WO2006134855A1 - フォトマスク用大型ガラス基板及びその製造方法、コンピュータ読み取り可能な記録媒体、並びにマザーガラスの露光方法 - Google Patents

フォトマスク用大型ガラス基板及びその製造方法、コンピュータ読み取り可能な記録媒体、並びにマザーガラスの露光方法 Download PDF

Info

Publication number
WO2006134855A1
WO2006134855A1 PCT/JP2006/311723 JP2006311723W WO2006134855A1 WO 2006134855 A1 WO2006134855 A1 WO 2006134855A1 JP 2006311723 W JP2006311723 W JP 2006311723W WO 2006134855 A1 WO2006134855 A1 WO 2006134855A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
photomask
glass substrate
flatness
amount
Prior art date
Application number
PCT/JP2006/311723
Other languages
English (en)
French (fr)
Inventor
Shuhei Ueda
Yukio Shibano
Atsushi Watabe
Daisuke Kusabiraki
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Priority to US11/587,902 priority Critical patent/US7608542B2/en
Priority to EP06766585A priority patent/EP1829836B1/en
Priority to CN2006800002176A priority patent/CN101006021B/zh
Publication of WO2006134855A1 publication Critical patent/WO2006134855A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70791Large workpieces, e.g. glass substrates for flat panel displays or solar panels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C19/00Surface treatment of glass, not in the form of fibres or filaments, by mechanical means
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/60Substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133302Rigid substrates, e.g. inorganic substrates

Definitions

  • the present invention relates to a photomask substrate on the array side of a TFT liquid crystal panel, a large glass substrate for a photomask used as a photomask substrate for a color filter, a manufacturing method thereof, and a computer-readable recording program for executing the method Related to various recording media.
  • the present invention also relates to an exposure method for a mother glass for an array side or color filter side substrate of a TFT liquid crystal panel.
  • a TFT liquid crystal panel is an active type in which liquid crystal is sealed between an array-side substrate on which TFT elements are incorporated and a substrate equipped with a color filter, and the voltage is controlled by the TFT to control the alignment of the liquid crystal. The method is taken.
  • the array side At the time of manufacturing the array side, a method is employed in which a master plate on which a circuit called a large photomask is written is baked on a non-alkali mother glass by light exposure.
  • the color filter side is also manufactured by a method using lithography called the dye impregnation method.
  • Large-scale photomasks are required for manufacturing both the array side and the color filter side, and synthetic quartz glass with a low linear expansion coefficient is mainly used as the material for these large-scale photomasks in order to perform accurate exposure. Yes.
  • liquid crystal panels have advanced from VGA to SVGA, XGA, SXGA, UXGA, and QXGA, and it is said that a resolution of 100ppi (picel per inch) to 200ppi is required.
  • the exposure range has become larger, and accordingly, the exposure accuracy on the TFT array side, particularly the required overlay accuracy, has become stricter.
  • a large photomask substrate having a high flatness in a state where it is supported on the substrate is desirable.
  • the present invention has been made in view of the above circumstances, and uses a large glass substrate for a photomask that has a high flatness during horizontal holding, which is actually used in an exposure apparatus, a manufacturing method thereof, and a program thereof.
  • the object is to provide a recorded computer-readable recording medium.
  • Another object of the present invention is to provide a method for exposing a mother glass for a TFT liquid crystal panel array side substrate or a color filter side substrate.
  • the inventors of the present invention have used a large-sized glass substrate obtained by a method described later as a photomask substrate formed by using this exposure apparatus.
  • a photomask substrate formed by using this exposure apparatus.
  • horizontal support it was found that high flatness was achieved, and the variation in proximity gap with the mother glass on the TFT liquid crystal array array side or color filter side substrate was significantly reduced.
  • the photomask substrate when the photomask substrate is horizontally supported by the exposure apparatus, as a substrate chucking method, a method of sucking the upper surface edge of the substrate (supporting four sides or two sides), or a method of fixing the lower surface edge of the substrate.
  • a substrate chucking method a method of sucking the upper surface edge of the substrate (supporting four sides or two sides), or a method of fixing the lower surface edge of the substrate.
  • a method using a glass substrate for forming the photomask substrate that is flat when vertically held is such that the photomask substrate or the glass substrate has a diagonal length of 500 mm or more, particularly 800 mm or more, especially When the size was increased to 1,800 mm or more, it did not function effectively.
  • a method of counting the number of interference fringes obtained by the optical interference method and a method of scanning a laser displacement meter close to the front and back surfaces of the substrate there are known a method of counting the number of interference fringes obtained by the optical interference method and a method of scanning a laser displacement meter close to the front and back surfaces of the substrate.
  • the method of holding the substrate at the time of measurement is conventionally vertical holding, but it is generally held horizontally when actually used.
  • the substrate is held vertically when measuring the flatness and parallelism of the front and back surfaces is that it is difficult to measure the accuracy when the substrate is level and the substrate is deformed by its own weight. This is because there are various methods for horizontally holding the substrate in the exposure apparatus used, and it is difficult to measure the flatness under the same conditions as in actual use.
  • the amount of stagnation of the substrate is inversely proportional to the cube of the thickness of the substrate, the size of the substrate has been increased in an increasing direction and the thickness of the substrate has been increased.
  • the flatness of the substrate which is normally measured with the substrate held vertically, is several tens / zm or less, when exposed to light, it may be greatly deformed by several tens or hundreds of meters due to its own weight. If the substrate holding method at the time of exposure where the substrate is used is the same as the holding method when measuring the accuracy such as the flatness and parallelism of the front and back surfaces of the substrate, there is no such problem. However, the method of measuring the front and back flatness and parallelism of the substrate with high accuracy has not been developed. You have to rely on the measurement method in However, this measurement method has a large difference from the flatness when a large photomask substrate is supported by an exposure apparatus.
  • the surface of the substrate is the side facing the mother glass (the lower surface) during exposure.
  • the surface flatness is the flatness of this surface, and the back surface is described as the upper surface during exposure.
  • the present inventors have found that the large glass substrate material has a flatness and parallelism on both sides, and the large glass substrate material is held vertically.
  • the amount of flattening removal (1) based on the flatness and parallelism height data obtained in the vertical holding state.
  • the amount to be removed in consideration of the substrate deformation caused by the substrate support that occurs when the photomask substrate is supported by the exposure apparatus (3), calculated from the accuracy distortion of the surface plate that supports the exposed mother glass.
  • the amount of (5) to be removed in consideration of the change in flatness in this polishing in advance (1) to (4) or (1) to (5) is finally necessary. It is effective to calculate the amount of surface flattening processing and deformation correction processing and the removal part to be removed, move the processing tool or substrate material in the surface direction of the substrate material, and remove both sides of the substrate material respectively. in this way, it is possible that the flatness Z diagonal length when held horizontally 4.
  • X 10- 5 or less is a diagonal length of 500mm or more, to obtain particular 1, OOOmm or more large-size glass substrates, which Therefore, when a photomask substrate formed from this large glass substrate is supported by an exposure apparatus, variation in the proximity gap with the mother glass for the TFT liquid crystal panel array side or color filter side substrate is reduced. There is no need for correction on the exposure apparatus side as described above. It becomes, or the correction is reduced, is readily obtained by finding that could eliminate the variation of the proximity gap.
  • the flatness of the substrate is the maximum value (absolute value) and the minimum value of the distance between the reference surface and the measured surface when the least square plane of the measured surface is used as the reference surface. It is the sum of (absolute value) and is expressed as the sum of a and b in Fig. 1.
  • This flatness is generally called TIR (Total Indieator Reading).
  • the parallelism of the substrate is the difference between the maximum value and the minimum value of the distance from the back surface to the front surface of the substrate, and is represented by c in FIG. This parallelism is generally called TT V (Total Thichness Variation).
  • 1 is substrate
  • 11 is measured Constant surface
  • 12 is a least-squares plane
  • FIG. 2 1 is a substrate
  • 13 is a substrate surface
  • 14 is a back surface of the substrate.
  • the present invention provides the following large-sized glass substrate for a photomask, a method for producing the same, a method for exposing a mother glass, and a computer-readable recording medium.
  • a mother glass for the array side of the TFT liquid crystal panel or the color filter side substrate is placed underneath the photomask substrate that is supported on the exposure apparatus by supporting both side edges facing each other.
  • a method of manufacturing a large glass substrate for forming the photomask substrate used in a method of irradiating light from an apparatus through the photomask substrate to the mother glass and exposing the mother glass, and having a diagonal Long
  • the surface facing the mother glass when the substrate is held vertically has a concave arc shape, and this large glass substrate cover
  • the photomask substrate that is formed is held horizontally when the opposite side edges of the photomask substrate that are opposed to each other are supported by the exposure apparatus, and the photomask formed by the mother glass and the large glass substrate is formed.
  • a method for producing a large glass substrate for a photomask comprising obtaining a large glass substrate that reduces variations in proximity gap with the mask substrate.
  • the substrate material After the flatness and deformation correction processing of the substrate material, it has a post-process that further performs double-side polishing or single-side polishing, and the removal amount is the amount obtained by adding the amount of change in flatness due to the polishing in the post-process to the processing removal amount.
  • a mother glass for the array side of the TFT liquid crystal panel or the color filter side substrate is placed underneath the photomask substrate that is supported on the exposure apparatus by supporting both side edges facing each other.
  • the removal amount of the flattening process based on the data of the flatness and parallelism of the front and back surfaces of the substrate material obtained by vertically holding a large glass substrate material having a thickness of 4 mm or more, and the above substrate material
  • the amount of self-weight sag calculated from the plate thickness and size and the support position when the photomask substrate obtained from the substrate material is horizontally supported
  • the large glass substrate for a photomask according to claim 7 or 8 which has a diagonal length of 1800 to 2150 mm and a thickness of 9 to 16 mm.
  • a mother glass for the array side of the TFT liquid crystal panel or the color filter side substrate is placed underneath the photomask substrate that is supported on the exposure apparatus by supporting both side edges facing each other.
  • the photomask substrate has a diagonal length of 500 mm or more and a thickness of 4 mm or more. Glass substrate Flatness of the front and back surfaces of the substrate material obtained in a state where the material is held vertically and the height of parallelism based on the data.
  • the large-size glass substrate, the surface flatness Z diagonal length exposure method motherboard first glass of the is claim 13, wherein those having a surface flatness of 8 X 10- 5 hereinafter 4. when held horizontally.
  • a mother glass for the array side of the TFT liquid crystal panel or the color filter side substrate is placed underneath the photomask substrate that is supported on the exposure apparatus by supporting both side edges facing each other. Light from the apparatus is irradiated to the mother glass through the photomask substrate, and the photomask substrate used in the method of exposing the mother glass is formed with a photomask substrate having a diagonal length of 500 mm or more and a thickness of 4 mm or more.
  • the flattening removal amount includes the thickness and size of the substrate material, the supporting position force when the photomask substrate obtained from the substrate material is horizontally supported,
  • the deformation correction removal amount is calculated from the amount of substrate deformation caused by the support of the photomask substrate that occurs when the photomask substrate is supported by the exposure apparatus and the accuracy distortion of the surface plate that supports the exposed mother glass.
  • a computer-readable recording medium on which a program for causing a computer to execute is recorded.
  • a photomask substrate formed from the large glass substrate of the present invention for exposure, exposure accuracy, particularly overlay accuracy and resolution are improved, and high-definition large panel exposure is also possible. This reduces the burden of exposure correction and improves the panel yield.
  • a so-called proximity type exposure apparatus which has a conventional force that cannot be used on the color filter side, can be used on the TFT array side, which was conventionally supported by a projection exposure apparatus.
  • the color filter side is not limited to R, G, and B, and there is a possibility that a proximity type exposure apparatus can be used for black matrix and photospacers.
  • the proximity gap can be made uniform and uniform, so that the proximity gap can be easily controlled. It can be carried out. As a result, it is possible to increase the number of exposure productions, and it is possible to efficiently expose a large glass substrate.
  • FIG. 1 is a conceptual diagram of a cross section of a substrate for explaining flatness.
  • FIG. 2 is a conceptual diagram of a substrate cross section for explaining parallelism.
  • FIG. 3 is a perspective view showing an outline of a processing apparatus.
  • FIG. 4 is a perspective view showing a movement mode in the processing tool.
  • the method for producing a large glass substrate for a photomask of the present invention is used for an array side substrate of a TFT liquid crystal panel or a color filter side substrate, and has a diagonal length of 500 mm or more and a thickness of 4 mm or more. It is a method of manufacturing a thing.
  • the thickness and size of the substrate material when held horizontally and the photomass formed from the substrate material cover (3) The amount of substrate deformation due to the photomask substrate support that occurs when the photomask substrate is supported by the exposure device. (4) It is necessary to process the substrate material in consideration of the amount of precision distortion of the surface plate that supports the exposed mother glass, and (5) the amount of change due to polishing after processing. Become .
  • the measurement of the substrate shape is preferably in a zero-gravity state, but even when measured in a vertical state, the substrate's own weight deformation amount in the vertical state is minute and negligible for the accuracy of the substrate manufactured here.
  • the size of the substrate material means the length in the vertical and horizontal directions when the shape of the substrate material is square or rectangular, and the diameter when the substrate material is circular.
  • the flatness and parallelism of both surfaces of the large glass substrate material are maintained in a state where the large glass substrate material is held vertically (in a horizontal state).
  • the amount to be removed by the flattening process based on the flatness and parallelism height data obtained in the vertical holding state ([1)] The amount to be removed by taking into account the amount of self-weight stagnation calculated from the support position when the photomask substrate material obtained from the substrate material is supported on the exposure apparatus [(2 )], The amount to be removed in consideration of the amount of substrate deformation caused by the substrate support generated when the substrate is supported by the exposure apparatus [(3)], to support the exposed mother glass
  • deformation correction machining the total machining removal amount of (2), (3), and (4) is referred to as deformation correction machining removal amount.
  • the flatness and the parallelism can be measured by using a flatness tester (FTT-1500) manufactured by Kuroda Seiko Co., Ltd. while holding it vertically, in order to eliminate its own weight deformation of the large glass substrate material (plate material).
  • the surface of a large glass substrate material (plate material) to be flattened that is, the flatness of both surfaces is measured.
  • the parallelism of large glass substrate materials measure the flatness and parallelism of both sides. Specifically, first, data on the flatness and parallelism of the front and back surfaces obtained in the vertical holding state (direction perpendicular to the front and back surfaces of the substrate) is acquired, and based on this data, flattening is performed! Using the least square plane calculated on the surface to be machined as the reference surface, calculate the machining removal amount so that the height matches the lowest point in the surface to be flattened.
  • the plate material used as a raw material is first subjected to mirror finishing with a double-side polishing apparatus or a single-side polishing apparatus so that the flatness and Z or parallelism are adjusted as much as possible.
  • a computer recording a program for issuing a command to the apparatus and causing the computer to execute a flattening car and a deformation correction force to be described later by removing the amount based on the above steps Simulation can be performed with a readable recording medium.
  • the amount of self-weight stagnation of the substrate material is calculated to be obtained by the flattening process, and the thickness and size of the substrate material and the photo obtained from the substrate material cover are calculated using the predicted surface as a reference surface.
  • the photomask substrate is deformed when it is chucked in the exposure apparatus, but the amount of change also depends on the area and shape of the chucked portion, the surface accuracy of the chuck plate, and the two-side support and four-side support. Different. It is possible to simulate the state of V and deviation based on the finite element method, but the amount of change obtained here is measured by measuring the amount of change when the sample glass substrate material is actually supported by the exposure apparatus. It is preferable to find the amount of processing in the glass substrate material that should be processed to meet
  • the so-called proximity gap is the processing accuracy of the exposure platen itself, assembly accuracy of the platen, exposure
  • the flatness of the surface plate that is, the accuracy of the surface plate is also affected by the temperature deformation of the time, so the deformation correction removal amount is determined in consideration of these factors.
  • the sample glass substrate material is actually supported by the exposure apparatus, and the proximity gap variation when the sample mother glass is placed on the surface plate is measured and matched to the measured value obtained here. It is preferable to calculate the amount of processing in the glass substrate material to be processed.
  • the difference in the proximity gap variation force which is obtained by subtracting the amount of processing considering the flattening force and the amount of weight sag, corresponds to the amount of processing based on substrate deformation and surface plate accuracy distortion.
  • the proximity gap can be measured by using a downward force laser displacement meter.
  • the double-sided polishing or single-sided polishing in the subsequent process is performed to improve the finally required surface quality, for example, the surface roughness, and to make the surface free from fine defects. Therefore, in view of the required surface quality, if the finish polishing in the post-process is not necessary or if the change in flatness due to the post-process polishing is negligible, the change in flatness in the polishing is predicted. Therefore, it is possible to omit the amount (5) to be removed in consideration.
  • the final polishing can be performed by a conventional method using a double-side polishing or a single-side polishing apparatus or the like in which a soft polishing cloth or the like is attached to the surface or both sides of the substrate material using an abrasive such as cerium oxide.
  • the actual processing removal is the deformation correction processing removal amount calculated from each of the above elements (1) to (4) or (1) to (5) based on the processing removal amount obtained by synthesis.
  • the processing tool or the substrate is moved at a speed (dwell time) in the direction of the substrate surface, and locally necessary and sufficient amount is removed by the processing tool on both sides of the substrate material.
  • Processing can also be performed by keeping the nozzle moving speed and air pressure constant and controlling the distance between the substrate and the sandblast nozzle. This is because the distance between the sandblast nozzle and the substrate material surface is close, the processing speed is high in the case, the processing speed is low in the case, and the processing characteristics are used.
  • the objective can be achieved by pressure control when the nozzle moving speed is constant, the air blowing pressure from the sandblast nozzle is increased at the part where it should be removed, and it is weakened where there is little to be removed.
  • processing tool is a sandblast nozzle
  • processing can be performed using the equipment shown in Fig. 3.
  • 20 indicates a substrate holding table
  • 21 indicates a sandblast nozzle
  • 22 indicates an air flow of the barrel.
  • Reference numeral 1 denotes a substrate.
  • the machining tool has a structure that can be arbitrarily moved in the X and Y directions, and the movement can be controlled by a computer. Processing is also possible with the X- ⁇ mechanism.
  • the air pressure is related to the distance between the abrasive tool and the substrate used, and is not uniquely determined, and can be adjusted by looking at the removal speed and the processing strain depth.
  • # 600 to # 3000 are preferred.
  • # The material with a larger particle size than 600 has a large machining strain layer due to the caulking. May be economically disadvantageous.
  • the particle size is smaller than # 3000, the removal speed may be slow, and time may be required for sandblasting.
  • the fine particles used for sandblasting are preferably cerium oxide, silicon oxide, aluminum oxide, or silicon carbide.
  • the large glass substrate of the present invention obtained by the above method has a diagonal length of 500 mm or more, particularly 800 mm or more, particularly 1,800 mm or more, and a thickness of 4 mm or more.
  • the upper limit of the diagonal length is not particularly limited, but usually has a dimension of 2,500 mm or less. More specifically, when the diagonal length is 825 mm or less (500 to 825 mm), the thickness is 3 mm or more and less than 6 mm, and when the diagonal length is 800 to 1650 mm, the thickness is 6 to: L lmm When the diagonal length is 1800 to 2150 mm, the thickness is 9 to 16 mm. When the diagonal length is 2151 to 3000 mm, the thickness is 9 to 20 mm.
  • the shape of the large glass substrate may be a square, a rectangle, a circle, or the like, the diagonal length means a diameter.
  • the large glass substrate of the present invention has a circular arc shape with a concave central portion on the surface facing the mother glass when held vertically. Also, have you the state of the substrate holding during substrate exposure, i.e. during the horizontal, the surface flatness Z diagonal length 4. 8 X 10- 5 or less, preferably 2. 4 X 10- 5 or less, particularly preferably 1. is 2 X 10- 5 below. Although lower limit thereof is not particularly restricted, and usually 2 X 10- 6 or more. Backside also flatness required, such damage to the extent the surface is not particularly limited, the rear surface flatness Z diagonal length is preferably 4. 8 X 10- 5 or less, more preferably 2. 4 X 10- 5 or less. Although the lower limit is also not limited, it is usually 2 X 1 0- 6 or more.
  • the parallelism of the large glass substrate of the present invention is preferably 50 ⁇ m or less, particularly preferably 10 ⁇ m or less. If the substrate exceeds 50 m, the exposure gap is reduced when the substrate is installed in the exposure system. In some cases, a burden is imposed on the work such as correction.
  • a chromium thin film is provided on the surface of a large glass substrate with a sputtering device, and a photosensitive material such as a resist material is applied on the surface of the large glass substrate using a sputtering device in the same manner as in a normal photomask plate-making process. Then, this is developed to form a resist pattern. Thereafter, using this resist pattern as a mask for etching a chromium thin film or the like, a pattern made of a chromium film or the like is produced.
  • the photomask substrate obtained by the above method is placed horizontally on the substrate stage, but the support position of the photomask substrate is several mm or several cm inside the edge of the front or back surface of the photomask substrate. It is common. Specifically, the photomask substrate is horizontally placed on the outer periphery on two or four sides, the band width is 4 cm, and alumina ceramic or the like can be used, for example, by suction or vacuum chuck. In the case of fixing with a ceramic plate, it is preferable that the ceramic plate is rigid and has a structure that can be freely tilted in the horizontal direction. The flatness of the suction plate is preferably 5 m or less.
  • the amount of change caused by gripping the substrate is also a force that can be simulated with a computer-readable recording medium in which a program is recorded in advance.
  • the suction plate tilt mechanism is not always necessary.
  • the amount of change due to the accuracy of the suction plate and the stress caused by gripping the substrate is also simulated using a computer-readable recording medium in which a program is recorded in advance. It can be performed, and the influence of the tilt angle can be simulated.
  • the so-called mother glass on the exposed side installed under the photomask substrate has a thickness of 0.5 mn! Glass plates with a thickness error of 100 m or less can be used.
  • a stage finished with a flatness within 20 m, preferably within 5 / z m can be used as the stage for chucking the mother glass.
  • the distance (proximity gap) between the photomask substrate and the mother glass is measured over almost the entire area by a laser one displacement meter.
  • the obtained proximity gap has an average of 50 to: LOO m in the entire region other than the 4 cm width of each long side, and the gap error is 0 to 50 ⁇ m, preferably 0 to: LO ⁇ m.
  • the exposure method of the present invention is applicable to other exposure methods (mirror projection method or lens projection method) as long as the exposure method exposes the photomask substrate and the mother glass in a non-contact state. Is possible.
  • the photomask formed by the glass substrate cover of the present invention is used.
  • the substrate it is naturally expected that the correction burden on the exposure apparatus side can be reduced or eliminated.
  • the stagnation of each glass substrate is calculated with respect to the thickness of the glass substrate and the shape is deformed in reverse by the stagnation beforehand, Can be solved all at once. It is also possible to make the glass substrate thinner than before.
  • the amount of dead weight of 830 X 960 X lOmmt is 89 ⁇ m when calculated from material mechanics under the condition of four-side simple support, 139 ⁇ m for 830 X 960 X 8 mmt, and m for 830 X 960 X 6 mmt.
  • the proximity gap can be made small and uniform, so that the proximity gap can be easily controlled. It can be carried out. As a result, it is possible to increase the number of exposed products, and the mother glass can be exposed efficiently. Furthermore, when the projection exposure is performed using the photomask substrate on which the large glass substrate force of the present invention is formed, the control for correcting the deviation of the optical axis due to the substrate sag becomes easy.
  • flatness means surface flatness unless otherwise specified.
  • the flatness and parallelism were measured by using a flatness tester (FTT-1500) manufactured by Kuroda Seiko Co., Ltd., and holding the substrate material vertically.
  • Example 1 Size: 330 X 450mm (diagonal length: approx. 558mm), thickness: 5.3mm
  • Synthetic quartz glass substrate Using Fujimi Abrasive Co., Ltd. GC # 600, flattened with a double-sided lapping machine that performs planetary motion Processing was performed to prepare a substrate material (raw material substrate).
  • the unevenness and thickness variation of the front and back surfaces measured in the vertical direction as well as the flatness and parallelism that change when 50 m is removed by polishing on both sides with a double-side polisher are also considered.
  • the necessary and sufficient deformation correction removal amount was determined, and the removal process was carried out by controlling the moving speed according to the removal amount with the machining tool shown below.
  • this substrate material was mounted on the substrate holding table of the apparatus shown in FIG.
  • a device having a structure capable of pressurizing the processing tool with air was used.
  • the processing tool has a structure that can move in the X and Y axis directions almost parallel to the substrate holder.
  • the sandblast nozzle has a structure that can move in parallel with the substrate holder in the X and Y axis directions.
  • the barrel was FU # 800 manufactured by Fujimi Abrasive Co., Ltd., and the air pressure was 0. IMPa.
  • the projecting port of the sandblast nozzle was a rectangular shape of lmm x 40mm, and the distance between the sandblast nozzle and the substrate surface was 40mm.
  • the sandblast nozzle was continuously moved parallel to the X axis and the Y axis direction was moved at a pitch of 20 mm as shown in Fig. 4.
  • the machining speed under these conditions was 300 ⁇ mZmin as measured in advance.
  • the movement speed of the sandblast nozzle is such that one side and front and back surfaces of a large glass substrate material are flat.
  • the degree of flatness and parallelism of the front and back surfaces obtained in the vertical holding state are measured accurately by measuring the degree of accuracy of the large glass substrate material in the vertical holding state (the state in which no self-weight stagnation occurs in the horizontal state).
  • the flattening amount to be removed based on the thickness data [(1)], the plate thickness and size of the substrate material, and the self-weight calculated from the support position when the photomask substrate obtained from the substrate material is horizontally supported The amount to be removed in consideration of the amount of the substrate [2]] and the amount of substrate deformation due to the support of the photomask substrate generated when the photomask substrate is supported on the exposure apparatus should be removed in advance.
  • Amount [(3)] Amount to be removed taking into account the amount of precision distortion of the platen that supports the exposed mother glass [(4)], and flatness in double-sided or single-sided polishing in the subsequent process
  • the amount to be removed taking into account the degree of change in advance [(5)] It was but a 50mmZsec most removed to be a smaller amount part substrate shape, was carried out on both sides of the process.
  • the obtained glass substrate was coated with a resist material (photosensitive material) after a chromium thin film was provided on the surface of the substrate by a sputtering apparatus by a method almost the same as the process for making an ordinary photomask substrate. Then, the exposure was performed with an electron beam apparatus and developed to form a resist pattern. Thereafter, using this resist pattern as a mask for etching the chromium thin film, a pattern made of the chromium thin film was produced.
  • a resist material photosensitive material
  • the photomask substrate was placed horizontally on a substrate stage.
  • the substrate was fixed on the two outer edges of the upper surface with the substrate leveled, and the band width was 4 cm by adsorption using a porous ceramic plate.
  • the ceramic plate was rigid and structured to tilt freely in the horizontal direction, and the flatness of the suction plate was: m.
  • the so-called mother glass on the exposed side installed under the photomask is chucked.
  • the stage used had a flatness within 5 ⁇ m, and a glass plate with a thickness of 0.7 mm and a thickness error of 2 ⁇ m within 300 ⁇ m was placed.
  • the distance between the substrate and the mother glass was measured over almost the whole area with a laser displacement meter.
  • the obtained proximity gap was 53 ⁇ m at the maximum and 47 ⁇ m at the minimum in all regions other than 4 cm from each side, and the gap error was 6 ⁇ m.
  • the processing was performed in the same manner as in Example 1 except that the substrate material size was 520 ⁇ 800 mm (diagonal length: about 954 mm) and the thickness was 10.4 mm.
  • the proximity gap was measured over almost the entire area with a laser displacement meter.
  • the proximity gap obtained was 58 ⁇ m at the maximum and 47 ⁇ m at the maximum / J ⁇ in the entire area except 4 cm from each side, and the gap error was 11 m.
  • the processing was performed in the same manner as in Example 1 except that the substrate material size was 850 X I, 200 mm (diagonal length: approximately 1,471 mm) and the thickness was 10.4 mm.
  • the proximity gap was measured over almost the entire area with a laser displacement meter.
  • the obtained proximity gap was 59 ⁇ m at the maximum and 47 ⁇ m at the minimum in all areas except 4 cm from each side, and the gap error was 12 m.
  • Example 2 The same processing as in Example 1 was performed except that the substrate material size was 1,220 ⁇ 1,400 mm (diagonal length: about 1,857 mm) and the thickness was 13.4 mm.
  • the proximity gap was measured over almost the entire area with a laser displacement meter.
  • the obtained proximity gap was 61 ⁇ m at the maximum and 46 ⁇ m at the minimum in all areas except 4 cm from each side, and the gap error was 15 m.
  • Substrate material size is 850 XI, 200mm (diagonal length: about 1,471mm), thickness is 8.4mm, the amount to be removed taking into account the above-mentioned self-weight stagnation amount [(2)], substrate deformation amount The amount to be removed after considering the amount [3], and the amount of precision distortion with the surface plate supporting the mother glass The amount [4] that should be removed in consideration is not considered, and the flatness of one and both sides of the large glass substrate material is maintained in a state where the large glass substrate material is held vertically (self-weight stagnation occurs in the horizontal direction).
  • the amount to be removed based on the height and flatness data on the front and back surfaces obtained in the vertical holding state [(1)], and both sides of the subsequent process Except for calculating the removal amount and removal part of the front and back surfaces that are necessary and sufficient in the end by calculating the amount [5] that should be removed considering the change in flatness in polishing or single-side polishing in advance. It was processed in the same way.
  • the value obtained by adding the own weight obtained by calculation to the obtained value is approximately 130 m (flatness
  • Diagonal length 8. a convex shape of the 8 X 10- 5).
  • a photomask substrate was produced in the same manner as in Example 1 of the obtained glass substrate cover, and the obtained photomask substrate was installed in an exposure apparatus in the same manner as in Example 1 to provide proximity.
  • the gap was measured over almost the entire area with a laser displacement meter.
  • the obtained proximity gear had a maximum of 280 ⁇ m, a minimum of 120 ⁇ m, and a gap error of 160 ⁇ m in all areas except 4 cm from each side.
  • the proximity gap measured above is not corrected in the exposure apparatus.
  • the same processing as in Comparative Example 1 was performed except that the substrate material size was 1,220 ⁇ 1,400 mm (diagonal length: about 1,857 mm) and the thickness was 10.4 mm.
  • a photomask substrate was produced in the same manner as in Comparative Example 1 with respect to the obtained glass substrate force, and the obtained photomask substrate was placed in an exposure apparatus in the same manner as in Comparative Example 1, and a proximity gap was formed. Measurements were made over almost the entire area with a laser displacement meter. Proximity gear obtained The gap was 180 ⁇ m at the maximum and 120 ⁇ m at the minimum in all areas except 4 cm from each side, and the gap error was 60 ⁇ m.
  • the proximity gap measured above is a value obtained by performing correction on the exposure apparatus side as well.
  • Table 1 summarizes the measurement results of the flatness and parallelism before and after processing of the above Examples and Comparative Examples.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nonlinear Science (AREA)
  • Mechanical Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Development (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Liquid Crystal (AREA)
  • Surface Treatment Of Glass (AREA)

Description

明 細 書
フォトマスク用大型ガラス基板及びその製造方法、コンピュータ読み取り 可能な記録媒体、並びにマザ一ガラスの露光方法
技術分野
[0001] 本発明は、 TFT液晶パネルのアレイ側のフォトマスク基板やカラーフィルター用フ オトマスク基板として用いられるフォトマスク用大型ガラス基板及びその製造方法並び にこれを実行するプログラムを記録したコンピュータ読み取り可能な記録媒体に関す る。また、本発明は、 TFT液晶パネルのアレイ側又はカラーフィルター側基板用のマ ザ一ガラスに対する露光方法に関する。
背景技術
[0002] 一般的に TFT液晶パネルは、 TFT素子が組み込まれているアレイ側基板とカラー フィルターを装着した基板の間に液晶を封入し、電圧を TFTでコントロールして液晶 の配向を制御するアクティブ方法が採られて 、る。
[0003] アレイ側の製造の際には、大型フォトマスクと呼ばれる回路の書かれた原版を光露 光により、無アルカリ等のマザ一ガラスに何層も焼き付けるという方法が採られている 。一方、カラーフィルター側も同様に染料含浸法と呼ばれるリソグラフィーを用いた方 法で製造されている。アレイ側、カラーフィルター側のいずれの製造においても大型 フォトマスクが必要であり、精度のよい露光を実施するため、これら大型フォトマスクの 材料としては線膨張係数の小さい合成石英ガラスが主として使用されている。
[0004] これまで液晶パネルは VGAから SVGA、 XGA、 SXGA、 UXGA、 QXGAと高精 細化が進んでおり、 100ppi (picel per inch)クラスから 200ppiクラスの精細度が 必要といわれている。また、露光範囲が大きくなつてきたこともあり、これに伴い TFT アレイ側の露光精度、特に要求される重ね合わせ精度は厳しくなつてきて 、る。
[0005] また、低温ポリシリコンという技術によりパネルを製造することも行われている力 こ の場合、パネルの画素とは別にガラスの外周部にドライバー回路等を焼付けるといつ た検討がなされており、より高精細の露光が要求されている。
[0006] このため、更なる高精度露光のためには、実際に使用される状態、つまり露光装置 に支持した状態において高平坦度な大型フォトマスク用基板が望ましい。
[0007] この場合、大型フォトマスク用基板の加工では、基板自身が加工定盤に押し付けら れたときに発生する弾性変形に対する反発力を平坦度修正に利用しているため、基 板サイズが大きくなつたときは反発力が著しく低下して、基板表面のなだらかな凹凸 を除去する能力は低くなるという欠点を有していた。従って、基板の大型化が進むと 、従来の研磨方法では、目的の平坦度に仕上げることが困難であった。
[0008] このような点から、本発明者らは、先に、対角長が 500mm以上の大型ガラス基板 の平坦度を、平坦度 Z対角長を 6. 0 X 10— 6以下とし、平行度を 50 m以下にする方 法を提案した (特開 2003 - 292346号公報、特開 2004 - 359544号公報)。
[0009] し力しながら、最近においては一回の露光で多面取りを行い、パネル製造の生産 性を向上させる目的から、対角長で 1, OOOmm以上といった大サイズのフォトマスク 基板の要求も出てきている。大サイズ、且つ高平坦度を同時に満たす大型ガラス基 板が求められているが、このような大型ガラス基板の場合、露光装置内で水平に保持 する実際の使用に際して基板が橈んでしま、、望ま 、平坦度が必ずしも得られな い場合が生じた。また、基板自重橈み量は基板の厚みの 3乗に反比例するので、こ の観点力 基板が大きくなると共に基板厚みも増す方向で大型化が進められており、 結果として大型ガラス基板の重量も増す方向に進んでいる。従って、このような大型 ガラス基板をより高度に平坦ィ匕する方法が望まれた。
発明の開示
発明が解決しょうとする課題
[0010] 本発明は、上記事情に鑑みなされたもので、実際に露光装置内で使用される水平 保持時において高平坦度になるフォトマスク用大型ガラス基板及びその製造方法並 びにこれをプログラムに記録したコンピュータ読み取り可能な記録媒体を提供するこ とを目的とする。また、本発明は、 TFT液晶パネルのアレイ側又はカラーフィルター 側基板用のマザ一ガラスの露光方法を提供することを他の目的とする。
課題を解決するための手段
[0011] 本発明者らは、上記目的を達成するため鋭意検討を行った結果、後述する方法に より得られた大型ガラス基板が、これを用いて形成されるフォトマスク基板を露光装置 に水平支持した場合、高平坦化が達成され、 TFT液晶パネルのアレイ側又はカラー フィルター側基板用のマザ一ガラスとのプロキシミティギャップのバラツキが顕著に低 減することを知見した。
[0012] 即ち、フォトマスク基板を露光装置に水平に支持する場合、基板チャック方法として は、基板の上面縁部を吸着 (4辺支持又は 2辺支持)する方法、あるいは基板の下面 縁部を突条物で載置支持 (通常、 2辺支持)する方法があるが、いずれの方法におい ても、フォトマスク基板を水平支持すると、フォトマスク基板の自重により橈み変形し、 この変形は、フォトマスク基板が大型化するほど大きくなる。このような橈み変形は、フ オトマスク基板の下側に配置されて露光されるマザ一ガラスと該フォトマスク基板との プロキシミティギャップのバラツキを大きくし、露光精度に大きな悪影響を与える。
[0013] 従来、このようなプロキシミティギャップのバラツキを低減する方法としては、上記の ようにフォトマスク基板を露光装置に支持する場合、例えば基板上面吸着の場合は 基板上面縁部を上外側方にむカゝうような力を与えて基板中央付近の橈みを低減した り、基板下面支持の場合は、該基板支持部より外縁部側に上力ゝらカを与えて同様に 基板中央部の橈みを低減することが行われていた。しかし、このように露光装置にお ける基板の支持方法を工夫して露光装置側で補正し、プロキシミティギャップのバラ ツキを低減する方法は、その力の与え方の調整が面倒で手間を要する上、フォトマス ク基板が大型化する程、大きな力が必要になり、その調整が困難になる。
[0014] 一方、上記フォトマスク基板を形成するためのガラス基板を垂直保持時に平坦ィ匕し たものを用いる方法は、フォトマスク基板乃至ガラス基板が対角長 500mm以上、特 に 800mm以上、とりわけ 1, 800mm以上に大型化した場合、有効に機能しないもの であった。
[0015] 即ち、 TFT液晶パネルのアレイ側用フォトマスク基板又はカラーフィルター側用フォ トマスク基板を形成する対角長が 500mm以上、特に 800mm以上、とりわけ 1, 800 mm以上の大型ガラス基板の表裏面平坦度や平行度を測定するには、光干渉式手 法で得られる干渉縞の本数を数える方法や、レーザー変位計を基板表裏面上で近 接走査させる方法が知られている。ここで、測定時の基板の保持方法は、従来から垂 直保持であるが、実際に使用される時は水平に保持されるのが一般的であった。こ のように表裏面平坦度や平行度を測定する際に基板を垂直保持するようになったの は、基板を水平にして基板が自重変形した状態で精度を測定することは困難である こと、使用される露光装置内での基板の水平保持方法が多彩であること、実際に使 用される時と同じ条件で平坦度を測定することも困難である等の理由による。なお、 基板の橈み量は、基板の厚みの 3乗に反比例するので、サイズが大きくなると共に基 板厚みも増す方向で基板の大型化が進められてきており、橈み量の観点では、基板 を垂直保持して通常測定される基板の平坦度が数十/ z m以下であっても、実際に露 光されるときには数十又は数百 mも自重によって大きく変形する可能性がある。基 板が使用される所謂露光時の基板保持方法と基板の表裏面平坦度や平行度等の 精度を測る時の保持方法が同一ならば、このような問題はないが、現状ではかかる方 法で基板の表裏面平坦度及び平行度を精度よく測定する方法は開発されておらず 、基板の表裏面平坦度及び平行度の測定は、特に基板が大型化する程、上述した 基板の垂直保持での測定法に頼らざるを得ない。しかし、この測定法では、大型フォ トマスク基板を露光装置に支持した際の平坦度と大きな差が生じる。
[0016] 例えば、現在供給されている TFT露光用大型フォトマスク用ガラス基板の平坦度に つ!ヽて 、えば、 450 X 550 X 5mmサイズの基板として、垂直保持の状態で測定して 、平坦度 Z対角長 = 6 X 10— 6以下(平坦度:約 4 m)が得られたとしても、水平 4辺 単純支持で基板を保持したとして材料力学的計算で予想される基板自重橈み量は 平坦度 Z対角長 =4. 7 X 10— 5 (平坦度:約 34 m)になるので、実質的に使用され る水平時には平坦度は約 34 m前後ということになる。また、 1, 220 X 1, 400 X 13 mmサイズの基板は、垂直保持の状態で測定して、平坦度 Z対角長 = 6 X 10— 6以下 (平坦度:約 11 m)が得られたとしても、水平 4辺単純支持で基板を保持したとして 材料力学的計算で予想される基板自重橈み量は平坦度 Z対角長 = 1. 3 X 10— 4 (平 坦度:約 243 m)になるので、実質的に使用される水平時には平坦度は約 243 m前後ということになる。そして、このような橈みの補正に関しては、上述したように、 従来露光装置側で主に対策をとつていたが、基板の大型化に伴い次第に困難にな つてきた。
[0017] なお、本明細書において、基板表面を露光時のマザ一ガラス対向面側(下面)とし 、表面平坦度といえばこの面についての平坦度であり、また裏面を露光時の上面と 定めて記載する。
[0018] 本発明者らは、このような大型ガラス基板の作製にっ 、て検討した結果、大型ガラ ス基板材料の両面の平坦度及び平行度をその大型ガラス基板材料を垂直保持の状 態 (水平時の自重橈みが発生しな!、状態)で正確に測定し、その垂直保持状態で得 られた表裏面の平坦度及び平行度の高さデータに基づく平坦化加工除去量(1)、 基板材料の板厚及びサイズと該基板材料カゝら得られるフォトマスク基板を水平に支 持した際の支持位置力 計算される自重橈み量分を考慮して除去するべき量 (2)、 フォトマスク基板を露光装置に支持する際に発生する該基板支持による基板変形を 考慮して除去するべき量 (3)、露光されるマザ一ガラスを支持する定盤の精度歪み 分から計算される除去するべき量 (4)、及び後工程として例えば両面研磨又は片面 研磨を行う場合、この研磨における平坦度の変化を予め考慮して除去すべき量 (5) のうち、 (1)〜 (4)又は(1)〜(5)を総合して最終的に必要十分な表裏面の平坦化加 工及び変形修正加工の量及び加工除去部分を算出し、加工ツール又は基板材料を 基板材料の面方向に移動させて基板材料の両面を各々除去処理することが有効で 、これにより、水平に保持した時に平坦度 Z対角長が 4. 8 X 10— 5以下である対角長 が 500mm以上、特に 1, OOOmm以上の大型ガラス基板を得ることができ、これによ りこの大型ガラス基板から形成されるフォトマスク基板を露光装置に支持した場合、 T FT液晶パネルのアレイ側又はカラーフィルター側基板用のマザ一ガラスとのプロキ シミティギャップのバラツキが低減し、上述したような露光装置側での補正の必要がな くなり、あるいは補正が軽減されて、容易にプロキシミティギャップのバラツキをなくし 得ることを知見したものである。
[0019] なお、本発明において、基板の平坦度は、被測定表面の最小 2乗平面を基準面と したときの、基準面と被測定表面との距離の最大値 (絶対値)と最小値 (絶対値)との 和であり、図 1中の aと bとの和で表される。この平坦度は、一般に TIR (Total Indie ator Reading)と呼ばれる。一方、基板の平行度は、基板の裏面から表面までの距 離の最大値と最小値との差であり、図 2中の cで表される。この平行度は、一般に TT V (Total Thichness Variation)と呼ばれる。なお、図 1中、 1は基板、 11は被測 定表面、 12は最小 2乗平面、図 2中、 1は基板、 13は基板表面、 14は基板裏面であ る。
従って、本発明は、下記のフォトマスク用大型ガラス基板及びその製造方法、マザ 一ガラスの露光方法、コンピュータ読み取り可能な記録媒体を提供する。
請求項 1:
互いに対向する両側縁部が支持されて露光装置に取り付けられるフォトマスク基板 の下側に、これと近接して TFT液晶パネルのアレイ側又はカラーフィルター側基板 用のマザ一ガラスを配置し、上記露光装置からの光を上記フォトマスク基板を通して 上記マザ一ガラスに照射し、このマザ一ガラスを露光する方法において用いる上記フ オトマスク基板を形成するための大型ガラス基板を製造する方法であって、対角長が
500mm以上であり、厚さが 4mm以上の大型ガラス基板材料を垂直保持した状態で 得られた基板材料の表裏面の平坦度及び平行度の高さデータに基づく平坦化加工 除去量、並びに、
上記基板材料の板厚及びサイズと該基板材料より得られるフォトマスク基板を水平に 支持した際の支持位置から計算される自重橈み量分と、
上記フォトマスク基板を露光装置に支持する際に発生するフォトマスク基板支持によ る基板変形量分と、
露光されるマザ一ガラスを支持する定盤の精度歪み分と
から計算される変形修正加工除去量で上記基板材料を加工除去して、垂直保持し た際にマザ一ガラスに対向する側の表面が凹んだ断面円弧形状を有し、この大型ガ ラス基板カゝら形成されるフォトマスク基板がその互いに対向する両側縁部が上記露 光装置に支持された際に水平に保持されて、上記マザ一ガラスとこの大型ガラス基 板カゝら形成されるフォトマスク基板とのプロキシミティギャップバラツキを低減する大型 ガラス基板を得ることを特徴とするフォトマスク用大型ガラス基板の製造方法。
請求項 2 :
基板材料の平坦ィ匕及び変形修正加工後に、更に両面研磨又は片面研磨を行う後 工程を有し、上記加工除去量に上記後工程の研磨による平坦度の変化量を加えた 量の除去量で平坦化及び変形修正加工を行う請求項 1記載のフォトマスク用大型ガ ラス基板の製造方法。
請求項 3 :
加工ツールとしてサンドブラストを用いてカ卩ェ除去を行う請求項 1又は 2記載のフォ トマスク用大型ガラス基板の製造方法。
請求項 4 :
加工ツールとしてサンドブラストを用いたカ卩ェ除去方法力 定圧で行われることを特 徴とする請求項 3記載のフォトマスク用大型ガラス基板の製造方法。
請求項 5 :
サンドブラストに用いられる微粒子力 酸ィ匕セリウム、酸化珪素、酸ィ匕アルミニウム又 は炭化珪素であることを特徴とする請求項 3又は 4記載のフォトマスク用大型ガラス基 板の製造方法。
請求項 6 :
基板材料及び Z又は加工ツールを移動させて、基板材料表面の任意の位置を除 去することを特徴とする請求項 1〜5のいずれか 1項記載のフォトマスク用大型ガラス 基板の製造方法。
請求項 7 :
互いに対向する両側縁部が支持されて露光装置に取り付けられるフォトマスク基板 の下側に、これと近接して TFT液晶パネルのアレイ側又はカラーフィルター側基板 用のマザ一ガラスを配置し、上記露光装置からの光を上記フォトマスク基板を通して 上記マザ一ガラスに照射し、このマザ一ガラスを露光する方法において用いる上記フ オトマスク基板を形成するための大型ガラス基板であって、対角長が 500mm以上で あり、厚さが 4mm以上の大型ガラス基板材料を垂直保持した状態で得られた基板材 料の表裏面の平坦度及び平行度の高さデータに基づく平坦化加工除去量、並びに 上記基板材料の板厚及びサイズと該基板材料より得られるフォトマスク基板を水平に 支持した際の支持位置から計算される自重橈み量分と、
上記フォトマスク基板を露光装置に支持する際に発生するフォトマスク基板支持によ る基板変形量分と、 露光されるマザ一ガラスを支持する定盤の精度歪み分と
から計算される変形修正加工除去量で上記大型ガラス基板材料を加工除去すること によって得られ、垂直保持した際にマザ一ガラスに対向する側の表面が凹んだ断面 円弧形状を有し、この大型ガラス基板カゝら形成されるフォトマスク基板がその互いに 対向する両側縁部が上記露光装置に支持された際に水平に保持されて、上記マザ 一ガラスとこの大型ガラス基板カゝら形成されるフォトマスク基板とのプロキシミティギヤ ップバラツキを低減することを特徴とするフォトマスク用大型ガラス基板。
請求項 8 :
上記大型ガラス基板が、水平保持した時に表面平坦度 Z対角長が 4. 8 X 10— 5以 下の表面平坦度を有するものである請求項 7記載のフォトマスク用大型ガラス基板。 請求項 9 :
対角長が 825mm以下であり、厚さが 3mm以上 6mm未満である請求項 7又は 8記 載のフォトマスク用大型ガラス基板。
請求項 10 :
対角長が 800〜1650mmであり、厚さが 6〜: L lmmである請求項 7又は 8記載のフ オトマスク用大型ガラス基板。
請求項 11 :
対角長力 1800〜 2150mmであり、厚さが 9〜 16mmである請求項 7又は 8記載の フォトマスク用大型ガラス基板。
請求項 12 :
対角長が 2151〜3000mmであり、厚さが 9〜20mmである請求項 7又は 8記載の フォトマスク用大型ガラス基板。
請求項 13 :
互いに対向する両側縁部が支持されて露光装置に取り付けられるフォトマスク基板 の下側に、これと近接して TFT液晶パネルのアレイ側又はカラーフィルター側基板 用のマザ一ガラスを配置し、上記露光装置からの光を上記フォトマスク基板を通して 上記マザ一ガラスに照射し、このマザ一ガラスを露光する方法において、上記フォト マスク基板として、対角長が 500mm以上であり、厚さが 4mm以上の大型ガラス基板 材料を垂直保持した状態で得られた基板材料の表裏面の平坦度及び平行度の高さ データに基づく平坦化加工除去量、並びに、
上記基板材料の板厚及びサイズと該基板材料より得られるフォトマスク基板を水平に 支持した際の支持位置から計算される自重橈み量分と、
上記フォトマスク基板を露光装置に支持する際に発生するフォトマスク基板支持によ る基板変形量分と、
露光されるマザ一ガラスを支持する定盤の精度歪み分と
から計算される変形修正加工除去量で上記大型ガラス基板材料を加工除去すること によって得られ、垂直保持した際にマザ一ガラスに対向する側の表面が凹んだ断面 円弧形状を有する大型ガラス基板から形成され、上記露光装置に互いに対向する両 側縁部が支持された際に水平に保持されるフォトマスク基板を用いて、上記マザーガ ラスと該フォトマスク基板とのプロキシミティギャップバラツキを低減することを特徴とす るマザ一ガラスの露光方法。
請求項 14 :
上記大型ガラス基板が、水平保持した時に表面平坦度 Z対角長が 4. 8 X 10— 5以 下の表面平坦度を有するものである請求項 13記載のマザ一ガラスの露光方法。 請求項 15 :
互いに対向する両側縁部が支持されて露光装置に取り付けられるフォトマスク基板 の下側に、これと近接して TFT液晶パネルのアレイ側又はカラーフィルター側基板 用のマザ一ガラスを配置し、上記露光装置からの光を上記フォトマスク基板を通して 上記マザ一ガラスに照射し、このマザ一ガラスを露光する方法において用いるフォト マスク基板を形成する対角長が 500mm以上であり、厚さが 4mm以上のフォトマスク 用大型ガラス基板を製造する工程を記録する記録媒体であって、
対角長が 500mm以上であり、厚さが 4mm以上の大型ガラス基板材料を垂直保持し た状態で得られた基板材料の表裏面の平坦度及び平行度の高さデータに基づく平 坦化加工除去量を計算するステップ、
この平坦化加工除去量に上記基板材料の板厚及びサイズと該基板材料より得られる フォトマスク基板を水平に支持した際の支持位置力 計算される自重橈み量分と、上 記フォトマスク基板を露光装置に支持する際に発生するフォトマスク基板支持による 基板変形量分と、露光されるマザ一ガラスを支持する定盤の精度歪みとから変形修 正加工除去量を計算するステップ、
上記平坦化加工除去量及び変形修正加工除去量に基づいて該量を加工除去して 平坦ィ匕及び変形修正加工を行うことを装置に命令を出すステップ
をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な 記録媒体。
請求項 16 :
基板材料の平坦ィ匕及び変形修正加工後に、更に両面研磨又は片面研磨を行う後 工程を有し、上記加工除去量に上記後工程の研磨による平坦度の変化量を加えた 量の除去量を計算するステップを更に有する請求項 15記載のコンピュータ読み取り 可能な記録媒体。
発明の効果
[0021] 本発明の大型ガラス基板から形成されるフォトマスク基板を露光に使用することで、 露光精度、特に重ね合わせ精度及び解像度が向上し、高精細な大型パネルの露光 も可能となる一方、露光補正の負担を軽減させ、パネルの歩留まりの向上にもつなが る。また、従来力もカラーフィルター側にし力使用できな力つた、所謂プロキシミティー タイプの露光装置であっても、従来は投影露光装置で対応されるのが一般的であつ た TFT用アレイ側に使用できたり、カラーフィルター側も R、 G、 Bに留まらずブラック マトリックスやフォトスぺーサー用にもプロキシミティータイプの露光装置で対応できる t 、うメリットが生まれる可能性がある。
[0022] また、本発明の大型ガラス基板カゝら形成されるフォトマスク基板を用いて露光すると 、プロキシミティギャップを小さくできると共に、均一化することができるため、プロキシ ミティギャップの制御を容易に行うことができる。これにより露光生産枚数を増加させ ることが可能となり、効率よく大型ガラス基板を露光することができる。
[0023] 更に、本発明の大型ガラス基板カゝら形成されるフォトマスク基板を用いて投影露光 した場合には、基板橈みによる光軸のズレ等の補正負担が軽減される。また、露光装 置側でプロキシミティギャップ補正を不要にすることも可能となる。 図面の簡単な説明
[0024] [図 1]平坦度を説明するための基板断面の概念図である。
[図 2]平行度を説明するための基板断面の概念図である。
[図 3]加工装置の概要を示す斜視図である。
[図 4]加工ツールにおける移動態様を示す斜視図である。
発明を実施するための最良の形態
[0025] 本発明のフォトマスク用大型ガラス基板の製造方法は、 TFT液晶パネルのアレイ側 基板用やカラーフィルター側基板用として用いられるもので、対角長が 500mm以上 、厚さが 4mm以上のものを製造する方法である。
[0026] <除去対象 >
基板の大型化に伴い、(1)基板材料自体の平坦化加工除去量に加え、(2)水平保 持した際における基板材料の板厚及びサイズと該基板材料カゝら形成されるフォトマス ク基板を水平に支持した際の支持位置から計算される自重橈み量分と、 (3)このフォ トマスク基板を露光装置に支持する際に発生するフォトマスク基板支持による基板変 形量分と、(4)露光されるマザ一ガラスを支持する定盤の精度歪み分、更には(5)加 ェ後の研磨による変化量を予めを考慮して、基板材料の加工を行うことが必要となる 。なお、基板形状の測定は無重力状態が望ましいが、垂直状態で測定しても垂直時 の基板自重変形量は、ここで作製される基板の精度には微細で無視できる。なお、 基板材料のサイズは、基板材料の形状が正方形又は長方形の場合には、縦及び横 の長さをいい、基板材料が円形の場合は直径をいう。
[0027] 具体的には、本発明のフォトマスク用大型ガラス基板の製造方法は、大型ガラス基 板材料の両面の平坦度及び平行度をその大型ガラス基板材料を垂直保持の状態( 水平時の自重橈みが発生しない状態)で正確に測定し、その垂直保持状態で得られ た表裏面の平坦度及び平行度の高さデータに基づく平坦化加工により除去するべき 量 [ (1) ]、基板材料の板厚及びサイズと該基板材料から得られるフォトマスク基板材 料を露光装置に支持した際の支持位置から計算される自重橈み量分を予め考慮し て除去するべき量 [ (2) ]、基板を露光装置に支持する際に発生する基板支持による 基板変形量分を考慮して除去するべき量 [ (3) ]、露光されるマザ一ガラスを支持す る定盤の精度歪み分を考慮して計算される除去するべき量 [ (4) ]、及び後工程とし て例えば両面研磨又は片面研磨を行う場合、この研磨における平坦度の変化を予 め考慮して除去すべき量 [ (5) ]のうち、(1)〜(4)又は(1)〜(5)を総合して、最終的 に必要十分な表裏面の除去量及び除去部分を算出する。なお、上記 (2)、 (3)、 (4) の加工を総称して変形修正加工といい、(2)、 (3)、 (4)の加工除去量の合計を変形 修正加工除去量という。
[0028] <平坦化加工 >
まず、垂直保持状態で得られた表裏面の平坦度及び平行度の高さデータを元に 除去するべき量につ!ヽて説明すると、原料となる大型ガラス基板基板材料 (板材)の 平坦度測定及び平行度測定を行う。平坦度及び平行度の測定は、大型ガラス基板 材料 (板材)の自重変形を除くため、垂直保持して例えば黒田精工社製フラットネス テスター (FTT— 1500)等を使用して行うことができる。
即ち、本発明の製造方法としては、まず大型ガラス基板材料 (板材)の平坦加工す べき面、即ち両面の平坦度の測定を行う。また、大型ガラス基板材料の平行度を考 慮する場合は、両面の平坦度及び平行度の測定を行う。具体的には、まず、垂直保 持状態で得られた表裏面の平坦度及び平行度の高さ (基板表裏面に垂直な方向) データを取得し、これに基づ!/、て平坦化加工すべき面で計算される最小 2乗平面を 基準面とし、平坦化加工すべき面内で最も低い点に高さが合うように加工除去量を 計算する。
なお、原料となる板材は、加工時間短縮のために、初めに両面研磨装置又は片面 研磨装置で鏡面加工を行 ヽ、できるだけ平坦度及び Z又は平行度を整えておくこと が好ましい。
以上のステップに基づいて該量をカ卩ェ除去して平坦化カ卩工及び後述する変形修 正力卩ェを行うことを装置に命令を出しコンピュータに実行させるためのプログラムを記 録したコンピュータ読み取り可能な記録媒体でシミュレーションを行うことができる。
[0029] <自重橈み量分 >
次に、基板材料の自重橈み量分は、前記平坦化加工により得られると計算、予測さ れる面を基準面として、基板材料の板厚及びサイズと該基板材料カゝら得られるフォト マスク基板を水平に支持した際の支持位置力 材料力学的に計算される。なお、こ の場合の支持位置は、露光装置に支持した場合と同じ支持位置とする。
[0030] <基板変形 >
また、露光装置内ではフォトマスク基板がチャックされる際に変形するが、チャックさ れる部分の面積や形状又はチャック板の面精度、更に 2辺支持や 4辺支持の場合に よっても変化量が異なる。 V、ずれの状態も有限要素法を基本にシミュレーションする ことは可能であるが、サンプルガラス基板材料を用いて実際に露光装置に支持した 際の変化量を測定し、ここで得られた変化量に合うように加工すべきガラス基板材料 における加工量を求めることが好まし 、。
[0031] <定盤の精度歪み >
TFT液晶パネルのアレイ側又はカラーフィルター側基板用のマザ一ガラスとフォト マスク基板表面との距離のバラツキ、所謂プロキシミティギャップは、露光装置の定盤 自体の加工精度、定盤の組み立て精度、露光時の温度変形等を考慮して定盤の平 坦度、即ち定盤の精度歪みの影響も受けるので、これらも考慮して変形修正加工除 去量を決める。この場合も、サンプルガラス基板材料を実際に露光装置に支持すると 共に、サンプルマザ一ガラスを定盤に載置したときのプロキシミティギャップのバラッ キを測定し、ここで得られた測定値に合うように加工すべきガラス基板材料における 加工量を求めることが好まし 、。
実際には、プロキシミティギャップのバラツキ力も上記平坦化力卩ェ、自重橈み量分 を考慮した加工量を差し引いた差分が、基板変形及び定盤精度歪みに基づく加工 量に相当する。
なお、プロキシミティギャップの測定は、下方力 レーザー変位計を用いることにより 柳』定することができる。
[0032] <研磨 >
なお、一般には後工程の両面研磨又は片面研磨は、最終的に求められる面質、例 えば面粗さを良くし、微細な欠陥がない面にするために行われるものである。従って 、求められる面品質上、後工程の仕上げ研磨が必要ない場合や後工程の研磨によ る平坦度の変化量が無視できる量である場合には、研磨における平坦度の変化を予 め考慮して除去すべき量分 (5)は省くことが可能である。
仕上げ研磨は、基板材料の表面又は表裏両面を酸化セリウム等の研磨材を用いて 柔らかい研磨クロス等を貼った両面研磨又は片面研磨装置等を用いて、常法によつ て行うことができる。
なお、実際の加工除去は、上記各要素から計算される変形修正加工除去量である (1)〜 (4)又は(1)〜(5)を総合して得られる加工除去量を元に、加工ツール又は基 板を基板面方向に移動させる速度 (滞在時間)を変更させ、局所的に必要十分な量 を基板材料の両面において各々加工ツールにより除去する。
[0033] <サンドブラスト >
上記した計算量に基づ!/ヽて平坦化及び変形修正加工除去を行うに際し、加工ツー ルがサンドブラストの場合、測定したデータをもとに基板材料の多く除去する部分で はサンドブラストノズルの移動速度を遅くして滞留時間を長くする一方、多く除去しな V、部分では逆にサンドブラストノズルの移動速度を速くして滞留時間を短くすると!/、 つたように滞在時間をコントロールして、加工を行うことができる。
また、ノズル移動速度、エアー圧力を一定にし、基板とサンドブラストノズル間の距 離をコントロールすることでも加工可能である。これはサンドブラストノズルと基板材料 面との距離が近 、場合は加工速度が速ぐ遠 、場合は加工速度が遅 、と 、う加工特 性を利用したものである。
更には、ノズル移動速度は一定とし、サンドブラストノズルよりのエアー吹き付け圧 力を除去するべき部分で大きくし、除去するべきところが少ない所では弱くするといつ た圧力コントロールでも目的は達成できる。
加工ツールがサンドブラストノズルの場合、図 3の装置を用いて加工を行うことがで きる。ここで、図 3中、 20は基板保持台、 21はサンドブラストノズルを示し、 22は砲粒 の気流である。なお、 1は基板である。
[0034] 加工ツールは、 X、 Y方向に任意に移動できる構造であり、移動についてはコンビュ ータで制御できるものである。また、 X— Θ機構でも加工は可能である。エアー圧力 は、使用砥粒ゃ加工ツール—基板間の距離と関係しており、一義的に決められず、 除去速度と加工歪深さをみて調整することができる。 [0035] 使用する砲粒は特に制約はないが、 # 600〜# 3000番のものが好ましい。 # 600 より粒径の大きい砲粒ではカ卩ェによる加工歪層が大きぐ加工歪層を除去するため に後工程での取り代が大きくなり、元の板厚を厚くする必要があるため素材が多く必 要となるので、経済的に不利になる場合がある。一方、 # 3000より粒径が小さい場 合は、除去速度が遅くなることでサンドブラスト加工に時間が力かることになる場合が 生じる。
なお、サンドブラストに用いる微粒子は、酸ィ匕セリウム、酸化珪素、酸ィ匕アルミニウム 又は炭化珪素が好ましい。
[0036] <基板の説明 >
上記の方法により得られた本発明の大型ガラス基板は、対角長が 500mm以上、特 に 800mm以上、とりわけ 1, 800mm以上であり、厚さは 4mm以上である。対角長の 上限は特に制限はないが、通常、 2, 500mm以下の寸法を有するものである。更に 詳しく説明すると、対角長が 825mm以下(500〜825mm)の場合には厚さが 3mm 以上 6mm未満であり、対角長が 800〜1650mmの場合には厚さが 6〜: L lmmであ り、対角長が 1800〜2150mmの場合には厚さが 9〜16mmであり、対角長が 2151 〜3000mmの場合には厚さが 9〜20mmである。なお、この大型ガラス基板の形状 は、正方形、長方形、円形等であってもよぐ円形の場合、対角長とは直径を意味す る。
[0037] 本発明の大型ガラス基板は、垂直保持した際にマザ一ガラスに対向する側の表面 中央部が凹んだ、断面円弧形状になる。また、基板露光時の基板保持の状態にお いて、即ち水平時において、その表面平坦度 Z対角長が 4. 8 X 10— 5以下、好ましく は 2. 4 X 10— 5以下、特に好ましくは 1. 2 X 10— 5以下である。なお、その下限は特に制 限されないが、通常 2 X 10— 6以上である。また裏面は、表面程の平坦度は要求されな いため、特に制限はないが、裏面平坦度 Z対角長は、好ましくは 4. 8 X 10— 5以下、 更に好ましくは 2. 4 X 10— 5以下である。また、その下限も制限されないが、通常 2 X 1 0— 6以上である。
[0038] 本発明の大型ガラス基板の平行度は 50 μ m以下、特に 10 μ m以下であることが好 ましい。 50 mを超えると基板を露光装置に設置する場合に露光ギャップを少なくす るための補正等の作業に負担が掛カる場合がある。
[0039] <露光方法 >
次に、得られた大型ガラス基板を用いて露光する方法にっ 、て述べる。 通常のフォトマスクの製版工程とほぼ同様の方法により、スパッタ装置にて大型ガラ ス基板表面にクロム薄膜等を設けた後、更にレジスト材料等の感光材を塗布し、電子 ビーム装置により、描画露光して、これを現像してレジストパターンを形成する。その 後、このレジストパターンをクロム薄膜等のエッチング用のマスクとして、クロム膜等か らなるパターンを作製する。
[0040] 上記の方法により得られたフォトマスク基板を基板ステージ上に水平に載せるが、 フォトマスク基板の支持位置は、フォトマスク基板の表面又は裏面の端辺より数 mm 又は数 cm内側に入ったところが一般的である。具体的にはフォトマスク基板を水平 にした状態で上面の外周 2辺又は 4辺で行い、帯幅は 4cmで、アルミナセラミック等 を使用して、例えば吸着、バキュームチャック等により行うことができる。セラミック板に よる固定の場合、セラミック板は剛直で、水平方向に自在にチルトできる構造になつ ていることが好ましぐ吸着板の平坦度は 5 m以下が好ましい。本発明により、基板 の把持による変化量は予めプログラムを記録したコンピュータ読み取り可能な記録媒 体でシミュレーションを行うことができる力もである。吸着板のチルト機構につ!、ては 必ずしも必要はなぐ吸着板の精度の影響や基板の把持によって発生する応力によ る変化量も予めプログラムを記録したコンピュータ読み取り可能な記録媒体でシミュ レーシヨンを行うことが可能で、またチルト角度による影響もシミュレーションできる。
[0041] また、フォトマスク基板の下側に設置される露光される側の所謂マザ一ガラスは、厚 さ 0. 5mn!〜 1. 2mmで、かつ厚み誤差が 100 m以内のガラス板を用いることがで きる。なお、マザ一ガラスをチャックするステージは、平坦度を 20 m以内、好ましく は 5 /z m以内に仕上げたものを使用することができる。
[0042] その後、フォトマスク基板とマザ一ガラスとの間隔(プロキシミティギャップ)を、レー ザ一変位計によりほぼ全域にわたって測定する。得られるプロキシミティギャップは、 長辺各 4cm幅以外の全域において、平均 50〜: LOO mであり、ギャップ誤差は 0〜 50 μ m、好ましくは 0〜: LO μ mである。 [0043] なお、本発明の露光方法は、フォトマスク基板とマザ一ガラスとを非接触の状態で 露光する露光方法なら、他の露光方法 (ミラープロジ クシヨン方式又はレンズプロジ ェクシヨン方式)にも適用可能である。この場合、プロキシミティギャップではないが、こ れらの方式も従来力 フォトマスク基板の自重橈みの補正を露光装置側で行って ヽ たため、本発明のガラス基板カゝら形成されるフォトマスク基板を使用することにより、 当然露光装置側の補正負担が低減又は省略できることが予想される。
[0044] このように、本発明によれば、ガラス基板の厚みに対してそれぞれのガラス基板自 重橈みを計算し、予め橈み分だけ逆に変形させた形状にするため、従来の問題を一 挙に解決することができる。また、ガラス基板の厚みを従来より薄く作ることも可能であ る。例えば、 830 X 960 X lOmmtの自重橈み量は 4辺単純支持の条件で材料力学 的計算をすると 89 μ m、 830 X 960 X 8mmtなら 139 μ m、 830 X 960 X 6mmtなら mとなる。この橈み分だけ予め使用される面 (露光時には下側になる面)を垂 直時に凹形状に創生すれば水平時に高平坦になることになり、薄い基板でも事実上 は露光時に平坦度を得ることが可能である。これは、現在 TFT液晶用マスク基板は 高価な合成石英ガラスが主に使用されているが、以上の理由でマスク用ガラス基板 を薄くできる分、基板コストを下げることにも繋がる。
[0045] また、本発明の大型ガラス基板カゝら形成されるフォトマスク基板を用いて露光すると 、プロキシミティギャップを小さくできると共に、均一化することができるため、プロキシ ミティギャップの制御を容易に行うことができる。これにより露光生産枚数を増加させ ることが可能となり、効率よくマザ一ガラスを露光することができる。更に、本発明の大 型ガラス基板力も形成されるフォトマスク基板を用いて投影露光した場合には、基板 橈みによる光軸のズレを補正する制御が容易になる。
実施例
[0046] 以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実 施例に制限されるものではない。なお、以下の例で、平坦度は特にことわらない限り 、表面平坦度を意味する。また、平坦度及び平行度の測定には、黒田精工社製のフ ラットネステスター (FTT— 1500)を用い、基板材料を垂直に保持して行った。
[0047] [実施例 1] サイズ 330 X 450mm (対角長:約 558mm)、厚さ 5. 3mmの合成石英ガラス基板 材料を不二見研磨材 (株)製 GC # 600を用いて、遊星運動を行う両面ラップ装置で 平坦化加工を行い、基板材料 (原料基板)を準備した。このときの基板材料 (原料基 板)精度は、垂直保持で測定し、その結果は、表面平坦度が 22 /z m (表面平坦度 Z 対角長: 39 X 10— 6)、裏面平坦度が 25 m、平行度は 3 mであり、中央部分が最 小 2乗平面に対して高 、形状となって!/、た。
次に、平坦化加工を行って得られた厚み 5mmの基板材料を水平保持した際の支 持位置力も材料力学的に計算される自重橈み量を算出する。そして、予めサンプル ガラス基板材料を用いて実際に露光装置に支持した際の変化量と、このサンプルガ ラス基板材料とサンプルマザ一ガラスを定盤に載置したときのプロキシミティギャップ のバラツキから基板変形及び定盤の精度歪みを考慮して、加工すべきガラス基板材 料における加工量を求めた結果、垂直時における表面が 11 mだけ凹になるように 、同時に、裏面が 11 mだけ凸になるように、更に上記垂直時に測定した表裏面の 凹凸と厚みバラツキ量と、更にその後両面研磨機でおよそ両面で 50 m研磨除去 する時に変化する平坦度及び平行度も併せて考慮し、各部分の必要十分な変形修 正加工除去量を決定し、以下に示す加工ツールにて移動速度を除去量に応じて制 御し、除去工程を実施した。
[0048] 具体的には、この基板材料を図 3に示す装置の基板保持台に装着した。この場合 、装置は、加工ツールにエアーで加圧できる構造のものを使用した。また、加工ツー ルは、 X、 Y軸方向に基板保持台に対してほぼ平行に移動できる構造となっている。 サンドブラストノズルは X、 Y軸方向に基板保持台に対して、ほぼ平行に移動できる 構造となっている。砲粒は不二見研磨材 (株)製 FO # 800を使用し、エアー圧力は 0 . IMPaとした。サンドブラストノズルの突出口は lmm X 40mmの長方形の形状をし たものを使用し、サンドブラストノズルと基板面との間隔は 40mmとした。
[0049] 加工方法は図 4のように X軸に平行にサンドブラストノズルを連続的に移動させ、 Y 軸方向へは 20mmピッチで移動させる方法を採った。この条件での加工速度は、予 め測定して、 300 μ mZminであった。
[0050] サンドブラストノズルの移動速度は、大型ガラス基板材料の片面及び表裏面の平坦 度をその大型ガラス基板材料を垂直保持の状態 (水平時の自重橈みが発生しな 、 状態)で正確に測定し、その垂直保持状態で得られた表裏面の平坦度及び平行度 の高さデータを元に除去するべき平坦化加工量 [ (1) ]、上記基板材料の板厚及び サイズと該基板材料より得られるフォトマスク基板を水平支持した際の支持位置から 計算される自重橈み量分を予め考慮して除去するべき量 [ (2) ]、上記フォトマスク基 板を露光装置に支持する際に発生するフォトマスク基板支持による基板変形量分を 予め考慮して除去するべき量 [ (3) ]、露光されるマザ一ガラスを支持する定盤の精 度歪み分量を予め考慮して除去するべき量 [ (4) ]、及び後工程の両面研磨又は片 面研磨における平坦度の変化を予め考慮して除去すべき量 [ (5) ]を総合的に鑑み て行ったが、基板形状で最も除去すべき量が少ない部分で 50mmZsecとし、両面 の処理を行った。
[0051] その後、基板を両面研磨装置で 50 μ m研磨後、表面の平坦度を測定したところ、 1 3 /z m (平坦度/対角長:2. 3 X 10— 5)のすり鉢状の形状であった。また、平行度は 2 IX mであった。これは例えばフォトマスク基板を水平に 4辺自由支持で露光装置に保 持した時には計算上 2 /z m (平坦度 Z対角長: 3. 6 X 10— 6)になる。よって、水平保持 で 2 μ m (平坦度 Z対角長: 3. 6 X 10"6)の平坦度を持つ基板が得られたと!ヽうことに なる。なお、平坦度と平行度の測定は黒田精エネ土製のフラットネステスターを使用し た。
[0052] 次に、得られたガラス基板を通常のフォトマスク基板の製版工程とほぼ同様の方法 により、スパッタ装置にて基板表面にクロム薄膜を設けた後、更にレジスト材料 (感光 材)を塗布し、電子ビーム装置により、描画露光して、これを現像してレジストパターン を形成した。その後、このレジストパターンをクロム薄膜のエッチング用のマスクとして 、クロム薄膜からなるパターンを作製した。
上記フォトマスク基板を基板ステージ上に水平に載せた。基板の固定は基板を水 平にした状態で上面の外周 2辺で行 、、帯幅は 4cmで多孔質のセラミック板を使用 して吸着により行った。セラミック板は剛直で、水平方向に自在にチルトできる構造に なっており、吸着板の平坦度は: mであった。
一方、フォトマスクの下側に設置された露光される側の所謂マザ一ガラスをチャック するステージは平坦度を 5 μ m以内に仕上げたものを使用し、厚さ 0. 7mmで、かつ 厚み誤差が 2 μ m以内のサイズ 300 X 400mmのガラス板を載せた。
その後、基板とマザ一ガラスとの間隔 (プロキシミティギャップ)をレーザー変位計に よりほぼ全域にわたって測定した。得られたプロキシミティギャップは各辺より 4cm以 外の全域において、最大 53 μ m、最小 47 μ mであり、ギャップ誤差は 6 μ mであった
[0053] [実施例 2]
基板材料サイズを 520 X 800mm (対角長:約 954mm)、厚さ 10. 4mmとした以外 は、実施例 1と同じように処理した。
そして、プロキシミティギャップをレーザー変位計によりほぼ全域にわたって測定し た。得られたプロキシミティギャップは各辺より各 4cm以外の全域において、最大 58 μ m、最 /Jヽ 47 μ mであり、ギャップ誤差は 11 mであった。
[0054] [実施例 3]
基板材料サイズを 850 X I, 200mm (対角長:約 1, 471mm)、厚さ 10. 4mmとし た以外は、実施例 1と同じように処理した。
そして、プロキシミティギャップをレーザー変位計によりほぼ全域にわたって測定し た。得られたプロキシミティギャップは各辺より各 4cm以外の全域において、最大 59 μ m、最小 47 μ mであり、ギャップ誤差は 12 mであった。
[0055] [実施例 4]
基板材料サイズを 1, 220 X 1 , 400mm (対角長:約 1, 857mm)、厚さ 13. 4mm とした以外は、実施例 1と同じように処理した。
そして、プロキシミティギャップをレーザー変位計によりほぼ全域にわたって測定し た。得られたプロキシミティギャップは各辺より各 4cm以外の全域において、最大 61 μ m、最小 46 μ mであり、ギャップ誤差は 15 mであった。
[0056] [比較例 1]
基板材料サイズを 850 X I, 200mm (対角長:約 1, 471mm)、厚さ 8. 4mmとし、 上記自重橈み量分を予め考慮して除去するべき量 [ (2) ]、基板変形量分を予め考 慮して除去するべき量 [ (3) ]、マザ一ガラスを支持する定盤との精度歪み分量を予 め考慮して除去するべき量 [ (4) ]は考慮せず、大型ガラス基板材料の片面及び両面 の平坦度をその大型ガラス基板材料を垂直保持の状態 (水平時の自重橈みが発生 しな!ヽ状態)で正確に測定し、その垂直保持状態で得られた表裏面の平坦度及び平 行度の高さデータを元に除去するべき量 [ (1) ]、及び後工程の両面研磨又は片面 研磨における平坦度の変化を予め考慮して除去すべき量 [ (5) ]を総合して最終的 に必要十分な表裏面の除去量及び除去部分を算出した以外は、実施例 1と同じよう に処理した。
その後、実施例 1と同様に、基板を両面研磨装置で 50 m研磨後、平坦度を測定 したところ、表面の平坦度は 4 m (平坦度 Z対角長: 2. 7 X 10— 6)であった。また、平 行度は 2 mであった。
得られた値に更に計算で得られる自重橈みを加算した値は、約 130 m (平坦度
/対角長 : 8. 8 X 10— 5)の凸形状であった。
[0057] 次に、得られたガラス基板カゝら実施例 1と同様にしてフォトマスク基板を作製し、得ら れたフォトマスク基板を実施例 1と同様に露光装置に設置し、プロキシミティギャップ をレーザー変位計によりほぼ全域にわたって測定した。得られたプロキシミティギヤッ プは各辺より各 4cm以外の全域において、最大 280 μ m、最小 120 μ mであり、ギヤ ップ誤差は 160 μ mであった。
なお、上記で測定したプロキシミティギャップは、露光装置において補正を行ってい ない。
[0058] [比較例 2]
基板材料サイズを 1, 220 X 1 , 400mm (対角長:約 1, 857mm)、厚さ 10. 4mm とした以外は、比較例 1と同じように処理した。
その後、比較例 1と同様に、基板を両面研磨装置で 50 m研磨後、平坦度を測定 したところ、表面の平坦度は 4 m (平坦度 Z対角長: 2. 2 X 10— 6)であった。また、平 行度は 2 mであった。
[0059] 次に、得られたガラス基板力も比較例 1と同様にしてフォトマスク基板を作製し、得ら れたフォトマスク基板を比較例 1と同様に露光装置に設置し、プロキシミティギャップ をレーザー変位計によりほぼ全域にわたって測定した。得られたプロキシミティギヤッ プは各辺より各 4cm以外の全域において、最大 180 μ m、最小 120 μ mであり、ギヤ ップ誤差は 60 μ mであった。
なお、上記で測定したプロキシミティギャップは、露光装置側においても補正もして 得られた値である。
[0060] 上記実施例及び比較例の加工前と後の平坦度及び平行度の測定結果をまとめて 表 1に示す。
[0061] [表 1] 加工前 加工後
水平保持時 プロキシミティギャップ 基板サイズ 平坦度 表面 (計算上)
平行度
平行度 平坦度
測定値表面平坦度
面 (.μ m) 測定値
( m) (¾面: m) 平行度 最大 最小 m) ( n m) (平坦度/ ( μ m) (μ mj (μ m) (μ m) 対角長)
実旃例 330 X450 2
22/25 3 13 2 2 53 47 6
1 X5.3 3.6X 10- 6
実施例 520 X800 2
26/30 10 23 2 2 58 47 11
2 X 10.4 2, IX 10- 15
実施例 850X 1,200 2
120/150 30 136 2 2 59 47 12
3 X 10.4 1.4X 10- 6
実施例 1,220X 1,400 2
210/220 40 243 2 2 61 46 15 4 X 13.4 1.1 X 10- 6
比較例 850X 1,200 130
100/112 30 4 2 2 280 120 160 1 X8.4 8,8 X 10- 15
比較例 1,220X 1,400 240
115/120 30 4 2 2 180 120 60 2 X 10.4 1.3 X 10- 4

Claims

請求の範囲
[1] 互いに対向する両側縁部が支持されて露光装置に取り付けられるフォトマスク基板 の下側に、これと近接して TFT液晶パネルのアレイ側又はカラーフィルター側基板 用のマザ一ガラスを配置し、上記露光装置からの光を上記フォトマスク基板を通して 上記マザ一ガラスに照射し、このマザ一ガラスを露光する方法において用いる上記フ オトマスク基板を形成するための大型ガラス基板を製造する方法であって、対角長が
500mm以上であり、厚さが 4mm以上の大型ガラス基板材料を垂直保持した状態で 得られた基板材料の表裏面の平坦度及び平行度の高さデータに基づく平坦化加工 除去量、並びに、
上記基板材料の板厚及びサイズと該基板材料より得られるフォトマスク基板を水平に 支持した際の支持位置から計算される自重橈み量分と、
上記フォトマスク基板を露光装置に支持する際に発生するフォトマスク基板支持によ る基板変形量分と、
露光されるマザ一ガラスを支持する定盤の精度歪み分と
から計算される変形修正加工除去量で上記基板材料を加工除去して、垂直保持し た際にマザ一ガラスに対向する側の表面が凹んだ断面円弧形状を有し、この大型ガ ラス基板カゝら形成されるフォトマスク基板がその互いに対向する両側縁部が上記露 光装置に支持された際に水平に保持されて、上記マザ一ガラスとこの大型ガラス基 板カゝら形成されるフォトマスク基板とのプロキシミティギャップバラツキを低減する大型 ガラス基板を得ることを特徴とするフォトマスク用大型ガラス基板の製造方法。
[2] 基板材料の平坦ィ匕及び変形修正加工後に、更に両面研磨又は片面研磨を行う後 工程を有し、上記加工除去量に上記後工程の研磨による平坦度の変化量を加えた 量の除去量で平坦化及び変形修正加工を行う請求項 1記載のフォトマスク用大型ガ ラス基板の製造方法。
[3] 加工ツールとしてサンドブラストを用いてカ卩ェ除去を行う請求項 1又は 2記載のフォ トマスク用大型ガラス基板の製造方法。
[4] 加工ツールとしてサンドブラストを用いたカ卩ェ除去方法力 定圧で行われることを特 徴とする請求項 3記載のフォトマスク用大型ガラス基板の製造方法。
[5] サンドブラストに用いられる微粒子力 酸ィ匕セリウム、酸化珪素、酸ィ匕アルミニウム又 は炭化珪素であることを特徴とする請求項 3又は 4記載のフォトマスク用大型ガラス基 板の製造方法。
[6] 基板材料及び Z又は加工ツールを移動させて、基板材料表面の任意の位置を除 去することを特徴とする請求項 1〜5のいずれか 1項記載のフォトマスク用大型ガラス 基板の製造方法。
[7] 互いに対向する両側縁部が支持されて露光装置に取り付けられるフォトマスク基板 の下側に、これと近接して TFT液晶パネルのアレイ側又はカラーフィルター側基板 用のマザ一ガラスを配置し、上記露光装置からの光を上記フォトマスク基板を通して 上記マザ一ガラスに照射し、このマザ一ガラスを露光する方法において用いる上記フ オトマスク基板を形成するための大型ガラス基板であって、対角長が 500mm以上で あり、厚さが 4mm以上の大型ガラス基板材料を垂直保持した状態で得られた基板材 料の表裏面の平坦度及び平行度の高さデータに基づく平坦化加工除去量、並びに 上記基板材料の板厚及びサイズと該基板材料より得られるフォトマスク基板を水平に 支持した際の支持位置から計算される自重橈み量分と、
上記フォトマスク基板を露光装置に支持する際に発生するフォトマスク基板支持によ る基板変形量分と、
露光されるマザ一ガラスを支持する定盤の精度歪み分と
から計算される変形修正加工除去量で上記大型ガラス基板材料を加工除去すること によって得られ、垂直保持した際にマザ一ガラスに対向する側の表面が凹んだ断面 円弧形状を有し、この大型ガラス基板カゝら形成されるフォトマスク基板がその互いに 対向する両側縁部が上記露光装置に支持された際に水平に保持されて、上記マザ 一ガラスとこの大型ガラス基板カゝら形成されるフォトマスク基板とのプロキシミティギヤ ップバラツキを低減することを特徴とするフォトマスク用大型ガラス基板。
[8] 上記大型ガラス基板が、水平保持した時に表面平坦度 Z対角長が 4. 8 X 10— 5以 下の表面平坦度を有するものである請求項 7記載のフォトマスク用大型ガラス基板。
[9] 対角長が 825mm以下であり、厚さが 3mm以上 6mm未満である請求項 7又は 8記 載のフォトマスク用大型ガラス基板。
[10] 対角長力 00〜1650mmであり、厚さが 6〜: L lmmである請求項 7又は 8記載のフ オトマスク用大型ガラス基板。
[11] 対角長力 l800〜2150mmであり、厚さが 9〜16mmである請求項 7又は 8記載の フォトマスク用大型ガラス基板。
[12] 対角長力 2151〜3000mmであり、厚さが 9〜20mmである請求項 7又は 8記載の フォトマスク用大型ガラス基板。
[13] 互いに対向する両側縁部が支持されて露光装置に取り付けられるフォトマスク基板 の下側に、これと近接して TFT液晶パネルのアレイ側又はカラーフィルター側基板 用のマザ一ガラスを配置し、上記露光装置からの光を上記フォトマスク基板を通して 上記マザ一ガラスに照射し、このマザ一ガラスを露光する方法において、上記フォト マスク基板として、対角長が 500mm以上であり、厚さが 4mm以上の大型ガラス基板 材料を垂直保持した状態で得られた基板材料の表裏面の平坦度及び平行度の高さ データに基づく平坦化加工除去量、並びに、
上記基板材料の板厚及びサイズと該基板材料より得られるフォトマスク基板を水平に 支持した際の支持位置から計算される自重橈み量分と、
上記フォトマスク基板を露光装置に支持する際に発生するフォトマスク基板支持によ る基板変形量分と、
露光されるマザ一ガラスを支持する定盤の精度歪み分と
から計算される変形修正加工除去量で上記大型ガラス基板材料を加工除去すること によって得られ、垂直保持した際にマザ一ガラスに対向する側の表面が凹んだ断面 円弧形状を有する大型ガラス基板から形成され、上記露光装置に互いに対向する両 側縁部が支持された際に水平に保持されるフォトマスク基板を用いて、上記マザーガ ラスと該フォトマスク基板とのプロキシミティギャップバラツキを低減することを特徴とす るマザ一ガラスの露光方法。
[14] 上記大型ガラス基板が、水平保持した時に表面平坦度 Z対角長が 4. 8 X 10— 5以 下の表面平坦度を有するものである請求項 13記載のマザ一ガラスの露光方法。
[15] 互いに対向する両側縁部が支持されて露光装置に取り付けられるフォトマスク基板 の下側に、これと近接して TFT液晶パネルのアレイ側又はカラーフィルター側基板 用のマザ一ガラスを配置し、上記露光装置からの光を上記フォトマスク基板を通して 上記マザ一ガラスに照射し、このマザ一ガラスを露光する方法において用いるフォト マスク基板を形成する対角長が 500mm以上であり、厚さが 4mm以上のフォトマスク 用大型ガラス基板を製造する工程を記録する記録媒体であって、
対角長が 500mm以上であり、厚さが 4mm以上の大型ガラス基板材料を垂直保持し た状態で得られた基板材料の表裏面の平坦度及び平行度の高さデータに基づく平 坦化加工除去量を計算するステップ、
この平坦化加工除去量に上記基板材料の板厚及びサイズと該基板材料より得られる フォトマスク基板を水平に支持した際の支持位置力 計算される自重橈み量分と、上 記フォトマスク基板を露光装置に支持する際に発生するフォトマスク基板支持による 基板変形量分と、露光されるマザ一ガラスを支持する定盤の精度歪みとから変形修 正加工除去量を計算するステップ、
上記平坦化加工除去量及び変形修正加工除去量に基づいて該量を加工除去して 平坦ィ匕及び変形修正加工を行うことを装置に命令を出すステップ
をコンピュータに実行させるためのプログラムを記録したコンピュータ読み取り可能な 記録媒体。
基板材料の平坦ィ匕及び変形修正加工後に、更に両面研磨又は片面研磨を行う後 工程を有し、上記加工除去量に上記後工程の研磨による平坦度の変化量を加えた 量の除去量を計算するステップを更に有する請求項 15記載のコンピュータ読み取り 可能な記録媒体。
PCT/JP2006/311723 2005-06-17 2006-06-12 フォトマスク用大型ガラス基板及びその製造方法、コンピュータ読み取り可能な記録媒体、並びにマザーガラスの露光方法 WO2006134855A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/587,902 US7608542B2 (en) 2005-06-17 2006-06-12 Large-size glass substrate for photomask and making method, computer-readable recording medium, and mother glass exposure method
EP06766585A EP1829836B1 (en) 2005-06-17 2006-06-12 Method for preparing a large glass substrate for a photomask, method for exposing a mother glass, and computer readable recording medium
CN2006800002176A CN101006021B (zh) 2005-06-17 2006-06-12 大型玻璃基板及其制造方法、以及母玻璃曝光方法

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005178145 2005-06-17
JP2005-178145 2005-06-17
JP2005346118 2005-11-30
JP2005-346118 2005-11-30
JP2006159194A JP4362732B2 (ja) 2005-06-17 2006-06-08 フォトマスク用大型ガラス基板及びその製造方法、コンピュータ読み取り可能な記録媒体、並びにマザーガラスの露光方法
JP2006-159194 2006-06-08

Publications (1)

Publication Number Publication Date
WO2006134855A1 true WO2006134855A1 (ja) 2006-12-21

Family

ID=37532217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311723 WO2006134855A1 (ja) 2005-06-17 2006-06-12 フォトマスク用大型ガラス基板及びその製造方法、コンピュータ読み取り可能な記録媒体、並びにマザーガラスの露光方法

Country Status (7)

Country Link
EP (1) EP1829836B1 (ja)
JP (1) JP4362732B2 (ja)
KR (1) KR100911302B1 (ja)
CN (1) CN101006021B (ja)
MY (1) MY142230A (ja)
TW (1) TW200700342A (ja)
WO (1) WO2006134855A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2146244A1 (en) * 2007-05-09 2010-01-20 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
CN102169286A (zh) * 2010-01-29 2011-08-31 Hoya株式会社 掩模板用基板、掩模板、转印用掩模的制造方法
US11591260B2 (en) * 2017-05-08 2023-02-28 Shin-Etsu Chemical Co., Ltd. Large-size synthetic quartz glass substrate, evaluation method, and manufacturing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151916A (ja) 2006-12-15 2008-07-03 Shin Etsu Chem Co Ltd 大型フォトマスク基板のリサイクル方法
KR101343292B1 (ko) * 2011-04-12 2013-12-18 호야 가부시키가이샤 포토마스크용 기판, 포토마스크 및 패턴 전사 방법
JP5937873B2 (ja) 2011-04-13 2016-06-22 Hoya株式会社 フォトマスク用基板セット、フォトマスクセット、及びパターン転写方法
JP5937409B2 (ja) * 2011-04-13 2016-06-22 Hoya株式会社 フォトマスク用基板、フォトマスク、フォトマスクの製造方法、及びパターン転写方法
JP5481755B2 (ja) * 2011-05-06 2014-04-23 レーザーテック株式会社 反り測定装置、及び反り測定方法
JP5497693B2 (ja) * 2011-06-10 2014-05-21 Hoya株式会社 フォトマスク基板、フォトマスク基板の製造方法、フォトマスクの製造方法、及びパターン転写方法
JP6293041B2 (ja) 2014-12-01 2018-03-14 信越化学工業株式会社 ペリクルフレームおよびこれを用いたペリクル
KR101684571B1 (ko) * 2015-05-27 2016-12-08 티피에스 주식회사 포토 마스크 제조방법
JP6668066B2 (ja) * 2015-12-18 2020-03-18 Hoya株式会社 マスクブランク用基板の製造方法、マスクブランクの製造方法及び露光用マスクの製造方法
CN107265880B (zh) * 2017-06-26 2020-01-03 信利光电股份有限公司 一种防眩光玻璃镀膜方法
CN111596483B (zh) * 2020-05-13 2022-09-09 安徽帝显电子有限公司 一种变色液晶导光膜及其生产方法
US20230212056A1 (en) * 2022-01-06 2023-07-06 Cardinal Ig Company Self-correcting haze parameters in a glass tempering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318450A (ja) * 2001-04-20 2002-10-31 Shin Etsu Chem Co Ltd フォトマスク用ガラス基板及びその製造方法
JP2003186199A (ja) * 2001-12-14 2003-07-03 Hitachi Electronics Eng Co Ltd 露光装置
EP1333313A1 (en) 2002-01-31 2003-08-06 Shin-Etsu Chemical Co., Ltd. Large-sized substrate and method of producing the same
JP2003292346A (ja) 2002-01-31 2003-10-15 Shin Etsu Chem Co Ltd 大型基板及びその製造方法
JP2004359544A (ja) 2002-01-31 2004-12-24 Shin Etsu Chem Co Ltd 大型基板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02224219A (ja) * 1988-11-01 1990-09-06 Dainippon Printing Co Ltd 大型基板のギャップ精度管理方法
JP2000218481A (ja) 1999-01-27 2000-08-08 Nippon Sheet Glass Co Ltd ガラス板表面の筋状凹凸の除去方法および筋状凹凸を減じたガラス板
US6126524A (en) * 1999-07-14 2000-10-03 Shepherd; John D. Apparatus for rapid repetitive motion of an ultra high pressure liquid stream
US6489241B1 (en) * 1999-09-17 2002-12-03 Applied Materials, Inc. Apparatus and method for surface finishing a silicon film
JP4219718B2 (ja) * 2003-03-28 2009-02-04 Hoya株式会社 Euvマスクブランクス用ガラス基板の製造方法及びeuvマスクブランクスの製造方法
JP4206850B2 (ja) * 2003-07-18 2009-01-14 信越化学工業株式会社 露光用大型合成石英ガラス基板の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002318450A (ja) * 2001-04-20 2002-10-31 Shin Etsu Chem Co Ltd フォトマスク用ガラス基板及びその製造方法
JP2003186199A (ja) * 2001-12-14 2003-07-03 Hitachi Electronics Eng Co Ltd 露光装置
EP1333313A1 (en) 2002-01-31 2003-08-06 Shin-Etsu Chemical Co., Ltd. Large-sized substrate and method of producing the same
JP2003292346A (ja) 2002-01-31 2003-10-15 Shin Etsu Chem Co Ltd 大型基板及びその製造方法
JP2004359544A (ja) 2002-01-31 2004-12-24 Shin Etsu Chem Co Ltd 大型基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1829836A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2146244A1 (en) * 2007-05-09 2010-01-20 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate manufacturing method, photomask, and exposure method using photomask
EP2146244A4 (en) * 2007-05-09 2010-04-28 Nikon Corp FOTOMASKENSUBSTRAT, ELEMENT FOR FORMING A FOTOMASKENSUBSTRATS, METHOD FOR THE PRODUCTION OF A FOTOMASKE, FOTOMASKE AND EXPOSURE PROCESSES WITH THE FOTOMASKE
US8153336B2 (en) 2007-05-09 2012-04-10 Nikon Corporation Photomask substrate, photomask substrate forming member, photomask substrate fabricating method, photomask, and exposing method that uses the photomask
CN101681092B (zh) * 2007-05-09 2012-07-25 株式会社尼康 光罩用基板、光罩用基板的成形构件、光罩用基板的制造方法、光罩、及使用光罩的曝光方法
CN102169286A (zh) * 2010-01-29 2011-08-31 Hoya株式会社 掩模板用基板、掩模板、转印用掩模的制造方法
US11591260B2 (en) * 2017-05-08 2023-02-28 Shin-Etsu Chemical Co., Ltd. Large-size synthetic quartz glass substrate, evaluation method, and manufacturing method

Also Published As

Publication number Publication date
KR20060132497A (ko) 2006-12-21
JP2007176782A (ja) 2007-07-12
EP1829836A4 (en) 2011-10-26
TWI365176B (ja) 2012-06-01
KR100911302B1 (ko) 2009-08-11
EP1829836A1 (en) 2007-09-05
CN101006021B (zh) 2010-08-18
MY142230A (en) 2010-11-15
EP1829836B1 (en) 2013-01-16
CN101006021A (zh) 2007-07-25
JP4362732B2 (ja) 2009-11-11
TW200700342A (en) 2007-01-01

Similar Documents

Publication Publication Date Title
WO2006134855A1 (ja) フォトマスク用大型ガラス基板及びその製造方法、コンピュータ読み取り可能な記録媒体、並びにマザーガラスの露光方法
RU2458378C2 (ru) Повторное использование крупноразмерной подложки фотошаблона
US7608542B2 (en) Large-size glass substrate for photomask and making method, computer-readable recording medium, and mother glass exposure method
KR100787350B1 (ko) 대형 합성 석영 유리 기판의 제조 방법
US7183210B2 (en) Method for preparing large-size substrate
KR101319743B1 (ko) 포토마스크 기판, 포토마스크 기판의 제조 방법, 포토마스크의 제조 방법 및 패턴 전사 방법
JP4267333B2 (ja) 大型合成石英ガラス基板の製造方法
JP2007057638A (ja) 面取り大型基板及びその製造方法
JP2007199434A (ja) プロキシミティ方式の露光方法とそれに用いられるマスク基板、および該マスク基板の作製方法
JP2005262432A (ja) 大型基板の製造方法
JP5231918B2 (ja) マスクブランク用基板の製造方法、及び両面研磨装置
JP4340893B2 (ja) 大型基板の製造方法
KR100809825B1 (ko) 합성 석영 유리 기판
JP2017111371A (ja) マスクブランク用基板の製造方法、マスクブランクの製造方法及び露光用マスクの製造方法
JP4258620B2 (ja) サンドブラストによる基板加工方法
JPH02224219A (ja) 大型基板のギャップ精度管理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006766585

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11587902

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680000217.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 7552/DELNP/2006

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2006145448

Country of ref document: RU

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2006766585

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE