WO2006133632A1 - Promedicament analogue nucleotidique et sa preparation - Google Patents

Promedicament analogue nucleotidique et sa preparation Download PDF

Info

Publication number
WO2006133632A1
WO2006133632A1 PCT/CN2006/001269 CN2006001269W WO2006133632A1 WO 2006133632 A1 WO2006133632 A1 WO 2006133632A1 CN 2006001269 W CN2006001269 W CN 2006001269W WO 2006133632 A1 WO2006133632 A1 WO 2006133632A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid
crystal
adenine
bis
phosphonomethoxypropyl
Prior art date
Application number
PCT/CN2006/001269
Other languages
English (en)
French (fr)
Inventor
Jiandong Yuan
Original Assignee
Brightgene Bio-Medical Technology Co., Ltd.
Jiangsu Chia Tai Tianqing Pharmaceutical Co. , Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brightgene Bio-Medical Technology Co., Ltd., Jiangsu Chia Tai Tianqing Pharmaceutical Co. , Ltd filed Critical Brightgene Bio-Medical Technology Co., Ltd.
Priority to CN2006800207782A priority Critical patent/CN101193642B/zh
Priority to US11/917,396 priority patent/US20100216822A1/en
Priority to JP2008516109A priority patent/JP5323476B2/ja
Publication of WO2006133632A1 publication Critical patent/WO2006133632A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • C07F9/65616Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings containing the ring system having three or more than three double bonds between ring members or between ring members and non-ring members, e.g. purine or analogs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/20Antivirals for DNA viruses

Definitions

  • the present invention relates to (R)-9-[2-bis(pivaloyloxymethyl)phosphonomethoxypropyl]adenine (English name 9-[2-(R)- [bis [pivaloyloxymethoxy]-phosphinoylmethoxy] ] propyl] adenine, English abbreviation bis-POM PMPA, hereinafter referred to as TD) and its derivatives and applications.
  • the present invention also relates to a method for synthesizing TD and a method for preparing TD in a solid state, and to a composition containing TD and a method for producing the composition.
  • Phosphonomethoxynucleotide analogs are a class of known broad-spectrum antiviral compounds with activity against viruses such as HIV, HBV, CMV, HSV-1, HSV-2 and human herpesviruses.
  • 9-[2-(phosphoryloxy)ethyl]adenosine (PMEA for short) and 9-[(R)-2-(phosphonomethoxy)propyl]adenosine (PMPA for short) are such Two examples of compounds that have been used in clinical antiviral therapy.
  • adefovir diputemate recently approved by the FDA for hepatitis B treatment, and tenofovir disoproxil fumarate for AIDS treatment are the phosphonomethoxynucleotide analogs PMEA and A lipophilic prodrug of PMPA.
  • Adefovir dipivoxil and tenofovir can be metabolized in vivo to the corresponding antiviral parent drugs PMEA and PMPA.
  • Tenofovir ester PMPA Tenofovir ester PMPA
  • adefovir dipivoxil When adefovir dipivoxil is used at a dose of about 300 mg/day, it can suppress HIV (HIV), but according to related pharmacokinetic studies, adefovir dipivoxil is ingested at a dose of 300 mg. A large part of the human body is distributed in the kidney organs, causing nephrotoxicity to the human body; and when adefovir dipivoxil is used at a dose of about 50 mg/day, 30 mg/day and 10 mg/day, respectively, it can inhibit the human body.
  • Hepatitis B virus (HBV) replication but the incidence of adverse reactions and renal dysfunction in the 50 mg/day and 30 mg daily groups is higher, so adefovir dipivoxil can only be non-optimized at 10 mg/day.
  • the dose is for the treatment of hepatitis B. It has also been suggested that due to the long-term nature of hepatitis B antiviral therapy, if the treatment is longer than 48 weeks, even if the low dose of lOmg/day is used, whether or not there is accumulation toxicity to the kidney remains to be further observed.
  • the dosage of tenofovir disoproxil approved by the US FDA for AIDS antiviral combination therapy is 300 mg/day. Because of the large dose of this drug, it is a great burden on organs such as liver and kidney for long-term patients. The production cost per unit preparation is also high due to the large dose used.
  • the English name of this compound is 9-[2-(R)-[bis[pivaloyloxymethoxy]-phosphinoylmethoxy]propyl]adenine, English abbreviation bis-POM PMPA, Chinese name can also be called (R)-9-[2- double (pivaloyloxymethyl)phosphonomethoxy]propyl]adenine, (R)-9-[2-bis(trimethylacetoxymethyl)phosphonomethoxy]propyl]adenine Or tenofovir dipivoxil.
  • the present invention provides:
  • Solid state TD and its derivatives including crystalline TD, amorphous solidified TD, solid state TD salt, and TD cyclodextrin inclusion complex. These TDs and their derivatives which exist in a solid state are industrially synthesized on a large scale and have the properties required for preparation into a drug.
  • TD synthesis method and purification method including PMPA in the presence of an organic base in a polar solvent in contact with pivaloyl halomethyl ester to synthesize TD and column separation method, crystallization method and salt formation method to purify TD method.
  • a method for solidifying a TD oil which comprises converting TD oil into a crystalline state of TD, an amorphous solid of TD, a solid state TD salt, and a TD cyclodextrin inclusion compound.
  • solid state TD and its derivatives in antiviral, especially anti-HIV, HBV, CMV, HSV-1, HSV-2 and human herpes viruses.
  • PMPA The synthesis of PMPA can be based on prior art documents such as Chinese Patent Application No. 98807435.4, U.S. Patent No. 5,733,788, and U.S. Patent No. 6,653,296. It can also be synthesized according to the method shown in Reaction Scheme 1 -
  • reaction product (D) obtained in the step (4), acetonitrile and trimethylbromide are sequentially added to the reaction vessel, and the mixture is stirred and refluxed until the reaction is completed.
  • the volatile liquid is removed in vacuo, and the residue is dissolved in an appropriate amount of water.
  • the pH was adjusted to 3.0 to 3.5 to give the product (R)-9-[2-(phosphonomethoxy)propyl]adenine (PMPA).
  • the reaction solvent may also be dichloromethane or chloroform, and the deprotecting agent may also be trimethylsilyl iodide or trimethylsilylphosphonium chloride/potassium iodide.
  • the dried PMPA solids are suspended in a polar solvent and then organic amines are added.
  • a catalytic amount of a phase transfer catalyst may also be added.
  • the pivaloyl halomethyl ester is added, and the reaction mixture is reacted at 20 to 70 ° C for 2 to 48 hours, and then the reaction mixture is diluted with a large amount of a polar organic solvent, and filtered, using a weak base.
  • the organic phase was washed with aqueous solution and water, dried, and then evaporated in vacuo.
  • the polar solvent described above is preferably DMF and N-methylpyrrolidone (NMP); the weight ratio of PMPA to polar solvent ranges from 1:1 to 1:20, preferably from 1:2 to 1:10.
  • the organic amines are preferably a trialkylamine or anthracene, fluorenyl-dicyclohexyl-4-morpholinium (DCM), more preferably triethylamine, tributylamine and ethyldiisopropylamine; organic amines with PMPA
  • the molar ratio is 2 ⁇ 6: 1.
  • the 3 to 4 : lo phase transfer catalyst is preferably tributylbenzylammonium chloride.
  • the pivaloyl halomethyl ester is preferably pivaloyl chloromethyl ester and pivaloyl methyl iodide.
  • an iodide salt or a bromide salt may be optionally added as a catalyst for the substitution reaction; pivaloyl halide Generation molar ratio of ester with PMPA is 3 ⁇ 8: 1, preferably 4-6: 1.
  • the preferred reaction temperature is 45 to 65 °C.
  • the organic solvent for dilution is preferably ethyl acetate or isopropyl acetate, and the weakly basic aqueous solution is preferably an aqueous solution of sodium hydrogencarbonate.
  • the silica gel was used as a stationary phase, and eluted with 2% to 8% methanolic dichloromethane. The fractions containing TD were collected, and the solvent was evaporated under reduced pressure to obtain purified TD.
  • the TD purified by this method is generally an oily substance which decomposes slowly at room temperature.
  • the TD molecule has a strong adenine group and two strong lipophilic pivaloyl groups, so TD can be dissolved in most polar organic solvents, but in non-polar or weakly polar organic solvents and The solubility in water is small.
  • a solvent capable of dissolving TD and having a solubility of more than 10 mg/ml is called a good solvent for TD.
  • a solvent that cannot dissolve TD or a solvent with a solubility of less than 1 mg/ml is called a poor solvent for TD.
  • a good solvent for TD can be used.
  • TD's poor solvents are: alkane solvents, partial ethers Solvent and water.
  • Preferred good solvents for TD are: acetone, methyl ethyl ketone, methanol, ethanol, isopropanol, n-butanol, tert-butanol, DMF, NMP, acetonitrile, dichloromethane, chloroform, ethyl acetate, methyl acetate, Isopropyl acetate, ethyl formate, tetrahydrofuran and tetrahydropyran.
  • Preferred TD poor solvents are: methyl tert-butyl ether, di-n-propyl ether, diisopropyl ether, di-n-butyl ether, petroleum ether, n-hexane, cyclohexane, n-pentane, n-heptane and water.
  • the crude product of TD is dissolved in an appropriate amount of good solvent, and then the obtained solution is mixed with an appropriate amount of poor solvent to make the TD solution approach or reach saturation state, and then the TD solution is made by changing the temperature, evaporating the solvent or changing the solvent composition. Supersaturation causes TD to precipitate as crystals.
  • the crude TD is directly dissolved in a solvent obtained by premixing a good solvent and a poor solvent to form a TD solution, and crystallization is performed to obtain a purified TD.
  • a single solvent or a mixed solvent capable of dissolving TD and allowing dissolved TD to precipitate in a crystalline state is referred to as a crystallization solvent of TD
  • a crystallization solvent of TD a solution formed of TD and its crystallization solvent
  • the crystallization solvent of TD is usually one or more benign solvents or a mixed solvent composed of one or more benign solvents and one or more non-benign solvents.
  • Preferred crystallization solvents for TD include all of the above good solvents and are optionally selected from the group consisting of acetone, methyl ethyl ketone, methanol, ethanol, isopropanol, n-butanol, tert-butanol, DMF, NMP, acetonitrile, dichloromethane, chloroform, One of ethyl acetate, methyl acetate, isopropyl acetate, ethyl formate, tetrahydrofuran and tetrahydropyran and optionally selected from the group consisting of methyl tert-butyl ether, di-n-propyl ether, diisopropyl ether, and di-n-butyl a mixed solvent of butyl ether, petroleum ether, n-hexane, cyclohexane, n-pentamidine, cyclopentanthene, n-glycol and water, where
  • the benign solvent used in the crystallization solvent is an organic alcohol compound and an organic ketone compound
  • an ether compound and water are preferred as non-benign solvents such as methanol/diisopropyl ether, acetone/diisopropyl ether and ethanol/water. Mixed solvent.
  • an alkane compound is preferable as a non-benign solvent such as ethyl acetate/n-hexane or dichloromethane/petroleum ether.
  • water is preferably a non-benign solvent.
  • the TD content in TD's crude oil is usually between 5% and 60%.
  • the crude oil of TD can be dissolved in a crystallization solvent composed of a suitable amount of a benign solvent at a relatively high temperature, and then the temperature can be lowered to obtain crystallization of TD;
  • a crystallization solvent composed of a suitable amount of a benign solvent at a relatively high temperature
  • a mixture of a benign solvent and a non-benign solvent is generally required as a crystallization solvent.
  • the ratio of the crystallization solvent to the crude TD is usually between 1:1 and 20:1.
  • the temperature at which crystallization occurs is generally between -20 Torr and room temperature, preferably between -10 ° C and 1 (between TC, most preferably 0 ° C. Lower temperature (-10 ° C) can increase the crystallization yield, but the crystallization The purity tends to be low; crystallization at temperatures close to 0 °C generally guarantees higher yields and purer products, and is also more convenient and economical in chemical production.
  • a method for purifying TD is to first prepare a salt of TD and a suitable acid, then crystallize to obtain a pure TD salt, and then dissolve the pure TD salt in a suitable solvent and neutralize with a weakly alkaline aqueous solution.
  • the acid radical is removed by washing with water, and finally, the water is removed by drying, and the solvent is removed to obtain a pure TD in a free state.
  • TD can form a salt with most inorganic and organic acids.
  • the salt is formed by mixing the acid with TD crude in a suitable solvent to form a salt, and then precipitating the salt in crystalline form.
  • the crystallization solvent of the salt may be the same as or different from the solvent for salt formation, and the salt may be removed after the salt is formed, and the crude product of the TD salt is dissolved in a crystallization solvent to be recrystallized to obtain a pure product of the TD salt.
  • the equivalent of the acid used for salt formation is usually slightly larger than the equivalent of TD in the crude TD, and the ratio of acid to TD is generally between 1.1:1 and 1.3:1.
  • the amount of TD in the crude TD can be determined by HPLC or UV spectrophotometry.
  • the salt used for purifying TD is preferably a salt of fumaric acid, maleic acid, salicylic acid or oxalic acid and TD.
  • TD salts are generally soluble in organic alcohol solvents and are also soluble in organic ketones and ester solvents.
  • the following method can be used to obtain a free TD from the neutralization of the TD salt:
  • the TD salt is dissolved in an organic solvent which is immiscible with water, preferably an organic ester compound, most preferably ethyl acetate; and then the resulting solution is used.
  • the dilute alkaline aqueous solution is washed to remove acid, and the dilute alkaline aqueous solution is preferably an aqueous solution of hydrogencarbonate; after the acid is completely neutralized, the organic phase is washed with water or saturated brine; finally, the organic solvent is removed by drying to obtain pure free TD.
  • a pure free state TD is obtained in the form of an oil, which solidifies after standing for a long time.
  • TD Since the oil of TD is inferior in stability and is not suitable for preparation into a suitable preparation, it is required to be cured in order to facilitate its use in medicine preparation and storage.
  • TD, crystalline or solid state TD salts and TD cyclodextrin inclusion complexes have now been prepared in crystalline and amorphous solid state.
  • the TD type A crystal of the present invention refers to a TD crystal substantially free of water or other solvent, and the D (X-ray powder diffraction) spectrum of the TD type A crystal is represented by a crystal face distance d value, which is usually at 9.774 A, 6.32. A, 5.726 A, 4.967 A, 4.849 A have peaks, and further typically at 14.917 A, 9.774 A, 6.32 A, 5.726 A. 5.387 A, 5.211 k, 4.967 A, 4.849 A, 4.647 A, 4.553 A, 3.817 A There are peaks.
  • the endothermic transition temperature is about 100 ⁇ .
  • the anhydrous crystalline form of TD in the composition accounts for more than 50% by weight of the composition, preferably more than 80%, more preferably more than 90%, more preferably more than 95%, in addition to the anhydrous crystalline form of the TD composition. It also contains amorphous solidified TD and other crystalline forms.
  • the crystallization type A of TD is obtained by crystallizing TD in an anhydrous state, and the crystallization solvent generally used has a water content of less than 0.5%.
  • the preparation methods are as follows:
  • the preferred crystallization solvent is a mixed solvent of acetone: diisopropyl ether in a volume ratio of 1: 2-5, and a mixed solvent of methanol: di-n-butyl ether in a volume ratio of 1: 2-10.
  • the temperature at which TD is dissolved is 35 to 60 ° C
  • the crystallization temperature is -20 to 35 ° C, preferably - 5 to 5 ° C
  • the crystallization time is 5 to 4 seconds.
  • Natural solidification method Pure TD is dissolved in a good solvent with no water, and the solvent is removed in vacuo to form a type A crystal of TD.
  • the TD type A crystal obtained by this method sometimes has an amorphous TD.
  • the B-type crystal of TD refers to a TD crystal containing two crystal waters, and the XRD spectrum of the B-type crystal of TD is usually represented by a crystal face distance d value of 20.157 A, 9.995 A, 4.449 A, 3.965 A, 3.297 A has a peak, and further typically has peaks at 20.157, 9.995 A, 5.555 A, 4.696 A, 4.449 A, 3.965 A, 3,677 A, 3.297 A, 3.125 A, 2.822 A.
  • the DSC endothermic transition temperature is about 55 °C.
  • the B-type crystal of TD means a composition in which the crystalline form of dihydrate in water is 50% by weight or more, preferably 80% or more, more preferably 90% by weight of the composition. More than %, preferably more than 95%, in addition to the dihydrate crystalline TD, the composition also contains TD amorphous cured product and other crystalline forms.
  • the B-type crystal of TD is obtained by precipitating TD from a crystallization solution in the presence of water, and the crystallization solvent generally used contains at least 0.5% of water.
  • the general method for preparing TD type B crystals is to dissolve the pure TD in a water-miscible good solvent, and then add water to the formed solution to precipitate TD in a crystalline state, or use water.
  • the benign solvent dissolves the pure TD and then crystallizes it.
  • the type A crystal of TD also absorbs moisture into a B-type crystal of TD under high humidity.
  • the diffraction spectrum obtained from the crystalline compound is often characteristic for a particular crystal form, wherein the relative intensity of the band (especially at low angles) may be due to crystallization conditions, particle size, and Other advantageous measurement effects due to differences in measurement conditions vary. Therefore, the relative intensity of the diffraction peaks is not characteristic for the crystal form to be targeted. When judging whether it is the same as the known crystal form, more attention should be paid to the relative positions of the peaks rather than their relative intensities.
  • the peak position is usually represented by a 2 ⁇ angle or a crystal plane distance d. Since the 2 ⁇ angle is related to the wavelength of the incident X-ray, the crystal plane distance d is more representative.
  • d A/2sin9
  • d represents the interplanar spacing
  • is the diffraction angle.
  • the XRD spectrum has similarity as a whole, and the error of the d value for characterizing the peak position is generally within ⁇ 2%, and most of the error does not exceed ⁇ 1%. The relative intensity error can be compared. Large, but the trend is consistent.
  • DSC measures the transition temperature when crystallization absorbs or releases heat due to changes in its crystal structure or crystal melting.
  • the thermal transition temperature and melting point error are typically within about 5 ° C, usually within about 3 ° C, when we say a compound has a given At the DSC peak or melting point, this means the DSC peak or ⁇ point ⁇ 5 °C.
  • DSC provides an auxiliary method for identifying different crystal forms. Different crystalline forms can be identified based on their different transition temperature characteristics. It should be noted that for the mixture, the DSC peak or melting point may vary over a larger range. In addition, since the decomposition is accompanied by the melting of the substance, the melting temperature is closely related to the rate of temperature increase.
  • IR measures the infrared absorption caused by a specific chemical bond associated with a group vibrating in response to light. Since the electrical environment of covalent bonds in different crystal forms is different, the strength of covalent bonds will also change, and the change in the strength of covalent bonds will inevitably lead to The difference in IR spectra of different crystal forms.
  • the present invention also provides an amorphous cured product of TD, wherein the XRD pattern of the TD amorphous solid compound has no sharp peak band, and only a broad amorphous solid peak.
  • a small amount of TD crystals may be mixed in the amorphous solidified body of TD.
  • the content of TD amorphous solidified material is above 70%.
  • the preparation method of the TD amorphous solidified material is as follows -
  • the TD amorphous solidified product can also be obtained by dissolving the pure TD and removing the solvent by vacuum freeze-drying.
  • the solid powder XRD prepared by the method generally shows that the content of the TD amorphous solid is 70% or more.
  • the TD amorphous solid obtained by the freeze-drying method is usually a loose solid, has a solubility in water better than that of the crystalline state, and has a high dissolution rate, and is suitable for preparing a powder injection preparation for injection.
  • Figure 7 is a powder X-ray diffraction pattern of a TD amorphous solid with no sharp peaks in the spectrum and only a broad amorphous solid peak.
  • TD reacts with an acid to form a salt or salt complex of the following formula:
  • a is a molar ratio of acid to TD, a is between 1 and 5, preferably 1 to 3, more preferably 1; HA is an acid.
  • a suitable acid capable of forming a salt or salt complex with TD should have an acidity sufficient to form a stable salt with TD.
  • Suitable acids may be monobasic or polybasic acids, including inorganic acids, organic sulfonic acids, organic carboxylic acids, and organic compounds or natural products containing acidic groups and having a protective effect on the liver.
  • Suitable inorganic acids include sulfuric acid, phosphoric acid, nitric acid, hydrochloric acid, hydroiodic acid, hydrobromic acid, hydrofluoric acid, etc.
  • Suitable organic sulfonic acids include C 6 ⁇ 16 aryl sulfonic acid, C 6 ⁇ I6 heteroaryl sulfonic acid And C W 6 alkylsulfonic acid, preferably taurine, benzenesulfonic acid, p-toluenesulfonic acid, ⁇ -naphthalenesulfonic acid, ⁇ -naphthalenesulfonic acid, (S)-camphorsulfonic acid, methanesulfonic acid, ethanesulfonic acid , n-propanesulfonic acid, isopropylsulfonic acid, n-butanesulfonic acid, sec-butylsulfonic acid, isobutylsulfonic acid, t-butanesulf
  • the organic carboxylic acid may be a mono or polycarboxylic acid, including ⁇ 16 alkyl carboxylic acid, C W6 aryl carboxylic acid and Cw 6 heteroaryl carboxylic acid, preferably acetic acid, glycolic acid, lactic acid, pyruvic acid, malonic acid, pentane Diacid, tartaric acid, citric acid, fumaric acid, succinic acid, malic acid, maleic acid, grass Acid, hydroxymaleic acid, benzoic acid, hydroxybenzoic acid, phenylacetic acid, cinnamic acid, no diacid, cinnamic acid, mandelic acid, salicylic acid and 1-phenoxybenzoic acid, nicotinic acid, pantothenic acid.
  • the organic carboxylic acid also includes an amino acid, and there are many suitable amino acids, particularly natural amino acids found as protein components, preferably aspartic acid, glutamic acid, and valine.
  • An organic compound or natural product containing an acidic group and having a protective effect on the liver is preferably ascorbic acid, oleanolic acid, ursolic acid, ursolic acid, glycyrrhizic acid, glycyrrhetinic acid, salvian acid, ferulic acid, glucuronic acid, Gluconic acid and fructose.
  • the most preferred TD salts are TD fumarate, TD oxalate, TD salicylate, TD oleanolic acid and TD aspartate.
  • the invention also obtains crystallization of TD fumarate, the XRD spectrum of which is represented by the crystal face distance d value, usually at 18.706 person, 6.112A, 4.562A, 3.645A, 3.56lA, 3.033A, 2.596A, and further typical in 18.706 people, 6.112A, 5.075A, 4.562 people, 4.414A, 4.14lA, 4.044A 3.776A, 3.645 a 3 ⁇ 4 3.561 a, 3.257A, 3.033A, 2.985A, 2.596A peaks.
  • the preparation of the TD salt is usually carried out by mixing the TD with the acid in the form of a salt, and the acid used may also be slightly excessive.
  • the solvent is generally selected from organic alcohols.
  • the acid is an inorganic acid or an organic sulfonic acid and some water-soluble acids such as amino acids
  • the solvent may be a mixture of ⁇ 4 alcohol, water or a mixture of water and an organic solvent.
  • fat-soluble acids such as oleanolic acid, ursolic acid, etc.
  • halogenated alkane and esters can be used as a solvent for salt formation.
  • the crystal of the salt can be precipitated with stirring or cooling. Evaporation of the solvent in the solution of the TD salt can also generally afford TD salt solids, which may be crystalline or amorphous solids of the TD salt or a mixture of the two.
  • TD salts of TD exist in a solid state. Many TD salts have higher melting point, better stability and easier formation of crystals than TD, which is advantageous for industrial production and storage, and is also advantageous for preparation and storage of preparations.
  • the salt or salt complex of TD still has the same antiviral activity as TD, and if TD is complexed with a salt or a salt form of an organic compound or a natural product containing an acidic group and protecting the liver, these salts It not only retains the original antiviral activity, but also has the function of protecting liver and protecting liver. Therefore, a salt or salt complex of TD can also be used to prepare an antiviral drug. (iii) TD cyclodextrin inclusion complex
  • Cyclodextrin is a cyclic oligosaccharide compound which is linked by 1,4-glycosidic bonds to 6, 7 or 8 glucose molecules. It is a water-soluble non-reducing white crystalline powder with a hollow circular shape and a cavity. The opening is hydrophilic and the interior of the cavity is highly hydrophobic. Many molecules can be embedded in cyclodextrin molecules to form supramolecular structures.
  • cyclodextrin to form a clathrate can cure the liquid drug, improve the stability of the drug, increase the solubility of the drug, and improve the bioavailability of the drug.
  • TD can form inclusion complexes with cyclodextrins, and because of the lipophilic pivaloyl group embedded in cyclodextrin After the hydrophobic cavity, not only makes pivaloyl more difficult to hydrolyze, but also improves the stability of TD, and improves the solubility and dissolution rate of TD in water, which can improve the dissolution and bioavailability of the preparation, and is also convenient for preparation.
  • a solution preparation such as an injection preparation.
  • the TD cyclodextrin inclusion compound is an inclusion compound formed by TD and cyclodextrin molar ratio of 1:1 ⁇ 1:10, preferably 1:1 to 1:3; the cyclodextrin is ⁇ -ring Dextrin or a derivative thereof, ⁇ -cyclodextrin or a derivative thereof, ⁇ -cyclodextrin or a derivative thereof, preferably ⁇ -cyclodextrin or a derivative thereof, and most preferably ⁇ -cyclodextrin.
  • the cyclodextrin inclusion complex of TD can be obtained by mixing TD and cyclodextrin in a liquid phase, and the preparation methods which can be used include a saturated aqueous solution method, a grinding method, a freeze drying method, and an ultrasonic method.
  • the TD is dissolved in an organic solvent such as an appropriate amount of an alcohol or a ketone, and the cyclodextrin is weighed and mixed into a saturated aqueous solution of 50-80 Torr in a molar ratio of 1 to 10 times with respect to TD, and the two solutions are mixed and stirred for 30 minutes or more, and frozen.
  • the clathrate is precipitated, filtered, washed with an appropriate amount of an organic solvent such as an alcohol or a ketone, and dried.
  • the alcohol or ketone organic solvent is preferably methanol, ethanol, isopropanol or acetone.
  • Dissolve a certain amount of TD dissolve it with an appropriate amount of an organic solvent such as an alcohol or a ketone, add 1 to 10 times the amount of cyclodextrin, add a proper amount of water, mix it thoroughly, and then grind it into a paste. After drying at low temperature, use alcohol. Or wash with organic solvents such as ketones and dry.
  • an organic solvent such as an alcohol or a ketone
  • the TLC was developed with 6% methanol-dichloromethane solution, and the TD ⁇ -cyclodextrin inclusion complex was found at the origin after fluorescent color development under ultraviolet light.
  • the Rf value is 0, and the free TD has an Rf value of 0.4.
  • the above identification results indicate that TD and ⁇ -cyclodextrin form an inclusion complex.
  • the sample was evenly distributed into an open petri dish with a thickness of ⁇ 5 mm, the distance was adjusted, and the light intensity was 4500 ⁇ 500 Lx.
  • the samples were sampled at 5 and 10 days, respectively, and compared with the results of 0 days. The results are shown in the following table:
  • the samples were placed in sealed clean glass bottles, placed in a 60 ° C constant temperature oven, sampled at 5, 10 days, and compared with the results of 0 days.
  • the results are as follows - High temperature test (60 ° C) relative humidity change 54% -62 ° / 0
  • the samples were allotted into an open petri dish, thickness ⁇ 5 mm, placed in a constant temperature and humidity incubator at room temperature (25 ° C) and relative humidity of 75 ⁇ 5%, and sampled at 5, 10 days, respectively. And compared with the results of 0 days. The results are shown in the table below:
  • TD ⁇ -cyclodextrin inclusion complex 99.4 99.2 99.2 Form A crystal of TD 96.3-97.1 89.2-90.7 86.1-90.7
  • the sample was sealed in a polyethylene film plastic bag and placed in a constant temperature and humidity incubator at 40 ⁇ 2° C. and a relative humidity of 75 ⁇ 5%.
  • the sample was placed for 3 months and sampled at the end of 1, 2, and 3 months. And compared with the results of 0 months. The results are shown in the table below:
  • TDs and derivatives thereof obtained by the present invention have excellent stability and are suitable for preparation into compositions or pharmaceutical preparations of any form, especially TD type A crystals and TD salts.
  • TD salts and TD cyclodextrin inclusions have good water solubility and can be prepared as solution preparations, including small infusions, water needles, oral liquids or powder needles.
  • the TD provided by the present invention or a physiologically acceptable derivative thereof comprises: TD type A crystal, TD type B crystal, TD amorphous solidified substance, TD salt type complex and cyclodextrin inclusion compound, which can be passed Any way suitable for the disease being treated Diameter administration.
  • TD or a physiologically acceptable derivative thereof can be administered through the rectum, vagina, nasal, topical (including the eyes, mouth and sublingual) and parenteral (including subcutaneous, intramuscular, intravenous, intradermal, Intrathecal and epidural) routes are administered, preferably orally.
  • TD or a physiologically acceptable derivative thereof can be administered in the form of a pure substance, it is usually administered in the form of a pharmaceutical preparation of TD.
  • the pharmaceutical preparation of TD comprises TD or a physiologically acceptable derivative thereof and one or more pharmaceutically acceptable carriers, and may further contain other therapeutic ingredients or auxiliary ingredients, such as other antiviral agents, immune promoters, and liver protection, as needed.
  • Pharmaceutically acceptable carriers include binders, diluents, disintegrating agents, preservatives, dispersing agents, glidants (anti-adherents), and lubricants.
  • Solid preparations suitable for oral administration of TD or a physiologically acceptable derivative thereof include tablets, capsules, powders, granules, dropping pills, powders, granules, elixirs or pastes, etc.; wherein the tablets are ordinary tablets, Dispersible tablets, effervescent tablets, sustained release tablets, controlled release tablets or enteric coated tablets, capsules are ordinary capsules, sustained release capsules, controlled release capsules or enteric coated capsules.
  • the unit preparation of tablets and capsules of TD or a physiologically acceptable derivative thereof contains TD 5 to 300 mg, preferably 5 to 150 mg.
  • it usually contains a proper amount of fillers such as starch, sucrose and lactose; binders such as water, ethanol, polyvinylpyrrolidone and pregelatinized starch; disintegrants such as microcrystalline cellulose, A sodium carboxymethylcellulose, a crosslinked polyvinylpyrrolidone; a lubricant, such as a pharmaceutically acceptable carrier such as magnesium stearate, talc or silica. It may also contain a formaldehyde scavenger (such as lysine or gelatin) to capture the formaldehyde that may be released during TD storage.
  • a formaldehyde scavenger such as lysine or gelatin
  • Tablets and capsules of TD or a physiologically acceptable derivative thereof may also contain a basic pharmaceutical carrier, including a basic carbonate and an alkali hydroxide.
  • a basic pharmaceutical carrier including a basic carbonate and an alkali hydroxide.
  • Preferred basic carbonates are calcium carbonate, magnesium carbonate, zinc carbonate, ferrous carbonate and aluminum carbonate;
  • preferred alkaline hydroxides are magnesium hydroxide, calcium hydroxide, aluminum hydroxide and iron hydroxide.
  • the preparation of TD or a physiologically acceptable derivative thereof may further contain L-carnitine or a salt thereof (e.g., L-carnitine tartrate (2:1)).
  • L-carnitine or a salt thereof e.g., L-carnitine tartrate (2:1)
  • the pivalic acid produced by the metabolism of TD in the body seems to reduce the concentration of L-carnitine in the patient.
  • Formulations containing L-carnitine or its salts and TD reduce the effect of pivalic acid on reducing L-carnitine in patients taking TD.
  • the amount of L-carnitine added can be determined based on the degree of depletion of L-carnitine in the patient.
  • the dispersible tablet of TD or its physiologically acceptable derivative may contain about 0.5 to 60% disintegrant for rapid disintegration; the enteric coated tablet of TD contains enteric material or is coated with an enteric coating material.
  • the coating, the enteric capsule preparation may be a capsule preparation made of a capsule package made of an enteric material, or may be a granule or pellet coated with an enteric material packaged in a common capsule.
  • Tablets and capsules of TD or a physiologically acceptable derivative thereof can be prepared by a method generally used in pharmacy.
  • the prepared tablets can be tableted by wet granulation with water or ethanol, or can be directly compressed by dry powder.
  • the capsules can be filled by wet granulation first, or directly by dry powder.
  • TD or a physiologically acceptable derivative thereof can also be administered by injection, and the preparation includes a sterile powder for injection and an injection liquid.
  • TD fumarate and TD type A crystals were dissolved in 0.1 M citric acid solution, respectively, and animals were used for body weight.
  • TD fumarate and TD A-type crystals were administered by different doses of 7 administration groups, respectively, for 14 days, and the toxicity and death of the mice were observed.
  • LD 5() LD 5() .
  • the LD 5Q of TD fumarate is 6.05 g/kg, and the 95% confidence limit is 4.50 to 7.87 g/kg.
  • the LD 5 Q of the TD type A crystal was 4.31 g/kg, and the 95% confidence limit was 2.83 to 5.44 g/k.
  • the BEAGLE dog was used as an animal model, and adefovir dipivoxil was used as a reference substance to investigate the long-term toxicity of TD type A crystal.
  • the effect of TD type A crystal on renal function was investigated.
  • the three groups were three doses of TD type A crystal low, medium and sputum, and the low dose group was 5 mg. /kg once a day, the middle dose group dose is 15mg/kg once a day, the high dose group dose is 45mg/kg once a day, the other group is adefovir dipivoxate control group, the dose is 40mg /kg 1 time per day.
  • the drug is given to the drug according to the dose that each dog should take with the salad oil.
  • the drug is given continuously for 6 months, and the drug is observed for 21 days after stopping the drug.
  • mice were randomly divided into two groups, 5 rats in each group, respectively, 1H-TD fumarate 30mg/lcg was administered by gavage, the radiation dose was 135 Ci/kg , and tenofovir was 30mg/kg, 135 Ci. /kg, plasma was taken at different times to determine the radioactivity converted to blood concentration.
  • the column was a Diamonsil C-18 column, 250 mm X 4.6 mm, 5 micron particle size; the mobile phase was methanol-water-formic acid (20:80:1); flow rate 0.5 mL/min.
  • the ion source is the ESr source, the source voltage is 4.5kV; the collision induced dissociation voltage is 40eV; the positive ion mode detection; the ion reaction for quantitative analysis is m/z288 ⁇ m/zl76.
  • PMEA was selected as the internal standard, and the ion reaction was m/z274 ⁇ m/zl62.
  • the TD group refers to the animal group taking TD fumarate
  • the control group refers to the animal group taking tenofovir ester fumarate.
  • the concentration of PMPA produced in the liver was higher than that of the PMPA produced by the latter at different time points. 70% ⁇ 100%, and from the proportion of liver and kidney distribution, after taking TD fumarate, the concentration of PMPA in the liver is about 4 times of the concentration of PMPA in the kidney, and taking tenofovir disoproxil The concentration of PMPA in the liver after the acid salt is about 2.5 times that of the PMPA in the kidney. Therefore, TD fumarate enables its metabolite PMPA to be significantly enriched in the liver with liver targeting.
  • Figure 8 DSC pattern of B-type crystal of TD
  • Figure 9 IR spectrum of a B-type crystal of TD
  • the solution was cooled to below 10 ° C, p-toluenesulfonyl chloride (560 g) was added, and then triethylamine (560 ml) was slowly added at about 5 Torr to maintain the temperature not exceeding 10 °C. After the completion of the dropwise addition, the temperature was raised to room temperature, and the reaction was carried out for 8 hours until the TLC showed a slight amount or the p-toluoyl chloride could not be detected. The solid was removed by suction filtration, and the solid was washed with aq.
  • the washing liquid and the filtrate are combined and washed twice with 5% aqueous solution of NaCO 3 and water, and the solvent is distilled off at a temperature not higher than 50 ° C after removing water from anhydrous sodium sulfate to obtain 600 g of a colorless liquid, and the purity is GC.
  • the analysis was 86% and could be used directly for subsequent reactions without purification.
  • the reaction mixture is cold But to 25 ° C, add lithium hydride (8g), heated to 70 ° C under nitrogen to react for 2 hours, then cooled to room temperature, add p-toluenesulfonyloxymethyl phosphate (300 g ), the reaction mixture Maintain at 60 °C until TLC shows complete reaction.
  • the reaction mixture is concentrated under vacuum at a temperature not exceeding 80 ° C, dissolved in water (500 ml), and the aqueous solution is continuously extracted with methylene chloride, and the extract of dichloromethane is combined, and the extract is concentrated under vacuum at not higher than 80 D C. A viscous orange oil of 200 g was obtained.
  • the solid PMPA (40 g) was mixed with anhydrous NN dimethylformamide (160 ml) and triethylamine (120 ml) under a nitrogen atmosphere.
  • the resulting suspension was slowly stirred and heated to 50 ° C. chloromethyl pivalate (60ml), maintaining the temperature at 50 ⁇ 55 ° C, 8 hours the reaction was cooled, ethyl acetate was added (4000ml), stirred well, solid was removed by filtration, the filtrate was washed 2 each with water and 5% NaHC0 3 Next, anhydrous sodium sulfate is dried to remove water, and the organic solvent is removed under vacuum at a temperature not higher than 50 ° C to obtain 47 g of a viscous yellow oil, which contains about (R)-9-[2-bis(pivaloyl) Oxymethyl)phosphonomethoxypropyl]adenine 55%.
  • the organic phase was vacuum distilled at a temperature not higher than 50 Torr to obtain 48 g of a viscous yellow oil.
  • HPLC showed an TD content of about 56% in the oil.
  • a fumaric acid solution (7 g dissolved in 100 ml of methanol) was added and placed (TC stirred overnight, filtered to give 29 g of TD fumarate.
  • the obtained fumarate was dissolved in ethyl acetate
  • the ester is washed three times with 200 ml of a saturated aqueous solution of Na HCO 3 , washed with water until neutral, and the aqueous phase is separated and discarded.
  • the organic phase is dehydrated, and the organic phase is distilled under vacuum at a temperature not higher than 50 ° C to obtain a TD oil. 21 g, the oil gradually solidified into a solid TD after standing at room temperature. The solid was vacuum dried and then ground to obtain a solid powder. XRD analysis showed that the solid was a TD type A crystal, and HPLC showed TD purity of 99.1%.
  • the organic phase was vacuum distilled at a temperature not lower than 50 Torr to obtain 60 g of a viscous yellow oil.
  • HPLC showed an TD content of about 38% in the oil.
  • an oxalic acid solution (5 g, dissolved in 100 ml of methanol) was added, and the mixture was placed at 0 ° C overnight, and filtered to obtain 24 g of TD oxalate.
  • the resulting oxalate salt was dissolved in ethyl acetate, washed with saturated aqueous NaH CO 3 200ml three times, then washed with water until neutral, separated aqueous phase was discarded.
  • the organic phase is dehydrated, and the organic phase is vacuum distilled to obtain 19 g of TD oil at a temperature not higher than 50 ° C. After standing at room temperature, the oil gradually solidifies into a solid TD.
  • XRD analysis showed a solid mixture of TD (Form A crystal) and amorphous TD. HPLC showed a TD purity of 99.3%.
  • Example 14 Preparation of TDA Type Crystals 1 g of 99% TD oil was dissolved in linl ethyl acetate, and the obtained solution was slowly added dropwise to 200 ml of rapid stirring to be pre-cooled to -20 Torr, and the solid was precipitated, filtered, and dried in vacuo to give TD crystals: 0.82 g.
  • XRD analysis showed a type A crystal of TD, and HPLC analysis showed a purity of 98.2%.
  • the TD type A crystal obtained in Example 11 was measured by X-ray spectrum (Fig. 3) using a D/MAX-IIIC type full-automatic X-ray diffractometer (Nippon Science and Technology Co., Ltd.), and the crystallization type A of TD was as follows:
  • Infrared spectroscopy was performed by KBr tableting method using an infrared spectrophotometer (MagNa-IR550, Nico).
  • the infrared absorption spectrum of TD type A crystal was about 3334 cm - 3164 cnT ⁇ 2979 cm - 1760 cm"' 1659 cm -1 , 1605 cm -!, 1490 cm” 1250 cm - 1142 cm -1 , 980 cm - 1 and 910 cm -1 have characteristic bands (see Figure 5).
  • TD (2g) 99% of TD (2g) is dissolved in 95% ethanol (10ml) and placed at room temperature for 24 hours to obtain TD crystals.
  • Example 17 Preparation of Form B Crystal of TD TD (2g, 95%) was dissolved in acetone (15ml), stirred into water (30ml) at 35 ⁇ 40 ⁇ , cooled to 4°C, a small amount of TD B-type crystal seed was added, crystallized for 24 hours, filtered. Drying in vacuo gave 1.4 g of a white solid. XRD analysis showed the obtained solid to be a type B crystal of TD. HPLC showed a purity of 97.8%.
  • the B-type crystal of the TD obtained in Example 16 was measured by a D AX-IIIC type full-automatic X-ray diffractometer (Nippon Rigaku Corporation) (see Fig. 6), and the characteristics are as follows:
  • thermogravimetric analysis system (TGA-7, American PE company) showed that the B-type crystal of TD has two weight loss peaks between 35 and 45 °C, and the total weight loss is 6.675%, indicating that the TD B-type crystal contains two One crystal water, its thermogravimetric analysis (TG) spectrum is shown in Figure 7.
  • Digital point meter (WRS-1B Shanghai Precision Technology Co., Ltd.) determines the B-type crystal of TD at 63.2 ⁇ 64.7 °C Melt between.
  • Infrared spectroscopy was carried out by means of an infrared spectrophotometer (MagNa-IR550, Nichols, USA) using KBr tableting method.
  • the infrared absorption spectrum of B-type crystal of TD was about 3373 cm - 3203 cm ' 2979 cm -1 , 1760 Cm" 1 , 1652 cm - 1605 cm” 1 , 1312 cm” 1 , 1250 cm” 1 , 1034 cm - 1 and 965 cm - 1 have characteristic bands.
  • a representative infrared absorption spectrum of the B-type crystal of TD is shown in Fig. 9.
  • TD20g was weighed and dissolved in 40 ml of absolute ethanol; 45 g of p-cyclodextrin was weighed, and 567 ml of water was added to prepare a 60 ⁇ saturated aqueous solution.
  • the TD ethanol solution was dropped into a saturated aqueous solution of ⁇ -cyclodextrin, stirred under heat for 30 minutes, and the stirring was continued for 4 hours after being heated; it was frozen in a refrigerator for 24 hours; filtered, and the filter cake was washed with absolute ethanol and dried under reduced pressure.
  • finely researched obtained 62.5 g of TD ⁇ -cyclodextrin inclusion compound, the yield was 96%, and the drug loading was 30.15%.
  • TD10g add 10ml of absolute ethanol to dissolve; weigh 22.7gp-cyclodextrin, add 284ml water to mix, grind thoroughly into a paste at room temperature, dry at low temperature, wash with absolute ethanol, dry, get TD ⁇ - 25 g of cyclodextrin inclusion compound, the yield was 78%, and the drug loading was 21.64%.
  • TD10.02g and 22.7 ⁇ ⁇ -cyclodextrin dissolve in 300ml of 8 % (v / v) anhydrous ethanol in water, stir to dissolve and pass through a 0.45nm microporous membrane, and then refrigerate in a liquid nitrogen tank. Freeze-drying for about 24 h gave TD and ⁇ -cyclodextrin inclusion compound in a yield of 98 °/.
  • the drug loading is 30.5%.
  • a single peak at 6.63 on the ifiNMR spectrum is the characteristic peak of fumaric acid H-2, H-3. From the integral, the salt ratio of TD to fumaric acid is 1:1.
  • the 'HNMR spectrum is shown in Figure 11.
  • the XRD pattern is shown in Figure 13, and the characteristics are as follows:
  • TD crystal 1.03 g was dissolved in 10 ml of THF, stirred, and 2.2 ml of 1 M sulfuric acid methanol solution was added dropwise at 0 ° C. After the completion of the dropwise addition, stirring was continued for about 120 minutes, and vacuum-dried to obtain a white solid.
  • Example 35 Preparation of TD-type crystalline tablets of TD
  • TD type A crystal 10g, starch 100g, sodium carboxymethyl starch 2g, povidone (K30) 10g, magnesium stearate 0.4g, talc 1.2g, magnesium carbonate 2g .
  • TD fumarate 50g starch 1000g
  • L-carnitine (L-calcate) 200g sodium carboxymethyl starch 20g
  • povidone (K30) 10g magnesium stearate 2g
  • talcum powder 5g Prescription (based on 1000 tablets): TD fumarate 50g, starch 1000g, L-carnitine (L-calcate) 200g, sodium carboxymethyl starch 20g, povidone (K30) 10g, magnesium stearate 2g , talcum powder 5g.
  • TD fumarate and prescription ingredients were passed through an 80 mesh sieve, and then the prescribed amount of TD fumarate, starch, L-carnitine (L-tartrate), sodium carboxymethyl starch, The ketone (K30) is mixed, and an appropriate amount of water is added to prepare a soft material, which is sieved and granulated, and the content and moisture are measured after being dried. The magnesium stearate and the talc powder are added and mixed well, and the tablet is obtained.
  • Example 37 Preparation of TD Type A Crystalline Capsules
  • Prescription (based on 1000 tablets): TD A type crystal 30g, pregelatinized starch 200g, talcum powder 2g.
  • Method Take the main medicine and each auxiliary material after drying, and then crush the 100 mesh sieve for use. Take the main medicine and each auxiliary material according to the prescription amount, mix evenly according to the same amount; determine the mixed powder content, moisture; the powder is directly filled.
  • Prescription (based on 1000 tablets): TD fumarate 50g, pregelatinized starch 400g, L-carnitine (L-tartrate) 100g, talc 10g.
  • Method Take the main medicine and each auxiliary material after drying, and then crush the 100 mesh sieve for use. Take the main medicine and each auxiliary material according to the prescription, mix it evenly according to the same amount; use a thousand granulator to pass the 18 mesh sieve to make the grain. Determine the mixed powder content, moisture; the particles are filled.
  • TD A type crystal 10 g pregelatinized starch 20 g, microcrystalline cellulose 60 g, lactose 20 g, sodium carboxymethyl starch 25 g, sodium decyl sulfate lg, magnesium stearate lg.
  • the TD type A crystallized through a 100 mesh sieve, and the pre-gelatinized starch, microcrystalline cellulose, lactose, sodium carboxymethyl starch, sodium lauryl sulfate, magnesium stearate 60 Mesh sieve, mix evenly.
  • the prescription take the main medicine and each auxiliary material, mix it evenly according to the addition of fl, and measure the content.
  • the powder is directly compressed, that is, it is obtained.
  • the resulting tablets had a disintegration time of less than 1 minute.
  • Example 40 TD- ⁇ cyclodextrin inclusion compound injection needle
  • TD- ⁇ cyclodextrin inclusion compound (loading rate 30%) 10 g
  • Example 41 TD fumarate injection for intravenous injection.
  • Preparation process Weigh the prescribed amount of TD fumarate, sodium chloride, add 900ml of water for injection, heat to 80 ° C to dissolve, then adjust the pH to 4.0 5.0 with 0.1mol / L citric acid, add water for injection to the full amount, Add activated carbon 0.01% w/v, stir for 15 min, decarburize through sand rod, filter through 0.45 ⁇ microporous membrane filter, fill the filtrate in 100 ml glass infusion bottle, put polyester film, cover rubber plug, gland, Steam sterilization at 115 °C for 30 minutes, light inspection, packaging is available.

Description

核苷酸类似物前体药物及其制剂
技术领域
本发明涉及(R)-9-[2-双(特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤(英文名 9- [2-(R)- [bis [pivaloyloxymethoxy] -phosphinoylmethoxy]propyl] adenine, 英文简称 bis-POM PMPA, 以下简称 TD)及其衍生物和应用。 本发明还涉及 TD的合成方法和固体状态的 TD 的制备方法, 本发明还涉及含有 TD的组合物以及所述的组合物的制备方法。
背景技术
膦酰甲氧基核苷酸类似物是一类已知的广谱抗病毒化合物,具有抗 HIV, HBV, CMV, HSV-1 , HSV-2和人体疱症病毒等病毒的活性。 9-[2- (磷酰甲氧基)乙基]腺苷 (简称 PMEA) 和 9-[(R)- 2- (磷酰甲氧基)丙基]腺苷 (简称 PMPA)是该类化合物中已经用于临床抗病毒治疗 的两个例子。 由于膦酰甲氧基核苷酸类似物中所含的膦酸根影响人体对其的吸收, 一般需 要将膦酰甲氧基核苷酸类似物转化成亲脂性的前体药物来提高它的生物利用度。 例如最近 被 FDA 批准用于乙型肝炎治疗的阿德福韦双特戊酯和用于艾滋病治疗的泰诺福韦酯 (tenofovir disoproxil fumarate)分别是膦酰甲氧基核苷酸类似物 PMEA和 PMPA的亲脂性 前药。 阿德福韦双特戊酯和泰诺福韦酯在体内都可以被代谢成相应的有抗病毒作用的母体 药物 PMEA和 PMPA。
Figure imgf000002_0001
泰诺福韦酯 PMPA 在近期的临床试验中, 发现阿德福韦双特戊酯具有肾脏损害的不良反应。 当阿德福韦 双特戊酯以约 300mg/天的剂量使用时可以抑制艾滋病病毒 (HIV), 但据相关药物代谢动力 学研究发现, 300mg剂量下阿德福韦双特戊酯被摄入人体后很大一部分分布于肾脏器官, 对人体造成肾毒性;而当阿德福韦双特戊酯分别以约 50mg/天, 30mg/天和 lOmg/天的剂量使 用时, 可以抑制人体的乙型肝炎病毒 (HBV)复制, 但每日 50mg/天和 30 mg组的不良反应 和肾功能异常的发生率较高, 所以阿德福韦双特戊酯只能以 lOmg/天的非优化的剂量用于 乙型肝炎的治疗。 目前也有人提出, 由于乙肝抗病毒治疗的长期性, 如果治疗长于 48周, 即使使用 lOmg/天的低剂量, 是否会出现对肾脏的蓄积毒性还尚待进一步观察。
美国 FDA批准用于艾滋病抗病毒联合治疗的泰诺福韦酯的剂量为 300mg/天, 由于该 药使用的剂量较大, 对长期服用的病人的肝脏和肾脏等器官是很大的负担, 而且由于使用 的剂量较大使得单位制剂的生产成本也较高。
现有文献中仅有关于 TD油状物的报道, 由于 TD的油状物稳定性较差, 且不利于制 备成合适的制剂,为了便于其在药物制备和储存等方面使用,常需要将其固化。迄今为止, 还没有关于固体状态的 TD的报道也没有关于将 TD固化的方法的报道。
发明概述
现在已经发现结构如式 (I)所示的化合物 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基]丙基] 腺嘌呤(TD)与阿德福韦双特戊酯和泰诺福韦酯相比具有更优异的抗病毒活性和更好的安 全性。 该化合物是阿德福韦双特戊酯的同系物, 也是抗病毒化合物 PMPA的前体药物, 在 体内可以代谢成 PMPA。 该化合物的英文名称为 9-[2-(R)-[bis[pivaloyloxymethoxy] -phosphinoylmethoxy]propyl]adenine,英文简称 bis-POM PMPA,中文名还可以称作 (R)-9-[2- 双 (新戊酰氧甲基)膦酰甲氧基]丙基]腺嘌呤、 (R)-9-[2-双 (三甲基乙酰氧甲基)膦酰甲氧基]丙 基]腺嘌呤或泰诺福韦双特戊酯。
Figure imgf000003_0001
本发明提供了:
1) 固体状态的 TD及其衍生物, 包括结晶状态的 TD、 TD的无定型固化物、 固体状 态的 TD盐以及 TD的环糊精包合物。 这些以固体状态存在的 TD及其衍生物都便 于工业化大规模合成且具有制备成药物所需要的性能。
2) TD的合成方法和提纯方法,包括将 PMPA在极性溶剂中在有机碱的存在下与特戊 酰卤代甲酯接触合成 TD以及柱分离法, 结晶法和成盐法等提纯 TD的方法。
3) TD油状物的固化方法, 包括将 TD油状物转化成结晶状态的 TD、 TD的无定型固 化物、 固体状态的 TD盐以及 TD的环糊精包合物。
4) 含有 TD以及 TD衍生物的稳定的组合物及制备方法。
5) 固体状态的 TD及其衍生物在抗病毒特别是抗 HIV, HBV, CMV, HSV-1 , HSV-2 和人体疱症病毒中的用途。
发明详述
TD的合成和纯化:
PMPA的合成可根据现有的文献, 如中国专利申请 98807435.4、 美国专利 US5733788 和美国专利 US6653296等文献。 也可以根据反应流程图 1所示的方法来合成-
( 1 ) 向反应容器中加入碳酸二乙酯, (R)-l,2-丙二醇, 加催化剂烷基醇钠例如甲醇钠或 乙醇钠, 蒸去乙醇, 反应得到 (R)-碳酸 -1,2-丙二酯 (A);
(2) 在含有惰性气体如氮气的反应器中, 加入碳酸酯 (A)与腺嘌呤以及 N,N-二甲基甲酰 胺 (DMF)和催化量的碱例如氢氧化钠, 反应得到 (R)- 9-[2- (二乙基膦酰甲氧基)丙基]腺嘌呤 (B);
(3) 向有惰性气伴如氮气保护的反应容器中加入亚磷酸二乙酯, 多聚甲醛, 三乙胺和 甲苯, 加热反应 4~8小时直至 TLC显示亚磷酸二乙酯消失。 反应液冷却到 0Ό以下加入对甲 苯磺酰氯的甲苯溶液和三乙胺, 反应完成得到产物对甲苯磺酰氧甲基磷酸二乙酯 (C);
(4) 向反应容器中依次加入歩骤 (2)得到的产物 (B)和 DMF, 加热溶解后将温度降到 25-75 °C , 加入氢化锂后反应 2小时产生 (R)-9-(2-羟丙基)腺嘌昤的锂盐, 后加入对甲苯磺酰 氧甲基磷酸二乙酯 (C), 反应完成, 得到 (R)-9-[2- (二乙基膦酰甲氧基)丙基]腺嘌呤 (D);
(5) 向反应容器中依次加入步骤 (4)得到的反应产物 (D)、 乙腈、 三甲基溴硅垸, 搅拌回 流至反应完全, 真空除去挥发性液体, 残留物溶解于适量的水中, 调 PH值至 3.0~3.5, 得产 物 (R)-9-[2- (膦酸甲氧基)丙基]腺嘌呤 (PMPA)。 反应溶剂还可以选用二氯甲烷或氯仿, 脱 保护剂还可以使用三甲基碘硅垸或三甲基氯硅浣 /碘化钾。
Figure imgf000005_0001
(A)
Figure imgf000005_0002
反应流程图 1
TD的合成和提纯方法如反应流程图 2所示:
将干燥的 PMPA固体悬浮在极性溶剂中,然后加入有机胺类, 为了促进 PMPA在反应 混合物中溶解, 还可以加入催化量的相转移催化剂。 反应混合物在室温条件下搅拌 0.5〜2 小时后加入特戊酰卤代甲酯,在 20~70°C下反应 2~48小时后将反应混合物用大量极性有机 溶剂稀释, 过滤, 用弱碱性水溶液和水洗涤有机相, 干燥, 真空除去有机溶剂后得到油状 的 TD粗品。
以上所述的极性溶剂优选 DMF和 N-甲基吡咯垸酮 (NMP); PMPA和极性溶剂的重量 比范围为 1:1~1:20, 优选 1:2~1:10。 有机胺类优选三烷基胺或 Ν,Ν-二环己基 -4-吗啉脒 (DCM),更优选三乙胺、三丁基胺和乙基二异丙基胺;有机胺与 PMPA的摩尔比为 2~6: 1, 优选 3~4: l o相转移催化剂优选三丁基苄基氯化铵。特戊酰卤代甲酯优选特戊酰氯甲酯和 特戊酰碘甲酯, 当使用特戊酰氯甲酯时还可以选择性地加入碘盐或溴盐作为取代反应的催 化剂;特戊酰卤代甲酯与 PMPA的摩尔比为 3〜8: 1,优选 4~6: 1。优选的反应温度为 45~65 °C。 稀释用有机溶剂优选乙酸乙酯或乙酸异丙酯, 弱碱性水溶液优选碳酸氢钠水溶液。
Figure imgf000006_0001
X=CI,Br,l HA=酸
反应流程图 2
从 TD粗品中提纯 TD可用下列几种方法:
1) 柱层析法:
使用硅胶为固定相, 用 2%~8%的甲醇二氯甲烷溶液洗脱, 收集含有 TD的组份, 减 压蒸去溶剂后得到纯化的 TD。 本方法提纯的 TD—般是油状物, 置于室温下会缓慢分解。
2) 结晶法:
TD分子中有一个强极性的腺嘌呤基团还有两个强亲脂性的特戊酰基, 因此 TD可以 溶于大多数极性有机溶剂中, 但在非极性或弱极性有机溶剂和水中溶解度很小。
能够溶解 TD且溶解度大于 10毫克 /毫升溶剂的溶剂称为 TD的良溶剂, 不能够溶解 TD或对 TD溶解度小于 1毫克 /毫升溶剂的溶剂称为 TD的不良溶剂, 可以选用的 TD的 良溶剂有: 有机醇类溶剂、 有机酮类溶剂、 酯类溶剂、 卤代垸类溶剂、 有机酰胺类溶剂和 有机腈类溶剂和部分醚类溶剂; TD的不良溶剂有: 烷烃类溶剂、 部分醚类溶剂和水。
优选的 TD的良溶剂有: 丙酮、丁酮、 甲醇、 乙醇、异丙醇、 正丁醇、叔丁醇、 DMF、 NMP, 乙腈、 二氯甲垸、 氯仿、 乙酸乙酯、 乙酸甲酯、 乙酸异丙酯, 甲酸乙酯、 四氢呋喃 和四氢吡喃。 优选的 TD不良溶剂有: 甲基叔丁基醚、 二正丙醚、 二异丙醚、 二正丁醚、石油醚、 正己垸、 环己烷、 正戊烷、 正庚垸和水。
先将 TD的粗品溶解在适量的良溶剂中, 然后将所得的溶液同适量的不良溶剂混合, 使得 TD溶液接近或达到饱和状态, 然后通过改变温度、 蒸发溶剂或改变溶剂组成等方法 使得 TD溶液过饱和, 使 TD以晶体的形式析出。 或者将 TD粗品直接溶解在由良溶剂和 不良溶剂预先混合得到的溶剂中, 形成 TD溶液, 析晶, 得到纯化的 TD。
能够溶解 TD并能使溶解的 TD以结晶状态析出的单一溶剂或混合溶剂都称为 TD的 结晶溶剂, 由 TD和其结晶溶剂形成的溶液称为 TD的结晶溶液。 通常 TD的结晶溶剂是 一种或一种以上的的良性溶剂或是由一种或一种以上良性溶剂和一种或一种以上的非良 性溶剂所组成的混合溶剂。
优选的 TD的结晶溶剂包括上述所有的良溶剂以及任选自丙酮、 丁酮、 甲醇、 乙醇、 异丙醇、 正丁醇、 叔丁醇、 DMF、 NMP、 乙腈、 二氯甲垸、 氯仿、 乙酸乙酯、 乙酸甲酯、 乙酸异丙酯、 甲酸乙酯、 四氢呋喃和四氢吡喃中的一种和任选自甲基叔丁基醚、二正丙醚、 二异丙醚、 二正丁醚、 石油醚、 正己垸、 环己烷、 正戊垸、 环戊垸、 正庚垸和水中的一种 所形成的混合溶剂, 其中良溶剂和不良性溶剂的体积比范围在 20:1~1:20之间。
当结晶溶剂中所使用的良性溶剂为有机醇类化合物和有机酮类化合物时, 优选醚类化 合物和水作为非良性溶剂, 例如甲醇 /二异丙醚、 丙酮 /二异丙醚和乙醇 /水混合溶剂。
当结晶化溶剂中所使用的良性溶剂为酯类化合物和卤代烷类化合物时,优选烷烃类化 合物作为非良性溶剂, 例如乙酸乙酯 /正己垸或二氯甲垸 /石油醚。
当结晶化溶剂中所使用的良性溶剂为有机酰胺类化合物和有机腈类化合物时, 优选水 为非良性溶剂。
TD的油状粗品中的 TD含量通常在 5%~60%之间。当 TD的含量比较高时 (TD含量大 于 25%),可以将 TD的油状粗品在较高的温度溶于适当量的良性溶剂所组成的结晶溶剂中, 再降低温度即可得到 TD的结晶; 而当 TD的含量比较低时 (TD含量小于 25%), 一般需 要用良性溶剂和非良性溶剂形成的混合物作为结晶溶剂。 通常结晶化溶剂和 TD粗品的比 例在 1:1和 20:1之间。
结晶发生的温度一般在 -20Ό到室温之间, 优选 -10°C~1(TC之间, 最优选 0。C。 较低的 温度 (- 10'C)可以提高结晶产率, 但结晶的纯度往往较低; 在接近 0°C的条件下结晶一般可 以同时保障较高的收率和较纯的产物, 而且在化工生产上也比较方便和经济。
3) 成盐法:
现在已经发现 TD与酸形成的盐大多具有良好的结晶性能, 通常 TD与酸形成的盐对 结晶条件的要求比较低, 结晶所用的溶剂量较少。因此, 一种提纯 TD的方法就是先将 TD 粗品与适当的酸制备成盐, 然后结晶得到纯的 TD盐, 再将纯的 TD盐溶解在适当的溶剂 中, 用弱碱性的水溶液中和, 用水洗涤除去酸根, 最后干燥除水, 除去溶剂得到游离态的 纯 TD。
TD与大多数的无机酸和有机酸都可以成盐,成盐的方法为:将酸与 TD粗品在适当的 溶剂混合成盐, 然后将盐以结晶形式析出。 盐的结晶溶剂可以与成盐用溶剂相同或不同, 不同时可以再成盐后先除去成盐用溶剂, 再将 TD盐的粗品溶解于结晶溶剂中重结晶得到 TD盐的纯品。
成盐所用酸的当量通常稍大于 TD粗品中 TD的当量,酸与 TD的比例一般在 1.1 :1~1.3:1 之间。 TD粗品中 TD的量可以用 HPLC法或紫外吸光光度法来测定得到。
用于提纯 TD的盐优选富马酸、 马来酸、 水杨酸或草酸和 TD成的盐。
TD的盐一般易溶解于 的有机醇类溶剂中, 也能溶解在有机酮类和酯类溶剂中。 从 TD盐中和得到游离态的 TD—般可采用下列方法: 将 TD盐溶解在不与水混溶的有机 溶剂中, 优选有机酯类化合物, 最优选乙酸乙酯; 然后将所形成的溶液用稀的碱性水溶液 洗涤除酸, 稀的碱性水溶液优选碳酸氢盐水溶液; 待酸完全中和后, 有机相再用水或饱和 食盐水洗涤;最后干燥除去有机溶剂就能得到纯的游离态 TD,此时得到纯游离态 TD—般 以油状物的形式存在, 长时间放置后会固化。
固体状态的 TD及其衍生物的制备和鉴定:
由于 TD的油状物稳定性较差, 且不利于制备成合适的制剂, 为了便于其在药物制备 和储存等方面使用, 需将其固化。 现在已经制备出了结晶和无定型固体状态的 TD, 晶体 或固体状态的 TD盐和 TD的环糊精包合物。
(一) TD结晶、 无定型固化物的制备和鉴定- I. TD的 A型结晶
本发明所述的 TD的 A型结晶是指基本不含水或其它溶剂的 TD结晶, TD的 A型结 晶的 D(X-射线粉末衍射)光谱用晶面距 d值表示通常在 9.774 A、 6.32 A、 5.726 A、 4.967 A、 4.849 A有峰, 再进一步典型的在 14.917 A、 9.774 A, 6.32 A、 5.726 A. 5.387 A, 5.211 k、 4.967 A, 4.849 A, 4.647 A, 4.553 A、 3.817 A有峰。
DSC (差示扫描量热测定) 吸热转变温度在约 100Ό。
IR (红外吸收光谱) 的吸收峰列于下表:
官能团 吸收峰波长
Ν-Η 3334 cm一1
CH(Ar-H) 3164 cm"1 除非另有说明,
Figure imgf000009_0001
组合物中无水结晶 态的 TD占组合物重量的 50%以上, 较好是 80%以上, 更好是 90%以上, 最好是 95%以 上, 除无水结晶态的 TD外组合物中还含有 TD的无定型固化物和其它晶型。
TD的 A型结晶是由 TD在无水状态下结晶得到的, 一般所用的结晶溶剂的含水量少 于 0.5%。 制备的方法有以下几种:
1 混合溶剂法: 采用无水的有机酮类或醇类为良溶剂, 有机醚类为不良溶剂组成结晶溶 剂, 将 TD溶解后改变温度得到 TD的 A型结晶。 优选的结晶溶剂为丙酮: 二异丙醚体积 比为 1: 2-5的混合溶剂, 甲醇: 二正丁醚体积比为 1 : 2-10的混合溶剂。溶解 TD的温度 为 35〜60°C, 结晶温度为 -20~35°C, 优选- 5~5°C,结晶时间为 5〜4S小时。
2 单一溶剂法: 用无水的良溶剂, 优选丙酮、 丁酮、 甲醇、 乙醇、 异丙醇、 乙腈、 二氯 甲烷、 乙酸乙酯、 乙酸甲酯、 乙酸异丙酯、 四氢呋喃、 乙醚和甲苯, 将纯的 TD加热溶解, 加热温度一般不超过 50 °C, 得到饱和或接近饱和状态的 TD溶液, 然后将所得溶液置于低 温下结晶或者将所得溶液置于室温, 让溶剂自然挥发, 得 TD的 A型结晶。 需注意得是当 使用醇类或酮类溶剂结晶时,由于醇类或酮类溶剂可以吸收空气中的水份,将可能得到 TD 的 A型结晶和 TD的 B型结晶的混合物, 甚至完全为 TD的 B型结晶。
3 自然凝固法:将纯 TD溶解在无水的良溶剂中,真空除去溶剂后放置得到 TD的 A型结 晶, 该方法得到的 TD的 A型结晶有时会混有无定型 TD。
II. TD的 B型结晶
本发明所述的 TD的 B型结晶是指含两个结晶水的 TD结晶, TD的 B型结晶的 XRD 光谱用晶面距 d值表示通常在 20.157 A、 9.995 A、 4.449 A, 3.965 A、 3.297 A有峰, 再进 一步典型的在 20.157人、 9.995 A、 5.555 A、 4.696 A、 4.449 A, 3.965 A, 3,677 A、 3.297 A、 3.125 A、 2.822 A有峰。 DSC吸热转变温度在约 55°C。
IR的吸收峰列于下表:
Figure imgf000009_0002
除非另有说明, 本发明所述的 TD的 B型结晶是指这样的组合物, 组合物中二水结晶 态 TD占组合物重量的 50%以上, 较好是 80%以上, 更好是 90%以上, 最好是 95%以上, 除二水结晶态 TD外组合物中还含有 TD的无定型固化物和其它晶型。
TD的 B型结晶是由 TD在有水存在的状态下从结晶溶液中析出得到的, 一般所用的 结晶溶剂中含有至少 0.5%的水。制备 TD的 B型结晶的一般方法是将纯的 TD先溶解在一 种和水能混溶的良溶剂中, 然后向所形成的溶液里加入水, 使得 TD以晶体的状态析出, 或者使用含水的良性溶剂溶解纯的 TD, 然后使其结晶。
TD的 A型结晶在湿度很高的情况下也会吸湿转变成 TD的 B型结晶。
需要说明的是, 在 XRD中, 由结晶化合物得到的衍射谱图对于特定的晶型往往是特 征性的, 其中谱带 (尤其是在低角度) 的相对强度可能会因为结晶条件、 粒径和其它测定 条件的差异而产生的优势取向效果而变化。 因此, 衍射峰的相对强度对所针对的晶型并非 是特征性的, 判断是否与已知的晶型相同时, 更应该注意的是峰的相对位置而不是它们的 相对强度。 在 XRD图谱中通常用 2Θ角或晶面距 d表示峰位置, 由于 2Θ角与入射 X射线 的波长有关, 因此用晶面距 d表示更具有代表性。 两者之间具有简单的换算关系: d= A/2sin9, 其中 d代表晶面距, λ代表入射 X射线的波长(对于 Cu-Ka, λ= 1.54187Α), θ 为衍射角。 对于同种化合物的同种晶型, 其 XRD谱图在整体上具有相似性, 表征峰位置 的 d值误差一般在 ±2%之内, 大部分误差不超过 ±1 % ; 相对强度误差可较大, 但变化趋势 一致。 另外, 判断晶型是否一样时应注意保持整体观念, 因为并不是一条衍射线代表一个 物相, 而是一套特定的" "数据才代表某一物相。 还应指出的是, 在混合物的鉴定中, 由于含量下降等因素会造成部分衍射线的缺失, 此时, 无需依赖高纯试样中观察到的全部 谱带, 甚至一条谱带也可能对给定的噻托溴铵结晶是特征性的, 如本发明中 A型结晶晶面 距为 4.849人的峰或 B型结晶晶面距为 4.449 A的峰。
DSC测定当结晶由于其晶体结构发生变化或晶体熔融而吸收或释放热时的转变温度。 对于同种化合物的同种晶型, 在连续的分析中, 热转变温度和熔点误差典型的在约 5°C之 内, 通常在约 3 °C之内, 当我们说一个化合物具有一给定的 DSC峰或熔点时, 这是指该 DSC峰或瑢点 ±5°C。 DSC提供了一种辨别不同晶型的辅助方法。不同的结晶形态可根据其 不同的转变温度特征而加以识别。需要指出的是对于混合物而言,其 DSC峰或熔点可能会 在更大的范围内变动。 此外, 由于在物质熔化的过程中伴有分解, 因此熔化温度与升温速 率密切相关。
IR测定分子中对应于光而振动的基团相关的特定化学键引起的红外吸收。由于不同晶 型分子内共价键的电环境不一样, 共价键强度也会有变化, 共价键强度的改变必然会导致 不同晶型 IR光谱的不同。
III. TD无定型固化物
本发明还提供 TD的无定型固化物,所述的 TD无定型固化合物的 XRD图谱中没有明 显的尖锐的谱带峰, 只有一很宽的无定型固体峰。 通常 TD的无定型固化物中还可能混有 少量的 TD结晶, 一般来说, TD无定型固化物的含量在 70%以上。
所述的 TD无定型固化物的制备方法如下-
1. 将纯的 TD溶于良溶剂中, 在剧烈搅拌的情况下加入到大量的低温不良溶剂中, TD析 出并固化, 形成 TD无定型固体。一般地, 不良溶剂的温度在 -20°C以下。
2. 将纯的 TD溶解后用真空冷冻干燥除去溶剂也可以得到 TD无定型固化物,通常用该方 法制备的固体粉末 XRD显示 TD无定型固体的含量在 70%以上。
用冷冻干燥的方法得到的 TD无定型固体通常为疏松状固体, 在水中的溶解性比结晶 状态的 TD好, 溶解速率高, 适合于制备注射用粉针制剂。
图 7为 TD无定型固体的粉末 X射线衍射图谱, 该图谱中没有明显的尖锐的谱带峰, 只有一很宽的无定型固体峰。
(-) TD的盐
TD与酸反应生成结构式如下的盐或盐型复合物: .
Figure imgf000011_0001
其中 a是酸与 TD的摩尔比, a在 1~5之间, 优选 1~3, 更优选 1 ; HA为酸。
能够与 TD形成盐或盐型复合物的合适的酸应该具有足以与 TD形成稳定的盐的酸度。 合适的酸可以是一元酸或多元酸, 包括无机酸, 有机磺酸, 有机羧酸和含有酸性基团的且 具有保护肝脏作用的有机化合物或天然产物。
合适的无机酸包括硫酸、 磷酸、 硝酸、 盐酸、 氢碘酸、 氢溴酸、 氢氟酸等, 合适的有 机磺酸包括 C6~16芳基磺酸、 C6~I6杂芳基磺酸和 CW6烷基磺酸, 优选牛磺酸、 苯磺酸、 对 甲苯磺酸、 α-萘磺酸、 β-萘磺酸、 (S)-樟脑磺酸、 甲磺酸、 乙磺酸、 正丙磺酸、 异丙磺酸、 正丁磺酸、 仲丁磺酸、 异丁磺酸、 叔丁磺酸、 戊磺酸和己磺酸。 有机羧酸可以是一元或多 元羧酸, 包括 ~16烷基羧酸、 CW6芳基羧酸和 Cw6杂芳基羧酸, 优选乙酸、 乙醇酸、 乳 酸、 丙酮酸、 丙二酸、 戊二酸、 酒石酸、 柠檬酸、 富马酸、 琥珀酸、 苹果酸、 马来酸, 草 酸、 羟基马来酸、 苯甲酸、 羟基苯甲酸、 苯乙酸、 肉桂酸、 否 1二酸、 桂皮酸、 扁桃酸、 水 杨酸和 1-苯氧基苯甲酸、 烟酸、 泛酸。 有机羧酸还包括氨基酸, 合适的氨基酸有许多, 尤 其是作为蛋白质组分而发现的天然氨基酸, 优选天冬氨酸、 谷氨酸、 缬氨酸。
含有酸性基团的且具有保护肝脏作用的有机化合物或天然产物优选抗坏血酸、 齐墩果 酸、 乌索酸、 熊果酸、 甘草酸、 甘草次酸、 丹参酸、 阿魏酸、 葡萄糖醛酸、 葡萄糖酸和果 糖酸。 最优选的 TD盐有 TD富马酸盐、 TD草酸盐、 TD水杨酸盐、 TD齐墩果酸盐和 TD 天冬氨酸盐。
本发明还获得了 TD富马酸盐的结晶,其 XRD光谱用晶面距 d值表示通常在 18.706人、 6.112A, 4.562A, 3.645A、 3.56lA、 3.033A, 2.596A有峰, 再进一步典型的在 18.706人、 6.112A、 5.075A、 4.562人、 4.414A、 4.14lA、 4.044A 3.776A、 3.645 A ¾ 3.561 A、 3.257A、 3.033A、 2.985A, 2.596A有峰。
TD富马酸盐的结晶的 IR光谱的吸收大约在: SSllcnT1, 2979cm"1 ^ 2941cm-1, 2879 cm一1、 1752cm_1、 1683cm— 1304cm"1 1142cm"1, 980cm— 1有峰。
制备 TD盐通常是将 TD与酸按照成盐的比例在溶液中混合, 所使用的酸也可以略微 过量。 溶剂一般选用有机醇类, 当酸为无机酸或有机磺酸以及某些水溶性的酸例如氨基酸 时, 溶剂可以选用 ~4的醇, 水或水与有机溶剂形成的混合溶剂。 对某些脂溶性强的酸如 齐墩果酸, 乌索酸等, 成盐时可以用卤代烷及酯类做溶剂。 TD与酸在液体中混合后, 在 搅拌或冷却的情况下, 可以析出盐的晶体。 将 TD盐的溶液中的溶剂蒸发通常也可以得到 TD盐固体, 这些固体可以是晶体, 也可是 TD盐的无定型固体或两者的混合物。
TD的盐大多以固体状态存在。许多 TD的盐与 TD相比具有熔点高, 稳定性好, 容易 形成结晶体的特点, 有利于工业化生产和贮存, 也有利于制剂的制备和贮存。 TD 的盐或 盐型复合物仍具有和 TD相同的抗病毒活性, 而如果将 TD与含有酸性基团的且具有保护 肝脏作用的有机化合物或天然产物形成的盐或盐型复合, 则这些盐既能保留原有抗病毒的 活性, 又具备了保肝护肝作用。 因此, TD的盐或盐型复合也可以用来制备抗病毒药物。 (三) TD的环糊精包合物
环糊精是由 6、 7或 8个葡萄糖分子以 1,4-糖苷键连接的环状低聚糖类化合物,为水溶 性的非还原性白色结晶性粉末, 结构为中空圆通型, 空穴的开口处呈亲水性, 空穴的内部 呈很强的疏水性。 很多分子都能被环糊精分子包嵌在内形成超分子结构。
利用环糊精将药物制成包合物后可使液态药物固化, 提高药物的稳定性, 增大药物的 溶解度, 提高药物的生物利用度。
我们发现 TD可以与环糊精形成包合物, 而且由于亲脂性的特戊酰基包埋入环糊精的 疏水性空腔中后, 不但使得特戊酰基更难水解从而提高了 TD 的稳定性, 而且提髙了 TD 在水中的溶解度和溶解速度, 能够提高制剂的溶出度和生物利用度, 也便于制备成针剂等 溶液型制剂。
所述的 TD环糊精包合物是 TD 与环糊精按摩尔比 1:1~1 :10 形成的包合物, 优选 1:1-1:3; 所述的环糊精为 α环糊精或其衍生物、 β环糊精或其衍生物、 γ环糊精或其衍生 物, 优选 β环糊精或其衍生物, 最优选 β环糊精。
TD的环糊精包合物可以通过将 TD与环糊精在液相中混合而得到,可釆用的制备方法 包括饱和水溶液法、 研磨法、 冷冻干燥法和超声法等。
1 )饱和水溶液法
将 TD用适量醇类或酮类等有机溶剂溶解,按与 TD摩尔比 1~10倍量称取环糊精并配 成 50— 80Ό的饱和水溶液, 将两种溶液混合搅拌 30min以上, 冷冻使包合物沉淀析出, 过 滤, 用适量的醇类或酮类等有机溶剂洗净、 干燥即得。 醇类或酮类有机溶剂优选甲醇, 乙 醇, 异丙醇和丙酮。
2)研磨法
将一定量的 TD, 用适量醇类或酮类等有机溶剂溶解后加入 1~10倍量的环糊精, 再加 入适量水混合, 充分研磨成糊状物, 低温干燥后, 再用醇类或酮类等有机溶剂洗净, 干燥 即得。
3 )冷冻干燥法
将 TD与环糊精按摩尔比 1:1~10称量, 溶于含有 0~20% (v/v) 醇类或酮类等有机溶 剂的水中, 搅拌溶解并通过微孔滤膜除菌, 置液氮罐中冷藏再冷冻干燥约 24h, 即得。
将 TD的 β-环糊精包合物溶于水后, TLC上用 6%的甲醇-二氯甲烷溶液展开后, 在紫 外下荧光显色发现 TD的 β-环糊精包合物在原点, Rf值为 0, 而游离的 TD的 Rf值为 0.4。 上述鉴定结果都说明了 TD和 β-环糊精形成了包合物。
固化后的 TD及其衍生物的溶解性和稳定性对比如下- 溶解性分析
参照中国药典 2005年版二部凡例进行试验,精密称取样品 lg,缓慢加入一定量的溶剂, 每隔 5分钟强力振摇 30秒, 观察 30分钟内的溶解情况, 结果见下表- 溶解性实验
溶剂 甲醇 无水乙醇 0.1N HC1 水 O.lN NaOH 溶剂量 TD的 A型结晶 1.4 5.0 33.5 880 910
(ml) TD的 B型结晶 1.5 6.0 27.3 840 790
TD的无定型 2.0 5.6 25.2 380 613 TD的富马酸盐 7.4 15.5 18.5 120 65
TD的水杨酸盐 8.2 12.0 23.6 75 82.5
TD的草酸盐 84.3 128.3 19.8 89.5 91.2
TD的齐墩果酸盐 760 650 >1000 >1000 >1000
TD的 β环糊精包合物 > 1000 > 1000 6.5 7.4 7.0
TD的 Α型结晶 易溶 易溶 溶解 微溶 微溶
TD的 B型结晶 易溶 易溶 溶解 微溶 微溶
TD的无定型 易溶 易溶 溶解 溶解 微溶
TD的富马酸盐 易溶 易溶 溶解 溶解 溶解 结论 TD的水杨酸盐 易溶 易溶 溶解 溶解 溶解
TD的草酸盐 溶解 溶解 溶解 溶解 溶解
TD的齐墩果酸盐 微溶 微溶 不溶 不溶 不溶
TD的 β环糊精包合物 不溶 不溶 易溶 易溶 易溶 稳定性分η ―
(―) 光照试验
将样品均匀分摊至敞口培养皿中,厚度≤5mm,调节距离, 使光照强度为 4500±500Lx, 分别于 5、 10天取样检测, 并与 0天的结果进行对照,结果见下表:
光照试验 (4500±500Lx)
Figure imgf000014_0001
注: 温度变化 23-26°C; 相对湿度变化 56%-63%.
(:二)高温试验
将样品放置于密封洁净玻璃瓶中, 置于 60°C恒温干燥箱中, 分别于 5, 10天取样检 测, 并与 0天的结果进行对照。 结果见下表- 高温试验 (60°C )相对湿度变化 54%-62°/0
Figure imgf000015_0001
(三)高湿试验
将样品均勾分摊至敞口培养皿中, 厚度≤5mm, 置于室温(25 °C ), 相对湿度为 75±5% 的恒温恒湿培养箱中, 分别于 5, 10天取样进行测定, 并与 0天的结果进行对照。 结果见 下表:
高湿试验 (室温, 相对湿度 75±5%)温度变化 23-26°C
时间 (天)
考察项目
0 5 10
TD的 A型结晶 4.3 5.6
TD的 B型结晶 0 0.2
TD的无定型 1.0 2.3 吸湿增重 TD的富马酸盐 0 0
(%) TD的水杨酸盐 0 0
TD的草酸盐 0 0
TD的齐墩果酸盐 0 0
TD的 β环糊精包合物 0.2 0.7
TD的 Α型结晶 99.7 98.5 97.2
TD的 B型结晶 99.6 98.2 96.9
TD的无定型 99.0 97.9 95.8 含量 TD的富马酸盐 99.2 99.1 99.1
(%) TD的水杨酸盐 99.1 99.1 99.0
TD的草酸盐 99.4 99.3 99.2
TD的齐墩果酸盐 99.2 99.1 99.1
TD的 β环糊精包合物 99.4 99.2 99.2 TD的 A型结晶 96.3-97.1 89.2-90.7 86.1-90.7
TD的 B型结晶 63.5-64.5 62.8-65.2 62. 2-64.7
TD的无定型
TD的富马酸盐 118.7-119.1 118.0-119.0 118.3-118.8 熔点 rc)
TD的水杨酸盐 87.3-88.3 87.5-87.9 87.9-88.3
TD的草酸盐 153.5-154.0 152.8-153.7 153.4-153.9
TD的齐墩果酸盐 242.3 (分解) 242.0 (分解) 241.6 (分解)
TD的 β环糊精包合物 312.3 (分解) 312.0 (分解) 312.1 (分解)
(:四:)加速试验
将样品用聚乙烯薄膜塑料袋密封包装,置于 40±2°C ,相对湿度为 75±5%的恒温恒湿培 养箱中, 放置 3个月, 分别于 1、 2、 3个月末取样检测, 并与 0月的结果进行对照。 结果 见下表:
加速试验(4(TC, 相对湿度 75%)
Figure imgf000016_0001
由上述结果可知, 本发明得到的所有的 TD及其衍生物都有很好的稳定性,适合用来 制备成任意形式的组合物或药物制剂, 尤其是 TD的 A型结晶和 TD的盐。 与 TD的晶体 和固体相比, 大多数 TD盐和 TD环糊精包和物具有良好的水溶性, 可以制备成溶液制剂, 包括小输液, 水针, 口服用液体或粉针。
给药途径和药用组合物
本发明提供的 TD或其生理上可接受的衍生物包括: TD的 A型结晶、 TD的 B型结晶、 TD无定型固化物、 TD的盐型复合物和环糊精包合物, 可以通过任何适合所治疗疾病的途 径给药。一般地, TD或其生理上可接受的衍生物可以通过 ¾¾经直肠、 阴道、 经鼻、 局 部 (包括眼睛、 口腔和舌下)和非胃肠 (包括皮下、 肌肉、 静脉内、 皮内、 鞘内和硬脑膜 外) 等途径给药, 优选口服给药。
虽然 TD或其生理上可接受的衍生物能够以纯物质的形式给药, 但通常以 TD的药物 制剂的形式给药。 TD的药物制剂包含 TD或其生理上可接受的衍生物以及一种或多种药用 载体, 视需要, 还可含其他治疗成分或辅助成分, 例如其他抗病毒剂、 免疫促进剂、 保护 肝脏药物和 L-肉毒碱及其盐等等。 药用载体包括粘合剂、 稀释剂、 崩解剂、 防腐剂、 分散 剂、 助流剂 (抗粘附剂) 和润滑剂。
适合口服的 TD或其生理上可接受的衍生物的固体制剂包括片剂、 胶囊剂、 粉剂、 颗 粒剂、 滴丸、 散剂、 大丸剂、 酊剂或糊剂等; 其中片剂是普通片剂、 分散片、 泡腾片、 缓 释片、 控释片或肠溶片, 胶囊剂是普通胶囊、 缓释胶囊、 控释胶囊或肠溶胶囊。
TD 或其生理上可接受的衍生物的片剂和胶囊剂的单位制剂含 TD5~300mg, 优选 5~150mg。 除了活性成份之外, 通常还含有适量的填充剂, 如淀粉、 蔗糖和乳糖; 粘合剂, 如水、 乙醇、聚乙烯吡咯酮和预糊化淀粉; 崩解剂, 如微晶纤维素、 交联羧甲基纤维素钠、 交联聚乙烯吡咯酮; 润滑剂, 如硬脂酸镁、 滑石粉或二氧化硅等药用载体。 另外还可含甲 醛清除剂 (如赖氨酸或明胶) 以捕捉 TD贮存过程中可能释放的甲醛。
TD或其生理上可接受的衍生物的片剂和胶囊剂中还可以含有碱性的药物载体,包括碱 性碳酸盐和碱性氢氧化物。 优选的碱性碳酸盐是碳酸钙、 碳酸镁、 碳酸锌、 碳酸亚铁和碳 酸铝; 优选的碱性氢氧化物是氢氧化镁、 氢氧化钙、 氢氧化铝和氢氧化铁。 这些碱性的药 物载体可以提高制剂中 TD的稳定性, 减少 TD的降解。
TD或其生理上可接受的衍生物的制剂还可含 L-肉碱或其盐(例如 L-肉碱 酒石酸盐 (2:1 ))。 TD在体内代谢产生的特戊酸似乎会使患者体内的 L-肉碱浓度下降。含 L-肉碱或 其盐和 TD的制剂可降低特戊酸在减少服用 TD患者体内的 L-肉碱方面的作用。 添加的 L- 肉碱的量可以根据患者体内 L-肉碱的耗减程度来确定。
' TD或其生理上可接受的衍生物的分散片可以含有约 0.5~60%崩解剂以达到快速崩解 的目的; TD的肠溶片中含有肠溶材料或用肠溶性包衣材料进行包衣, 肠溶胶囊制剂可以 是用肠溶材料做的胶囊包装做成的胶囊制剂, 也可以是用普通胶囊包装的由肠溶材料包衣 的颗粒或小丸。
TD或其生理上可接受的衍生物的片剂和胶囊可以用药学中通用的方法来制备。 制备 片剂可以用水或乙醇湿法制粒后压片, 也可以用干粉直接压片, 胶囊可以先湿法制粒后灌 装, 也可以用干粉直接灌装。 TD或其生理上可接受的衍生物还能够以注射的方式给药, 制剂包括注射用无菌粉末 和注射液体。
TD的生物活性
一、 急性毒性试验, 采用半数致死量 (LD5Q)试验
TD富马酸盐和 TD 的 A型结晶分别溶于 0.1M 的柠檬酸水溶液中, 动物来用体重
18~22g健康昆明种小鼠 140只, 随机区组法分为 14组.每组 10只, 雌雄各半。
用灌胃法, 按预试验结果, TD富马酸盐和 TD的 A型结晶分别用 7个给药组不同剂 量灌胃给药, 连续观察 14天, 观察小鼠毒性反应及死亡情况, 计算 LD5()
TD富马酸盐的 LD5Q为 6.05g/kg, 95%的可信限为 4.50〜7.87g/kg。
TD的 A型结晶的 LD5Q为 4.31g/kg, 95%的可信限为 2.83〜5.44g/k。
二、 长期毒性试验
以 BEAGLE犬为动物模型, 以阿德福韦双特戊酯为对照品, 考察 TD的 A型结晶的 长期毒性, 重点考察 TD的 A型结晶对肾功能的影响。
30只 BEAGLE犬随机分为 5组, 每组 6只, 其中一组为空白对照组, 三组分别为 TD 的 A型结晶的低、 中、 髙三个剂量组, 低剂量组的剂量为 5mg/kg每天 1次, 中剂量组的 剂量为 15mg/kg每天 1次, 高剂量组的剂量为 45mg/kg每天 1次, 另外一组为阿德福韦双 特戊酯对照组, 剂量为 40mg/kg每天 1次。
药物按各犬所应该服用的剂量同色拉油混合后给药物, 连续给药物 6个月, 停药后观 察 21天。
各组动物在用药其间及恢复期未见异常表现, 未发生动物意外死亡, 血液学及血尿生 化检査发现空白对照组和 TD的 A型结晶的低, 中, 高三个剂量组间的各项血液学指标及 血尿生化标准差异均无显著性, 但阿德福韦双特戊酯的血清肌苷和尿素氮的指标均显著升 高, 说明长期服用阿德福韦双特戊酯有肾毒性作用, 而与其相同剂量的 TD的 A型结晶则 是安全的, 见下表:
Figure imgf000018_0001
三、 体内抗病毒试验
采用二月龄的垂直感染了鸭乙型肝炎病毒的麻鸭进行体内抗乙型肝炎病毒试验, 观察 药效。 80只髙邮麻鸭随机分成 8组每组 10只 ,其中三组分别给药 TD富马酸盐 5、 15、45mg/kg 每天 1次, 另外三组分别给药泰诺福韦酯 (tenofovir disoproxil fomarate) 5、 15、 45mg/kg 每天 1次, 其余一组给药阿德福韦双特戊酯 15mg/kg每天 1次, 最后一组为空白对照组。 给药 28天每 7天取样血用 PCR法测定对 DHBV- DNA水平的抑制效果, 抑制率见下表。 实验结果显示 TD的体内抗病毒活性远高于泰诺福韦酯和阿德福韦双特戊酯。
Figure imgf000019_0001
四、 药代动力学和体内分布泰诺福韦
1、 生物利用度
小鼠 10只, 随机分成两组, 每组 5只, 分别灌胃给药 1H-TD富马酸盐 30mg/lcg, 放 射剂量为 135 Ci/kg; 泰诺福韦酯 30mg/kg, 135 Ci/kg, 于不同时间取血浆测定放射性换 算成血药浓度。
ΐί-TD富马酸盐和泰诺福韦盐在血浆中的浓度 (ug/ml) -时间比较。
Figure imgf000019_0002
2、 在组织中的分布
选用 Wistar大鼠 30只, 随机分成 6组, 禁食 12小时后, 3组通过灌胃给药 20mg/kg 的 TD富马酸盐,另外 3组通过灌胃给药 20mg/kg的泰诺福韦酯富马酸盐,于给药的 1、 4、 8小时分别经股动脉放血活杀服用 TD富马酸盐和泰诺福韦酯富马酸盐 (对照组) 的动物 各一组。 分别取动物的肝脏和肾脏, 组织用分析天平称湿重, 用蒸馏水按 1:3制备匀浆, 1000g离心 10分钟, 取上清。 将动物器官勾浆上清样品 0.25ml置于具塞玻璃试管中, 加 入重蒸水 50微升和浓度为 10mg/L的 PMEA水溶液 (内标溶液) 50微升。 混合均匀后加 入甲醇 0.5毫升, 涡流 1分钟后离心 10分钟(3000r/min),取上清液 20微升用液质联用法 测定组织中的 PMPA的浓度。
液质联用法的色谱条件如下:
色谱柱为 Diamonsil C-18柱, 250mmX4.6mm, 5微米粒径;流动相为甲醇-水 -甲酸(20: 80: 1 ); 流速 0.5mL/min。
质谱条件:
美国 Finnigan TSQ型色谱-质谱-质谱联用仪。 离子源为 ESr源, 源电压 4.5kV; 碰撞 诱导解离电压为 40eV; 正离子模式检测; 用于定量分析的离子反应为 m/z288→m/zl76。 选用 PMEA作为内标, 离子反应为 m/z274→m/zl62。
TD富马酸盐和泰诺福韦酯富马酸盐在组织中的分布比较
Figure imgf000020_0002
说明:
Figure imgf000020_0001
TD组指服用 TD富马酸盐的动物组,对照组指服用泰诺福韦酯富马酸盐的动物组。
大鼠分别服用相同量的 TD富马酸盐和泰诺福韦酯富马酸盐后, 前者产生的 PMPA在 肝脏中的浓度比后者产生的 PMPA的浓度在不同的时间点分别高出约 70%~100%, 而且从 肝肾分布的比例来看, 服用 TD富马酸盐后, PMPA在肝脏中的浓度约为肾脏中的 PMPA 浓度的 4倍,而服用泰诺福韦酯富马酸盐后 PMPA在肝脏中的浓度约为肾脏中的 PMPA浓 度的 2.5倍。 因此, TD富马酸盐能够使的其代谢产物 PMPA明显地在肝脏中富集, 具有肝 靶向性。
附图说明
图 1 : TD的 核磁共振(1H-NMR) 图谱
图 2: TD的 质谱 (MS) 图谱
图 3: TD的 A型结晶的 XRD图谱
图 4: TD的 A型结晶的 DSC图谱
图 5: TD的 A型结晶的 IR图谱
图 6: TD的 B型结晶的 XRD图谱
图 7: TD的 B型结晶的热失重分析 (TG)图谱
图 8: TD的 B型结晶的 DSC图谱 图 9: TD的 B型晶体的 IR图谱
图 10: TD无定型固化物的 XRD图谱
图 11 : TD富马酸盐的 ^-NMR图谱
图 12: TD富马酸盐的 IR图谱
图 13: TD富马酸盐的 XRD图谱
图 14: TD草酸盐的 1H-NMR图谱
图 15: TD草酸盐的 IR图谱
图 16: TD草酸盐的 XRD图谱
图 17: TD水杨酸盐的 IR图谱
图 18: TD齐墩果酸盐的 IR图谱
具体实施方式:
实施例 1 (R)-碳酸 -1,2-丙二酯的合成:
向碳酸二乙酯(380ml, 15.1摩尔)和 200g(R)- 1,2-丙二醇的混合物中加入变性乙醇 40ml (9g甲醇钠溶解在 50ml无水乙醇中的溶液), 然后将溶液加热至 8(TC, 缓慢蒸去乙醇。 反应的进程用 TLC检测,直到 TLC显示微量或不能检测出 (R)-l,2-丙二醇时为止。于 120Ό 水泵减压蒸馏至无乙醇滴出, 再以真空泵蒸馏, 得无色透明液体 111克, 产率 81.2%, 产 品纯度经 GC分析为 97%。
实施例 2 对甲苯磺酰氧甲基磷酸二乙酯的合成:
在惰性气体 (氮气) 的保护下, 将甲苯(200ml), 亚磷酸二乙酯 (400ml)、 多聚甲醛 ( 120g) 和三乙胺 (50ml) 混合并加热到 70°C反应 2小时, 然后升温到回流后继续反应, 直至用 TLC (展开剂用正已烷: 乙酸乙酯 =1 : 4) 显示微量或不能检测出亚磷酸二乙酯时 反应结束。 溶液冷却至 10°C以下, 加入对甲苯磺酰氯 (560g), 然后在约 5Ό下慢慢加入 三乙胺(560ml), 维持温度不超过 10°C。 滴加完毕后升至室温, 反应 8h, 直至 TLC显示 微量或不能检测出对甲苯璜酰氯时为止。 抽滤除去固体, 固体用适量甲苯洗涤。 洗涤液和 滤液合并后用 5%NaC03水溶液和水分别洗漆 2次, 无水硫酸钠除水后在不高于 50°C的温 度下蒸去溶剂,得到 600g无色液体, 纯度经 GC分析为 86%,可不经提纯直接用于后续反 应。
实施例 3 (R)-9-[2- (二乙基膦酰甲氧基)丙基]腺嘌呤的合成
在惰性气体 (氮气) 的保护下加入腺嘌呤 (100g), 氢氧化钠 (1.2g), (R)-碳酸 -1,2- 丙二酯(84g),和 Ν,Ν-二甲基甲酰胺(700ml),反应混合物在 130°C搅拌 30小时直至 TLC ( 10%MeOH的 CH2C12溶液(体积比))显示剩余腺嘌呤不高于 0.5%为止。 反应混合物冷 却至 25°C, 加入氢化锂 (8g) , 在氮气保护下加热至 70°C反应 2小时, 然后冷却至室温, 加入对甲苯磺酰氧甲基磷酸二乙酯 (300g), 反应混合物维持在 60 °C直到 TLC显示完全 反应为止。 在不超过 80 °C的温度下真空浓缩反应混合物, 加水 (500ml)溶解, 水溶液用 二氯甲垸连续提取, 合并二氯甲垸提取物, 在不高于 80 DC下真空浓缩提取物, 得到粘性 橙色油状物 200g, HPLC分析显示橙色油状物中含有 65%的 (R 9-[2- (二乙基膦酰甲氧基) 丙基]腺嘌呤, 该 (R)-9-[2- (二乙基膦酰甲氧基)丙基]腺嘌呤粗品可不经提纯直接用于后续反 应。
实施例 4 (R)-9-[2-(膦酸甲氧基)丙基]腺嘌吟(PMPA) 的合成-
(R)-9-[2- (二乙基膦酰甲氧基)丙基]腺嘌呤粗品 (100g)溶于乙腈 (122ml), 在氮气保护下 加入溴化三甲基硅垸 (207g), 反应混合物在 70°C下回流 4小时, TLC显示原料完全消失后 减压蒸去溶剂, 残余物用 200ml水溶解, 冷却至 20°C, 用二氯甲烷或乙酸乙酯洗洛, 水相 用 50%氢氧化钠水溶液调节 PH至 3.1~3.5, 室温缓慢搅拌约 3小时, 过滤收集固体, 分别 用冷水 (50ml)和丙酮 (50ml)洗涤, 得到 PMPA固体粗品 60g。 向 PMPA固体粗品中加 入90°0纯水200 !¾1, 充分搅拌后冷却至室温, 放置过夜后过滤, 用冷水和丙酮连续洗涤, 在 50°C下真空干燥, 得到 PMPA 45克, HPLC分析显示纯度为 99°/。。
实施例 5 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤 (TD) 的合成和硅胶柱分离 提纯:
在氮气保护下将固体 PMPA (40g)与无水 N-N二甲基甲酰胺( 160ml)和三乙胺( 120ml) 混合, 缓慢搅拌所得的悬浮液并加热至 50°C , 1小时后再加入特戊酸氯甲酯 (60ml), 温度 维持在 50~55°C, 反应 8小时左右冷却, 加入乙酸乙酯 (4000ml), 充分搅拌, 过滤除去固 体, 滤液用 5%NaHC03和水分别洗涤 2次, 无水硫酸钠千燥除水, 在不高于 50°C的温度下, 真空除去有机溶剂, 得到粘性黄色油状物 47g, 约含 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基 丙基]腺嘌呤 55%。 取 200-300目硅胶 200克, 干法装柱, 将油状物 (47g)裹适量硅胶后干 法加样。 依次采用 5%-10%的甲醇 /二氯甲烷的混合液洗脱, 收集含 TD的洗脱液, 组分合并 后, 蒸去溶剂, 得到纯化的 TD油状物 18.0g, HPLC显示纯度为 95.2%。
'H-NMRCCDCb): 8.347(lH,s,H-8)、 7.969(lH,s,H-2)、 5.819(2H,s,N¾)、 5.676(4H,m,CH2OP)、 4.360(lH,dd,J=14.4,2.8,H-l)、 4.132(lH,dd,J=14.4,7.2,H-r)、 3.933(lH,m,H-2)、
3.898(lH,dd,J=14.0,8.8,H-4)、 3.677(lH,dd,J=14.0,9.2,H-4'), 1.238(3H,D,J=6.0,C¾)、 1.215(18H,d,J=6.0,CH3) (图 1 )
MS: 分子离子峰 m/e: 516.2 (M+H+) , 538.2 (M+Na+) (图 2)
UV-VIS (甲醇): 最大吸收峰 260nm。 实施例 6 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌吟 (TD) 的合成和结晶提纯 将 PMPA (40g)与 N-甲基吡咯烷酮(160ml) , 乙基二异丙基胺(140ml)在氮气保护 下混合并加热至 50°C , 30分钟后加入特戊酸碘甲酯 (65ml), 温度维持 50~55°C, 反应 4小 时后冷缺至室温。 在反应混合物中加 4000ml乙酸乙酯, 充分搅拌, 过滤除去固体, 滤液用 NaHC03和水 (每次 200ml) 各洗涤三次, 无水硫酸钠干燥除水, 在不高于 50°C的温度下, 真空蒸去有机溶剂,得到粘性黄色油状物 66g。 HPLC显示 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲 氧基丙基]腺嘌呤的含量约为 38%。 用甲醇(200ml)溶解油状物, 加入水(800ml)后得到 白色固体, 过滤后用少量冰冻的乙醇洗涤, 室温真空干燥后得 TD固体 21g, HPLC显示纯度 为 96.3%。
实施例 7 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌吟(TD) 的合成和结晶法提纯 将 PMPA (40g)与 N-甲基吡咯烷酮(160ml) , 三乙胺(120ml)和三丁基苄基溴化铵 ( 1克)在氮气保护下混合并加热至 50°C, 30分钟后加入特戊酸 ά甲酯 (60ml), 温度维持 50~55°C , 反应 8小时左右后冷缺至室温。 在反应混合物中加 4000ml乙酸乙酯, 充分搅拌, 过滤除去固体, 滤液用 NaHC03和水(每次 200ml)各洗涤三次, 无水硫酸钠干燥除水, 在 不高于 50°C的温度下, 真空蒸去有机溶剂, 得到粘性黄色油状物 53g。 HPLC显示 (R)-9-[2- 双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌吟的含量约为 56%。用丙酮(200ml)溶解黄色油状 物, 加入异丙醚(800ml), 混合后冷却至室温, 加入晶种, 放置于 (TC24小时后得到白色 结晶, 过滤后用少量异丙醚洗涤, 得固体 26g, XRD分析显示为 TD的 A型结晶, HPLC显示 纯度为 98.9%。
实施例 8 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤 (TD) 的合成和结晶法提纯 将 PMPA (40g)与 N-甲基吡咯烷酮(160ml) , 三乙胺(120ml)在氮气保护下混合并 加热至 50°C, 30分钟后加入特戊酸氯甲酯(60ml), 温度维持 50~55°C, 反应 12小时左右后 冷缺至室温。在反应混合物中加 4000ml乙酸乙酯,充分搅拌,过滤除去固体,滤液用 NaHC03 和水 (每次 200ml)各洗涤三次, 无水硫酸钠干燥除水, 在不高于 50°C的温度下, 真空蒸 去有机溶剂,得到粘性黄色油状物 49g。 HPLC显示 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙 基]腺嘌呤的含量约为 52%。 用丙酮(200ml)溶解黄色油状物, 加入正丁醚(800ml)放置 于 0Ό24小时后得到白色结晶, 过滤后用少量正丁醚洗涤,得固体 22g, XRD分析显示为 TD 的 A型结晶, HPLC显示纯度为 98.3%。
实施例 9 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤 (TD) 的合成和成盐法提纯 将 PMPA (40g)与 N-甲基吡咯浣酮(160ml) , 三乙胺(120ml)混合加热至 50°C, 30 分钟后加入特戊酸氯甲酯 (60ml), 温度维持 50~55°C, 反应 8小时左右, 在反应混合物中 力口 4000ml乙酸乙酯, 充分搅拌, 过滤除去固体, 滤液用 NaHC03和水 (每次 200ml) 。 除水 后在不高于 50Ό的温度下, 真空蒸馏有机相, 得到粘性黄色油状物 48g。 HPLC显示油状物 中 TD含量约 56%。油状物用甲醇(100ml)溶解后,加入富马酸溶液(7g溶于 100毫升甲醇), 置于 (TC搅拌过夜, 过滤得到 TD富马酸盐 29克。所得富马酸盐溶于乙酸乙酯, 用饱和的 Na H C O 3水溶液 200ml洗涤 3次, 再用水洗至中性,分离弃去水相。有机相除水, 不高于 50°C 的温度下, 真空蒸馏有机相得 TD油状物 21g, 室温放置后油状物逐渐凝固成固体状 TD。 固 体真空干燥后研磨得固体粉末, XRD分析显示固体为 TD的 A型结晶, HPLC显示 TD纯度为 99.1%。
实施例 10(R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤 (TD) 的合成和成盐法提纯 将 PMPA (40g)与 N-甲基吡咯烷酮(160ml) , 三乙胺(120ml)混合加热至 50'C, 30 分钟后加入特戊酸氯甲酯(60ml), 温度维持 50~55°C, 反应 8小时左右, 在反应混合物中 力 Ώ4000πύ乙酸乙酯, 充分搅拌, 过滤除去固体, 滤液用 NaHC03和水(每次 200ml) 。 除水 后在不髙于 50Ό的温度下, 真空蒸馏有机相, 得到粘性黄色油状物 60g。 HPLC显示油状物 中 TD含量约 38%。 油状物用丙酮 (100ml)溶解后, 加入草酸溶液(5g溶于 100毫升甲醇), 置于 0°C过夜, 过滤得到 TD草酸盐 24克。将所得草酸盐溶于乙酸乙酯, 用饱和的 NaH C O 3水溶液 200ml洗涤 3次, 再用水洗至中性, 分离弃去水相。 有机相除水, 不高于 50°C的温 度下, 真空蒸馏有机相得 TD油状物 19g, 室温放置后油状物逐渐凝固成固体状 TD。 XRD分 析显示固体为 TD (A型结晶) 和无定型 TD的混合物, HPLC显示 TD纯度为 99.3%。
实施例 11 TD的 A型结晶的制备
将 95%的 TD油状物 2克在约 35°C溶解于无水甲醇(10ml) 中, 搅拌条件下向此溶液滴 入异丙醚 (30ml) 中, 置于 -4°C直至析出固体, 过滤, 真空干燥得到 TD结晶 l.'38g, XRD 分析显示为 TD的 A型结晶, HPLC分析显示纯度为 98.5%。
实施例 12 TD的 A型结晶的制备
将 95%的 TD油状物 2克在约 40°C溶解于无水 THF (6ml)中,室温下放置直至析出固体, 过滤, 真空干燥得到 TD结晶 1.62g, XRD分析显示为 TD的 A型结晶, HPLC分析显示纯度为 97.8%。
实施例 13 TD的 A型结晶的制备
将 95%的 TD油状物 0.5克在约 60 °C溶解于无水甲苯(60ml)中, 室温下放置直至析出固 体, 过滤, 真空干燥得到 TD结晶 0.42g, XRD分析显示为 TD的 A型结晶, HPLC分析显示纯 度为 97.2%。
实施例 14 TDA型结晶的制备 将 99%的 TD油状物 1克溶解于 linl乙酸乙酯中,将所得到的溶液缓慢滴加入快速搅拌的 200ml预先冷却到 -20Ό正己垸中, 析出固体, 过滤, 真空干燥得到 TD结晶 0.82g, XRD分 析显示为 TD的 A型结晶, HPLC分析显示纯度为 98.2%。
实施例 15 TD的 A型结晶的物理特性表征
将实施例 11得到的 TD的 A型结晶用 D/MAX- IIIC型全自动 X射线衍射仪 (日本理 学电机株式会社) 测 XRD谱图 (图 3 ), TD的 A型结晶特征如下:
序号 2Θ d值 相对强度
1 5.92 14.917 48
2 7.66 11.532 37
3 9.04 9.774 77
4 12.40 7.132 32
5 14.00 6.320 53
6 14.70 6.021 33
7 15.46 5.726 68
8 16.44 5.387 46
9 17.00 5.211 46
10 17.84 4.967 58
11 18.28 4.849 100
12 19.08 4.647 49
13 19.48 4.553 41
14 20.04 4.427 36
15 20.60 4.308 35
16 20.86 4.254 34
17 22.04 4.029 32
18 22.82 3.893 33
Figure imgf000025_0001
20 27.66 3.222 28
21 28.58 3.120 26
用热分析系统(DSC2010, 美国 TA公司)对 TD的 A型结晶进行了差示扫描热分析, .在 10Ό/分钟的加热速率下, 其有一个吸热转变峰, 峰值为 100°C、起始点 97Ό (见图 4) 。
用红外分光光度计 (MagNa-IR550, 美国尼高力公司)采用 KBr压片法进行红外光谱 分析, TD的 A型结晶的红外吸收光谱在约 3334 cm— 3164 cnT^ 2979 cm— 1760 cm" '、 1659 cm-1 , 1605 cm—!、 1490 cm" 1250 cm— 1142 cm-1, 980 cm— 1和 910 cm— 1有特 征性谱带 (见图 5)。
用数字熔点仪 (WRS-1B 上海精密科技有限公司) 测定 TD 的 A 型结晶, 其在
%.2~97.9°C之间熔化。
实施例 16 TD的 B型结晶的制备
99%的 TD (2g) 溶于 95%乙醇 (10ml) 中, 置于室温条件下 24小时, 得到 TD结晶
1.61g, XRD分析显示所得固体为 TD的 B型结晶, HPLC显示纯度为 98.8%。
实施例 17 TD的 B型结晶的制备 TD (2g, 95%)溶于丙酮(15ml)中, 在 35~40Ό搅拌滴入水(30ml)中, 冷却至 4°C, 加入少量 TD的 B型结晶晶种, 结晶 24小时, 过滤, 真空干燥得到白色固体 I.4g。 XRD分析 显示所得固体为 TD的 B型结晶, HPLC显示纯度为 97.8%。
实施例 18 TD的 B型结晶的物理特性表征
实施例 16得到的 TD的 B型结晶用 D AX-IIIC型全自动 X射线衍射仪 (日本理学 电机株式会社) 测其 XRD图谱 (见图 6), 特征如下:
序号 2Θ d值 相对强度
1 4.38 20.157 53
2 8.84 9.995 50
3 9.46 9.341 15
4 12.02 7.357 19
5 12.32 7.178 20
6 13.34 6.631 14
7 14.08 6.284 17
8 15.94 5.555 34
9 17.24 5.139 23
10 17.88 4.956 15
11 18.48 4.797 16
12 18.88 4.696 33
13 19.94 4.449 100
14 22.40 3.965 55
15 24.18 3.677 43
16 25.82 3.447 15
17 26.16 3.403 22
18 27.02 3.297 72
19 28.54 3.125 26
20 29.12 3.064 10
21 30.26 2.951 11
22 31.68 2.822 42
23 32.94 2.716 11
24 35.58 2.521 8
25 36.42 2.464 13
26 41.18 2.190 8
27 47.08 1.928 6
28 48.26 1.884 6
29 51.92 1.759 7
热失重分析系统 (TGA-7, 美国 PE公司) 分析结果表明, TD的 B型结晶在 35~45°C 之间有两个失重峰, 共失重 6.675%, 表明 TD的 B型结晶中含有两个结晶水, 其热失重分 析 (TG) 图谱如图 7所示。
用热分析系统(DSC2010, 美国 TA公司)对 TD的 B型结晶进行了差示扫描热分析, 在 10'C/分钟的加热速率下, 其有一个吸热转变峰, 峰值为 55'C、 起始点 46'C, 所得差示 扫描热分析图见图 8。
数字瑢点仪(WRS-1B上海精密科技有限公司)测定 TD的 B型结晶在 63.2~64.7°C之 间熔化。
用红外分光光度计 (MagNa-IR550, 美国尼高力公司) 釆用 KBr压片法进行红外光谱 分析, TD的 B型结晶的红外吸收光谱在约 3373 cm— 3203 cm' 2979 cm-1, 1760 cm"1, 1652 cm— 1605 cm"1 , 1312 cm"1, 1250 cm"1 , 1034 cm— 1和 965 cm— 1有特征性谱带。 TD 的 B型结晶的代表性的红外吸收光谱见图 9。
实施例 19 TD无定型固化物的制备
将 99%的 TD油状物 1克溶解于 25 ml乙醇中, -80°C左右冷冻凝固, -60°C真空冷冻干燥 24小时, 得到白色固体 0.98克, XRD图谱如图 10所示, 显示为 TD无定型固体。
实施例 20 TD无定型固体的制备
将 99%的 TD油状物 1克溶解于 lml二氯甲烷中,将所得到的溶液缓慢滴加入快速搅拌的
200m額先冷却到 -60°C的正己垸中, 滴加结束后继续快速搅拌 2小时, 过滤析出的固体, 真 空干燥得到固体 0.95g, XRD分析显示为 TD无定型固体, HPLC分析显示纯度为 98.5%。 实施例 21 TD -β-环糊精包合物的制备
称取 TD20g, 加 40ml无水乙醇溶解; 称取 45gp-环糊精, 加入 567ml水配成 60Ό饱 和水溶液。将 TD的乙醇溶液滴入 β-环糊精饱和水溶液中, 保温搅拌 30分钟, 停止加热后 继续搅拌 4小时; 放入冰箱中冷冻 24小时; 过滤, 用无水乙醇洗涤滤饼, 减压干燥, 研 细, 得 TD的 β-环糊精包合物 62.5克, 收率为 96%, 载药量为 30.15%。
实施例 22 TD- β-环糊精包合物的制备
称取 TD10g, 加 10ml无水乙醇溶解; 称取 22.7gp-环糊精, 再加入 284ml水混合, 室 温充分研磨成糊状物, 低温干燥后, 无水乙醇洗净, 干燥, 得 TD 的 β-环糊精包合物 25 克, 收率为 78%, 载药量为 21.64%。
实施例 23 TD-β-环糊精包合物的制备
称取 TD10.02g和 22.7§ β-环糊精, 溶于 300ml 8 % (v/v) 无水乙醇的水溶液中, 搅拌 溶解并通过 0.45nm的微孔滤膜, 置液氮罐中冷藏再冷冻干燥约 24h, 得 TD和 β-环糊精包 合物, 收率为 98°/。, 载药量为 30.5%。
实施例 24 TD富马酸盐的制备
取 TD油状物 (纯度 95%)5.3 g溶于 30ml 甲醇,搅拌,同时缓慢向此溶液中滴加含 U6 g的富马酸甲醇溶液 10ml,在 25°C恒温下不断搅拌 1小时,过滤去除不溶物,放置于 0~4°C, 5小时后抽滤, 得到白色的固体 4.8克, 熔点 119°C。
¾NMR (DMSO-d6): 8.13(lH,s,H-8)、 8.03(lH,s,H-2)、 7.15(2H,s,NH2)、 6.63(2H,s, 富 马酸 H-2,H-3)、 5.54(4H,m,CH2OP) 、 4,21(2H,ddd, J=4,l,4,4,3,4.8)、 3.94(3H,m,H-4,H-4')、 1.15(18H,d,J=3.2,CH3)、 1.62(3H,d,J=6,H-3
ifiNMR图谱上 6.63处的一个单峰为富马酸 H-2, H-3的特征峰, 由积分可知 TD与富 马酸成盐比例为 1 : 1。 'HNMR图谱如图 11所示。
IR图谱如图 12所示。
XRD图谱如图 13所示, 特征如下:
序号 2Θ d值 相对强度
1 4.72 18.706 42
2 10.60 8.339 6
3 13.04 6.783 7
4 14.48 6.112 32
5 17.46 5.075 9
6 19.44 4.562 48
7 20.10 4.414 8
8 21.44 4.141 8
9 21.96 4.044 8
' 10 23.54 3.776 8
11 24.40 3.645 100
12 24.98 3.561 10
13 26.42 3.370 7
14 27.36 3.257 8
15 28.48 3.131 7
16 29.42 3.033 44
17 29.90 2.985 9
18 33.24 2.693 6
丄:^ 34.52 2.596 12
20 39.66 2.270 4
21 50.26 1.813 3
实施例 25 TD富马酸盐的制备
纯的 TD油状物 5.15 g溶于 30ml丙酮中, 搅拌的同时缓慢向此溶液中滴加含 1.16 !g 的富马酸甲醇溶液 10ml, 在 25°C恒温下不断搅拌 1小时, 过滤去除不溶物, 旋转蒸发去 除溶剂后将残留固体 45°C溶于 20 ml 乙酸乙酯中, 放置于 0~4°C 12小时后抽滤, 得到 TD 富马酸盐白色的固体 5.5克。 熔点 119°C。
实施例 26 TD草酸盐的制备
取 TD油状物 5.15g溶于 30ml乙酸乙酯中, 搅拌, 同时缓慢向此溶液中滴加含 0.9 g 的草酸乙醇溶液, 在 45Ό恒温下不断搅拌, 用约 20分钟将草酸乙醇溶液滴加完毕后过滤 除去不溶物, 逐渐降至室温,继续搅拌约 5小吋后抽滤,得到 TD草酸盐类白色的固体 4.6 克。 熔点 153-154°C。
1HNMR(DMSO-d6): 8.15 ( lH,s,H-8)、 8.05(lH,s,H-2)、 7.29(2H,s,NH2)、
5.54(4H,m,C¾OP)、 4.22(2H,ddd,J=0.4,14.4,35.6,H-l,H-l,,H-2)、 3.95(3H,m,H-4,H-4')、 U5(18H,d,J=2.8,C¾)、 1.08(3H,d,J=6,H- 3)、 ^NMR图谱如图 14所示。 IR图谱如图 15所示, XRD图谱如图 16所示。
实施例 27 TD水杨酸盐的制备
取 TD油状物或无定型固化物或晶体 5.15g溶于 30ml乙酸乙酯中, 搅拌, 同时缓慢向 此溶液中滴加含 1.76 g的水杨酸乙醇溶液, 在 45 'C恒温下不断搅拌, 用约 20分钟将水杨 酸乙醇溶液滴加完毕, 过滤除去不溶物, 逐渐降至室温, 继续搅拌约 8小时后得到类白色 的固体即是 TD水杨酸盐。 熔点 88V , IR图谱如图 17所示。
实施例 28 TD齐墩果酸盐的制备
取 99%的 TD晶体 5.15 g溶于 30ml二氯甲烷中, 后向此溶液中加入 4.5g的齐墩果酸 在 100ml乙醇:二氯甲烷(1 :1 ) 中的溶液, 在 50°C恒温下不断搅拌 120分钟后真空除去混 合物中溶剂, 得到灰白色的固体即是 TD齐墩果酸盐, 熔点 242'C (分解) , IR图谱如图 18所示。
实施例 29 TD天冬氨酸盐的制备
取 99%的 TD晶体 1.0 g溶于 10ml乙醇中, 搅拌, 同时缓慢向此溶液中滴加含 0.266g 的天冬氨酸(首选 L-天冬氨酸) 水溶液, 在 4(TC恒温下不断搅拌, 用约 20分钟将天冬氨 酸水溶液滴加完毕, 在此温度下继续搅拌 150分钟后逐渐降至室温, 真空冷冻干燥得到类 白色的固体, 熔点 163 °C。
实施例 30 TD牛磺酸盐的制备
取 99%的 TD晶体 1.0 g溶于 10ml乙醇中, 向此溶液中滴加含 0.25 g的牛磺酸异丙醇 溶液, 在 45'C恒温下搅拌约 120分钟后真空除去混合物中溶剂得到类白色的固体, 熔点 172 °C。
实施例 31 TD .盐酸盐的制备
取 99%的 TD晶体 1.03g溶于 lOmlTHF中,在 0°C滴加 1M的氯化氢 THF溶液 2.2ml, 滴加完毕后继续搅拌约 120分钟后放置 -20°C过夜,过滤的白色固体 0.95克,熔点 192°C (分 解) 。
实施例 32 TD半硫酸盐的制备
取 99%的 TD晶体 1.03g溶于 lOmlTHF中,搅拌,在 0°C滴加 1M的硫酸甲醇溶液 2.2ml, 滴加完毕后继续搅拌约 120分钟, 真空冷冻干燥得到白色的固体。
实施例 33 TD对甲苯磺酸盐的制备
取 99%的 TO晶体 1.03g溶于 lOmlTHF中, 搅拌, 在 (TC滴加 1M的对甲苯磺酸甲醇 溶液 2.2ml, 滴加完毕后继续搅拌约 120分钟, 真空除去得到白色的泡沫状固体。
实施例 34 TD的 A型结晶片剂的制备
2S 处方(按 1000片计): TD的 A型结晶 30g,乳糖 200g,羧甲淀粉钠 2g,聚维酮(K30) 15g, 硬脂酸镁 0.4g, 滑石粉 1.2g。
制法: 将 TD的 A型结晶, 乳糖, 羧甲淀粉钠, 聚维酮 (00), 硬脂酸镁, 滑石粉, 分别过 SO目筛,备用。然后将处方全量的泰诺福韦酯,乳糖,羧甲淀粉钠, 聚维酮〔K30), 处方量 50%的硬脂酸镁, 滑石粉以等量地加法充分混合均勾, 用干式造粒机过 18 目筛制 粒;加入剩余的硬脂酸镜, 滑石粉, 充分混合均匀, 压片, 即得每片含 30毫克 TD的片剂。 实施例 35 TD的 Α型结晶片剂的制备
处方(按 1000片计): TD的 A型结晶 10g,淀粉 100g,羧甲淀粉钠 2g,聚维酮(K30) 10g, 硬脂酸镁 0.4g, 滑石粉 1.2g, 碳酸镁 2g
制法: 将 TD的 A型结晶, 淀粉, 羧甲淀粉钠, 聚维酮(K30), 硬脂酸镁, 滑石粉和 碳酸钙, 分别过 80目筛, 然后将处方量的 TD的 A型结晶, 淀粉, 羧甲淀粉钠, 聚维酮 ( 30) 和碳酸镁混合, 加入适量的水制备软材, 过筛制粒, 烘干后测定含量和水分, '加 入硬脂酸镁和滑石粉充分混合均匀, 压片即得。
实施例 36 TD富马酸盐的片剂的制备
处方 (按 1000片计): TD富马酸盐 50g, 淀粉 1000g, L-肉碱 (L-石酸盐) 200g, 羧 甲淀粉钠 20g , 聚维酮 (K30) 10g, 硬脂酸镁 2g, 滑石粉 5g。
制法:将 TD富马酸盐和处方中的辅料分别过 80目筛,然后将处方量的 TD富马酸盐, 淀粉, L-肉碱(L-酒石酸盐), 羧甲淀粉钠, 聚维酮(K30)混合, 加入适量的水制备软材, 过筛制粒, 供干后测定含量和水分, 加入硬脂酸镁和滑石粉充分混合均匀, 压片即得。 实施例 37 TD的 A型结晶胶囊的制备
处方 (按 1000粒计): TD的 A型结晶 30g, 预胶化淀粉 200g, 滑石粉 2g。
制法: 取主药及各辅料干燥后分别粉碎过 100目筛备用, 按处方量取主药及各辅料, 按等量地加法混合均匀; 测定混合粉末含量, 水分; 粉末直接填充即得。
实施例 38 TD富马酸盐胶囊的制备
处方(按 1000粒计): TD富马酸盐 50g,预胶化淀粉 400g, L-肉碱(L-酒石酸盐) 100g, 滑石粉 10g。
制法: 取主药及各辅料干燥后分别粉碎过 100目筛备用, 按处方量取主药及各辅料, 按等量地加法混合均匀; 用千式造粒机过 18 目筛制粒, 测定混合粉末含量, 水分; 颗粒 填充即得。
实施例 39 TD A型结晶分散片的制备
处方(按 1000片计): TD 的 A型结晶 10g, 预胶化淀粉 20g, 微晶纤维素 60g, 乳糖 20g, 羧甲淀粉钠 25g , 十二垸基硫酸钠 lg, 硬脂酸镁 lg。
制法: 将处方量 TD 的 A型结晶过 100目筛, 另取处方量预胶化淀粉, 微晶纤维素, 乳糖, 羧甲淀粉钠, 十二烷基硫酸钠, 硬脂酸镁过 60 目筛, 混合均匀。 按处方量取主药 及各辅料, 按等 fl地加法混合均匀, 测定含量, 粉末直接压片, 即得。 所制得的片剂的崩 解时间小于 1分钟。
实施例 40 TD-β环糊精包合物注射用粉针
处方:
TD-β环糊精包合物(载药率 30%) 10克
柠檬酸三钠 5.5克
甘露醇 500克
注射用水加至 1000ml
共制成 1000瓶 '
制备工艺:
取处方量的柠檬酸钠, 溶于适量注射用水中, 将处方量的 TD-β环糊精包合物(载药 率 30%)加入, 搅拌使溶解, 加注射用水约 900ml, 在加入处方量的甘露醇, 撹拌使溶解: 用 0.1mol/L的柠檬酸溶液调节 pH5.5左右, 加注射用水至全量, 加入 0.03%(m/v)针用活性 炭搅拌 30分钟, 经 0.22μπι微孔滤膜正压除菌过滤; 半成品检验合格后, 无菌分装与清洗 灭菌后的玻璃小瓶中, 每瓶装量 hnl; 经低温冷冻干燥约 24小时, 封口即得。成品检验合 格后包装。
实施例 41 TD富马酸盐注射液, 供静脉注射。
处方:
TD富马酸盐 3.3克
氯化钠 9.0克
注射用水 适量
全量 1000ml
共制成 1000瓶
制备工艺- 称取处方量的 TD富马酸盐、 氯化钠, 加注射用水 900ml, 加热至 80°C溶解, 再用 0.1mol/L柠檬酸调节 pH至 4.0 5.0,加注射用水至全量,加活性炭 0.01%w/v,搅拌 15min, 通过砂棒脱碳, 再经 0.45μιη微孔滤膜过滤, 滤液灌装于 100ml玻璃输液瓶中, 放上涤纶 薄膜, 盖上胶塞, 压盖, 115 °C流通蒸汽灭菌 30分钟, 灯检、 包装即得。

Claims

权利 要 求
1. 式 (I)所示的化合物 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤或其生理上可接 受的衍生物在抗乙 肝炎病毒中的应用
Figure imgf000032_0001
2. 一种 (R)- 9- [2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤的结晶, 其特征在于: 其 X-射 线粉末衍射光谱用晶面距 d值表示通常在 9.774 A、 6.32 A, 5.726 A, 4.967 A, 4.849 A 有峰。
3. 权利要求 2所述的结晶, 其特征在于: 其 X-射线粉末衍射光谱用晶面距 d值表示通常 在 14.917人、 9.774 A、 6.32 A、 5.726 A、 5.387 As 5,211 A、 4,967 A、 4.849 A、 4.647 A、 4.553 A、 3.817 A有峰。
4. 权利要求 2所述的 (R 9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤的结晶,其特征在 于: 其差热扫描分析图谱在 100°C左右有最大吸热峰。
5. 一种 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌昤的结晶,所述的结晶,其特征在 于:其 X-射线粉末衍射光谱用晶面距 d值表示通常在 20.157人、 9.995 A、 4.449 A, 3.965 k、 3.297 A有峰。
6. 权利要求 5所述的结晶, 其特征在于: 其 X-射线粉末衍射光谱用晶面距 d值表示通常 在 20.157 A、 9.995 A. 5.555 A、 4.696 A、 4.449 A、 3.965 A、 3.677 A. 3.297 A, 3.125 人、 2.822 A有峰。
7. 权利要求 5所述的 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤的结晶,其特征在 于: 其差热扫描分析图谱在 55°C左右有最大吸热峰。
8. —种 (R)-9-[2-双 (;特戊酰氧甲基;)膦酰甲氧基丙基]腺嘌呤的无定型固化物, 其特征在于: 其中 TD无定型态的含量在 70%以上。
9. 如式 (II)所示的 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌吟的盐,
Figure imgf000033_0001
(II)
其中 a是酸与 (R 9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤的摩尔比, a在 1~5之间: HA为酸。
10. 权利要求 9所述的 (R)-9-[2-双]特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤的盐,其中 HA是 5 硫酸、 磷酸、 硝酸、 盐酸、 氢碘酸、 氢溴酸、 氢氟酸、 牛磺酸、 苯磺酸、 对甲苯磺酸、 α-萘磺酸、 β-萘磺酸、 (S)-樟脑磺酸、 甲磺酸、 乙磺酸、 正丙磺酸、 异丙磺酸、 正丁磺 酸、 仲丁磺酸、 异丁磺酸、 叔丁磺酸、 戊磺酸、 己磺酸、 乙酸、 乙醇酸、 乳酸、 丙酮 酸、 丙二酸、 戊二酸、 酒石酸、 柠檬酸、 富马酸、 琥珀酸、 苹果酸、 马来酸、 草酸、 羟基马来酸、 苯甲酸、 羟基苯甲酸、 苯乙酸、 肉桂酸、 杏仁酸、 桂皮酸、 扁桃酸、 水 10 杨酸、 1-苯氧基苯甲酸、 烟酸、 泛酸、 天冬氨酸、 谷氨酸、 缬氨酸、 抗坏血酸、 齐墩 果酸、 乌索酸、 熊果酸、 甘草酸、 甘草次酸、 丹参酸、 阿魏酸、 葡萄糖醛酸、 葡萄糖 酸或果糖酸。
11. 权利要求 9所述的 (R)-9-[2-双]特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤的盐,其中 HA是 是富马酸、 草酸、 水杨酸、 齐墩果酸和天冬氨酸。
15 12. 如式 (ΠΙ)所示的 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤的富马酸盐:
Figure imgf000033_0002
(III)
13. 权利要求 12 所述的 0¾-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤富马酸盐的结 晶, 其特征在于: 其 X-射线粉末衍射光谱用晶面距 d值表示通常在 18.706A、 6.112A、 4.562A、 3.645A、 3.561 A、 3.033A、 2.596人有峰。
20 14. (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤的环糊精包合物, 其特征在于: (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基〗腺嘌昤与环糊精的摩尔比为 1·.1~1·Λ0。
15.权利要求 2、 5、 8、 9、 12或 14所述的固体状态的 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧 基丙基]腺嘌呤及其衍生物在抗病毒中的用途。
16. 一种组合物,含有固体状态的 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌昤或其生 理上可接受的衍生物和药用载体。
17.权利要求 16所述的 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤或其生理上可接 受的衍生物是 (R)-9-[2-双 (特戊酰氧甲基)膦酰甲氧基丙基]腺嘌呤的 A型结晶、 B型结 晶、 无定型固化物、 盐或环糊精包合物。
18. 权利要求 16所述的组合物, 其特征在于: 所述的组合物还含有 L-肉碱或其盐。
19. 权利要求 16所述的组合物, 其特征在于: 所述的组合物还含有碱性药用载体。
PCT/CN2006/001269 2005-06-13 2006-06-09 Promedicament analogue nucleotidique et sa preparation WO2006133632A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2006800207782A CN101193642B (zh) 2005-06-13 2006-06-09 核苷酸类似物前体药物及其制剂
US11/917,396 US20100216822A1 (en) 2005-06-13 2006-06-09 Nucleotide Analogue Prodrug and the Preparation Thereof
JP2008516109A JP5323476B2 (ja) 2005-06-13 2006-06-09 ヌクレオチド類縁体プロドラッグおよびその製剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510040480.5 2005-06-13
CN200510040480 2005-06-13

Publications (1)

Publication Number Publication Date
WO2006133632A1 true WO2006133632A1 (fr) 2006-12-21

Family

ID=37531955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/001269 WO2006133632A1 (fr) 2005-06-13 2006-06-09 Promedicament analogue nucleotidique et sa preparation

Country Status (5)

Country Link
US (1) US20100216822A1 (zh)
JP (1) JP5323476B2 (zh)
CN (5) CN102228463B (zh)
WO (1) WO2006133632A1 (zh)
ZA (1) ZA200800228B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016506A1 (zh) * 2010-08-01 2012-02-09 江苏正大天晴药业股份有限公司 泰诺福韦双特戊酯富马酸盐的晶体
CN102453055A (zh) * 2010-10-29 2012-05-16 上海迪赛诺医药发展有限公司 制备(r)-9-(2-膦酰甲氧基丙基)腺嘌呤双(异丙氧羰基氧甲基)酯的方法
CN103282369A (zh) * 2011-04-08 2013-09-04 劳乐斯实验室私营有限公司 抗逆转录病毒化合物与抗氧化酸的固体形式、其制备方法以及其药物组合物
CN103626803A (zh) * 2012-08-23 2014-03-12 四川海思科制药有限公司 替诺福韦二吡呋酯的固体及其制备方法和用途
US9908908B2 (en) 2012-08-30 2018-03-06 Jiangsu Hansoh Pharmaceutical Co., Ltd. Tenofovir prodrug and pharmaceutical uses thereof
WO2024033632A1 (en) * 2022-08-08 2024-02-15 Cipla Limited An improved process for preparing antiviral phosphonate analogues

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111074A2 (en) * 2010-03-11 2011-09-15 Matrix Laboratories Ltd An improved process for the preparation of tenofovir disoproxil fumarate
CN103374038B (zh) * 2012-04-11 2016-04-13 广州白云山医药集团股份有限公司白云山制药总厂 一种抗病毒药物的制备方法
US9227990B2 (en) * 2012-10-29 2016-01-05 Cipla Limited Antiviral phosphonate analogues and process for preparation thereof
CN104725423A (zh) * 2013-12-18 2015-06-24 山东新时代药业有限公司 一种富马酸替诺福韦二吡呋酯的合成方法
KR101548724B1 (ko) * 2014-04-25 2015-09-02 주식회사 휴온스 고체 형태의 항바이러스제 및 이의 제조방법
CN105399771B (zh) * 2014-07-21 2020-11-24 江苏豪森药业集团有限公司 替诺福韦前药晶型及其制备方法和用途
CN107334772B (zh) * 2016-07-15 2020-02-14 安徽贝克生物制药有限公司 一种抗逆转录病毒药物组合物
CN107266500B (zh) * 2017-08-10 2019-04-12 黄哲敏 一种泰诺福韦生产线的晶体析出反应系统
CN110577555A (zh) * 2018-06-08 2019-12-17 欣凯医药化工中间体(上海)有限公司 一种无定形的替诺福韦十八烷氧乙酯的制备方法及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374314A (zh) * 2002-03-13 2002-10-16 上海仲夏化学有限公司 阿德福韦酯无定形固化物及制备方法
CN1396170A (zh) * 2002-07-08 2003-02-12 江苏正大天晴药业股份有限公司 匹伏阿德福韦的晶型

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4033494B2 (ja) * 1996-07-26 2008-01-16 ギリヤド サイエンシーズ, インコーポレイテッド ヌクレオチドアナログ
ZA986614B (en) * 1997-07-25 1999-01-27 Gilead Sciences Nucleotide analog composition
CA2596320C (en) * 1997-07-25 2008-12-23 Gilead Sciences, Inc. Nucleotide analog compositions
CN1465582A (zh) * 2002-07-01 2004-01-07 中国人民解放军军事医学科学院放射医 核苷酸类似物、含它的药物组合物及其用途
CN100384426C (zh) * 2003-12-05 2008-04-30 天津药物研究院 一种含活性成分阿德福韦或其盐的固体分散物及其制备方法
CN1679596B (zh) * 2005-01-18 2010-12-08 美德(江西)生物科技有限公司 无结晶型态的阿地福韦酯与辅料的分散组合物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1374314A (zh) * 2002-03-13 2002-10-16 上海仲夏化学有限公司 阿德福韦酯无定形固化物及制备方法
CN1396170A (zh) * 2002-07-08 2003-02-12 江苏正大天晴药业股份有限公司 匹伏阿德福韦的晶型

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Preventing and treating hepatitis B infection", BRITAIN MEDICAL JOURNAL (CHINESE VERSION), vol. 8, no. 2, April 2005 (2005-04-01), pages 99 - 104 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012016506A1 (zh) * 2010-08-01 2012-02-09 江苏正大天晴药业股份有限公司 泰诺福韦双特戊酯富马酸盐的晶体
CN103038241A (zh) * 2010-08-01 2013-04-10 江苏正大天晴药业股份有限公司 泰诺福韦双特戊酯富马酸盐的晶体
AU2011288091B2 (en) * 2010-08-01 2016-06-09 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Crystals of Tenofovir disoproxil fumarate
CN102453055A (zh) * 2010-10-29 2012-05-16 上海迪赛诺医药发展有限公司 制备(r)-9-(2-膦酰甲氧基丙基)腺嘌呤双(异丙氧羰基氧甲基)酯的方法
CN103282369A (zh) * 2011-04-08 2013-09-04 劳乐斯实验室私营有限公司 抗逆转录病毒化合物与抗氧化酸的固体形式、其制备方法以及其药物组合物
US9650346B2 (en) 2011-04-08 2017-05-16 Laurus Labs Private Ltd. Solid forms of antiretroviral compounds, process for the preparation and their pharmaceutical composition thereof
CN103626803A (zh) * 2012-08-23 2014-03-12 四川海思科制药有限公司 替诺福韦二吡呋酯的固体及其制备方法和用途
US9908908B2 (en) 2012-08-30 2018-03-06 Jiangsu Hansoh Pharmaceutical Co., Ltd. Tenofovir prodrug and pharmaceutical uses thereof
WO2024033632A1 (en) * 2022-08-08 2024-02-15 Cipla Limited An improved process for preparing antiviral phosphonate analogues

Also Published As

Publication number Publication date
CN102240295A (zh) 2011-11-16
CN102240296B (zh) 2013-04-03
CN102228464B (zh) 2013-06-05
CN102240296A (zh) 2011-11-16
CN102240297B (zh) 2013-04-03
CN102240295B (zh) 2013-04-03
ZA200800228B (en) 2008-09-25
CN102228464A (zh) 2011-11-02
CN102240297A (zh) 2011-11-16
US20100216822A1 (en) 2010-08-26
JP2008545802A (ja) 2008-12-18
JP5323476B2 (ja) 2013-10-23
CN102228463A (zh) 2011-11-02
CN102228463B (zh) 2012-12-19

Similar Documents

Publication Publication Date Title
WO2006133632A1 (fr) Promedicament analogue nucleotidique et sa preparation
US10065947B1 (en) Forms of R)-3-(4-(2-(2-methyltetrazol-5-yl)pyridin-5-yl)-3-fluorophenyl)-5-hydroxymethyl oxazolidin-2-one dihydrogen phosphate
US9452157B2 (en) Pharmaceutical compositions comprising rifaximin and amino acids, preparation methods and use thereof
US20080249031A1 (en) Crystalline forms
AU2017336889B2 (en) Polymorphic form of kinase inhibitor compound, pharmaceutical composition containing same, and preparation method therefor and use thereof
US11286259B2 (en) Co-crystals of ribociclib and co-crystals of ribociclib monosuccinate, preparation method therefor, compositions thereof, and uses thereof
US20100297241A1 (en) Amorphous Fesoterodine Fumarate
WO2013132314A1 (en) Tenofovir phosphate, processes for the preparation and pharmaceutical composition thereof
KR20050086519A (ko) 새로운 결정 형태를 가진 아데포비어 디피복실 및 그조성물
US20100260851A1 (en) Novel Polymorph of Atorvastatin Calcium and Use Thereof for the Preparation of Amorphous Atorvastatin Calcium
JP2021532165A (ja) S1p1受容体アゴニストの付加塩およびその結晶形態、ならびに薬学的組成物
US8507463B2 (en) Nucleotide analogue prodrug and the preparation thereof
CN101193642B (zh) 核苷酸类似物前体药物及其制剂
WO2009061336A1 (en) Amorphous and crystalline forms of ibandronate disodium
JP2009516004A (ja) イバンドロン酸ナトリウムの結晶形態
US20100204296A1 (en) Novel Polymorphs of Darifenacin Free Base and its Hydrobromide Salt
KR101120120B1 (ko) 무정형 아데포비아 디피복실을 포함하는 약학 조성물 및 이의 제조 방법
KR20100091127A (ko) 아데포비어 디피복실의 신규한 염 및 그의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 200680020778.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2008516109

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11917396

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06752921

Country of ref document: EP

Kind code of ref document: A1