WO2006134775A1 - 電子回路 - Google Patents

電子回路 Download PDF

Info

Publication number
WO2006134775A1
WO2006134775A1 PCT/JP2006/310917 JP2006310917W WO2006134775A1 WO 2006134775 A1 WO2006134775 A1 WO 2006134775A1 JP 2006310917 W JP2006310917 W JP 2006310917W WO 2006134775 A1 WO2006134775 A1 WO 2006134775A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
functional
electronic circuit
permission
functional device
Prior art date
Application number
PCT/JP2006/310917
Other languages
English (en)
French (fr)
Inventor
Takayuki Sasaki
Yoichi Nishida
Ryuji Fuchikami
Koichi Hotta
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006134775A1 publication Critical patent/WO2006134775A1/ja

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/324Power saving characterised by the action undertaken by lowering clock frequency
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/32Means for saving power
    • G06F1/3203Power management, i.e. event-based initiation of a power-saving mode
    • G06F1/3234Power saving characterised by the action undertaken
    • G06F1/3296Power saving characterised by the action undertaken by lowering the supply or operating voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to an electronic circuit that suppresses heat generation and prevents malfunction due to heat generation and influence on surroundings.
  • an electronic circuit may malfunction due to heat generation.
  • the temperature of the functional device included in the electronic circuit is estimated and the operation of the functional device is controlled.
  • Patent Document 1 discloses a technology that uses the number of operations per unit time of a functional device (hereinafter referred to as “activity ratio”) as means for estimating the temperature of the functional device.
  • Patent Document 1 when the activity ratio of a certain functional device is greater than or equal to a predetermined value, the clock frequency and voltage supplied to the functional device are reduced, and an increase in heat generation is suppressed.
  • the estimation of the temperature of the functional device based on the activity ratio has a problem that the deviation from the actually measured temperature is often large. In particular, even if there is a contribution to the device temperature due to heat conduction, such as the peripheral circuit of the functional device whose activation rate is to be measured, it cannot be estimated with the activation rate.
  • the active rate is high, so that there is a problem that the supplied clock frequency and voltage are reduced and the processing speed becomes slow.
  • Patent Document 1 JP-A-10-133789
  • the present invention measures the device temperature of the functional device, and controls whether the functional device can be used, the clock frequency supplied to the functional device, and the supply voltage based on the device temperature, thereby generating heat.
  • An object of the present invention is to provide an electronic circuit with reduced noise.
  • An electronic circuit according to a first invention includes a processor and a functional device used by the processor.
  • a reception unit that accepts a use request that is output when the processor uses a functional device, a temperature measurement unit that measures the device temperature of the functional device, and a reception unit that receives a device temperature that is equal to or lower than a predetermined first temperature.
  • a permission unit is provided that outputs permission for use requests accepted.
  • the electronic circuit according to the second invention includes a temperature sensor provided in the functional device.
  • the device temperature can be easily measured. Device temperature is measured directly.
  • the first temperature is a durable temperature of the functional device.
  • the criteria for determining the permission to use the functional device are clarified, and excessive heat generation is appropriately prevented.
  • the endurance temperature of the functional device becomes the criterion for permission to use, the permission to use is output only within the framework in which the operation of the functional device is guaranteed.
  • the permission unit suspends the use permission when the device temperature exceeds the first temperature.
  • the permission unit compares the device temperature with the first temperature after a predetermined time when the use permission is retained. Determine permission for use request. [0019] With this configuration, permission for the pending use request is again determined by comparison with the device temperature.
  • the electronic circuit in addition to the first invention, the electronic circuit further includes a control unit that controls at least one of a supply voltage to the functional device and a frequency of the clock signal. .
  • the control unit when the device temperature exceeds the first temperature, the control unit reduces the supply voltage to the functional device.
  • the control unit controls the frequency of the clock signal supplied to the functional device. Reduce.
  • the processor uses the setting information possessed at the time of receiving the use permission to operate the functional device corresponding to the use permission. Set up.
  • the processor uses at least one of the plurality of functional devices Reception that accepts usage requests output to ,
  • a temperature measurement unit that measures the device temperature of each of the multiple functional devices, and permission to output a use permission in response to a use request accepted by the accepting unit when the device temperature is equal to or lower than a predetermined first temperature
  • the permission unit selects a function device to which the use permission is given according to the priority and outputs the use permission.
  • a temperature measurement unit that measures the device temperature of each of the plurality of functional devices, the overall temperature of the plurality of functional devices, and the usage request received by the reception unit based on the device temperature and the overall temperature.
  • a permission unit that outputs a use permission and a control unit that controls at least one of a supply voltage to a plurality of functional devices and a frequency of a clock signal based on the device temperature and the overall temperature are provided.
  • the heat generation state of the entire functional device is also grasped, and the heat generation state of the entire electronic circuit is grasped. Furthermore, excessive heat generation of the entire electronic circuit is prevented. In particular, it is controlled to suppress heat generation in response to the heat generation state of the entire functional device.
  • the control unit when the overall temperature exceeds the predetermined second temperature, supplies the supply voltage and the clock signal to the plurality of functional devices. Reducing at least one of the frequencies.
  • the control unit when the overall temperature exceeds the second temperature, the control unit has a predetermined device temperature among the plurality of functional devices. Reduce at least one of the supply voltage and clock signal frequency for functional devices above 1 temperature.
  • the control unit when the overall temperature exceeds the second temperature, the control unit has a function device having a higher device temperature among the plurality of function devices. In order from the vice, at least one of the supply voltage and the frequency of the clock signal is reduced.
  • each of the plurality of functional devices has a different priority when used by the processor, and the overall temperature exceeds the second temperature.
  • the control unit reduces at least one of the supply voltage and the frequency of the clock signal in order of increasing priority among the plurality of functional devices.
  • the heat generation state of the functional device can be grasped more directly by using the device temperature.
  • the overall temperature of the plurality of functional devices is also taken into consideration, thereby preventing malfunction of the electronic circuit due to excessive heat generation.
  • FIG. 1 is a block diagram of an electronic circuit according to the first embodiment of the present invention.
  • ⁇ 2 Diagram showing measurement of device temperature in Embodiment 1 of the present invention
  • ⁇ 3 Diagram showing measurement of device temperature in Embodiment 1 of the present invention
  • FIG. 1 is a block diagram of an electronic circuit according to the first embodiment of the present invention.
  • the electronic circuit 1 includes a processor 2, a functional device 3, a temperature measurement unit 6, a reception unit 7, and a permission unit 8. First, details of each unit will be described.
  • the processor 2 controls the entire electronic circuit 1. Further, the processor 2 uses the functional device 3 to execute necessary arithmetic processing according to the program.
  • the processor 2 includes all circuits that operate in accordance with a program, such as a microprocessor and a digital 'signal' processor (hereinafter "DSP" t).
  • a program such as a microprocessor and a digital 'signal' processor (hereinafter "DSP" t).
  • Each functional device 3 is a block having an arbitrary function used from the processor 2 and executes predetermined computations and processes.
  • Examples of functional device 3 include an arithmetic circuit such as a multiplier, a direct “memory” access ”controller (hereinafter referred to as“ DMA controller ”), an image compression circuit, and a communication interface.
  • DMA controller direct “memory” access ”controller
  • image compression circuit an image compression circuit
  • the functional device may be an independent individual electronic component mounted on a circuit board which may be a part of blocks included in the LSI.
  • the electronic circuit 1 may include a plurality of functional devices 3 or a single functional device 3.
  • the electronic circuit includes both a single semiconductor integrated circuit such as an IC or LSI and an entire circuit board on which a plurality of electronic components including the semiconductor integrated circuit are mounted.
  • the processor 2 outputs a use request 9 when performing a predetermined calculation using the functional device 3.
  • the processor 2 actually starts using the functional device 3 after receiving the usage permission 10 for the usage request 9.
  • the temperature measuring unit 6 measures the device temperature 11 of each functional device 3.
  • the device temperature 11 is the actual temperature of each functional device 3, and represents the heat generation state of the functional device 3 as the temperature.
  • the temperature measuring unit 6 may measure each device temperature 11 of the functional device 3 or may measure only a part of the device temperature 11.
  • the temperature measurement unit 6 outputs the measured device temperature 11 to the permission unit 8.
  • the temperature measuring unit 6 measures the device temperatures of all the functional devices 3 included in the electronic circuit 1 that may measure the device temperature 11 of only the functional device 3 corresponding to the use request 9 from the processor 2. 11 may be measured. The temperature measurement unit 6 may measure the device temperature 11 at regular time intervals only when the use request 9 is generated. [0061] Measurement of the device temperature is realized by a temperature sensor or the like provided in the electronic circuit as shown in FIG. 2 and FIG.
  • FIG 2 and 3 are diagrams showing measurement of device temperature in the first embodiment of the present invention.
  • one temperature sensor 20 is provided for the functional device 3.
  • the temperature sensor 20 is provided near the center of the functional device 3.
  • the temperature sensor 20 may be attached to the functional device 3 or may be brought into contact therewith. Further, when the temperature sensor 20 measures the temperature by emitting infrared rays, the temperature sensor 20 and the function device 3 may be non-contact.
  • the temperature measurement unit 6 that has received the signal from the temperature sensor 20 measures the device temperature 11 of the functional device 3 and outputs the result to the permission unit 8.
  • two temperature sensors 20 are provided for the functional device 3. The average value of the measurement by the two temperature sensors 20 is calculated, and the device temperature 11 with higher accuracy is measured. In FIG. 3, two temperature sensors 20 are shown as an example, and three or more temperature sensors 20 may be used.
  • the plurality of temperature sensors 20 be arranged in a distributed manner in the functional device 3 that attempts to measure the device temperature.
  • Force such as average value When calculating the device temperature 11, it is the force that can achieve more accurate measurement.
  • a temperature sensor 20 is provided for each of the functional devices 3, and the device temperature 11 is measured by the temperature measuring unit 6.
  • an apparatus capable of measuring the device temperature 11 may be used.
  • the accepting unit 7 accepts the use request 9 from the processor 2.
  • the processor 2 outputs a use request 9 in advance when performing arithmetic processing using the functional device 3. This is because the function device 3 is prevented from overheating only when the use request 9 is output and the use permission 10 is obtained, so that the function device 3 is used.
  • the receiving unit 7 receives the use request 9 and outputs it to the permission unit 8.
  • the processor 2 When there are a plurality of functional devices 3 to be used, the processor 2 outputs a plurality of usage requests 9, so the receiving unit 7 receives the plurality of usage requests 9 and outputs them to the permission unit 8.
  • permission unit 8 determines permission for use request 9 and outputs use permission 10 to processor 2.
  • the permission unit 8 determines permission for the use request 9 based on the device temperature 11 output from the temperature measurement unit 6. Specifically, the permission unit 8 compares the device temperature 11 with a predetermined first temperature, and outputs a use permission 10 when the device temperature 11 is equal to or lower than the first temperature.
  • the first temperature may be different for each functional device 3 as long as it is arbitrarily determined. Further, the first temperature for each functional device 3 may be a fixed value or a variable value.
  • the durable temperature is a temperature at which the functional device 3 operates without causing malfunction.
  • the permission unit 8 determines that a certain use request 9 is not permitted, the permission unit 8 holds the use request 9.
  • the permission unit 8 may include a holding unit configured with a register, a memory, and the like.
  • the permission unit 8 again determines permission Z not permitted after a predetermined time has elapsed.
  • the temperature measurement unit 6 again measures the device temperature 11 of the target functional device 3 and outputs the device temperature 11 to the permission unit 8.
  • the permission unit 8 compares the newly measured device temperature 11 with the first temperature again, and outputs a use permission 10 to the processor 2 if it is equal to or lower than the first temperature.
  • the processor 2 that obtains the use permission 10 from the permission unit 8 uses the functional device 3.
  • the electronic circuit 1 includes the above-described elements, and each element has the above-described function and configuration.
  • FIG. 4 is an operation flowchart of electronic circuit 1 according to Embodiment 1 of the present invention.
  • step 1 the process is started.
  • step 2 the processor 2 outputs a use request 9 to the reception unit 7.
  • step 3 the accepting unit 7 accepts the use request 9.
  • the temperature measurement unit 6 measures the device temperature 11 of the functional device 3 subject to the use request 9 in step 4.
  • step 5 permission unit 8 compares device temperature 11 with an arbitrarily determined first temperature.
  • the permission unit 8 determines permission in response to the use request 9 in Step 6 and outputs use permission 10.
  • the permission unit 8 determines the non-permission and holds the output of the use permission 10 in step 7. To do.
  • step 8 After an arbitrary time elapses after the hold, in step 8, the temperature measuring unit 6 measures the device temperature 11 again. Based on the new device temperature 11, the permission unit 8 again compares the device temperature 11 with the first temperature in step 10.
  • the permission unit 8 If the device temperature 11 is equal to or lower than the first temperature, the permission unit 8 outputs a use permission 10 to the processor 2, and the process ends in step 12.
  • step 10 the processing from step 7 is repeated.
  • the processor 2 that has received the use permission 10 starts using the functional device 3 related to the use request 9. At this time, the processor 2 performs necessary operation settings for the functional device to be used. The processor 2 has setting information used for this operation setting.
  • This setting information may change over time.
  • Target functional device The setting information changes due to internal factors due to changes in the operating status of functional devices other than 3, and external factors due to changes in external requests. For this reason, the setting information requested by the processor 2 may change depending on the time difference between when the usage request 9 is output and when the usage permission 10 is received.
  • the processor 2 performs operation setting for the functional device 3 corresponding to the use permission by using the changed setting information that is provided when the use permission 10 is received.
  • the processor 2 starts to use the functional device 3 after setting the operation.
  • the clock frequency and the supply voltage to the functional device are controlled based on the measurement of the device temperature.
  • FIG. 5 is a block diagram of an electronic circuit according to the second embodiment of the present invention.
  • the electronic circuit 1 includes a control unit 50 in addition to the configuration of FIG.
  • the control unit 50 controls at least one of the frequency of the clock signal to the functional device 3 and the supply voltage.
  • the control unit 50 receives the device temperature 11 measured by the temperature measurement unit 6 and controls the frequency and supply voltage of the clock signal to the functional device 3. For example, when the device temperature 11 of a certain functional device 3 exceeds a predetermined temperature (for example, a first temperature that is determined by the endurance temperature of the functional device, for example), the frequency of the clock signal and the supply voltage Reduce at least one. When the frequency of the clock signal to functional device 3 is reduced In this case, as the power consumption decreases, the device temperature 11 also decreases. Similarly, when the supply voltage to the functional device 3 is reduced, the device temperature 11 also decreases as the power consumption decreases.
  • a predetermined temperature for example, a first temperature that is determined by the endurance temperature of the functional device, for example
  • whether to control the deviation of the frequency of the clock signal and the supply voltage may be determined according to the operation specifications of the function device 3.
  • the functional device 3 has a margin for the frequency of the clock signal
  • the functional voltage 3 has a margin for the operating voltage that can be reduced if the frequency of the clock signal is reduced. Need only be controlled.
  • control of the supply voltage is necessary for adjusting the device temperature 11 of the functional device 3. It is more effective than controlling the frequency of the clock signal.
  • the control unit 50 has a device temperature 11 exceeding the first temperature, and controls at least one of the supply voltage to the functional device 3 and the frequency of the clock signal, thereby allowing the passage of time. As the device temperature 11 decreases
  • the device temperature 11 decreases, the device temperature 11 measured after a predetermined time may fall below the first temperature, the pending permission is released, and the use permission 10 is output. Will be. In particular, since the device temperature 11 decreases more quickly than when the control unit 50 is left without control, the use permission 10 is released from the hold earlier.
  • FIG. 6 is an operation flowchart of electronic circuit 1 in the second embodiment of the present invention.
  • step 20 processing is started.
  • step 21 the temperature measurement unit 6 measures the device temperature 11 of the functional device 3. To do. Measurement of device temperature 11 is the same as described with reference to FIGS. The temperature measurement unit 6 outputs the measured device temperature 11 to the permission unit 8 and the control unit 50.
  • step 22 the control unit 50 compares the device temperature 11 with the first temperature. If the device temperature 11 is equal to or lower than the first temperature, the control unit 50 does not perform control in step 23.
  • step 24 the control unit 50 starts control.
  • the control unit 50 controls at least one of the frequency of the clock signal for the functional device 3 and the supply voltage.
  • step 25 the control unit 50 controls the frequency of the clock signal.
  • step 26 the controller 50 reduces the frequency of the clock signal supplied to the functional device 3. By reducing the frequency of the clock signal, the device temperature 11 of the functional device 3 is lowered. Under this control, the temperature measurement unit 6 measures the device temperature 11 of the functional device 3 again in step 27. In step 28, the control unit 50 compares the device temperature 11 with the first temperature again.
  • the control unit 50 reduces the frequency of the clock signal again. On the other hand, if the device temperature 11 is lower than the first temperature, in step 29, the control unit 50 ends the control.
  • control unit 50 controls the supply voltage in step 30.
  • the control unit 50 reduces the supply voltage to the functional device 3 in step 31.
  • the temperature measurement unit 6 measures the device temperature 11 again.
  • the control unit 50 reduces the supply voltage again in step 31.
  • the control unit 50 ends the control in step 34.
  • step 35 the process ends.
  • the first temperature to be compared with the device temperature 11 is the durable temperature of the functional device 3. However, it may be a temperature including a margin for the endurance temperature.
  • a certain amount of time is required until the device temperature falls due to the control of the supply voltage and the frequency of the clock signal by the control unit 50.
  • the first temperature includes a margin for the endurance temperature
  • the endurance temperature within a certain period of time from the start of control to the temperature decrease is determined in order to correspond to a certain period of time until this margin decreases. Excessive heat generation is prevented.
  • the functional device 3 may be an individual component such as an IC or passive element.
  • It may be a block included in an integrated circuit such as I.
  • Embodiment 3 controls the frequency and supply voltage of the clock signal to the functional device in consideration of the overall temperature of the entire functional device in addition to the individual device temperatures of the functional devices. To do.
  • the electronic circuit 1 according to the third embodiment corresponds to the case where the temperature increase of the apparatus including the electronic circuit 1 cannot be ignored due to the temperature increase of the entire plurality of functional devices.
  • FIG. 7 is a block diagram of an electronic circuit according to the third embodiment of the present invention.
  • the electronic circuit 1 includes a plurality of functional devices including a first functional device 61, a second functional device 62, and a third functional device 63.
  • the temperature measurement unit 6 measures both the device temperature 11 for each of the plurality of functional devices and the overall temperature 64 of the entire plurality of functional devices.
  • Device temperature 11 of the functional device alone is measured by the configuration shown in Fig. 2 and Fig. 3.
  • the total temperature 64 may be calculated by an average value of the total values obtained by using the total value of the device temperatures 11 measured for each of the plurality of functional devices. If an average value is used, it may be calculated by the maximum ratio average considering the circuit scale of each functional device.
  • the overall temperature 64 may be measured using a temperature sensor corresponding to the entire plurality of functional devices.
  • the temperature measuring unit 6 outputs the measured device temperature 11 and the total temperature 64 to the control unit 50.
  • the permission unit 8 outputs a use permission 10 for the use request 9 based on the device temperature 11 and the overall temperature 64.
  • the permission unit 8 compares the overall temperature 64 with a predetermined second temperature, and similarly compares the device temperature 11 with a predetermined first temperature.
  • the permission unit 8 grants the use permission 10 for the use request 9 when the overall temperature 64 is the second temperature or less and the device temperature 11 of the functional device related to the use request 9 is the first temperature or less. Output.
  • the processor 2 outputs a usage request 9 for using the first functional device 61
  • the overall temperature 64 is equal to or lower than the second temperature
  • the device temperature of the first functional device 61 is When 11 is equal to or lower than the first temperature
  • permission unit 8 outputs use permission 10.
  • the overall temperature 64 which is the temperature of the entire plurality of functional devices, is It is an indicator of the overall temperature, and putting individual functional devices into use when the overall temperature 64 is high leads to excessive heating of the entire electronic circuit 1.
  • the electronic circuit 1 according to the third embodiment if the overall temperature 64 is higher than a certain level, the electronic circuit 1 is overheated by holding the permission to use the individual functional devices. To prevent this.
  • control unit 50 temperature is reduced by control unit 50.
  • the control unit 50 compares the device temperature 11 with a predetermined first temperature for each functional device, and compares the overall temperature 64 with a predetermined second temperature.
  • the first temperature is the endurance temperature for each functional device (in FIG. 7, for each of the first functional device 61, the second functional device 62, and the third functional device 63) or a temperature determined from the endurance temperature. (For example, the temperature is determined by adding a margin to the endurance temperature).
  • a different first temperature is defined for each of the first function device 61, the second function device 62, and the third function device 63, and the control unit 50 sets the device temperature 11 for each function device individually. Compare with the first temperature of The
  • the second temperature is determined based on the allowable temperature of the device including the electronic circuit 1 or the like.
  • first temperature and the second temperature can be changed, and may be changed afterwards depending on how the electronic circuit 1 is used.
  • control unit 50 controls at least one of the frequency of the clock signal and the supply voltage for the plurality of functional devices based on the device temperature 11 and the overall temperature 64.
  • the controller 50 reduces the temperature by reducing at least one of the supply voltage and the frequency of the clock signal. That is, the control unit 50 suppresses the excessive heat generation of the entire electronic circuit 1 by suppressing the temperature increase of the functional device based on the temperature increase related to the entire electronic circuit 1.
  • the control unit 50 suppresses the temperature rise of the functional device by various controls, and prevents excessive heat generation of the entire electronic circuit 1.
  • the controller 50 supplies the frequency of the supply voltage and clock signal to the functional device whose device temperature exceeds the first temperature among the plurality of functional devices. Reduce at least one of the following.
  • FIG. 8 is a block diagram of an electronic circuit according to Embodiment 3 of the present invention.
  • the first function device 61 and the second function device 62 have the device temperature 11 exceeding the first temperature, and the device temperature 11 of the second function device 63 is Below the first temperature.
  • control unit 50 supplies the supply voltage to the first function device 61 and the second function device 62 having the device temperature 11 exceeding the first temperature and At least one of the frequencies of the clock signal is reduced.
  • the device temperature 11 depends on the power consumption, and the power consumption is proportional to the square of the supply voltage and the frequency of the clock signal. For this reason, if at least one of the supply voltage and the frequency of the clock signal is reduced, the device temperature 11 is lowered. At this time, the supply voltage The effect of the reduction is higher than the effect of reducing the frequency of the clock signal.
  • control unit 50 controls the function device having the device temperature 11 exceeding the first temperature to decrease the temperature, thereby efficiently reducing the overall temperature 64.
  • functional devices that exceed the first temperature are in an overheated state and are judged to have a high impact on the overall temperature 64, so the temperature of the functional device that exceeds the first temperature must be reduced. Is highly effective in preventing excessive heat generation and reducing the temperature of the entire electronic circuit 1.
  • control unit 50 restores the supply voltage and the frequency of the clock signal.
  • control unit 50 determines the frequency of the supply voltage and the clock signal in order from the functional device card having the highest device temperature 11 among the plurality of functional devices. Reduce at least one.
  • FIG. 9 is a block diagram of an electronic circuit according to the third embodiment of the present invention.
  • the device temperature 11 of the first functional device 61 is 100 ° C
  • the device temperature 11 of the second functional device 62 is 120 ° C
  • the device temperature of the third functional device 63 11 is 90 ° C.
  • the control unit 50 reduces at least one of the supply voltage to the second functional device 62 having the highest device temperature 11 and the frequency of the clock signal. To do.
  • the device temperature 11 of the second functional device 62 is lowered by reducing at least one of the supply voltage and the frequency of the clock signal.
  • the control unit 50 controls the first function device 61 having the highest device temperature 11 next to the second function device 62. That is, the control unit 50 reduces at least one of the supply voltage to the first function device 61 and the frequency of the clock signal. Thereby, the device temperature 11 of the first functional device 61 is lowered. Second function device Following the device temperature 11 of the device 62, the device temperature 11 of the first functional device 61 also decreases, so that the overall temperature 64 further decreases.
  • the control unit 50 controls the frequency of the supply voltage and the clock signal. End the control. If the second functional device 62 and the first functional device 61 are controlled and the overall temperature 64 continues to exceed the second temperature, the control unit 50 will control the third functional device 63. To control the temperature.
  • control unit 50 may restore the supply voltage or the frequency of the clock signal.
  • control unit 50 sets at least one of the supply voltage and the frequency of the clock signal in order of decreasing priority of the functional devices among the plurality of functional devices. To reduce.
  • FIG. 10 is a block diagram of the electronic circuit according to the third embodiment of the present invention.
  • Each of the functional devices shown in FIG. 10 has a different priority when used by processor 2.
  • the first functional device 61 has a priority of the value “2”
  • the second functional device 62 has a priority of the value “1”
  • the third functional device 63 has It has a priority of value “3”.
  • the priority is higher in the order of the second function device, the first function device, and the third function device.
  • the priority may be fixed or variable.
  • the control unit 50 reduces at least one of the lowest priority, the supply voltage to the third functional device 63, and the frequency of the clock signal. .
  • the device temperature 11 of the third functional device 63 in which at least one of the supply voltage and the frequency of the clock signal is reduced decreases.
  • the device of this third function device 63 As a result, the overall temperature 64 decreases.
  • the control unit 50 reduces at least one of the voltage supplied to the first functional device 61 having the next lowest priority and the frequency of the clock signal. By this control, the device temperature 11 of the first functional device 61 is lowered. If the temperature drop of the first function device 61 is not sufficient, the control unit 50 reduces at least one of the highest priority, the supply voltage to the second function device 62, and the frequency of the clock signal.
  • control unit 50 performs control so that the temperature decreases in order from the low-function device device with the priority.
  • the control unit 50 performs control to lower the temperature in order of functional devices with lower priority.
  • control unit 50 should restore the supply voltage or the frequency of the clock signal!
  • FIG. 11 is a block diagram of an electronic circuit according to the fourth embodiment of the present invention.
  • the electronic circuit 1 according to the fourth embodiment when there are a plurality of usage requests 9 corresponding to a plurality of functional devices, the usage permission 10 is given according to the device temperature 11 and the priority.
  • the electronic circuit 1 according to the fourth embodiment includes three functional devices (a first functional device 61, a second functional device 62, and a third functional device 63). Of course, the number may be other than 3 for a plurality of functional devices.
  • Each of the plurality of functional devices has different priorities for use by the processor 2.
  • the first functional device 61 has a priority of the value “2”
  • the second function The device 62 has a priority of “1”
  • the third functional device 63 has a priority of “3”.
  • the smaller the value the higher the priority.
  • the processor 2 outputs a use request 9 to the accepting unit 7 in using one of the first function device 61, the second function device 62, the third function device 63, or a plurality of function devices.
  • the processor 2 outputs a use request 9 covering all of the first function device 61, the second function device 62, and the third function device 63.
  • the temperature measurement unit 6 measures the device temperature 11 of each of the plurality of functional devices, and outputs the measurement result to the permission unit 8.
  • the permission unit 8 compares each device temperature 11 with a predetermined first temperature.
  • permission unit 8 that is the same as in Embodiment 1 outputs use permission 10 for use request 9 if device temperature 11 of the functional device related to use request 9 is equal to or lower than the first temperature. .
  • a plurality of usage requests 9 relating to a plurality of functional devices are output, a plurality of functional devices having a device temperature 11 equal to or lower than the first temperature are output. It may exist. In such a case, if there is a situation where the processor 2 cannot use all the functional devices, the permission unit 8 selects the functional device to which the use permission 10 is given according to the priority of the functional device. .
  • the first function device 61 and the third function device Assume that the two device temperatures 11 of 63 are equal to or lower than the first temperature (that is, the device temperature 11 of the second functional device 62 exceeds the first temperature).
  • the processor 2 functions as one functional device during the same time period. Accordingly, the permission unit 8 outputs only the use permission 10 corresponding to one functional device.
  • the viewpoint power of the device temperature 11 is narrowed down to the first function device 61 and the third function device 63.
  • the first function device 61 having the priority of the value “2” higher than the value “3” is given the use permission 10 preferentially. That is, the permission unit 8 gives the use permission 10 corresponding to the first functional device 61 to the plurality of use requests 9 in consideration of both the device temperature 11 and the priority.
  • the device temperature 1 1 is equal to or lower than the first temperature. However, the device temperature 11 of all functional devices is If the temperature is equal to or lower than 1, the use permission 10 is given to the second functional device 62 having the highest priority.
  • the permission unit 8 holds the use permission 10 for the third function device 63 and the second function device 62 on hold. After the suspension, the use permission 10 is given in the order of the third function device 63 and the second function device 62 after a predetermined time.
  • the above processing is an example, and may be appropriately determined depending on the number of functional devices or the number of functional devices to which use permission 10 is given during the same time period.
  • the use permission 10 is given according to the device temperature and priority, so that overheating of the electronic circuit 1 is prevented and the influence on the processing speed of the entire electronic circuit 1 is minimized. Can be suppressed.
  • the present invention can be suitably used, for example, in the field of electronic devices and the like that are required to reduce heat generation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Power Sources (AREA)

Abstract

 機能デバイスのデバイス温度を測定し、デバイス温度を基準として、機能デバイスの使用の可否や、機能デバイスに供給されるクロック信号の周波数や電圧を制御することで、発熱を抑えた電子回路を提供する。プロセッサ(2)と、プロセッサ(2)が使用する機能デバイス(3)と、プロセッサ(2)が機能デバイス(3)を使用する場合に出力する使用要求(9)を受け付ける受付部(7)と、機能デバイス(3)のデバイス温度(11)を測定する温度測定部(6)と、デバイス温度(11)が所定の第1の温度以下の場合に、受付部(7)で受け付けられた使用要求(9)に対して使用許可(10)を出力する許可部(8)を備える。

Description

明 細 書
電子回路
技術分野
[0001] 本発明は、発熱を抑えて、発熱による誤動作や周囲への影響を防止する電子回路 に関するものである。
背景技術
[0002] 電子機器の高性能化に伴って、電子回路は複雑かつ大規模になっている。このた め、電子回路の発熱による影響が大きくなつている。
[0003] 例えば、発熱により電子回路が誤動作を起こすことがある。
[0004] このため、電子回路の過度の発熱を防止するために、電子回路に含まれる機能デ バイスの温度を推定して、機能デバイスの動作が制御されて ヽる。
[0005] 特許文献 1は、機能デバイスの温度を推定する手段として、機能デバイスの単位時 間当たりの動作回数 (以下、「活性ィ匕率」という)を用いる技術を開示する。
[0006] 特許文献 1では、ある機能デバイスの活性ィ匕率が所定値以上の場合には、機能デ バイスに供給されるクロック周波数や電圧が低減され、発熱の上昇が抑えられる。
[0007] し力しながら、活性ィ匕率による機能デバイスの温度の推定は、しばしば実測された 温度との乖離が大きい問題があった。特に、活性化率の測定対象の機能デバイスの 周辺回路など力 伝導される熱によるデバイス温度への寄与があっても、活性ィ匕率 でこれを含めて推定することはできな 、。
[0008] このため、機能デバイスの耐久温度を超えて!/、ながら、機能デバイスへのクロック周 波数や電圧の制御が行われない問題があった。この場合には、回路の誤動作が引き 起こされる問題ちある。
[0009] 逆に、デバイス温度が十分に低いにもかかわらず、活性ィ匕率が高いために、供給さ れるクロック周波数や電圧が低減されて、処理速度が遅くなる問題もあった。
特許文献 1 :特開平 10— 133789号公報
発明の開示
発明が解決しょうとする課題 [0010] そこで本発明は、機能デバイスのデバイス温度を測定し、デバイス温度を基準とし て、機能デバイスの使用の可否や、機能デバイスに供給されるクロック周波数や供給 電圧を制御することで、発熱を抑えた電子回路を提供することを目的とする。
課題を解決するための手段
[0011] 第 1の発明に係る電子回路は、プロセッサと、プロセッサが使用する機能デバイスと
、プロセッサが機能デバイスを使用する場合に出力する使用要求を受け付ける受付 部と、機能デバイスのデバイス温度を測定する温度測定部と、デバイス温度が所定の 第 1の温度以下の場合に、受付部で受け付けられた使用要求に対して使用許可を 出力する許可部を備える。この構成により、機能デバイスの発熱状態を直接的に表 すデバイス温度を測定し、デバイス温度に基づ ヽてプロセッサによる機能デバイスの 使用許可を判定できる。結果として、過剰発熱となる場合には、機能デバイスの使用 が許可されないので、電子回路は誤り無く動作する。
[0012] 第 2の発明に係る電子回路では、第 1の発明に加えて、機能デバイスに設けられた 温度センサを備える。
[0013] この構成により、容易にデバイス温度を測定できる。また、デバイス温度は直接的に 測定される。
[0014] 第 3の発明に係る電子回路では、第 1の発明に加えて、第 1の温度は、機能デバィ スの有する耐久温度である。
[0015] この構成により、機能デバイスの使用許可を与える判断の基準が明確になり、過剰 発熱が適切に防止される。特に、機能デバイスの有する耐久温度が使用許可の基準 となることで、機能デバイスの動作が保証された枠内においてのみ、使用許可が出力 される。
[0016] 第 4の発明に係る電子回路では、第 1の発明に加えて、許可部は、デバイス温度が 第 1の温度を超える場合には、使用許可を保留する。
[0017] この構成により、機能デバイスが過剰発熱となることが未然に防止される。
[0018] 第 5の発明に係る電子回路では、第 4の発明に加えて、許可部は、使用許可を保 留した場合は、所定の時間後に、デバイス温度と第 1の温度を比較して、使用要求へ の許可を判定する。 [0019] この構成により、保留された使用要求も、再びデバイス温度との比較によって、許可 の判断がなされる。
[0020] 第 6の発明に係る電子回路では、第 1の発明に加えて、電子回路は、機能デバイス への供給電圧、及びクロック信号の周波数の少なくとも一つを制御する制御部を更 に備える。
[0021] この構成により、機能デバイスの発熱の上昇が抑えられ、更には機能デバイスの温 度が低下される。特に、使用許可が保留された機能デバイスの温度が低下されるの で、所定の時間後に使用許可が出力される可能性が高くなる。
[0022] 第 7の発明に係る電子回路では、第 6の発明に加えて、デバイス温度が第 1の温度 を超えている場合には、制御部は、機能デバイスへの供給電圧を低減する。
[0023] この構成により、機能デバイスの発熱上昇が抑えられ、更には機能デバイスの温度 が低下される。
[0024] 第 8の発明に係る電子回路では、第 6の発明に加えて、デバイス温度が第 1の温度 を超えている場合には、制御部は、機能デバイスへ供給されるクロック信号の周波数 を低減する。
[0025] この構成により、機能デバイスの発熱上昇が抑えられ、更には機能デバイスの温度 が低下される。
[0026] 第 9の発明に係る電子回路では、第 1の発明に加えて、プロセッサは、使用許可の 受信時に有している設定情報を用いて、使用許可に対応する機能デバイスへの動 作設定を行う。
[0027] この構成により、使用要求を出力して力も使用許可を受けるまでの間に、プロセッサ が要求する演算内容などの設定状態が変化した場合であっても、変化した後の設定 情報に従って、機能デバイスを動作させることができる。
[0028] この構成により、機能デバイス単体の発熱状態に加えて、機能デバイス全体の発熱 状態も把握されて、電子回路全体の発熱状態が把握される。
[0029] 第 10の発明に係る電子回路では、プロセッサと、プロセッサが使用すると共に使用 に当たっての異なる優先度を有する複数の機能デバイスと、プロセッサが複数の機 能デバイスの少なくとも一つを使用する場合に出力する使用要求を受け付ける受付 部と、複数の機能デバイスの各々のデバイス温度を測定する温度測定部と、デバイス 温度が所定の第 1温度以下の場合に、受付部で受け付けられた使用要求に対して 使用許可を出力する許可部を備え、デバイス温度が第 1の温度以下である機能デバ イスが複数である場合には、許可部は、優先度に従って、使用許可を与える機能デ バイスを選択して使用許可を出力する。
[0030] この構成により、デバイス温度の要件を充足する機能デバイスが複数ある場合であ つても、デバイス温度に加えて、優先度により使用許可の出力の判断ができる。
[0031] 第 11の発明に係る電子回路では、プロセッサと、プロセッサが使用する複数の機能 デバイスと、プロセッサが複数の機能デバイスの少なくとも一つを使用する場合に出 力する使用要求を受け付ける受付部と、複数の機能デバイスの各々のデバイス温度 と、複数の機能デバイス全体の温度である全体温度を測定する温度測定部と、デバ イス温度と全体温度に基づき、受付部で受け付けられた使用要求に対して使用許可 を出力する許可部と、デバイス温度と全体温度に基づき、複数の機能デバイスへの 供給電圧およびクロック信号の周波数の少なくとも一つを制御する制御部を備える。
[0032] この構成により、機能デバイス単体の発熱状態に加えて、機能デバイス全体の発熱 状態も把握され、電子回路全体の発熱状態が把握される。更に、電子回路全体の過 剰発熱が防止される。特に、機能デバイス全体による発熱状態に対応して、発熱を 抑えるように制御される。
[0033] 第 12の発明に係る電子回路では、第 11の発明に加えて、全体温度が所定の第 2 の温度を超える場合に、制御部は、複数の機能デバイスに対する供給電圧およびク ロック信号の周波数の少なくとも一方を低減する。
[0034] この構成により、電子回路全体の過剰発熱が防止される。特に、機能デバイス全体 による発熱状態に対応して、発熱を抑えるように制御される。
[0035] 第 13の発明に係る電子回路では、第 11の発明に加えて、全体温度が第 2の温度 を超える場合に、制御部は、複数の機能デバイスの内、デバイス温度が所定の第 1 の温度を超える機能デバイスに対する供給電圧およびクロック信号の周波数の少な くとも一方を低減する。
[0036] この構成により、電子回路全体の過剰発熱が防止される。特に、電子回路全体に 対する発熱の寄与度の高 、機能デバイスの発熱が制御されることで、発熱の制御が 効率よく実現される。
[0037] 第 14の発明に係る電子回路では、第 11の発明に加えて、全体温度が第 2の温度 を超える場合に、制御部は、複数の機能デバイスの内、デバイス温度が高い機能デ バイスから順に、供給電圧およびクロック信号の周波数の少なくとも一方を低減する。
[0038] この構成により、電子回路全体の過剰発熱が防止される。特に、電子回路全体に 対する発熱の寄与度の高 、機能デバイスの発熱が制御されることで、発熱の制御が 効率よく実現される。
[0039] 第 15の発明に係る電子回路では、第 11の発明に加えて、複数の機能デバイスの 各々は、プロセッサによる使用時に異なる優先度を有し、全体温度が第 2の温度を超 える場合に、制御部は、複数の機能デバイスの内、優先度の低い順に、供給電圧お よびクロック信号の周波数の少なくとも一方を低減する。
[0040] この構成により、電子回路全体の過剰発熱が防止される。特に、電子回路全体に 対する発熱の寄与度の高 、機能デバイスの発熱が制御されることで、発熱の制御が 効率よく実現される。
発明の効果
[0041] 本発明によれば、デバイス温度が用いられることで、機能デバイスの発熱状態がよ り直接的に把握される。
[0042] 更に、この把握されたデバイス温度に基づ 、て、プロセッサによる機能デバイスの 使用要求への許可が判断されるため、機能デバイスの過剰発熱が未然に防止される
。当然、電子回路は誤り無く動作する。
[0043] また、デバイス温度に基づ 、て、機能デバイスに供給されるクロック周波数、及び供 給電圧の少なくとも一つが制御されることで、機能デバイスが動作中であっても、機 能デバイスの過剰発熱が防止される。
[0044] 更に、機能デバイス単体のデバイス温度に加えて、複数の機能デバイスの全体温 度も考慮されることで、過剰発熱による電子回路の誤動作が防止される。
図面の簡単な説明
[0045] [図 1]本発明の実施の形態 1における電子回路のブロック図 圆 2]本発明の実施の形態 1におけるデバイス温度の測定を示す図 圆 3]本発明の実施の形態 1におけるデバイス温度の測定を示す図
圆 4]本発明の実施の形態 1における電子回路 1の動作フローチャート
圆 5]本発明の実施の形態 2における電子回路のブロック図
圆 6]本発明の実施の形態 2における電子回路 1の動作フローチャート
圆 7]本発明の実施の形態 3における電子回路のブロック図
圆 8]本発明の実施の形態 3における電子回路のブロック図
圆 9]本発明の実施の形態 3における電子回路のブロック図
圆 10]本発明の実施の形態 3における電子回路のブロック図
圆 11]本発明の実施の形態 4における電子回路のブロック図
符号の説明
1 電子回路
2 プロセッサ
3 機能デバイス
6 温度測定部
7 受け付け部
8 許可部
20 温度センサ
50 制御部
61 第 1機能デバイス
62 第 2機能デバイス
63 第 3機能デバイス
発明を実施するための最良の形態
[0047] 以下、図面を参照しながら、本発明の実施の形態を説明する。
[0048] (実施の形態 1)
図 1は、本発明の実施の形態 1における電子回路のブロック図である。
[0049] 電子回路 1は、プロセッサ 2と機能デバイス 3と、温度測定部 6と、受付部 7と、許可 部 8を備える。 [0050] まず、各部の詳細について説明する。
[0051] プロセッサ 2は、電子回路 1全体を制御する。また、プロセッサ 2は、機能デバイス 3 を用いて、プログラムに従った必要な演算処理を実行する。
[0052] プロセッサ 2は、マイクロプロセッサやデジタル 'シグナル 'プロセッサ(以下、「DSP」 t 、)など、プログラムに応じて動作を行う回路全般を含む。
[0053] 機能デバイス 3は、それぞれ、プロセッサ 2から使用される任意の機能を有するプロ ックであり、所定の演算や処理を実行する。機能デバイス 3の例として、乗算器などの 演算回路、あるいはダイレクト 'メモリ 'アクセス'コントローラ(以下、「DMAコントロー ラ」という)、画像圧縮回路、通信インターフェースなどが挙げられる。もちろん、この 例示以外の種々の回路や装置などが含まれる。
[0054] なお、機能デバイスは、 LSIに含まれる一部のブロックでもよぐ回路基板に実装さ れた、独立した個々の電子部品でもよい。
[0055] 電子回路 1は、単数の機能デバイス 3を備えてもよぐ複数の機能デバイス 3を備え ても良い。
[0056] なお、電子回路は、 ICや LSIなどの単体の半導体集積回路、半導体集積回路をは じめとした複数の電子部品が実装された回路基板全体のいずれも含むものである。
[0057] プロセッサ 2は、機能デバイス 3を使用して、所定の演算などを行う場合には、使用 要求 9を出力する。プロセッサ 2は、使用要求 9に対する使用許可 10を受けてから、 実際に機能デバイス 3の使用を開始する。
[0058] 温度測定部 6は、機能デバイス 3のそれぞれのデバイス温度 11を測定する。
[0059] デバイス温度 11は、機能デバイス 3それぞれの実際の温度であり、機能デバイス 3 の発熱状態を温度として表す。温度測定部 6は、機能デバイス 3のそれぞれのデバイ ス温度 11を測定しても、一部のみのデバイス温度 11を測定しても良い。温度測定部 6は、測定したデバイス温度 11を許可部 8に出力する。
[0060] なお、温度測定部 6は、プロセッサ 2からの使用要求 9に対応する機能デバイス 3の みのデバイス温度 11を測定してもよぐ電子回路 1が備える全ての機能デバイス 3の デバイス温度 11を測定してもよい。また、温度測定部 6は、一定時間間隔毎に、デバ イス温度 11を測定してもよぐ使用要求 9の発生時のみ測定しても良い。 [0061] なお、デバイス温度の測定は、図 2、図 3に示されるように、電子回路に設けられた 温度センサなどにより実現される。
[0062] 図 2、図 3は、本発明の実施の形態 1におけるデバイス温度の測定を示す図である
[0063] 図 2には、機能デバイス 3に対して、一つの温度センサ 20が設けられている。温度 センサ 20は、機能デバイス 3のほぼ中央付近に設けられる。例えば、機能デバイス 3 に、温度センサ 20が貼り付けられてもよぐ接触させられても良い。また、温度センサ 20が、赤外線などを放射して温度を測定する場合には、温度センサ 20と機能デバィ ス 3が非接触でも良い。
[0064] 温度センサ 20からの信号を受け取った温度測定部 6は、機能デバイス 3のデバイス 温度 11を測定して、許可部 8に結果を出力する。
[0065] 図 3には、機能デバイス 3に対して、二つの温度センサ 20が設けられている。二つ の温度センサ 20での測定の平均値を計算して、より精度の高いデバイス温度 11が 測定される。図 3において、二つの温度センサ 20が表されているのは例示であり、 3 以上の複数の温度センサ 20が用いられてもよ 、。
[0066] なお、複数の温度センサ 20が用いられる場合には、デバイス温度を測定しようとす る機能デバイス 3において、複数の温度センサ 20が分散して配置されることが好まし い。平均値など力 デバイス温度 11を計算する場合に、より正確な測定が実現される 力 である。
[0067] 複数の機能デバイス 3が設けられて 、る電子回路 1にお!/、ては、機能デバイス 3の それぞれに温度センサ 20が設けられ、温度測定部 6により、デバイス温度 11が測定 される。
[0068] なお、温度センサ 20以外でも、デバイス温度 11を測定できる装置が用いられれば よい。
[0069] 次に、受付部 7は、プロセッサ 2からの使用要求 9を受け付ける。
[0070] プロセッサ 2は、機能デバイス 3を使用して演算処理などを行う際には、事前に使用 要求 9を出力する。使用要求 9を出力して、使用許可 10を得た場合のみ、機能デバ イス 3を使用することで、機能デバイス 3の過剰発熱が防止されるためである。 [0071] 受付部 7は、この使用要求 9を受け付けて、許可部 8に出力する。プロセッサ 2は、 使用する機能デバイス 3が複数ある場合には、複数の使用要求 9を出力するので、 受付部 7は、これら複数の使用要求 9を受け付けて、許可部 8に出力する。
[0072] 次に、許可部 8は、使用要求 9に対する許可を判定して、使用許可 10をプロセッサ 2に出力する。
[0073] 許可部 8は、温度測定部 6から出力されるデバイス温度 11を基に、使用要求 9に対 する許可を判定する。具体的には、許可部 8は、デバイス温度 11を、所定の第 1の温 度と比較して、デバイス温度 11が、第 1の温度以下の場合に、使用許可 10を出力す る。
[0074] なお、第 1の温度は、任意に定められればよぐ機能デバイス 3毎に異なる温度であ つてよい。また、機能デバイス 3毎の第 1の温度は、固定値であっても、可変値であつ てもよい。
[0075] 第 1の温度は、機能デバイス 3毎の耐久温度が適用されるとよい。なお、耐久温度と は、誤動作を生じずに機能デバイス 3が動作する温度である。
[0076] なお、図 1では、受付部 7と許可部 8が別の要素として設けられている力 これらは 一体ィ匕されたものでも良 、。
[0077] また、許可部 8は、ある使用要求 9に対して、不許可を判定した場合には、この使用 要求 9を保留する。許可部 8は、レジスタやメモリなどで構成される保留部を備えても よい。保留された使用要求 9に対しては、所定の時間経過後に、再び許可部 8が、許 可 Z不許可を判定する。所定の時間経過後に、温度測定部 6は、再び対象となる機 能デバイス 3のデバイス温度 11を測定し、許可部 8にデバイス温度 11を出力する。許 可部 8は、新しく測定されたデバイス温度 11を、再び第 1の温度と比較して、第 1の温 度以下であれば、使用許可 10をプロセッサ 2に出力する。
[0078] 許可部 8から使用許可 10を得たプロセッサ 2は、機能デバイス 3を使用する。
[0079] 電子回路 1は、以上の要素を備え、各要素は、上述の機能と構成を有している。
[0080] 次に、図 4を用いて、電子回路 1の動作について説明する。
[0081] 図 4は、本発明の実施の形態 1における電子回路 1の動作フローチャートである。
[0082] まず、ステップ 1にて、処理が開始される。 [0083] 次にステップ 2にて、プロセッサ 2は、受付部 7に、使用要求 9を出力する。ステップ 3 にて、受付部 7は、使用要求 9を受け付ける。使用要求 9の受け付けに対応して、ステ ップ 4にて、温度測定部 6は、使用要求 9の対象となっている機能デバイス 3のデバイ ス温度 11を測定する。
[0084] 許可部 8は、ステップ 5にて、デバイス温度 11と任意に定められた第 1の温度を比較 する。
[0085] デバイス温度 11が、第 1の温度以下の場合には、許可部 8は、ステップ 6にて使用 要求 9に対して許可を判定し、使用許可 10を出力する。
[0086] 一方、ステップ 5にて、デバイス温度 11が、第 1の温度を超えている場合には、許可 部 8は、ステップ 7にて、不許可を判定して使用許可 10の出力を保留する。
[0087] 保留の後で任意の時間経過後に、ステップ 8にて、温度測定部 6は、再びデバイス 温度 11を測定する。新しいデバイス温度 11に基づいて、許可部 8は、ステップ 10に て、再びデバイス温度 11を第 1の温度と比較する。
[0088] デバイス温度 11が第 1の温度以下の場合には、許可部 8は、プロセッサ 2に対して 使用許可 10を出力し、ステップ 12にて処理が終了する。
[0089] 一方、ステップ 10にて、デバイス温度 11が、第 1の温度を越えている場合には、ス テツプ 7からの処理が繰り返される。
[0090] なお、複数の使用要求 9が受け付けられた場合には、図 4に示される処理が、使用 要求 9毎に行われる。これらは、並列に処理されてもよぐ順次的に処理されてもよい
[0091] 以上の処理により、デバイス温度 11に基づいて、機能デバイス 3のプロセッサ 2によ る使用が許可される。
[0092] 以上より、機能デバイスの過剰発熱が防止されるので、電子回路は誤り無く動作す る。
[0093] また、使用許可 10を受けたプロセッサ 2は、使用要求 9にかかわる機能デバイス 3の 使用を開始する。このとき、プロセッサ 2は、使用する機能デバイスに対して、必要な 動作設定を行う。プロセッサ 2は、この動作設定に用いられる設定情報を有している。
[0094] この設定情報は、時間の経過により変化する場合がある。使用対象の機能デバイス 3以外の機能デバイスの動作状態の変化による内的要因や、外部からの要求の変化 による外的要因により、設定情報は変化する。このため、使用要求 9を出力した時と、 使用許可 10を受け取った時との時間上の差により、プロセッサ 2が要求する設定情 報が変化して 、る場合がある。
[0095] このため、プロセッサ 2は、使用許可 10の受信時に有している変化後の設定情報を 用いて、使用許可に対応する機能デバイス 3に対して、動作設定を行う。プロセッサ 2 は、動作設定を行ってから、機能デバイス 3の使用を開始する。
[0096] このように、プロセッサ 2は、使用許可 10の受信時に有している設定情報を用いて、 機能デバイス 3への動作設定を行うので、時間経過による設定情報の変化に対応し て、常に最新の設定情報に基づいて、機能デバイスを使用できる。特に、使用要求 9 を出力して (すなわち、使用を欲した瞬間)から使用許可 10を得るまで (実際の使用 が開始できる瞬間)にタイムラグが出る可能性のある本発明の電子回路においては、 使用許可 10の受信時の設定情報に基づいて動作設定を行うことは特に有効である 。すなわち、タイムラグを発生させてでも、電子回路の過剰発熱を防止することを目的 とする本発明の電子回路においては、効果的な処理である。
[0097] (実施の形態 2)
次に、実施の形態 2について説明する。
[0098] 実施の形態 2における電子回路では、デバイス温度の測定に基づいて、機能デバ イスへのクロック周波数や供給電圧が制御される。
[0099] 図 5は、本発明の実施の形態 2における電子回路のブロック図である。
[0100] 電子回路 1は、図 1の構成にカ卩えて、制御部 50を備えている。
[0101] 制御部 50は、機能デバイス 3へのクロック信号の周波数、及び供給電圧の少なくと も一つを制御する。
[0102] 制御部 50は、温度測定部 6で測定されるデバイス温度 11を受けて、機能デバイス 3へのクロック信号の周波数や供給電圧を制御する。例えば、ある機能デバイス 3の デバイス温度 11が、所定の温度 (例えば、機能デバイスの耐久温度など力 定めら れる第 1の温度)を超えている場合には、クロック信号の周波数、及び供給電圧の少 なくとも一方を低減する。機能デバイス 3へのクロック信号の周波数が低減された場 合には、消費電力が低下するのに併せて、デバイス温度 11も低下する。同様に、機 能デバイス 3への供給電圧が低減された場合には、消費電力が低下するのに併せて 、デバイス温度 11も低下する。
[0103] このように、デバイス温度 11が低下することで、電子回路 1は誤り無く動作する。
[0104] なお、クロック信号の周波数、及び供給電圧の 、ずれを制御するかは、機能デバィ ス 3の動作仕様に応じて決められればよい。すなわち、機能デバイス 3が、クロック信 号の周波数のマージンを有して 、る場合には、クロック信号の周波数が低減されれ ばよぐ動作電圧のマージンを有している場合には、供給電圧が制御されればよい。
[0105] また、デバイス温度 11に対しては、クロック信号の周波数よりも供給電圧が高い寄 与度を有しているので、機能デバイス 3のデバイス温度 11の調節には、供給電圧の 制御がクロック信号の周波数の制御より効果的である。
[0106] ここで、例えば、出力された使用要求 9にかかわる機能デバイス 3のデバイス温度 1 1が、第 1の温度を超えている場合には、この機能デバイス 3にかかわる使用要求 9に 対する使用許可 10は保留される。このとき、制御部 50が、この第 1の温度を超えるデ バイス温度 11を有して 、る機能デバイス 3への供給電圧およびクロック信号の周波 数の少なくとも一方を制御することで、時間の経過と共にデバイス温度 11が低下する
[0107] デバイス温度 11が低下すれば、所定の時間後に測定されたデバイス温度 11が、 第 1の温度以下になる可能性が生じ、保留されていた許可が解除され、使用許可 10 が出力されることになる。特に、制御部 50による制御がなく放置された場合に比較し て、デバイス温度 11の低下が早いので、使用許可 10の保留解除がより早くなる。
[0108] このように、電子回路 1の過剰発熱の防止にも効果的であるだけでなぐ使用許可 1 0の付与時間の短縮にも効果的であり、電子回路 1全体の処理能力や処理速度の向 上につながる。
[0109] 次に、図 6を用いて制御部 50による発熱抑制の制御について説明する。
[0110] 図 6は、本発明の実施の形態 2における電子回路 1の動作フローチャートである。
[0111] まず、ステップ 20にて処理が開始される。
[0112] 次に、ステップ 21にて、温度測定部 6は、機能デバイス 3のデバイス温度 11を測定 する。デバイス温度 11の測定は、図 2、図 3を用いて説明したのと同様である。温度 測定部 6は、測定したデバイス温度 11を、許可部 8、及び制御部 50に出力する。
[0113] 次に、ステップ 22にて、制御部 50は、デバイス温度 11と第 1の温度を比較する。デ バイス温度 11が、第 1の温度以下であれば、ステップ 23にて、制御部 50は、制御を 行わない。
[0114] 一方、デバイス温度 11が第 1の温度よりも高い場合には、ステップ 24にて、制御部 50は、制御を開始する。制御部 50は、機能デバイス 3に対するクロック信号の周波数 、及び供給電圧の少なくとも一方を制御する。
[0115] ステップ 25にて、制御部 50は、クロック信号の周波数を制御する。制御部 50は、ス テツプ 26にて、機能デバイス 3に供給するクロック信号の周波数を低減する。クロック 信号の周波数が低減されることにより、機能デバイス 3のデバイス温度 11は低下する 。この制御を受けて、温度測定部 6は、ステップ 27にて、再び機能デバイス 3のデバ イス温度 11を測定する。ステップ 28にて、制御部 50は、再びデバイス温度 11と第 1 の温度を比較する。
[0116] 比較の結果、デバイス温度 11が、未だに第 1の温度よりも高い場合には、制御部 5 0は、クロック信号の周波数を再び低減する。逆に、デバイス温度 11が第 1の温度以 下の場合には、ステップ 29にて、制御部 50は制御を終了する。
[0117] 一方、ステップ 24に続いて、制御部 50はステップ 30にて、供給電圧を制御する。
制御部 50は、デバイス温度 11が第 1の温度より高いので、ステップ 31にて、機能デ バイス 3に対する供給電圧を低減する。次に、ステップ 32にて、温度測定部 6は、デ バイス温度 11を再び測定する。測定の結果、デバイス温度 11が第 1の温度よりも未 だに高い場合には、制御部 50は、ステップ 31にて、供給電圧を再び低減する。一方 、デバイス温度 11が、第 1の温度以下の場合には、ステップ 34にて、制御部 50は制 御を終了する。
[0118] 最後に、ステップ 35にて、処理が終了する。
[0119] 以上の処理により、機能デバイス 3のデバイス温度 11の過剰発熱が防止され、電子 回路 1は、誤り無く動作する。
[0120] なお、デバイス温度 11の比較対象となる第 1の温度は、機能デバイス 3の耐久温度 でもよぐ耐久温度に対するマージンを含めた温度でもよ ヽ。
[0121] 制御部 50による供給電圧やクロック信号の周波数の制御により、デバイス温度が低 下するまでには、一定の時間が必要である。第 1の温度が、耐久温度に対するマー ジンを含んでいる場合には、このマージンが低下するまでの一定の時間に対応する ため、制御開始から温度低下までの一定の時間内での耐久温度を超える過剰発熱 が防止される。
[0122] なお、機能デバイス 3は、 ICや受動素子などの個別の部品であってもよぐ ICや LS
Iなどの集積回路に含まれるブロックであってもよい。
[0123] (実施の形態 3)
次に、実施の形態 3について説明する。実施の形態 3における電子回路 1は、複数 の機能デバイスの個々のデバイス温度に加えて、複数の機能デバイス全体の全体温 度を考慮して、機能デバイスへのクロック信号の周波数や供給電圧を制御する。
[0124] 複数の機能デバイス全体の温度上昇により、電子回路 1を備える装置の温度上昇 が無視できない場合に、実施の形態 3における電子回路 1は対応する。
[0125] 図 7は、本発明の実施の形態 3における電子回路のブロック図である。
[0126] 電子回路 1は、第 1機能デバイス 61、第 2機能デバイス 62、第 3機能デバイス 63の 複数の機能デバイスを備えて 、る。
[0127] 温度測定部 6は、これらの複数の機能デバイス毎のデバイス温度 11と、複数の機 能デバイス全体の全体温度 64の両方を測定する。
[0128] 機能デバイス単体のデバイス温度 11は、図 2、図 3に示される構成により測定される
[0129] 全体温度 64は、複数の機能デバイス毎に測定されたデバイス温度 11の合計値が 用いられてもよぐ合計値の平均値により算出されてもよい。また、平均値が用いられ る場合には、複数の機能デバイス毎の回路規模などを考慮した最大比平均により算 出されてもよお。
[0130] 勿論、複数の機能デバイス全体に対応する温度センサを用いて、全体温度 64が測 定されてもよい。
[0131] 温度測定部 6は、測定したデバイス温度 11と全体温度 64を制御部 50に出力する。 [0132] 許可部 8は、デバイス温度 11と全体温度 64に基づいて、使用要求 9に対する使用 許可 10を出力する。
[0133] 例えば、許可部 8は、全体温度 64を所定の第 2の温度と比較し、同様にデバイス温 度 11を、所定の第 1の温度と比較する。許可部 8は、全体温度 64が第 2の温度以下 であって、且つ使用要求 9にかかわる機能デバイスのデバイス温度 11が第 1の温度 以下である場合に、この使用要求 9に対する使用許可 10を出力する。
[0134] 例えば、第 1機能デバイス 61の使用にかんする使用要求 9をプロセッサ 2が出力し た場合には、全体温度 64が第 2の温度以下であって、第 1機能デバイス 61のデバイ ス温度 11が第 1の温度以下である場合に、許可部 8は、使用許可 10を出力する。
[0135] このように、複数の機能デバイス全体での発熱状態と、使用要求 9にかかわる個別 の機能デバイスの発熱状態の両方が確認された上で、使用許可 10が出力されること で、電子回路 1全体の過剰発熱が適切に防止される。
[0136] 使用要求 9に対応する機能デバイスのデバイス温度が所定の温度以下 (ここでは第 1の温度以下)であるとしても、複数の機能デバイス全体の温度である全体温度 64は 、電子回路 1全体の温度の指標であり、全体温度 64が高い状態で個別の機能デバ イスを使用状態にするのは電子回路 1全体の過剰発熱につながる。実施の形態 3に おける電子回路 1では、全体温度 64が一定以上の高さを有している場合には、個別 の機能デバイスへの使用許可を保留することで、電子回路 1全体の過剰発熱を未然 に防止する。
[0137] 更に、実施の形態 3における電子回路 1では、制御部 50により、温度の低減が図ら れる。
[0138] 制御部 50は、デバイス温度 11を、機能デバイス毎に所定の第 1の温度と比較し、 全体温度 64を所定の第 2の温度と比較する。
[0139] ここで、第 1の温度は、機能デバイス毎の(図 7では、第 1機能デバイス 61、第 2機能 デバイス 62、第 3機能デバイス 63毎の)耐久温度や、耐久温度から定まる温度 (例え ば耐久温度にマージンを加味した温度)を基に決められる。図 7では、第 1機能デバ イス 61、第 2機能デバイス 62、第 3機能デバイス 63毎に、異なる第 1の温度が定めら れ、制御部 50は、機能デバイス毎のデバイス温度 11を、個々の第 1の温度と比較す る。
[0140] 一方、第 2の温度は、電子回路 1を備える装置の許容温度などを基準に定められる
[0141] なお、第 1の温度、第 2の温度は、変更可能であり、電子回路 1の使用態様に応じ て事後的に変更されてよい。
[0142] 次に、制御部 50は、デバイス温度 11と全体温度 64に基づいて、複数の機能デバ イスに対するクロック信号の周波数、及び供給電圧の少なくとも一つを制御する。
[0143] このとき、制御部 50は、供給電圧およびクロック信号の周波数の少なくとも一方を低 減することで、温度を低下させる。すなわち、制御部 50は、電子回路 1の全体にかか わる温度上昇を基に、機能デバイスの温度上昇を抑制して、電子回路 1全体の過剰 発熱を抑制する。
[0144] 制御部 50は、種々の制御により機能デバイスの温度上昇を抑制し、電子回路 1全 体の過剰発熱を防止する。
[0145] (制御その 1)
全体温度 64が第 2の温度を超えている場合には、制御部 50は、複数の機能デバ イスの内、デバイス温度が第 1の温度を超えている機能デバイスに対する供給電圧 およびクロック信号の周波数の少なくとも一方を低減する。
[0146] 図 8を用いて説明する。図 8は、本発明の実施の形態 3における電子回路のブロッ ク図である。
[0147] 図 8から明らかな通り、第 1機能デバイス 61と第 2機能デバイス 62は、それぞれのデ バイス温度 11が第 1の温度を超えており、第 2機能デバイス 63のデバイス温度 11は 、第 1の温度より低い。
[0148] 全体温度 64が第 2の温度よりも高い場合には、制御部 50は、第 1の温度を超える デバイス温度 11を有する第 1機能デバイス 61と第 2機能デバイス 62への供給電圧 およびクロック信号の周波数の少なくとも一方を低減する。
[0149] デバイス温度 11は、消費電力に従い、消費電力は供給電圧の二乗とクロック信号 の周波数のそれぞれに比例する。このため、供給電圧およびクロック信号の周波数 の少なくとも一つが低減されれば、デバイス温度 11が低下する。このとき供給電圧の 低減による効果が、クロック信号の周波数低減による効果よりも高 、。
[0150] このように、制御部 50が、第 1の温度を超えているデバイス温度 11を有する機能デ バイスの温度を低下させるように制御することで、効率的に全体温度 64を低下させる ことができる。特に、第 1の温度を超える機能デバイスは、過剰発熱状態となっており 、全体温度 64への影響度が高いと判断されるので、第 1の温度を超える機能デバィ スの温度を低下させることは、電子回路 1全体の過剰発熱の防止と温度低下に効果 が高い。
[0151] 制御部 50は、全体温度 64が第 2の温度以下になったら、供給電圧やクロック信号 の周波数を元に戻せばょ 、。
[0152] (制御その 2)
全体温度 64が第 2の温度を超えている場合には、制御部 50は、複数の機能デバ イスの内、デバイス温度 11の高い機能デバイスカゝら順に、供給電圧およびクロック信 号の周波数の少なくとも一方を低減する。
[0153] 図 9を用いて説明する。図 9は、本発明の実施の形態 3における電子回路のブロッ ク図である。
[0154] 図 9から明らかな通り、第 1機能デバイス 61のデバイス温度 11は 100°Cであり、第 2 機能デバイス 62のデバイス温度 11は 120°Cであり、第 3機能デバイス 63のデバイス 温度 11は 90°Cである。
[0155] 全体温度 64が第 2の温度よりも高い場合には、制御部 50は、デバイス温度 11の最 も高い第 2機能デバイス 62への供給電圧およびクロック信号の周波数の少なくとも一 方を低減する。供給電圧およびクロック信号の周波数の少なくとも一方が低減される ことで、第 2機能デバイス 62のデバイス温度 11は低下する。
[0156] このとき、第 2機能デバイス 62への供給電圧およびクロック信号の周波数の低減に は限界があり、これを超えた低減はできない。この限界まで低減しても、全体温度 64 が第 2の温度以下にならなければ、制御部 50は、第 2機能デバイス 62に次いでデバ イス温度 11の高い第 1機能デバイス 61を制御する。すなわち、制御部 50は、第 1機 能デバイス 61への供給電圧およびクロック信号の周波数の少なくとも一方を低減す る。これにより、第 1機能デバイス 61のデバイス温度 11が低下する。第 2機能デバィ ス 62のデバイス温度 11に続いて、第 1機能デバイス 61のデバイス温度 11も低下す ることで、全体温度 64が更に低下する。
[0157] 第 2機能デバイス 62と第 1機能デバイス 61への制御により全体温度 64が低下し、 全体温度 64が第 2の温度以下になれば、制御部 50は、供給電圧やクロック信号の 周波数の制御を終了する。もし、第 2機能デバイス 62、第 1機能デバイス 61の二つの 機能デバイスを制御しても、全体温度 64が第 2の温度を超える状態が継続すれば、 制御部 50は、第 3機能デバイス 63を制御して、温度低下を図る。
[0158] このように、全体温度 64への寄与度の高い機能デバイス力 順に温度を低下させ る制御を行うことにより、効率よく電子回路 1の過剰発熱の防止と、温度低下ができる
[0159] なお、全体温度 64が第 2の温度以下になれば、制御部 50は、供給電圧あるいはク ロック信号の周波数を元に戻せばよい。
[0160] (制御その 3)
全体温度 64が第 2の温度を超えている場合には、制御部 50は、複数の機能デバ イスの内、機能デバイスの有する優先度の低い順に、供給電圧およびクロック信号の 周波数の少なくとも一方を低減する。
[0161] 図 10を用いて説明する。図 10は、本発明の実施の形態 3における電子回路のプロ ック図である。図 10に示される複数の機能デバイスの各々は、プロセッサ 2による使 用時における異なる優先度を有している。図 10から明らかな通り、第 1機能デバイス 61は、値「2」の優先度を有し、第 2機能デバイス 62は、値「1」の優先度を有し、第 3 機能デバイス 63は、値「3」の優先度を有している。
[0162] ここで、値の小さい方が、優先度が高いとする。すなわち図 10においては、第 2機 能デバイス、第 1機能デバイス、第 3機能デバイスの順に優先度が高い。なお、優先 度は、固定的であってもよぐ可変であっても良い。
[0163] 全体温度 64が第 2の温度よりも高 、場合には、制御部 50は、優先度の最も低!、第 3機能デバイス 63に対する供給電圧およびクロック信号の周波数の少なくとも一方を 低減する。供給電圧およびクロック信号の周波数の少なくとも一方が低減された第 3 機能デバイス 63のデバイス温度 11は、低下する。この第 3機能デバイス 63のデバイ ス温度 11の低下により、全体温度 64も低下する。
[0164] 次に、第 3機能デバイス 63のみの温度低下では、全体温度 64の低下が不十分 (す なわち、全体温度 64が未だに第 2の温度を超えている場合)である場合には、制御 部 50は、次に優先度の低い第 1機能デバイス 61への供給電圧およびクロック信号の 周波数の少なくとも一方を低減する。この制御により、第 1機能デバイス 61のデバイ ス温度 11が低下する。第 1機能デバイス 61の温度低下でも不十分な場合には、制 御部 50は、最も優先度の高!、第 2機能デバイス 62への供給電圧およびクロック信号 の周波数の少なくとも一方を低減する。
[0165] このように、制御部 50は、全体温度 64が第 2の温度を超える場合には、優先度の 低 ヽ機能デバイスカゝら順に、温度低下するように制御を行う。
[0166] なぜなら、優先度の低!、機能デバイスは、優先度の高!、機能デバイスに比べて、 動作速度の低下が生じても、電子回路 1全体の処理への影響度は少ないので、制御 部 50は、優先度の低い機能デバイスの順に、温度低下を図る制御を行うのである。
[0167] このような制御により、電子回路 1全体での処理速度や処理負荷に影響を及ぼさず に、電子回路 1の過剰発熱の防止と、温度低下が実現される。
[0168] なお、全体温度 64が低下して、第 2の温度以下になれば、制御部 50は、供給電圧 あるいはクロック信号の周波数を元に戻せばよ!、。
[0169] 以上の制御により、複数の機能デバイスの全体温度 64を考慮した上で、個々の機 能デバイスの使用許可や温度低下が行われ、電子回路 1は、誤りなく動作する。
[0170] 特に、全体温度 64を基準にした上で、個々の機能デバイスの温度制御がなされる ことで、電子回路 1全体の過剰発熱が防止されると共に、電子回路 1の動作が保証さ れる。
[0171] (実施の形態 4)
次に、実施の形態 4について図 11を用いて説明する。図 11は、本発明の実施の形 態 4における電子回路のブロック図である。
[0172] 実施の形態 4における電子回路 1では、複数の機能デバイスに対応する複数の使 用要求 9がある場合に、デバイス温度 11と優先度とに従って、使用許可 10が与えら れる。 [0173] 図 11より明らかな通り、実施の形態 4における電子回路 1は、 3つの機能デバイス( 第 1機能デバイス 61、第 2機能デバイス 62、第 3機能デバイス 63)を備えている。勿 論、複数の機能デバイスであれば、 3以外の数であってよい。
[0174] 複数の機能デバイスの各々は、プロセッサ 2が使用するにあたっての異なる優先度 を有し、図 11では、第 1機能デバイス 61は、値「2」の優先度を有し、第 2機能デバィ ス 62は、値「1」の優先度を有し、第 3機能デバイス 63は、値「3」の優先度を有してい る。ここで、値の小さい方が、優先度が高いものとする。
[0175] プロセッサ 2は、第 1機能デバイス 61、第 2機能デバイス 62、第 3機能デバイス 63の いずれか、あるいは複数の機能デバイスの使用に当たって、受付部 7に、使用要求 9 を出力する。ここでは、説明の便宜のために、プロセッサ 2は、第 1機能デバイス 61、 第 2機能デバイス 62、第 3機能デバイス 63の全てにカゝかわる使用要求 9を出力して いるとする。
[0176] 温度測定部 6は、複数の機能デバイスの各々のデバイス温度 11を測定し、測定結 果を許可部 8に出力する。許可部 8は、各々のデバイス温度 11を所定の第 1の温度 と比較する。
[0177] ここで、実施の形態 1と同じぐ許可部 8は、使用要求 9にかかわる機能デバイスの デバイス温度 11が第 1の温度以下であれば、この使用要求 9に対する使用許可 10 を出力する。
[0178] し力しながら、実施の形態 4においては、複数の機能デバイスにかかわる複数の使 用要求 9が出力されているので、デバイス温度 11が第 1の温度以下である機能デバ イスが複数存在している可能性がある。このような場合に、プロセッサ 2が全ての機能 デバイスを使用できない事情がある場合には、許可部 8は、機能デバイスの有してい る優先度に応じて使用許可 10を与える機能デバイスを選択する。
[0179] 例えば、第 1機能デバイス 61、第 2機能デバイス 62、第 3機能デバイス 63の全てに 力かわる 3つの使用要求 9が出力されている場合に、第 1機能デバイス 61と第 3機能 デバイス 63の 2つのデバイス温度 11が、第 1の温度以下であつたとする(すなわち、 第 2機能デバイス 62のデバイス温度 11は、第 1の温度を超えている)。このときに、電 子回路 1全体の仕様に基づき、同時間帯にはプロセッサ 2がーつの機能デバイスし か使用できず、これに合わせて許可部 8は、一つの機能デバイスに対応する使用許 可 10のみを出力する。
[0180] ここでは、まずデバイス温度 11の観点力も第 1機能デバイス 61と第 3機能デバイス 63の 2つに絞られる。次いで、値「3」よりも高い値「2」の優先度を有する第 1機能デ バイス 61が優先的に使用許可 10が与えられる。すなわち、許可部 8は、デバイス温 度 11と優先度の両方を考慮して、複数の使用要求 9に対して、第 1機能デバイス 61 に対応する使用許可 10を与える。
[0181] ここでは、第 1機能デバイス 61と第 3機能デバイス 63の 2つ力 そのデバイス温度 1 1が第 1の温度以下である場合について説明したが、全ての機能デバイスのデバイス 温度 11が第 1の温度以下であれば、優先度のもっとも高い第 2機能デバイス 62に対 する使用許可 10が与えられる。
[0182] なお、許可部 8は、第 3機能デバイス 63と第 2機能デバイス 62に対する使用許可 1 0を保留する。保留した後、所定時間後に、第 3機能デバイス 63、第 2機能デバイス 6 2の順に使用許可 10を与える。
[0183] また、以上の処理は一例であり、機能デバイスの個数や同時間帯に使用許可 10が 与えられる機能デバイスの個数制限などにより、適宜定められればよい。
[0184] 以上のように、デバイス温度と優先度に従って使用許可 10が与えられることで、電 子回路 1の過剰発熱が防止されつつ、電子回路 1全体での処理速度への影響を最 小限に抑えることができる。
産業上の利用可能性
[0185] 本発明は、例えば、発熱の削減が求められる電子機器等の分野において好適に利 用できる。

Claims

請求の範囲
[1] プロセッサと、
前記プロセッサが使用する機能デバイスと、
前記プロセッサが前記機能デバイスを使用する場合に出力する使用要求を受け付 ける受付部と、
前記機能デバイスのデバイス温度を測定する温度測定部と、
前記デバイス温度が所定の第 1の温度以下の場合に、前記受付部で受け付けられ た使用要求に対して使用許可を出力する許可部を備える電子回路。
[2] 前記温度測定部は、前記機能デバイスに設けられた温度センサを備える請求の範 囲第 1項記載の電子回路。
[3] 前記第 1の温度は、前記機能デバイスの有する耐久温度である請求の範囲第 1項記 載の電子回路。
[4] 前記許可部は、前記デバイス温度が前記第 1の温度を超える場合には、前記使用許 可を保留する請求の範囲第 1項記載の電子回路。
[5] 前記許可部は、前記使用許可を保留した場合は、所定の時間後に、前記デバイス温 度と前記第 1の温度を比較して、使用要求への許可を判定する請求の範囲第 4項記 載の電子回路。
[6] 前記電子回路は、前記機能デバイスへの供給電圧、及びクロック信号の周波数の少 なくとも一つを制御する制御部を更に備える請求の範囲第 1項記載の電子回路。
[7] 前記デバイス温度が前記第 1の温度を超えて!/ヽる場合には、前記制御部は、前記機 能デバイスへの前記供給電圧を低減する請求の範囲第 6項記載の電子回路。
[8] 前記デバイス温度が前記第 1の温度を超えて!/ヽる場合には、前記制御部は、前記機 能デバイスへ供給される前記クロック信号の周波数を低減する請求の範囲第 6項記 載の電子回路。
[9] 前記プロセッサは、前記使用許可の受信時に有している設定情報を用いて、前記使 用許可に対応する前記機能デバイスへの動作設定を行う請求の範囲第 1項記載の 電子回路。
[10] プロセッサと、 前記プロセッサが使用すると共に使用に当たっての異なる優先度を有する複数の 機能デバイスと、
前記プロセッサが前記複数の機能デバイスの少なくとも一つを使用する場合に出 力する使用要求を受け付ける受付部と、
前記複数の機能デバイスの各々のデバイス温度を測定する温度測定部と、 前記デバイス温度が所定の第 1温度以下の場合に、前記受付部で受け付けられた 使用要求に対して使用許可を出力する許可部を備え、
前記デバイス温度が前記第 1の温度以下である機能デバイスが複数である場合に は、前記許可部は、前記優先度に従って、前記使用許可を与える機能デバイスを選 択して使用許可を出力する電子回路。
[11] プロセッサと、
前記プロセッサが使用する複数の機能デバイスと、
前記プロセッサが前記複数の機能デバイスの少なくとも一つを使用する場合に出 力する使用要求を受け付ける受付部と、
前記複数の機能デバイスの各々のデバイス温度と、前記複数の機能デバイス全体 の温度である全体温度を測定する温度測定部と、
前記デバイス温度と前記全体温度に基づき、前記受付部で受け付けられた使用要 求に対して使用許可を出力する許可部と、
前記デバイス温度と前記全体温度に基づき、前記複数の機能デバイスへの供給電 圧およびクロック信号の周波数の少なくとも一つを制御する制御部を備える電子回路
[12] 前記全体温度が所定の第 2の温度を超える場合に、前記制御部は、前記複数の機 能デバイスに対する前記供給電圧および前記クロック信号の周波数の少なくとも一 方を低減する請求の範囲第 11項記載の電子回路。
[13] 前記全体温度が前記第 2の温度を超える場合に、前記制御部は、前記複数の機能 デバイスの内、前記デバイス温度が所定の第 1の温度を超える機能デバイスに対す る前記供給電圧および前記クロック信号の周波数の少なくとも一方を低減する請求 の範囲第 11項記載の電子回路。
[14] 前記全体温度が前記第 2の温度を超える場合に、前記制御部は、前記複数の機能 デバイスの内、前記デバイス温度が高い機能デバイスカゝら順に、前記供給電圧およ び前記クロック信号の周波数の少なくとも一方を低減する請求の範囲第 11項記載の 電子回路。
[15] 前記複数の機能デバイスの各々は、前記プロセッサによる使用時に異なる優先度を 有し、
前記全体温度が前記第 2の温度を超える場合に、前記制御部は、前記複数の機能 デバイスの内、前記優先度の低い順に、前記供給電圧および前記クロック信号の周 波数の少なくとも一方を低減する請求の範囲第 11項記載の電子回路。
PCT/JP2006/310917 2005-06-15 2006-05-31 電子回路 WO2006134775A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-175398 2005-06-15
JP2005175398 2005-06-15

Publications (1)

Publication Number Publication Date
WO2006134775A1 true WO2006134775A1 (ja) 2006-12-21

Family

ID=37532140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310917 WO2006134775A1 (ja) 2005-06-15 2006-05-31 電子回路

Country Status (1)

Country Link
WO (1) WO2006134775A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193509A (ja) * 2008-02-18 2009-08-27 Fujitsu Ltd 情報処理装置、情報処理方法、情報処理プログラム
WO2012141182A1 (ja) * 2011-04-11 2012-10-18 株式会社ソニー・コンピュータエンタテインメント 半導体集積回路
JP2012221300A (ja) * 2011-04-11 2012-11-12 Sony Computer Entertainment Inc 半導体集積回路、その制御方法、及び電子機器
WO2014208528A1 (ja) * 2013-06-26 2014-12-31 シャープ株式会社 電子機器
JP2019145167A (ja) * 2015-09-11 2019-08-29 株式会社東芝 電子機器、従属変数の算出方法、およびプログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448119A (en) * 1987-08-19 1989-02-22 Hitachi Ltd Semiconductor device
JPH0228363A (ja) * 1988-07-18 1990-01-30 Fujitsu Ltd 半導体集積回路
JPH04317365A (ja) * 1991-04-16 1992-11-09 Hitachi Ltd 半導体集積回路及びそれを含むデータ処理システム
JPH0870097A (ja) * 1994-08-29 1996-03-12 Nec Corp 情報処理装置
JPH1069330A (ja) * 1996-07-17 1998-03-10 Internatl Business Mach Corp <Ibm> 集積回路上のホット・スポットを回避するための論理回路及び方法
JP2004006446A (ja) * 2002-05-28 2004-01-08 Oki Electric Ind Co Ltd 半導体集積回路
JP2004126968A (ja) * 2002-10-03 2004-04-22 Fujitsu Ltd 並列計算機のジョブスケジューリング装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448119A (en) * 1987-08-19 1989-02-22 Hitachi Ltd Semiconductor device
JPH0228363A (ja) * 1988-07-18 1990-01-30 Fujitsu Ltd 半導体集積回路
JPH04317365A (ja) * 1991-04-16 1992-11-09 Hitachi Ltd 半導体集積回路及びそれを含むデータ処理システム
JPH0870097A (ja) * 1994-08-29 1996-03-12 Nec Corp 情報処理装置
JPH1069330A (ja) * 1996-07-17 1998-03-10 Internatl Business Mach Corp <Ibm> 集積回路上のホット・スポットを回避するための論理回路及び方法
JP2004006446A (ja) * 2002-05-28 2004-01-08 Oki Electric Ind Co Ltd 半導体集積回路
JP2004126968A (ja) * 2002-10-03 2004-04-22 Fujitsu Ltd 並列計算機のジョブスケジューリング装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193509A (ja) * 2008-02-18 2009-08-27 Fujitsu Ltd 情報処理装置、情報処理方法、情報処理プログラム
WO2012141182A1 (ja) * 2011-04-11 2012-10-18 株式会社ソニー・コンピュータエンタテインメント 半導体集積回路
JP2012221300A (ja) * 2011-04-11 2012-11-12 Sony Computer Entertainment Inc 半導体集積回路、その制御方法、及び電子機器
US8975951B2 (en) 2011-04-11 2015-03-10 Sony Corporation Semiconductor integrated circuit
WO2014208528A1 (ja) * 2013-06-26 2014-12-31 シャープ株式会社 電子機器
JP2019145167A (ja) * 2015-09-11 2019-08-29 株式会社東芝 電子機器、従属変数の算出方法、およびプログラム

Similar Documents

Publication Publication Date Title
EP2929409B1 (en) System and method for estimating ambient temperature from a portable computing device
US7353410B2 (en) Method, system and calibration technique for power measurement and management over multiple time frames
JP5189921B2 (ja) コンピュータの放熱システム
JP5781255B1 (ja) ポータブルコンピューティングデバイスにおける適応型熱管理のためのシステムおよび方法
US6006168A (en) Thermal model for central processing unit
CN105074610B (zh) 电子设备的基于感知模型的热管理
EP2817716B1 (en) System and method for thermally aware device booting
US11016555B2 (en) Control of performance levels of different types of processors via a user interface
EP2766788B1 (en) System and method for determining thermal management policy from leakage current measurement
WO2006134775A1 (ja) 電子回路
US20150082076A1 (en) Dynamic clock regulation
WO2012094556A1 (en) Method and system for controlling thermal load distribution in a portable computing device
JP2014517956A (ja) マルチプロセッサワイヤレスデバイスにおける熱負荷のセンサレス検出および管理
KR101894634B1 (ko) 데이터센터 전력 아키텍처를 위한 전력 관리 기법
JP2010160715A (ja) 車両用電子制御ユニット
JP2011101372A (ja) 動的バスクロックを制御するための装置及び方法
CN107132861B (zh) 用于控制器处理器的可配置温度控制的方法和系统
US10741238B2 (en) On-vehicle device, clock setting method for on-vehicle device, and computer-readable non-transitory storage medium having program stored therein
JP2010282352A (ja) Dma転送制御装置
CN105745594B (zh) 用于电子设备的功率监视器
WO2020230413A1 (ja) 情報処理装置
JP2012243274A (ja) 情報処理装置および消費電力制御方法
JP2005352672A (ja) 電気機器
WO2006080371A2 (ja) アクセス調停装置、および調停可能条件検証装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06756837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP