of a film thickness of 300 m.
  • the measurement was performed by the transmission method.
  • FTS-40 main body
  • ZUMA300 infrared microscope
  • the baseline for calculating the absorption intensity was determined by the following procedure.
  • the absorption intensity of 3700 cm _1 was taken as the baseline by connecting the hems on both sides of this absorption.
  • the absorption of 1029cm _1, and the baseline signed and a high wave number side of the skirt of the absorption of 106 0 cm _1, and skirt of the low frequency side of the absorption 985cm _1.
  • a sample for measurement was dried for one day and night at room temperature under reduced pressure. The measurement was performed by the transmission method. For measurement, FTS-40 (main unit) ZUMA300 (infrared microscope) manufactured by Bio-Rad was used. 98 A sample was prepared so that the absorbance near 5 cm _1 was 1.5 or less, and the measurement was performed with a resolution of 8 cm _1 and a totalization number of 128 times. The baseline for calculating the absorption intensity was determined by the following procedure. For the absorbance at 1062 cm _1 and 1029 cm _1 , the base of the 1060 cm -1 absorption at the high wavenumber side and the 985 cm _1 absorption at the low wavenumber side was used.
  • the above-mentioned baseline force of 1062 ⁇ 10cm_1 and 1029 ⁇ 10cm_1 is calculated as the ratio of the height to the peak top (T2), that is, the absorbance ratio of C and the absorbance ratio of ⁇ (CZA). It was. The higher the value, the lower the basic aluminum acetate, and the higher the crystallinity compared to the value.
  • the polyester was dried with a drier using dehumidified nitrogen, and a preform was molded at a resin temperature of 295 ° C. with an M-150C (DM) injection molding machine manufactured by Meiki Seisakusho.
  • the preform plug is heated and crystallized with a home-made stopper crystallization device, then biaxially stretched using a Corpoplast LB 01E stretch blow molding machine, and then kept at about 140 ° C. It was heat-set in the set mold for about 7 seconds to obtain a 1500cc hollow molded body (circular body). Gain The transparency of the resulting hollow molded body was visually evaluated using a three-step evaluation method.
  • ICP inductively coupled plasma emission
  • Polyester (0.1 lg) was pyrolyzed at 250 ° C. in 2 ml of methanol, and then separated and quantified by gas chromatography.
  • the basic aluminum acetate prepared by the above method was used as a polycondensation catalyst.
  • Water Z Ethylene glycol mixed solution and Linyi compound ethylene glycol solution are respectively supplied from separate supply ports to 0.021 mol% as aluminum atoms and 0.028 mol% as phosphorus atoms with respect to the acid component in the polyester.
  • the mixture was stirred at 245 ° C for 15 minutes under a nitrogen atmosphere at normal pressure.
  • Example 1 Compared to the method of Example 1, the basic aluminum acetate was changed to the same method as in Example 1 except that the light absorption evaluated by the above evaluation method was changed to 0.0155 (manufactured by Kakehori Rai Co., Ltd.).
  • Example 1 PET was obtained. Table 1 shows the properties of the obtained PET.
  • the aqueous solution of the aluminum compound prepared in Comparative Example 1 was ultracentrifugated at 500,000 xg for 1.5 hours to obtain a purified basic aluminum acetate aqueous solution from which water-insoluble components had been removed. A portion of the purified solution was sampled and dried by freeze drying to obtain purified basic aluminum acetate. The absorbance of the obtained purified basic aluminum acetate evaluated by the above evaluation method was 0.0021.
  • PET of Example 2 was obtained in the same manner as in Example 1 except that the above-described purified basic aluminum acetate aqueous solution was used as the aqueous solution of the aluminum compound. Table 1 shows the properties of the obtained PET.
  • An aqueous solution of about 67 gZl of aluminum lactate was prepared at room temperature.
  • the obtained aluminum lactate aqueous solution was diluted with pure water, and the absorbance evaluated by the above evaluation method was 0.0177.
  • the aqueous solution was ultracentrifugated at 500,000 Xg for 1.5 hours to obtain an aqueous solution of purified aluminum lactate from which water-insoluble matter was removed.
  • a portion of the purified solution was sampled and dried by freeze drying to obtain purified aluminum lactate.
  • the absorbance of the resulting purified basic aluminum acetate evaluated by the above evaluation method was 0.0019.
  • ethylene glycol is added to the aqueous solution of the purified aluminum lactate, and the water is distilled off by heating at about 100 ° C. to obtain about 29 g of ethyl acetate. Glycol solution was obtained.
  • PET of Example 3 was obtained in the same manner as in Example 1 except that the above-described purified aluminum lactate ethylene glycol solution was used as the aluminum compound.
  • Table 2 shows the properties of the obtained PET.
  • Example 3 Example 3 was used except that an aluminum lactate ethylene glycol solution obtained in the same manner as Example 3 was used by using an unpurified aqueous solution of aluminum lactate before ultracentrifugation as the aluminum compound.
  • the PET of Comparative Example 2 was obtained in the same manner. Table 2 shows the properties of the obtained PET.
  • the PET production methods of Examples 1 to 3 have both economical efficiency and quality in which the activity of the polycondensation catalyst is high and the generation of foreign matter due to the polycondensation catalyst is small.
  • the PETs in Comparative Examples 1 and 2 have poor quality due to the large number of foreign substances originating from the polycondensation catalyst.
  • Uniaxially stretched films obtained using the polyesters of these examples had low haze and excellent transparency.
  • the uniaxially stretched films obtained using the PET of Comparative Examples 1 and 2 had high haze and poor transparency. Therefore, the PET obtained in Examples 1 to 3 was a highly transparent molded body, and the molded body was of high quality.
  • the basic aluminum acetate prepared by the above method was used as a polycondensation catalyst.
  • Water Z Ethylene glycol mixed solution and Linyi compound ethylene glycol solution are respectively supplied from separate supply ports to 0.021 mol% as aluminum atoms and 0.028 mol% as phosphorus atoms with respect to the acid component in the polyester.
  • the mixture was stirred at 245 ° C for 15 minutes under a nitrogen atmosphere at normal pressure. Next, it takes 55 minutes to raise the temperature of the reaction system to 275 ° C and gradually reduce the pressure of the reaction system to 66.5 Pa (0.5 Torr). It was.
  • Table 1 shows the properties of the obtained PET.
  • Example 7 The method of Example 7 was the same as Example 7 except that the basic aluminum acetate was changed to water having an insoluble content of 2600 ppm evaluated by the above evaluation method (Merck KGaA).
  • the PET of Comparative Example 5 was obtained. Table 3 shows the characteristics of the obtained PET.
  • a uniaxially stretched film was obtained from the PET obtained in Example 7 and Comparative Example 5 by the method described in the evaluation method.
  • Table 3 shows the haze value of the obtained uniaxially stretched film.
  • the PET production methods of Examples 7 and 8 are both economical and quality in which the activity of the polycondensation catalyst is high and the generation of foreign matter due to the polycondensation catalyst is small.
  • the PET of Comparative Example 5 has a lot of foreign matters due to the polycondensation catalyst and is inferior in quality.
  • the uniaxially stretched films obtained using the polyesters of these examples had low haze and excellent transparency.
  • the uniaxially stretched film obtained using the PET of Comparative Example 5 had high haze and poor transparency. Therefore, the PET obtained in Examples 7 and 8 was a highly transparent molded product, and the molded product was of high quality.
  • a weight percent aqueous basic aluminum chloride solution was prepared. This aqueous solution was passed through an acetate-type ion exchange resin column at a space velocity of 5 to obtain a basic aqueous aluminum acetate solution. The obtained aqueous solution was dried under atmospheric pressure at 140 ° C. to a water content of 20% to obtain a basic aluminum acetate solid content.
  • the basic aluminum acetate prepared by the above method was used as a polycondensation catalyst.
  • Water Z Ethylene glycol mixed solution and Linyi compound ethylene glycol solution are respectively supplied from separate supply ports to 0.021 mol% as aluminum atoms and 0.028 mol% as phosphorus atoms with respect to the acid component in the polyester.
  • the mixture was stirred at 245 ° C for 15 minutes under a nitrogen atmosphere at normal pressure. Next, it takes 55 minutes to raise the temperature of the reaction system to 275 ° C and gradually reduce the pressure of the reaction system to 66.5 Pa (0.5 Torr). It was.
  • Table 4 shows the properties of the obtained PET.
  • PET of Comparative Example 7 was obtained in the same manner as in Example 9 except that the basic aluminum acetate was changed to dry until the water content reached 2% by mass.
  • Table 4 shows the properties of the obtained PET.
  • Example 10 Obtained by the method described in Example 9 without isolating basic aluminum acetate solids from the basic aqueous aluminum acetate solution by the method of Example 9.
  • 1 part by mass of the resulting basic aluminum acetate aqueous solution was added to 15 parts by mass of ethylene glycol with stirring, and after stirring at 20 Orpm for 30 minutes, a uniform water / ethylene glycol mixed solution was obtained.
  • the jacket temperature was changed to 110 ° C. and the temperature was raised, and the solution force also distilled off water.
  • the heating was stopped and the mixture was allowed to cool to room temperature to obtain an ethylene glycol solution of an aluminum compound.
  • PET of Example 10 was obtained in the same manner as in Example 9 except that the ethylene glycol solution prepared by the above method was used as the aluminum compound solution. Table 4 shows the properties of the obtained PET.
  • a uniaxially stretched film was obtained from the PET obtained in Examples 9 and 10 and Comparative Example 7 by the method described in the evaluation method.
  • Table 4 shows the haze value of the obtained uniaxially stretched film.
  • the PET production methods of Examples 9 and 10 are compatible with economy and quality in which the polycondensation catalyst has high activity and the production of foreign matter due to the polycondensation catalyst is small.
  • the PET of Comparative Example 6 is poor in quality due to the large number of foreign substances originating from the polycondensation catalyst.
  • Uniaxially stretched films obtained using the polyesters of these examples had low haze and excellent transparency.
  • the uniaxially stretched film obtained using the PET of Comparative Example 7 had high haze and poor transparency. Therefore, the PET obtained in Examples 9 and 10 was able to obtain a molded article with high transparency. Was also high quality.
  • a weight percent aqueous basic aluminum chloride solution was prepared. This aqueous solution was passed through an acetate-type ion exchange resin column at a space velocity of 5 to obtain a basic aqueous aluminum acetate solution. The obtained aqueous solution was dried at 90 ° C. under normal pressure and reduced pressure to a water content of 20% to obtain a basic aluminum acetate solid content. The half width of the X-ray diffraction peak measured by the above evaluation method was 0.79.
  • the basic aluminum acetate prepared by the above method was used as a polycondensation catalyst.
  • Water Z Ethylene glycol mixed Add the ethylene glycol solution of the combined solution and the phosphorus compound from separate feed ports so that the acid component in the polyester is 0.021 mol% as aluminum atoms and 0.028 mol% as phosphorus atoms, respectively. The mixture was stirred at 245 ° C for 15 minutes under a nitrogen atmosphere at normal pressure.
  • Example 13 In the method of Example 13, the basic aluminum acetate was changed to dry at normal pressure and 150 ° C. The half-width of the X-ray diffraction peak measured by the above evaluation method was changed to 0.46. Except that, PET of Comparative Example 9 was obtained in the same manner as in Example 13. Table 5 shows the properties of the PET.
  • a uniaxially stretched film was obtained from the PET obtained in Example 14 and Comparative Example 9 by the method described in the evaluation method.
  • Table 5 shows the haze value of the obtained uniaxially stretched film.
  • Example 13 The PET production method of Example 13 is compatible with economy and quality in which the activity of the polycondensation catalyst is high and the generation of foreign matter due to the polycondensation catalyst is small.
  • the PET of Comparative Example 9 has a lot of foreign matter due to the polycondensation catalyst and is inferior in quality! Uniaxially stretched films obtained using the polyesters of these examples had low haze and excellent transparency. On the other hand, the uniaxially stretched film obtained using the PET of Comparative Example 9 had high haze and poor transparency. Therefore, the PET obtained in Example 13 yielded a molded article with high transparency, and the molded article was of high quality.
  • Example 15 Example 15
  • a weight percent aqueous basic aluminum chloride solution was prepared. This aqueous solution was passed through an acetate-type ion exchange resin column at a space velocity of 5 to obtain a basic aqueous aluminum acetate solution. The obtained aqueous solution was dried at 140 ° C under atmospheric pressure to a water content of 15% to obtain a basic aluminum acetate solid content. The absorbance ratio T1 of infrared absorption analysis of the obtained basic aluminum acetate measured by the above evaluation method was 1.75.
  • the basic aluminum acetate prepared by the above method was used as a polycondensation catalyst.
  • Water Z Ethylene glycol mixed solution and Linyi compound ethylene glycol solution were added to the In addition to the acid component in the steal so as to be 0.021 mol% as an aluminum atom and 0.028 mol% as a phosphorus atom, the mixture was stirred at 245 ° C. for 15 minutes in a nitrogen atmosphere at normal pressure.
  • PET of Example 16 was obtained in the same manner as in Example 15 except that the drying during the preparation of basic aluminum acetate was changed to 95 ° C under reduced pressure.
  • Table 6 shows the properties of the obtained PET.
  • the absorbance ratio T1 of infrared absorption analysis measured by the above evaluation method was 1.48.
  • Example 15 In the method of Example 15, urea was added to the solution after ion exchange at the time of preparation of basic aluminum acetate so as to be 0.1 part by mass with respect to 100 parts by mass of basic aluminum acetate, and after stirring and dissolving, PET of Example 17 was obtained in the same manner as Example 15 except that the solution was changed to be concentrated and dried. The properties of the obtained PET are shown in Table 6. .
  • the absorbance ratio Tl of infrared absorption analysis measured by the above evaluation method was 1.22.
  • the PET production methods of Examples 15 to 17 have both economical efficiency and quality in which the activity of the polycondensation catalyst is high and the generation of foreign matter due to the polycondensation catalyst is small.
  • the PET of Comparative Example 11 has a lot of foreign matters due to the polycondensation catalyst and is inferior in quality.
  • the uniaxially stretched films obtained using the polyesters of these examples had low haze and excellent transparency.
  • the uniaxially stretched film obtained using the PET of Comparative Example 11 had high haze and poor transparency. Therefore, the PET obtained in Examples 15 to 17 was a high-quality molded product with a high transparency.
  • Irganoxl222 (manufactured by Chinoku Specialty Chemicals Co., Ltd.) represented by [I ⁇ 39] as a phosphorus compound was charged into a flask together with ethylene glycol, and heated for 2.5 hours at a liquid temperature of 160 ° C while stirring under nitrogen substitution. An ethylene glycol solution of 50 gZl of phosphorus compound was prepared.
  • the polymerization catalyst described in “Preparation Example 1 of a mixture of an ethylene glycol solution of an aluminum compound / an ethylene glycol solution of a phosphorus compound” was used.
  • the phosphorus atoms were respectively adjusted to 0.015 mol% and 0.036 mol%, and then stirred at 250 ° C. for 10 minutes under a nitrogen atmosphere at normal pressure. After that, the temperature of the reaction system was gradually lowered to 280 ° C over 60 minutes, and the pressure of the reaction system was gradually reduced to 13.3 Pa (0.ITorr), and further polycondensation reaction was performed at 280 ° C and 13.3 Pa. .
  • Table 7 shows the water solubility of the aluminum compound and the absorbance ratio T2 of the infrared absorption analysis, the polymerization catalyst composition, the time required for the polycondensation reaction (polymerization time), and the IV evaluation results of the polyester obtained.
  • the polyester pellets obtained by melt polymerization are dried under reduced pressure (13.3 Pa or less, 80 ° C, 12 hours), and subsequently crystallized (13.3 Pa or less, 130 ° C, 3 hours, and 13.3 P a, 160 ° C, 3 hours).
  • the polyester pellets after being allowed to cool were solid-phase polymerized in a solid-state polymerization reactor while maintaining the system at 13.3 Pa or less and 215 ° C to obtain polyester pellets with IV of 0.78 dlZg. .
  • Table 7 shows the results of the evaluation of the transparency and foreign matter of the hollow molded body formed through solid-phase polymerization.
  • Example 21 the same operation as in Example 21 was performed, except that the phosphorus compound was changed from [Chemical Formula 39] to [Chemical Formula 21], [Chemical Formula 24], and [Chemical Formula 25] as shown in Table 1. It was. Absorption ratio T2 of aluminum compound in water and infrared absorption analysis, polymerization catalyst composition, time required for polycondensation reaction (polymerization time) and IV of the resulting polyester, hollow molded body formed through solid phase polymerization Table 7 shows the evaluation results of transparency and foreign matter.
  • Example 21 the same procedure as in Example 21 was performed except that the basic aluminum acetate manufactured by Fluka was used and the reagent and basic aluminum acetate manufactured by Nacalai Co., Ltd. were used.
  • Water solubility of aluminum compounds and absorbance ratio T2 of infrared absorption analysis, polymerization catalyst composition, time required for polycondensation reaction (polymerization time) and IV of the resulting polyester, formed via solid phase polymerization Table 7 shows the transparency of the hollow molded body and the evaluation results of foreign matter.
  • Example 21 The same procedure as in Example 21 was performed, except that an ethylene glycol solution of antimony trioxide as a polycondensation catalyst was adjusted to 0.04 mol% as an antimony atom with respect to the acid component in the polyester.
  • Table 7 shows the polymerization time, the transparency of the polyester obtained, and the evaluation results of the transparency and foreign matter of the hollow molded body molded through solid phase polymerization.
  • a weight percent aqueous basic aluminum chloride solution was prepared. This aqueous solution was passed through an acetate-type ion exchange resin column at a space velocity of 5 to obtain a basic aqueous aluminum acetate solution.
  • Aluminum sulfate was added to the basic aluminum acetate aqueous solution so that the amount of thio atoms was lOOOppm with respect to aluminum atoms in the aqueous solution, and the mixture was stirred at 50 ° C for 30 minutes.
  • the obtained aqueous solution was dried under atmospheric pressure at 140 ° C. to a water content of 3% by mass to obtain a basic aluminum acetate solid content.
  • the amount of thio atoms relative to aluminum atoms was lOOOppm.
  • the basic aluminum acetate prepared by the above method was used as a polycondensation catalyst.
  • Water Z Ethylene glycol mixed solution and Linyi compound ethylene glycol solution were added to the In addition to the acid component in the steal so as to be 0.021 mol% as an aluminum atom and 0.028 mol% as a phosphorus atom, the mixture was stirred at 245 ° C. for 15 minutes in a nitrogen atmosphere at normal pressure.
  • PET of Comparative Example 15 was obtained in the same manner as in Example 25 except that aluminum sulfate was not added during the preparation of basic aluminum acetate.
  • Table 9 shows the characteristics of the obtained PET.
  • Example 25 According to the method of Example 25, except that the amount of aluminum sulfate added during the preparation of basic aluminum acetate was changed so that the amount of aluminum atom in the basic aluminum acetate was 200 OO ppm as the amount of Z atom.
  • the PET of Comparative Example 16 was obtained in the same manner as described above. Table 9 shows the characteristics of the obtained PET. Isolated basic aluminum acetate aluminum The Ny atom weight relative to the Ny atom was 19800 ppm.
  • Example 25 According to the method of Example 25, the addition of aluminum sulfate during the preparation of basic aluminum acetate was changed to sulfuric acid, and the amount of the addition force was changed to Z atom with respect to the aluminum atoms in basic aluminum acetate.
  • PET of Example 26 was obtained in the same manner as in Example 25 except that the content was changed to 150 ppm. Table 8 shows the properties of the obtained PET.
  • Example 26 was carried out except that the amount of sulfuric acid added during the preparation of basic aluminum acetate was changed to 15000 ppm as a Z atom with respect to the aluminum atom in the basic aluminum acetate.
  • the PET of Comparative Example 17 was obtained in the same manner. Table 9 shows the properties of the obtained PET.
  • Example 27 when preparing a basic aluminum acetate aqueous solution, instead of aluminum sulfate, sulfuric acid was added so as to be 200 ppm as aluminum atoms with respect to aluminum atoms.
  • PET of Example 27 was obtained in the same manner as in Example 25 except that the stirring was changed to 30 ° C. for 30 minutes. Table 7 shows the properties of the obtained PET.
  • the PET of Comparative Example 18 was obtained in the same manner as in Example 27, except that the amount of sulfuric acid added was changed to 20000 ppm with respect to aluminum atoms as a thio atom. .
  • Table 9 shows the characteristics of the obtained PET.
  • Example 27 In the method of Example 27, the same procedure as in Example 27 was performed, except that the sulfuric acid was changed to p-toluenesulfonic acid and the amount of added calories was changed to 1500 ppm as a tow atom relative to the aluminum atom. PET of Example 28 was obtained. Table 7 shows the properties of the obtained PET.
  • the PET production methods of Examples 25 to 28 are economical in that the production of DEG in the polycondensation process in which the activity of the polycondensation catalyst is high is low, and the generation of foreign matter due to the polycondensation catalyst is low. The quality is balanced.
  • the PET of Comparative Example 13 is inferior in quality because there are many foreign substances resulting from the polycondensation catalyst. Comparative Examples 16 to 18 have a high DEG content and poor quality.
  • the uniaxially stretched films obtained using the polyesters obtained in Examples 25 to 28 had low haze and excellent transparency.
  • the uniaxially stretched film obtained using the PET obtained in Comparative Example 15 had high haze and poor transparency. Therefore, PET obtained in Examples 25 to 28 was high quality as a molded body.
  • a weight percent aqueous basic aluminum chloride solution was prepared. This aqueous solution was passed through an acetate-type ion exchange resin column at a space velocity of 5 to obtain a basic aqueous aluminum acetate solution.
  • Aluminum borate was added to the basic aluminum acetate aqueous solution so that the amount of boron atom was 1200 ppm with respect to aluminum atoms in the aqueous solution.
  • the obtained aqueous solution was dried under atmospheric pressure at 140 ° C. to a water content of 3% by mass to obtain a basic aluminum acetate solid content.
  • the boron atomic weight based on aluminum atoms in the obtained basic aluminum acetate was 1200 ppm.
  • the basic aluminum acetate prepared by the above method was used as a polycondensation catalyst.
  • Water Z Ethylene glycol mixed solution and Linyi compound ethylene glycol solution are respectively supplied from separate supply ports to 0.021 mol% as aluminum atoms and 0.028 mol% as phosphorus atoms with respect to the acid component in the polyester.
  • the mixture was stirred at 245 ° C for 15 minutes under a nitrogen atmosphere at normal pressure. Next, it takes 55 minutes to raise the temperature of the reaction system to 275 ° C and gradually reduce the pressure of the reaction system to 66.5 Pa (0.5 Torr). It was.
  • Table 10 shows the properties of the obtained PET.
  • PET of Comparative Example 23 was obtained in the same manner as in Example 33, except that aluminum borate was not added during the preparation of basic aluminum acetate.
  • Table 11 shows the properties of the obtained PET.
  • Example 33 According to the method of Example 33, the amount of aluminum borate added during the preparation of basic aluminum acetate Example 33 was changed except that the amount of boron atoms was changed to 2 OOOOppm with respect to the aluminum atoms in the basic aluminum acetate. In the same manner, PET T of Comparative Example 24 was obtained. Table 11 shows the properties of the obtained PET.
  • the isolated basic aluminum acetate had a boron atom weight of 19000 ppm with respect to aluminum atoms.
  • Example 33 According to the method of Example 33, the addition amount of aluminum borate during the preparation of basic aluminum acetate was changed to boric acid, and the amount of addition force was changed to aluminum atoms in basic aluminum acetate.
  • PET of Example 34 was obtained in the same manner as Example 33, except that the boron atom was changed to 200 ppm. Table 10 shows the properties of the obtained PET.
  • PET of Comparative Example 25 was obtained in the same manner as in 34. Table 11 shows the properties of the obtained PET.
  • Example 33 In the method of Example 33, except that when preparing a basic aqueous aluminum acetate solution, boric acid was added so as to be 250 ppm as a boron atom with respect to the aluminum atom instead of aluminum borate. In the same manner as in Example 33, PET of Example 35 was obtained. Table 10 shows the properties of the obtained PET.
  • Comparative Example 26 According to the method of Example 35, the PET of Comparative Example 26 was obtained in the same manner as in Example 35, except that the addition amount of boric acid was changed to 20000 ppm as a boron atom with respect to aluminum atoms. It was. Table 11 shows the properties of the obtained PET.
  • the PET production methods of Examples 33 to 35 are both economical and quality in which the production of DEG is low in the polycondensation process where the activity of the polycondensation catalyst is high, and the generation of foreign matter due to the polycondensation catalyst is low. Standing up.
  • the PET of Comparative Example 23 is inferior in quality because there are many foreign substances resulting from the polycondensation catalyst. Comparative Examples 24-26 have a high DEG content and poor quality!
  • the uniaxially stretched film obtained using the polyester obtained in Examples 33 to 35 had a low haze and excellent transparency.
  • the uniaxially stretched film obtained using the PET obtained in Comparative Example 23 had high haze and poor transparency. Therefore, the PET obtained in Examples 33 to 35 was high quality as a molded body.
  • Magnesium acetate tetrahydrate and sodium acetate were dissolved in ethylene glycol at concentrations of 50 gZl and lOgZl, respectively, to form solutions.
  • PET of Comparative Example 31 was obtained in the same manner as in Example 39, except that the water Z ethylene glycol mixed solution of the aluminum compound used in Comparative Example 1 was used. Table 12 shows the properties of the obtained PET.
  • a uniaxially stretched film was obtained from the PET obtained in Example 39 and Comparative Example 31 by the method described in the evaluation method.
  • Table 12 shows the haze values of the obtained uniaxially stretched film.
  • the uniaxially stretched film obtained using the polyester obtained in Example 39 had a low haze and an excellent transparency.
  • the uniaxially stretched film obtained using the PET obtained in Comparative Example 31 had high haze and poor transparency. Therefore, the PET obtained in Example 39 was high quality as a molded body.
  • Potassium acetate and lithium acetate were each dissolved in ethylene glycol at a concentration of lOgZl to form a solution.
  • the magnesium compound and sodium compound solutions used were those in Example 35.
  • a polycondensation catalyst having a metal component other than antimony, germanium and titanium as the main metal component of the catalyst maintains color tone, transparency and thermal stability, and has a polycondensation rate. Both quality and economy that can demonstrate its features in fields such as ultra-fine fibers that produce less foreign matter due to polycondensation catalysts, optically transparent films or ultra-transparent molded products A molded polyester and polyester molded body can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

 アルミニウム化合物を含むポリエステル重縮合触媒の存在下にポリエステルを製造する際に、アルミニウム化合物としてアルミニウム化合物をアルミニウム元素量で2.7g/lの濃度になるように純水に溶解して得たアルミニウム化合物の水溶液をセル長1cm、680nmの波長で測定した吸光度が0.0132以下であるアルミニウム化合物を用いることにより、色調、透明性や熱安定性を維持し、かつ重縮合速度が速く、さらに重縮合触媒起因の異物生成が少なく、超微細繊維、光学用の高透明なフイルムあるいは超高透明な成型体等の分野においてその特徴を発揮することができる品質と経済性を両立させたポリエステルおよびポリエステル成形体を得ることができる。

Description

明 細 書
ポリエステルの製造方法およびこれを用いて製造されたポリエステル並び にポリエステル成形体
技術分野
[0001] 本発明は、ゲルマニウム、アンチモン化合物を触媒主成分として用いない新規のポ リエステル重縮合触媒を用 、たポリエステルの製造方法に関するものであり、さらに 詳しくは重縮合触媒起因の異物含有量の少な 、ポリエステル、ポリエステル製品およ びポリエステル製造方法に関するものである。
背景技術
[0002] ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレン ナフタレート(PEN)等に代表されるポリエステルは、機械的特性、及び化学的特性 に優れており、それぞれのポリエステルの特性に応じて、例えば衣料用や産業資材 用の繊維、包装用、磁気テープ用、光学用などのフィルムやシート、中空成形品であ るボトル、電気'電子部品のケーシング、その他エンジニアリングプラスチック成形品 等の広範な分野において使用されている。特に、 PETなどの飽和ポリエステル力もな るボトルは、機械的強度、耐熱性、透明性およびガスノ リヤー性に優れるため、ジュ ース、炭酸飲料、清涼飲料などの飲料充填用容器および目薬、化粧品などの容器と して広く使用されている。
[0003] 代表的なポリエステルである芳香族ジカルボン酸とアルキレングリコールを主構成 成分とするポリエステルは、例えば PETの場合には、テレフタル酸もしくはテレフタル 酸ジメチルとエチレングリコールとのエステルイ匕反応もしくはエステル交換反応によつ てビス(2—ヒドロキシェチル)テレフタレートなどのオリゴマー混合物を製造し、これを 高温、真空下で触媒を用いて液相重縮合させ製造されて ヽる。
[0004] 従来から、このようなポリエステルの重縮合時に用いられるポリエステル重縮合触媒 としては、アンチモンあるいはゲルマニウム化合物が広く用いられている。三酸化アン チモンは、安価で、かつ優れた触媒活性をもつ触媒であるが、これを主成分、即ち、 実用的な重縮合速度が発揮される程度の添加量にて使用すると、重縮合時に金属 アンチモンが析出するため、ポリエステルに黒ずみや異物が発生し、フィルムの表面 欠点の原因にもなる。また、中空の成形品等の原料とした場合には、透明性の優れ た中空成形品を得ることが困難である。このような経緯で、アンチモンを全く含まない か或 、はアンチモンを触媒主成分として含まな 、ポリエステルが望まれて 、る。
[0005] アンチモン化合物以外で優れた触媒活性を有し、かつ上記の問題を有しないポリ エステルを与える触媒としては、ゲルマニウム化合物がすでに実用化されているが、 この触媒は非常に高価であるという問題点や、重縮合中に反応系から系外へ留出し やすいため反応系の触媒濃度が変化し重縮合の制御が困難になるという課題を有し ており、触媒主成分として使用することには問題がある。
[0006] アンチモン系ある 、はゲルマニウム系触媒に代わる重縮合触媒の検討も行われて おり、テトラアルコキシチタネートに代表されるチタンィ匕合物がすでに提案されている 力 これらを用いて製造されたポリエステルは溶融成形時に熱劣化を受けやすぐま たポリエステルが著しく着色するという問題点を有する。
[0007] 以上のような経緯で、アンチモン、ゲルマニウムおよびチタン系以外の金属成分を 触媒の主たる金属成分とする重縮合触媒であり、触媒活性に優れ、色調や熱安定性 に優れかつ成形品の透明性に優れたポリエステルを与える重縮合触媒が望まれて いる。
[0008] 上記の要求に答える新規の重縮合触媒として、アルミニウム化合物とリンィ匕合物と 力もなる触媒系が開示されており注目されている(例えば、特許文献 1〜4参照)。 特許文献 1 :特開 2001— 131276号公報
特許文献 2:特開 2001— 163963号公報
特許文献 3:特開 2001— 163964号公報
特許文献 4:特開 2002— 220446号公報
[0009] また、上記重縮合触媒系によるポリエステルの製造方法に関して、水および Zまた は有機溶媒に、カルボン酸アルミニウム塩力 なる群よりえらばれた少なくとも 1種を 溶解した溶液カゝらなるポリエステル重縮合触媒および該重縮合触媒を用いたポリエ ステルの製造方法が開示されている (特許文献 5参照)。
特許文献 5:特開 2003— 82083号公報 [0010] 上記重縮合触媒系で得られたポリエステルは、色調、透明性や熱安定性が良好で あり、前記要求に答えるものである。しかし該方法で得られたポリエステルはポリエス テルに不溶性の異物含有量が常に低 、レベルで安定して得ることが出来な 、と 、う 課題を有しており、超微細繊維、光学用の高透明なフィルムあるいは超高透明な成 型体等において十分に満足するレベルに到達しておらずその改善が強く嘱望されて いた。
発明の開示
発明が解決しょうとする課題
[0011] 本発明は従来技術の課題を背景になされたもので、アンチモン、ゲルマニウムおよ びチタン系以外の金属成分を触媒の主たる金属成分とする重縮合触媒で色調、透 明性や熱安定性を維持し、かつ重縮合速度が速ぐさらに重縮合触媒起因の異物生 成が少なぐ超微細繊維、光学用の高透明なフィルムあるいは超高透明な成型体等 の分野においてその特徴を発揮することができる品質と経済性を両立させたポリエス テルおよびポリエステル成形体を提供するポリエステルの製造方法を提供するもので ある。
課題を解決するための手段
[0012] 本発明は上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに 到った。即ち本発明における第 1の発明は、アルミニウム化合物を含むポリエステル 重縮合触媒の存在下にポリエステルを製造する方法において、アルミニウム化合物と してアルミニウム化合物をアルミニウム元素量で 2. 7gZlの濃度になるように純水に 溶解して得たアルミニウム化合物の水溶液をセル長 lcm、 680nmの波長で測定し た吸光度が 0. 0132以下であるアルミニウム化合物を用いることを特徴とするポリェ ステルの製造方法である。
[0013] また、第 2の発明は、アルミニウム化合物を含むポリエステル重縮合触媒の存在下 にポリエステルを製造する方法にぉ 、て、アルミニウム化合物としてアルミニウム化合 物 30gを純水 1500mlに溶解した時の水に対する不溶分量が lOOOppm以下である アルミニウム化合物を用いることを特徴とするポリエステルの製造方法である。
[0014] また、第 3の発明は、アルミニウム化合物を含むポリエステル重縮合触媒の存在下 にポリエステルを製造する方法において、アルミニウム化合物として、含水率が 8質量 %以上の水溶性アルミニウム化合物を用いることを特徴とするポリエステルの製造方 法である。
[0015] また、第 4の発明は、アルミニウム化合物を含むポリエステル重縮合触媒の存在下 にポリエステルを製造する方法において、アルミニウム化合物として、 X線回折分析 において 2 0 (回折角度)が 14. 0±0. 1度に極大値をもつ回折ピークを有し、その 半値幅が 0. 60以上であるアルミニウム化合物を用いることを特徴とするポリエステル の製造方法である。
[0016] また、第 5の発明は、アルミニウム化合物を含むポリエステル重縮合触媒の存在下 にポリエステルを製造する方法において、アルミニウム化合物として、下記赤外線吸 収特性を有するアルミニウム化合物を用いることを特徴とするポリエステルの製造方 法である。
3700± 10cm_1に吸収極大を持つ吸収の吸光度 Bと 1029± 10cm_1に吸収極大 を持つ吸収の吸光度 Aの吸光度比 Tl ( = BZA)が 1. 8以下であること。
[0017] また、第 6の発明は、アルミニウム化合物を含むポリエステル重縮合触媒の存在下 にポリエステルを製造する方法において、アルミニウム化合物として、下記赤外線吸 収特性を有するアルミニウム化合物を用いることを特徴とするポリエステルの製造方 法である。
1062± 10cm_1に吸収極大を持つ吸収の吸光度 Cと 1029± 10cm_1に吸収極 大を持つ吸収の吸光度 Aの吸光度比 T2 ( = CZA)が 1. 0以下であること。
[0018] また、第 7の発明は、アルミニウム化合物を含むポリエステル重縮合触媒の存在下 にポリエステルを製造する方法において、アルミニウム化合物として、アルミニウム原 子に対してィォゥ原子を 25〜: LOOOOppm含有するアルミニウム化合物を用いること を特徴とするポリエステルの製造方法である。
[0019] また、第 8の発明は、アルミニウム化合物を含むポリエステル重縮合触媒の存在下 にポリエステルを製造する方法において、アルミニウム化合物として、アルミニウム原 子に対してホウ素原子を 25〜: LOOOOppm含有するアルミニウム化合物を用いること を特徴とするポリエステルの製造方法である。 [0020] また、第 9の発明は、アルミニウム化合物が塩基性酢酸アルミニウムであることを特 徴とする第 1〜第 8の発明のいずれかに記載のポリエステルの製造方法である。
[0021] また、第 10の発明は、少なくとも一種のリンィ匕合物を併用することを特徴とする第 1 〜第 9の発明のいずれかに記載のポリエステルの製造方法である。
また、第 11の発明は、第 1〜第 10の発明のいずれかに記載の製造方法にて製造 されたポリエステルである。
また、第 12の発明は、第 11の発明に記載のポリエステル力もなる中空成型体であ る。
また、第 13の発明は、第 11の発明に記載のポリエステル力もなる繊維である。 また、第 14の発明は、第 11の発明に記載のポリエステル力もなるフィルムである。 発明の効果
[0022] 本発明によるポリエステルの製造方法は、アンチモン、ゲルマニウムおよびチタン系 以外の金属成分を触媒の主たる金属成分とした重縮合触媒で色調、透明性および 熱安定性等を維持し、かつ重縮合速度が速ぐさらに重縮合触媒起因の異物生成が 少なぐ品質と経済性を両立させることの出来るという利点がある。従って、本発明の 製造方法で得られたポリエステルは、例えば衣料用や産業資材用の繊維、包装用、 磁気テープ用および光学用などのフィルムやシート、中空成形品であるボトル、電気 •電子部品のケーシング、その他エンジニアリングプラスチック成形品等の広範な分 野において好適に使用することができる。特に、本発明のポリエステルは重縮合触媒 起因の異物生成が少な 、と 、う特徴を有して 、るので超微細繊維、光学用の高透明 なフィルムある!/、は超高透明な成型体等の分野にぉ 、てその特徴を発揮することが できる。
発明を実施するための最良の形態
[0023] 以下、本発明を詳細に説明する。
本発明に言うポリエステルとは、ジカルボン酸および Zまたはそのエステル形成性 誘導体とジオールおよび Zまたはそのエステル形成性誘導体とから成るものをいう。
[0024] ジカルボン酸としては、蓚酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン 酸、スベリン酸、ァゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン 酸、 テトラデカンジカルボン酸、へキサデカンジカルボン酸、 1, 3 シクロブタンジ カルボン酸、 1, 3 シクロペンタンジカルボン酸、 1, 2 シクロへキサンジカルボン酸 、 1, 3 シクロへキサンジカルボン酸、 1, 4ーシクロへキサンジカルボン酸、 2, 5 ノ ルボルナンジカルボン酸、ダイマー酸などに例示される飽和脂肪族ジカルボン酸ま たはこれらのエステル形成性誘導体、フマル酸、マレイン酸、ィタコン酸などに例示さ れる不飽和脂肪族ジカルボン酸またはこれらのエステル形成性誘導体、オルソフタ ル酸、イソフタル酸、テレフタル酸、 5—(アルカリ金属)スルホイソフタル酸、ジフエ- ン酸、 1, 3 ナフタレンジカルボン酸、 1, 4 ナフタレンジカルボン酸、 1, 5 フタレ ンジカルボン酸、 2, 6 ナフタレンジカルボン酸、 2, 7 ナフタレンジカルボン酸、 4 、 4'—ビフエニノレジ力ノレボン酸、 4、 4'—ビフエニノレスノレホンジカノレボン酸、 4、 4'— ビフエ-ルエーテルジカルボン酸、 1, 2—ビス(フエノキシ)ェタン一 p, p,一ジカルボ ン酸、パモイン酸、アントラセンジカルボン酸などに例示される芳香族ジカルボン酸ま たはこれらのエステル形成性誘導体が挙げられる。
[0025] これらのジカルボン酸のうちテレフタル酸およびナフタレンジカルボン酸とくに 2, 6 ナフタレンジカルボン酸力 得られるポリエステルの物性等の点で好ましぐ必要に 応じて他のジカルボン酸を構成成分とする。
[0026] これらジカルボン酸以外にも少量であれば多価カルボン酸を併用しても良い。該多 価カルボン酸としては、ェタントリカルボン酸、プロパントリカルボン酸、ブタンテトラ力 ルボン酸、ピロメリット酸、トリメリット酸、トリメシン酸、 3、 4、 3,、 4,一ビフエ-ルテトラ カルボン酸、およびこれらのエステル形成性誘導体などが挙げられる。
[0027] グリコールとしてはエチレングリコール、 1、 2 プロピレングリコール、 1、 3 プロピ レングリコール、ジエチレングリコール、トリエチレングリコール、 1、 2—ブチレングリコ ール、 1、 3 ブチレングリコール、 2、 3 ブチレングリコール、 1, 4ーブチレングリコ ール、 1、 5 ペンタンジオール、ネオペンチルグリコール、 1, 6 へキサンジオール 、 1, 2 シクロへキサンジオール、 1, 3 シクロへキサンジオール、 1, 4ーシクロへキ サンジオール、 1, 2 シクロへキサンジメタノール、 1, 3 シクロへキサンジメタノー ル、 1, 4ーシクロへキサンジメタノール、 1, 4ーシクロへキサンジエタノール、 1, 10— デカメチレングリコール、 1、 12—ドデカンジオール、ポリエチレングリコール、ポリトリ メチレングリコール、ポリテトラメチレングリコールなどに例示される脂肪族グリコール、 ヒドロキノン、 4, 4'ージヒドロキシビスフエノール、 1, 4 ビス(j8—ヒドロキシエトキシ )ベンゼン、 1, 4 ビス(j8—ヒドロキシエトキシフエ-ル)スルホン、ビス(p ヒドロキ シフエ-ル)エーテル、ビス(p -ヒドロキシフエ-ル)スルホン、ビス(p -ヒドロキシフエ -ル)メタン、 1、 2—ビス(p ヒドロキシフエ-ル)ェタン、ビスフエノール A、ビスフエノ 一ルじ、 2, 5 ナフタレンジオール、これらのグリコールにエチレンォキシドが付カロし たグリコール、などに例示される芳香族グリコールが挙げられる。
[0028] これらのグリコールのうちエチレングリコール、 1, 3 プロピレングリコール、 1, 4 ブチレングリコール、 1, 4ーシクロへキサンジメタノールが好ましい。
[0029] これらグリコール以外に少量であれば多価アルコールを併用しても良い。該多価ァ ルコールとしては、トリメチロールメタン、トリメチロールェタン、トリメチロールプロパン 、ペンタエリスリトール、グリセロール、へキサントリオールなどが挙げられる。
[0030] また、ヒドロキシカルボン酸を併用しても良 、。該ヒドロキシカルボン酸としては、乳 酸、クェン酸、リンゴ酸、酒石酸、ヒドロキシ酢酸、 3—ヒドロキシ酪酸、 p ヒドロキシ安 息香酸、 P—(2 ヒドロキシエトキシ)安息香酸、 4ーヒドロキシシクロへキサンカルボ ン酸、またはこれらのエステル形成性誘導体などが挙げられる。
[0031] また、環状エステルの併用も許容される。該環状エステルとしては、 ε—力プロラタ トン、 j8—プロピオラタトン、 13ーメチルー j8—プロピオラタトン、 δ バレロラタトン、 グリコリド、ラクチドなどが挙げられる。
[0032] 多価カルボン酸もしくはヒドロキシカルボン酸のエステル形成性誘導体としては、こ れらの化合物のアルキルエステルゃヒドロキシルアルキルエステル等が挙げられる。
[0033] ジオールのエステル形成性誘導体としては、ジオールの酢酸等の低級脂肪族カル ボン酸とのエステルが挙げられる。
[0034] 本発明のポリエステルとしては ΡΕΤ、 ΡΒΤ、ポリプロピレンテレフタレート、ポリ(1, 4 ーシクロへキサンジメチレンテレフタレート)、 ΡΕΝ、ポリブチレンナフタレート、ポリプ ロピレンナフタレートおよびこれらの共重縮合体が好ましぐこれらのうちポリエチレン テレフタレートおよびこの共重縮合体が特に好まし 、。共重縮合体としてはエチレン テレフタレート単位を 50モル%以上よりなるものが好ましぐ 70モル%以上がより好ま しい。
[0035] 本発明におけるアルミニウム化合物としては、水および Zまたは有機溶媒に溶解で きるものであれば限定されない。具体的には、ギ酸アルミニウム、酢酸アルミニウム、 プロピオン酸アルミニウム、シユウ酸アルミニウム、アクリル酸アルミニウム、ラウリン酸 アルミニウム、ステアリン酸アルミニウム、安息香酸アルミニウム、トリクロ口酢酸アルミ 二ゥム、乳酸アルミニウム、クェン酸アルミニウム、酒石酸アルミニウム、サリチル酸ァ ルミニゥムなどのカルボン酸塩、塩化アルミニウム、水酸化アルミニウム、水酸化塩ィ匕 アルミニウム、硝酸アルミニウム、硫酸アルミニウム、炭酸アルミニウム、リン酸アルミ- ゥム、ホスホン酸アルミニウムなどの無機酸塩、アルミニウムメトキサイド、アルミニウム ェトキサイド、アルミニウム n—プロポキサイド、アルミニウム iso—プロポキサイド、アル ミニゥム n—ブトキサイド、アルミニウム tーブトキサイドなどアルミニウムアルコキサイド 、アルミニウムァセチルァセトネート、アルミニウムァセチルアセテート、アルミニウムェ チルァセトアセテート、アルミニウムェチルァセトアセテートジ iso—プロポキサイドなど のアルミニウムキレート化合物、トリメチルアルミニウム、トリェチルアルミニウムなどの 有機アルミニウム化合物及びこれらの部分加水分解物、アルミニウムのアルコキサイ ドゃアルミニウムキレートイ匕合物とヒドロキシカルボン酸力 なる反応生成物等が挙げ られる。これらのうちカルボン酸塩が特に好ましい。
[0036] これらのアルミニウム化合物の中でも、カルボン酸アルミニウム化合物が溶解性や 装置を腐食しな 、観点力も特に好ま 、。
[0037] 本発明に用いられるカルボン酸アルミニウム塩としては、具体的には、ギ酸アルミ- ゥム、酢酸アルミニウム、塩基性酢酸アルミニウム、プロピオン酸アルミニウム、シユウ 酸アルミニウム、アクリル酸アルミニウム、ラウリン酸アルミニウム、ステアリン酸アルミ- ゥム、安息香酸アルミニウム、トリクロ口酢酸アルミニウム、乳酸アルミニウム、クェン酸 アルミニウム、酒石酸アルミニウム、サリチル酸アルミニウムなどが挙げられる力 これ らのうち酢酸アルミニウム、塩基性酢酸アルミニウム等の酢酸のアルミニウム塩の構造 を有するものや乳酸アルミニウムが系への溶解性や触媒活性の観点から好ましい。 特に、塩基性酢酸アルミニウムの使用が好ましい。
[0038] カルボン酸のアルミニウム塩をポリエステル重縮合触媒として用いた例としては、酢 酸アルミニウム、塩基性酢酸アルミニウム、乳酸アルミニウム、安息香酸アルミニウム などがこれまでに例示されて!ヽるが、これらは 、ずれもポリエステルに対する溶解性 が低いため、触媒活性に劣るとともに、得られるポリエステルに不溶性の異物が生成 するといつた問題を有しており、これらの化合物をそのまま触媒として使用するには 問題があった。該課題を解決する方法として、本発明者等はこれらを水および Zまた は有機溶媒に予め溶解したものを触媒として用いることで十分な触媒活性を持たせ ることができるが特許文献 5において開示している。本発明は、該特許文献 5に開示 されている技術に立脚している。すなわち、該技術で得られたポリエステルは、色調、 透明性や熱安定性が良好であり、アンチモン、ゲルマニウムおよびチタン系以外の 金属成分を触媒の主たる金属成分とする重縮合触媒として実用性の高いものである 。しかし該方法で得られたポリエステルはポリエステルに不溶性の異物含有量が常に 低いレベルで安定して得ることが出来ないという課題を有しており、超微細繊維、光 学用の高透明なフィルムあるいは超高透明な成型体等において十分に満足するレ ベルに到達しておらずその改善が強く嘱望されていた。本発明はこのポリエステルに 不溶性の微細な異物含有量の変動を抑える技術の確立に関し鋭意検討し到達した ものであり、該要求を満たすものである。
[0039] すなわち、本発明は上記のアルミニウム化合物としてアルミニウム化合物をアルミ- ゥム元素量で 2. 7gZlの濃度になるように純水に溶解して得たアルミニウム化合物の 水溶液をセル長 lcm、 680nmの波長で測定した吸光度が 0. 0132以下であるアル ミニゥム化合物を用いることを大きな特徴としている。なお、本発明におけるアルミ- ゥム化合物の水溶液の吸光度の測定方法は以下の方法により測定されたものである
[アルミニウム化合物水溶液の吸光度測定法]
アルミニウム化合物をアルミニウム元素量で 2. 7gZlの濃度で純水に溶解して 680η mの波長で吸光度を測定する。溶解は室温で 6時間攪拌後、内温を 95°Cに上げて、 さらに 3時間攪拌をすることにより行う。吸光度の測定はセル長 lcmの石英セルを用 い、純水を対照液として行う。
[0040] 吸光度が 0. 0088以下が好ましぐ 0. 0044以下がより好ましぐ 0. 022以下がさら に好ましい。吸光度 0が最も好ましい。吸光度が 0. 0132を超えた場合は、ポリエステ ルに不溶性の異物含有量が多くなり、例えばフィルムやボトル等の成型体として成型 した場合に、該成型体のヘイズが悪化するので好ましくない。また、重縮合工程や成 型工程でのポリエステルの濾過時のフィルター詰まりが多くなるという課題にも繋がる
[0041] 上記のアルミニウム化合物水溶液の吸光度は、アルミニウム化合物中に含まれる極 微量の水への不溶性成分量を評価する尺度である。該吸光度を本発明の範囲にす ることでポリエステルに不溶性の異物含有量の生成が抑制されるのは、アルミニウム 化合物中に含まれる極微量の水への不溶性成分である微粒子状の不溶解分自体あ るいは該不溶解分が核となりポリエステルの重縮合工程でポリエステルに対して不溶 性の異物に変質あるいは凝集すること等によるポリエステルに不溶性の異物生成が 抑制されるために引起されるものと推察している。
[0042] 本発明において、上記のアルミニウム化合物水溶液の吸光度を 0. 0132以下にする 方法は限定されないが、例えば、アルミニウム化合物として含水率が 8質量%以上の 水溶性アルミニウム化合物を用いることが好ましい。含水率が 10質量%以上が好ま しぐ 12質量%以上がさらに好ましい。含水率が 8質量%未満の場合は、上記のアル ミニゥム化合物水溶液の吸光度が増大するので好ましくない。
[0043] 本発明にお 、て、アルミニウム化合物として含水率が 8質量%以上の水溶性アルミ ニゥム化合物を用いることにより、上記のアルミニウム化合物水溶液の吸光度が抑制 され、さらにポリエステルに不溶性の異物含有量が少なくなるという機構は明確ィ匕で きて 、な 、が、アルミニウム化合物を反応媒体より単離する場合のアルミニウム化合 物の乾燥工程において、含水率が 8質量%未満になると水やポリエステルに不溶性 のアルミニウム化合物を形成するアルミニウム化合物の変性体や構造変態が極微量 であるが生ずるために引起されているものと推測される。例えば、アルミニウム化合物 の変性体としてはアルミニウム化合物の加水分解物が、構造変態としては単分子が 会合したポリマー構造体や結晶水を含んだ複合構造変態の形成が推測される。従つ て、含水率が高いところで乾燥を停止することによりポリエステルに不溶性の異物含 有量が抑制されるものと推測される。従って、本発明に用いられる水溶性アルミ-ゥ ム化合物は含水率が 8質量%以上の状態で乾燥を停止したものが好ま 、。含水率 の上限は限定されず、乾燥工程を経ていない水溶液状のものを使用してもよい。該 方法は上記の乾燥による課題が発生しない上に、単離工程の省略にも繋がり、品質 のみでなく経済的なメリットも発現されるので推奨される。従って、上記の水溶性アル ミニゥム化合物は、水溶液法で調製したアルミニウム化合物を単離ある 、は単離する ことなく水溶液のまま使用するのが好まし!/、。
[0044] 水溶性アルミニウム化合物を単離することなく水溶液をそのまま用いる場合は、該 水溶液のアルミニウム化合物の濃度を前記したアルミニウム化合物水溶液の吸光度 測定方法の濃度に調整し、該濃度調整した水溶液の吸光度が 0. 0132以下である ものを使用するのが好まし 、。
[0045] 上記のアルミニウム化合物としては、水溶性のものであればその構造や製造方法 は限定されな 、が、塩基性酢酸アルミニウムであることが好ま 、。
[0046] 塩基性酢酸アルミニウムは、水および Zまたは有機溶剤に溶解しやすぐかつ安定 性や金属に対する腐食性が低く上記技術のアルミニウム化合物として好適であるが、 該塩基性酢酸アルミニウムにおいても市販の製品を用いた場合は、該製品のメーカ 一の違いやロットの違いにより得られたポリエステルに不溶性の異物量が大きく変動 するという課題があった。該課題を解決することも本発明の目的の一つである。
[0047] 塩基性酢酸アルミニウムについて製造方法を例示するがこれらの方法に限定され るものではない。例えば、(1)アルミナ水和物と酢酸の蒸気を接触する方法、(2)ァ ルミン酸ナトリウムやアルミン酸カリウム水溶液と酢酸水溶液との反応による方法、(3) 塩基性塩ィ匕アルミニウム水溶液と氷酢酸との反応および (4)塩基性塩化アルミニウム 水溶液、塩基性アミド硫酸アルミニウム水溶液、塩基性硝酸アルミニウム水溶液等の 塩基性無機酸アルミニウム水溶液と酢酸型ァ-オン交換樹脂とを接触させて無機酸 イオンと酢酸イオンの交換をする方法等が挙げられる。これらの方法により得られた 塩基性酢酸アルミニウムの水溶液を濃縮あるいは希釈して用いることができる。
[0048] 水溶液として用いる場合の水溶液中の塩基性酢酸アルミニウム濃度は限定されな!、 力 後述のエチレングリコール溶液に液置換をする場合の水の留去工程を考慮する と 1質量%以上が好ましい。 1. 2質量%以上がより好ましぐ 1. 5質量%以上がさら に好ましい。
[0049] また、該水溶液を濃縮、乾燥して塩基性酢酸アルミニウムを固形ィ匕して用いても良 ヽ 。この場合は、塩基性酢酸アルミニウムの乾燥を含水率 8質量%以上で停止すること が必要である。また、該乾燥の折に乾燥温度を高めないことが好ましい。 150°C以下 が好ましぐ 120°C以下がより好ましぐ 100°C以下が特に好ましい。該乾燥温度を高 めないことにより水やポリエステルに不溶性の異物含有量がより抑制される。
[0050] また、本発明においては、アルミニウム化合物としてアルミニウム化合物 30gを純水 1 500mlに溶解した時の水に対する不溶分量が lOOOppm以下であるアルミニウム化 合物を用いること好ましい。
[0051] なお、上記の水に対する不溶分量は以下の方法で評価し求めた値である。
[アルミニウム化合物の水に対する不溶分量測定法]
200rpmで攪拌した室温の純水 1500mlにアルミニウム化合物 30gを添カ卩し、室温 で 6時間攪拌を続ける。引き続き液温を 95°Cに加温し、同温度で更に 3時間攪拌を 続行しアルミニウム化合物を溶解させた。得られた溶液を室温になるまで放冷し、孔 径 0. 2 μ mのセルロースアセテート製のメンブレンフィルター(Advantec社製セル口 ースアセテートタイプメンブレンフィルター、品名: C020A047A)で濾過し、 50mlの 純水で洗浄した。得られた不溶分を濾過したフィルターを 60°Cの真空乾燥器で 12 時間乾燥し不溶分重量 (W)を求めた。アルミニウム化合物の水に対する不溶分量は 下記式で算出した。アルミニウム化合物が水溶液の場合は、水溶液の一部を採取し 、該水溶液を蒸発乾固することにより水溶液中の固形分を測定し、該固形分をアルミ ニゥム化合物重量として水溶液中のアルミニウム化合物濃度を求め、水溶液中のァ ルミ-ゥム化合物量が 30gとなる量の水溶液を濾過することにより求めた。該水溶液 の場合は、水溶液中のアルミニウム化合物濃度が 2質量%より濃い場合は、 2質量% になるように純水をカ卩ぇアルミニウム希釈して濾過を行った。該希釈は上記の固形ァ ルミ-ゥム化合物の溶解と同じ条件で行った。なお、上記操作はクリーンベンチ中で 実施した。
水に対する不溶分量 (ppm) = [W (mg) /30000 (mg) ] X 106
[0052] 水に対する不溶分量は 900ppm以下が好ましぐ 800ppm以下がさらに好ましい。 水に対する不溶分量が lOOOppmを超えた場合はポリエステルに不溶性の異物含有 量が多くなり、例えばフィルムやボトル等の成型体として成型した場合に、該成型体 のヘーズが悪ィ匕するので好ましくない。また、重縮合工程や成型工程でのポリエステ ルの濾過時のフィルター詰まりが多くなるという課題にも繋がる。
[0053] なお、上記の水に対する不溶分量の主要成分はアルミニウムのゲル状化合物より なると考免られる。
[0054] 本発明においては、上記の水に対する不溶分量が少ないアルミニウム化合物の製 造方法は限定されないが、例えば、前記したような方法で製造することが好ましい実 施態様の一つである。
[0055] 本発明において、アルミニウム化合物として水に対する不溶分量の少ないものを用 いることによりポリエステルに不溶性の異物含有量が少なくなるという機構は明確ィ匕 できて ヽな 、が、アルミニウム化合物中に存在する水に不溶性の極微量の微粒子状 の不溶性分自体ある 、は該不溶成分が核となりポリエステルの重縮合工程でポリエ ステルに対して不溶性の異物に変質あるいは凝集する等によるポリエステルに不溶 性の異物生成が抑制されることにより引き起こされて 、るものと推察して 、る。
[0056] また、本発明にお ヽては、以下に示す特性を有する塩基性酢酸アルミニウムの使用 が好ましい。
[0057] 例えば、塩基性酢酸アルミニウムとしては、 X線回折分析において、 2 Θ (回折角度) 力 0±0. 1度に極大値を有する回折ピークを有し、その半値幅が 0. 60以上で ある塩基性酢酸アルミニウムを用いることが重要である。半値幅が 0. 65以上が好ま しく、 0. 70以上がさらに好ましい。半値幅が 0. 60では水やポリエステルに不溶性の 異物含有量が多くなり、
前述した課題の発生に繋がる。
[0058] 上記の X線回折分析による回折ピークの半値幅は塩基性酢酸アルミニウムの結晶 性の尺度であり、半値幅が小さいほど結晶化度が高くなる。結晶性に比例して前記し た水やポリエステルに不溶性の微量成分が増大するものと推察される。また、塩基性 酢酸アルミニウムの含水率が低くなると該結晶性が高くなるものと推察される。
[0059] また、塩基性酢酸アルミニウムとしては、下記方法で測定した赤外線吸収分析にお いて、 3700± 10cm に吸収極大を持つ吸収の吸光度 Bと 1029± 10cm に吸収 極大を持つ吸収の吸光度 Aの吸光度比 Tl ( = BZA)が 1. 8以下である塩基性酢酸 アルミニウムを用いることが好ましい。該吸光度比 Tが 1. 7以下が好ましぐ 1. 6以下 力 Sさらに好ましい。吸光度比 T1が 1. 8を超えた場合は水やポリエステルに不溶性の 異物含有量が多くなり、前記した課題の発生に繋がる。
[赤外線吸収分析法 (吸光度比 T1の測定) ]
測定は透過法にて行う。測定には Bio— Rad社製、 FTS— 40 (本体) ZUMA300 (赤外顕微鏡)を用いる。 985cm_1付近の吸収の吸光度が 1. 5以下になるように試 料を調製し、分解能 8cm_1、積算回数 128回で測定を行う。吸収強度を算出するた めのベースラインは、以下の手順により定める。 3700cm_1の吸収強度は、この吸収 の両側のすそを結んでベースラインとする。 1029cm_1の吸収については、 1060c m_1の吸収の高波数側のすそと、 985cm_1の吸収の低波数側のすそとを結んでベ ースラインとする。 3700± 10cm_1および 1029± 10cm_1それぞれの上記ベースラ インからピークトップまでの高さの比、すなわち、吸光度 Bおよび Aの吸光度比 T1 (B ZA)とする。
[0060] 上記の 3700± 10cm_1に吸収極大を持つ吸収は塩基性酢酸アルミニウム中の結晶 水に起因した吸収であると推察される。従って、塩基性酢酸アルミニウム中の結晶水 の少ないものが好ましい。単なる吸着水の場合は、 3600cm_1付近にブロードな吸 収として現れるので明確に区分される。
[0061] 塩基性酢酸アルミニウム中の結晶水が少ないものを用いることにより水やポリエステ ルに不溶性の異物含有量が少なくなるという機構は明確ィ匕できていないが、塩基性 酢酸アルミニウム中に含まれる結晶水を有した成分あるいは該結晶水を有した成分 と関連した微量成分により水やポリエステルに不溶性の異物生成が引起されているも のと推察している。
[0062] また、塩基性酢酸アルミニウムとしては、下記方法で測定した赤外線吸収分析にお いて、 1062± 10cm_1に吸収極大を持つ吸収の吸光度 Cと 1029± 10cm_1に吸収 極大を持つ吸収の吸光度 Aの吸光度比 T2 ( = CZA)が 1. 0以下である塩基性酢酸 アルミニウムを用いることが好ましい。該吸光度比 Tが 1. 7以下が好ましぐ 1. 6以下 力 Sさらに好ましい。吸光度比 Tが 1. 8を超えた場合は水やポリエステルに不溶性の異 物含有量が多くなり、前記した課題の発生に繋がる。
[赤外線吸収分析法 (吸光度比 Τ2の測定) ]
1昼夜室温で減圧乾燥したものを測定用試料とする。測定は透過法にて行う。測定に は Bio— Rad社製、 FTS— 40 (本体) ZUMA300 (赤外顕微鏡)を用いた。 985cm _1付近の吸収の吸光度が 1. 5以下になるように試料を調製し、分解能 8cm_1、積算 回数 128回で測定を行う。吸収強度を算出するためのベースラインは、以下の手順 により定める。 1062cm_1および 1029cm_1の吸光度については、 1060cm_1の吸 収の高波数側のすそと、 985cm_1の吸収の低波数側のすそとを結んでベースライン する。 1062士 10cm_1および 1029士 10cm_1それぞれの上記ベースラインからピ ークトップまでの高さの比、すなわち、吸光度 Cおよび Aの吸光度比 T2 (CZA)とす る。
[0063] 上記 1062± 10cm_1に吸収極大を持つ吸収バンドは塩基性酢酸アルミニウム中の 結晶に起因した吸収である。また、 1029士 cm—1は結晶および非晶に無関係な吸収 である。吸光度比 T2 (C/A)は、塩基性酢酸アルミニウムの結晶化度に深く関わる値 であり、その値が大きい場合は見掛けの結晶化度が大きぐ逆にその値が小さい場 合は見掛けの結晶化度は小さいことを意味する。従って、塩基性酢酸アルミニウム中 の結晶化度の低 、ものが水および Zまたは有機溶剤に溶解しやすく好まし 、態様で あり、異物低減の意味でも好ましい。
[0064] 本発明において、塩基性酢酸アルミニウムの結晶化度が小さいものを用いることに よりポリエステルに不溶性の異物含有量が少なくなるという機構は明確ィ匕できていな いが、前記した X線回折分析において求められる結晶化度と同様の原因によりアルミ -ゥムの中に含まれる結晶成分あるいは微量の会合成分により水およびポリエステル に不溶性の異物生成が弓 I起されて!/、るものと推察して 、る。
[0065] また、塩基性酢酸アルミニウムとしては、アルミニウム原子に対してィォゥ原子を 25 〜10000ppm含有するものを用いることが好ましい。該ィォゥ原子含有量は 50〜90 OOppm力 子ましく、 100〜8000ppm力より好ましい。ィォゥ原子含有量が 25ppm未 満の場合は、水やポリエステルに不溶性の異物含有量が多くなり、前記した課題の 発生に繋がる。逆に、ィォゥ原子含有量が lOOOOppmを超えた場合は、重縮合過程 での副反応、例えば、グリコール成分同士の脱水反応によるエーテルィヒ合物の生成 が増大し、ポリエステル物性の低下を引起すので好ましいない。例えば、グリコール 成分としてエチレングリコールを用いた場合は、ジエチレングリコールが生成し、該ジ エチレングリコールがポリエステル鎖に導入されポリエステルの融点が低下しポリエス テルの耐熱性が悪ィ匕する。また、エーテル結合の導入によりポリエステルの耐光性等 が悪ィ匕するという課題にも繋がる。
[0066] 上記の塩基性酢酸アルミニウム化合物中のィォゥ原子含有量を満たす方法として は、ィォゥ原子を硫酸イオン、亜硫酸イオン、次亜硫酸イオンあるいはメタンスルホン 酸や p—トルエンスルホン酸等スルホン酸イオンの形で導入するのが好まし!/、。該ィ オン基は酸の形で導入してもよいし、塩の形で導入してもよい。硫酸、スルホン酸ある いはこれらのアルミニウム塩として導入するのが特に好まし 、。該含ィォゥ化合物の 導入方法は限定なく任意である。例えば、塩基性酢酸アルミニウムの製造工程で導 入してもょ 、し、ポリエステルの製造工程で用いる塩基性酢酸アルミニウム溶液の調 製時に添加し導入してもよ ヽ。
[0067] 上記の塩基性酢酸アルミニウム化合物中のィォゥ原子含有量を増加させることによ り、水やポリエステルに不溶性の異物含有量が少なくなるという機構は明確ィ匕できて いないが、ィォゥ原子含有成分により、塩基性酢酸アルミニウム中に含まれる水ゃポ リエステルに不溶性の異物生成を引起す微量成分を水やポリエステルに対して可溶 性の構造に変性されることにより引起されるものと推察される。
[0068] また、塩基性酢酸アルミニウムとしては、アルミニウム原子に対してホウ素原子を 25 〜10000ppm含有するものを用いることを特徴としている。該ホウ素原子含有量は 5 0〜9000ppm力好ましく、 100〜8000ppm力より好まし!/ヽ。ホウ素原子含有量力 25 ppm未満の場合は、ポリエステルに不溶性の異物含有量が多くなり、例えばフィルム やボトル等の成型体として成型した場合に、該成型体のヘイズが悪化するので好ま しくない。また、重縮合工程や成型工程でのポリエステルの濾過時のフィルター詰ま りが多くなるという課題にも繋がる。逆に、ホウ素原子含有量が lOOOOppmを超えた 場合は、重縮合過程での副反応、例えば、グリコール成分同士の脱水反応によるェ 一テル化合物の生成が増大し、ポリエステル物性の低下を引起すので好まし 、な!ヽ 。例えば、グリコール成分としてエチレングリコールを用いた場合は、ジエチレングリコ ールが生成し、該ジエチレングリコールがポリエステル鎖に導入されポリエステルの 融点が低下しポリエステルの耐熱性が悪ィ匕する。また、エーテル結合の導入によりポ リエステルの耐光性等が悪ィ匕するという課題にも繋がる。
[0069] 本発明において、上記の塩基性酢酸アルミニウム化合物中のホウ素原子含有量を 満たす方法としては、ホウ素原子をホウ酸イオン、次ホウ酸イオンあるいはメタホウ酸 イオンの形で導入するのが好ましい。該イオン基は酸の形で導入してもよいし、塩の 形で導入してもよい。
ホウ酸あるいはホウ酸アルミニウムとして導入するのが特に好まし 、。該含ィォゥ化合 物の導入方法は限定なく任意である。例えば、塩基性酢酸アルミニウムの製造工程 で導入してもよ 、し、ポリエステルの製造工程で用いる塩基性酢酸アルミニウム溶液 の調製時に添加し導入してもよ 、。
[0070] 上記の塩基性酢酸アルミニウム化合物中のホウ素原子含有量を増加させることによ り、水やポリエステルに不溶性の異物含有量が少なくなるという機構は明確ィ匕できて いないが、ホウ素原子含有成分により、塩基性酢酸アルミニウム中に含まれる水ゃポ リエステルに不溶性の異物生成を引起す微量成分を水やポリエステルに対して可溶 性の構造に変性されることにより引起されるものと推察される。
[0071] 本発明においては、上記特性を有した塩基性酢酸アルミニウムを用いて行うのが好 ましいが、限定されない。他の水溶性アルミニウム化合物を用いてもよい。また、前記 のアルミニウム化合物水溶液の吸光度が満たされな 、製品を用いて、該アルミニウム 化合物を水溶液として濾過や遠心あるいは超遠心分離法で水に不溶性の成分を除 去して前期した吸光度特性を有する水溶液を得て用いても構わな ヽ。
[0072] 本発明のアルミニウム化合物は、ポリエステルの重縮合系に添加する前に、予め水 および Zまたは有機溶媒に溶解した状態にして、重縮合系に添加するのが好まし ヽ 。有機溶媒としては、グリコール類の使用が好ましぐ PETを製造する場合は、ェチレ ングリコールを用いることが好まし 、。
[0073] 本発明のアルミニウム化合物を水および Zまたは有機溶媒に溶解した溶液を製造す るために、アルミニウム化合物を予め水に溶解した溶液を用いることが好ましい。該 水溶液に必要に応じてジオール類等の有機溶剤を加えることが好まし ヽ。該水溶液 をそのまま重縮合系に添加してもよいが、添加時のヒートショックをやわらげる為に、 該水溶液をエチレングリコール等のジオール類で希釈したものを重縮合系に添加す るカゝ、あるいは、ジオール類で希釈した溶液を液一液置換することで水を留去したも のを重縮合系に添加することが好まし 、。
[0074] アルミニウム化合物水溶液をエチレングリコール等のジオール類で希釈する場合、水 に対して容量比で 0. 5〜50倍量のジオール類で希釈することが好ましい。また、重 縮合系に添加するアルミニウム化合物の溶液の濃度としては、アルミニウム元素換算 で 0. 01〜1モル Zリットルとすると、得られるポリエステル中に不溶性の異物の生成 がとくに抑制されるため好ま 、。
[0075] アルミニウム化合物を水および Zまたは有機溶剤に溶解する際、あるいは溶解した 溶液に、ホウ酸等の安定剤やくえん酸、乳酸、蓚酸等の酸を添加することで溶解性 や溶液の安定性が高まるため、該化合物を併用することは好ま 、実施態様である。
[0076] 以下に、本発明で用いられるアルミニウム化合物溶液の調製方法として、塩基性酢 酸アルミニウムを用いたケースで例示する。塩基性酢酸アルミニウムに水をカ卩ぇ室温 で数時間以上攪拌する。攪拌時間は、 12時間以上であることが好ましい。その後、 6 0°C以上で数時間以上攪拌を行う。この場合の温度は、 60〜80°Cの範囲であること が好ましい。攪拌時間は、 3時間以上であることが好ましい。水溶液の濃度は、 5g/l 〜100gZlが好ましぐとくに 10gZl〜30gZlが好ましい。該方法において、予め前 記のアルミニウム化合物水溶液の吸光度測定法に従って、本発明範囲の吸光度を 満足する塩基性酢酸アルミニウムであることを評価したものを用いて行うのが好ま ヽ 実施態様である。一方、該方法で溶解した水溶液を濾過あるいは超遠心分離法等で 水に不溶性の成分を除去することにより精製し、その精製溶液の一部をサンプリング し、フリーズドライ法で乾燥することにより得た固形分を純水に再溶解をして吸光度を 測定し吸光度が本発明の範囲には入っていることを確認して用いても良い。
[0077] 上述の水溶液に対してエチレングリコールを加える。エチレングリコールの添力卩量は 水溶液に対して容量比で 1〜5倍量が好ましい。より好ましくは 2〜3倍量である。該 溶液を数時間常温で攪拌することで均一な水 Zエチレングリコール混合溶液を得る 。その後、該溶液を加熱し、水を留去することでエチレングリコール溶液を得ることが できる。温度は 80°C以上が好ましぐ 120°C以下が好ましい。より好ましくは 90〜 11 0°Cで数時間攪拌して水を留去することが好ま 、。
[0078] 以下に、乳酸アルミニウムのエチレングリコール溶液の調製方法の具体例を示す。乳 酸アルミニウムの水溶液を調製する。調製は室温下でも加熱下でもよ 、が室温下が 好ましい。水溶液の濃度は 20gZl〜100gZlが好ましぐ 50〜80gZlがとくに好ま しい。該水溶液にエチレングリコールをカ卩える。エチレングリコールの添力卩量は水溶 液に対して容量比で 1〜5倍量が好ましい。より好ましくは 2〜3倍量である。該溶液 を常温で攪拌し均一な水 Zエチレングリコール混合溶液を得た後、該溶液を加熱し 、水を留去することでエチレングリコール溶液を得ることができる。温度は 80°C以上 が好ましぐ 120°C以下が好ましい。より好ましくは 90〜110°Cで数時間攪拌して水 を留去することが好ま 、。吸光度の評価は上記の塩基性酢酸アルミニウム溶液の 調製法に準ずる。
[0079] 本発明の方法に従ってポリエステルを製造する際の、アルミニウム化合物の使用量と しては、得られるポリエステルのジカルボン酸や多価カルボン酸などのカルボン酸成 分の全構成ユニットのモル数に対してアルミニウム原子として 0. 001〜0. 05モル0 /0 が好ましぐ更に好ましくは 0. 005-0. 02モル%である。使用量が 0. 001モル%未 満であると触媒活性が十分に発揮されない場合があり、使用量が 0. 05モル%より多 いと、熱安定性や熱酸化安定性の低下、アルミニウムに起因する異物の発生や着色 の増加が問題になる場合が発生する。この様にアルミニウム成分の添加量が少なく ても本発明の重縮合触媒は十分な触媒活性を示す点に大きな特徴を有する。その 結果熱安定性や熱酸化安定性が優れ、アルミニウムに起因する異物や着色が低減 される。
[0080] 本発明おいては、重縮合触媒として、上記のアルミニウム化合物とともに、少なくとも 一種のリン化合物を併用するのが好ましい実施態様である。該リンィ匕合物の併用によ り、アルミニウム化合物単独系の場合よりも、重縮合触媒活性の増大、ポリエステルの 着色等の副反応の抑制、ポリエステルに不溶性の異物の生成抑制等の効果が発現 される場合がある。
[0081] 該リンィ匕合物は限定されないが、ホスホン酸系化合物、ホスフィン酸系化合物、ホス フィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフ イン系化合物の使用が好まし 、。
[0082] 本発明で言うホスホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系 化合物、亜ホスホン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物とは、 それぞれ下記化学式 (化 1)〜 (化 6)で表される構造を有する化合物のことを言う。
[0083] (化 1)
Figure imgf000021_0001
(化 2)
0
II
P一 0
(化 3)
Figure imgf000021_0002
(化 4)
0— ~0
(化 5)
Figure imgf000021_0003
(化 6)
Figure imgf000022_0001
[0084] 本発明のホスホン酸系化合物としては、例えば、メチルホスホン酸ジメチル、メチル ホスホン酸ジフエ-ル、フエ-ルホスホン酸ジメチル、フエ-ルホスホン酸ジェチル、 フエ-ルホスホン酸ジフエ-ル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸ジ ェチルなどが挙げられる。本発明のホスフィン酸系化合物としては、例えば、ジフエ- ルホスフィン酸、ジフエ-ルホスフィン酸メチル、ジフエ-ルホスフィン酸フエ-ル、フエ -ルホスフィン酸、フエ-ルホスフィン酸メチル、フエ-ルホスフィン酸フエ-ルなどが 挙げられる。本発明のホスフィンオキサイド系化合物としては、例えば、ジフエニルホ スフインオキサイド、メチルジフエ-ルホスフィンオキサイド、トリフエ-ルホスフィンォキ サイドなどが挙げられる。
[0085] ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホン酸系化合物、亜ホ スフイン酸系化合物、ホスフィン系化合物の中では、本発明のリン化合物としては、下 記化学式 (化 7)〜 (化 12)で表される化合物が好ま 、。
[0086] (化 7)
(化 8)
Figure imgf000022_0002
(化 9)
Figure imgf000023_0001
Figure imgf000023_0002
Figure imgf000023_0003
(化 12)
[(C¾) (C )7] 3P
[0087] 上記したリン化合物の中でも、芳香環構造を有する化合物を用いると物性改善効 果ゃ触媒活性の向上効果が大きく好まし ヽ。
[0088] また、本発明のリンィ匕合物としては、下記化学式 (化 13)〜(化 15)で表される化合 物を用いると物性改善効果や触媒活性の向上効果が特に大きく好ましい。
[0089] (化 13)
P(=0)RH0Rz) (0R3)
(化 14)
(化 15) [0090] (化学式 (化 13)〜(化 15)中、 R R4、 R5、 R6はそれぞれ独立に水素、炭素数 1〜5 0の炭化水素基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基を含 む炭素数 1〜50の炭化水素基を表す。 R2、 R3はそれぞれ独立に水素、炭素数 1〜5 0の炭化水素基、水酸基またはアルコキシル基を含む炭素数 1〜50の炭化水素基を 表す。ただし、炭化水素基はシクロへキシル等の脂環構造やフ ニルゃナフチル等 の芳香環構造を含んでいてもよい。 )
[0091] 本発明のリンィ匕合物としては、上記化学式 (化 13)〜(化 15)中、
Figure imgf000024_0001
が 芳香環構造を有する基である化合物がとくに好まし 、。
[0092] 本発明のリン化合物としては、例えば、メチルホスホン酸ジメチル、メチルホスホン 酸ジフエ-ル、フエ-ルホスホン酸ジメチル、フエ-ルホスホン酸ジェチル、フエ-ル ホスホン酸ジフエ-ル、ベンジルホスホン酸ジメチル、ベンジルホスホン酸ジェチル、 ジフエ-ルホスフィン酸、ジフエ-ルホスフィン酸メチル、ジフエ-ルホスフィン酸フエ ニル、フエニルホスフィン酸、フエニルホスフィン酸メチル、フエニルホスフィン酸フエ二 ル、ジフエ-ルホスフィンオキサイド、メチルジフエ-ルホスフィンオキサイド、トリフエ- ルホスフィンオキサイドなどが挙げられる。これらのうちで、フエ-ルホスホン酸ジメチ ル、ベンジルホスホン酸ジェチルがとくに好まし!/、。
[0093] 上述したリンィ匕合物の中でも、本発明では、リン化合物としてリンの金属塩化合物が とくに好ましい。リンの金属塩ィ匕合物とは、リンィ匕合物の金属塩であれば特に限定は されな 、が、ホスホン酸系化合物の金属塩を用 V、ると本発明の課題であるポリエステ ルの物性改善効果や触媒活性の向上効果が大きく好ましい。リン化合物の金属塩と しては、モノ金属塩、ジ金属塩、トリ金属塩などが含まれる。
[0094] また、上記したリン化合物の中でも、金属塩の金属部分が、 Li、 Na、 K、 Be、 Mg、 Sr 、 Ba、 Mn、 Ni、 Cu、 Zn力 選択されたものを用いると触媒活性の向上効果が大きく 好ましい。これらのうち、 Li、 Na、 Mgがとくに好ましい。
[0095] 本発明のリンの金属塩ィ匕合物としては、下記化学式 (化 16)で表される化合物から 選択される少なくとも一種を用いると物性改善効果や触媒活性の向上効果が大きく 好ましい。
[0096] (化 16) ,
) M ( 30")m
Figure imgf000025_0001
(化学式 (化 16)中、 R1は水素、炭素数 1〜50の炭化水素基、水酸基またはハロゲン 基またはアルコキシル基またはアミノ基を含む炭素数 1〜50の炭化水素基を表す。 R 2は、水素、炭素数 1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭素 数 1〜50の炭化水素基を表す。 R3は、水素、炭素数 1〜50の炭化水素基、水酸基 またはアルコキシル基またはカルボ-ルを含む炭素数 1〜50の炭化水素基を表す。 1は 1以上の整数、 mは 0または 1以上の整数を表し、 1+mは 4以下である。 Mは(1+ m)価の金属カチオンを表す。 nは 1以上の整数を表す。炭化水素基はシキロへキシ ル等の脂環構造や分岐構造やフ ニルゃナフチル等の芳香環構造を含んでいても よい。 )
[0097] 上記の R1としては、例えば、フエ-ル、 1 ナフチル、 2 ナフチル、 9 アンスリル、 4 ビフエ-ル、 2 ビフエ-ルなどが挙げられる。上記の R2としては例えば、水素、メ チル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 sec ブチル基、 ter t ブチル基、長鎖の脂肪族基、フ -ル基、ナフチル基、置換されたフ -ル基ゃ ナフチル基、 CH CH OHで表される基などが挙げられる。 R30—としては例えば、
2 2
水酸化物イオン、アルコラ一トイオン、アセテートイオンゃァセチルアセトンイオンなど が挙げられる。
[0098] 上記化学式 (化 16)で表される化合物の中でも、下記化学式 (化 17)で表される化 合物から選択される少なくとも一種を用いることが好ま U、。
[0099] (化 17)
Figure imgf000025_0002
(化学式 (化 17)中、 R1は水素、炭素数 1〜50の炭化水素基、水酸基またはハロゲ ン基またはアルコキシル基またはアミノ基を含む炭素数 1〜50の炭化水素基を表す 。 R3は、水素、炭素数 1〜50の炭化水素基、水酸基またはアルコキシル基または力 ルポニルを含む炭素数 1〜50の炭化水素基を表す。 1は 1以上の整数、 mは 0または 1以上の整数を表し、 1+mは 4以下である。 Mは(1+m)価の金属カチオンを表す。 炭化水素基はシキロへキシル等の脂環構造や分岐構造やフ ニルゃナフチル等の 芳香環構造を含んでいてもよい。 )
[0100] 上記の R1としては、例えば、フエ-ル、 1 ナフチル、 2 ナフチル、 9 アンスリル、 4 ビフエ-ル、 2 ビフエ-ルなどが挙げられる。 R30—としては例えば、水酸化物ィ オン、アルコラ一トイオン、アセテートイオンゃァセチルアセトンイオンなどが挙げられ る。
[0101] 上記したリンィ匕合物の中でも、芳香環構造を有する化合物を用いると物性改善効 果ゃ触媒活性の向上効果が大きく好ましい。
[0102] 上記化学式(ィ匕 17)の中でも、 Mが、 Li, Na、 K、 Be、 Mg、 Sr、 Ba、 Mn、 Ni、 Cu、 Z nから選択されたものを用いると触媒活性の向上効果が大きく好ましい。これらのうち 、 Li、 Na、 Mgがとくに好ましい。
[0103] 本発明のリンの金属塩ィ匕合物としては、リチウム [ (1 ナフチル)メチルホスホン酸ェ チル]、ナトリウム [ (1—ナフチル)メチルホスホン酸ェチル]、マグネシウムビス [ (1— ナフチノレ)メチノレホスホン酸ェチノレ]、カリウム [ (2—ナフチノレ)メチノレホスホン酸ェチ ル]、マグネシウムビス [ (2—ナフチル)メチルホスホン酸ェチル]、リチウム [ベンジル ホスホン酸ェチル]、ナトリウム [ベンジルホスホン酸ェチル]、マグネシウムビス [ベン ジルホスホン酸ェチル]、ベリリウムビス [ベンジルホスホン酸ェチル]、ストロンチウム ビス [ベンジルホスホン酸ェチル]、マンガンビス [ベンジルホスホン酸ェチル]、ベン ジルホスホン酸ナトリウム、マグネシウムビス [ベンジルホスホン酸]、ナトリウム [ (9— アンスリル)メチルホスホン酸ェチル]、マグネシウムビス [ (9 アンスリル)メチルホス ホン酸ェチル]、ナトリウム [4ーヒドロキシベンジルホスホン酸ェチル]、マグネシウム ビス [4—ヒドロキシベンジルホスホン酸ェチル]、ナトリウム [4—クロ口べンジルホスホ ン酸フエ-ル]、マグネシウムビス [4 クロ口べンジルホスホン酸ェチル]、ナトリウム [ 4 -ァミノべンジルホスホン酸メチル]、マグネシウムビス [4 -ァミノべンジルホスホン 酸メチル]、フエ-ルホスホン酸ナトリウム、マグネシウムビス [フエ-ルホスホン酸ェチ ル]、亜鉛ビス [フエ-ルホスホン酸ェチル]などが挙げられる。これらの中で、リチウム
[ ( 1 ナフチル)メチルホスホン酸ェチル]、ナトリウム [ ( 1 ナフチル)メチルホスホン 酸ェチル]、マグネシウムビス [ ( 1 ナフチル)メチルホスホン酸ェチル]、リチウム [ベ ンジルホスホン酸ェチル]、ナトリウム [ベンジルホスホン酸ェチル]、マグネシウムビス [ベンジルホスホン酸ェチル]、ベンジルホスホン酸ナトリウム、マグネシウムビス [ベン ジノレホスホン酸]がとくに好まし ヽ。
[0104] 上述したリンィ匕合物の中でも、本発明では、リンィ匕合物として P— OH結合を少なく とも一つ有するリンィ匕合物がとくに好まし 、。これらのリンィ匕合物を含有することでポリ エステルの物性改善効果がとくに高まることに加えて、ポリエステルの重合時に、これ らのリンィ匕合物を本発明のアルミニウム化合物と共存して用いることで触媒活性の向 上効果が大きく見られる。
P - OH結合を少なくとも一つ有するリンィ匕合物とは、分子内に P - OHを少なくとも 一つ有するリンィ匕合物であれば特に限定はされない。これらのリンィ匕合物の中でも、 P OH結合を少なくとも一つ有するホスホン酸系化合物を用 、るとアルミニウム化合 物との錯体形成が容易になり、ポリエステルの物性改善効果や触媒活性の向上効果 が大きく好ましい。
[0105] 上記したリンィ匕合物の中でも、芳香環構造を有する化合物を用いると物性改善効 果ゃ触媒活性の向上効果が大きく好ましい。
[0106] 本発明の P— OH結合を少なくとも一つ有するリンィ匕合物としては、下記一般式 (ィ匕
18)で表される化合物力 選択される少なくとも一種を用いると物性改善効果や触媒 活性の向上効果が大きく好ま ヽ。
[0107] (化 18)
Figure imgf000027_0001
(化学式 (化 18)中、 R1は水素、炭素数 1〜50の炭化水素基、水酸基またはハロゲ ン基またはアルコキシル基またはアミノ基を含む炭素数 1〜50の炭化水素基を表す 。 R2は、水素、炭素数 1〜50の炭化水素基、水酸基またはアルコキシル基を含む炭 素数 1〜50の炭化水素基を表す。 nは 1以上の整数を表す。炭化水素基はシキロへ キシル等の脂環構造や分岐構造やフ ニルゃナフチル等の芳香環構造を含んでい てちよい。 )
[0108] 上記の R1としては、例えば、フエニル、 1 ナフチル、 2 ナフチル、 9 アンスリル 、 4 ビフエ-ル、 2 ビフエ-ルなどが挙げられる。上記の R2としては例えば、水素、 メチル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 sec ブチル基、 t ert ブチル基、長鎖の脂肪族基、フ -ル基、ナフチル基、置換されたフ -ル基 やナフチル基、 CH CH OHで表される基などが挙げられる。
2 2
[0109] 上記したリンィ匕合物の中でも、芳香環構造を有する化合物を用いると物性改善効 果ゃ触媒活性の向上効果が大きく好ましい。
[0110] 本発明の P— OH結合を少なくとも一つ有するリンィ匕合物としては、(1 ナフチル) メチルホスホン酸ェチル、 (1 ナフチル)メチルホスホン酸、(2—ナフチル)メチルホ スホン酸ェチル、ベンジルホスホン酸ェチル、ベンジルホスホン酸、(9 アンスリル) メチルホスホン酸ェチル、 4ーヒドロキシベンジルホスホン酸ェチル、 2 メチルベンジ ルホスホン酸ェチル、 4—クロ口べンジルホスホン酸フエ-ル、 4—ァミノべンジルホス ホン酸メチル、 4ーメトキシベンジルホスホン酸ェチルなどが挙げられる。これらの中 で、 (1 ナフチル)メチルホスホン酸ェチル、ベンジルホスホン酸ェチルがとくに好ま しい。
[0111] 本発明の好ましいリンィ匕合物としては、化学式 (化 19)であらわされるリンィ匕合物が 挙げられる。
(化 19)
(化学式 (化 19)中、 R1は炭素数 1〜49の炭化水素基、または水酸基またはハロゲ ン基またはアルコキシル基またはアミノ基を含む炭素数 1〜49の炭化水素基を表し、 R2, R3はそれぞれ独立に水素、炭素数 1〜50の炭化水素基、水酸基またはアルコ キシル基を含む炭素数 1〜50の炭化水素基を表す。炭化水素基は脂環構造や分岐 構造や芳香環構造を含んでいてもよい。 ) [0112] また、更に好ましくは、化学式 (化 19)中の R1, R2, R3の少なくとも一つが芳香環構 造を含む化合物である。
[0113] これらのリン化合物の具体例を以下に示す。
(化 20)
Figure imgf000029_0001
BPADE
(化 21)
Figure imgf000029_0002
(化 22)
0
II
OC2Hs
2~NMPA
(化 23)
Figure imgf000029_0003
(化 24)
Figure imgf000029_0004
(化 25)
Figure imgf000030_0001
また、本発明のリンィ匕合物は、分子量が大きいものの方が重合時に留去されにくい ため効果が大きく好ましい。
[0114] 本発明のリンィ匕合物は、フエノール部を同一分子内に有するリンィ匕合物であること が好ましい。フエノール部を同一分子内に有するリンィ匕合物を含有することでポリエス テルの物性改善効果が高まることに加えて、ポリエステルの重合時にフエノール部を 同一分子内に有するリンィ匕合物を用いることで触媒活性を高める効果がより大きぐ 従ってポリエステルの生産性に優れる。
[0115] フエノール部を同一分子内に有するリン化合物としては、フエノール構造を有するリ ン化合物であれば特に限定はされないが、フエノール部を同一分子内に有する、ホ スホン酸系化合物、ホスフィン酸系化合物、ホスフィンオキサイド系化合物、亜ホスホ ン酸系化合物、亜ホスフィン酸系化合物、ホスフィン系化合物力 なる群より選ばれる 一種または二種以上の化合物を用いるとポリエステルの物性改善効果や触媒活性 の向上効果が大きく好ましい。これらの中でも、一種または二種以上のフエノール部 を同一分子内に有するホスホン酸系化合物を用いるとポリエステルの物性改善効果 や触媒活性の向上効果がとくに大きく好まし 、。
[0116] 本発明のフエノール部を同一分子内に有するリンィ匕合物としては、下記化学式 (ィ匕 26)〜 (化 28)で表される化合物が好ま 、。
[0117] (化 26)
PC^R^OR COR3)
(化 27)
P (=0)1^ (OR2)
(化 28) [0118] (化学式 (化 26)〜(化 28)中、 R1はフ ノール部を含む炭素数 1〜50の炭化水素 基、水酸基またはハロゲン基またはアルコキシル基またはアミノ基などの置換基およ びフエノール部を含む炭素数 1〜50の炭化水素基を表す。 R4, R5, R6はそれぞれ独 立に水素、炭素数 1〜50の炭化水素基、水酸基またはハロゲン基またはアルコキシ ル基またはアミノ基などの置換基を含む炭素数 1〜50の炭化水素基を表す。 R2, R3 はそれぞれ独立に水素、炭素数 1〜50の炭化水素基、水酸基またはアルコキシル 基などの置換基を含む炭素数 1〜50の炭化水素基を表す。ただし、炭化水素基は 分岐構造ゃシクロへキシル等の脂環構造やフエニルゃナフチル等の芳香環構造を 含んでいてもよい。 R2と R4の末端どうしは結合していてもよい。 )
[0119] 本発明のフエノール部を同一分子内に有するリンィ匕合物としては、例えば、 p—ヒド ロキシフエ-ルホスホン酸、 p—ヒドロキシフエ-ルホスホン酸ジメチル、 p—ヒドロキシ フエ-ルホスホン酸ジェチル、 p—ヒドロキシフエ-ルホスホン酸ジフエ-ル、ビス(p— ヒドロキシフエ-ル)ホスフィン酸、ビス(p—ヒドロキシフエ-ル)ホスフィン酸メチル、ビ ス(p—ヒドロキシフエ-ル)ホスフィン酸フエ-ル、 p -ヒドロキシフエ-ルフエ-ルホス フィン酸、 p—ヒドロキシフエ-ルフエ-ルホスフィン酸メチル、 p—ヒドロキシフエ-ルフ ェ-ルホスフィン酸フエ-ル、 p—ヒドロキシフエ-ルホスフィン酸、 p—ヒドロキシフエ- ルホスフィン酸メチル、 p—ヒドロキシフエ-ルホスフィン酸フエ-ル、ビス(p—ヒドロキ シフエ-ル)ホスフィンオキサイド、トリス(p -ヒドロキシフエ-ル)ホスフィンオキサイド 、ビス(p—ヒドロキシフエ-ル)メチルホスフィンオキサイド、および下記化学式(化 29 )〜(化 32)で表される化合物などが挙げられる。これらのうちで、下記化学式 (化 31) で表される化合物および P—ヒドロキシフエ-ルホスホン酸ジメチルが特に好ましい。
[0120] (ィ匕 29)
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000032_0002
(化 32)
Figure imgf000032_0003
[0121] 上記の化学式 (化 31)にて示される化合物としては、 SANKO— 220 (三光株式会 社製)があり、使用可能である。
[0122] 本発明のフエノール部を同一分子内に有するリンィ匕合物の中でも、下記化学式 (化
33)で表される特定のリンの金属塩ィ匕合物力 選択される少なくとも一種がとくに好ま しい。
[0123] (ィ匕 33)
Figure imgf000032_0004
( (化学式 (化 33)中、
Figure imgf000032_0005
R2はそれぞれ独立に水素、炭素数 1〜30の炭化水素基を 表す。 R3は、水素、炭素数 1〜50の炭化水素基、水酸基またはアルコキシル基を含 む炭素数 1〜50の炭化水素基を表す。 R4は、水素、炭素数 1〜50の炭化水素基、 水酸基またはアルコキシル基またはカルボ-ルを含む炭素数 1〜50の炭化水素基 を表す。 R40—としては例えば、水酸ィ匕物イオン、アルコラ一トイオン、アセテートィォ ンゃァセチルアセトンイオンなどが挙げられる。 1は 1以上の整数、 mは 0または 1以上 の整数を表し、 1+mは 4以下である。 Mは(1+m)価の金属カチオンを表す。 nは 1以 上の整数を表す。炭化水素基はシキロへキシル等の脂環構造や分岐構造やフエ二 ルゃナフチル等の芳香環構造を含んでいてもよい。 )
[0124] これらの中でも、下記化学式 (化 34)で表される化合物力 選択される少なくとも一 種が好ましい。
(化 34)
Figure imgf000033_0001
(化学式 (化 34)中、 Mn+は n価の金属カチオンを表す。 nは 1, 2, 3または 4を表す o )
[0125] 上記化学式(ィ匕 33)または(ィ匕 34)の中でも、 M力 Li, Na、 K、 Be、 Mg、 Sr、 Ba、 Mn、 Ni、 Cu、 Znから選択されたものを用いると触媒活性の向上効果が大きく好まし い。これらのうち、 Li、 Na、 Mgがとくに好ましい。
[0126] 本発明の特定のリンの金属塩化合物としては、リチウム [3, 5 ジー tert ブチル
4ーヒドロキシベンジルホスホン酸ェチル]、ナトリウム [3, 5—ジ—tert—ブチルー 4ーヒドロキシベンジルホスホン酸ェチル]、ナトリウム [3, 5—ジ—tert—ブチルー 4 —ヒドロキシベンジルホスホン酸]、カリウム [3, 5—ジ一 tert—ブチル 4—ヒドロキ シベンジルホスホン酸ェチル]、マグネシウムビス [ 3 , 5—ジ— tert -ブチル— 4—ヒ ドロキシベンジルホスホン酸ェチル]、マグネシウムビス [3, 5—ジ— tert—ブチルー 4—ヒドロキシベンジルホスホン酸]、ベリリウムビス [3, 5—ジ一 tert ブチル 4—ヒ ドロキシベンジルホスホン酸メチル]、ストロンチウムビス [3, 5—ジ— tert—ブチルー 4—ヒドロキシベンジルホスホン酸ェチル]、ノ リウムビス [3, 5—ジ一 tert—ブチルー 4—ヒドロキシベンジルホスホン酸フエ-ル]、マンガンビス [3, 5—ジ— tert—ブチル —4—ヒドロキシベンジルホスホン酸ェチル]、ニッケルビス [3, 5—ジ一 tert—ブチ ルー 4ーヒドロキシベンジルホスホン酸ェチル]、銅ビス [3, 5—ジ tert—ブチルー 4 -ヒドロキシベンジルホスホン酸ェチル]、亜鉛ビス [3, 5—ジ— tert -ブチル 4 ーヒドロキシベンジルホスホン酸ェチル]などが挙げられる。これらの中で、リチウム [3 , 5—ジ—tert—ブチルー 4ーヒドロキシベンジルホスホン酸ェチル]、ナトリウム [3, 5 —ジ— tert -ブチル— 4—ヒドロキシベンジルホスホン酸ェチル]、マグネシウムビス [ 3, 5—ジ一 tert -ブチル 4—ヒドロキシベンジルホスホン酸ェチル]がとくに好まし い。
[0127] 本発明のフエノール部を同一分子内に有するリンィ匕合物の中でも、下記化学式 (化 35)で表される P— OH結合を少なくとも一つ有する特定のリン化合物力 選択される 少なくとも一種がとくに好ましい。
[0128] (ィ匕 35)
Figure imgf000034_0001
( (化学式 (化 35)中、
Figure imgf000034_0002
R2はそれぞれ独立に水素、炭素数 1〜30の炭化水素基 を表す。 R3は、水素、炭素数 1〜50の炭化水素基、水酸基またはアルコキシル基を 含む炭素数 1〜50の炭化水素基を表す。 nは 1以上の整数を表す。炭化水素基はシ キロへキシル等の脂環構造や分岐構造やフエニルゃナフチル等の芳香環構造を含 んでいてもよい。 )
[0129] これらの中でも、下記化学式 (化 36)で表される化合物力も選択される少なくとも一 種が好ましい。
[0130] (ィ匕 36)
Figure imgf000035_0001
(化学式 (化 36)中、 R3は、水素、炭素数 1〜50の炭化水素基、水酸基またはアル コキシル基を含む炭素数 1〜50の炭化水素基を表す。炭化水素基はシキロへキシ ル等の脂環構造や分岐構造やフ ニルゃナフチル等の芳香環構造を含んでいても よい。 )
[0131] 上記の R3としては例えば、水素、メチル基、ェチル基、プロピル基、イソプロピル基、 n ブチル基、 sec ブチル基、 tert ブチル基、長鎖の脂肪族基、フエ-ル基、ナ フチル基、置換されたフエ二ル基ゃナフチル基、—CH CH OHで表される基などが
2 2
挙げられる。
[0132] 本発明の P— OH結合を少なくとも一つ有する特定のリンィ匕合物としては、 3, 5 ジ tert—ブチルー 4ーヒドロキシベンジルホスホン酸ェチル、 3, 5—ジ—tert—ブチ ルー 4ーヒドロキシベンジルホスホン酸メチル、 3, 5—ジ tert—ブチルー 4ーヒドロ キシベンジルホスホン酸イソプロピル、 3, 5—ジ tert—ブチルー 4ーヒドロキシベン ジルホスホン酸フエ-ル、 3, 5—ジ tert—ブチルー 4ーヒドロキシベンジルホスホン 酸ォクタデシル、 3, 5—ジ一 tert—ブチル 4—ヒドロキシベンジルホスホン酸など力 S 挙げられる。これらの中で、 3, 5—ジ tert—ブチルー 4ーヒドロキシベンジルホスホ ン酸ェチル、 3, 5—ジ—tert—ブチルー 4ーヒドロキシベンジルホスホン酸メチルがと くに好ましい。
[0133] 本発明のフエノール部を同一分子内に有するリンィ匕合物の中でも、下記化学式 (化 37)で表される特定のリンィ匕合物から選ばれる少なくとも一種のリンィ匕合物が好まし い。
[0134] (化 37)
Figure imgf000035_0002
(上記化学式 (化 37)中、 R\ R2はそれぞれ独立に水素、炭素数 1〜30の炭化水 素基を表す。 R3、 R4はそれぞれ独立に水素、炭素数 1〜50の炭化水素基、水酸基 またはアルコキシル基を含む炭素数 1〜50の炭化水素基を表す。 nは 1以上の整数 を表す。炭化水素基はシクロへキシル等の脂環構造や分岐構造やフエニルゃナフチ ル等の芳香環構造を含んでいてもよい。 )
[0135] 上記化学式 (化 37)の中でも、下記化学式 (化 38)で表される化合物から選択され る少なくとも一種を用 、るとポリエステルの物性改善効果や触媒活性の向上効果が 高く好ましい。
[0136] (ィ匕 38)
Figure imgf000036_0001
(上記化学式 (化 38)中、 R3、 R4はそれぞれ独立に水素、炭素数 1〜50の炭化水 素基、水酸基またはアルコキシル基を含む炭素数 1〜50の炭化水素基を表す。炭 化水素基はシクロへキシル等の脂環構造や分岐構造やフエニルゃナフチル等の芳 香環構造を含んでいてもよい。 )
[0137] 上記化学式の R3、 R4としては例えば、水素、メチル基、ブチル基等の短鎖の脂肪族 基、ォクタデシル等の長鎖の脂肪族基、フ 二ル基、ナフチル基、置換されたフエ- ル基ゃナフチル基等の芳香族基、 CH CH OHで表される基などが挙げられる。
2 2
[0138] 本発明の特定のリン化合物としては、 3, 5 ジー tert—ブチルー 4ーヒドロキシベン ジルホスホン酸ジイソプロピル、 3, 5—ジ— tert—ブチル—4—ヒドロキシベンジルホ スホン酸ジー n—ブチル、 3, 5—ジ tert—ブチルー 4ーヒドロキシベンジルホスホン 酸ジォクタデシル、 3, 5—ジ一 tert—ブチル 4—ヒドロキシベンジルホスホン酸ジフ ェ-ルなどが挙げられる。これらの中で、 3, 5—ジ tert—ブチルー 4ーヒドロキシべ ンジルホスホン酸ジォクタデシル、 3, 5—ジ tert—ブチルー 4ーヒドロキシベンジル ホスホン酸ジフエ-ルがとくに好まし!/、。
[0139] 本発明のフエノール部を同一分子内に有するリンィ匕合物の中でも、本発明でとくに望 ましいィ匕合物は、化学式 (化 39)、(化 40)で表される化合物力も選ばれる少なくとも 一種のリン化合物である。
(化 39)
Figure imgf000037_0001
(化 40)
Figure imgf000037_0002
上記の化学式(ィ匕 39)にて示される化合物としては、 Irganoxl222 (チノく'スぺシャ ルティ一ケミカルズ社製)が市販されており、また化学式 (化 40)にて示される化合物 としては Irganoxl425 (チノく'スペシャルティーケミカルズ社製)が巿販されており、 使用可能である。
[0141] 本発明で使用できるその他のリン化合物としては、下記する化学式 (化 41)、(化 42) で表される連結基 (X)を有するホスホン酸系あるいは (化 43)で表される連結基 (X) を有さな!/ヽホスホン酸系などが挙げられる。
[0142] 本発明で使用できる広範な連結基 (X)を有するリン化合物でる式 (化 41)で表される リンィ匕合物は次のようなものである。
(化 41)
R1— X— (P = 0) (OR2) (OR3)
[連結基を有する前記化学式 (化 41)中、 R1は炭素数 6〜50の芳香環構造あるい は炭素数 4〜50の複素環構造を表し、該芳香環構造あるいは複素環構造は置換基 を有していてもよい。 Xは連結基であり、炭素数 1〜10の脂肪族炭化水素(直鎖状あ るいは分岐構造あるいは脂環構造であっても力まわな 、)、あるいは置換基を含有す る炭素数 1〜10の脂肪族炭化水素 (直鎖状あるいは分岐構造あるいは脂環構造で あってもかまわない)、一 O 、 一 OCH —、 -SO 一、 -CO- ,— COCH —、 一 C
2 2 2
H OCO 、 一 NHCO 、 一 NH 、 一 NHCONH 、 一 NHSO —、 一 NHC H
2 2 3 6
OCH CH O 力も選ばれる。また、 R2および R3はそれぞれ独立に、水素原子、炭
2 2
素数 1〜20の炭化水素基、水酸基またはアルコキシル基を含む炭素数 1〜20の炭 化水素基を表す。炭化水素基は脂環構造や分岐構造や芳香環構造を有して!/、ても よい。 ]
[0143] 化学式 (化 41)で表されるリン化合物の芳香環構造および複素環構造の置換基が、 炭素数 1〜50の炭化水素基 (直鎖状であっても脂環構造、分岐構造、芳香環構造で あってもよぐこれらがハロゲン置換されたものであってもよい)または水酸基またはハ ロゲン基または炭素数 1〜10のアルコキシル基またはアミノ基 (炭素数 1〜10のアル キルある!/、はアル力ノール置換されて!ヽても力まわな!、)ある!/、は-トロ基ある!/ヽはカ ルボキシル基ある!/、は炭素数 1〜10の脂肪族カルボン酸エステル基ある!/、はホルミ ル基あるいはァシル基ある ヽはスルホン酸基、スルホン酸アミド基 (炭素数 1〜10の アルキルあるいはアル力ノール置換されていてもかまわない)、ホスホリル含有基、二 トリル基、シァノアルキル基、力 選ばれる 1種もしくは 2種以上である。
[0144] 化学式 (化 41)で表されるリンィ匕合物には次のようなものが挙げられる。具体的には、 ベンジルホスホン酸、ベンジルホスホン酸モノェチルエステル、 1—ナフチルメチルホ スホン酸、 1 ナフチルメチルホスホン酸モノェチルエステル、 2—ナフチルメチルホ スホン酸、 2 ナフチルメチルホスホン酸モノェチルエステル、 4 フエニル,ベンジ ルホスホン酸、 4 フエニル,ベンジルホスホン酸モノェチルエステル、 2 フエ-ル, ベンジルホスホン酸、 2 フエ-ル,ベンジルホスホン酸モノェチルエステル、 4 クロ ル,ベンジルホスホン酸、 4—クロル,ベンジルホスホン酸モノェチルエステル、 4—ク ロル,ベンジルホスホン酸ジェチルエステル、 4—メトキシ,ベンジルホスホン酸、 4— メトキシ,ベンジルホスホン酸モノェチルエステル、 4ーメトキシ,ベンジルホスホン酸 ジェチルエステル、 4ーメチル,ベンジルホスホン酸、 4ーメチル,ベンジルホスホン酸 モノェチルエステル、 4ーメチル,ベンジルホスホン酸ジェチルエステル、 4 -トロ, ベンジルホスホン酸、 4—ニトロ,ベンジルホスホン酸モノェチルエステル、 4—ニトロ ,ベンジルホスホン酸ジェチルエステル、 4ーァミノ,ベンジルホスホン酸、 4ーァミノ, ベンジルホスホン酸モノェチルエステル、 4ーァミノ,ベンジルホスホン酸ジェチルェ ステル、 2—メチル, ベンジルホスホン酸、 2—メチル, ベンジルホスホン酸モノエ チルエステル、 2—メチル, ベンジルホスホン酸ジェチルエステル、 10—アンスラ- ルメチルホスホン酸、 10—アンスラ-ルメチルホスホン酸モノェチルエステル、 10— アンスラ-ルメチルホスホン酸ジェチルエステル、 (4ーメトキシフエ-ルー,エトキシ 一)メチルホスホン酸、(4ーメトキシフエ-ルー,エトキシ一)メチルホスホン酸モノメチ ルエステル、 (4—メトキシフエ-ルー,ェトキシ—)メチルホスホン酸ジメチルエステル 、 (フエ-ルー,ヒドロキシ一)メチルホスホン酸、(フエ-ルー,ヒドロキシ一)メチルホ スホン酸モノェチルエステル、 (フエ-ルー,ヒドロキシ一)メチルホスホン酸ジェチル エステル、 (フエ-ルー,クロル—)メチルホスホン酸、(フエ-ルー,クロル—)メチル ホスホン酸モノェチルエステル、 (フエ-ルー,クロル一)メチルホスホン酸ジェチルェ ステル、 (4—クロルフエ-ル)一ィミノホスホン酸、(4—クロルフエ-ル)一ィミノホスホ ン酸モノェチルエステル、 (4 クロルフエ-ル)ーィミノホスホン酸ジェチルエステル 、(4—ヒドロキシフエ-ルー,ジフエ-ルー)メチルホスホン酸、 (4—ヒドロキシフエ- ルー,ジフエ-ルー)メチルホスホン酸モノェチルエステル、 (4ーヒドロキシフエ-ル 一,ジフエ-ルー)メチルホスホン酸ジェチルエステル、 (4 クロルフエ-ルー,ヒドロ キシ一)メチルホスホン酸、 (4 クロルフエ-ルー,ヒドロキシ一)メチルホスホン酸モ ノメチルエステル、 (4 クロルフエ-ルー,ヒドロキシ一)メチルホスホン酸ジメチルェ ステル、その他、複素環を含有するリン化合物としては、 2—ベンゾフラニルメチルホ スホン酸ジェチルエステル、 2—ベンゾフラ-ルメチルホスホン酸モノェチルエステル 、 2 ベンゾフラ-ルメチルホスホン酸、 2— (5—メチル)ベンゾフラ-ルメチルホスホ ン酸ジェチルエステル、 2——(5—メチル)ベンゾフラ-ルメチルホスホン酸モノェチ ルエステル、 2—一(5—メチル)ベンゾフラ-ルメチルホスホン酸などが挙げられる。 上記の連結基を有するリン化合物は、重合活性の点で好ま ヽ態様である。
本発明で使用できる連結基 (X=—(CH ) —)を有する化学式 (化 41)で表されるリ
2 n
ン化合物は次のようなものである。
(化 42)
(R°) 一 R1—(CH ) 一(P = 0) (OR2) (OR3)
m 2 n [化学式 (化 42)中、 Rは、水酸基、 C1〜C10のアルキル基、 COOH基あるいは — COOR4 (R4は、 C1〜C4のアルキル基を表す)、アルキレングリコール基あるいは モノアルコキシアルキレングリコール基を表す(モノアルコキシは C1〜C4を、アルキ レングリコールは C1〜C4のグリコールを表す)。 R1はベンゼン、ナフタレン、ビフエ- ノレ、ジフエニノレエーテノレ、ジフエニノレチォエーテノレ、ジフエニノレスノレホン、ジフエ二ノレ メタン、ジフエニルジメチルメタン、ジフエ二ルケトン、アントラセン、フエナントレンおよ びピレンなどの芳香環構造を表す。 R2および R3は、それぞれ独立に、水素原子、 C1 〜C4の炭化水素基を表す。 mは 1〜5の整数を表し、 R°が複数個の場合、同一置換 基あるいは異なる置換基の組合せであっても力まわな 、。 nは 0ある 、は 1〜5の整数 を表す。]
[0146] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ベンゼンであるリン化合物としては次のようなものが挙げられる。すなわち、 2—ヒドロ キシベンジルホスホン酸ジェチルエステル、 2—ヒドロキシベンジルホスホン酸モノエ チルエステル、 2 ヒドロキシベンジルホスホン酸、 4 ヒドロキシベンジルホスホン酸 ジェチルエステル、 4—ヒドロキシベンジルホスホン酸モノェチルエステル、 4ーヒドロ キシベンジルホスホン酸、 6—ヒドロキシベンジルホスホン酸ジェチルエステル、 6—ヒ ドロキシベンジルホスホン酸モノェチルエステル、 6 -ヒドロキシベンジルホスホン酸な どのベンゼン環に水酸基を導入したベンジルホスホン酸類が挙げられるがこれらに 限定されるものではない。
[0147] 2 n—ブチルベンジルホスホン酸ジェチルエステル、 2 n—ブチルベンジルホスホ ン酸モノメチルエステル、 2 n—ブチルベンジルホスホン酸、 3 n—ブチルベンジ ルホスホン酸ジェチルエステル、 3— n ブチルベンジルホスホン酸モノェチルエス テル、 3— n—ブチルベンジルホスホン酸、 4 n—ブチルベンジルホスホン酸ジェチ ルエステル、 4— n—ブチルベンジルホスホン酸モノェチルエステル、 4— n—ブチル ベンジルホスホン酸、 2, 5— n—ジブチルベンジルホスホン酸ジェチルエステル、 2, 5—n—ジブチルベンジルホスホン酸モノェチルエステル、 2, 5—n—ジブチルベン ジルホスホン酸、 3, 5—n—ジブチルベンジルホスホン酸ジェチルエステル、 3, 5— n—ジブチルベンジルホスホン酸モノェチルエステル、 3, 5—n—ジブチルベンジル ホスホン酸などのベンゼン環にアルキルを導入したベンジルホスホン酸類が挙げられ るがこれらに限定されるものではない。
[0148] さらに、 2 カルボキシベンジルホスホン酸ジェチルエステル、 2 カルボキシベン ジルホスホン酸モノェチルエステル、 2 カルボキシベンジルホスホン酸、 3 カルボ キシベンジルホスホン酸ジェチルエステル、 3—カルボキシベンジルホスホン酸モノ ェチルエステル、 3—カルボキシベンジルホスホン酸、 4 カルボキシベンジルホスホ ン酸ジェチルエステル、 4 カルボキシベンジルホスホン酸モノェチルエステル、 4 カルボキシベンジルホスホン酸、 2, 5 ジカルボキシベンジルホスホン酸ジェチルェ ステル、 2, 5 ジカルボキシベンジルホスホン酸モノェチルエステル、 2, 5 ジカル ボキシベンジルホスホン酸、 3, 5—ジカルボキシベンジルホスホン酸ジェチルエステ ル、 3, 5—ジカルボキシベンジルホスホン酸モノェチルエステル、 3, 5—ジカルボキ シベンジルホスホン酸、 2—メトキシカルボ-ルベンジルホスホン酸ジェチルエステル 、 2—メトキシカルボニルベンジルホスホン酸モノェチルエステル、 2—メトキシカルボ -ルベンジルホスホン酸、 3—メトキシカルボ-ルベンジルホスホン酸ジェチルエステ ル、 3—メトキシカルボニルベンジルホスホン酸モノェチルエステル、 3—メトキシカル ボ-ルベンジルホスホン酸、 4ーメトキシカルボ-ルベンジルホスホン酸ジェチルエス テル、 4ーメトキシカルボ-ルペンジルホスホン酸モノェチルエステル、 4ーメトキシカ ルポ-ルペンジルホスホン酸、 2, 5 ジメトキシカルボ-ルベンジルホスホン酸ジェ チルエステル、 2, 5 ジメトキシカルボニルベンジルホスホン酸モノェチルエステル、 2, 5 ジメトキシカルボニルベンジルホスホン酸、 3, 5 ジメトキシカルボニルベンジ ルホスホン酸ジェチルエステル、 3, 5—ジメトキシカルボ-ルベンジルホスホン酸モノ ェチルエステル、 3, 5—ジメトキシカルボ-ルペンジルホスホン酸などのベンゼン環 にカルボキル基あるいはカルボン酸エステル基を導入したベンジルホスホン酸類が 挙げられるがこれらに限定されるものではな 、。
[0149] さらに、 2— (2 ヒドロキシエトキシ)ベンジルホスホン酸ジェチルエステル、 2— (2 ーヒドロキシエトキシ)ベンジルホスホン酸モノェチルエステル、 2—(2—ヒドロキシェ トキシ)ベンジルホスホン酸、 3—(2 ヒドロキシエトキシ)ベンジルホスホン酸ジェチ ルエステル、 3— (2 ヒドロキシエトキシ)ベンジルホスホン酸モノェチルエステル、 3 一(2—ヒドロキシエトキシ)ベンジルホスホン酸、 4一(2—ヒドロキシエトキシ)ベンジ ルホスホン酸ジェチルエステル、 4— (2—ヒドロキシエトキシ)ベンジルホスホン酸モノ ェチルエステル、 4— (2—ヒドロキシエトキシ)ベンジルホスホン酸、 2, 5—ジ(2—ヒド ロキシエトキシ)ベンジルホスホン酸ジェチルエステル、 2, 5—ジ(2—ヒドロキシェトキ シ)ベンジルホスホン酸モノェチルエステル、 2, 5—ジ(2—ヒドロキシエトキシ)ベンジ ルホスホン酸、 3, 5—ジ(2—ヒドロキシエトキシ)ベンジルホスホン酸ジェチルエステ ル、 3, 5—ジ(2—ヒドロキシエトキシ)ベンジルホスホン酸モノェチルエステル、 3, 5 ージ(2—ヒドロキシエトキシ)ベンジルホスホン酸、 2—(2—メトキシエトキシ)ベンジ ルホスホン酸ジェチルエステル、 2—(2—メトキシエトキシ)ベンジルホスホン酸モノエ チルエステル、 1— (2—メトキシエトキシ)ベンジルホスホン酸、 3— (2—メトキシェトキ シ)ベンジルホスホン酸モノメチルエステル、 3— (2—メトキシエトキシ)ベンジルホス ホン酸ジェチルエステル、 3—(2—メトキシエトキシ)ベンジルホスホン酸モノェチル エステル、 3- (2—メトキシエトキシ)ベンジルホスホン酸、 4— (2—メトキシエトキシ) ベンジルホスホン酸ジェチルエステル、 4一(2—メトキシエトキシ)ベンジルホスホン 酸モノェチルエステル、 4— (2—メトキシエトキシ)ベンジルホスホン酸、 2, 5—ジ(2 ーメトキシエトキシ)ベンジルホスホン酸ジェチルエステル、 2, 5—ジ(2—メトキシエト キシ)ベンジルホスホン酸モノェチルエステル、 2, 5—ジ(2—メトキシエトキシ)ベンジ ルホスホン酸、 3, 5—ジ(2—メトキシエトキシ)ベンジルホスホン酸ジェチルエステル 、 3, 5—ジ(2—メトキシエトキシ)ベンジルホスホン酸モノェチルエステル、 3, 5—ジ( 2—メトキシエトキシ)ベンジルホスホン酸などのベンゼン環にアルキレングリコール基 あるいはモノアルコキシ化アルキレングリコール基を導入したベンジルホスホン酸類 が挙げられる。
[0150] 本発明でのベンジル系リンィ匕合物は、上述した単一置換基種に限定されるものでは なぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、カルボキシェ ステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたものも使用で きる。
[0151] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ナフタレンであるリンィ匕合物としては次のようなものが挙げられる。すなわち、 1ー(5 ーヒドロキシ)ナフチルメチルホスホン酸ジェチルエステル、 1一(5 ヒドロキシ)ナフ チルメチルホスホン酸モノェチルエステル、 1一(5 ヒドロキシ)ナフチルメチルホス ホン酸、 1一(5 ヒドロキシ)ナフチルメチルホスホン酸ジェチルエステル、 1ー(5 ヒ ドロキシ)ナフチルメチルホスホン酸モノェチルエステル、 1一(5 ヒドロキシ)ナフチ ルメチルホスホン酸、 1一(5—n—ブチル)ナフチルメチルホスホン酸ジェチルエステ ル、 1一(5— n—ブチル)ナフチルメチルホスホン酸モノェチルエステル、 l—(5—n —ブチル)ナフチルメチルホスホン酸、 1— (4—カルボキシ)ナフチルメチルホスホン 酸ジェチルエステル、 1一(4 カルボキシ)ナフチルメチルホスホン酸モノエチルェ ステル、 1一(4 カルボキシ)ナフチルメチルホスホン酸、 1一(4ーメトキシカルボ- ル)ナフチルメチルホスホン酸ジェチルエステル、 1一(4ーメトキシカルボ-ル)ナフ チルメチルホスホン酸モノェチルエステル、 1一(4ーメトキシカルボ-ル)ナフチルメ チルホスホン酸、 1 [4一(2 ヒドロキシェトキシ)]ナフチルメチルホスホン酸ジェチ ルエステル、 1— [4— (2—ヒドロキシェトキシ)]ナフチルメチルホスホン酸モノェチル エステル、 1— [4— (2 ヒドロキシェトキシ)]ナフチルメチルホスホン酸、 1— (4—メト キシエトキシ)ナフチルメチルホスホン酸ジェチルエステル、 1一(4ーメトキシェトキシ )ナフチルメチルホスホン酸モノェチルエステル、 1一(4ーメトキシエトキシ)ナフチル メチルホスホン酸、 1— (5—ヒドロキシ)ナフチルメチルホスホン酸ジェチルエステル、 2- (6 ヒドロキシ)ナフチルメチルホスホン酸ジェチルエステル、 2—(6 ヒドロキシ )ナフチルモノェチルホスホン酸、 2—(6 ヒドロキシ)ナフチルメチルホスホン酸、 2 一(6— n—ブチル)ナフチルメチルホスホン酸ジェチルエステル、 2—(6— n—ブチ ル)ナフチルメチルホスホン酸モノェチルエステル、 2—(6—n—ブチル)ナフチルメ チルホスホン酸、 2- (6—カルボキシ)ナフチルメチルホスホン酸ジェチルエステル、 2—(6 カルボキシ)ナフチルメチルホスホン酸モノェチルエステル、 2—(6 カル ボキシ)ナフチルメチルホスホン酸、 2—(6—メトキシカルボ-ル)ナフチルメチルホス ホン酸ジェチルエステル、 2—(6—メトキシカルボ-ル)ナフチルメチルホスホン酸モ ノエチルエステル、 2—(6—メトキシカルボ-ル)ナフチルメチルホスホン酸、 2—[6 一(2 ヒドロキシェトキシ)]ナフチルメチルホスホン酸ジェチルエステル、 2— [6— ( 2 ヒドロキシェトキシ)]ナフチルメチルホスホン酸モノェチルエステル、 2— [6— (2 ーヒドロキシェトキシ)]ナフチルメチルホスホン酸、 2—(6—メトキシエトキシ)ナフチ ルメチルホスホン酸ジェチルエステル、 2—(6—メトキシエトキシ)ナフチルメチルホス ホン酸モノェチルエステル、 2—(6—メトキシエトキシ)ナフチルメチルホスホン酸など のナフタレン環にアルキル基、カルボキキシル基、カルボン酸エステル基、アルキレ ングリコール基、モノアルコキシアルキレングリコール基などが導入されたホスホン酸 類などが挙げられるがこれらに限定されるものではない。
[0152] 本発明でのナフタレン系リンィ匕合物は、上述した単一置換基種に限定されるもので はなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、カルボキシ エステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたものも使用 できる。
[0153] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ビフエ-ルであるリンィ匕合物としては次のようなものが挙げられる。すなわち、 4一(4 —ヒドロキシフエ-ル)ベンジルホスホン酸ジェチルエステル、 4— (4—ヒドロキシフエ -ル)ベンジルホスホン酸モノェチルエステル、 4— (4—ヒドロキシフエ-ル)ベンジル ホスホン酸、 4— (4— n—ブチルフエ-ル)ベンジルホスホン酸ジェチルエステル、 4 - (4— n—ブチルフエ-ル)ベンジルホスホン酸モノェチルエステル、 4一(4 n— ブチルフエ-ル)ベンジルホスホン酸、 4— (4—カルボキシフエ-ル)ベンジルホスホ ン酸ジェチルエステル、 4一(4 カルボキシフエ-ル)ベンジルホスホン酸モノェチ ルエステル、 4— (4—カルボキシフエ-ル)ベンジルホスホン酸、 4— (4—メトキシカ ルポ-ルフエ-ル)ベンジルホスホン酸ジェチルエステル、 4一(4ーメトキシカルボ- ルフエ-ル)ベンジルホスホン酸モノェチルエステル、 4— (4—メトキシカルボ-ルフ ェ -ル)ベンジルホスホン酸、 4— (4—ヒドロキシエトキシフエ-ル)ベンジルホスホン 酸ジェチルエステル、 4一(4ーヒドロキシエトキシフエ-ル)ベンジルホスホン酸モノエ チルエステル、 4— (4—ヒドロキシエトキシフエ-ル)ベンジルホスホン酸、
4一(4ーメトキシェトキシフエ-ル)ベンジルホスホン酸ジェチルエステル、 4一(4ーメ トキシエトキシフエ-ル)ベンジルホスホン酸モノェチルエステル、 4— (4—メトキシェ トキシフエ-ル)ベンジルホスホン酸などのビフエ-ル環にアルキル基、カルボキキシ ル基、カルボン酸エステル基、アルキレングリコール基、モノメトキシアルキレングリコ ール基などが導入されたホスホン酸類などが挙げられるがこれらに限定されるもので はない。
[0154] 本発明でのビフヱニル系リンィ匕合物は、上述した単一置換基種に限定されるもので はなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、カルボキシ エステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたものも使用 できる。
[0155] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ジフエニルエーテルであるリンィ匕合物としては次のようなものが挙げられる。すなわち 、 4一(4ーヒドロキシフエ-ルォキシ)ベンジルホスホン酸ジェチルエステル、 4一(4 —ヒドロキシフエ-ルォキシ)ベンジルホスホン酸モノェチルエステル、 4— (4ーヒドロ キシフエ-ルォキシ)ベンジルホスホン酸、 4— (4— n—ブチルフエ-ルォキシ)ベン ジルホスホン酸モノェチルエステル、 4一(4一 n—ブチルフエ-ルォキシ)ベンジルホ スホン酸モノェチルエステル、 4一(4 ブチルフエ-ルォキシ)ベンジルホスホン酸、 4一(4 カルボキシフエ-ルォキシ)ベンジルホスホン酸モノェチルエステル、 4一(4 —カルボキシフエ-ルォキシ)ベンジルホスホン酸モノェチルエステル、 4— (4—カル ボキシフエ-ルォキシ)ベンジルホスホン酸、 4一(4ーメトキシカルボ-ルフエ-ルォ キシ)ベンジルホスホン酸モノェチルエステル、 4一(4ーメトキシカルボ-ルフエ-ル ォキシ)ベンジルホスホン酸モノェチルエステル、 4一(4ーメトキシカルボ-ルフエ- ルォキシ)ベンジルホスホン酸、 4— (4—ヒドロキシエトキシフエ-ルォキシ)ベンジル ホスホン酸モノェチルエステル、 4— (4—ヒドロキシメトキシフエ-ルォキシ)ベンジル ホスホン酸モノェチルエステル、 4— (4—ヒドロキシメトキシフエ-ルォキシ)ベンジル ホスホン酸、 4— (4—メトキシェトキシフエ-ルォキシ)ベンジルホスホン酸モノェチル エステル、 4一(4ーメトキシェトキシフエ-ルォキシ)ベンジルホスホン酸モノエチルェ ステル、 4— (4—メトキシェトキシフエ-ルォキシ)ベンジルホスホン酸などのジフエ- ルエーテル環にアルキル基、カルボキキシル基、カルボン酸エステル基、アルキレン グリコール基、モノメトキシアルキレングリコール基などが導入されたホスホン酸類など が挙げられるがこれらに限定されるものではない。
[0156] 本発明でのジフヱニルエーテル系リンィ匕合物は、上述した単一置換基種に限定され るものではなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、力 ルボキシエステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたも のも使用できる。
[0157] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ジフエ-チォエーテルであるリン化合物としては次のようなものが挙げられる。すなわ ち、 4— (4—ヒドロキシフエ-ルチオ)ベンジルホスホン酸ジェチルエステル、 4— (4 —ヒドロキシフエ-ルチオ)ベンジルホスホン酸モノェチルエステル、 4— (4ーヒドロキ シフエ-ルチオ)ベンジルホスホン酸、 4一(4 n—ブチルフエ-ルチオ)ベンジルホ スホン酸モノェチルエステル、 4一(4一 n—ブチルフエ-ルチオ)ベンジルホスホン酸 モノェチルエステル、 4一(4 ブチルフエ-ルチオ)ベンジルホスホン酸、 4一(4一力 ルボキシフエ-ルチオ)ベンジルホスホン酸モノェチルエステル、 4一(4 カルボキ シフエ-ルチオ)ベンジルホスホン酸モノェチルエステル、 4一(4 カルボキシフエ- ルチオ)ベンジルホスホン酸、 4一(4ーメトキシカルボ-ルフエ-ルチオ)ベンジルホ スホン酸モノェチルエステル、 4一(4ーメトキシカルボ-ルフエ-ルチオ)ベンジルホ スホン酸モノェチルエステル、 4一(4ーメトキシカルボ-ルフエ-ルチオ)ベンジルホ スホン酸、 4— (4—ヒドロキシエトキシフエ-ルチオ)ベンジルホスホン酸モノエチルェ ステル、 4— (4—ヒドロキシメトキシフエ-ルチオ)ベンジルホスホン酸モノェチルエス テル、 4— (4—ヒドロキシメトキシフエ-ルチオ)ベンジルホスホン酸、 4— (4—メトキシ エトキシフエ-ルチオ)ベンジルホスホン酸モノェチルエステル、 4一(4ーメトキシエト キシフエ-ルチオ)ベンジルホスホン酸モノェチルエステル、 4一(4ーメトキシェトキシ フエ-ルチオ)ベンジルホスホン酸などのジフエ-ルチオエーテル環にアルキル基、 カルボキキシル基、カルボン酸エステル基、アルキレングリコール基、モノメトキシァ ルキレングリコール基などが導入されたホスホン酸類などが挙げられるがこれらに限 定されるものではない。
[0158] 本発明でのジフエ二ルチオエーテル系リンィ匕合物は、上述した単一置換基種に限定 されるものではなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、 カルボキシエステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成され たちのち使用でさる。 [0159] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ジフヱ-ルスルホンであるリン化合物としては次のようなものが挙げられる。 4一(4ーヒ ドロキシフエ-ルスルホ -ル)ベンジルホスホン酸ジェチルエステル、 4— (4ーヒドロキ シフエ-ルスルホ -ル)ベンジルホスホン酸モノェチルエステル、 4— (4—ヒドロキシ フエ-ルスルホ -ル)ベンジルホスホン酸、 4— (4— n—ブチルフエ-ルスルホ -ル) ベンジルホスホン酸モノェチルエステル、 4— (4— n—ブチルフエ-ルスルホ -ル)ベ ンジルホスホン酸モノェチルエステル、 4一(4 ブチルフエ-ルスルホ -ル)ベンジ ルホスホン酸、 4— (4—カルボキシフエ-ルスルホ -ル)ベンジルホスホン酸モノェチ ルエステル、 4— (4—カルボキシフエ-ルスルホ -ル)ベンジルホスホン酸モノェチル エステル、 4— (4—カルボキシフエ-ルスルホ -ル)ベンジルホスホン酸、 4— (4—メ トキシカルボ-ルフエ-ルスルホ -ル)ベンジルホスホン酸モノェチルエステル、 4— ( 4—メトキシカルボ-ルフエ-ルスルホ -ル)ベンジルホスホン酸モノェチルエステル 、 4— (4—メトキシカルボ-ルフエ-ルスルホ -ル)ベンジルホスホン酸、 4— (4—ヒド ロキシエトキシフエ-ルスルホ -ル)ベンジルホスホン酸モノェチルエステル、 4— (4 —ヒドロキシメトキシフエ-ルスルホ -ル)ベンジルホスホン酸モノェチルエステル、 4 - (4—ヒドロキシメトキシフエ-ルスルホ -ル)ベンジルホスホン酸、 4— (4—メトキシ エトキシフエ-ルスルホ -ル)ベンジルホスホン酸モノェチルエステル、 4— (4—メトキ シエトキシフエ-ルスルホ -ル)ベンジルホスホン酸モノェチルエステル、 4— (4—メト キシエトキシフエ-ルスルホ -ル)ベンジルホスホン酸などのジフエ-ルスルホン環に アルキル基、カルボキキシル基、カルボン酸エステル基、アルキレングリコール基、モ ノメトキシアルキレングリコール基などが導入されたホスホン酸類などが挙げられるが これらに限定されるものではない。
[0160] 本発明でのジフエニルスルホン系リンィ匕合物は、上述した単一置換基種に限定され るものではなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、力 ルボキシエステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたも のも使用できる。
[0161] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ジフエ-ルメタンであるリン化合物としては次のようなものが挙げられる。すなわち、 4 - (4—ヒドロキシベンジル)ベンジルホスホン酸ジェチルエステル、 4— (4ーヒドロキ シベンジル)ベンジルホスホン酸モノェチルエステル、 4一(4ーヒドロキシベンジル) ベンジルホスホン酸、 4— (4— n—ブチルベンジル)ベンジルホスホン酸モノェチル エステル、 4— (4— n—ブチルベンジル)ベンジルホスホン酸モノェチルエステル、 4 一(4 ブチルベンジル)ベンジルホスホン酸、 4一(4 カルボキシベンジル)ベンジ ルホスホン酸モノェチルエステル、 4— (4—カルボキシベンジル)ベンジルホスホン 酸モノェチルエステル、 4一(4 カルボキシベンジル)ベンジルホスホン酸、 4一(4 —メトキシカルボ-ルペンジル)ベンジルホスホン酸モノェチルエステル、 4— (4—メ トキシカルボ-ルペンジル)ベンジルホスホン酸モノェチルエステル、 4一(4ーメトキ シカルボ-ルベンジル)ベンジルホスホン酸、 4— (4—ヒドロキシエトキシベンジル)ベ ンジルホスホン酸モノェチルエステル、 4— (4—ヒドロキシメトキシベンジル)ベンジル ホスホン酸モノェチルエステル、 4— (4—ヒドロキシメトキシベンジル)ベンジルホスホ ン酸、 4— (4—メトキシェトキシベンジル)ベンジルホスホン酸モノェチルエステル、 4 一(4ーメトキシェトキシベンジル)ベンジルホスホン酸モノェチルエステル、 4一(4 メトキシェトキシベンジル)ベンジルホスホン酸などのジフエ-ルメタン環にアルキル基
、カルボキキシル基、カルボン酸エステル基、アルキレングリコール基、モノメトキシァ ルキレングリコール基などが導入されたホスホン酸類などが挙げられるがこれらに限 定されるものではない。
[0162] 本発明でのジフエニルメタン系リンィ匕合物は、上述した単一置換基種に限定されるも のではなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、カルボ キシエステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたものも 使用できる。
[0163] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ジフエ-ルジメチルメタンであるリン化合物としては次のようなものが挙げられる。すな わち、 4一(4ーヒドロキシフエ-ルジメチルメチル)ベンジルホスホン酸ジェチルエス テル、 4— (4—ヒドロキシフエ-ルジメチルメチル)ベンジルホスホン酸モノェチルエス テル、 4— (4—ヒドロキシフエ-ルジメチルメチル)ベンジルホスホン酸、 4— (4 n— ブチルフエ-ルジメチルメチル)ベンジルホスホン酸モノェチルエステル、 4 (4—n ブチルフエ-ルジメチルメチル)ベンジルホスホン酸モノェチルエステル、 4一(4 ブチルフエ-ルジメチルメチル)ベンジルホスホン酸、 4一(4 カルボキシフエ-ルジ メチルメチル)ベンジルホスホン酸モノェチルエステル、 4一(4 カルボキシフエ-ル ジメチルメチル)ベンジルホスホン酸モノェチルエステル、 4一(4 カルボキシフエ- ルジメチルメチル)ベンジルホスホン酸、 4一(4ーメトキシカルボ-ルフエ-ルジメチ ルメチル)ベンジルホスホン酸モノェチルエステル、 4一(4ーメトキシカルボ-ルフエ -ルジメチルメチル)ベンジルホスホン酸モノェチルエステル、 4一(4ーメトキシカル ボ-ルフエ-ルジメチルメチル)ベンジルホスホン酸、 4— (4—ヒドロキシエトキシフエ -ルジメチルメチル)ベンジルホスホン酸モノェチルエステル、 4— (4—ヒドロキシメト キシフエ-ルジメチルメチル)ベンジルホスホン酸モノェチルエステル、 4— (4ーヒドロ キシメトキシフエ-ルジメチルメチル)ベンジルホスホン酸、 4— (4—メトキシエトキシフ ェ-ルジメチルメチル)ベンジルホスホン酸モノェチルエステル、 4一(4ーメトキシエト キシフエ-ルジメチルメチル)ベンジルホスホン酸モノェチルエステル、 4— (4—メトキ シエトキシフエ-ルジメチルメチル)ベンジルホスホン酸などのジフエ-ルメタン環にァ ルキル基、カルボキキシル基、カルボン酸エステル基、アルキレングリコール基、モノ メトキシアルキレングリコール基などが導入されたホスホン酸類などが挙げられるがこ れらに限定されるものではない。
[0164] 本発明でのジフエニルジメチルメタン系リンィ匕合物は、上述した単一置換基種に限定 されるものではなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、 カルボキシエステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成され たちのち使用でさる。
[0165] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ジフエ二ルケトンであるリンィ匕合物としてはには次のようなものが挙げられる。すなわ ち、 4— (4—ヒドロキシベンゾィル)ベンジルホスホン酸ジェチルエステル、 4一(4ーヒ ドロキシベンゾィル)ベンジルホスホン酸モノェチルエステル、 4— (4—ヒドロキシベン ゾィル)ベンジルホスホン酸、 4— (4— n—ブチルベンゾィル)ベンジルホスホン酸モ ノエチルエステル、 4一(4 n—ブチルベンゾィル)ベンジルホスホン酸モノエチルェ ステル、 4— (4—ブチルベンゾィル)ベンジルホスホン酸、 4— (4—カルボキシベンゾ ィル)ベンジルホスホン酸モノェチルエステル、 4一(4 カルボキシベンゾィル)ベン ジルホスホン酸モノェチルエステル、 4一(4 カルボキシベンゾィル)ベンジルホスホ ン酸、 4— (4—メトキシカルボ-ルペンゾィル)ベンジルホスホン酸モノェチルエステ ル、 4— (4—メトキシカルボ-ルペンゾィル)ベンジルホスホン酸モノェチルエステル 、 4— (4—メトキシカルボ-ルペンゾィル)ベンジルホスホン酸、 4— (4—ヒドロキシェ トキシベンゾィル)ベンジルホスホン酸モノェチルエステル、 4— (4—ヒドロキシメトキ シベンゾィル)ベンジルホスホン酸モノェチルエステル、 4— (4—ヒドロキシメトキシべ ンゾィル)ベンジルホスホン酸、 4— (4—メトキシェトキシベンゾィル)ベンジルホスホ ン酸モノェチルエステル、 4一(4ーメトキシェトキシベンゾィル)ベンジルホスホン酸モ ノエチルエステル、 4— (4—メトキシェトキシベンゾィル)ベンジルホスホン酸などのジ フエ-ルケトン環にアルキル基、カルボキキシル基、カルボン酸エステル基、アルキレ ングリコール基、モノメトキシアルキレングリコール基などが導入されたホスホン酸類な どが挙げられるがこれらに限定されるものではない。
[0166] 本発明でのジフエ二ルケトン系リンィ匕合物は、上述した単一置換基種に限定されるも のではなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、カルボ キシエステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたものも 使用できる。
[0167] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が アンスラセンであるリン化合物としてはには次のようなものが挙げられる。すなわち、 9 - (10—ヒドロキシ)アンスリルメチルホスホン酸ジェチルエステル、 9— (10—ヒドロキ シ)アンスリルメチルホスホン酸モノェチルエステル、 9— (10—ヒドロキシ)アンスリル メチルホスホン酸、 9一( 10—n—ブチル)アンスリルメチルホスホン酸ジェチルエステ ル、 9一(10— n—ブチル)アンスリルメチルホスホン酸モノェチルエステル、 9 (10 —n—ブチル)アンスリルィルメチルホスホン酸、 9一(10 カルボキシ)アンスリルメチ ルホスホン酸ジェチルエステル、 9一(10 カルボキシ)アンスリルメチルホスホン酸 モノェチルエステル、 9— (10—カルボキシ)アンスリルメチルホスホン酸、 9— (10— カルボキシ) 9— (2—ヒドロキシエトキシ)アンスリルメチルホスホン酸ジェチルエステ ル、 9一(2 ヒドロキシエトキシ)アンスリルメチルホスホン酸モノェチルエステル、 9 (2 ヒドロキシエトキシ)アンスリルメチルホスホン酸、 9— (2—メトキシエトキシ)アンス リルメチルホスホン酸ジェチルエステル、 9一(2—メトキシエトキシ)アンスリルメチル ホスホン酸モノェチルエステル、 9— (2—メトキシエトキシ)アンスリルメチルホスホン 酸、 9一(2—メトキシカルボ-ル)アンスリルメチルホスホン酸ジェチルエステル、 9 (2—メトキシカルボ-ル)アンスリルメチルホスホン酸モノェチルエステル、 9一(2—メ トキシカルボ-ル)アンスリルメチルホスホン酸などのアンスラセン環にアルキル基、力 ルボキキシル基、カルボン酸エステル基、アルキレングリコール基、モノメトキシアル キレングリコール基などが導入されたホスホン酸類などが挙げられるがこれらに限定 されるものではない。
[0168] 本発明でのアンスラセン系リンィ匕合物は、上述した単一置換基種に限定されるもので はなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、カルボキシ エステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたものも使用 できる。
[0169] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が フエナントレンであるリンィ匕合物としては次のようなものが挙げられる。すなわち、 1一( 7—n—ブチル)フエナントリルメチルホスホン酸ジェチルエステル、 1 (7—n—ブチ ル)フエナントリルメチルホスホン酸モノェチルエステル、 1— (7—n—ブチル)フエナ ントリルメチルホスホン酸、 1一(7 カルボキシ)フエナントリルメチルホスホン酸ジェ チルエステル、 1一(7 カルボキシ)フエナントリルメチルホスホン酸モノェチルエス テル、 1— (7—カルボキシ)フエナントリルメチルホスホン酸、 1— (7 ヒドロキシェトキ シ)フエナントリルメチルホスホン酸ジェチルエステル、 1一(7 ヒドロキシエトキシ)フ ェナントリルメチルホスホン酸モノェチルエステル、 1一(7 ヒドロキシエトキシ)フエナ ントリルメチルホスホン酸、 1— (7—メトキシエトキシ)フエナントリルメチルホスホン酸 ジェチルエステル、 1— (7—メトキシエトキシ)フエナントリルメチルホスホン酸モノエ チルエステル、 1— (7—メトキシエトキシ)フエナントリルメチルホスホン酸、 1— (7—メ トキシカルボ-ル)フエナントリルメチルホスホン酸ジェチルエステル、 1一(7—メトキ シカルボ-ル)フエナントリルメチルホスホン酸モノェチルエステル、 1一(7—メトキシ カルボ-ル)フエナントリルメチルホスホン酸などのフエナントレン環にアルキル基、力 ルボキキシル基、カルボン酸エステル基、アルキレングリコール基、モノメトキシアル キレングリコール基などが導入されたホスホン酸類などが挙げられるがこれらに限定 されるものではない。
[0170] 本発明でのフエナントレン系リンィ匕合物は、上述した単一置換基種に限定されるもの ではなぐ上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、カルボキ シエステル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたものも使 用できる。
[0171] 本発明の化学式 (化 42)で表されるリンィ匕合物の内、置換基を有する芳香環構造が ピレンであるリンィ匕合物としては次のようなものが挙げられる。すなわち、 1ー(5—ヒド 口キシ)ピレニルメチルホスホン酸ジェチルエステル、 1— (5—ヒドロキシ)ピレニルメ チルホスホン酸モノェチルエステル、 1— (5—ヒドロキシ)ピレニルメチルホスホン酸、 1一(5— n—ブチル)ピレ-リルメチルホスホン酸ジェチルエステル、 1ー(5—n—ブ チル)ピレ-ルメチルホスホン酸モノェチルエステル、 1一(5—n—ブチル)ピレ -ルメ チルホスホン酸、 1— (5—カルボキシ)ピレニルメチルホスホン酸ジェチルエステル、 1一(5—カルボキシ)ピレ-ルメチルホスホン酸モノェチルエステル、 1一(5—カルボ キシ)ピレ-ルメチルホスホン酸、 1— (5—ヒドロキシエトキシ)ピレ-ルメチルホスホン 酸ジェチルエステル、 1一(5—ヒドロキシエトキシ)ピレニルメチルホスホン酸モノェチ ルエステル、 1— (5—ヒドロキシエトキシ)ピレニルメチルホスホン酸、 1— (5—メトキシ エトキシ)ピレニルメチルホスホン酸ジェチルエステル、 1一(5—メトキシェトキシ)ピレ -ルメチルホスホン酸モノェチルエステル、 1一(5—メトキシエトキシ)ピレ-ルメチル ホスホン酸、 1— (5—メトキシカルボ-ル)ピレニルルメチルホスホン酸ジェチルエス テル、 1一(5—メトキシカルボ-ル)ピレニルメチルホスホン酸モノェチルエステル、 1 一(5—メトキシカルボ-ル)ピレニルメチルホスホン酸などのピレン環にアルキル基、 カルボキキシル基、カルボン酸エステル基、アルキレングリコール基、モノメトキシァ ルキレングリコール基などが導入されたホスホン酸類などが挙げられるがこれらに限 定されるものではない。
[0172] 本発明でのピレン系リン化合物は、上述した単一置換基種に限定されるものではなく 、上述した置換基、ヒドロキシル基、アルキル基、カルボキシル基、カルボキシエステ ル基、 2—ヒドロキシエトキシ基、 2—メトキシェトキシ基の混成されたものも使用できる
[0173] 上記一連の芳香環に導入されるヒドロキシル基、アルキル基、カルボキシル基、カル ボキシエステル基、 2—ヒドロキシエトキシ基、 2—メトキシエトキシ基などの置換基は、 ポリエステルの重合時のアルミニウム原子との錯体形成に深く関わるものと推定され る。また、ポリエステル形成時の官能基であるカルボキシル基あるいは水酸基と類似 のものも含まれており、ポリエステルマトリックス中に溶解または取り込まれやすいため 、重合活性、異物低減などに特に有効であると考えられる。
[0174] 芳香環構造 (R1)に結合した Rが水素原子である未置換基に比べ、本発明の Cl〜 CIOのアルキル基、— COOH基あるいは— COOR4 (R4は、 C1〜C4のアルキル基 を表す)、アルキレングリコール基あるいはモノアルコキシアルキレングリコール基(モ ノアルコキシは C1〜C4を、アルキレングリコールは C1〜C4のグリコールを表す)で 置換されたリンィ匕合物は、触媒活性を改善するだけでなぐ異物低減効果の点で好 ましい。
芳香環構造に結合した置換基は、 C1〜C10のアルキル基、カルボキシルおよび力 ルボキシルエステル基、アルキレングリコールおよびモノアルコキシアルキレングリコ ールなどが挙げられる。異物低減効果の点でより好ましくは、カルボキシルおよび力 ルボキシルエステル基、アルキレングリコールおよびモノアルコキシアルキレングリコ ールである。その理由は不明であるが、ポリエステルおよび触媒の媒体であるアルキ レンダリコールとの相溶性が改善されることによると推測している。
[0175] 本発明で使用できる連結基 (X)を持たないリンィ匕合物である化学式 (化 43)で表され る
リンィ匕合物は次のようなものである。
(化 43)
R1—(P = 0) (OR2) (OR3)
[0176] 一方、連結基 (X)のない上記化学式 (化 43)で表されるリンィ匕合物中、 R1は炭素数 6 〜50の芳香環構造ある 、は炭素数 4〜50の複素環構造を表し、該芳香環構造ある いは複素環構造は置換基を有していてもよい。 R2および R3はそれぞれ独立に、水素 原子、炭素数 1〜20の炭化水素基、水酸基またはアルコキシル基を含む炭素数 1〜 20の炭化水素基を表す。炭化水素基は脂環構造や分岐構造や芳香環構造を有し ていてもよい。 )
化学式 (化 43)で表されるリンィ匕合物の芳香環構造および複素環構造の置換基が、 炭素数 1〜50の炭化水素基 (直鎖状であっても脂環構造、分岐構造、芳香環構造で あってもよぐこれらがハロゲン置換されたものであってもよい)または水酸基またはハ ロゲン基または炭素数 1〜10のアルコキシル基またはアミノ基 (炭素数 1〜10のアル キルある!/、はアル力ノール置換されて!ヽても力まわな!、)ある!/、は-トロ基ある!/ヽはカ ルボキシル基ある!/、は炭素数 1〜10の脂肪族カルボン酸エステル基ある!/、はホルミ ル基あるいはァシル基ある ヽはスルホン酸基、スルホン酸アミド基 (炭素数 1〜10の アルキルあるいはアル力ノール置換されていてもかまわない)、ホスホリル含有基、二 トリル基、シァノアルキル基力も選ばれる 1種もしくは 2種以上である。また、前記化学 式(ィ匕 43)の芳香環構造がベンゼン、ナフタレン、ビフエ-ル、ジフエ-ルエーテル、 ジフエ二ルチオエーテル、ジフエニルスルホン、ジフエニルメタン、ジフエニルジメチル メタン、アントラセン、フエナントレンおよびピレン力 選ばれる。および前記複素環構 造がフラン、ベンゾフラン、イソべンゾフラン、ジベンゾフラン、ナフタランおよびフタリ ドから選ばれる。また、上記式 (化 43)中の R2および R3の少なくとも一方が水素原子 であることが好ましい。
本発明で使用できる化学式 (化 43)で表されるリンィ匕合物としては、下記のリンィ匕合 物などが挙げられる。すなわち、(3— -トロ, 5—メチル) フエ-ルホスホン酸ジェチ ルエステル、 (3—ニトロ, 5—メチル)—フエ-ルホスホン酸モノェチルエステル、 (3 -トロ, 5—メチル)一フエ-ルホスホン酸、(3—ニトロ, 5—メトキシ)一フエ-ルホス ホン酸ジェチルエステル、 (3—ニトロ, 5—メトキシ)—フエ-ルホスホン酸モノェチル エステル、 (3—ニトロ, 5—メトキシ)一フエ-ルホスホン酸、(4—クロル)一フエ-ルホ スホン酸ジェチルエステル、 (4 クロル,) フエ-ルホスホン酸モノェチルエステル 、(4—クロル)一 フエ-ルホスホン酸、(5—クロル,)一フエ-ルホスホン酸ジェチル エステル、 (5—クロル,)—フエ-ルホスホン酸モノェチルエステル、 (5—クロル,) フエニルホスホン酸、(3—ニトロ, 5—メチル)—フエ-ルホスホン酸ジェチルエステル 、(3—ニトロ, 5—メチル)—フエ-ルホスホン酸モノェチルエステル、 (3—ニトロ, 5 —メチル)—フエ-ルホスホン酸、(4—ニトロ)—フエ-ルホスホン酸ジェチルエステ ノレ、 (4— -トロ)一フエ-ノレホスホン酸モノエチノレエステノレ、 (4— -トロ)一フエ-ノレホ スホン酸、(5— -トロ)—フエ-ルホスホン酸ジェチルエステル、 (5—ニトロ)— フエ -ルホスホン酸モノェチルエステル、 (5— -トロ) フエ-ルホスホン酸、(6— -トロ) —フエ-ルホスホン酸ジェチルエステル、 (6—ニトロ)一フエ-ルホスホン酸モノェチ ルエステル、 (6— -トロ)—フエ-ルホスホン酸、 (4—ニトロ, 6—メチル)—フエ-ル ホスホン酸ジェチルエステル、 (4—ニトロ, 6—メチル)— フエ-ルホスホン酸モノエ チルエステル、 (4 ニトロ, 6—メチル)—フエ-ルホスホン酸、その他、式(化 42)で 表されるリン化合物において、上述のベンゼン、ナフタレン、ビフエ-ル、ジフエ二ル エーテル、ジフエ二ルチオエーテル、ジフエニルスルホン、ジフエニルメタン、ジフエ二 ルジメチルメタン、ジフエ-ルケトン、アントラセン、フエナントレンおよびピレンなどの 芳香環構造を有するそれぞれの構造式から連結基であるメチレン鎖すなわち、 C H—を取り除いたリンィ匕合物群、さらに複素環含有リンィ匕合物として、 5—ベンゾフラ
2
-ルホスホン酸ジェチルエステル、 5 ベンゾフラ-ルホスホン酸モノェチルエステル 、 5 べンゾフラ-ルホスホン酸、 5—(2—メチル)ベンゾフラ-ルホスホン酸ジェチル エステル、 5—(2—メチル)ベンゾフラ-ルホスホン酸モノェチルエステル、 5—(2— メチル)ベンゾフラニルホスホン酸などが挙げられる。上述の連結基を有しな!/、リン化 合物は、前述の連結基を有するリン化合物に比べ重合活性は若干劣るが、本発明 の触媒調製法を使用した場合、ポリエステル重合触媒として使用することは可能であ る。
[0178] 本発明においては、上記リンィ匕合物を予め水およびアルキレングリコール力もなる 群力 選ばれた少なくとも 1種の溶媒中で加熱処理し用いることが好ましい実施態様 である。該処理により前記のアルミニウムやアルミニウム化合物に上記のリンィ匕合物を 併用することによる重縮合触媒活性が向上すると共に、該重縮合触媒起因の異物形 成性が低下する。
[0179] リン化合物を予め加熱処理する時に使用する溶媒としては、水およびアルキレング リコール力 なる群力 選ばれる少なくとも 1種であれば限定されず任意である力 リ ン化合物を溶解する溶媒を用いることが好ましい。アルキレングリコールとしては、ェ チレングリコール等の目的とするポリエステルの構成成分であるグリコールを用いるこ とが好ましい。溶媒中での加熱処理は、リンィ匕合物を溶解して力も行うのが好ましい
1S 完全に溶解していなくてもよい。また、加熱処理の後に、化合物がもとの構造を 保持している必要はなぐ加熱処理による変性で溶媒に対する溶解性が向上するも のであっても構わない。
[0180] 加熱処理の温度は特に限定はされないが、 20〜250°Cの範囲であることが好まし い。より好ましくは、 100〜200°Cの範囲である。温度の上限は、用いる溶媒の沸点 付近とすることが好ましい。加熱時間は、温度等の条件によっても異なる力 溶媒の 沸点付近の温度だと 1分〜 50時間の範囲であることが好ましぐより好ましくは 30分 〜10時間、さらに好ましくは 1〜5時間の範囲である。加熱処理の系の圧力は常圧、 もしくはそれ以上あるいは以下であってもよく特に限定されない。溶液の濃度は、リン 化合物として l〜500gZlであることが好ましぐより好ましくは 5〜300gZl、さらに好 ましくは 10〜: LOOgZlである。加熱処理は窒素等の不活性気体の雰囲気下で行うこ とが好ましい。加熱後の溶液もしくはスラリーの保管温度は特に限定はされないが、 0 °C〜100°Cの範囲であることが好ましぐ 20°C〜60°Cの範囲であることがより好まし い。溶液の保管は窒素等の不活性気体の雰囲気下で行うことが好ましい。
[0181] リン化合物を予め溶媒中で加熱処理する際に、本発明のアルミニウムまたはその化 合物を共存してもよい。また、リン化合物を予め溶媒中で加熱処理したものに、本発 明のアルミニウムまたはその化合物を粉状、溶液状、あるいはスラリー状として添加し てもよい。さら〖こ、添加後の溶液またはスラリーを加熱処理してもよい。これらの操作 で得られた溶液もしくはスラリーを本発明の重縮合触媒として用いることが可能である
[0182] 本発明におけるリンィ匕合物の使用量としては、得られるポリエステルのカルボン酸 成分の全構成ュニッ卜のモノレ数に対して 0. 0001〜0. 1モノレ0 /0力 S好ましく、 0. 005 〜0. 05モル%であることがさらに好ましい。
[0183] また、本発明においては、上記のアルミニウム化合物に加えて少量のアルカリ金属 、アルカリ土類金属並びにその化合物力 選択される少なくとも 1種を第 2金属含有 成分として共存させることが好ま 、実施態様である。力かる第 2金属含有成分を触 媒系に共存させることは、ジエチレングリコールの生成を抑制する効果に加えて触媒 活性を高め、従って反応速度をより高めた触媒成分が得られ、生産性向上に有効で ある。
[0184] 該少量のアルカリ金属、アルカリ土類金属並びにその化合物から選択される少なく とも 1種を第 2金属含有成分として共存させる方法は、アルミニウム化合物単独系の 場合のみでなぐ前記したリンィ匕合物を併用する触媒系にも適用できる。
[0185] アルミニウム化合物にアルカリ金属化合物又はアルカリ土類金属化合物を添カ卩して 十分な触媒活性を有する触媒とする技術は公知である。かかる公知の触媒を使用す ると熱安定性に優れたポリエステルが得られる力 アルカリ金属化合物又はアルカリ 土類金属化合物を併用した公知の触媒は、実用的な触媒活性を得ようとするとそれ らの添加量が多く必要であり、アルカリ金属化合物を使用したときは得られるポリエス テルの耐加水分解性が低下すると共にアルカリ金属化合物に起因する異物量が多く なり、繊維に使用したときには製糸性や糸物性力 またフィルムに使用したときはフィ ルム物性などが悪ィ匕することがある。またアルカリ土類金属化合物を併用した場合に は、実用的な活性を得ようとすると得られたポリエステルの熱安定性が低下し、加熱 による着色が大きぐ異物の発生量も多くなり、耐加水分解性も低下することがある。
[0186] アルカリ金属、アルカリ土類金属並びにその化合物を添加する場合、その使用量 M (モル0 /0)は、ポリエステルを構成する全ポリカルボン酸ユニットのモル数に対して、 I X 10—6以上 0. 1モル%未満であることが好ましぐより好ましくは 5 X 10_6〜0. 05 モル%であり、さらに好ましくは I X 10一5〜 0. 03モル%であり、特に好ましくは、 I X 10一5〜 0. 01モル%である。アルカリ金属、アルカリ土類金属の添カ卩量が少量である ため、熱安定性低下、異物の発生、着色、耐加水分解性の低下等の問題を発生さ せることなぐ反応速度を高めることが可能である。アルカリ金属、アルカリ土類金属 並びにその化合物の使用量 Mが 0. 1モル%以上になると熱安定性の低下、異物発 生や着色の増加、並びに耐加水分解性の低下が製品加工上問題となる場合が発生 する。 Mが 1 X 10_6未満では、添加してもその効果が明確ではない。
[0187] 本発明にお 、てアルミニウムもしくはその化合物にカ卩えて使用することが好ま ヽ 第 2金属含有成分を構成するアルカリ金属、アルカリ土類金属としては、 Li, Na, K, Rb, Cs, Be, Mg, Ca, Sr, Baから選択される少なくとも 1種であることが好ましぐこ のうち Li, Na, Mgないしその化合物力 選択される少なくとも 1種の使用がより好ま しい。アルカリ金属やアルカリ土類金属の化合物としては、例えば、これら金属のギ 酸、酢酸、プロピオン酸、酪酸、蓚酸などの飽和脂肪族カルボン酸塩、アクリル酸、メ タクリル酸などの不飽和脂肪族カルボン酸塩、安息香酸などの芳香族カルボン酸塩 、トリクロ口酢酸などのハロゲン含有カルボン酸塩、乳酸、クェン酸、サリチル酸などの ヒドロキシカルボン酸塩、炭酸、硫酸、硝酸、リン酸、ホスホン酸、炭酸水素、リン酸水 素、硫化水素、亜硫酸、チォ硫酸、塩酸、臭化水素酸、塩素酸、臭素酸などの無機 酸塩、 1—プロパンスルホン酸、 1—ペンタンスルホン酸、ナフタレンスルホン酸などの 有機スルホン酸塩、ラウリル硫酸などの有機硫酸塩、メトキシ、エトキシ、 n—プロポキ シ、 iso—プロポキシ、 n—ブトキシ、 tert—ブトキシなどのアルコキサイド、ァセチルァ セトネートなどとのキレートイ匕合物、水素化物、酸化物、水酸化物などが挙げられる。 これらのアルカリ金属、アルカリ土類金属またはそれらの化合物のうち、水酸化物等 のアルカリ性の強いものを用いる場合、これらはエチレングリコール等のジオールもし くはアルコール等の有機溶媒に溶解しにく 、傾向があるため、水溶液で重縮合系に 添加しなければならず重縮合工程上問題となる場合が有る。さらに、水酸化物等の アルカリ性の強 ヽものを用いた場合、重縮合時にポリエステルが加水分解等の副反 応を受け易くなるとともに、重縮合したポリエステルは着色し易くなる傾向があり、耐加 水分解性も低下する傾向がある。従って、本発明のアルカリ金属またはそれらの化合 物あるいはアルカリ土類金属またはそれらの化合物として好適なものは、アルカリ金 属あるいはアルカリ土類金属の飽和脂肪族カルボン酸塩、不飽和脂肪族カルボン酸 塩、芳香族カルボン塩、ハロゲン含有カルボン酸塩、ヒドロキシカルボン酸塩、硫酸、 硝酸、リン酸、ホスホン酸、リン酸水素、硫化水素、亜硫酸、チォ硫酸、塩酸、臭化水 素酸、塩素酸、臭素酸から選ばれる無機酸塩、有機スルホン酸塩、有機硫酸塩、キ レート化合物、及び酸ィ匕物である。これらの中でもさらに、取り扱い易さや入手のし易 さ等の観点から、アルカリ金属あるいはアルカリ土類金属の飽和脂肪族カルボン酸 塩、特に酢酸塩の使用が好ましい。 [0189] 本発明の重縮合触媒は、アンチモンィ匕合物、ゲルマニウム化合物、チタンィ匕合物 などの他の重縮合触媒を、これらの成分の添カ卩が前記のようなポリエステルの特性、 加工性、色調等製品に問題を生じな 、添加量の範囲内にお 、て共存させて用いる ことは、重縮合時間の短縮による生産性を向上させる際に有効であり、好ましい。
[0190] アンチモンィ匕合物は、重縮合して得られるポリエステルに対してアンチモン原子とし て 50ppm以下の量で添加することが好ましい。より好ましい添カ卩量は、 30ppm以下 である。アンチモンの添力卩量を 50ppm以上にすると、金属アンチモンの析出が起こり 、ポリエステルに黒ずみや異物が発生するため好ましくな 、。
[0191] ゲルマニウム化合物は、重縮合して得られるポリエステルに対してゲルマニウム原 子として 20ppm以下の量で添カ卩することが好ましい。より好ましい添力卩量は lOppm 以下である。ゲルマニウムの添力卩量を 20ppm以上にすると、コスト的に不利になるた め好ましくない。
[0192] チタンィ匕合物は、重縮合して得られるポリエステルに対してチタン原子として 5ppm 以下の量で添加することが好ましい。より好ましい添加量は 3ppm以下であり、さらに 好ましくは lppm以下である。チタンの添力卩量を 5ppm以上にすると、得られるポリエ ステルの着色が顕著になり、さらに熱安定性が顕著に低下するため好ましくない。
[0193] 本発明において使用可能なアンチモンィ匕合物としては、特に限定はされないが、 好適な化合物として三酸化アンチモン、五酸ィ匕アンチモン、酢酸アンチモン、アンチ モングリコキサイドなどが挙げられ、特に三酸ィ匕アンチモンの使用が好ましい。また、 ゲルマニウム化合物としては、特に限定はされないが、二酸ィ匕ゲルマニウム、四塩ィ匕 ゲルマニウムなどが挙げられ、特に二酸化ゲルマニウムが好ましい。二酸化ゲルマ- ゥムとしては結晶性のものと非晶性のものの両方が使用できる。
[0194] 本発明において使用可能なチタン化合物としては特に限定はされないが、テトラ— n—プロピルチタネート、テトライソプロピルチタネート、テトラー n—ブチルチタネート 、テトライソブチノレチタネート、テトラー tert—ブチルチタネート、テトラシクロへキシノレ チタネート、テトラフエ-ルチタネート、テトラべンジルチタネート、蓚酸チタン酸リチウ ム、蓚酸チタン酸カリウム、蓚酸チタン酸アンモ-ゥム、酸化チタン、チタンとケィ素や ジルコニウムやアルカリ金属やアルカリ土類金属などとの複合酸ィ匕物、チタンのオル トエステルまたは縮合オルトエステル、チタンのオルトエステルまたは縮合オルトエス テルとヒドロキシカルボン酸力 なる反応生成物、チタンのオルトエステルまたは縮合 オルトエステルとヒドロキシカルボン酸とリンィ匕合物からなる反応生成物、チタンのォ ルトエステルまたは縮合オルトエステルと少なくとも 2個のヒドロキシル基を有する多価 アルコール、 2—ヒドロキシカルボン酸および塩基からなる反応生成物などが挙げら れ、このうちチタンとケィ素の複合酸ィ匕物、チタンとマグネシウムの複合酸ィ匕物、チタ ンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物か らなる反応生成物が好まし 、。
[0195] またスズィ匕合物としては、ジブチルスズオキサイド、メチルフエ-ルスズオキサイド、 テトラエチルスズ、へキサェチルジスズオキサイド、トリェチルスズハイド口オキサイド、 モノブチルヒドロキシスズオキサイド、トリイソブチルスズアセテート、ジフエ-ルスズジ ラウレート、モノブチルスズトリクロライド、ジブチルスズサルファイド、ジブチルヒドロキ シスズオキサイド、メチルスタンノン酸、ェチルスタンノン酸などが挙げられ、特にモノ ブチルヒドロキシスズオキサイドの使用が好まし 、。
[0196] 本発明のポリエステルには、色調改善等の目的でコバルト化合物をコバルト原子と してポリエステルに対して lOppm未満の量で添加することが好まし 、態様である。よ り好ましくは 5ppm以下であり、さらに好ましくは 3ppm以下である。コバルト化合物と しては特に限定はないが、具体的には例えば、酢酸コバルト、硝酸コバルト、塩ィ匕コ ノ レト、コバルトァセチルァセトネート、ナフテン酸コバルトおよびそれらの水和物等 が挙げられる。その中でも特に酢酸コバルト四水和物が好まし 、。
[0197] 本発明のポリエステルの色調を改善するために、コバルト化合物以外の色調改善剤 を用いることも好ま 、態様である。色調改善剤とは添加することで色調を変化させる 物質のことをいう。本発明の色調改善剤としては特に限定はされないが、無機および 有機の顔料、染料、蛍光増白剤などが好ましい。
[0198] 顔料または染料を使用する場合、使用量が増えると、結果重縮合体の明るさが低下 するという問題が発生する。そのため多くの用途で許容できなくなるという問題が発生 する。そのため顔料および染料の総使用量は得られるポリエステルに対して 20ppm 以下であることが好ましぐより好ましくは lOppm以下、さらに好ましくは 5ppm以下で ある。力かる領域では重縮合体の明るさを低下させることなく着色を効果的に消去で きる。
[0199] さらに蛍光増白剤を単独もしくは他の色調改善剤と併用して用いると、色調が良好に なり、例えば使用する顔料または染料の量が少なくてよいので好ましい。蛍光増白剤 は一般に用いられている物を 1種だけ使用してもよくもしくは 2種以上を併用してもよ い。添力卩量は得られるポリエステルに対して 50ppm以下であることが好ましぐ 5〜2 5ppmであることがさらに好ましい。
[0200] 無機顔料としては、色調を変化できるものであれば特に規定はされないが、例えば二 酸化チタン、カーボンブラック、鉄黒、ニッケルチタンイェロー、黄色酸化鉄、力ドミゥ ムイェロー、黄鉛、クロムチタンイェロー、亜鉛フェライト顔料、弁柄、カドミウムレッド、 モリブデンレッド、酸化クロム、スピネルグリーン、クロムオレンジ、カドミウムオレンジ、 群青、紺青、コバルトブルー、などが挙げられる。このうち酸ィ匕クロム、群青、紺青、コ バルトブルーが好ましぐ群青、コバルトブルーがさらに好ましい。またこれら無機顔 料の一種もしくは二種以上を必要に応じて組み合わせて使用しても良い。
[0201] 本発明によるポリエステルの製造は、触媒として本発明のポリエステル重縮合触媒を 用いる点以外は従来公知の工程を備えた方法で行うことができる。例えば、 PETを 製造する場合は、テレフタル酸とエチレングリコール及び必要により他の共重縮合成 分を直接反応させて水を留去しエステルイ匕した後、減圧下に重縮合を行う直接エス テル化法、または、テレフタル酸ジメチルとエチレングリコール及び必要により他の共 重縮合成分を反応させてメチルアルコ ルを留去しエステル交換させた後、減圧下 に重縮合を行うエステル交換法により製造される。さらに必要に応じて極限粘度を増 大させる為に固相重縮合を行ってもよい。固相重縮合前の結晶化促進のため、溶融 重縮合ポリエステルを吸湿させたあと加熱結晶化させたり、また水蒸気を直接ポリェ ステルチップに吹きつけて加熱結晶化させたりしてもよい。
[0202] 前記溶融重縮合反応は、回分式反応装置で行っても良いし、また連続式反応装置 で行っても良い。これらいずれの方式においても、エステル化反応、あるいはエステ ル交換反応は 1段階で行っても良いし、また多段階に分けて行っても良い。溶融重 縮合反応も 1段階で行っても良いし、また多段階に分けて行っても良い。固相重縮合 反応は、溶融重縮合反応と同様、回分式装置や連続式装置で行うことが出来る。溶 融重縮合と固相重縮合は連続で行っても良いし、分割して行ってもよい。
[0203] 本発明の触媒は、重縮合反応のみならずエステル化反応及びエステル交換反応に も触媒活性を有する。例えば、テレフタル酸ジメチルなどのジカルボン酸のアルキル エステルとエチレングリコールなどのダリコールとのエステル交換反応による重縮合は 、通常チタンィ匕合物や亜鉛ィ匕合物などのエステル交換触媒の存在下で行われる力 これらの触媒に代えて、もしくはこれらの触媒に共存させて本発明の触媒を用いるこ ともできる。また、本発明の触媒は、溶融重縮合のみならず固相重縮合や溶液重縮 合においても触媒活性を有しており、いずれの方法によってもポリエステルを製造す ることが可能である。
[0204] 本発明の触媒は、重縮合反応の任意の段階、例えばエステルイ匕反応もしくはエステ ル交換反応の開始前及び反応途中の任意の段階もしくは重縮合反応の開始直前あ るいは反応途中に反応系へ添加することができるが、重縮合反応の開始直前に添加 することが好ましい。
[0205] 本発明のアルミニウム化合物の触媒溶液とその他の化合物とを予め混合した混合物 として添加してもよいし、これらを別々に添加してもよい。また本発明のアルミニウム化 合物の触媒溶液とその他の化合物とを同じ添加時期に重縮合系に添加してもよぐ それぞれの成分を別々の添加時期に添加してもよい。また、触媒の全量を一度に添 カロしても、複数回に分けて添加してもよい。
[0206] 本発明方法により得られたポリエステルを前述のごとく固相状態で減圧下ある!、は 不活性ガス気流下でポリエステル榭脂を加熱し、さらに重縮合を進めたり、該ポリエス テル榭脂中に含まれて 、る環状 3量体等のオリゴマーやァセトアルデヒド等の副生成 物を除去する等の手段を取ることも何ら制約を受けない。また、例えば超臨界圧抽出 法等の抽出法でポリエステル榭脂を精製し前記の副生成物等の不純物を除去する 等の処理を行うことを取り入れても良 、。
[0207] 本発明のポリエステル中には、有機系、無機系、及び有機金属系のトナー、ならび に蛍光増白剤などを含むことができ、これらを一種もしくは二種以上含有することによ つて、ポリエステルの黄み等の着色をさらに優れたレベルにまで抑えることができる。 また他の任意の重縮合体ゃ制電剤、消泡剤、染色性改良剤、染料、顔料、艷消剤、 蛍光増白剤、安定剤、酸化防止剤、その他の添加剤が含有されていてもよい。酸ィ匕 防止剤としては、芳香族ァミン系、フエノール系等の酸ィ匕防止剤が使用可能であり、 安定剤としては、リン酸やリン酸エステル系等のリン系、硫黄系、アミン系等の安定剤 が使用可能である。
[0208] これらの添加剤は、ポリエステルの重縮合時もしくは重縮合後、あるいはポリエステ ルの成形時の任意の段階で添加することが可能であり、どの段階が好適かは対象と するポリエステルの構造や得られるポリエステルの要求性能に応じてそれぞれ適宜 選択すれば良い。
[0209] 本発明の方法で得られたポリエステルは、重縮合触媒起因の異物含有量が少ない という特徴を有する力 該特徴は、例えば以下に示すポリエステルに不溶なアルミ- ゥム系異物評価法で評価ができる。
[ポリエステルに不溶なアルミニウム系異物評価法]
ポリエステルペレット 30gおよびパラクロロフエノール Zテトラクロロェタン(3Z1:重量 比)混合溶液 300mlを攪拌機付き丸底フラスコに投入し、該ペレットを混合溶液に 1 00〜105°C、 2時間で攪拌'溶解した。該溶液を室温になるまで放冷し、直径 47mm /孔径 1. 0 μ mのポリテトラフルォロエチレン製のメンブレンフィルター(Advantec 社製 PTFEメンブレンフィルター、品名: T100A047A)を用い、全量を 0. 15MPa の加圧下で異物を濾別した。有効濾過直径は 37. 5mmとした。濾過終了後、引き続 き 300mlのクロ口ホルムを用い洗浄し、次いで、 30°Cで一昼夜減圧乾燥した。該メン ブレンフィルターの濾過面を走査型蛍光 X線分析装置 (RIGAKU社製、 ZSXIOOe 、 Rh管球 4. OkW)でアルミニウム元素量を定量した。定量はメンブレンフィルタ一中 心部の直径 30mmの部分について行った。なお、該蛍光 X線分析法の検量線はァ ルミ-ゥム元素含有量が既知のポリエチレンテレフタレート榭脂を用いて求め、見掛 けのアルミニウム元素量を ppmで表示した。測定は X線出力 50kV— 70mAで分光 結晶としてペンタエリスリトール、検出器として PC (プロポーショナルカウンター)を用 い、 PHA (波高分析器) 100— 300の条件で ΑΙ—Κ α線強度を測定することにより実 施した。検量線用 PET榭脂中のアルミニウム元素量は、高周波誘導結合プラズマ発 光分析法で定量した。
[0210] 本発明においては、上記評価法で測定したポリエステルに不溶なアルミニウム系異 物量 ίま 3500ppm以下力好まし!/ヽ。 2500ppm以下力より好ましく、 1500ppm以下力 ^ さらに好ましい。ポリエステルに不溶なアルミニウム系異物量が 3500ppmを超えた場 合は、ポリエステルに不溶性の微細な異物含有量が多くなり、例えばフィルムゃボト ル等の成型体として成型した場合に、該成型体のヘイズが悪化するので好ましくな い。また、重縮合工程や成型工程でのポリエステルの濾過時のフィルター詰まりが多 くなるという課題にも繋がる。
[0211] 本発明の製造方法で得られるポリエステルは、実施例で示す評価法で評価される 一軸延伸フィルムのヘイズ値が 2%以下であることが好ましい。
ヘイズ値は 1. 8%以下がより好ましぐ 1. 6%以下がさらに好ましい。ヘイズ値が 2
%を超えた場合は、フィルムやボトル等の延伸を伴う成型により成型された成型体に っ 、て透明性の高 、成型体が得られな 、ことがあるので好ましくな!/、。
[0212] 本発明において、該ー軸延伸フィルムのヘイズ値を 2%以下にする方法は限定さ れないが、該ヘイズ値は、上記したポリエステルに不溶なアルミニウム系異物量の影 響を大きく受けるので本発明方法により得られたポリエステルは該特性が優れている
[0213] 本発明のポリエステル重縮合触媒を用いて重縮合したポリエステルは常法の溶融 紡糸法により繊維を製造することが可能であり、紡糸'延伸を 2ステップで行う方法及 び 1ステップで行う方法が採用できる。さらに、捲縮付与、熱セットやカット工程を備え たステーブルの製造方法やモノフィラメントなど公知の繊維製造方法がすべて適用 できるものである。
[0214] また得られた繊維は異型断面糸、中空断面糸、複合繊維、原着糸等の種々繊維構 造となすことができ、糸加工においても例えば混繊、混紡、等の公知の手段を採用す ることがでさる。
更に上記ポリエステル繊維は織編物或いは不織布、等の繊維構造体となすことが できる。
[0215] そして上記ポリエステル繊維は、衣料用繊維、カーテン、カーペット、ふとん綿、ファ ィバーフィル等に代表されるインテリア '寝装用繊維、タイヤコード、ロープ等の抗張 力線、土木 ·建築資材、エアバッグ等の車輛用資材、等に代表される産業資材用繊 維、各種織物、各種編物、ネット、短繊維不織布、長繊維不織布用、等の各種繊維 用途に使用することができる。
[0216] 本発明のポリエステルは、中空成形体として好適に用いられる。
中空成形体としては、ミネラルウォーター、ジュース、ワインやウィスキー等の飲料 容器、ほ乳瓶、瓶詰め食品容器、整髪料や化粧品等の容器、住居および食器用洗 剤容器等が挙げられる。
[0217] これらの中でも、ポリエステルの持つ衛生性及び強度、耐溶剤性を活かした耐圧容 器、耐熱耐圧容器、耐アルコール容器として各種飲料用に特に好適である。中空成 形体の製造は、溶融重縮合や固相重縮合によって得られたポリエステルチップを真 空乾燥法等によって乾燥後、押し出し成型機や射出成形機等の成形機によって成 形する方法や、溶融重縮合後の溶融体を溶融状態のまま成形機に導入して成形す る直接成形方法により、有底の予備成形体を得る。さらに、この予備成形体を延伸ブ ロー成形、ダイレクトブロー成形、押出ブロー成形などのブロー成型法により最終的 な中空成形体が得られる。もちろん、上記の押し出し成型機や射出成形機等の成形 機によって得られた成形体を最終的な中空容器とすることもできる。
[0218] このような中空成形体の製造の際には、製造工程で発生した廃棄榭脂ゃ市場から 回収されたポリエステル榭脂を混合することもできる。このようなリサイクル榭脂であつ ても、本発明のポリエステル榭脂は劣化が少なぐ高品質の中空成型品を得ることが できる。
[0219] さらには、このような容器は、中間層にポリビニルアルコールやポリメタキシリレンジ ァミンアジペートなどのガスノリア性榭脂層、遮光性榭脂層やリサイクルポリエステル 層を設けた多層構造をとることも可能である。また、蒸着や CVD (ケミカルベーパー デポジット)等の方法を用いて、容器の内外をアルミニウムなどの金属やダイヤモンド 状カーボンの層で被覆することも可能である。
[0220] なお、中空成形体のロ栓部等の結晶性を上げるため、ポリエチレンを初めとする他 の榭脂ゃタルク等の無機核剤を添加することもできる。 [0221] また、本発明のポリエステルは押し出し機力もシ一ト状物に押し出し、シートとするこ ともできる。このようなシートは、真空成形や圧空成形、型押し等により加工し、食品 や雑貨用のトレィゃ容器、カップ、ブリスターパック、電子部品のキャリアテープ、電子 部品配送用トレイとして用いる。また、シートは各種カードとして利用することもできる
[0222] これら、シートの場合でも、上述のような中間層にガスバリア性榭脂層、遮光性榭脂 層やリサイクルポリエステル層を設けた多層構造をとることも可能である。
[0223] また、同様にリサイクル榭脂を混合することもできる。さらには、結晶性の耐熱性容 器とすることを目的に、ポリエチレンを初めとする他の榭脂ゃタルク等の無機核剤を 添加し、結晶性を高めることできる。
[0224] 本発明のポリエステル重縮合触媒を用いて重縮合したポリエステルは、フィルムに 用いることができる。その方法は、ポリエステルを溶融押出しし、 T—ダイスより冷却回 転ロール上にシート状に成型し、未延伸シートを作成する。また、複数の押出し機を 用い、コア層、スキン層に各種機能を分担させ、共押出し法により積層フィルムとして も良い。
[0225] 本発明のポリエステル重縮合触媒を用いて重縮合したポリエステルは、配向ポリエ ス Tテルフィルムに用いることができる。配向ポリエステルフィルムは、公知の方法を 用いて、ポリエステルのガラス転移温度以上結晶化温度未満で、少なくとも一軸方向 に 1. 1〜6倍に延伸することにより得ることができる。
[0226] 例えば、二軸配向ポリエステルフィルムを製造する場合、縦方向または横方向に一 軸延伸を行い、次いで直交方向に延伸する逐次二軸延伸方法、縦方向及び横方向 に同時に延伸する同時二軸延伸する方法、さらに同時二軸延伸する際の駆動方法 としてリニアモーターを用いる方法のほか、横 '縦'縦延伸法、縦 '横'縦延伸法、縦- 縦'横延伸法な、同一方向に数回に分けて延伸する多段延伸方法を採用することが できる。
[0227] さらに、延伸終了後、フィルムの熱収縮率を低減させるために、(融点 50°C)〜 融点未満の温度で 30秒以内、好ましくは 10秒以内で熱固定処理を行い、 0. 5〜: LO %の縦弛緩処理、横弛緩処理などを施すことが好ま ヽ。 [0228] 得られた配向ポリエステルフィルムは、厚みが 1 μ m以上 1000 μ m以下が好ましく 、より好ましく ίま 5 μ m以上 500 μ m以下、より好ましく ίま 10 μ m以上 200 μ m以下で ある。: L m未満では腰が無く取り扱いが困難である。また 1000 mを超えると硬す ぎて取り扱いが困難である。
[0229] また、接着性、離型性、制電性、赤外線吸収性、抗菌性、耐擦り傷性、などの各種 機能を付与するために、配向ポリエステルフィルム表面にコーティング法により高分 子榭脂を被覆してもよい。また、被覆層にのみ無機及び Z又は有機粒子を含有させ て、易滑高透明ポリエステルフィルムとしてもよい。さらに、無機蒸着層を設け酸素、 水、オリゴマーなどの各種バリア機能を付与したり、スパッタリング法などで導電層を 設け導電性を付与することもできる。また、配向ポリエステルフィルムの滑り性、走行 性、耐摩耗性、巻き取り性などのハンドリング特性を向上させるために、ポリエステル の重縮合工程で、無機及び有機塩粒子又は耐熱性高分子榭脂粒子を添加して、フ イルム表面に凹凸を形成させてもよい。また、これらの粒子は無機 ·有機又は親水- 疎水等の表面処理がされたもの、されていないもの、どちらを使っても良いが、例え ば分散性を向上させる等の目的で、表面処理した粒子を用いる方が好ましいケース がある。
[0230] 無機粒子としては、炭酸カルシウム、カオリン、タルク、炭酸マグネシウム、炭酸バリ ゥム、硫酸カルシウム、硫酸バリウム、リン酸リチウム、リン酸カルシウム、リン酸マグネ シゥム、酸化アルミニウム、酸化ケィ素、酸化チタン、酸化ジルコニウム、フッ化リチウ ム、ソジユウムカルシウムアルミシリケート等が挙げられる。
[0231] 有機塩粒子としては、蓚酸カルシウムやカルシウム、ノ リウム、亜鉛、マンガン、マグ ネシゥム等のテレフタル酸塩等が挙げられる。
[0232] 架橋高分子粒子としては、ジビュルベンゼン、スチレン、アクリル酸、メタクリル酸、 アクリル酸またはメタクリル酸のビニル系モノマーの単独または共重縮合体が挙げら れる。その他に、ポリテトラフルォロエチレン、ベンゾグアナミン榭脂、熱硬化エポキシ 榭脂、不飽和ポリエステル榭脂、熱硬化性尿素樹脂、熱硬化性フエノール榭脂など の有機粒子を用いても良 、。
[0233] 上記不活性粒子を基材フィルムとなるポリエステル中に含有させる方法は、限定 されな ヽが、 (a)ポリエステル構成成分であるジオール中で不活性粒子をスラリー状 に分散処理し、該不活性粒子スラリーをポリエステルの重縮合反応系へ添加する方 法、(b)ポリエステルフィルムの溶融押出し工程においてベント式二軸押出し機で、 溶融ポリエステル榭脂に分散処理した不活性粒子の水スラリーを添加する方法、(c) ポリエステル榭脂と不活性粒子を溶融状態で混練する方法 (d)ポリエステル榭脂と不 活性粒子のマスターレジンを溶融状態で混練する方法などが例示される。
[0234] 重縮合反応系に添加する方法の場合、不活性粒子のジオールスラリーを、エステ ル化反応またはエステル交換反応前から重縮合反応開始前の溶融粘度の低い反応 系に添加することが好ましい。また、不活性粒子のジオールスラリーを調整する際に は、高圧分散機、ビーズミル、超音波分散などの物理的な分散処理を行うとことが好 ましい。さらに、分散処理したスラリーを安定ィ匕させるために、使用する粒子の種類に 応じて適切な化学的な分散安定ィ匕処理を併用することが好ましい。
[0235] 分散安定ィ匕処理としては、例えば無機酸ィ匕物粒子や粒子表面にカルボキシル基を 有する架橋高分子粒子などの場合には、水酸化ナトリウム、水酸ィ匕カリウム、水酸ィ匕 リチウムなどのアルカリィ匕合物をスラリーに添加し、電気的な反発により粒子間の再凝 集を抑制することができる。また、炭酸カルシウム粒子、ヒドロキシアパタイト粒子など の場合にはトリポリ燐酸ナトリウムやトリポリ燐酸カリウムをスラリー中に添加することが 好ましい。
[0236] また、不活性粒子のジオールスラリーをポリエステルの重縮合反応系へ添加する際 、スラリーをジオールの沸点近くまで加熱処理することも、重縮合反応系へ添加した 際のヒートショック (スラリーと重縮合反応系との温度差)を小さくすることができるため 、粒子の分散性の点で好ましい。
[0237] これらの添加剤は、ポリエステルの重縮合時もしくは重縮合後、あるいはポリエステ ルフィルムの製膜後の任意の段階で添加することが可能であり、どの段階が好適か は化合物の特性やポリエステルフィルムの要求性能に応じてそれぞれ異なる。
[0238] また、本発明のポリエステルは熱安定性に優れるため、例えば、本ポリエステルを 用いてフィルムなどを作成する際、延伸工程で生ずるフィルムの耳の部分や規格外 のフィルムを溶融して再利用するのに適している。 [0239] 本発明の配向ポリエステルフィルムは、好ましくは帯電防止性フィルム、易接着性 フィルム、カード用、ダミー缶用、農業用、建材用、化粧材用、壁紙用、 OHPフィル ム用、印刷用、インクジェット記録用、昇華転写記録用、レーザービームプリンタ記録 用、電子写真記録用、熱転写記録用、感熱転写記録用、プリント基板配線用、メンブ レンスイッチ用、プラズマディスプレイ用、タツチパネル用、マスキングフィルム用、写 真製版用、レントゲンフィルム用、写真ネガフィルム用、位相差フィルム用、偏光フィ ルム用、偏光膜保護 (TAC)用、プロテ外フィルム用、感光性榭脂フィルム用、視野 拡大フィルム用、拡散シート用、反射フィルム用、反射防止フィルム用、導電性フィ ルム用、セパレータ用、紫外線防止用、ノ ックグラインドテープ用などに用いられる。
[0240] ¾細1
以下、本発明を実施例により説明するが、本発明はこれらの実施例に制限されるも のではない。なお、評価法は以下の方法で実施した。
[0241] 1、アルミニウム化合物水溶液の吸光度測定法
カルボン酸アルミニウム塩をアルミニウム元素量で 2. 7gZlの濃度になるように純水 に溶解して 680nmの波長で吸光度を測定した。溶解は 1. 5Lフラスコを用いて室温 で 6時間攪拌後(200rpm)、 30分を要して内温を 95°Cに昇温して、その後内温を 9 5± 1°Cに調節しながら 3時間攪拌することにより行った。吸光度の測定は、水溶液を 室温まで放冷した後、セル長 lcmの石英セルを用い、純水を対照液として行った。 測定装置は、ダブルビーム分光光度計 (島津製作所製; UV— 210A)を用いた。
[0242] 2、アルミニウム化合物の水に対する不溶分量測定法
200rpmで攪拌した室温の純水 1500mlにアルミニウム化合物 30gを添カ卩し、室温 で 6時間攪拌を続ける。引き続き液温を 95°Cに加温し、同温度で更に 3時間攪拌を 続行しアルミニウム化合物を溶解させた。得られた溶液を室温になるまで放冷し、孔 径 0. 2 μ mのセルロースアセテート製のメンブレンフィルター(Advantec社製セル口 ースアセテートタイプメンブレンフィルター、品名: C020A047A)で濾過し、 50mlの 純水で洗浄した。得られた不溶分を濾過したフィルターを 60°Cの真空乾燥器で 12 時間乾燥し不溶分重量 (W)を求めた。アルミニウム化合物の水に対する不溶分量は 下記式で算出した。アルミニウム化合物が水溶液の場合は、水溶液の一部を採取し 、該水溶液を蒸発乾固することにより水溶液中の固形分を測定し、該固形分をアルミ ニゥム化合物重量として水溶液中のアルミニウム化合物濃度を求め、水溶液中のァ ルミ-ゥム化合物量が 30gとなる量の水溶液を濾過することにより求めた。該水溶液 の場合は、水溶液中のアルミニウム化合物濃度が 2質量%より濃い場合は、 2質量% になるように純水をカ卩ぇアルミニウム希釈して濾過を行った。該希釈は上記の固形ァ ルミ-ゥム化合物の溶解と同じ条件で行った。なお、上記操作はクリーンベンチ中で 実施した。
不溶分量 (ppm) = [W (mg) /30000 (mg) ] X 106
[0243] 3、固有粘度 (IV)の測定
フエノール Zテトラクロロェタン(60 :40、重量比)混合溶媒を用いて、 30°Cで測定 した。
[0244] 4、色調
ポリエステル榭脂チップ (長さ約 3mm、直径約 2mm)を用い、色差計 (東京電色社 製:モデル ND— 1001 DP)を使用してハンターの L値および b値を測定した。
[0245] 5、ポリエステルに不溶なアルミニウム系異物評価法
溶融重縮合上がりのポリエステルペレット 30gおよびパラクロロフェノール/テトラタ ロロェタン (3,1:重量比)混合溶液 300mlを攪拌機付き丸底フラスコに投入し、該 ペレットを混合溶液に 100〜105°C、 2時間で攪拌'溶解した。該溶液を室温になる まで放冷し、直径 47mmZ孔径 1. 0 mのポリテトラフルォロエチレン製のメンブレ ンフィルター(Advantec社製 PTFEメンブレンフィルター、品名: T100A047A)を 用い、全量を 0. 15MPaの加圧下で異物を濾別した。有効濾過直径は 37. 5mmと した。濾過終了後、引き続き 300mlのクロ口ホルムを用い洗浄し、次いで、 30°Cで一 昼夜減圧乾燥した。該メンプレンフィルターの濾過面を走査型蛍光 X線分析装置 (RI GAKU社製、 ZSX100e、 Rh管球 4. OkW)でアルミニウム元素量を定量した。定量 はメンブレンフィルター中心部の直径 30mmの部分について行った。なお、該蛍光 X 線分析法の検量線はアルミニウム元素含有量が既知の PET榭脂を用いて求め、見 掛けのアルミニウム元素量を ppmで表示した。測定は X線出力 50kV— 70mAで分 光結晶としてペンタエリスリトール、検出器として PC (プロポーショナルカウンター)を 用い、 PHA (波高分析器) 100— 300の条件で Al—K a線強度を測定することにより 実施した。検量線用ポリエチレンテレフタレート榭脂中のアルミニウム元素量は、高周 波誘導結合プラズマ発光分析法で定量した。
[0246] 6、一軸延伸フィルムのヘイズ値
ポリエステル榭脂を真空下、 130°Cで 12時間乾燥し、ヒートプレス法で 1000士 100 mのシートを作成。ヒートプレス温度、圧力および時間はそれぞれ 320°C、 10 0kgZcm2Gおよび 3秒とした。プレス後シートは水中に投入し急冷却した。得られた シートをバッチ式延伸機(T. M. LONG
CO.,INC製、 FILM STRETCHER)で 3. 5倍に一軸延伸し 300± 20/z mの一軸 延伸フィルムを得た。延伸温度はブロー温度 95°CZプレート温度 100°Cとした。また 、延伸速度は 1. 5万%Z分で行った。得られた一軸延伸フィルムのヘイズを JIS—K 7136に準拠し、ヘイズメータ(日本電色工業株式会社製、 300A)を用いて測定した 。なお、測定は 5回行い、その平均値を求めた。ヘイズ値はフィルム厚み 300 mの 換算値で表示した。
[0247] 7、塩基性酢酸アルミニウムの X線回折
以下の条件で測定した。
X線発生器:リガク製ガイガーフレックス
X線: CuK a線 Z40KVZ38mA
アタッチメント:ガラス製の標準試料ホルダー
フィルター:なし
カウンタモノクロメータ:全自動モノクロメータ
発散スリット: 1度
散乱スリット: 1度
受光スリット: 0. 3mm
カウンタ:シンチレーシヨンカウンタ
走査モード:連続
走査スピード: 2度 Z分
データサンプリング取り込み間隔: 0. 02度 走査軸:
走査範囲: 10〜50度
データ処理:リガク製リントシステム 1000シリーズ
[0248] 8、塩基性酢酸アルミニウムの赤外線吸収分析法 (T1の評価法)
測定は透過法にて行った。測定には Bio— Rad社製、 FTS— 40 (本体) ZUMA3 00 (赤外顕微鏡)を用いた。 985cm_1付近の吸収の吸光度が 1. 5以下になるように 試料を調製し、分解能 8cm_1、積算回数 128回で測定を行った。吸収強度を算出す るためのベースラインは、以下の手順により定めた。 3700cm_1の吸収強度は、この 吸収の両側のすそを結んでベースラインとした。 1029cm_1の吸収については、 106 0cm_1の吸収の高波数側のすそと、 985cm_1の吸収の低波数側のすそとを結んで ベースラインとした。
[0249] 9、塩基性酢酸アルミニウムの赤外線吸収分析法 (T2の評価法)
1昼夜室温で減圧乾燥したものを測定用試料とした。測定は透過法にて行った。測 定には Bio— Rad社製、 FTS— 40 (本体) ZUMA300 (赤外顕微鏡)を用いた。 98 5cm_1付近の吸収の吸光度が 1. 5以下になるように試料を調製し、分解能 8cm_1、 積算回数 128回で測定を行った。吸収強度を算出するためのベースラインは、以下 の手順により定めた。 1062cm_1および 1029cm_1の吸光度については、 1060cm 一1の吸収の高波数側のすそと、 985cm_1の吸収の低波数側のすそとを結んでベー スラインとした。見掛けの結晶化度は、 1062± 10cm_1および 1029± 10cm_1それ ぞれの上記ベースライン力もピークトップまでの高さの比 (T2)、すなわち、吸光度 C および Αの吸光度比 (CZA)を求めた。数値が高くなればなるほどその塩基性酢酸 アルミニウムは、低 、値に比べて相対的に結晶化度が高 、と 、える。
[0250] 10、中空成形体の透明性評価
ポリエステルを脱湿窒素を用 ヽた乾燥機で乾燥し、名機製作所製 M— 150C (DM )射出成型機により榭脂温度 295°Cでプリフォームを成形した。このプリフォームの口 栓部を自家製のロ栓部結晶化装置で加熱結晶化させた後、コーポプラスト社製 LB 01E延伸ブロー成型機を用いて二軸延伸ブロー成形し、引き続き約 140°Cに設 定した金型内で約 7秒間熱固定し、 1500ccの中空成形体 (胴部は円形)を得た。得 られた中空成形体の透明性を目視により 3段階評価法を用いて評価した。
〇:透明性に優れている。
△:透明性にやや劣る。
X:透明性に劣る。
[0251] 11、塩基性酢酸アルミニウム中のアルミニウム原子の定量
塩基性酢酸アルミニウム 0. 5gを 1. 2モル Z1塩酸水溶液 1000mlに溶解させた後 、該溶解液を (株)リガク社製の高周波誘導結合プラズマ発光 (ICP)分析装置 (形式 : CIROS - 120 EOP)用いて定量した。測定波長は 396. 152nmを用いた。また、 検量線は計量法に基づく特定基準物質 (国家計量標準)にトレーサブルサンプルで あるアルミニウムの標準溶液 (和光純薬工業社製)を用いて作成した。
[0252] 12、塩基性酢酸アルミニウム中のィォゥ原子の定量
塩基性酢酸アルミニウム 0. 5gを 1. 2モル Z1塩酸水溶液 20mlに溶解させた後、該 溶解液を (株)リガク社製の高周波誘導結合プラズマ発光 (ICP)分析装置 (形式: CI ROS - 120 EOP)用いて定量した。測定波長は 180. 731nmを用いた。また、検 量線は試薬特級の硫酸ナトリウムの水溶液を用いて作成した。
[0253] 13、塩基性酢酸アルミニウム中のホウ素原子の定量
塩基性酢酸アルミニウム 0. 5gを 1. 2モル Z1塩酸水溶液 20mlに溶解させた後、該 溶解液を (株)リガク社製の高周波誘導結合プラズマ発光 (ICP)分析装置 (形式: CI ROS - 120 EOP)用いて定量した。測定波長は 249. 773nmを用いた。また、検 量線は試薬特級のホウ酸の水溶液を用いて作成した。
[0254] 14、ポリエステル中のジエチレングリコール(DEG)の定量
ポリエステル 0. lgをメタノール 2ml中で 250°Cで加熱分解した後、ガスクロマトダラ フィ一法により分離定量した。
[0255] 実施例 1
(1)重縮合触媒溶液の調製
(リンィ匕合物のエチレングリコール溶液の調製)
窒素導入管、冷却管を備えたフラスコに、常温常圧下、エチレングリコール 2. 0リツ トルを加えた後、窒素雰囲気下 200rpmで攪拌しながら、リンィ匕合物として (化 39)で 表される Irganoxl 222 (チノく'スペシャルティーケミカルズ社製)の 200gを加えた。さ らに 2. 0リットルのエチレングリコールを追カ卩した後、ジャケット温度の設定を 196°C に変更して昇温し、内温が 185°C以上になった時点から 60分間還流下で攪拌した。 その後加熱を止め、直ちに溶液を熱源から取り去り、窒素雰囲気下を保ったまま、 30 分以内に 120°C以下まで冷却した。得られた溶液中の Irganoxl 222のモル分率は 40%、Irganoxl222から構造変化した化合物のモル分率は 60%であった。
(アルミニウム化合物の水溶液の調製)
冷却管を備えたフラスコに、常温常圧下、純水 5. 0リットルをカ卩えた後、 200rpmで 攪拌しながら、上記評価法で評価した吸光度が 0. 0047の塩基性酢酸アルミニウム( ヒドロキシアルミニウムジアセテート) [SIGMA社製]の 200gを純水とのスラリーとして 加えた。さらに全体として 10. 0リットルとなるよう純水を追加して常温常圧で 12時間 攪拌した。その後、ジャケット温度の設定を 100. 5°Cに変更して昇温し、内温が 95 °C以上になった時点力 3時間還流下で攪拌した。攪拌を止め、室温まで放冷し水 溶液を得た。
(アルミニウム化合物の水 Zエチレングリコール混合溶液の調製)
前記アルミニウム化合物の水溶液に対し、該水溶液 Zエチレングリコール =2Z3 ( 体積比)となるようにエチレングリコールを添加し十分に混合して、アルミニウム化合 物の水 Zエチレングリコール混合溶液を得た。
(ポリエステルの重縮合)
高純度テレフタル酸とその 2倍モル量のエチレングリコールから常法に従って製造し たビス(2—ヒドロキシェチル)テレフタレート及びオリゴマーの混合物に対し、重縮合 触媒として上記方法で調製した塩基性酢酸アルミニウムの水 Zエチレングリコール混 合溶液とリンィ匕合物のエチレングリコール溶液をそれぞれ別個の供給口より、ポリエ ステル中の酸成分に対してアルミニウム原子として 0. 021mol%およびリン原子とし て 0. 028mol%になるように加えて、窒素雰囲気下、常圧にて 245°Cで 15分間撹拌 した。次いで 55分間を要して 275°Cまで昇温しつつ反応系の圧力を徐々に下げて 6 6. 5Pa (0. 5Torr)としてさらに 275°C、 66. 5Paで 130分間重縮合反応を行った。 得られた PETの特性を表 1に示す。 [0257] [表 1]
Figure imgf000075_0001
[0258] 比較例 1
実施例 1の方法にぉ ヽて、塩基性酢酸アルミニウムとして上記評価法で評価した吸 光度が 0. 0155のものけ力ライ社製)に変更する以外は、実施例 1と同様の方法で 比較例 1の PETを得た。得られた PETの特性を表 1に示す。
[0259] 実施例 2
比較例 1で調製したアルミニウム化合物の水溶液を 50万 xgで 1. 5時間超遠心分 離し水不溶分を除去した精製塩基性酢酸アルミニウムの水溶液を得た。該精製液の 一部をサンプリングしてフリーズドライ法で乾燥し精製塩基性酢酸アルミニウムを得た 。得られた精製塩基性酢酸アルミニウムの上記評価法で評価した吸光度は 0. 0022 であった。アルミニウム化合物の水溶液として、上記の精製塩基性酢酸アルミニウム 水溶液を用いる以外は、実施例 1と同様の方法で実施例 2の PETを得た。得られた P ETの特性を表 1に示す。
[0260] 実施例 3
(乳酸アルミニウムのエチレングリコール溶液の調製)
乳酸アルミニウムの約 67gZlの水溶液を常温で調製した。得られた乳酸アルミ-ゥ ム水溶液を純水で希釈し上記評価法で評価した吸光度は 0. 0177であった。該水 溶液を 50万 Xgで 1. 5時間超遠心分離し水不溶分を除去した精製乳酸アルミニウム の水溶液を得た。該精製液の一部をサンプリングしてフリーズドライ法で乾燥し精製 乳酸アルミニウムを得た。得られた精製塩基性酢酸アルミニウムの上記評価法で評 価した吸光度は 0. 0017であった。その後、該精製乳酸アルミニウムの水溶液にェ チレングリコールをカ卩え、約 100°Cで加熱することで水を留去し、約 29gZlのェチレ ングリコール溶液を得た。
(ポリエステルの重縮合)
アルミニウム化合物として、上記の精製乳酸アルミニウムのエチレングリコール溶液 を用いる以外は、実施例 1と同様の方法で実施例 3の PETを得た。得られた PETの 特性を表 2に示す。
[表 2]
Figure imgf000076_0001
[0262] 比較例 2
実施例 3において、アルミニウム化合物として超遠心分離する前の未精製の乳酸ァ ルミ-ゥム水溶液を用いて実施例 3と同様にして得た乳酸アルミニウムのエチレンダリ コール溶液を用いる以外は、実施例 3と同様の方法で比較例 2の PETを得た。得ら れた PETの特性を表 2に示す。
[0263] 実施例 4〜6および比較例 3、 4
実施例 1〜3および比較例 1、 2で得られた PETを前記評価法で記載した方法によ り一軸延伸フィルムを得た。得られた一軸延伸フィルムのヘイズ値を表 1および 2〖こ 示す。
[0264] 実施例 1〜3の PETの製造法は、重縮合触媒の活性が高ぐかつ重縮合触媒起因 の異物の生成が少なぐ経済性と品質が両立している。比較例 1および 2の PETは重 縮合触媒起因の異物が多く品質が劣って ヽる。これらの実施例のポリエステルを用 いて得た一軸延伸フィルムはヘイズが低く透明性の優れたものであった。一方、比較 例 1および 2の PETを用いて得た一軸延伸フィルムはヘイズが高く透明性の劣ったも のであった。従って、実施例 1〜3で得られた PETは透明性の高い成型体が得られ 成型体としても高品質であった。
[0265] 実施例 7 (1)重縮合触媒溶液の調製
(リンィ匕合物のエチレングリコール溶液の調製)
実施例 1と同様の方法で調整した。
(アルミニウム化合物の水溶液の調製)
冷却管を備えたフラスコに、常温常圧下、純水 5. 0リットルをカ卩えた後、 200rpmで 攪拌しながら、上記評価法で評価した水に対する不溶分量が 410ppmの塩基性酢 酸アルミニウム(Riedel— de Haen社製) 200gを純水とのスラリーとして加えた。さら に全体として 10. 0リットルとなるよう純水を追加して常温常圧で 12時間攪拌した。そ の後、ジャケット温度の設定を 100. 5°Cに変更して昇温して、内温が 95°C以上にな つた時点から 3時間還流下で攪拌した。攪拌を止め、室温まで放冷し水溶液を得た。 (アルミニウム化合物の水 Zエチレングリコール混合溶液の調製)
前記アルミニウム化合物の水溶液に対し、該水溶液 Zエチレングリコール =2Z3 ( 体積比)となるようにエチレングリコールを添加し十分に混合して、アルミニウム化合 物の水 Zエチレングリコール混合溶液を得た。
(ポリエステルの重縮合)
高純度テレフタル酸とその 2倍モル量のエチレングリコールから常法に従って製造し たビス(2—ヒドロキシェチル)テレフタレート及びオリゴマーの混合物に対し、重縮合 触媒として上記方法で調製した塩基性酢酸アルミニウムの水 Zエチレングリコール混 合溶液とリンィ匕合物のエチレングリコール溶液をそれぞれ別個の供給口より、ポリエ ステル中の酸成分に対してアルミニウム原子として 0. 021mol%およびリン原子とし て 0. 028mol%になるように加えて、窒素雰囲気下、常圧にて 245°Cで 15分間撹拌 した。次いで 55分間を要して 275°Cまで昇温しつつ反応系の圧力を徐々に下げて 6 6. 5Pa (0. 5Torr)としてさらに 275°C、 66. 5Paで 130分間重縮合反応を行った。 得られた PETの特性を表 1に示す。
[表 3] 実施例 7 比較例 5
/8 /6
アルミニウム化合物の水に対する不溶分量(ppm) 41 0 2600
IV (dig"1 ) 0. 60 0. 59
色 li (L値) 57. 2 56. 5
色調(b値) 0. 1 0. 2
ポリエステルに不溶なアルミニウム系異物(ppm) 720 6500
—軸延伸フィルムのヘイズ値(%) 0. 9 3. 4
[0267] 比較例 5
実施例 7の方法にお ヽて、塩基性酢酸アルミニウムとして上記評価法で評価した水 に対する不溶分量が 2600ppmのもの(Merck KGaA社製)に変更する以外は、実 施例 7と同様の方法で比較例 5の PETを得た。得られた PETの特性を表 3に示す。
[0268] 実施例 8および比較例 6
実施例 7および比較例 5で得られた PETを前記評価法で記載した方法により一軸 延伸フィルムを得た。得られた一軸延伸フィルムのヘイズ値を表 3に示す。
[0269] 実施例 7および 8の PETの製造法は、重縮合触媒の活性が高ぐかつ重縮合触媒 起因の異物の生成が少なぐ経済性と品質が両立している。比較例 5の PETは重縮 合触媒起因の異物が多く品質が劣って ヽる。これらの実施例のポリエステルを用いて 得た一軸延伸フィルムはヘイズが低く透明性の優れたものであった。一方、比較例 5 の PETを用いて得た一軸延伸フィルムはヘイズが高く透明性の劣ったものであった 。従って、実施例 7および 8で得られた PETは透明性の高い成型体が得られ成型体 としても高品質であった。
[0270] 実施例 9
(1)重縮合触媒溶液の調製
(リンィ匕合物のエチレングリコール溶液の調製)
実施例 1と同様の方法で調整した。
(塩基性酢酸アルミニウムの調製)
市販の塩基性塩ィ匕アルミニウム水溶液 (AI O 換算濃度 23. 5質量%、塩素ィォ
2 3
ン 8. 15質量%、塩基度 83. 3%、 pH4. 0)を純水で希釈して Al O 換算濃度 5. 0
2 3
重量%の塩基性塩化アルミニウム水溶液を調製した。この水溶液を空間速度 5にて 酢酸型ァ-オン交換榭脂カラムに通液して塩基性酢酸アルミニウム水溶液を得た。 得られた水溶液を常圧下、 140°Cで含水率 20%まで乾燥することにより塩基性酢酸 アルミニウム固形分を得た。
[0271] (塩基性酢酸アルミニウム水溶液の調製)
冷却管を備えたフラスコに、常温常圧下、純水 5. 0リットルをカ卩えた後、 200rpmで 攪拌しながら、上記方法で調製した塩基性酢酸アルミニウム 200gを純水とのスラリー として加えた。さらに全体として 10. 0リットルとなるよう純水を追カ卩して常温常圧で 12 時間攪拌した。その後、ジャケット温度の設定を 100. 5°Cに変更して昇温し、内温が 95°C以上になった時点から 3時間還流下で攪拌した。攪拌を止め、室温まで放冷し 水溶液を得た。
(アルミニウム化合物の水 Zエチレングリコール混合溶液の調製)
前記アルミニウム化合物の水溶液に対し、該水溶液 Zエチレングリコール =2Z3 ( 体積比)となるようにエチレングリコールを添加し十分に混合して、アルミニウム化合 物の水 Zエチレングリコール混合溶液を得た。
[0272] (ポリエステルの重縮合)
高純度テレフタル酸とその 2倍モル量のエチレングリコールから常法に従って製造し たビス(2—ヒドロキシェチル)テレフタレート及びオリゴマーの混合物に対し、重縮合 触媒として上記方法で調製した塩基性酢酸アルミニウムの水 Zエチレングリコール混 合溶液とリンィ匕合物のエチレングリコール溶液をそれぞれ別個の供給口より、ポリエ ステル中の酸成分に対してアルミニウム原子として 0. 021mol%およびリン原子とし て 0. 028mol%になるように加えて、窒素雰囲気下、常圧にて 245°Cで 15分間撹拌 した。次いで 55分間を要して 275°Cまで昇温しつつ反応系の圧力を徐々に下げて 6 6. 5Pa (0. 5Torr)としてさらに 275°C、 66. 5Paで 130分間重縮合反応を行った。 得られた PETの特性を表 4に示す。
[0273] [表 4] 実施例 9 実施例 1 0 比較例 7
ノ 1 1 Z1 2 Ζ8
アルミニウム化合物含水率 (質量%) 2 0 水溶液 2
IV (dig"1 ) 0. 61 0. 60 0. 60
色調(し値) 57. 0
色調(b値) 0. 0 0. 3 0. 2
ポリエステルに不溶なアルミニウム系異物(ppm) 800 450 8500
一軸延伸フィルムのヘイズ値( 0. 9 0. 7 4. 2
[0274] 比較例 7
実施例 9の方法において、塩基性酢酸アルミニウムの乾燥を含水率が 2質量%に なるまで行うように変更する以外は、実施例 9と同様の方法で比較例 7の PETを得た 。得られた PETの特性を表 4に示す。
[0275] 実施例 10 o 実施例 9の方法にぉ 、て、塩基性酢酸アルミニウム水溶液カゝら塩基性酢酸アルミ- ゥム固形分を単離することなく、実施例 9に記載した方法で得られた塩基性酢酸アル ミニゥム水溶液 1質量部を 15質量部のエチレングリコールに攪拌しながら添加し、 20 Orpmで 30分間攪拌後、均一な水/エチレングリコール混合溶液を得た。次いで、ジ ャケット温度の設定を 110°Cに変更して昇温し、該溶液力も水を留去した。水の留去 が終了した時点で加熱を止め、室温まで放冷することでアルミニウム化合物のェチレ ングリコール溶液を得た。アルミニウム化合物溶液として、上記方法で調製したェチ レンダリコール溶液を用いる以外は、実施例 9と同様の方法で実施例 10の PETを得 た。得られた PETの特性を表 4に示す。
[0276] 実施例 11、 12および比較例 8
実施例 9、 10および比較例 7で得られた PETを前記評価法で記載した方法により 一軸延伸フィルムを得た。得られた一軸延伸フィルムのヘイズ値を表 4に示す。
[0277] 実施例 9、 10の PETの製造法は、重縮合触媒の活性が高ぐかつ重縮合触媒起 因の異物の生成が少なぐ経済性と品質が両立している。比較例 6の PETは重縮合 触媒起因の異物が多く品質が劣って 、る。これらの実施例のポリエステルを用いて得 た一軸延伸フィルムはヘイズが低く透明性の優れたものであった。一方、比較例 7の PETを用いて得た一軸延伸フィルムはヘイズが高く透明性の劣ったものであった。 従って、実施例 9、 10で得られた PETは透明性の高い成型体が得られ成型体として も高品質であった。
[0278] 実施例 13
(1)重縮合触媒溶液の調製
(リンィ匕合物のエチレングリコール溶液の調製)
実施例 1と同様の方法で調整した。
(塩基性酢酸アルミニウムの調製)
市販の塩基性塩ィ匕アルミニウム水溶液 (AI O 換算濃度 23. 5質量%、塩素ィォ
2 3
ン 8. 15質量%、塩基度 83. 3%、 pH4. 0)を純水で希釈して Al O 換算濃度 5. 0
2 3
重量%の塩基性塩化アルミニウム水溶液を調製した。この水溶液を空間速度 5にて 酢酸型ァ-オン交換榭脂カラムに通液して塩基性酢酸アルミニウム水溶液を得た。 得られた水溶液を常圧下、減圧下、 90°Cで含水率 20%まで乾燥することにより塩基 性酢酸アルミニウム固形分を得た。上記評価法で測定した X線の回折ピークの半値 幅は 0. 79であった。
(アルミニウム化合物の水溶液の調製)
冷却管を備えたフラスコに、常温常圧下、純水 5. 0リットルをカ卩えた後、 200rpmで 攪拌しながら、上記方法で調製した塩基性酢酸アルミニウム 200gを純水とのスラリー として加えた。さらに全体として 10. 0リットルとなるよう純水を追カ卩して常温常圧で 12 時間攪拌した。その後、ジャケット温度の設定を 100. 5°Cに変更して昇温し、内温が 95°C以上になった時点から 3時間還流下で攪拌した。攪拌を止め、室温まで放冷し 水溶液を得た。
(アルミニウム化合物の水 Zエチレングリコール混合溶液の調製)
前記アルミニウム化合物の水溶液に対し、該水溶液 Zエチレングリコール = 2Z3 ( 体積比)となるようにエチレングリコールを添加し十分に混合して、アルミニウム化合 物の水 Zエチレングリコール混合溶液を得た。
[0279] (ポリエステルの重縮合)
高純度テレフタル酸とその 2倍モル量のエチレングリコールから常法に従って製造し たビス(2—ヒドロキシェチル)テレフタレート及びオリゴマーの混合物に対し、重縮合 触媒として上記方法で調製した塩基性酢酸アルミニウムの水 Zエチレングリコール混 合溶液とリンィ匕合物のエチレングリコール溶液をそれぞれ別個の供給口より、ポリエ ステル中の酸成分に対してアルミニウム原子として 0. 021mol%およびリン原子とし て 0. 028mol%になるように加えて、窒素雰囲気下、常圧にて 245°Cで 15分間撹拌 した。次いで 55分間を要して 275°Cまで昇温しつつ反応系の圧力を徐々に下げて 6 6. 5Pa (0. 5Torr)としてさらに 275°C、 66. 5Paで 130分間重縮合反応を行った。 得られた PETの特性を表 5に示す。
[0280] [表 5]
Figure imgf000082_0001
[0281] 比較例 9
実施例 13の方法において、塩基性酢酸アルミニウムの乾燥を常圧、 150°Cで行う に変更することに得た、上記評価法で測定した X線回折ピークの半値幅 0. 46のもの に変更する以外は、実施例 13と同様の方法で比較例 9の PETを得た。得られた PE Tの特性を表 5に示す。
[0282] 実施例 14および比較例 10
実施例 14および比較例 9で得られた PETを前記評価法で記載した方法により一軸 延伸フィルムを得た。得られた一軸延伸フィルムのヘイズ値を表 5に示す。
[0283] 実施例 13の PETの製造法は、重縮合触媒の活性が高ぐかつ重縮合触媒起因の 異物の生成が少なぐ経済性と品質が両立している。比較例 9の PETは重縮合触媒 起因の異物が多く品質が劣って!/、る。これらの実施例のポリエステルを用いて得た一 軸延伸フィルムはヘイズが低く透明性の優れたものであった。一方、比較例 9の PET を用いて得た一軸延伸フィルムはヘイズが高く透明性の劣ったものであった。従って 、実施例 13で得られた PETは透明性の高い成型体が得られ成型体としても高品質 であった。 [0284] 実施例 15
(1)重縮合触媒溶液の調製
(リンィ匕合物のエチレングリコール溶液の調製)
実施例 1と同様の方法で調整した。
(塩基性酢酸アルミニウムの調製)
市販の塩基性塩ィ匕アルミニウム水溶液 (AI O 換算濃度 23. 5質量%、塩素ィォ
2 3
ン 8. 15質量%、塩基度 83. 3%、 pH4. 0)を純水で希釈して Al O 換算濃度 5. 0
2 3
重量%の塩基性塩化アルミニウム水溶液を調製した。この水溶液を空間速度 5にて 酢酸型ァ-オン交換榭脂カラムに通液して塩基性酢酸アルミニウム水溶液を得た。 得られた水溶液を常圧下、 140°Cで含水率 15%まで乾燥することにより塩基性酢酸 アルミニウム固形分を得た。得られた塩基性酢酸アルミニウムの上記評価法で測定し た赤外線吸収分析の吸光度比 T1は 1. 75であった。
(塩基性酢酸アルミニウム水溶液の調製)
冷却管を備えたフラスコに、常温常圧下、純水 5. 0リットルをカ卩えた後、 200rpmで 攪拌しながら、上記方法で調製した塩基性酢酸アルミニウム 200gを純水とのスラリー として加えた。さらに全体として 10. 0リットルとなるよう純水を追カ卩して常温常圧で 12 時間攪拌した。その後、ジャケット温度の設定を 100. 5°Cに変更して昇温し、内温が 95°C以上になった時点から 3時間還流下で攪拌した。攪拌を止め、室温まで放冷し 水溶液を得た。
(アルミニウム化合物の水 Zエチレングリコール混合溶液の調製)
前記アルミニウム化合物の水溶液に対し、該水溶液 Zエチレングリコール = 2Z3 ( 体積比)となるようにエチレングリコールを添加し十分に混合して、アルミニウム化合 物の水 Zエチレングリコール混合溶液を得た。
[0285] (ポリエステルの重縮合)
高純度テレフタル酸とその 2倍モル量のエチレングリコールから常法に従って製造し たビス(2—ヒドロキシェチル)テレフタレート及びオリゴマーの混合物に対し、重縮合 触媒として上記方法で調製した塩基性酢酸アルミニウムの水 Zエチレングリコール混 合溶液とリンィ匕合物のエチレングリコール溶液をそれぞれ別個の供給口より、ポリエ ステル中の酸成分に対してアルミニウム原子として 0. 021mol%およびリン原子とし て 0. 028mol%になるように加えて、窒素雰囲気下、常圧にて 245°Cで 15分間撹拌 した。次いで 55分間を要して 275°Cまで昇温しつつ反応系の圧力を徐々に下げて 6 6. 5Pa (0. 5Torr)としてさらに 275°C、 66. 5Paで 130分間重縮合反応を行った。 得られた PETの特性を表 6に示す。
[0286] [表 6]
Figure imgf000084_0001
[0287] 比較例 11
実施例 15の方法において、塩基性酢酸アルミニウムの乾燥を含水率が 3質量%に なるまで行うように変更することに得た、上記評価法で測定した赤外線吸収分析の吸 光度比 T1が 1. 94のものに変更する以外は、実施例 15と同様の方法で比較例 11の PETを得た。得られた PETの特性を表 6に示す。
[0288] 実施例 16
実施例 15の方法において、塩基性酢酸アルミニウム調製時の乾燥を減圧下、 95 °Cに変更する以外は、実施例 15と同様の方法で実施例 16の PETを得た。得られた PETの特性を表 6に示す。なお、上記評価法で測定した赤外線吸収分析の吸光度 比 T1は 1. 48であった。
[0289] 実施例 17
実施例 15の方法において、塩基性酢酸アルミニウムの調製時のイオン交換上がり の溶液に尿素を塩基性酢酸アルミニウム 100質量部に対して 0. 1質量部になるよう に添加し攪拌溶解した後に、該溶液を濃縮、乾燥をするように変更する以外は、実 施例 15と同様の方法で実施例 17の PETを得た。得られた PETの特性を表 6に示す 。なお、上記評価法で測定した赤外線吸収分析の吸光度比 Tlは 1. 22であった。
[0290] 実施例 18〜20および比較例 12
実施例 15〜 17および比較例 11で得られた PETを前記評価法で記載した方法に より一軸延伸フィルムを得た。得られた一軸延伸フィルムのヘイズ値を表 6に示す。
[0291] 実施例 15〜 17の PETの製造法は、重縮合触媒の活性が高ぐかつ重縮合触媒起 因の異物の生成が少なぐ経済性と品質が両立している。比較例 11の PETは重縮 合触媒起因の異物が多く品質が劣って ヽる。これらの実施例のポリエステルを用いて 得た一軸延伸フィルムはヘイズが低く透明性の優れたものであった。一方、比較例 1 1の PETを用いて得た一軸延伸フィルムはヘイズが高く透明性の劣ったものであつ た。従って、実施例 15〜 17で得られた PETは透明性の高い成型体が得られ成型体 としても高品質であった。
[0292] 実施例 21
(塩基性酢酸アルミニウムのエチレングリコールの調製例 1)
塩基性酢酸アルミニウム(ヒドロキシアルミニウムジアセテート; Fluka社製)の 20g/l 水溶液に対して、等量 (容量比)のエチレングリコールをともにフラスコに仕込み、室 温で 6時間攪拌した後、減圧(133Pa)下、 90〜110°Cで数時間攪拌しながら系から 水を留去し、 20g/lのアルミニウム化合物のエチレングリコール溶液を調製した。
[0293] (リン化合物の調製例 1)
リン化合物として〔ィ匕 39〕で表される Irganoxl222 (チノく'スペシャルティーケミカルズ 社製)をエチレングリコールとともにフラスコに仕込み、窒素置換下攪拌しながら液温 160°Cで 2. 5時間加熱し、 50gZlのリン化合物のエチレングリコール溶液を調製し た。
[0294] (アルミニウム化合物のエチレングリコール溶液/リン化合物のエチレングリコール溶 液の混合物の調製例 1)
上記アルミニウム化合物の調製例 1および上記リン化合物の調整例 1で得られたそれ ぞれのエチレングリコール溶液をフラスコに仕込み、アルミニウム原子とリン原子がモ ル比で 1: 2.4となるように室温で混合し、 1日間攪拌して触媒溶液を調製した。
[0295] (ポリエステルの重縮合) 攪拌機付き 2リツターステンレス製オートクレープに高純度テレフタル酸とその 2倍モ ル量のエチレングリコールを仕込み、トリェチルアミンを酸成分に対して 0. 3モル0 /0 加え、 0. 25MPaの加圧下 250°Cにて水を系外に留去しながらエステル化反応を行 V、エステル化率が約 95%のビス(2-ヒドロキシェチル)テレフタレートおよびオリゴマ 一の混合物(以下 BHET混合物と ヽぅ)を得た。この BHET混合物に重縮合触媒とし て、上記"アルミニウム化合物のエチレングリコール溶液/リン化合物のエチレングリコ ール溶液の混合物の調製例 1"の重合触媒を用い、ポリエステル中の酸成分に対し てアルミニウム原子およびリン原子としてそれぞれ 0. 015モル%ぉよび 0. 036モル %になるようにカ卩え、次いで、窒素雰囲気下、常圧にて 250°Cで 10分間攪拌した。そ の後、 60分間かけて 280°Cまで昇温しつつ反応系の圧力を徐々に下げて 13. 3Pa ( 0. ITorr)として、さらに 280°C、 13. 3Paで重縮合反応を実施した。放圧に続き、微 加圧下のレジンを冷水にストランド状に吐出して急冷し、その後 20秒間冷水中で保 持した後、力ティングして長さ約 3mm、直径約 2mmのシリンダー形状のペレットを得 た。アルミニウム化合物の水溶解性および赤外線吸収分析の吸光度比 T2、重合触 媒組成、重縮合反応に要した時間(重合時間)と得られたポリエステルの IVの評価結 果を表 7に示す。
溶融重合で得られたポリエステルペレットを、減圧乾燥(13. 3Pa以下、 80°C、 12 時間)した後、引き続き結晶化処理(13. 3Pa以下、 130°C、 3時間、さらに、 13. 3P a以下、 160°C、 3時間)を行った。放冷後のこのポリエステルペレツトレを固相重合反 応器内で、系内を 13. 3Pa以下、 215°Cに保ちながら固相重合を行い、 IVが 0. 78d lZgのポリエステルペレットを得た。固相重合を経て成形された中空成形体の透明性 および異物の評価結果を表 7に示す。
[表 7]
Figure imgf000087_0001
* 1 )見掛けの結晶化度を示す
[0297] 実施例 22〜24
実施例 21において、リン化合物を〔化 39〕から、表 1に示すように〔化 21〕、〔化 24〕、〔 ィ匕 25〕に変更する以外は、実施例 21と同様の操作を行った。アルミニウム化合物の 水溶解性および赤外線吸収分析の吸光度比 T2、重合触媒組成、重縮合反応に要 した時間(重合時間)と得られたポリエステルの IV、固相重合を経て成形された中空 成形体の透明性および異物の評価結果を表 7に示す。
[0298] (比較例 13)
実施例 21にお 、て、 Fluka社製の塩基性酢酸アルミニウムに替えてナカライ (株)製 試薬、塩基性酢酸アルミニウムにする以外は、実施例 21と同様に実施した。アルミ- ゥム化合物の水溶解性および赤外線吸収分析の吸光度比 T2、重合触媒組成、重 縮合反応に要した時間(重合時間)と得られたポリエステルの IV、固相重合を経て成 形された中空成形体の透明性および異物の評価結果を表 7に示す。
[0299] (比較例 14)
重縮合触媒として三酸化アンチモンのエチレングリコール溶液をポリエステル中の酸 成分に対してアンチモン原子として 0. 04モル%となるようにカ卩えたこと以外は実施例 21と同様の操作を行った。重合時間と得られたポリエステルの IVならびに固相重合 を経て成形された中空成形体の透明性および異物の評価結果を表 7に示す。
[0300] 実施例 25
(1)
重縮合触媒溶液の調製 (リンィ匕合物のエチレングリコール溶液の調製)
実施例 1と同様の方法で調整した。
(塩基性酢酸アルミニウムの調製)
市販の塩基性塩ィ匕アルミニウム水溶液 (AI O 換算濃度 23. 5質量%、塩素ィォ
2 3
ン 8. 15質量%、塩基度 83. 3%、 pH4. 0)を純水で希釈して Al O 換算濃度 5. 0
2 3
重量%の塩基性塩化アルミニウム水溶液を調製した。この水溶液を空間速度 5にて 酢酸型ァ-オン交換榭脂カラムに通液して塩基性酢酸アルミニウム水溶液を得た。 該塩基性酢酸アルミニウム水溶液に水溶液中のアルミニウム原子に対してィォゥ原 子の量で lOOOppmになるように硫酸アルミニウムを添加して、 50°Cで 30分間攪拌し た。得られた水溶液を常圧下、 140°Cで含水率 3質量%まで乾燥することにより塩基 性酢酸アルミニウム固形分を得た。得られた塩基性酢酸アルミニウムの中のアルミ- ゥム原子に対するィォゥ原子量は lOOOppmであった。
(塩基性酢酸アルミニウム水溶液の調製)
冷却管を備えたフラスコに、常温常圧下、純水 5. 0リットルをカ卩えた後、 200rpmで 攪拌しながら、上記方法で調製した塩基性酢酸アルミニウム 200gを純水とのスラリー として加えた。さらに全体として 10. 0リットルとなるよう純水を追カ卩して常温常圧で 12 時間攪拌した。その後、ジャケット温度の設定を 100. 5°Cに変更して昇温し、内温が 95°C以上になった時点から 3時間還流下で攪拌した。攪拌を止め、室温まで放冷し 水溶液を得た。
(アルミニウム化合物の水 Zエチレングリコール混合溶液の調製)
前記アルミニウム化合物の水溶液に対し、該水溶液 Zエチレングリコール =2Z3 ( 体積比)となるようにエチレングリコールを添加し十分に混合して、アルミニウム化合 物の水 Zエチレングリコール混合溶液を得た。
(ポリエステルの重縮合)
高純度テレフタル酸とその 2倍モル量のエチレングリコールから常法に従って製造し たビス(2—ヒドロキシェチル)テレフタレート及びオリゴマーの混合物に対し、重縮合 触媒として上記方法で調製した塩基性酢酸アルミニウムの水 Zエチレングリコール混 合溶液とリンィ匕合物のエチレングリコール溶液をそれぞれ別個の供給口より、ポリエ ステル中の酸成分に対してアルミニウム原子として 0. 021mol%およびリン原子とし て 0. 028mol%になるように加えて、窒素雰囲気下、常圧にて 245°Cで 15分間撹拌 した。次いで 55分間を要して 275°Cまで昇温しつつ反応系の圧力を徐々に下げて 6 6. 5Pa (0. 5Torr)としてさらに 275°C、 66. 5Paで 130分間重縮合反応を行った。 得られた PETの特性を表 8に示す。
[0302] [表 8]
Figure imgf000089_0001
[0303] 比較例 15
実施例 25の方法にぉ 、て、塩基性酢酸アルミニウムの調製時に硫酸アルミニウム を添加しないように変更する以外は、実施例 25と同様の方法で比較例 15の PETを 得た。得られた PETの特性を表 9に示す。
[0304] [表 9]
Figure imgf000089_0002
[0305] 比較例 16
実施例 25の方法にぉ 、て、塩基性酢酸アルミニウム調製時の硫酸アルミニウム添 加量塩基性酢酸アルミニウム中のアルミニウム原子に対してィォゥ原子量として 200 OOppmになるように変更する以外は、実施例 25と同様の方法で比較例 16の PETを 得た。得られた PETの特性を表 9に示す。単離した塩基性酢酸アルミニウムのアルミ ニゥム原子に対するィォゥ原子量は 19800ppmであった。
[0306] 実施例 26
実施例 25の方法にぉ 、て、塩基性酢酸アルミニウム調製時の硫酸アルミニウムの 添カ卩を硫酸に変更し、かつその添力卩量を塩基性酢酸アルミニウム中のアルミニウム 原子に対してィォゥ原子として 150ppmとなるように変更する以外は、実施例 25と同 様の方法で実施例 26の PETを得た。得られた PETの特性を表 8に示す。
[0307] 比較例 17
実施例 26の方法にぉ 、て、塩基性酢酸アルミニウム調製時の硫酸の添加量を塩 基性酢酸アルミニウム中のアルミニウム原子に対してィォゥ原子として 15000ppmと なるように変更する以外は、実施例 26と同様の方法で比較例 17の PETを得た。得ら れた PETの特性を表 9に示す。
[0308] 実施例 27
実施例 25の方法にぉ 、て、塩基性酢酸アルミニウム水溶液を調製する際に硫酸ァ ルミ-ゥムに替えて、硫酸をアルミニウム原子に対してィォゥ原子として 200ppmとな るように添加して 50°Cで 30分間攪拌をするように変更する以外は、実施例 25と同様 の方法で実施例 27の PETを得た。得られた PETの特性を表 7に示す。
[0309] 比較例 18
実施例 27の方法にぉ 、て、硫酸の添加量をアルミニウム原子に対してィォゥ原子 として 20000ppmになるように変更する以外は、実施例 27と同様の方法で比較例 1 8の PETを得た。得られた PETの特性を表 9に示す。
[0310] 実施例 28
実施例 27の方法において、硫酸を p—トルエンスルホン酸に替え、かつその添カロ 量をアルミニウム原子に対してィォゥ原子として 1500ppmになるように変更する以外 は、実施例 27と同様の方法で実施例 28の PETを得た。得られた PETの特性を表 7 に示す。
[0311] 実施例 29〜32および比較例 19〜22
実施例 25〜28および比較例 15〜 18で得られた PETを前記評価法で記載した方 法により一軸延伸フィルムを得た。得られた一軸延伸フィルムのヘイズ値を表 8およ び 9に示す。
[0312] 実施例 25〜28の PETの製造法は、重縮合触媒の活性が高ぐ重縮合過程での D EGの生成が低ぐかつ重縮合触媒起因の異物の生成が少なぐ経済性と品質が両 立している。比較例 13の PETは重縮合触媒起因の異物が多く品質が劣っている。 比較例 16〜18の PETは DEG含有量が多く品質が劣っている。また、実施例 25〜2 8で得られたポリエステルを用いて得た一軸延伸フィルムはヘイズが低く透明性の優 れたものであった。一方、比較例 15で得られた PETを用いて得た一軸延伸フィルム はヘイズが高く透明性の劣ったものであった。従って、実施例 25〜28で得られた PE Tは成型体としても高品質であった。
[0313] 実施例 33
(1)重縮合触媒溶液の調製
(リンィ匕合物のエチレングリコール溶液の調製)
実施例 1と同様の方法で調整した。
(塩基性酢酸アルミニウムの調製)
市販の塩基性塩ィ匕アルミニウム水溶液 (AI O 換算濃度 23. 5質量%、塩素ィォ
2 3
ン 8. 15質量%、塩基度 83. 3%、 pH4. 0)を純水で希釈して Al O 換算濃度 5. 0
2 3
重量%の塩基性塩化アルミニウム水溶液を調製した。この水溶液を空間速度 5にて 酢酸型ァ-オン交換榭脂カラムに通液して塩基性酢酸アルミニウム水溶液を得た。 該塩基性酢酸アルミニウム水溶液に水溶液中のアルミニウム原子に対してホウ素原 子の量で 1200ppmになるようにホウ酸アルミニウムを添カ卩した。得られた水溶液を常 圧下、 140°Cで含水率 3質量%まで乾燥することにより塩基性酢酸アルミニウム固形 分を得た。得られた塩基性酢酸アルミニウムの中のアルミニウム原子に対するホウ素 原子量は 1200ppmであつた。
(塩基性酢酸アルミニウム水溶液の調製)
冷却管を備えたフラスコに、常温常圧下、純水 5. 0リットルをカ卩えた後、 200rpmで 攪拌しながら、上記方法で調製した塩基性酢酸アルミニウム 200gを純水とのスラリー として加えた。さらに全体として 10. 0リットルとなるよう純水を追カ卩して常温常圧で 12 時間攪拌した。その後、ジャケット温度の設定を 100. 5°Cに変更して昇温し、内温が 95°C以上になった時点から 3時間還流下で攪拌した。攪拌を止め、室温まで放冷し 水溶液を得た。
(アルミニウム化合物の水 Zエチレングリコール混合溶液の調製)
前記アルミニウム化合物の水溶液に対し、該水溶液 Zエチレングリコール =2Z3 ( 体積比)となるようにエチレングリコールを添加し十分に混合して、アルミニウム化合 物の水 Zエチレングリコール混合溶液を得た。
[0314] (ポリエステルの重縮合)
高純度テレフタル酸とその 2倍モル量のエチレングリコールから常法に従って製造し たビス(2—ヒドロキシェチル)テレフタレート及びオリゴマーの混合物に対し、重縮合 触媒として上記方法で調製した塩基性酢酸アルミニウムの水 Zエチレングリコール混 合溶液とリンィ匕合物のエチレングリコール溶液をそれぞれ別個の供給口より、ポリエ ステル中の酸成分に対してアルミニウム原子として 0. 021mol%およびリン原子とし て 0. 028mol%になるように加えて、窒素雰囲気下、常圧にて 245°Cで 15分間撹拌 した。次いで 55分間を要して 275°Cまで昇温しつつ反応系の圧力を徐々に下げて 6 6. 5Pa (0. 5Torr)としてさらに 275°C、 66. 5Paで 130分間重縮合反応を行った。 得られた PETの特性を表 10に示す。
[0315] [表 10]
Figure imgf000092_0001
[0316] 比較例 23
実施例 33の方法にぉ 、て、塩基性酢酸アルミニウムの調製時にホウ酸アルミ-ゥ ムを添加しないように変更する以外は、実施例 33と同様の方法で比較例 23の PET を得た。得られた PETの特性を表 11に示す。
[0317] [表 11] 比較例 比較例 比較例 比較例
塩基性酢酸アルミニウム中のホウ素原子含有^
、対アルミニウム原子〕 (モル%)
色調( 値)
色調( 値〕
ボリエステルに不溶なアルミニウム系異物(
一軸延伸フィルムのヘイズ値(%)
[0318] 比較例 24
実施例 33の方法にぉ 、て、塩基性酢酸アルミニウム調製時のホウ酸アルミニウム 添加量塩基性酢酸アルミニウム中のアルミニウム原子に対してホウ素原子量として 2 OOOOppmになるように変更する以外は、実施例 33と同様の方法で比較例 24の PE Tを得た。得られた PETの特性を表 11に示す。単離した塩基性酢酸アルミニウムの アルミニウム原子に対するホウ素原子量は 19000ppmであった。
[0319] 実施例 34
実施例 33の方法にぉ 、て、塩基性酢酸アルミニウム調製時のホウ酸アルミニウム の添カ卩をホウ酸に変更し、かつその添力卩量を塩基性酢酸アルミニウム中のアルミ-ゥ ム原子に対してホウ素原子として 200ppmとなるように変更する以外は、実施例 33と 同様の方法で実施例 34の PETを得た。得られた PETの特性を表 10に示す。
[0320] 比較例 25
実施例 34の方法にぉ 、て、塩基性酢酸アルミニウム調製時のホウ酸の添加量を塩 基性酢酸アルミニウム中のアルミニウム原子に対してホウ素原子として 15000ppmと なるように変更する以外は、実施例 34と同様の方法で比較例 25の PETを得た。得ら れた PETの特性を表 11に示す。
[0321] 実施例 35
実施例 33の方法にぉ 、て、塩基性酢酸アルミニウム水溶液を調製する際にホウ酸 アルミニウムに替えてホウ酸をアルミニウム原子に対してホウ素原子として 250ppmと なるように添加するように変更する以外は、実施例 33と同様の方法で実施例 35の P ETを得た。得られた PETの特性を表 10に示す。
[0322] 比較例 26 実施例 35の方法にぉ 、て、ホウ酸の添加量をアルミニウム原子に対してホウ素原 子として 20000ppmになるように変更する以外は、実施例 35と同様の方法で比較例 26の PETを得た。得られた PETの特性を表 11に示す。
[0323] 実施例 32〜34および比較例 18〜21で得られた PETを前記評価法で記載した方 法により一軸延伸フィルムを得た。得られた一軸延伸フィルムのヘイズ値を表 10およ び 11に示す。
[0324] 実施例 36〜38および比較例 27〜30
実施例 33〜35の PETの製造法は、重縮合触媒の活性が高ぐ重縮合過程での D EGの生成が低ぐかつ重縮合触媒起因の異物の生成が少なぐ経済性と品質が両 立している。比較例 23の PETは重縮合触媒起因の異物が多く品質が劣っている。 比較例 24〜26の PETは DEG含有量が多く品質が劣って!/、る。
また、実施例 33〜35で得られたポリエステルを用いて得た一軸延伸フィルムはへ ィズが低く透明性の優れたものであった。一方、比較例 23で得られた PETを用いて 得た一軸延伸フィルムはヘイズが高く透明性の劣ったものであった。従って、実施例 33〜 35で得られた PETは成型体としても高品質であつた。
[0325] 実施例 39
(アルミニウム化合物の水溶液およびアルミニウム化合物の水 Zエチレングリコール 混合溶液の調製)
実施例 1と同様の方法で調製した。
(マグネシウム化合物およびナトリウム化合物溶液の調製)
それぞれ酢酸マグネシウム 4水塩および酢酸ナトリウムを 50gZlおよび lOgZlの濃 度でエチレングリコールに溶解し、溶液化した。
[0326] (ポリエステルの重縮合)
高純度テレフタル酸とその 2倍モル量のエチレングリコールから常法に従って製造し たビス(2—ヒドロキシェチル)テレフタレート及びオリゴマーの混合物に対し、重縮合 触媒として上記塩基性酢酸アルミニウムの水 Zエチレングリコール混合溶液、マグネ シゥム化合物溶液およびナトリウム化合物溶液をポリエステル中の酸成分に対してそ れぞれの元素量として 0. 035モノレ0 /0、 0. 048モノレ0 /0および 0. 014モノレ0 /0になるよう を添加し、窒素雰囲気下、常圧にて 245°Cで 15分間撹拌した。次いで 55分間を要 して 275°Cまで昇温しつつ反応系の圧力を徐々に下げて 66. 5Pa (0. 5Torr)として さらに 275°C、 66. 5Paで 60分間重縮合反応を行った。得られた PETの特性を表 1 2に示す。
[0327] 比較例 31
比較例 1で用いたアルミニウム化合物の水 Zエチレングリコール混合溶液を用いる 以外は、実施例 39と同様の方法で比較例 31の PETを得た。得られた PETの特性を 表 12に示す。
また、実施例 39および比較例 31で得られた PETを前記評価法で記載した方法に より一軸延伸フィルムを得た。得られた一軸延伸フィルムのヘイズ値を表 12に示す。 実施例 39で得られたポリエステルを用いて得た一軸延伸フィルムはヘイズが低く 透明性の優れたものであった。一方、比較例 31で得られた PETを用いて得た一軸 延伸フィルムはヘイズが高く透明性の劣ったものであった。従って、実施例 39で得ら れた PETは成型体としても高品質であった。
[0328] [表 12]
Figure imgf000095_0001
[0329] 実施例 40〜55
(アルミニウム化合物の水溶液およびアルミニウム化合物の水 Zエチレングリコール 混合溶液の調製)
各実施例で用いたものを利用した。
(マグネシウム化合物およびナトリウム化合物溶液の調製)
酢酸カリウムおよび酢酸リチウムをそれぞれ lOgZlの濃度でエチレングリコールに 溶解し、溶液化した。なお、マグネシウム化合物およびナトリウム化合物溶液は実施 例 35のものを用いた。
[0330] (ポリエステルの重縮合) 高純度テレフタル酸とその 2倍モル量のエチレングリコールから常法に従って製造 したビス(2—ヒドロキシェチル)テレフタレート及びオリゴマーの混合物に対し、重縮 合触媒として各種金属溶液をポリエステル中の酸成分に対してそれぞれ表 13に示し た量を添加し、窒素雰囲気下、常圧にて 245°Cで 15分間撹拌した。次いで 55分間 を要して 275°Cまで昇温しつつ反応系の圧力を徐々に下げて 66. 5Pa (0. 5Torr) としてさらに 275°C、 66. 5Paで 60分間重縮合反応を行った。得られた PETの特性 を表 13に示す。
[0331] [表 13]
Figure imgf000096_0001
[0332] 本発明を採用することにより、アンチモン、ゲルマニウムおよびチタン系以外の金属 成分を触媒の主たる金属成分とする重縮合触媒で色調、透明性や熱安定性を維持 し、かつ重縮合速度が速ぐさらに重縮合触媒起因の異物生成が少なぐ超微細繊 維、光学用の高透明なフィルムあるいは超高透明な成型体等の分野においてその 特徴を発揮することができる品質と経済性を両立させたポリエステルおよびポリエステ ル成形体を得ることができる。

Claims

請求の範囲
[1] アルミニウム化合物を含むポリエステル重縮合触媒の存在下にポリエステルを製造 する方法にぉ 、て、アルミニウム化合物としてアルミニウム化合物をアルミニウム元素 量で 2. 7gZlの濃度になるように純水に溶解して得たアルミニウム化合物の水溶液 をセル長 lcm、 680nmの波長で測定した吸光度が 0. 0132以下であるアルミニウム 化合物を用いることを特徴とするポリエステルの製造方法。
[2] アルミニウム化合物を含むポリエステル重縮合触媒の存在下にポリエステルを製造 する方法において、アルミニウム化合物としてアルミニウム化合物 30gを純水 1500m 1に溶解した時の水に対する不溶分量が lOOOppm以下であるアルミニウム化合物を 用いることを特徴とするポリエステルの製造方法。
[3] アルミニウム化合物を含むポリエステル重縮合触媒の存在下にポリエステルを製造 する方法において、アルミニウム化合物として、含水率が 8質量%以上の水溶性アル ミニゥム化合物を用いることを特徴とするポリエステルの製造方法。
[4] アルミニウム化合物を含むポリエステル重縮合触媒の存在下にポリエステルを製造 する方法において、アルミニウム化合物として、 X線回折分析において 2 Θ (回折角 度)が 14. 0±0. 1度に極大値をもつ回折ピークを有し、その半値幅が 0. 60以上で あるアルミニウム化合物を用いることを特徴とするポリエステルの製造方法。
[5] アルミニウム化合物を含むポリエステル重縮合触媒の存在下にポリエステルを製造 する方法において、アルミニウム化合物として、下記赤外線吸収特性を有するアルミ -ゥム化合物を用いることを特徴とするポリエステルの製造方法。
3700± 10cm_1に吸収極大を持つ吸収の吸光度 Bと 1029± 10cm_1に吸収極大 を持つ吸収の吸光度 Aの吸光度比 Tl ( = BZA)が 1. 8以下。
[6] アルミニウム化合物を含むポリエステル重縮合触媒の存在下にポリエステルを製造 する方法において、アルミニウム化合物として、下記赤外線吸収特性を有するアルミ -ゥム化合物を用いることを特徴とするポリエステルの製造方法。
1062± 10cm_1に吸収極大を持つ吸収の吸光度 Cと 1029± 10cm_1に吸収極 大を持つ吸収の吸光度 Aの吸光度比 T2 ( = CZA)が 1. 0以下。
[7] アルミニウム化合物を含むポリエステル重縮合触媒の存在下にポリエステルを製造 する方法において、アルミニウム化合物として、アルミニウム原子に対してィォゥ原子 を 25〜: LOOOOppm含有するアルミニウム化合物を用いることを特徴とするポリエステ ルの製造方法。
[8] アルミニウム化合物を含むポリエステル重縮合触媒の存在下にポリエステルを製造 する方法において、アルミニウム化合物として、アルミニウム原子に対してホウ素原子 を 25〜: LOOOOppm含有するアルミニウム化合物を用いることを特徴とするポリエステ ルの製造方法。
[9] アルミニウム化合物が塩基性酢酸アルミニウムであることを特徴とする請求項 1〜9の
V、ずれかに記載のポリエステルの製造方法。
[10] 少なくとも一種のリンィ匕合物を併用することを特徴とする請求項 1〜9のいずれかに記 載のポリエステルの製造方法。
[11] 請求項 1〜: L0のいずれかに記載の製造方法にて製造されたポリエステル。
[12] 請求項 11に記載のポリエステル力 なる中空成型体。
[13] 請求項 11に記載のポリエステル力もなる繊維。
[14] 請求項 11に記載のポリエステルからなるフィルム。
PCT/JP2005/011591 2005-06-24 2005-06-24 ポリエステルの製造方法およびこれを用いて製造されたポリエステル並びにポリエステル成形体 WO2006137145A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US11/795,556 US7868126B2 (en) 2005-06-24 2005-06-24 Process for producing polyester, polyester produced using said process, and polyester molded product
EP05753399A EP1842868B1 (en) 2005-06-24 2005-06-24 Process for producing polyester, polyester produced using said process, and polyester molded product
KR1020077029260A KR101018219B1 (ko) 2005-06-24 2005-06-24 폴리에스테르의 제조방법 및 이를 이용하여 제조된폴리에스테르 및 폴리에스테르 성형체
AT05753399T ATE487752T1 (de) 2005-06-24 2005-06-24 Verfahren zur herstellung von polyester, unter verwendung des verfahrens hergestellter polyester und polyester-formprodukt
CN2005800502613A CN101208371B (zh) 2005-06-24 2005-06-24 聚酯的制造方法以及使用该方法制造的聚酯以及聚酯成形体
PCT/JP2005/011591 WO2006137145A1 (ja) 2005-06-24 2005-06-24 ポリエステルの製造方法およびこれを用いて製造されたポリエステル並びにポリエステル成形体
DE200560024716 DE602005024716D1 (de) 2005-06-24 2005-06-24 Verfahren zur herstellung von polyester, unter verwendung des verfahrens hergestellter polyester und polyester-formprodukt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/011591 WO2006137145A1 (ja) 2005-06-24 2005-06-24 ポリエステルの製造方法およびこれを用いて製造されたポリエステル並びにポリエステル成形体

Publications (1)

Publication Number Publication Date
WO2006137145A1 true WO2006137145A1 (ja) 2006-12-28

Family

ID=37570198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/011591 WO2006137145A1 (ja) 2005-06-24 2005-06-24 ポリエステルの製造方法およびこれを用いて製造されたポリエステル並びにポリエステル成形体

Country Status (7)

Country Link
US (1) US7868126B2 (ja)
EP (1) EP1842868B1 (ja)
KR (1) KR101018219B1 (ja)
CN (1) CN101208371B (ja)
AT (1) ATE487752T1 (ja)
DE (1) DE602005024716D1 (ja)
WO (1) WO2006137145A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054090A1 (en) * 2008-03-13 2011-03-03 Masato Fujita Polyester film
CN102329480A (zh) * 2011-06-20 2012-01-25 江苏鹰翔化纤股份有限公司 1、4-丁二醇改性涤纶切片的制备方法
JP2013185279A (ja) * 2012-03-08 2013-09-19 Toray Ind Inc 吸放湿性ポリエステル繊維およびその製造方法
US8937148B2 (en) 2012-09-07 2015-01-20 Empire Technology Development LLP Regioregular copolymers and methods for making same
WO2021125137A1 (ja) * 2019-12-18 2021-06-24 東洋紡株式会社 ポリエステル樹脂およびポリエステル樹脂の製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090246430A1 (en) * 2008-03-28 2009-10-01 The Coca-Cola Company Bio-based polyethylene terephthalate polymer and method of making same
US8946472B2 (en) 2008-12-31 2015-02-03 Sabic Innovative Plastics Ip B.V. Bio-based terephthalate polyesters
US8415496B2 (en) 2009-06-16 2013-04-09 Amyris, Inc. Biobased polyesters
WO2010148080A2 (en) 2009-06-16 2010-12-23 Draths Corporation Cyclohexane 1,4 carboxylates
JP2012530144A (ja) 2009-06-16 2012-11-29 アミリス, インコーポレイテッド シクロヘキセン1,4−カルボキシレート
US8337942B2 (en) 2009-08-28 2012-12-25 Minsek David W Light induced plating of metals on silicon photovoltaic cells
US20120263401A1 (en) * 2009-12-24 2012-10-18 Hyosung Corporation Polyethylene terephthalate fiber for air-bags and textiles made from same
MX2012014677A (es) * 2010-06-24 2013-02-11 Hyosung Corp Tela para bolsa de aire, que usa una fibra de tereftalato de polietileno con excelente resistencia termica.
CN102329481A (zh) * 2011-06-20 2012-01-25 江苏鹰翔化纤股份有限公司 1、2-丁二醇改性涤纶切片的制备方法
JP2015514842A (ja) * 2012-04-17 2015-05-21 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se 表面後架橋された吸水性ポリマー粒子の製造法
CN108885368A (zh) * 2016-03-31 2018-11-23 东洋纺株式会社 液晶显示装置
KR101921388B1 (ko) * 2016-12-29 2018-11-22 효성티앤씨 주식회사 상압에서 가염이 가능한 폴리에스테르 중합물의 제조방법 및 이에 의해 제조된 폴리에스테르 원사
CN113583220B (zh) * 2020-04-30 2023-05-02 中国石油化工股份有限公司 一种环保型聚酯缩聚催化剂及其制备方法与应用
CN115873224A (zh) * 2021-09-29 2023-03-31 中国石油化工股份有限公司 一种用于聚酯的催化剂组合物、耐水解聚酯薄膜及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002057335A1 (fr) * 2001-01-18 2002-07-25 Toyo Boseki Kabushiki Kaisha Catalyseur de polymerisation de polyester, polyester et procede de fabrication de celui-ci
EP1227117A1 (en) * 1999-08-24 2002-07-31 Toyo Boseki Kabushiki Kaisha Polymerization catalysts for polyesters, polyesters produced with the same and process for production of polyesters
JP2002220446A (ja) * 2000-11-21 2002-08-09 Toyobo Co Ltd ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4660903B2 (ja) 1999-09-30 2011-03-30 東洋紡績株式会社 ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP3506236B2 (ja) 1999-08-24 2004-03-15 東洋紡績株式会社 ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
AU7448800A (en) 1999-09-29 2001-04-30 Toyo Boseki Kabushiki Kaisha Polymerization catalyst for polyester, polyester produced with the same, and process for producing polyester
WO2001023456A1 (fr) 1999-09-30 2001-04-05 Toyo Boseki Kabushiki Kaisha Catalyseur de polymerisation pour polyester, polyester produit a l'aide dudit catalyseur et procede de production dudit polyester
MXPA03002116A (es) * 2000-09-12 2003-06-19 Toyo Boseki Poliester, metodo para producirlo y catalizador para la polimerizacion del mismo.
JP2003171454A (ja) 2001-01-18 2003-06-20 Toyobo Co Ltd ポリエステルおよびその製造方法
JP2003082083A (ja) 2001-09-17 2003-03-19 Toyobo Co Ltd ポリエステル重合触媒およびその製造方法
JP4275893B2 (ja) 2001-02-20 2009-06-10 東洋紡績株式会社 ポリエステル及びその製造方法
JP2002322253A (ja) 2001-02-20 2002-11-08 Toyobo Co Ltd ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP2002322252A (ja) 2001-02-21 2002-11-08 Toyobo Co Ltd ポリエステルおよびその製造方法
JP2003171452A (ja) 2001-02-22 2003-06-20 Toyobo Co Ltd ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
CN1328300C (zh) 2001-02-23 2007-07-25 东洋纺织株式会社 聚酯聚合催化剂、利用其制得的聚酯和聚酯的制造方法
JP4415239B2 (ja) 2001-03-07 2010-02-17 東洋紡績株式会社 ポリエステルおよびその製造方法
JP2002363274A (ja) 2001-04-03 2002-12-18 Toyobo Co Ltd ポリエステルおよびその製造方法
JP2003163964A (ja) 2001-11-26 2003-06-06 Oki Electric Ind Co Ltd マルチメディア双方向無線通信の方法及びマルチメディア通信システム並びにプログラム
JP4552107B2 (ja) * 2003-10-02 2010-09-29 東洋紡績株式会社 ポリエステルならびにポリエステルの製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1227117A1 (en) * 1999-08-24 2002-07-31 Toyo Boseki Kabushiki Kaisha Polymerization catalysts for polyesters, polyesters produced with the same and process for production of polyesters
JP2002220446A (ja) * 2000-11-21 2002-08-09 Toyobo Co Ltd ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
WO2002057335A1 (fr) * 2001-01-18 2002-07-25 Toyo Boseki Kabushiki Kaisha Catalyseur de polymerisation de polyester, polyester et procede de fabrication de celui-ci

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110054090A1 (en) * 2008-03-13 2011-03-03 Masato Fujita Polyester film
CN102329480A (zh) * 2011-06-20 2012-01-25 江苏鹰翔化纤股份有限公司 1、4-丁二醇改性涤纶切片的制备方法
JP2013185279A (ja) * 2012-03-08 2013-09-19 Toray Ind Inc 吸放湿性ポリエステル繊維およびその製造方法
US8937148B2 (en) 2012-09-07 2015-01-20 Empire Technology Development LLP Regioregular copolymers and methods for making same
US9181287B2 (en) 2012-09-07 2015-11-10 Empire Technology Development Llc Regioregular copolymers and methods for making same
WO2021125137A1 (ja) * 2019-12-18 2021-06-24 東洋紡株式会社 ポリエステル樹脂およびポリエステル樹脂の製造方法

Also Published As

Publication number Publication date
KR20080015449A (ko) 2008-02-19
CN101208371B (zh) 2011-08-10
EP1842868A1 (en) 2007-10-10
KR101018219B1 (ko) 2011-02-28
CN101208371A (zh) 2008-06-25
EP1842868B1 (en) 2010-11-10
DE602005024716D1 (de) 2010-12-23
EP1842868A4 (en) 2008-12-24
US7868126B2 (en) 2011-01-11
US20080249280A1 (en) 2008-10-09
ATE487752T1 (de) 2010-11-15

Similar Documents

Publication Publication Date Title
WO2006137145A1 (ja) ポリエステルの製造方法およびこれを用いて製造されたポリエステル並びにポリエステル成形体
JPWO2007032325A1 (ja) ポリエステルおよびポリエステルの製造方法、ならびにポリエステル成形体
JP2008030370A (ja) 積層ポリエステルフィルム
JP2006282801A (ja) ポリエステルフィルム製造方法
JP2006282800A (ja) ポリエステルフィルム
JP2008266359A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP2005187560A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187561A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187556A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187559A (ja) ポリエステルならびにポリエステルの製造方法
JP2005187557A (ja) ポリエステルならびにポリエステルの製造方法
JP2006282799A (ja) ポリエステル及びポリエスル成形体
JP5181409B2 (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2008266360A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP4670338B2 (ja) ポリエステルならびにポリエステルの製造方法
JP2003268095A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステルならびにポリエステルの製造方法
JP4670337B2 (ja) ポリエステルならびにポリエステルの製造方法
JP4617802B2 (ja) ポリエステル重縮合触媒およびこれを用いて製造されたポリエステル並びにそれらの製造方法
JP2006096789A (ja) ポリエステルの製造方法
JP4524572B2 (ja) ポリエステルならびにポリエステルの製造方法
JP2007056101A (ja) ポリエステル、ポリエスル成形体およびポリエステル製造方法
JP2006096790A (ja) ポリエステルの製造方法
JP2006290909A (ja) ポリエステル製造方法、ポリエステルおよびポリエステル成型体
JP2006225585A (ja) ポリエステル重合触媒およびこれを用いて製造されたポリエステル並びにポリエステルの製造方法
JP2006096791A (ja) ポリエステルならびにポリエステルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005753399

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005753399

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077029260

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 5934/CHENP/2007

Country of ref document: IN

Ref document number: 200580050261.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 11795556

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP