WO2014208528A1 - 電子機器 - Google Patents
電子機器 Download PDFInfo
- Publication number
- WO2014208528A1 WO2014208528A1 PCT/JP2014/066648 JP2014066648W WO2014208528A1 WO 2014208528 A1 WO2014208528 A1 WO 2014208528A1 JP 2014066648 W JP2014066648 W JP 2014066648W WO 2014208528 A1 WO2014208528 A1 WO 2014208528A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- terminal
- wiring
- semiconductor device
- ptc resistor
- wiring board
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/167—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/16—Constructional details or arrangements
- G06F1/20—Cooling means
- G06F1/206—Cooling means comprising thermal management
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/144—Stacked arrangements of planar printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/04—Assemblies of printed circuits
- H05K2201/041—Stacked PCBs, i.e. having neither an empty space nor mounted components in between
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09372—Pads and lands
- H05K2201/09445—Pads for connections not located at the edge of the PCB, e.g. for flexible circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10151—Sensor
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/16—Inspection; Monitoring; Aligning
- H05K2203/165—Stabilizing, e.g. temperature stabilization
Definitions
- the present invention relates to an electronic device, and more particularly to an electronic device provided with a PTC (Positive Temperature Coefficient) resistor.
- PTC Positive Temperature Coefficient
- Patent Document 1 discloses a configuration in which an overcurrent is suppressed by a positive temperature coefficient thermistor made of a PTC material formed on a printed wiring board.
- the control of overcurrent by the positive temperature coefficient thermistor does not necessarily guarantee the normal operation of the electronic component, and it is difficult to ensure the stable operation of the electronic device when the heat generation amount increases.
- An electronic device includes a printed wiring board having a first wiring and a second wiring.
- the printed wiring board mounts a first semiconductor device having a first terminal and a second terminal, and a PTC resistor containing a PTC material.
- One end of the PTC resistor and the first terminal are connected by a first wiring.
- the other end of the PTC resistor and the second terminal are connected by a second wiring.
- the first semiconductor device measures the temperature of the region where the PTC resistor is disposed based on the sense voltage between the first terminal and the second terminal.
- An electronic apparatus includes a printed wiring board having a first wiring and a second wiring, a flexible printed wiring board having a third wiring, a fourth wiring, a first connection terminal, and a second connection terminal.
- a printed wiring board mounts a first semiconductor device having a first terminal and a second terminal. The first terminal and the second terminal are connected to one end of the first wiring and one end of the second wiring, respectively.
- the flexible printed wiring board is mounted with a PTC resistor containing a PTC material. One end and the other end of the PTC resistor are connected to one end of the third wiring and one end of the fourth wiring, respectively. The other end of the first wiring is connected to the other end of the third wiring through the first connection terminal. The other end of the second wiring is connected to the other end of the fourth wiring through the second connection terminal.
- the first semiconductor device measures the temperature of the region where the PTC resistor is disposed based on the sense voltage between the first terminal and the second terminal.
- an electronic device having an overcurrent suppressing function and a temperature rise suppressing function can be realized without impairing high-density mounting of the electronic device.
- FIG. 1 is a plan view of an electronic device according to Embodiment 1.
- FIG. 1 is a cross-sectional view of an electronic device according to a first embodiment.
- 1 is a circuit diagram of an electronic device according to Embodiment 1.
- FIG. 6 is a plan view of an electronic apparatus according to a modification of the first embodiment.
- FIG. 1 is a plan view of electronic device 100 according to the first embodiment.
- an electronic device 100 includes a printed wiring board 1 on which wirings L1 to L3 are formed.
- a semiconductor device 11, a semiconductor device 12, and a PTC resistor RP are mounted on the printed wiring board 1.
- the semiconductor device 11 is a microcomputer, for example, and has a terminal P1, a terminal P2, and a terminal P4.
- the semiconductor device 12 includes an information processing circuit that operates with an internal clock (not shown) and has a terminal P3.
- the PTC resistor RP has a positive temperature coefficient (Positive Temperature Coefficient), and particularly has a characteristic that the resistance value increases rapidly in a relatively narrow temperature range. Due to this characteristic, when an overcurrent flows through the PTC resistor RP, the resistance value of the PTC resistor RP increases rapidly as the temperature rises, and thus an overcurrent to other components (for example, a terminal P2 described later). Can be suppressed.
- the PTC resistor RP is disposed in the vicinity of the semiconductor device 12.
- the operating frequency of the internal clock in the semiconductor device 12 is controlled by a frequency control signal FCT output from the terminal P4 by the semiconductor device 11.
- the semiconductor device 11 and the semiconductor device 12 have a power supply terminal, an IO terminal, and the like in addition to the above-described terminals, illustration and description thereof are omitted.
- FIG. 2 is a cross-sectional view of electronic device 100 according to the first embodiment.
- FIG. 2 schematically shows a cross-sectional view taken along the line XY of the electronic device 100 shown in FIG.
- printed wiring board 1 has wiring L1 and wiring L2 formed on the surface thereof.
- the PTC resistor RP has a single layer structure made of a PTC material and a conductive material, and has the same or almost the same size as the wiring of the printed wiring board 1 (having a planar shape of about 100 ⁇ m square, and a thickness of about 50 ⁇ m. And forms part of the wiring.
- the resistance value of the PTC resistor RP shows a value reflecting the temperature of the printed wiring board 1.
- the semiconductor device 11 has a surface mounting type package structure as an example, and the lead bent inward corresponds to the terminal P1 and the like.
- the terminal P1 is soldered to the wiring L1.
- the semiconductor device 11 has a planar shape of several mm to several cm square, and the thickness of the package body is about several mm.
- the planar dimension and thickness of the PTC resistor RP are smaller than those of the semiconductor device 11, and the PTC resistor RP can be disposed in the vicinity of or just below the semiconductor device 11 or the semiconductor device 12. Accordingly, it is possible to measure the temperature of the target electronic component (semiconductor device 12 or the like) without reducing the mounting density of the electronic device 100 due to the increase in the number of PTC resistors RP.
- FIG. 3 is a circuit diagram of the electronic device 100 according to the first embodiment.
- the semiconductor device 11 is a general microcomputer, and includes a constant current circuit CC, a resistor R1, an analog / digital conversion circuit ADC, a nonvolatile memory NVM, a central processing unit CPU, and an input. It has an output circuit IO and a bus BUS.
- the analog / digital conversion circuit ADC, the nonvolatile memory NVM, the central processing unit CPU, and the input / output circuit IO exchange data, addresses, and the like via the bus BUS.
- the constant current IP generated by the constant current circuit CC is supplied to one end of the PTC resistor RP via the resistor R1, the terminal P1, and the wiring L1.
- the other end of the PTC resistor RP and the terminal P2 are connected by the wiring L2, and the ground voltage GND is applied.
- a sense voltage VS that is an integrated value of the constant current IP and the resistance value of the PTC resistor RP is generated between both ends of the PTC resistor RP, that is, between the terminals P1 and P2.
- the value of the sense voltage VS depends on the temperature of the PTC resistor RP, that is, the temperature of the printed wiring board 1 in the vicinity of the semiconductor device 12 to be measured.
- the analog / digital conversion circuit ADC converts the value of the sense voltage VS into the digital sense voltage VDS and sends it to the central processing unit CPU, which is an arithmetic circuit, via the bus BUS.
- the central processing unit CPU reads the digital determination value VJ stored in the nonvolatile memory NVM via the bus BUS and compares the magnitude relationship between the digital sense voltage VDS and the digital determination value VJ. When the digital sense voltage VDS is larger than the digital determination value VJ, the central processing unit CPU outputs a frequency control signal FCT from the terminal P4 via the bus BUS and the input / output circuit IO.
- the frequency control signal FCT output to the terminal P4 is applied to the terminal P3 via the wiring L3.
- the semiconductor device 12 reduces the frequency of the internal clock generated by the internal clock generation circuit CG of the semiconductor device 12 based on the frequency control signal FCT input to the terminal P3. As the frequency of the internal clock decreases, the amount of heat generated by the semiconductor device 12 decreases, so that thermal destruction of the electronic device 100 is avoided and the operation of the electronic device 100 is continued.
- the generation of the frequency control signal FCT by the central processing unit CPU depends on the temperature-resistance value characteristic of the PTC resistor RP. If the characteristics of the PTC resistor RP have individual dependence due to manufacturing variations, the digital determination value VJ stored in the nonvolatile memory NVM is set for each electronic device 100, so that the target detection temperature varies. It can be solved.
- the electronic device 100 is placed in a constant temperature environment, and the digital sense voltage VDS at that time is stored in the nonvolatile memory NVM as the digital determination value VJ.
- the electronic device 100 is placed in an environment of 50 ° C. in a pre-shipment inspection process of the electronic device 100.
- the semiconductor device 11 stores 1.2 V, which is the value of the measured digital sense voltage VDS, in the nonvolatile memory NVM as the digital determination value VJ.
- the semiconductor device 11 detects a sense voltage VS of 1.2 V in the normal use state after shipment, the frequency of the internal clock of the semiconductor device 12 decreases in response to the frequency control signal FCT, and the temperature of the semiconductor device 12 increases. It is suppressed.
- the effects of electronic device 100 according to Embodiment 1 are as follows.
- the electronic device 100 includes a printed wiring board 1 having a wiring L1 and a wiring L2.
- the printed wiring board 1 mounts a semiconductor device 11, a semiconductor device 12, and a PTC resistor RP.
- the PTC resistor RP has the same or almost the same size as the wiring of the printed wiring board 1 (having a planar shape of about 100 ⁇ m square and a thickness of about 50 ⁇ m), and forms part of the wiring. .
- the PTC resistor RP is in close contact with the printed wiring board 1 and can be disposed in the vicinity of or just below the semiconductor device 12 to be temperature-measured, and the electronic device 100 caused by the increase in the number of disposed PTC resistors RP.
- the temperature of the target electronic component semiconductor device 12 or the like
- the semiconductor device 11 outputs the frequency control signal FCT to the semiconductor device 12 when the sense voltage VS generated by the PTC resistor RP exceeds the determination value.
- the semiconductor device 12 reduces the frequency of the internal clock generated by the internal clock generation circuit CG based on the frequency control signal FCT. As the frequency of the internal clock decreases, the amount of heat generated by the semiconductor device 12 decreases, and thermal destruction of the electronic device 100 is avoided.
- the semiconductor device 11 stores the digital determination value VJ in the nonvolatile memory NVM.
- the electronic device 100 Prior to shipment, the electronic device 100 is placed in a constant temperature environment, and the digital sense voltage VDS at that time is stored as a digital determination value VJ.
- the internal clock frequency of the semiconductor device 12 can be lowered based on the stored digital determination value VJ without being affected by the individual characteristic fluctuation of the PTC resistor RP.
- FIG. 4 is a plan view of electronic apparatus 101 according to a modification of the first embodiment.
- the electronic device 101 of FIG. 4 is obtained by mounting the semiconductor device 12 and the PTC resistor RP on the flexible printed wiring board 1B in the electronic device 100 of FIG.
- the electronic device 101 includes a printed wiring board 1A on which wiring L11, wiring L12, and wiring L15 are formed, and a flexible printed wiring board 1B on which wiring L23, wiring L24, wiring L26, and connection terminals T1 to T3 are formed.
- a semiconductor device 11 is mounted on the printed wiring board 1A.
- the semiconductor device 12 and the PTC resistor RP are mounted on the flexible printed wiring board 1B.
- the PTC resistor RP is disposed in the vicinity of the semiconductor device 12.
- the wiring L11 is connected to the wiring L23 via the connection terminal T1.
- the wiring L12 is connected to the wiring L24 via the connection terminal T2.
- the wiring L15 is connected to the wiring L26 via the connection terminal T3.
- the flexible printed wiring board 1B is fixed to the printed wiring board 1A with an adhesive.
- the PTC resistor RP is connected to the connection terminal T1 through the wiring L23.
- the other end of the PTC resistor RP is connected to the connection terminal T2 via the wiring L24.
- the ground voltage GND is applied to the wiring L12 and the wiring L24.
- the terminal P4 is connected to the terminal P3 through the wiring L15, the connection terminal T3, and the wiring L26.
- the operating frequency of the internal clock in the semiconductor device 12 is controlled by a frequency control signal FCT input to the terminal P3.
- the temperature of the electronic component can be measured without hindering high-density mounting of the electronic device 101. .
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Theoretical Computer Science (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
Abstract
電子機器(100)は、第1配線(L1)および第2配線(L2)を有するプリント配線基板(1)を備える。プリント配線基板(1)は、第1端子(P1)および第2端子(P2)を有する第1半導体装置(11)と、PTC物質を含むPTC抵抗体(RP)とを搭載する。PTC抵抗体(RP)の一端および第1端子(P1)は、第1配線(L1)によって接続される。PTC抵抗体(RP)の他端および第2端子(P2)は、第2配線(L2)によって接続される。第1半導体装置(11)は、第1端子(P1)および第2端子(P2)間のセンス電圧(VS)に基づき、PTC抵抗体(RP)が配置された領域の温度を測定する。
Description
本発明は、電子機器に関し、特に、PTC(Positive Temperature Coefficient)抵抗体を備えた電子機器に関する。
携帯電話やスマートフォン等の電子機器の小型化や高機能化を実現するため、電子機器に搭載される電子部品の高密度実装や高速化が進められている。このような電子機器の安定動作を実現するために、温度管理の対象となる電子部品の数も増加傾向にある。温度管理対象となる電子部品の増加は、それら電子部品近傍に配置されるチップ実装されたサーミスタの数量増加を伴い、電子機器の小型化を阻害する要因となっている。特開昭63-278396号公報(特許文献1)は、プリント配線基板に形成されたPTC物質からなる正特性サーミスタにより、過電流を抑制する構成を開示する。
正特性サーミスタによる過電流の制御は、必ずしも電子部品の正常動作を保証するものではなく、発熱量が増加した場合の電子機器の安定動作を確保することは困難である。
本発明のある局面に従う電子機器は、第1配線および第2配線を有するプリント配線基板を備える。プリント配線基板は、第1端子および第2端子を有する第1半導体装置と、PTC物質を含むPTC抵抗体とを搭載する。PTC抵抗体の一端および第1端子は、第1配線によって接続される。PTC抵抗体の他端および第2端子は、第2配線によって接続される。第1半導体装置は、第1端子および第2端子間のセンス電圧に基づき、PTC抵抗体が配置された領域の温度を測定する。
本発明の他の局面に従う電子機器は、第1配線および第2配線を有するプリント配線基板と、第3配線、第4配線、第1接続端子、および第2接続端子を有するフレキシブルプリント配線基板とを備える。プリント配線基板は、第1端子および第2端子を有する第1半導体装置を搭載する。第1端子および第2端子は、第1配線の一端および第2配線の一端とそれぞれ接続される。フレキシブルプリント配線基板は、PTC物質を含むPTC抵抗体を搭載する。PTC抵抗体の一端および他端は、第3配線の一端および第4配線の一端とそれぞれ接続される。第1配線の他端は、第1接続端子を介して第3配線の他端と接続される。第2配線の他端は、第2接続端子を介して第4配線の他端と接続される。第1半導体装置は、第1端子および第2端子間のセンス電圧に基づき、PTC抵抗体が配置された領域の温度を測定する。
本発明によれば、電子機器の高密度実装を損なわずに、過電流抑制機能および温度上昇抑制機能を有する電子機器の実現が可能となる。
以下、図面を参照しつつ、本発明の実施の形態について説明する。実施の形態の説明において、個数、量などに言及する場合、特に記載のある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。実施の形態の図面において、同一の参照符号や参照番号は、同一部分または相当部分を表わすものとする。また、実施の形態の説明において、同一の参照符号等を付した部分等に対しては、重複する説明は繰り返さない場合がある。
<実施の形態1>
図1は、実施の形態1に係る電子機器100の平面図である。
図1は、実施の形態1に係る電子機器100の平面図である。
図1を参照して、電子機器100は、配線L1~L3が形成されるプリント配線基板1を備える。プリント配線基板1には、半導体装置11と、半導体装置12と、PTC抵抗体RPとが搭載される。
半導体装置11は、たとえばマイクロコンピュータであり、端子P1と、端子P2と、端子P4とを有する。半導体装置12は、図示しない内部クロックで動作する情報処理回路を備え、端子P3を有する。PTC抵抗体RPは、正の温度係数(Positive Temperature Coefficient)を有する抵抗であり、特に、比較的狭い温度領域で急激に抵抗値が増加する特性を有する。この特性により、PTC抵抗体RPに過電流が流れた場合に、PTC抵抗体RPでは温度上昇に伴い抵抗値が急激に増加するので、他の構成要素(たとえば後述する端子P2)への過電流を抑制することができる。PTC抵抗体RPは、半導体装置12の近傍に配置される。
PTC抵抗体RPの一端は、配線L1を介して端子P1と接続される。PTC抵抗体RPの他端は、配線L2を介して端子P2と接続される。配線L2には、接地電圧GNDが印加される。端子P4は、配線L3を介して端子P3と接続される。半導体装置12における内部クロックの動作周波数は、半導体装置11が端子P4から出力する周波数制御信号FCTにより制御される。なお、半導体装置11および半導体装置12は、上述の端子に加えて電源端子やIO端子等を有しているが、それらの図示および説明は省略される。
図2は、実施の形態1に係る電子機器100の断面図である。
図2には、図1に示す電子機器100のX-Yにおける断面図が模式的に示される。図2を参照して、プリント配線基板1は、その表面に形成された配線L1および配線L2を有する。PTC抵抗体RPは、PTC物質と導電性物質からなる単層構造を有し、プリント配線基板1の配線と同一、もしくはほぼ等しいサイズ(約100μm角の平面形状を有し、厚さは約50μm)であり、配線の一部を形成している。PTC抵抗体RPの一端および他端は、配線L1および配線L2にそれぞれ接続され、配線L2には接地電圧GNDが印加される。PTC抵抗体RPの底面とプリント配線基板1の表面は密着した状態で形成されるため、PTC抵抗体RPの抵抗値はプリント配線基板1の温度を反映した値を示す。
図2には、図1に示す電子機器100のX-Yにおける断面図が模式的に示される。図2を参照して、プリント配線基板1は、その表面に形成された配線L1および配線L2を有する。PTC抵抗体RPは、PTC物質と導電性物質からなる単層構造を有し、プリント配線基板1の配線と同一、もしくはほぼ等しいサイズ(約100μm角の平面形状を有し、厚さは約50μm)であり、配線の一部を形成している。PTC抵抗体RPの一端および他端は、配線L1および配線L2にそれぞれ接続され、配線L2には接地電圧GNDが印加される。PTC抵抗体RPの底面とプリント配線基板1の表面は密着した状態で形成されるため、PTC抵抗体RPの抵抗値はプリント配線基板1の温度を反映した値を示す。
半導体装置11は、一例として表面実装型のパッケージ構造を有し、内側に曲げられたリードは端子P1等に対応する。端子P1は配線L1とはんだ付けされる。半導体装置11は数mm~数cm角の平面形状を有し、パッケージ本体の厚さは数mm程度である。PTC抵抗体RPの平面寸法および厚さは半導体装置11と比較して小さく、PTC抵抗体RPを半導体装置11や半導体装置12の近傍または直下に配置することが可能となる。したがって、PTC抵抗体RPの配置数増加に起因する電子機器100の実装密度低下を伴わずに、対象となる電子部品(半導体装置12等)の温度計測が可能となる。
図3は、実施の形態1に係る電子機器100の回路図である。
図3を参照して、半導体装置11は一般的なマイクロコンピュータであり、定電流回路CCと、抵抗R1と、アナログ/デジタル変換回路ADCと、不揮発性メモリNVMと、中央処理装置CPUと、入出力回路IOと、バスBUSとを有する。アナログ/デジタル変換回路ADC、不揮発性メモリNVM、中央処理装置CPU、および入出力回路IOは、バスBUSを介してデータやアドレス等をやり取りする。
図3を参照して、半導体装置11は一般的なマイクロコンピュータであり、定電流回路CCと、抵抗R1と、アナログ/デジタル変換回路ADCと、不揮発性メモリNVMと、中央処理装置CPUと、入出力回路IOと、バスBUSとを有する。アナログ/デジタル変換回路ADC、不揮発性メモリNVM、中央処理装置CPU、および入出力回路IOは、バスBUSを介してデータやアドレス等をやり取りする。
定電流回路CCが生成する定電流IPは、抵抗R1、端子P1、および配線L1を介してPTC抵抗体RPの一端へ供給される。PTC抵抗体RPの他端および端子P2は、配線L2によって接続されるとともに、接地電圧GNDが印加される。PTC抵抗体RPの両端間、すなわち端子P1および端子P2間には、定電流IPとPTC抵抗体RPの抵抗値との積算値であるセンス電圧VSが発生する。このセンス電圧VSの値は、PTC抵抗体RPの温度、すなわち温度測定対象である半導体装置12近傍のプリント配線基板1の温度に依存する。
アナログ/デジタル変換回路ADCは、センス電圧VSの値をデジタルセンス電圧VDSに変換し、バスBUSを介して演算回路である中央処理装置CPUへ送る。中央処理装置CPUは、不揮発性メモリNVMに格納されているデジタル判定値VJをバスBUSを介して読出し、デジタルセンス電圧VDSとデジタル判定値VJとの大小関係を比較する。デジタルセンス電圧VDSがデジタル判定値VJよりも大きい場合、中央処理装置CPUは、バスBUSおよび入出力回路IOを介して、端子P4から周波数制御信号FCTを出力する。端子P4に出力された周波数制御信号FCTは、配線L3を介して端子P3に印加される。
半導体装置12は、端子P3に入力された周波数制御信号FCTに基づき、半導体装置12の内部クロック生成回路CGが生成する内部クロックの周波数を低下させる。内部クロックの周波数低下に伴い、半導体装置12の発熱量は低下し、電子機器100の熱破壊が未然に回避されるとともに、電子機器100の動作も継続される。
中央処理装置CPUによる周波数制御信号FCTの生成は、PTC抵抗体RPの温度―抵抗値特性に依存する。PTC抵抗体RPの製造ばらつきにより、その特性が個体依存性を有する場合、不揮発性メモリNVMに保存されるデジタル判定値VJを電子機器100毎に設定することで、目的とする検出温度のばらつきを解消することが可能となる。
具体的には、電子機器100を一定温度の環境下に置き、そのときのデジタルセンス電圧VDSをデジタル判定値VJとして、不揮発性メモリNVMに格納する。一例として、電子機器100の出荷前検査工程において電子機器100を50℃の環境下に置く。そのとき、半導体装置11は、測定したデジタルセンス電圧VDSの値である1.2Vを、デジタル判定値VJとして不揮発性メモリNVMに格納する。出荷後の通常使用状態において、半導体装置11が1.2Vのセンス電圧VSを検出すると、周波数制御信号FCTに応答して半導体装置12の内部クロックの周波数は低下し、半導体装置12の温度上昇が抑制される。
実施の形態1に係る電子機器100の効果は、以下の通りである。
電子機器100は、配線L1および配線L2を有するプリント配線基板1を備える。プリント配線基板1は、半導体装置11と、半導体装置12と、PTC抵抗体RPとを搭載する。PTC抵抗体RPは、プリント配線基板1の配線と同一、もしくはほぼ同じサイズ(約100μm角の平面形状を有し、厚さは約50μm)の形状であり、配線の一部を形成している。
電子機器100は、配線L1および配線L2を有するプリント配線基板1を備える。プリント配線基板1は、半導体装置11と、半導体装置12と、PTC抵抗体RPとを搭載する。PTC抵抗体RPは、プリント配線基板1の配線と同一、もしくはほぼ同じサイズ(約100μm角の平面形状を有し、厚さは約50μm)の形状であり、配線の一部を形成している。
したがって、PTC抵抗体RPはプリント配線基板1と密着しており、温度測定対象とする半導体装置12の近傍またはその直下に配置可能となり、PTC抵抗体RPの配置数増加に起因する電子機器100の実装密度低下を招くことなく、対象となる電子部品(半導体装置12等)の温度計測が可能となる。
半導体装置11は、PTC抵抗体RPが生成するセンス電圧VSが判定値を超えた場合、周波数制御信号FCTを半導体装置12へ出力する。半導体装置12は、この周波数制御信号FCTに基づき、内部クロック生成回路CGが生成する内部クロックの周波数を低下させる。この内部クロックの周波数低下に伴い、半導体装置12の発熱量は低下し、電子機器100の熱破壊が回避される。
半導体装置11は、デジタル判定値VJを不揮発性メモリNVMに格納する。出荷前に電子機器100を一定温度の環境下に置き、そのときのデジタルセンス電圧VDSをデジタル判定値VJとして格納する。出荷後の通常使用状態において、PTC抵抗体RPの個別特性変動の影響を受けることなく、格納されたデジタル判定値VJに基づき、半導体装置12の内部クロック周波数を低下させることが可能となる。
<実施の形態1の変形例>
図4は、実施の形態1の変形例に係る電子機器101の平面図である。
図4は、実施の形態1の変形例に係る電子機器101の平面図である。
図4において、図1と同一の符号が付されたものは、両者とも同一の機能および構成を有し、重複説明は繰り返さない。図4の電子機器101は、図2の電子機器100において、半導体装置12およびPTC抵抗体RPをフレキシブルプリント配線基板1Bに搭載したものである。
電子機器101は、配線L11、配線L12、および配線L15が形成されているプリント配線基板1Aと、配線L23、配線L24、配線L26、および接続端子T1~T3が形成されているフレキシブルプリント配線基板1Bとを備える。プリント配線基板1Aには、半導体装置11が搭載される。フレキシブルプリント配線基板1Bには、半導体装置12およびPTC抵抗体RPが搭載される。PTC抵抗体RPは半導体装置12の近傍に配置される。
配線L11は、接続端子T1を介して配線L23と接続される。配線L12は、接続端子T2を介して配線L24と接続される。配線L15は、接続端子T3を介して配線L26と接続される。フレキシブルプリント配線基板1Bは、接着剤によりプリント配線基板1Aに固定される。
PTC抵抗体RPの一端は、配線L23を介して接続端子T1と接続される。PTC抵抗体RPの他端は、配線L24を介して接続端子T2と接続される。配線L12および配線L24には、接地電圧GNDが印加される。端子P4は、配線L15、接続端子T3、および配線L26を介して端子P3と接続される。半導体装置12における内部クロックの動作周波数は、端子P3に入力される周波数制御信号FCTにより制御される。
温度測定対象の電子部品(半導体装置12)が、フレキシブルプリント配線基板1Bに搭載されている場合であっても、電子機器101の高密度実装を妨げることなく、電子部品の温度測定が可能となる。
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1,1A プリント配線基板、1B フレキシブルプリント配線基板、11,12 半導体装置、100,101 電子機器、ADC アナログ/デジタル変換回路、BUS バス、CC 定電流回路、CG 内部クロック生成回路、CPU 中央処理装置、FCT 周波数制御信号、GND 接地電圧、IO 入出力回路、IP 定電流、L1~L3,L11,L12,L15,L23,L24,L26 配線、NVM 不揮発性メモリ、P1~P4 端子、R1 抵抗、RP PTC抵抗体、T1~T3 接続端子、VDS デジタルセンス電圧、VJ デジタル判定値、VS センス電圧。
Claims (5)
- 電子機器であって、
第1配線および第2配線を有するプリント配線基板を備え、
前記プリント配線基板は、第1端子および第2端子を有する第1半導体装置と、PTC(Positive Temperature Coefficient)物質を含むPTC抵抗体とを搭載し、
前記PTC抵抗体の一端および前記第1端子は、前記第1配線によって接続され、
前記PTC抵抗体の他端および前記第2端子は、前記第2配線によって接続され、
前記第1半導体装置は、前記第1端子および前記第2端子間のセンス電圧に基づき、前記PTC抵抗体が配置された領域の温度を測定する、電子機器。 - 前記プリント配線基板は、第3配線をさらに有するとともに、第3端子を有する第2半導体装置をさらに搭載し、
前記第1半導体装置は、周波数制御信号を出力する第4端子をさらに有し、
前記第2半導体装置は、前記PTC抵抗体に隣接して配置され、
前記第3端子および前記第4端子は、前記第3配線によって接続され、
前記第1半導体装置は、前記センス電圧の値が判定値を超えた場合、前記周波数制御信号に基づき、前記第2半導体装置のクロック周波数を減少させる、請求項1に記載の電子機器。 - 前記第1半導体装置は、
前記PTC抵抗体に定電流を供給する定電流回路と、
前記センス電圧の値をデジタルセンス電圧値に変換するアナログ/デジタル変換回路と、
前記判定値に対応するデジタル判定値を格納する不揮発性メモリと、
前記デジタルセンス電圧値および前記デジタル判定値の大小比較を行う演算回路と、
前記演算回路の出力に基づき、前記周波数制御信号を出力する出力回路とを備える、請求項2に記載の電子機器。 - 電子機器であって、
第1配線および第2配線を有するプリント配線基板と、
第3配線、第4配線、第1接続端子、および第2接続端子を有するフレキシブルプリント配線基板とを備え、
前記プリント配線基板は、第1端子および第2端子を有する第1半導体装置を搭載し、
前記第1端子および前記第2端子は、前記第1配線の一端および前記第2配線の一端とそれぞれ接続され、
前記フレキシブルプリント配線基板は、PTC物質を含むPTC抵抗体を搭載し、
前記PTC抵抗体の一端および他端は、前記第3配線の一端および前記第4配線の一端とそれぞれ接続され、
前記第1配線の他端は、前記第1接続端子を介して前記第3配線の他端と接続され、
前記第2配線の他端は、前記第2接続端子を介して前記第4配線の他端と接続され、
前記第1半導体装置は、前記第1端子および前記第2端子間のセンス電圧に基づき、前記PTC抵抗体が配置された領域の温度を測定する、電子機器。 - 前記プリント配線基板は、第5配線をさらに有し、
前記フレキシブルプリント配線基板は、第6配線および第3接続端子をさらに有するとともに、第3端子を有する第2半導体装置を搭載し、
前記第1半導体装置は、周波数制御信号を出力する第4端子をさらに有し、
前記第4端子および前記第3接続端子は、前記第5配線を介して接続され、
前記第3端子および前記第3接続端子は、前記第6配線を介して接続され、
前記第2半導体装置は、前記PTC抵抗体に隣接して配置され、
前記第1半導体装置は、前記センス電圧の値が判定値を超えた場合、前記周波数制御信号に基づき、前記第2半導体装置のクロック周波数を減少させる、請求項4に記載の電子機器。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013133390 | 2013-06-26 | ||
JP2013-133390 | 2013-06-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014208528A1 true WO2014208528A1 (ja) | 2014-12-31 |
Family
ID=52141862
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/066648 WO2014208528A1 (ja) | 2013-06-26 | 2014-06-24 | 電子機器 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2014208528A1 (ja) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006134775A1 (ja) * | 2005-06-15 | 2006-12-21 | Matsushita Electric Industrial Co., Ltd. | 電子回路 |
JP2012228110A (ja) * | 2011-04-21 | 2012-11-15 | Toshiba Schneider Inverter Corp | インバータ装置 |
-
2014
- 2014-06-24 WO PCT/JP2014/066648 patent/WO2014208528A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006134775A1 (ja) * | 2005-06-15 | 2006-12-21 | Matsushita Electric Industrial Co., Ltd. | 電子回路 |
JP2012228110A (ja) * | 2011-04-21 | 2012-11-15 | Toshiba Schneider Inverter Corp | インバータ装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8692349B2 (en) | Semiconductor devices and methods of controlling temperature thereof | |
US8596113B2 (en) | Intake air temperature sensor and thermal airflow meter including the same | |
US7079972B1 (en) | Apparatus and method for temperature control of integrated circuits | |
JP2007093453A (ja) | 表面実装型温度センサ | |
TW200539196A (en) | Compound device | |
JPH09210802A (ja) | 表面実装用温度検出素子 | |
KR20150031709A (ko) | 가스센서패키지 | |
US7825767B2 (en) | System for setting shutdown voltage of electronic device | |
US20160172083A1 (en) | Resistor element and method of manufacturing the same | |
JP2011191071A (ja) | 湿度センサ | |
KR100616743B1 (ko) | 온도 검출 소자 및 이것을 구비하는 회로 기판 | |
WO2014208528A1 (ja) | 電子機器 | |
GB2337121A (en) | Temperature measurement arrangement | |
JP7386184B2 (ja) | 高周波および高電力薄膜部品 | |
US10453603B2 (en) | Integration of inductor and damper for power filters | |
JP2006156913A (ja) | プリント配線基板 | |
JP4487825B2 (ja) | 温度検出素子 | |
JP2015046496A (ja) | プリント基板 | |
JP2011133442A (ja) | 湿度センサ | |
US11573203B2 (en) | Humidity sensor | |
JP2008153525A (ja) | 温度センサ | |
JP2005294476A (ja) | 表面実装型温度検出素子 | |
JP2006278793A (ja) | 温度検出素子 | |
JP4412034B2 (ja) | 表面実装型温度検出素子 | |
US20150035174A1 (en) | Semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14818715 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14818715 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |