WO2006132238A1 - 熱可塑性樹脂組成物 - Google Patents

熱可塑性樹脂組成物 Download PDF

Info

Publication number
WO2006132238A1
WO2006132238A1 PCT/JP2006/311315 JP2006311315W WO2006132238A1 WO 2006132238 A1 WO2006132238 A1 WO 2006132238A1 JP 2006311315 W JP2006311315 W JP 2006311315W WO 2006132238 A1 WO2006132238 A1 WO 2006132238A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoplastic resin
isobutylene
resin composition
weight
molecular weight
Prior art date
Application number
PCT/JP2006/311315
Other languages
English (en)
French (fr)
Inventor
Koji Noda
Tohru Nakashima
Takeshi Yao
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to JP2007520119A priority Critical patent/JPWO2006132238A1/ja
Publication of WO2006132238A1 publication Critical patent/WO2006132238A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2200/00Chemical nature of materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K2200/06Macromolecular organic compounds, e.g. prepolymers
    • C09K2200/0615Macromolecular organic compounds, e.g. prepolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C09K2200/0617Polyalkenes

Definitions

  • the present invention relates to a thermoplastic resin composition having an isobutylene polymer power and a sealing material using the same.
  • Sealing materials are widely used in automobiles, building materials, and the like as materials filled in joints in order to obtain water tightness and air tightness. Sealing materials are required to have high airtightness, and other required properties differ depending on the application used, but in many applications, they are required to have properties such as high elasticity and high mechanical strength.
  • Multi-layer glass is generally composed of two or more glass panels, with a spacer interposed between them to maintain a gap.
  • a sealing material is applied between the spacer and the glass, and the space between the glass panels is filled with a gas such as dry air, nitrogen, or argon hexafluorosulfur yellow.
  • a gas such as dry air, nitrogen, or argon hexafluorosulfur yellow.
  • the structure of the multi-layer glass varies, and various sealing materials are applied in various ways depending on the structure.
  • a sealing material include a hot melt adhesive.
  • a hot melt spacer is used as the spacer.
  • double-glazed glass using a hot melt material include a material in which a desiccant is kneaded into a thermoplastic resin such as vinyl chloride resin or hot melt butyl composed mainly of an isobutylene polymer.
  • a multilayer glass with a spacer is known (Patent Document 1).
  • Hot melt butyl composed mainly of this isobutylene polymer has properties such as gas resistance, weather resistance and adhesiveness that can maintain airtightness and watertightness. Often used for materials. Specifically, in the case of a double-layer glass having a structure using an aluminum spacer filled with a desiccant inside, it is hot-melt coated as a primary sealant for fixing between the aluminum spacer and the glass.
  • the aluminum spare Examples include hot melt coating as a secondary sealant on the outside of the sensor.
  • the material strength obtained by kneading a desiccant into this hot melt butyl is hot melt applied to the edge of one side of the multilayer glass and used as a spacer made of thermoplastic resin. . In any configuration, the role of hot melt butyl is to maintain hermeticity by adhesion to glass, and it is required not to break or deform and peel during long-term use.
  • Patent Document 2 a method of adding a styrenic thermoplastic elastomer or a thermoplastic resin is known.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 7-17748
  • Patent Document 2 US Patent Application Publication No. 2003Z0195287
  • hot melt butyl is a force widely used as a sealing material.
  • the performance cannot be maintained and the airtightness is lost.
  • deformation due to its own weight under high-temperature conditions (self-weight deformability) and lack of elasticity and mechanical strength can be problematic.
  • other sealing materials or films that come into contact with the resin composition may cause deterioration, discoloration, or peeling. The present inventors have found that there is.
  • An object of the present invention is a thermoplastic resin composition that can be used as a sealing material, in particular, a hot-melt sealing material for double-glazed glass, and a hot-melt spacer for double-glazed glass. Excellent in mechanical properties, mechanical strength and elasticity. However, it is an object of the present invention to provide a thermoplastic resin composition that exhibits low contamination with small deformation due to its own weight.
  • thermoplastic resin composition such as an isobutylene-based polymer composed of a specific molecular weight range.
  • the present inventors have found that the problem can be solved and have completed the present invention.
  • the present invention provides an isobutylene-based polymer having a number average molecular weight and a weight average molecular weight of 20,000 to 200,000, and a content of a component having a molecular weight of less than 10,000 is less than 5% by weight (
  • the present invention relates to a thermoplastic rosin composition comprising A).
  • the content of the component having a molecular weight of less than 10,000 is preferably less than 3% by weight.
  • thermoplastic rosin composition is an isobutylene block copolymer composed of a polymer block having an aromatic vinyl compound as a constituent monomer and a polymer block having isobutylene as a constituent monomer. Those that further contain coalescence (B) are preferred.
  • the isobutylene block copolymer (B) preferably has a number average molecular weight and a weight average molecular weight force of 30,000 to 300,000 and a blocking ratio of 90% or more.
  • the isobutylene block copolymer ( ⁇ ⁇ ⁇ ⁇ ) is preferably a styrene isobutylene diblock copolymer and ⁇ or a styrene isobutylene-styrene triblock copolymer.
  • thermoplastic resin composition preferably further contains at least one selected from the group consisting of calcium carbonate and carbon black force as the filler (C).
  • thermoplastic resin composition further contains a hygroscopic compound (D).
  • the hygroscopic compound (D) is selected from the group consisting of silica gel, alumina and zeolite. Preferably at least one kind.
  • thermoplastic rosin composition preferably further includes an aromatic vinyl-based thermoplastic elastomer other than the component (B).
  • the present invention relates to a sealing material made of the above thermoplastic resin composition.
  • the present invention relates to a hot-melt sealing material for double-glazed glass comprising the thermoplastic resin composition.
  • the present invention relates to a hot-melt spacer for double-glazed glass comprising the thermoplastic resin composition.
  • the present invention relates to a hot-melt extruded sheet having the thermoplastic resin composition strength described above.
  • the present invention relates to a laminated glass film comprising the thermoplastic resin composition.
  • the thermoplastic resin composition according to the present invention has a number average molecular weight and a weight average molecular weight of 20,000 to 200,000, respectively, and the content of a component having a molecular weight of less than 10,000 is less than 5% by weight. It contains a certain isobutylene polymer (A).
  • hot melt adhesiveness is imparted by the isobutylene polymer (A).
  • the isobutylene polymer (A) is a polymer produced by a highly-living cationic polymerization method and having a high degree of polymerization controlled. The one with a narrow molecular weight distribution is preferred.
  • the number average molecular weight and the weight average molecular weight of the whole polymer of the isobutylene polymer (A) are 20,000 to 200,000, respectively. Furthermore, 20,000 to 150,000 are more preferable from the viewpoints of moldability, balance and physical properties. If the number average molecular weight and the weight average molecular weight of the whole polymer are smaller than 20,000, the component having a molecular weight of less than 10,000 will be contained, resulting in poor contamination. If it is greater than 200,000, its moldability and processability will deteriorate.
  • the number average molecular weight and the weight average molecular weight in the present invention are, for example, using a GPC system manufactured by Waters (column: Shodex K-804 (polystyrene gel) manufactured by Showa Denko KK, mobile phase: black form). It can obtain
  • an isoprene-based polymer (A) having a content of a component having a molecular weight of less than 10,000 is less than 5% by weight is used. It is preferable to use less than 3% by weight or even less than 2% by weight, and it is more preferable that it is close to zero. Naturally, it is preferable that the content of low molecular weight substances having a molecular weight of less than 10,000, which is smaller than 5,000, less than 1,000, or less than five hundred, is small. “Molecular weight of less than 10,000 component content is less than 5% by weight” means that when two or more types of isobutylene polymers are mixed, the entire thermoplastic resin composition has a molecular weight of less than 10,000.
  • thermoplastic resin Of less than 5% by weight. That is, as one component to be mixed, even when an isobutylene polymer component having a molecular weight of less than 10,000 is less than 5% by weight before mixing, the thermoplastic resin after mixing is used. What the content of the said component in the whole fat composition is 5 weight% or more is not the object of the present invention.
  • the content of a component having a molecular weight of less than 10,000 is measured by a chromatogram measured by a GPC RI detector, and a chromatogram showing a polymer component eluted after a retention time corresponding to a molecular weight of 10,000. It can be obtained by calculating the ratio of the upper area to the total area.
  • GPC use the Waters GPC system (column: Shodex K-804 (polystyrene gel), mobile phase: black mouth form) manufactured by Showa Denko KK). Can do.
  • the monomer component constituting the isobutylene polymer (A) may or may not contain a monomer component other than isopylene.
  • the monomer component other than isoprene is not particularly limited as long as it is a monomer capable of cationic polymerization.
  • the production method of the isobutylene polymer (A) is not particularly limited.
  • a monomer containing isobutylene as a main component is polymerized in the presence of a compound represented by the following general formula (1). You can get more than you can get.
  • R 2 is each a hydrogen atom or a carbon number R 2 may be the same or different
  • R 3 is a monovalent or polyvalent aromatic hydrocarbon group or a monovalent or polyvalent aliphatic hydrocarbon group, and n represents a natural number of 1 to 6 .
  • halogen atom examples include chlorine, fluorine, bromine, iodine and the like. It does not specifically limit as said C1-C6 alkoxyl group, For example, a methoxy group, an ethoxy group, n one or an isopropoxy group etc. are mentioned.
  • the C 1-6 acyloxy group is not particularly limited, and examples thereof include an acetyloxy group and a propio-oxy group.
  • the aliphatic hydrocarbon group is not particularly limited, and examples thereof include a methyl group, an ethyl group, an n- or isopropyl group.
  • the aromatic hydrocarbon group is not particularly limited, and examples thereof include a phenol group and a methylphenol group.
  • the compound represented by the general formula (1) serves as an initiator, and is considered to generate a carbon cation in the presence of a Lewis acid or the like and serve as a starting point for cationic polymerization.
  • Examples of the compound of the general formula (1) used in the present invention include the following compounds.
  • a Lewis acid catalyst may be allowed to coexist.
  • a Lewis acid can be TiCl, as long as it can be used for cationic polymerization.
  • an electron donor component may be allowed to coexist if necessary.
  • This electron donor component is considered to have an effect of stabilizing the growth carbon cation during cationic polymerization, and the structure having a narrow molecular weight distribution is controlled by the addition of the electron donor. Coalescence is generated.
  • the electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom. .
  • the polymerization of the isobutylene-based polymer (A) can be performed in an organic solvent as necessary, and the organic solvent can be used without particular limitation as long as it does not essentially inhibit cationic polymerization.
  • halogenated hydrocarbons such as methyl chloride, dichloromethane, chloroform, chloro chloride, dichloroethane, n -propyl chloride, n-butyl chloride, and black benzene; benzene, toluene, xylene, ethylbenzene Alkylbenzenes such as propylbenzene, butylbenzene, etc .; linear aliphatic hydrocarbons such as ethane, propane, butane, pentane, hexane, heptane, octane, nonane, decane, etc .; Branched aliphatic hydrocarbons such as 2, 3, 3 trimethylpentane,
  • solvents can be used alone or in combination of two or more in consideration of the balance of the polymerization characteristics of the monomers constituting the polymer and the solubility of the polymer to be formed. wear.
  • the amount of the solvent used is such that the concentration of the polymer is 1 to 50% by weight of the total amount of the polymer solution, preferably 5 to 35 in consideration of the viscosity of the polymer solution obtained and ease of heat removal. It is determined to be weight%.
  • the respective components are mixed under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C.
  • the temperature range is particularly preferably from 30 ° C to 80 ° C.
  • the structure of the end group of the isobutylene polymer (A) thus obtained is selected as appropriate depending on the polymerization conditions, the type of Lewis acid used as a catalyst, the post-treatment conditions, etc. Is done.
  • the chloro end, isopropenyl olefin end or internal olefin fin end obtained by dehydrochlorination treatment of this chloro end, or aryl olefin end, hydroxyl end, phenol end obtained by reacting the chloro end with a specific reagent or Examples include acid anhydride ends.
  • the chlor end may be unfavorable because it corrodes the surrounding metal in specific applications.
  • the chloro end is connected to the isopropyl olefin end or inside via a dehydrochlorination reaction by heating or the like. It is preferable to convert to arylolefin end by a force for converting to partial olefin end or a substitution reaction with aryltrimethylsilane or the like.
  • the thermoplastic resin composition of the present invention comprises, in addition to the above component (A), a polymer block comprising an aromatic vinyl compound as a constituent monomer and a polymer block comprising isobutylene as a constituent monomer.
  • a polymer block comprising an aromatic vinyl compound as a constituent monomer e.g., polyethylene glycol dimethacrylate copolymer (B)
  • Those containing an isobutylene block copolymer (B) which is effective with a coalescence block are preferred.
  • the isobutylene block polymer (B) is characterized by high gas noriality derived from the isobutylene block and rigidity derived from the aromatic bur compound block, and other thermoplastic elastomers. Compared to the case of using it, the water-tightness of the composition is not impaired, but it has the advantage that it is not easily deformed by its own weight under high temperature conditions. Is granted.
  • the aromatic vinyl-based compound constituting the polymer block in the isobutylene-based block copolymer (B) is not particularly limited.
  • the polymer block containing an aromatic vinyl compound as a constituent monomer may or may not contain a monomer other than the aromatic bur compound.
  • a monomer other than the aromatic vinyl compound it is preferable that the monomer of the aromatic vinyl compound accounts for 60% by weight or more in the entire polymer block. It is preferable to occupy 80% by weight or more.
  • the monomer unit derived from the aromatic bur compound is less than 60% by weight in the whole polymer block, the cohesive force of the polymer block is lowered, which is not preferable.
  • the monomer other than the aromatic beryl compound is not particularly limited as long as it is a monomer that can be cationically polymerized with an aromatic vinyl compound.
  • isoprene the above-mentioned aliphatic olefins, and alicyclic rings.
  • examples thereof include monomers such as formula alkenes, gens, butyl ethers, and ⁇ -vinene. These may be used alone or in combination of two or more.
  • the polymer block containing isobutylene constituting the isobutylene-based block copolymer ( ⁇ ) as a constituent monomer may or may not contain a monomer other than isobutylene. Yes. When a monomer other than isobutylene is included, it is preferable that isobutylene occupies 60% by weight or more in the entire polymer block, and more preferably 80% by weight or more.
  • the monomer other than isobutylene in the polymer block is not particularly limited as long as it is a monomer that can be cationically polymerized with isobutylene.
  • the aromatic vinyl compound, aliphatic olefins, and alicyclic alkenes described above are used. And monomers such as gens, gens, vinyl ethers, and ⁇ -vinene. These may be used alone or in combination of two or more.
  • the number average molecular weight and weight average molecular weight of the isobutylene block copolymer ( ⁇ ) are not particularly limited, but are 30000-300000 from the viewpoint of contamination and hot melt workability. It is preferable. In particular, 50 000 to 150,000 force S is preferable because of its own weight deformability and hot melt workability under high temperature conditions.
  • the blocking ratio of the isobutylene block copolymer (B) is preferably 90% or more, more preferably 95% or more, and particularly preferably 98% or more. When the blocking ratio is less than 90%, the content of the homostyrene polymer is increased, the mechanical properties of the entire thermoplastic resin composition of the present invention are significantly lowered, and the contamination property is also lowered, which is not preferable.
  • the “blocking rate” means the proportion of the isobutylene block copolymer (B) in the mixture after polymerization of the isoprene block copolymer (B). For example, after measuring the initial weight of the above mixture and then determining the weight of the solid obtained after removing the homopolymer of isobutylene and the homopolymer of the aromatic bur compound,
  • the ratio of the isobutylene-based block copolymer (B) in the thermoplastic rosin composition according to the present invention is not particularly limited, but it is preferable to 100 parts by weight of the isobutylene-based polymer (A). Is 1 to 30 parts by weight, more preferably 5 to 20 parts by weight. If the proportion of the isobutylene block copolymer (B) is small, it tends to be deformed by its own weight under high temperature conditions, and if it is too large, it becomes too hard and the seal part peels off with hot melt, resulting in poor adhesion. Become.
  • the structure of the isobutylene block polymer (B) is not particularly limited! However, for example, a block copolymer, a diblock copolymer having a linear, branched, or star structure, Misalignment of triblock copolymer and multiblock copolymer is acceptable.
  • isobutylene block copolymer (B) a block copolymer composed of styrene and isobutylene is particularly preferable. Furthermore, styrene isobutylene diblock copolymer (SIB) and styrene / isobutylene / styrene triblock copolymer (SIBS) are more preferable from the viewpoints of self-weight deformation under high temperature conditions, elasticity and strength.
  • SIB styrene isobutylene diblock copolymer
  • SIBS styrene / isobutylene / styrene triblock copolymer
  • the production method of the isobutylene block copolymer (B) is not particularly limited, and a known polymerization method can be used. In order to obtain a block copolymer having a controlled force structure, an isobutylene block copolymer can be used. Like the polymer (A), in the presence of the compound represented by the general formula (1), It is preferable to polymerize a monomer component mainly composed of isobutylene. When the isobutylene block copolymer (B) is produced, a monomer component containing an aromatic vinyl compound as a main component can be further added and polymerized. As the compound represented by the general formula (1), the same compounds as described in the section of the isobutylene polymer (A) can be used.
  • a Lewis acid catalyst may be allowed to coexist.
  • Such Lewis acids may be those that can be used for cationic polymerization. TiCl, TiBr, BC1, BF, BF-OEt, SnCl, SbCl, SbF, W
  • Metal halides such as CI, TaCl, VC1, FeCl, ZnBr, A1C1, AlBr; Et A1C1
  • An organic metal halide such as EtAlCl can be preferably used. Above all, the catalyst
  • TiCl, BC1 and SnCl are preferred when considering the capacity and industrial availability.
  • the amount of Lewis acid used is not particularly limited, but can be set in view of the polymerization characteristics of the monomers used or the polymerization concentration. Usually, 0.1 to L00 molar equivalent can be used with respect to the compound represented by the general formula (1), preferably in the range of 1 to 50 molar equivalent.
  • an electron donor component may be allowed to coexist if necessary.
  • This electron donor component is considered to have an effect of stabilizing the growing carbon cation during cationic polymerization, and a polymer having a controlled structure with a narrow molecular weight distribution is formed by the addition of the electron donor.
  • the electron donor component that can be used is not particularly limited, and examples thereof include pyridines, amines, amides, sulfoxides, esters, and metal compounds having an oxygen atom bonded to a metal atom.
  • the polymerization of the isobutylene-based block copolymer (B) can be carried out in an organic solvent as necessary, and the organic solvent can be used without particular limitation as long as it does not essentially inhibit cationic polymerization. .
  • halogenated hydrocarbons such as methyl chloride, dichloromethane, chloroform, chloroform, dichloroethane, n -propyl chloride, n-butyl chloride, chloroform benzene; benzene, toluene, xylene, ethylbenzene, propyl Alkylbenzenes such as benzene and butylbenzene; ethane, propane, butane, pentane, Linear aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane; branched fatty acids such as 2-methylpropane, 2 methylbutane, 2, 3, 3 trimethylpentane, 2, 2, 5 trimethylhexane Group hydrocarbons; alicyclic hydrocarbons such as cyclohexane, methylcyclohexane, and ethylcyclohexane.
  • solvents may be used alone or in combination of two or more in consideration of the balance of the polymerization characteristics of the monomer constituting the isobutylene block copolymer (B) according to the present invention and the solubility of the polymer to be formed. Are used in combination.
  • the amount of the solvent used is such that the concentration of the polymer is 1 to 50 wt%, preferably 5 to 35 wt% of the total amount of the polymer solution in consideration of the viscosity of the resulting polymer solution and the ease of heat removal. To be determined.
  • the respective components are mixed under cooling, for example, at a temperature of 100 ° C or higher and lower than 0 ° C.
  • a particularly preferred temperature range is -30 ° C to -80 ° C in order to balance energy costs and polymerization stability.
  • the polymerization reaction may be performed in a batch mode (batch mode or semi-batch mode), or may be performed in a continuous mode in which each component necessary for the polymerization reaction is continuously added to the polymerization vessel.
  • the thermoplastic resin composition according to the present invention may further contain a filler (C)!
  • Filler (C) has an effect of improving the rigidity of the thermoplastic resin composition of the present invention, an effect of improving shape maintenance in the operating temperature range, and an effect of suppressing dripping during hot melt.
  • the filler (C) is not particularly limited and conventionally known fillers can be used.
  • carbon black having an effect of improving rigidity with a small amount that at least one selected from the group consisting of calcium carbonate and carbon black is preferable is particularly preferable.
  • the amount of the filler (C) is not particularly limited! /, But it is preferably 1 to 300 parts by weight, more preferably 100 parts by weight of the isobutylene polymer (A). 50 to 150 parts by weight.
  • the thermoplastic resin composition according to the present invention may further contain a hygroscopic compound (D)! /.
  • a hygroscopic compound (D) examples include zeolite, silica gel, and alumina. Other deviations can also be used. These may be used in combination of two or more.
  • Such a hygroscopic compound can reduce the water vapor transmission rate of the thermoplastic resin composition according to the present invention and prevent the voids sandwiched between the glass plates of the multilayer glass from becoming clouded by moisture.
  • the amount of the hygroscopic compound (D) should be 1 to: LOO parts by weight per 100 parts by weight of the isobutylene polymer (A). I like it.
  • thermoplastic resin composition according to the present invention may further contain an aromatic bur thermoplastic elastomer other than the component (B) as a processing aid.
  • aromatic vinyl-based thermoplastic elastomer includes a block copolymer comprising an aromatic vinyl compound as a constituent monomer and a butadiene and z or isoprene block, and a hydrogenated product thereof. .
  • SBS styrene-butadiene-styrene block copolymer
  • S IS styrene isoprene styrene block copolymer
  • SEBS styrene ethylene butylene styrene block copolymer
  • SEPS styrene ethylene propylene styrene block copolymer
  • thermoplastic resin composition according to the present invention may further contain an antioxidant, an ultraviolet absorber, a light stabilizer, a pigment, a surfactant, a flame retardant, and the like as long as the physical properties are not impaired. Can be blended. Known antiblocking agents, antistatic agents, colorants, inorganic or organic antibacterial agents, lubricants, and the like can also be incorporated.
  • the method for producing the thermoplastic resin composition according to the present invention is not particularly limited. Examples thereof include a melting pot equipped with a roll, a Banbury mixer, a kneader, and a stirrer, or a uniaxial or biaxial. It is possible to use a method of mechanical mixing using an extruder. At this time, you may heat as needed. It is also possible to use a method in which a uniform solution is used and the solvent is distilled off.
  • the temperature should be 260 ° C or less as long as the component (B) is at or above the melting temperature. preferable.
  • thermoplastic resin composition according to the present invention is further converted into a thermoplastic resin composition, if necessary.
  • it can be molded using a molding method and a molding apparatus generally employed, and can be molded by, for example, extrusion molding, injection molding, press molding, blow molding or the like.
  • thermoplastic resin composition obtained as described above has excellent gas noria properties, high elasticity, and mechanical strength, and hardly undergoes self-weight deformation under high temperature conditions.
  • an applicator such as an applicator
  • shearing force is generated and it flows easily. Therefore, sealing materials, especially hot-melt sealing materials for multi-layer glass, are complex. It can be suitably used as a hot-melt spacer for layer glass.
  • thermoplastic rosin composition according to the present invention exhibits low-weight self-deformability and low contamination under high temperature conditions, and has high elasticity compared to conventional compositions. In addition, it has mechanical strength and is excellent in gas noria. Therefore, the thermoplastic resin composition according to the present invention is used as a sealing material that requires high elasticity, mechanical strength, gas committee, low contamination, etc. It can be suitably used as a hot melt spacer. Further, it can be suitably used as a hot melt extruded sheet or a laminated glass film that requires high mechanical strength, high heat and weather resistance, low contamination, hot melt moldability, and the like.
  • the molecular weight of the isobutylene polymer shown in this example was measured by the following method. Waters GPC system (column: Shodex K-804 (polystyrene gel), Showa Denko KK, mobile phase: black mouth form) is used. Number average molecular weight and weight average molecular weight are expressed in terms of polystyrene. The ratio of the area on the chromatogram of the polymer component that elutes after the retention time corresponding to a molecular weight of 10,000 is measured with respect to the total area (measured in molar ratio). Then, this was converted to wt%, and the content of those having a molecular weight of 10,000 or less was expressed as wt%.
  • P Diccmilk mouthride (hereinafter abbreviated as p-DCC) 0.078 g (0.34 mmol) and N, N dimethylacetamide 0.059 g (0.84 mmol) were prepared.
  • p-DCC P Diccmilk mouthride
  • N, N dimethylacetamide 0.059 g (0.84 mmol
  • the reaction solution was washed twice with water, the solvent was evaporated by heating, and the obtained polymer was vacuum-dried at 130 ° C for 24 hours to obtain the desired isobutylene polymer.
  • the number average molecular weight was about 85,000, the weight average molecular weight was about 97,000, and the content of the molecular weight less than 10,000 was less than 0.1% by weight. there were.
  • the structure of the polymer terminal determined by NMR and elemental analysis is as follows: isopropylene content 1.0 (one Z1 molecule), internal olefin 0.6 (one Z1 molecule), chloro group 0.4 (one Z1 molecule) (These numbers are average values per polymer molecule). Table 1 shows the analysis results of this isobutylene polymer.
  • SIBS11 isobutylene block copolymer
  • the number average molecular weight of the block copolymer after styrene polymerization was 59,000, the weight average molecular weight was 72,000, and the styrene block content was 30%. Also, block Curing rate was 97%.
  • the reaction solution was washed twice with water, the solvent was evaporated by heating, and the obtained polymer was vacuum dried at 130 ° C. for 24 hours to obtain the desired isobutylene block copolymer (SIBS 12).
  • SIBS 12 isobutylene block copolymer
  • the number average molecular weight of the block copolymer after styrene polymerization was 115,000, the weight average molecular weight was 135,000, and the styrene block content was 30%.
  • the blocking rate was 98%.
  • Table 3 The analysis results are shown in Table 3.
  • the reaction solution was washed twice with water, the solvent was evaporated by heating, and the obtained polymer was vacuum dried at 130 ° C. for 24 hours to obtain the desired isobutylene block copolymer (SIBS 13).
  • SIBS 13 isobutylene block copolymer
  • the number average molecular weight of the block copolymer after styrene polymerization was 118,000, the weight average molecular weight was 132,000, and the styrene block content was 13%.
  • the blocking rate was 98%.
  • Table 3 The analysis results are shown in Table 3.
  • a liquid feeding tube manufactured by (registered trademark) was connected, and isoprene monomer was fed into the polymerization vessel by nitrogen pressure.
  • Tamil chloride prepared by reacting ⁇ -methylstyrene with hydrochloric acid gas (0.217 g (l. 4 mmol)) and N, N-dimethylacetamide (0.12 g (l. 4 mmol)) were obtained.
  • 1.54 mL (14. Ommol) of titanium tetrachloride was added to initiate polymerization.
  • the reaction solution was washed twice with water, the solvent was evaporated by heating, and the obtained polymer was vacuum dried at 130 ° C. for 24 hours to obtain the desired isobutylene block copolymer (SIB14).
  • the number average molecular weight of the block copolymer after styrene polymerization was 48,000, the weight average molecular weight was 58,000, and the styrene block content was 14%.
  • the blocking rate is 97% Met.
  • the reaction solution was washed twice with water, the solvent was evaporated by heating, and the resulting polymer was vacuum dried at 130 ° C. for 24 hours to obtain the desired isobutylene block copolymer (SIBS 15).
  • the block copolymer after styrene polymerization had a number average molecular weight of 53,000, a weight average molecular weight of 73,000, and a styrene block content of 30%.
  • the blocking rate was 78%.
  • the reaction solution was washed twice with water, the solvent was evaporated by heating, and the obtained polymer was vacuum dried at 130 ° C. for 24 hours to obtain the desired isobutylene block copolymer (SIBS16).
  • SIBS16 isobutylene block copolymer
  • the block copolymer after styrene polymerization had a number average molecular weight of 55,000, a weight average molecular weight of 71,000, and a styrene block content of 30%.
  • the blocking rate was 91%.
  • p-DCC p—jik milk mouth ride
  • PW380 Fu CI Set Oil, manufactured by Idemitsu Kosan Co., Ltd.
  • CaC03 100 100 100 100 100 100 100 100 100 100
  • PW380 Process oil, manufactured by Idemitsu Kosan Co., Ltd.
  • the kneaded composition is first molded into a cylindrical shape with a diameter of about 25mm and a height of about 15mm using a mold and a press molding machine (set temperature 180 ° C). JIS A hardness was measured.
  • the kneaded thermoplastic resin composition was molded into a sheet having a width of 20 mm, a length of 40 mm, and a thickness of 6 mm using a mold and a press molding machine (set temperature: 180 ° C.).
  • a glass plate having a width of 50 mm, a length of 50 mm, and a thickness of 0.5 mm was prepared, and the sheet was pressed perpendicularly to the glass surface at a position 10 mm from one side of the glass plate.
  • the glass plate to which the sheet was pressed was fixed perpendicularly to the ground and left in a hot air dryer at 120 ° C for 12 hours.
  • the thermal deformation resistance after 12 hours of the sheet that was horizontal to the initial ground was evaluated by measuring the droop distance (see Fig. 1).
  • Riki-Honfu rack Asahi Riki-Hon 60HN, manufactured by Asahi Rikiichi Bon Co., Ltd.
  • Examples 1 to 10 As compared with 10 and Comparative Examples 1 to 5, if the content of the polymer having a molecular weight of less than 10,000 related to the one-terminal structure of the isobutylene polymer is small, cold flow properties It can be seen that the contamination is greatly improved.
  • the drooping distance in the example is much smaller. It can be seen that it is excellent in shape stability at high temperature under exposure environment.
  • Example 12 and Comparative Example 6 and Example 13 and Comparative Example 7 in which the number average molecular weights of the isobutylene polymers used are almost the same are compared, although their melting properties are similar, The drooping distance is greatly different, and it can be seen that the example is superior in shape stability.
  • Comparative Example 7 is more weight average molecular weight. Despite being slightly high, the drooping distance is large.
  • thermoplastic resin composition useful in the present invention is particularly excellent in cold flow properties and heat-resistant shape stability.
  • thermoplastic resin composition was obtained in the same manner as in Example 16 except that the isobutylene polymer (A) and the isobutylene block polymer (B) were changed to the ratios shown in Table 7, respectively. Using this composition, various physical properties were evaluated by the above methods. The results are shown in Table 7.
  • Thermoplastic resin composition in the same manner as in Example 1 except that the isobutylene polymer (A), the isobutylene polymer equivalent component, and the isobutylene block polymer (B) were changed to the ratios shown in Table 8, respectively. I got a thing. Using this composition, various physical properties were evaluated by the methods described above. The results are shown in Table 8.
  • compositions obtained in Examples 16 to 29, Comparative Examples 9 to 17 and Reference Example 1 were measured using a mold and a press molding machine (set temperature: 180 ° C) with a diameter of about 25 mm and a height of about 15 mm. Molded into a cylindrical shape, placed on a PVB film (thickness of about 0.3 mm, with single-sided wrinkles), allowed to stand in an 80 ° C oven for 1 week, and then spread the cylindrical sample in the lateral direction (cold flow) The amount of change from the initial stage was evaluated. Similarly, after one week, the backside force of the PVB film on which the cylindrical sample was placed was observed, and the degree of alteration of the PVB film was observed and evaluated. These results are shown in Tables 7 and 8.
  • Contamination is expressed as “None ⁇ Fine ⁇ Small ⁇ Medium” in ascending order of change. “Fine” indicates that the change can be barely discriminated by the angle at which the contamination is observed. The change can be clearly confirmed by the observation angle. “Small” was used, and “Medium” was used to clearly determine alteration regardless of the observation angle.
  • the obtained composition was heated and pressed under the condition of 180 ° C. to prepare a sheet having a thickness of 0.9 mm.
  • the moisture permeability of the composition at 40 ° C. and 90% RH was measured for the prepared sheet, and judged according to the following level.
  • the measured moisture permeability is less than lgZm 2 ⁇ day.
  • the measured moisture permeability is lgZm 2 'day or more.
  • Example 16 27 good results were obtained for all of evaluations 15 and 5, and it was confirmed that evaluation 6 had sufficiently low moisture permeability (excellent gas properties). did it . It can also be seen that a thermoplastic resin composition having excellent mechanical strength and elasticity, and exhibiting deformation force due to its own weight even under high-temperature conditions and low contamination is obtained. Also, in Examples 28 and 29, it can be seen that the self-deformability is considerably improved as the results of Evaluation 1 and Evaluation 3 are compared with Reference Example 1. However, as compared with evaluation 3 of Example 16, it is apparent that the mechanical properties are affected by the high and low blocking ratio.
  • thermoplastic resin composition containing no isobutylene block copolymer (B) has its own weight deformation under high temperature conditions.
  • Comparative Example 14 even though an isobutylene polymer having a very high molecular weight was selected, the self-weight deformation property could not be sufficiently improved.
  • Comparative Example 15 it does not contain the isobutylene polymer (A)! / In contrast to the thermoplastic resin composition, its moldability is greatly reduced. In addition, it is not preferable in handling the thermoplastic resin composition.
  • thermoplastic resin composition according to the present invention is excellent in gas nooriety, mechanical strength and elasticity, and further has low contamination with small deformation due to its own weight even under high temperature conditions. It was shown to be the thermoplastic rosin composition shown.
  • This thermoplastic resin composition can be suitably used as a sealing material, particularly a hot-melt sealing material for double-glazed glass and a hot-melt spacer for double-glazed glass, and it can also be used as a hot-melt extruded sheet or a laminated glass film. However, it can be suitably used.
  • thermoplastic resin composition obtained by the present invention is excellent in flexibility, buffering properties, vibration damping properties, soundproofing properties, heat retention properties, gas barrier properties, weather resistance, thermal stability, etc.
  • Materials thermoplastic sealing materials for double-glazed glass, thermoplastic plastic spacers for double-glazed glass containing hygroscopic compounds, automotive interior applications, household appliance components, food packaging materials, daily miscellaneous goods , Toys ⁇ Exercise equipment use, clothing use, civil engineering sheets ⁇ Waterproof sheets ⁇ Gaskets ⁇ Molded seal materials ⁇ Civil engineering such as molded spacers for multi-layer glass ⁇ Can be used for architectural purposes, etc.
  • FIG. 1 is a schematic configuration diagram of a test specimen for heat resistance self-weight deformation test.

Abstract

本発明はガスバリア性、機械強度および弾性に優れ、更に、高温条件下においても自重による変形が小さく、低汚染性を示す樹脂組成物を提供することを目的とする。本発明は数平均分子量および重量平均分子量が、それぞれ2万から20万であって、分子量が1万未満の成分の含有量が5重量%未満であるイソブチレン系重合体(A)を含有することを特徴とする熱可塑性樹脂組成物に関する。

Description

明 細 書
熱可塑性樹脂組成物
技術分野
[0001] 本発明は、イソブチレン系重合体力もなる熱可塑性榭脂組成物およびそれを用い たシーリング材等に関する。
背景技術
[0002] シーリング材は、水密性ゃ気密性を得るために目地に充填する材料として、自動車 や建材などに幅広く使用されている。シーリング材においては、高い気密性が求めら れ、その他要求特性は、使用する用途により異なるものの、多くの用途で、高弾性や 高機械的強度などの特性を有することが求められる。
[0003] シーリング材の使用例の一つとして、複層ガラスへの使用が挙げられる。複層ガラス とは、一般的に 2枚以上のガラスパネルからなり、その間にスぺーサーを挟んで間隔 が保たれるようにしたガラスである。複層ガラスでは、スぺーサ一とガラスの間等にシ 一リング材が施工され、ガラスパネル間は、乾燥空気、窒素、アルゴンゃ六フッ化硫 黄といった気体で満たされており、これにより、断熱性、遮音性、結露防止などの効 果が得られることとなる。
[0004] 複層ガラスの構造はさまざまであり、その構造に応じて、種々のシーリング材がさまざ まな方法で施工される。このようなシーリング材としては、例えばホットメルト接着剤が 挙げられる。またスぺーサ一としてホットメルトスぺーサ一を用いる場合もある。ホットメ ルト材を使用した複層ガラスの例としては、塩化ビニル榭脂や、イソブチレン系重合 体を主成分として構成されたホットメルトブチルなどの熱可塑性榭脂に乾燥剤を練り 込んだ材料をスぺーサ一とした複層ガラスが知られて ヽる(特許文献 1)。
[0005] このイソブチレン系重合体を主成分として構成されたホットメルトブチルは、気密性や 水密性を保持できるガスノ リア性、耐候性、粘着性などの特性をもつことから複層ガ ラス用シーリング材によく使用される。具体的には、内部に乾燥剤を充填したアルミス ぺーサ一を用いる構造の複層ガラスの場合には、そのアルミスぺーサ一とガラスとの 間の固定用の一次シール剤としてホットメルト塗布されて使われたり、そのアルミスぺ ーサ一の外部に二次シール剤としてホットメルト塗布されたりする例が挙げられる。ま た最近では、このホットメルトブチルに乾燥剤を練り込んだ材料力 そのまま複層ガラ スの片側の端部にホットメルト塗布され、熱可塑樹脂製スぺーサ一として用いられて いる例もある。いずれの構成においても、ホットメルトブチルの担うべき役割は、ガラス との接着による気密性保持にあり、長期使用中に破壊や変形剥離しないことが求め られている。
[0006] また、ホットメルトブチルの高温条件下での耐熱性を改善する目的で、スチレン系熱 可塑性エラストマ一や熱可塑性榭脂を添加する方法が知られて ヽる(特許文献 2)。
[0007] 特許文献 1 :特開平 7— 17748号公報
特許文献 2 :米国特許出願公開第 2003Z0195287号明細書
発明の開示
発明が解決しょうとする課題
[0008] 上記のように、ホットメルトブチルは、シーリング材として広く用いられている力 ホット メルトブチルの使用環境によっては、それらの性能が維持出来ずに、気密性が失わ れるケースがある。特に高温条件下での自重による変形(自重変形性)や、弾性や機 械的強度の不足が問題となることがある。さらに、これらの榭脂組成物に用いられる 材料の中から何らかの成分の染み出しにより、該榭脂組成物に接触する他のシーリ ング材料やフィルムが変質、変色、剥離を起こすという問題が生じる場合があることを 本発明者らは見出した。
[0009] また、ホットメルトブチルの高温条件下での耐熱性を改善する目的で、スチレン系熱 可塑性エラストマ一や熱可塑性榭脂を添加した場合、イソブチレン系ではな!/ヽスチレ ン系熱可塑性エラストマ一や熱可塑性榭脂を用いた場合には、その添加量が増加 するに従ってガスノ リア性が低下するという問題があることを本発明者らは確認した。 従って、高いガスバリア性を維持しつつ、高い弾性と強い機械的強度を併せ持つよう な材料が必要である。
[0010] 本発明の課題は、シーリング材、特に複層ガラス用ホットメルトシーリング材、および 複層ガラス用ホットメルトスぺーサ一として使用することが可能な熱可塑性榭脂組成 物であって、ガスノ リア性、機械的強度および弾性に優れ、更に、高温条件下にお いても自重による変形が小さぐ低汚染性を示す熱可塑性榭脂組成物を提供するこ とにある。
課題を解決するための手段
[0011] 本発明者らは、上記課題を解決するために鋭意研究を積み重ねた結果、特定の分 子量範囲で構成されるイソブチレン系重合体カゝらなる熱可塑性榭脂組成物により前 記課題を解決できることを見出し、本発明を完成するに至った。
[0012] すなわち、本発明は、数平均分子量および重量平均分子量が、それぞれ 2万から 20 万であって、分子量が 1万未満の成分の含有量が 5重量%未満であるイソブチレン 系重合体 (A)を含有することを特徴とする熱可塑性榭脂組成物に関する。
[0013] 上記分子量が 1万未満の成分の含有量は、 3重量%未満であるのが好ましぐ 2重量
%未満であるのがより好まし!/、。
[0014] 上記熱可塑性榭脂組成物は、芳香族ビニル系化合物を構成単量体とする重合体ブ ロックとイソブチレンを構成単量体とする重合体ブロックとからなるイソブチレン系ブロ ック共重合体 (B)をさらに含有するものが好ま 、。
[0015] また、イソブチレン系ブロック共重合体 (B)の数平均分子量および重量平均分子量 力 それぞれ 3万から 30万であって、そのブロック化率が 90%以上であるものが好ま しい。
[0016] また、イソブチレン系ブロック共重合体 (B)にお 、て、イソブチレンを構成単量体とす る重合体ブロックと芳香族ビニル系化合物を構成単量体とする重合体ブロックの重量 比が、(イソブチレンを構成単量体とする重合体ブロック) / (芳香族ビニル系化合物 を構成単量体とする重合体ブロック) = 95Z5〜60Z40であるのが好まし!/、。
[0017] 上記イソブチレン系ブロック共重合体(Β)は、スチレン イソブチレンジブロック共重 合体、及び Ζ又は、スチレン イソブチレン—スチレントリブロック共重合体であるの が好ましい。
[0018] 上記熱可塑性榭脂組成物は、さらに充填材 (C)として、炭酸カルシウムおよびカーボ ンブラック力 なる群より選ばれる少なくとも 1種を含有するのが好ましい。
[0019] 上記熱可塑性榭脂組成物は、さらに吸湿性化合物 (D)を含有するのが好ま ヽ。
[0020] 上記吸湿性化合物(D)は、シリカゲル、アルミナおよびゼォライトからなる群より選ば れる少なくとも 1種であるのが好まし 、。
[0021] 上記熱可塑性榭脂組成物は、さらに (B)成分以外の芳香族ビニル系熱可塑性エラ ストマーを含むものが好まし 、。
[0022] さらに本発明は、上記熱可塑性榭脂組成物カゝらなるシーリング材に関する。
[0023] さらに本発明は、上記熱可塑性榭脂組成物カゝらなる複層ガラス用ホットメルトシ一リン グ材に関する。
[0024] さらに本発明は、上記熱可塑性榭脂組成物カゝらなる複層ガラス用ホットメルトスぺー サーに関する。
[0025] さらに本発明は、上記熱可塑性榭脂組成物力 なるホットメルト押出しシートに関す る。
[0026] さらに本発明は、上記熱可塑性榭脂組成物カゝらなる合わせガラス用フィルムに関す る。
[0027] 以下に本発明を詳述する。
本発明に係る熱可塑性榭脂組成物は、数平均分子量および重量平均分子量が、そ れぞれ 2万から 20万であって、分子量が 1万未満の成分の含有量が 5重量%未満で あるイソブチレン系重合体 (A)を含有するものである。本発明に係る熱可塑性榭脂 組成物においては、イソブチレン系重合体 (A)により、ホットメルト接着性が付与され る。
[0028] ポリイソプチレン、ポリブテン等として通常市販されている多くの商品、具体的には EX XON製ビスタネックス(LM— MS、 MH、 Hまたは MML— 80、 100、 120、 140等) 、新日本石油製テトラックス(3T、 4Τ、 5Τ、 6Τ等)、ポリブテン (HV)ハイモール (4Η 、 5H、 6H等)、および BASF製グリソパールゃォパノール(B10、 B12、 B15、 B50、 B80、 B100、 B120、 B150、 B220等)などは、いずれもその分子量範囲、およびそ の製品中に含まれる低分子成分の含有量の多さにより、本発明に係るイソプチレン 系重合体 (A)には該当しない。ただし、これらの商品の中で重量平均分子量が 10万 を超えるような高分子量側のものを、本発明の熱可塑性榭脂組成物において、粘度 調整材ゃ機械特性調整材等として、その成型性'加工性を大きく低下させない範囲 で単独でブレンドして用いてもょ 、し、 2種以上組み合わせて用いてもよ!、。 [0029] 本発明に係る熱可塑性榭脂組成物にお!、ては、イソブチレン系重合体 (A)は、 、わ ゆるリビングカチオン重合法により製造される高度に重合が制御され、得られるポリマ 一の分子量分布が狭 、ものであることが好ま 、。
[0030] 具体的には、本発明においては、イソブチレン系重合体 (A)のポリマー全体の数平 均分子量および重量平均分子量は、それぞれ 2万から 20万のものを用いる。さらに は 2万から 15万が成型性'カ卩ェ性と物性バランスの点でより好ましい。ポリマー全体 の数平均分子量および重量平均分子量が 2万より小さいと、含まれる分子量 1万未 満の成分が多くなるため汚染性が悪くなり、一方ポリマー全体の数平均分子量およ び重量平均分子量が 20万より大きいと、その成型性,加工性が悪くなる。
[0031] 本発明における数平均分子量および重量平均分子量は例えば Waters社製 GPCシ ステム(カラム:昭和電工 (株)製 Shodex K— 804 (ポリスチレンゲル)、移動相:クロ 口ホルム)を使用し、ポリスチレン換算として求めることができる。
[0032] また、本発明では、分子量 1万未満の成分の含有量が 5重量%未満のイソプチレン 系重合体 (A)を用いる。好ましくは、 3重量%未満、さらには 2重量%未満のものを用 いるのがより好ましぐゼロに近いほど好ましい。また、当然、分子量 1万未満だけで なぐより小さい 5千未満、千未満、 5百未満の低分子量体の含有量が少ないほど好 ましい。なお、「分子量 1万未満の成分の含有量が 5重量%未満」とは 2種以上のイソ ブチレン系重合体を混合する場合にあっては、熱可塑性榭脂組成物全体で分子量 1万未満の成分が 5重量%未満であることを意味する。すなわち、混合すべき一成分 として、分子量 1万未満の成分の含有量が混合前において 5重量%未満であるイソ ブチレン系重合体成分を用いた場合であっても、その混合後の熱可塑性榭脂組成 物全体中の当該成分の含有量が 5重量%以上であるものは本発明の対象ではな 、
[0033] 本発明において、分子量 1万未満の成分の含有量は、 GPCの RIの検出器によるクロ マトグラムを測定し、分子量 1万に相当する保持時間よりあとに溶出するポリマー成分 が示すクロマトグラム上の面積が全体の面積に対して占める割合を算出することによ り求めることができる。 GPCには上記 Waters社製 GPCシステム (カラム:昭和電工( 株)製 Shodex K— 804 (ポリスチレンゲル)、移動相:クロ口ホルム)を使用すること ができる。ここで分子量 1万に相当する保持時間は、重量平均分子量の異なる 7種の PSt標準物質(Mw= 390, 000、 200, 000、 65, 000、 30, 000、 11, 300、 3, 3 50、 1, 270)を測定し、それぞれの溶出時間 (保持時間)より、分子量-溶出時間の 関係式を導くことにより (検量)、決定した。
[0034] なお、イソブチレン系重合体 (A)を構成する単量体成分は、イソプチレン以外の単量 体成分を含んで 、ても含んで ヽなくても良!ヽ。イソプチレン以外の単量体成分として は、カチオン重合可能な単量体であれば特に制限はな 、。
[0035] イソブチレン系重合体 (A)の製造方法については特に制限はなぐ例えば、下記一 般式(1)で表される化合物の存在下に、イソブチレンを主成分とする単量体を重合さ せること〖こより得ることができる。
[0036] (CR'^X) R3 (1)
[式中 Xはハロゲン原子、または、炭素数 1〜6のアルコキシル基若しくは炭素数 1〜 6のァシロキシル基力も選ばれる置換基、
Figure imgf000007_0001
R2はそれぞれ水素原子または炭素数
Figure imgf000007_0002
R2は同一であっても異なっていても良ぐ R3は一価 若しくは多価芳香族炭化水素基または一価若しくは多価脂肪族炭化水素基であり、 nは 1〜6の自然数を示す。 ]
[0037] 上記ハロゲン原子としては、塩素、フッ素、臭素、ヨウ素等が挙げられる。上記炭素数 1〜6のアルコキシル基としては特に限定されず、例えば、メトキシ基、エトキシ基、 n 一又はイソ プロポキシ基等が挙げられる。上記炭素数 1〜6のァシ口キシル基とし ては特に限定されず、例えば、ァセチルォキシ基、プロピオ-ルォキシ基等が挙げら れる。上記脂肪族炭化水素基としては特に限定されず、例えば、メチル基、ェチル基 、 n—又はイソ プロピル基等が挙げられる。上記芳香族炭化水素基としては特に限 定されず、例えば、フエ-ル基、メチルフヱ-ル基等が挙げられる。
[0038] 上記一般式(1)で表わされる化合物は開始剤となるもので、ルイス酸等の存在下炭 素陽イオンを生成し、カチオン重合の開始点になると考えられる。本発明で用いられ る一般式(1)の化合物の例としては、次のような化合物等が挙げられる。
(1—クロル— 1—メチルェチル)ベンゼン [C H C (CH ) Cl]、 1, 4 ビス(1—クロ
6 5 3 2
ル— 1—メチルェチル)ベンゼン [1, 4 C1 (CH ) CC H C (CH ) Cl]、 1, 3 ビ ス(1—クロル— 1—メチルェチル)ベンゼン [1, 3-Cl(CH ) CC H C (CH ) CI]
3 2 6 4 3 2
、 1, 3, 5 トリス(1—クロル— 1—メチルェチル)ベンゼン [1, 3, 5— (C1C (CH ) )
3 2
C H ]、 1, 3 ビス(1—クロル— 1—メチルェチル)—5— (tert—ブチル)ベンゼン
3 6 3
[1, 3— (C (CH ) C1) 5— (C (CH ) ) C H ]。
3 2 2 3 3 6 3
[0039] これらの中でも特に好ましいのは(1 クロル 1ーメチルェチル)ベンゼン [C H C (
6 5
CH ) Cl]、ビス(1 クロル 1ーメチルェチル)ベンゼン [C H (C (CH ) CI) ]、ト
3 2 6 4 3 2 2 リス(1—クロル一 1—メチルェチル)ベンゼン [ (C1C (CH ) ) C H ]である。 [なおビ
3 2 3 6 3
ス(1—クロル一 1—メチルェチル)ベンゼンは、ビス( a—クロ口イソプロピル)ベンゼ ン、ビス(2—クロロー 2—プロピル)ベンゼンあるいはジクミルク口ライドとも呼ばれ、トリ ス(1—クロル一 1—メチルェチル)ベンゼンは、トリス( a—クロ口イソプロピル)ベンゼ ン、トリス(2—クロ口一 2—プロピル)ベンゼンある!/、はトリタミルクロライドとも呼ばれる o ]
[0040] イソブチレン系重合体 (A)の重合に際し、さらにルイス酸触媒を共存させることもでき る。このようなルイス酸としてはカチオン重合に使用できるものであれば良ぐ TiCl、
4
TiBr、 BC1、 BF、 BF -OEt、 SnCl、 SbCl、 SbF、 WC1、 TaCl、 VC1、 FeCl
4 3 3 3 2 4 5 5 6 5 5
、 ZnBr、 A1C1、 AlBr等の金属ハロゲン化物; Et A1C1、 EtAlCl等の有機金属
3 2 3 3 2 2
ノ、ロゲンィ匕物を好適に使用することができる。中でも触媒としての能力、工業的な入 手の容易さを考えた場合、 TiCl、 BF -OEt、 SnClが好ましい。ルイス酸の使用量
4 3 2 4
は、特に限定されないが、使用する単量体の重合特性あるいは重合濃度等を鑑みて 設定することができる。通常は一般式(1)で表される化合物に対して 0. 1〜: L00モル 当量使用することができ、好ましくは 1〜50モル当量の範囲である。
[0041] イソブチレン系重合体 (A)の重合に際しては、さらに必要に応じて電子供与体成分 を共存させることもできる。この電子供与体成分は、カチオン重合に際して、成長炭 素カチオンを安定ィ匕させる効果があるものと考えられており、電子供与体の添カ卩によ つて分子量分布の狭い構造が制御された重合体が生成する。使用可能な電子供与 体成分としては特に限定されないが、例えば、ピリジン類、アミン類、アミド類、スルホ キシド類、エステル類、または金属原子に結合した酸素原子を有する金属化合物等 を挙げることができる。 [0042] イソブチレン系重合体 (A)の重合は、必要に応じて有機溶媒中で行うことができ、有 機溶媒としてはカチオン重合を本質的に阻害しなければ特に制約なく使用すること ができる。具体的には、塩化メチル、ジクロロメタン、クロ口ホルム、塩化工チル、ジクロ 口エタン、 n—プロピルクロライド、 n—ブチルクロライド、クロ口ベンゼン等のハロゲン ィ匕炭化水素;ベンゼン、トルエン、キシレン、ェチルベンゼン、プロピルベンゼン、ブ チルベンゼン等のアルキルベンゼン類;ェタン、プロパン、ブタン、ペンタン、へキサ ン、ヘプタン、オクタン、ノナン、デカン等の直鎖式脂肪族炭化水素類; 2—メチルプ 口パン、 2—メチルブタン、 2, 3, 3 トリメチルペンタン、 2, 2, 5 トリメチルへキサン 等の分岐式脂肪族炭化水素類;シクロへキサン、メチルシクロへキサン、ェチルシク 口へキサン等の脂環式炭化水素類、イソプチレンモノマーを含む C4留分等を挙げる ことができる。
[0043] これらの溶媒は、重合体を構成する単量体の重合特性及び生成する重合体の溶解 性等のバランスを考慮して、単独で、又は 2種以上を組み合わせて使用することがで きる。
[0044] 上記溶媒の使用量は、得られる重合体溶液の粘度や除熱の容易さを考慮して、重 合体の濃度が、重合体溶液全量の 1〜50重量%、好ましくは 5〜35重量%となるよう に決定される。
[0045] 実際の重合を行うに当たっては、各成分を冷却下、例えば 100°C以上 0°C未満の 温度で混合する。エネルギーコストと重合の安定性を釣り合わせるために、特に好ま し 、温度範囲は一 30°C〜一 80°Cである。
[0046] また、こうして得られるイソブチレン系重合体 (A)の末端基の構造につ!、ては、特に 制限はなぐその重合条件、触媒として用いるルイス酸の種類、後処理条件等により 適宜選択される。例えば、クロル末端や、このクロル末端を脱塩酸処理して得られる イソプロぺニルォレフイン末端若しくは内部ォレフィン末端、又は、クロル末端を特定 の試薬と反応させることにより得られるァリルォレフイン末端、水酸基末端、フエノール 末端若しくは酸無水物末端などが挙げられる。ただし、クロル末端は特定用途におい て周辺の金属を腐食し好ましくない場合がある。その場合には、そのクロル末端を、 加熱などによる脱塩酸反応などを経由してイソプロべ-ルォレフイン末端若しくは内 部ォレフイン末端に変換する力、又は、ァリルトリメチルシラン等との置換反応によりァ リルォレフィン末端にするのが好まし 、。
[0047] 本発明の熱可塑性榭脂組成物は、上記 (A)成分に加え、さらに芳香族ビニル系化 合物を構成単量体とする重合体ブロックとイソブチレンを構成単量体とする重合体ブ ロックと力 なるイソブチレン系ブロック共重合体(B)を含有するものが好まし 、。イソ ブチレン系ブロック重合体 (B)は、イソブチレンブロックに由来する高いガスノ リア性 と、芳香族ビュル系化合物ブロックに由来する剛性を有していることが特徴であり、他 の熱可塑性エラストマ一を用いた場合と比較して、組成物の水密性ゃ気密性を損な わない一方で、高温条件下で自重により変形しにくいという利点があり、これにより高 Vヽガスバリア性と低自重変形性が付与される。
[0048] イソブチレン系ブロック共重合体 (B)中の重合体ブロックを構成する芳香族ビニル系 化合物としては、特に限定されないが、例えば、スチレン、 o—、 m—又は p メチル スチレン、 α—メチルスチレン、 13ーメチノレスチレン、 2, 6 ジメチルスチレン、 2, 4 ジメチルスチレン、 α—メチルー ο—メチルスチレン、 α—メチルー m—メチルスチ レン、 α—メチルー ρ—メチルスチレン、 j8—メチルー ο—メチルスチレン、 β —メチル —m—メチルスチレン、 13ーメチルー p—メチルスチレン、 2, 4, 6 トリメチルスチレ ン、 α—メチルー 2, 6—ジメチルスチレン、 α—メチルー 2, 4—ジメチルスチレン、 j8 ーメチルー 2, 6 ジメチルスチレン、 13ーメチルー 2, 4 ジメチルスチレン、 o—、 m 一又は ρ クロロスチレン、 2, 6 ジクロロスチレン、 2, 4 ジクロロスチレン、 a—ク ロロ o クロロスチレン、 ひ クロロー m クロロスチレン、 ひ クロロー p クロロス チレン、 β クロロー ο クロロスチレン、 β クロロー m—クロロスチレン、 β クロ口 ρ クロロスチレン、 2, 4, 6 トリクロロスチレン、 α クロロー 2, 6 ジクロロスチレ ン、 α クロロー 2, 4 ジクロロスチレン、 /3 クロロー 2, 6 ジクロロスチレン、 /3 クロ口一 2, 4 ジクロロスチレン、 o—、 m—又は p— t—ブチルスチレン、 o—、 m—又 は ρ—メトキシスチレン、 o—、 m—又は p—クロロメチルスチレン、 o—、 m—又は p— ブロモメチルスチレン、シリル基で置換されたスチレン誘導体、インデン、ビュルナフ タレン等が挙げられる。これらは単独で用いてもよいし、 2種以上組み合わせて用い てもよい。 [0049] 芳香族ビニル系化合物を構成単量体とする重合体ブロックは、芳香族ビュル系化合 物以外の単量体を含んでいても、含んでいなくてもよい。芳香族ビニル系化合物以 外の単量体を含む場合には、当該重合体ブロック全体のなかで芳香族ビニル系化 合物の単量体が 60重量%以上を占めることが好ましぐさらに、 80重量%以上を占 めることが好ましい。重合体ブロック全体のなかで芳香族ビュル系化合物由来の単 量体単位が 60重量%未満の場合、重合体ブロックの凝集力が低下するため好ましく ない。芳香族ビ-ルイ匕合物以外の単量体としては、芳香族ビニル化合物とカチオン 重合可能な単量体であれば特に限定されないが、例えば、イソプチレン、上記の脂 肪族ォレフイン類、脂環式アルケン類、ジェン類、ビュルエーテル類、 β—ビネン等 の単量体が例示できる。これらは単独で用いてもよいし、 2種以上組み合わせて用い てもよい。
[0050] イソブチレン系ブロック共重合体 (Β)を構成するイソブチレンを構成単量体とする重 合体ブロックは、イソブチレン以外の単量体を含んで 、てもよ 、し含んで 、なくてもよ い。イソブチレン以外の単量体を含む場合には、重合体ブロック全体のなかでイソブ チレンが 60重量%以上を占めることが好ましぐさらに、 80重量%以上を占めること 力 り好ましい。重合体ブロック中のイソブチレン以外の単量体としては、イソブチレ ンとカチオン重合可能な単量体であれば特に限定されないが、例えば、上述の芳香 族ビニル化合物、脂肪族ォレフイン類、脂環式アルケン類、ジェン類、ビニルエーテ ル類、 β—ビネン等の単量体が例示できる。これらは単独で用いてもよいし、 2種以 上組み合わせて用いてもょ 、。
[0051] イソブチレン系ブロック共重合体 (Β)の組成におけるイソブチレンを構成単量体とす る重合体ブロックと芳香族ビニル系化合物を構成単量体とする重合体ブロックとの重 量比率は、特に制限はないが、(イソブチレンを構成単量体とする重合体ブロック) Ζ (芳香族ビュル系化合物を構成単量体とする重合体ブロック) = 95Ζ5〜60Ζ40が 好ましい。特に、高温条件下における自重変形性から、 85Ζ15〜65Ζ35が好まし い。
[0052] イソブチレン系ブロック共重合体 (Β)の数平均分子量および重量平均分子量は、特 に制限はないが、汚染性およびホットメルト作業性の観点から 30000〜300000であ るのが好ましい。特に、高温条件下における自重変形性とホットメルト作業性から、 50 000〜 150000力 S好ましい。また、イソブチレン系ブロック共重合体(B)のブロック化 率は 90%以上であることが好ましぐさらには 95%以上であることが好ましぐ 98% 以上であることが特に好ましい。ブロック化率が 90%未満になると、ホモスチレンポリ マーの含有量が高くなり、本発明の熱可塑性榭脂組成物全体の機械物性が大幅に 低下し、さらに汚染性も低下するので好ましくない。なお「ブロック化率」とはイソプチ レン系ブロック共重合体 (B)の重合後の混合物中に占めるイソブチレン系ブロック共 重合体 (B)の割合をいう。ブロック化率は、例えば上記混合物の初期重量を測定し、 次に混合物力 イソブチレンのホモポリマー及び芳香族ビュル系化合物のホモポリ マーを除去した後に得られる固形物の重量を求めた後、
(得られた固形物の重量) Z (混合物の初期重量) X 100
の値を算出することにより求めることができる。
[0053] 本発明に係る熱可塑性榭脂組成物におけるイソブチレン系ブロック共重合体 (B)の 割合としては、特に制限はないが、イソブチレン系重合体 (A) 100重量部に対し、好 ましくは 1〜30重量部であり、さらに好ましくは 5〜20重量部である。イソブチレン系 ブロック共重合体 (B)の割合が少ないと、高温条件下において自重により変形する 傾向があり、多すぎると硬くなりすぎて、ホットメルトでのシール部の剥離が起こるなど 粘着性が悪くなる。
[0054] イソブチレン系ブロック重合体 (B)の構造は、特に制限されな!、が、例えば、直鎖状 、分岐状、星状等の構造を有するブロック共重合体、ジブロック共重合体、トリブロッ ク共重合体、マルチブロック共重合体の 、ずれでも良 、。
[0055] イソブチレン系ブロック共重合体(B)としては、特に、スチレンおよびイソブチレンから なるブロック共重合体が好ましい。さらに、高温条件下における自重変形性や、弾性 、強度といった観点から、スチレン イソブチレンジブロック共重合体(SIB)及びスチ レン一イソブチレン一スチレントリブロック共重合体(SIBS)がより好ましい。
[0056] イソブチレン系ブロック共重合体 (B)の製造方法としては、特に限定されず、公知の 重合方法を用いることができる力 構造の制御されたブロック共重合体を得るために は、イソブチレン系重合体 (A)同様、上記一般式(1)で表される化合物の存在下に、 イソブチレンを主成分とする単量体成分を重合することが好ま ヽ。イソブチレン系ブ ロック共重合体 (B)を製造する際には、その後さらに芳香族ビニルイ匕合物を主成分と する単量体成分を添加し、重合することができる。一般式(1)で表される化合物として は、イソブチレン系重合体 (A)の項で記載したのと同様の化合物を用いることができ る。
[0057] イソブチレン系ブロック共重合体 (B)を重合により製造する際には、さらにルイス酸触 媒を共存させることもできる。このようなルイス酸としてはカチオン重合に使用できるも のであれば良く、 TiCl、 TiBr、 BC1 , BF , BF -OEt、 SnCl、 SbCl、 SbF、 W
4 4 3 3 3 2 4 5 5
CI、 TaCl、 VC1、 FeCl、 ZnBr、 A1C1、 AlBr等の金属ハロゲン化物; Et A1C1
6 5 5 3 2 3 3 2
、 EtAlCl等の有機金属ハロゲン化物を好適に使用することができる。中でも、触媒
2
としての能力、工業的な入手の容易さを考えた場合、 TiCl、 BC1、 SnClが好まし
4 3 4 い。ルイス酸の使用量は、特に限定されないが、使用する単量体の重合特性あるい は重合濃度等を鑑みて設定することができる。通常は一般式(1)で表される化合物 に対して 0. 1〜: L00モル当量使用することができ、好ましくは 1〜50モル当量の範囲 である。
[0058] イソブチレン系ブロック共重合体 (B)の重合に際しては、さらに必要に応じて電子供 与体成分を共存させることもできる。この電子供与体成分は、カチオン重合に際して 、成長炭素カチオンを安定化させる効果があるものと考えられており、電子供与体の 添加によって分子量分布の狭い構造が制御された重合体が生成する。使用可能な 電子供与体成分としては特に限定されないが、例えば、ピリジン類、アミン類、アミド 類、スルホキシド類、エステル類、または金属原子に結合した酸素原子を有する金属 化合物等を挙げることができる。
[0059] イソブチレン系ブロック共重合体 (B)の重合は必要に応じて有機溶媒中で行うことが でき、有機溶媒としてはカチオン重合を本質的に阻害しなければ特に制約なく使用 することができる。具体的には、塩化メチル、ジクロロメタン、クロ口ホルム、塩化ェチ ル、ジクロロエタン、 n—プロピルクロライド、 n—ブチルクロライド、クロ口ベンゼン等の ハロゲン化炭化水素;ベンゼン、トルエン、キシレン、ェチルベンゼン、プロピルベン ゼン、ブチルベンゼン等のアルキルベンゼン類;ェタン、プロパン、ブタン、ペンタン、 へキサン、ヘプタン、オクタン、ノナン、デカン等の直鎖式脂肪族炭化水素類; 2—メ チルプロパン、 2 メチルブタン、 2, 3, 3 トリメチルペンタン、 2, 2, 5 トリメチルへ キサン等の分岐式脂肪族炭化水素類;シクロへキサン、メチルシクロへキサン、ェチ ルシクロへキサン等の脂環式炭化水素類等を挙げることができる。
[0060] これらの溶媒は、本発明に係るイソブチレン系ブロック共重合体 (B)を構成する単量 体の重合特性及び生成する重合体の溶解性等のバランスを考慮して単独又は 2種 以上を組み合わせて使用する。上記溶媒の使用量は、得られる重合体溶液の粘度 や除熱の容易さを考慮して、重合体の濃度が重合体溶液全量の l〜50wt%、好ま しくは 5〜35wt%となるように決定される。
[0061] 実際の重合を行うに当たっては、各成分を、冷却下、例えば 100°C以上 0°C未満 の温度で混合する。エネルギーコストと重合の安定性を釣り合わせるために、特に好 ましい温度範囲は— 30°C〜― 80°Cである。上記重合反応は、バッチ式(回分式又 は半回分式)で行ってもよいし、重合反応に必要な各成分を連続的に重合容器内に 加える連続式で行ってもょ ヽ。
[0062] 本発明に係る熱可塑性榭脂組成物は、更に充填材 (C)を含有して!/ヽてもよ ヽ。充填 材 (C)は、本発明の熱可塑性榭脂組成物の剛性を向上させる効果があり、また、使 用温度域での形状維持性を向上させ、またホットメルト時の垂れを抑制する効果を有 する。充填材 (C)としては、特に制限はなく従来公知のものを使用することができる。 例えば、炭酸カルシウム、炭酸マグネシウム、熔融シリカ、結晶シリカ、珪藻土、クレー 、タルク、雲母、カオリン、酸化チタン、酸化亜鉛、カーボンブラック、ベントナイト、水 酸ィ匕アルミニウム、水酸化マグネシウム、硫酸バリウム、硫酸カルシウム等よりなる群 力も選択される少なくとも 1種を使用することができる。これらのうちで、炭酸カルシゥ ムおよびカーボンブラック力 なる群より選ばれる少なくとも 1種が好ましぐ少量で剛 性を向上させる効果を有するカーボンブラックが特に好ましい。
[0063] 充填材 (C)の配合量は、特に制限はな!/、が、イソブチレン系重合体 (A) 100重量部 に対し、 1〜300重量部とするのが好ましぐより好ましくは 50〜150重量部である。
[0064] 本発明に係る熱可塑性榭脂組成物は、更に吸湿性化合物 (D)を含有して!/、てもよ い。吸湿性ィ匕合物(D)としては、ゼォライト、シリカゲル、アルミナ等が例示され、これ らの 、ずれも使用することができる。これらは 2種以上を組み合わせて用いてもょ 、。 このような吸湿性化合物は、本発明に係る熱可塑性榭脂組成物の水蒸気透過率を 減少させ、複層ガラスのガラス板に挟まれた空隙部が湿気によって曇るのを防ぐこと ができる。このような目的を効果的に達成するためには、吸湿性ィ匕合物(D)の配合量 はイソブチレン系重合体 (A) 100重量部に対して 1〜: LOO重量部であることが好まし い。
[0065] また、本発明に係る熱可塑性榭脂組成物は、加工助剤として、更に (B)成分以外の 芳香族ビュル系熱可塑性エラストマ一を含有してもよ ヽ。ここで ヽぅ芳香族ビニル系 熱可塑性エラストマ一とは、芳香族ビニル系化合物を構成単量体とするブロックとブ タジェン及び z又はイソプレンブロックよりなるブロック共重合体やその水素添加物 が挙げられる。例えば、 SBS (スチレン—ブタジエン—スチレンブロック共重合体)、 S IS (スチレン イソプレン スチレンブロック共重合体)、 SEBS (スチレン エチレン ブチレン スチレンブロック共重合体) SEPS (スチレン エチレンプロピレンースチ レンブロック共重合体)などが挙げられる。これらは成形性を改善する効果があり、ガ スノリア性を損なわない程度で配合することができる。
[0066] また、本発明に係る熱可塑性榭脂組成物には、物性を損なわない範囲で、さらに酸 化防止剤、紫外線吸収剤、光安定剤、顔料、界面活性剤、難燃剤等を適宜配合す ることができる。公知のブロッキング防止剤、帯電防止剤、着色剤、無機ないし有機 抗菌剤、滑剤なども配合することができる。
[0067] 本発明に係る熱可塑性榭脂組成物の製造方法は、特に限定されるものではなぐ例 えば、ロール、バンバリ一ミキサー、ニーダー、攪拌機を備えた溶融釜又は一軸若し くは二軸の押出機を用いて機械的に混合する方法を用いることができる。このときに 、必要に応じて加熱してもよい。また、均一溶液とし、溶剤を留去する方法も用いるこ とがでさる。
[0068] 混練条件としては、使用する重合体成分、特にイソブチレン系ブロック共重合体 (B) を使用する場合においてはその(B)成分が溶融する温度以上であればよぐ 260°C 以下が好ましい。
[0069] 本発明に係る熱可塑性榭脂組成物は、さらに必要に応じ、熱可塑性榭脂組成物に 対して一般に採用される成形方法及び成形装置を用いて成形でき、例えば、押出成 形、射出成形、プレス成形、ブロー成形等によって成形することできる。
[0070] 以上のようにして得られる熱可塑性榭脂組成物は、優れたガスノリア性、高 、弾性お よび機械的強度を有し、高温条件下でほとんど自重変形しない。一方で、ガラスに対 する施工、つまり、アプリケーターのような塗布機を想定した場合、剪断力が発生し、 容易に流動することから、シーリング材、特に、複層ガラス用ホットメルトシーリング材 ゃ複層ガラス用ホットメルトスぺーサ一として好適に使用することが出来る。
発明の効果
[0071] 本発明に係る熱可塑性榭脂組成物は、高温条件下にお!/、ても低 ヽ自重変形性と低 汚染性を示し、また、従来の組成物と比較して、高い弾性および機械的強度を有し、 更には、ガスノリア性に優れる。従って、本発明に係る熱可塑性榭脂組成物は、高い 弾性や機械的強度、ガスパリア、低汚染性等が要求されるシーリング材として、特に、 複層ガラス用ホットメルトシーリング材ゃ複層ガラス用ホットメルトスぺーサ一として好 適に用いることができる。さらに、その高い機械強度、高い耐熱耐候性、低汚染性、 ホットメルト成型性等が要求されるホットメルト押出しシートや、合わせガラス用フィル ムとして好適に用いることができる。
発明を実施するための最良の形態
[0072] 以下に、実施例に基づき本発明を更に詳細に説明するが、本発明はこれらに限られ るものではない。
[0073] [分子量の分析方法]
本実施例に示すイソブチレン系重合体の分子量は以下に示す方法で測定した。 Waters社製 GPCシステム(カラム:昭和電工 (株)製 Shodex K— 804 (ポリスチレ ンゲル)、移動相:クロ口ホルム)を使用。数平均分子量および重量平均分子量はポリ スチレン換算で表記。 GPCの RIの検出器によるクロマトグラムを測定し、分子量 1万 に相当する保持時間よりあとに溶出するポリマー成分が示すクロマトグラム上の面積 が全体の面積に対して占める割合 (モル比を表す)を算出した後、これを重量%に換 算し、分子量 1万以下のものの含有量を重量%として表記した。
[0074] [ブロック化率の測定方法] 得られたイソブチレン系ブロック共重合体(B) lgを、メチルェチルケトン(MEK) 100 mlに浸漬し、 1日間放置した。固形物と溶液をデカンテーシヨンで分離し、得られた 固形物を 100°Cで 2時間乾燥させた (ホモポリスチレンの除去操作)。更に乾燥させ た固形物をへキサン Zエタノール =85Z15 (volZvol)の溶液 100mlに浸漬し、 1 日間放置した。固形物と溶液をデカンテーシヨンで分離し、得られた固形物を 100°C で 2時間乾燥させた (ホモポリイソプチレンの除去操作)。最終的に得られた固形物の 重量の、初期のブロック共重合体の重量に対する割合をブロック化率とし、百分率に
Figure imgf000017_0001
[0075] (製造例 1) [イソブチレン系重合体 (A)の製造方法] (以下、 PIB1と略す)
500mLのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n 一へキサン(モレキュラーシーブスで乾燥したもの) 97. 6mL及び塩化ブチル(モレ キュラーシーブスで乾燥したもの) 140. 5mLを加え、重合容器を— 70°Cのドライア イス Zメタノールバス中につけて冷却した後、イソブチレンモノマー 47. 7mL (505. 3mmol)が入っている三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標) 製の送液チューブを接続し、重合容器内にイソプチレンモノマーを窒素圧により送液 した。 P ジクミルク口ライド(以下、 p— DCCと略す) 0. 078g (0. 34mmol)及び N, N ジメチルァセトアミド 0. 059g (0. 84mmol)をカ卩えた。次にさらに四塩化チタン 0 . 37mL (3. 4mmol)をカ卩えて重合を開始した。重合開始から 120分撹拌を行った 後に、大量の水に加えて反応を終了させた。
[0076] 反応溶液を 2回水洗し、溶媒を加熱蒸発させ、さらに得られた重合体を 130°Cで 24 時間真空乾燥することにより目的のイソブチレン系重合体を得た。得られた重合体の GPC分析を行ったところ、数平均分子量は約 85, 000、重量平均分子量は約 97, 0 00であり、その分子量 1万未満の含有量は 0. 1重量%未満であった。さらに、 NMRおよび元素分析により求めたポリマー末端の構造は、イソプロべ-ルォレフイン 含量 1. 0 (個 Z1分子)、内部ォレフィン 0. 6 (個 Z1分子)、クロル基 0. 4 (個 Z1分子 )であった(なおこれらの個数はポリマー 1分子あたりの平均値である)。このイソブチ レン系重合体の分析結果を表 1に示す。
[0077] (製造例 2〜5) [イソブチレン系重合体 (A)の製造方法] (以下、 PIB2〜5と略す) 製造例 2〜4では、表 1に示したように p— DCCの量を変更し、 N, N—ジメチルァセト アミドと四塩ィ匕チタンの使用量を p— DCCの量に比例して増減させて、製造例 1と同 様に 120分間重合を行った。その後、使用した p— DCCの 3倍 molのァリルトリメチル シランを追加し、さらに 60分間攪拌を行った。その後製造例 1と同様にしてイソブチレ ン系重合体 (A)を得た。製造例 5では、表 1に示したように、 P— DCCの量を変更し、 N, N—ジメチルァセトアミドと四塩化チタンの使用量を p— DCCの量に比例して増 減させた以外は、製造例 1と同様にしてイソブチレン系重合体 (A)を得た。これらのィ ソブチレン系重合体の分析結果を表 1に示す。
[0078] (製造例 6〜10) [イソブチレン系重合体 (A)の製造方法] (以下、 PIB6〜: LOと略す) 製造例 1の p— DCCを、 a—メチルスチレンと塩酸ガスで反応させ製造したモノタミル クロライド(以下、 MCCと略す)に変更し、更にその使用量を表 1に示した量に変更し 、その増減量に比例するように N, N—ジメチルァセトアミドと四塩ィ匕チタンの量を増 減させた以外は、製造例 1〜5と同様にしてイソブチレン系重合体 (A)を得た。このィ ソブチレン系重合体の分析結果を表 1に示す。
[0079] [表 1]
;1γ4ヽ ¾ 605αへ
Figure imgf000019_0001
[0080] (巿 J反品)イソブチレン系重合体 (以下、 PIB11〜14と略す)
mi れている中分子量体域のポリイソプチレンの分析を、製造例 1〜: L0と同様にし て つた。分析結果を表 2に示す。
[0081] [表
Figure imgf000020_0001
(製造例 11) [スチレン—イソブチレン—スチレントリブロック共重合体(SIBS 11)の製 造]
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 300mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 432mLをカロえ、重合容器を一 70°Cのドライアイス Zメタノ ールバス中につけて冷却した後、イソブチレンモノマー 153mL (1619mmol)が入つ た三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブを 接続し、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p ジクミルク 口ライド 0. 50g (2. 2mmol)及び N, N—ジメチルァセトアミド 0. 94g (10. 8mmol) を加えた。次にさらに四塩化チタン 6. 6mL (61mmol)をカ卩えて重合を開始した。重 合開始から 90分間同じ温度で撹拌を行った後、あらかじめ 70°Cに冷却してお!ヽ たスチレンモノマー 43g (415mmol)、 n キサン 20mLおよび塩化ブチル 30mL の混合溶液を重合容器内に添加した。該混合溶液を添加してカゝら 45分後に、約 40 mLのメタノールをカ卩えて反応を終了させた。
反応溶液を 2回水洗し、溶媒を加熱蒸発させ、さらに得られた重合体を 130°Cで 24 時間真空乾燥することにより目的のイソブチレン系ブロック共重合体 (以下、 SIBS11 と称する)を得た。尚、スチレン重合後のブロック共重合体の数平均分子量は 59, 00 0、重量平均分子量は 72, 000、スチレンブロック含量は 30%であった。また、ブロッ ク化率は 97%であった。
分析結果を表 3に示す。
[0083] (製造例 12) [SIBS 12の製造]
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 302mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 435mLを加え、重合容器を— 70°Cのドライアイス Zメタノ ールバス中につけて冷却した後、イソブチレンモノマー 153mL (1619mmol)が入つ た三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブを 接続し、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p ジクミルク 口ライド 0. 25g (l . lmmol)及び N, N—ジメチルァセトアミド 0. 47g (5. 4mmol)を 加えた。次にさらに四塩化チタン 4. 2mL (38mmol)をカロえて重合を開始した。重合 開始から 90分間同じ温度で撹拌を行った後、あらかじめ 70°Cに冷却してぉ ヽたス チレンモノマー 43g (415mmol)、 n—へキサン 20mLおよび塩化ブチル 30mLの混 合溶液を重合容器内に添加した。該混合溶液を添加してカゝら 45分後に、約 40mL のメタノールをカ卩えて反応を終了させた。
反応溶液を 2回水洗し、溶媒を加熱蒸発させ、さらに得られた重合体を 130°Cで 24 時間真空乾燥することにより目的のイソブチレン系ブロック共重合体 (SIBS 12)を得 た。尚、スチレン重合後のブロック共重合体の数平均分子量は 115, 000、重量平均 分子量は 135, 000、スチレンブロック含量は 30%であった。また、ブロック化率は 9 8%であった。分析結果を表 3に示す。
[0084] (製造例 13) [SIBS 13の製造]
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 297mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 427mLをカロえ、重合容器を一 70°Cのドライアイス Zメタノ ールバス中につけて冷却した後、イソブチレンモノマー 190mL (2012mmol)が入つ た三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブを 接続し、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p ジクミルク 口ライド 0. 25g (l . lmmol)及び N, N—ジメチルァセトアミド 0. 47g (5. 4mmol)を 加えた。次にさらに四塩化チタン 4. 2mL (38mmol)をカロえて重合を開始した。重合 開始から 90分間同じ温度で撹拌を行った後、あらかじめ 70°Cに冷却してぉ ヽたス チレンモノマー 19g (180mmol)、 n—へキサン 20mLおよび塩化ブチル 30mLの混 合溶液を重合容器内に添加した。該混合溶液を添加してカゝら 45分後に、約 40mL のメタノールをカ卩えて反応を終了させた。
反応溶液を 2回水洗し、溶媒を加熱蒸発させ、さらに得られた重合体を 130°Cで 24 時間真空乾燥することにより目的のイソブチレン系ブロック共重合体 (SIBS 13)を得 た。尚、スチレン重合後のブロック共重合体の数平均分子量は 118, 000、重量平均 分子量は 132, 000、スチレンブロック含量は 13%であった。また、ブロック化率は 9 8%であった。分析結果を表 3に示す。
(製造例 14) [スチレン イソブチレン—ジブロック共重合体 (SIB)の製造]
500mLのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n 一へキサン(モレキュラーシーブスで乾燥したもの) 84. 9mL及び塩化ブチル(モレ キュラーシーブスで乾燥したもの) 122. 2mLを加え、重合容器を— 70°Cのドライア イス Zメタノールバス中につけて冷却した後、イソブチレンモノマー 78. 3mL (828. 8mmol)が入った三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の 送液チューブを接続し、重合容器内にイソプチレンモノマーを窒素圧により送液した 。 α—メチルスチレンと塩酸ガスで反応させ製造したタミルクロライド 0. 217g (l. 4m mol)及び N, N—ジメチルァセトアミド 0. 12g (l. 4mmol)をカ卩えた。次にさらに四 塩化チタン 1. 54mL (14. Ommol)をカ卩えて重合を開始した。重合開始から 120分 間同じ温度で撹拌を行った後、あら力じめ一 70°Cに冷却しておいたスチレンモノマ 一 9. 48g (91. Ommol)、 n—へキサン 20mLおよび塩化ブチル 30mLの混合溶液 を重合容器内に添加した。該混合溶液を添加してカゝら 45分後に、大量の水に加えて 反応を終了させた。
反応溶液を 2回水洗し、溶媒を加熱蒸発させ、さらに得られた重合体を 130°Cで 24 時間真空乾燥することにより目的のイソブチレン系ブロック共重合体 (SIB14)を得た 。尚、スチレン重合後のブロック共重合体の数平均分子量は 48, 000、重量平均分 子量は 58, 000、スチレンブロック含量は 14%であった。また、ブロック化率は 97% であった。
分析結果を表 3に示す。
[0086] (製造例 15) [SIBS 15の製造]
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 300mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 432mLをカロえ、重合容器を一 70°Cのドライアイス Zメタノ ールバス中につけて冷却した後、イソブチレンモノマー 153mL (1619mmol)が入つ た三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブを 接続し、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p—ジクミルク 口ライド 0. 50g (2. 2mmol)及び N, N—ジメチルァセトアミド 0. 94g (10. 8mmol) を加えた。次にさらに四塩化チタン 6. 6mL (61mmol)をカ卩えて重合を開始した。重 合開始から 150分間同じ温度で撹拌を行った後、あらかじめ― 70°Cに冷却してお!ヽ たスチレンモノマー 43g (415mmol)、 n—へキサン 20mLおよび塩化ブチル 30mL の混合溶液を重合容器内に添加した。該混合溶液を添加してから 60分後に、約 40 mLのメタノールをカ卩えて反応を終了させた。
反応溶液を 2回水洗し、溶媒を加熱蒸発させ、さらに得られた重合体を 130°Cで 24 時間真空乾燥することにより目的のイソブチレン系ブロック共重合体 (SIBS 15)を得 た。尚、スチレン重合後のブロック共重合体の数平均分子量は 53, 000、重量平均 分子量は 73, 000、スチレンブロック含量は 30%であった。また、ブロック化率は 78 %であった。
分析結果を表 3に示す。
[0087] (製造例 16) [SIBS 16の製造]
2Lのセパラブルフラスコの重合容器内を窒素置換した後、注射器を用いて、 n—へ キサン(モレキュラーシーブスで乾燥したもの) 300mL及び塩化ブチル(モレキュラー シーブスで乾燥したもの) 432mLをカロえ、重合容器を一 70°Cのドライアイス Zメタノ ールバス中につけて冷却した後、イソブチレンモノマー 153mL (1619mmol)が入つ た三方コック付耐圧ガラス製液ィ匕採取管にテフロン (登録商標)製の送液チューブを 接続し、重合容器内にイソプチレンモノマーを窒素圧により送液した。 p—ジクミルク 口ライド 0. 50g (2. 2mmol)及び N, N—ジメチルァセトアミド 0. 94g (10. 8mmol) を加えた。次にさらに四塩化チタン 6. 6mL (61mmol)をカ卩えて重合を開始した。重 合開始から 120分間同じ温度で撹拌を行った後、あらかじめ 70°Cに冷却してお!ヽ たスチレンモノマー 43g (415mmol)、 n—へキサン 20mLおよび塩化ブチル 30mL の混合溶液を重合容器内に添加した。該混合溶液を添加してから 60分後に、約 40 mLのメタノールをカ卩えて反応を終了させた。
反応溶液を 2回水洗し、溶媒を加熱蒸発させ、さらに得られた重合体を 130°Cで 24 時間真空乾燥することにより目的のイソブチレン系ブロック共重合体 (SIBS16)を得 た。尚、スチレン重合後のブロック共重合体の数平均分子量は 55, 000、重量平均 分子量は 71, 000、スチレンブロック含量は 30%であった。また、ブロック化率は 91 %であった。
分析結果を表 3に示す。
[0088] [表 3]
Figure imgf000024_0001
p-DCC: p—ジクミルク口ライド
MCC:モノクミ/レクロライド
[0089] (実施例 1〜10、比較例 1〜5)
表 1及び表 2に示したイソブチレン系重合体を用いて、表 4、表 5に示した割合で、各 種配合剤をプラストミル ( (株)東洋精機製作所製)を用いて 10分間溶融混練した。 得られた組成物を用いて、種々の評価を行った。
[0090] (評価 1:コールドフロー性、および、評価 2:汚染性)
表 4、表 5に従って配合 '混練した組成物を、金型とプレス成形機 (設定温度 180°C) を用いて、直径約 25mm、高さ約 15mmの円筒状に成型し、 EVAフィルム(厚み約 0 . 3mm、片面シボ有り)の上に置き、 80°Cオーブン中に 1週間静置後、その円筒状 サンプルの横方向への広がり(コールドフロー性)を測定し、初期からの変化量を評 価した。また、同様に 1週間後に円筒状サンプルを置いた EVAフィルムの裏側から 観察し、 EVAフィルムの変質の程度を観察、評価した。これらの結果を表 4、 5に示 す。なお、汚染性は変化の少ない順に、「無しく微く小く中」とし、汚染性を観察す る角度によりかろうじて変質を判別できるものを「微」、観察する角度により明らかに変 質を確認できるものを「小」とし、観察角度に関係なく明らかに変質を判別できるもの を「中」とした。
[0091] [表 4]
Figure imgf000025_0001
(備考) GaC03 :木ヮ仆ン SB、白石カルシウム株式会社製
力-木'ンフ'ラック:旭力-ホ 60HN、旭力一ボン株式会社製
PW380 :フ 'CIセスオイル、出光興産株式会社製
[0092] [表 5]
比較例
1 2 3 4 5
WB種類 PIB1 PIB6 PIB1 1 PIB12 PIB13
50 50 100 100 100
PIB種類 PIB5 PIB10
重量部 50 50
(配合:重量部)
CaC03 100 100 100 100 100
力一ホ'ンフ'ラック
PW380
コールト'フロ一 7mm 7mm 5mm 4mm 3mm 汚染性 中 中 中 中 小
(備考) GaG03 :ホワイトン SB、白石カルシウム株式会社製
力-木'ンブラック:旭力-ホ'ン 60HN、旭力一ボン株式会社製
PW380 :フ'ロセスオイル、出光興産株式会社製
[0093] (実施例 11〜15、比較例 6〜8)
(評価 3 :硬度)
表 6に従って配合 '混練した組成物を、まず、金型とプレス成形機 (設定温度 180°C) を用いて、直径約 25mm、高さ約 15mmの円筒状に成型し、常温まで冷却後、 JIS A硬度を測定した。
[0094] (評価 4 :溶融粘度)
表 6に従って配合 '混練した組成物を用いて、株式会社東洋精機製作所のキヤピロ グラフにて、その 120°Cにおける溶融粘度を測定し組成物の成型性を評価した。
[0095] (評価 6 :耐熱変形性)
表 6に従って配合 '混練した熱可塑性榭脂組成物を金型とプレス成形機 (設定温度 1 80°C)を用いて、幅 20mm X長さ 40mm X厚み 6mmのシートに成形した。幅 50mm X長さ 50mm X厚み 0. 5mmのガラス板を準備し、そのガラス板の一辺から 10mm のところに、上記シートをガラス面に対し垂直に圧着させた。シートを圧着させたガラ ス板を、地面に対し垂直に固定して、 120°Cの熱風乾燥機中で 12時間放置した。初 期地面に対し水平であったシートの 12時間後の耐熱変形性を、その垂下距離(図 1 参照)を測定することで評価した。
[0096] [表 6] 実施例 比較例
1 1 12 13 14 15 6 7 8
PIB種類 PIB1 PIB2 PIB3 PIB8 PIB4 PIB 13 PIB 12 PIB 11 重量部 100 100 100 100 100 100 100 100 n 85000 62000 49000 36000 24000 60000 38000 32000
Mw 97000 70000 54000 42000 28000 120000 75000 57000
〔配合:重量部)
CaC03 45 45 45 45 45 45 45 45 力一木ンフラック 45 45 45 45 45 45 45 45 シリカゲル 10 10 10 10 10 10 10 10 硬度 39 38 36 35 31 35 34 24 溶融粘度 120°C
poise: 12s-1 173000 130000 1 12000 100500 99900 129000 100800 84700 poise: 120s— 1 43100 36200 27400 26200 25200 31800 25300 20400 poise:1200s-1 7900 7700 7000 6800 6500 7100 6500 5600 垂下距離 1.1 mm 1.0mm 1.3mm 1.5mm 2.1 mm 4.5mm 6.0mm 5.8mm
(備考) CaC03 :ホヮ仆ン SB,白石カルシウム株式会社製
力-ホ'ンフ'ラック:旭力-ホ'ン 60HN、旭力一ボン株式会社製
シリカゲル:ニッフ。シ 'エル CX200、ト一ソ一シリカ株式会社製
[0097] (評価結果)
実施例 1〜: 10と比較例 1〜5を比較してわ力るように、イソブチレン系重合体のポリマ 一末端構造に関係なぐ分子量 1万未満の重合体の含量が少ないと、コールドフロー 性および汚染性が大幅に改善されることがわかる。
また、実施例 11〜15と比較例 6〜8を比較してわ力るように、吸湿性ィ匕合物を含む組 成物においても、実施例の方がその垂下距離が非常に小さく、曝露環境下の高温状 態における形状安定性に優れることがわかる。特に、使用しているイソブチレン系重 合体の数平均分子量がほぼ同一である実施例 12と比較例 6、実施例 13と比較例 7 を比較すると、その溶融特性が類似であるにも拘わらず、その垂下距離が大きく異な り、実施例の方が形状安定性に優れていることがわかる。さらに、一般的にポリマー および配合物の粘度に大きく影響を与えると言われている重量平均分子量がほぼ同 一である実施例 12と比較例 7を比較すると、比較例 7の方が重量平均分子量がわず かに高いにも拘わらず、その垂下距離が大きい。
[0098] 以上のことから、本発明に力かる熱可塑性榭脂組成物は、特に、コールドフロー性や 耐熱形状安定性に優れることがゎカゝる。
[0099] (実施例 16)
製造例 1で得られたイソブチレン系重合体 (A) PIB1 90重量部、製造例 11で得ら れたイソブチレン系ブロック共重合体(B) SIBS 11 10重量部、炭酸カルシウム(ソフ トン 3200、白石カルシウム社製) 40重量部、カーボンブラック(旭カーボン # 60HN 、旭カーボン社製) 50重量部、シリカゲル (二ップジエル CX200、東ソーシリカ社製) 10重量部をラボプラストミル (東洋精機製作所社製)にて、設定温度 170°Cの条件下 で 10分間溶融混練し、熱可塑性榭脂組成物を得た。この組成物を用いて、上記の 方法で各種物性評価を行った。その結果を表 7に示す。
[0100] (実施例 17〜29)
イソブチレン系重合体 (A)およびイソブチレン系ブロック重合体 (B)をそれぞれ表 7 に記載の割合に変更した以外は実施例 16と同様にして、熱可塑性榭脂組成物を得 た。この組成物を用いて、上記の方法で各種物性評価を行った。その結果を表 7に 示す。
[0101] (比較例 9〜17、および参考実施例 1)
イソブチレン系重合体 (A)、イソブチレン系重合体相当成分およびイソブチレン系ブ ロック重合体 (B)をそれぞれ表 8に記載の割合に変更した以外は実施例 1と同様にし て、熱可塑性榭脂組成物を得た。この組成物を用いて、上記の方法で各種物性評価 を行った。その結果を表 8に示す。
[0102] [評価 1:コールドフロー性、および、評価 2:汚染性]
実施例 16〜29、比較例 9〜 17および参考実施例 1で得られた組成物を、金型とプ レス成形機 (設定温度 180°C)を用いて、直径約 25mm高さ約 15mmの円筒状に成 型し、 PVBフィルム(厚み約 0. 3mm、片面シボ有り)の上に置き、 80°Cオーブン中 に 1週間静置後、その円筒状サンプルの横方向への広がり(コールドフロー性)を測 定し、初期からの変化量を評価した。また、同様に 1週間後に円筒状サンプルを置い た PVBフィルムの裏側力 観察し、 PVBフィルムの変質の程度を観察、評価した。こ れらの結果を表 7、 8に示す。なお、汚染性は変化の少ない順に、「無 <微<小 <中 」と表し、汚染性を観察する角度によりかろうじて変質を判別できるものを「微」、観察 する角度により明らかに変質を確認できるものを「小」とし、観察角度に関係なく明ら 力に変質を判別できるものを「中」とした。
[0103] [評価 3 :硬度、評価 4 :溶融粘度、および、評価 5 :耐熱自重変形性] 上述の方法にて硬度、溶融粘度および耐熱自重変形性 (垂下距離)を評価した。
[0104] [評価 6 :水蒸気透過性 (透湿度)試験]
得られた組成物を 180°Cの条件下で加熱プレスし、 0. 9mm厚のシートを作製した。 作製したシートを JIS Z 0208に従い、 40°C、 90%RHでの組成物の透湿度を測定 し、次の水準で判定した。
〇:測定した透湿度の値が、 lgZm2 · day未満である。
X:測定した透湿度の値が、 lgZm2'day以上である。
[0105] [表 7]
Figure imgf000030_0001
炭酸カルシウム:ホヮ仆ン SB,白石カルシウム株式会社製 カ-ホ'ン ラック:旭力-ホ'ン 60HN、旭力一ボン株式会社製 シリカゲル:ニッフ'シ 'エル CX200、ト一ソ一シリカ株式会社製
[0106] [表 8]
Figure imgf000031_0001
[0107] 実施例 16 27では、評価 1 5のいずれについても、良好な結果が得られており、 評価 6につ 、ては、十分低 、透湿度 (優れたガス 性)を有することが確認できた 。また、機械強度および弾性に優れ、更に、高温条件下においても自重による変形 力 、さぐ低汚染性を示す熱可塑性榭脂組成物が得られていることがわかる。 [0108] また、実施例 28、 29では、評価 1、評価 3の結果について参考実施例 1と対比してわ かるように、自重変形性がかなり改善されていることがわかる。ただし、実施例 16の評 価 3と対比してわ力るように、ブロック化率の高低により、機械特性に影響が生じてい ることがゎカゝる。
[0109] 一方、比較例 9〜13、比較例 16、 17からわかるように、 PIBの分子量が 1万未満の 成分の含有量が 5%を超えるものについては、明らかに汚染性が悪くなつていた。ま た、比較例 14および参考実施例 1からわ力るように、イソブチレン系ブロック共重合 体 (B)を含まな ヽ熱可塑性榭脂組成物にお ヽては、高温条件下での自重変形が見 られ、特に比較例 14では、非常に分子量の高いイソブチレン系重合体を選択してい るにもかかわらず、自重変形性を十分には改善出来ていない。また、比較例 15から ゎカゝるように、イソブチレン系重合体 (A)を含まな!/ヽ熱可塑性榭脂組成物にぉ ヽては 、その成型'加工性が大幅に低下しており、熱可塑性榭脂組成物の取り扱い上好ま しくない。
[0110] 以上のことから、本発明に係る熱可塑性榭脂組成物は、ガスノ リア性、機械強度およ び弾性に優れ、更に、高温条件下においても自重による変形が小さぐ低汚染性を 示す熱可塑性榭脂組成物であることが示された。この熱可塑性榭脂組成物は、シー リング材、特に複層ガラス用ホットメルトシーリング材、複層ガラス用ホットメルトスぺー サ一に好適に使用でき、また、ホットメルト押出しシートや、合わせガラス用フィルムと しても好適に使用できる。
産業上の利用可能性
[0111] 本発明により得られる熱可塑性榭脂組成物は、柔軟性、緩衝性、制振性、防音性、 保温性、ガスバリア性、耐候性、熱的安定性等に優れるため、熱可塑性シーリング材 、複層ガラス用熱可塑性シーリング材、吸湿性化合物を含有した複層ガラス用熱可 塑性榭脂スぺーサ一、自動車内装用途、家電用部材用途、食品用包装材用途、 日 用雑貨用途、玩具 ·運動用具用途、衣料用途、土木シート ·防水シート ·ガスケット ·成 型シール材 ·複層ガラス用成型スぺーサ一等の土木 ·建築用途等に利用可能である 図面の簡単な説明 [0112] [図 1]耐熱自重変形性試験用試験体の概略構成図。

Claims

請求の範囲
[1] 数平均分子量および重量平均分子量が、それぞれ 2万から 20万であって、分子量 力 万未満の成分の含有量が 5重量%未満であるイソブチレン系重合体 (A)を含有 することを特徴とする熱可塑性榭脂組成物。
[2] 前記分子量が 1万未満の成分の含有量が 3重量%未満である請求項 1記載の熱可 塑性榭脂組成物。
[3] 前記分子量が 1万未満の成分の含有量が 2重量%未満である請求項 2記載の熱可 塑性榭脂組成物。
[4] 芳香族ビュル系化合物を構成単量体とする重合体ブロックとイソブチレンを構成単 量体とする重合体ブロックとからなるイソブチレン系ブロック共重合体 (B)をさらに含 有することを特徴とする請求項 1〜3のいずれか一項に記載の熱可塑性榭脂組成物
[5] イソブチレン系ブロック共重合体 (B)の数平均分子量および重量平均分子量が、そ れぞれ 3万から 30万であって、そのブロック化率が 90%以上であることを特徴とする 請求項 4記載の熱可塑性榭脂組成物。
[6] イソブチレン系ブロック共重合体 (B)にお 、て、イソブチレンを構成単量体とする重 合体ブロックと芳香族ビニル系化合物を構成単量体とする重合体ブロックの重量比 力 (イソブチレンを構成単量体とする重合体ブロック) / (芳香族ビニル系化合物を 構成単量体とする重合体ブロック) = 95Z5〜60Z40であることを特徴とする請求 項 4または 5記載の熱可塑性榭脂組成物。
[7] イソブチレン系ブロック共重合体(Β)力 スチレン イソブチレンジブロック共重合体 であることを特徴とする請求項 4〜6のいずれか一項に記載の熱可塑性榭脂組成物
[8] イソブチレン系ブロック共重合体(Β)力 スチレン一イソブチレン一スチレントリブロッ ク共重合体であることを特徴とする請求項 4〜6のいずれか一項に記載の熱可塑性 榭脂組成物。
[9] さらに充填材 (C)として、炭酸カルシウムおよびカーボンブラック力 なる群より選ば れる少なくとも 1種を含有することを特徴とする請求項 1〜8のいずれか一項に記載の 熱可塑性榭脂組成物。
[10] さらに吸湿性化合物(D)を含有することを特徴とする請求項 1〜9のいずれか一項に 記載の熱可塑性榭脂組成物。
[11] 前記吸湿性化合物(D) 1S シリカゲル、アルミナおよびゼォライトからなる群より選ば れる少なくとも 1種であることを特徴とする請求項 10に記載の熱可塑性榭脂組成物。
[12] さらに (B)成分以外の芳香族ビニル系熱可塑性エラストマ一を含むことを特徴とする 請求項 1〜11の 、ずれか一項に記載の熱可塑性榭脂組成物。
[13] 請求項 1〜12のいずれか一項に記載の熱可塑性榭脂組成物力もなる、シーリング材 請求項 1〜12のいずれか- -項に記載の熱可塑性榭脂組成物からなる、複層ガラス 用ホットメルトシーリング材。
請求項 1〜12のいずれか- -項に記載の熱可塑性榭脂組成物カゝらなる、複層ガラス 用ホットメルトスぺーサ一。
請求項 1〜12のいずれか- -項に記載の熱可塑性榭脂組成物からなる、ホットメルト 押出しシート。
請求項 1〜12のいずれか- -項に記載の熱可塑性榭脂組成物力もなる、合わせガラ ス用フイノレム
PCT/JP2006/311315 2005-06-07 2006-06-06 熱可塑性樹脂組成物 WO2006132238A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007520119A JPWO2006132238A1 (ja) 2005-06-07 2006-06-06 熱可塑性樹脂組成物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005166601 2005-06-07
JP2005-166601 2005-06-07
JP2005-253844 2005-09-01
JP2005253844 2005-09-01
JP2005272507 2005-09-20
JP2005-272507 2005-09-20

Publications (1)

Publication Number Publication Date
WO2006132238A1 true WO2006132238A1 (ja) 2006-12-14

Family

ID=37498439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311315 WO2006132238A1 (ja) 2005-06-07 2006-06-06 熱可塑性樹脂組成物

Country Status (2)

Country Link
JP (1) JPWO2006132238A1 (ja)
WO (1) WO2006132238A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040862A (ja) * 2010-06-29 2012-03-01 Sumitomo Rubber Ind Ltd 空気入りタイヤの製造方法および空気入りタイヤ
US9676234B2 (en) 2010-12-06 2017-06-13 Sumitomo Rubber Industries, Ltd. Strip, method for manufacturing the same, and method for manufacturing pneumatic tire
US10046532B2 (en) 2010-11-17 2018-08-14 Sumitomo Rubber Industries, Ltd. Method for manufacturing pneumatic tire
US10239271B2 (en) 2010-11-05 2019-03-26 Sumitomo Rubber Industries, Ltd. Strip, method for manufacturing the same, and method for manufacturing pneumatic tire
JP7335611B2 (ja) 2020-03-27 2023-08-30 積水フーラー株式会社 スペーサー部材及び複層ガラス

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717748A (ja) * 1993-06-30 1995-01-20 Tokai Kogyo Kk 複層ガラス及びその製造方法
JPH11323069A (ja) * 1998-05-20 1999-11-26 Kanegafuchi Chem Ind Co Ltd ガスケット材料
JP2000119478A (ja) * 1998-10-12 2000-04-25 Kanegafuchi Chem Ind Co Ltd ゴム組成物
JP2001342314A (ja) * 2000-06-05 2001-12-14 Kanegafuchi Chem Ind Co Ltd 組成物
JP2003055528A (ja) * 2001-08-10 2003-02-26 Kanegafuchi Chem Ind Co Ltd 熱可塑性エラストマー組成物
JP2005105164A (ja) * 2003-09-30 2005-04-21 Kaneka Corp 樹脂組成物からなる成形体および改質剤

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0717748A (ja) * 1993-06-30 1995-01-20 Tokai Kogyo Kk 複層ガラス及びその製造方法
JPH11323069A (ja) * 1998-05-20 1999-11-26 Kanegafuchi Chem Ind Co Ltd ガスケット材料
JP2000119478A (ja) * 1998-10-12 2000-04-25 Kanegafuchi Chem Ind Co Ltd ゴム組成物
JP2001342314A (ja) * 2000-06-05 2001-12-14 Kanegafuchi Chem Ind Co Ltd 組成物
JP2003055528A (ja) * 2001-08-10 2003-02-26 Kanegafuchi Chem Ind Co Ltd 熱可塑性エラストマー組成物
JP2005105164A (ja) * 2003-09-30 2005-04-21 Kaneka Corp 樹脂組成物からなる成形体および改質剤

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012040862A (ja) * 2010-06-29 2012-03-01 Sumitomo Rubber Ind Ltd 空気入りタイヤの製造方法および空気入りタイヤ
US8815033B2 (en) 2010-06-29 2014-08-26 Sumitomo Rubber Industries, Ltd. Method for producing pneumatic tire and pneumatic tire
US10239271B2 (en) 2010-11-05 2019-03-26 Sumitomo Rubber Industries, Ltd. Strip, method for manufacturing the same, and method for manufacturing pneumatic tire
US10046532B2 (en) 2010-11-17 2018-08-14 Sumitomo Rubber Industries, Ltd. Method for manufacturing pneumatic tire
US9676234B2 (en) 2010-12-06 2017-06-13 Sumitomo Rubber Industries, Ltd. Strip, method for manufacturing the same, and method for manufacturing pneumatic tire
JP7335611B2 (ja) 2020-03-27 2023-08-30 積水フーラー株式会社 スペーサー部材及び複層ガラス

Also Published As

Publication number Publication date
JPWO2006132238A1 (ja) 2009-01-08

Similar Documents

Publication Publication Date Title
JPWO2005033035A1 (ja) ガスバリア性に優れた、ホットメルト粘着性を有した樹脂組成物からなる複層ガラス封止材
WO2006132230A1 (ja) 樹脂組成物
JPWO2005093005A1 (ja) シール材組成物
WO2006132238A1 (ja) 熱可塑性樹脂組成物
JPWO2003002654A1 (ja) 熱可塑性エラストマー組成物
JP5350922B2 (ja) 熱可塑性エラストマー樹脂組成物
JP4686118B2 (ja) ガスバリア性に優れた熱可塑性エラストマー組成物
JP2000119478A (ja) ゴム組成物
JPH11293083A (ja) 熱可塑性樹脂組成物
JP4589541B2 (ja) 熱可塑性エラストマー組成物
JP2007106960A (ja) 樹脂組成物の製造方法
JP2000119479A (ja) 熱可塑性樹脂組成物
JP4177186B2 (ja) 熱可塑性エラストマー組成物
JP2000038460A (ja) シ―ト材料
WO2006046408A1 (ja) 熱可塑性樹脂組成物
JP4705279B2 (ja) 熱可塑性エラストマー組成物
JP4364970B2 (ja) 熱可塑性樹脂組成物
JP2017145400A (ja) 熱可塑性エラストマー組成物
JP2007211195A (ja) 樹脂組成物
JP4382401B2 (ja) 熱可塑性樹脂組成物
JP3878327B2 (ja) 芳香族ビニル−イソブチレン系ブロック共重合体組成物
JP2007262424A (ja) 熱可塑性エラストマー樹脂組成物
JPWO2006070624A1 (ja) スチレン生成が抑制されるスチレン系エラストマー組成物
JP2000038494A (ja) チュ―ブ材料
JP2003026895A (ja) 熱可塑性エラストマー組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007520119

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06757055

Country of ref document: EP

Kind code of ref document: A1