WO2006132235A1 - ロードセル式電子天びん - Google Patents

ロードセル式電子天びん Download PDF

Info

Publication number
WO2006132235A1
WO2006132235A1 PCT/JP2006/311311 JP2006311311W WO2006132235A1 WO 2006132235 A1 WO2006132235 A1 WO 2006132235A1 JP 2006311311 W JP2006311311 W JP 2006311311W WO 2006132235 A1 WO2006132235 A1 WO 2006132235A1
Authority
WO
WIPO (PCT)
Prior art keywords
creep
load
load cell
electronic balance
weight
Prior art date
Application number
PCT/JP2006/311311
Other languages
English (en)
French (fr)
Inventor
Tetsuro Kusumoto
Original Assignee
Shimadzu Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corporation filed Critical Shimadzu Corporation
Priority to JP2007520117A priority Critical patent/JPWO2006132235A1/ja
Priority to US11/914,202 priority patent/US20090057038A1/en
Publication of WO2006132235A1 publication Critical patent/WO2006132235A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/18Temperature-compensating arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G23/00Auxiliary devices for weighing apparatus
    • G01G23/01Testing or calibrating of weighing apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G3/00Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances
    • G01G3/12Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing
    • G01G3/14Weighing apparatus characterised by the use of elastically-deformable members, e.g. spring balances wherein the weighing element is in the form of a solid body stressed by pressure or tension during weighing measuring variations of electrical resistance
    • G01G3/1414Arrangements for correcting or for compensating for unwanted effects

Definitions

  • the present invention relates to a load cell type electronic balance, and more particularly to a load cell type electronic balance in which a plurality of strain gauges are attached to a strain generating body.
  • strain gauge patterns are slightly different, more specifically, multiple types of strain gauges with different tab ratios are prepared. The method is to find the optimal combination while changing the strain gauge's! /, Displacement force, or all of them to something with a different pattern.
  • a strain gauge type load cell generally, a plurality of strain gauges are attached to a strained body that is elastically deformed by the action of a load, and a Wheatstone bridge is formed by each strain gauge, and the output of the Wheatstone bridge is output. It is used as a detection output for the magnitude of the load acting on the strain body.
  • FIG. 7 is a perspective view of a conventional load cell.
  • the strain body of this load cell has a structure in which a pair of column portions 11 and 12 are connected and the column portions 11 and 12 are connected to each other by two upper and lower beams each having a flexible portion. ing.
  • a total of four strain gauges S1 to S4 are attached to each of the four flexible parts, and a Wheatstone bridge with a reference voltage E as shown in FIG. 8 is assembled.
  • the load cell as described above is used as a load sensor of an electronic balance, for example, and accurate load detection is required, the creep phenomenon in which the measured value changes with time becomes a problem as shown in FIG. .
  • the patterns are slightly different, more specifically, the tab ratios based on the strain gauge pattern are mutually compatible. If you search for the optimal combination by preparing different types of strain gauges and changing the strain gauges S1 to S4 to ones with different patterns while measuring the creep amount! Is taken! /
  • Patent Document 1 Japanese Patent Laid-Open No. 2003-322571
  • the conventional load cell type electronic balance is configured as described above.
  • a plurality of types of strain gauges having different tab ratios are prepared, and any one of the strain gauges S1 to S4 is measured while measuring the creep amount. Or, by changing the whole pattern to a different one and searching for the optimal combination, or by forming multiple Wheatstone bridges with multiple strain gauges S1 to S8 attached to one strain-generating body, Since the creep characteristics vary greatly depending on the environment in which the electronic balance is used, specifically temperature and humidity, it was difficult to eliminate the creep error in all the balance usage environments. It is an object of the present invention to reduce the creep error corresponding to the environment in which the electronic balance is used.
  • the present invention has been made in view of such circumstances, and an object of the present invention is to provide a load cell type electronic balance capable of reducing a creep error regardless of an environment in which the electronic balance is used.
  • the load cell type electronic balance of the present invention is a load cell type electronic balance using a load cell formed by attaching a plurality of strain gauges to a strain generating body as a load detection unit.
  • Creep amount storage means for storing the amount of creep load corresponding to the load amount and loading time of the plate, storing the creep amount measurement data, and calculating the creep correction amount in the usage environment
  • a creep correction amount calculation storage means for storing the creep correction amount data is provided, and the creep error is corrected by adding the creep correction amount to the measured load.
  • the load cell type electronic balance of the present invention includes a built-in weight, a weight adding / deleting mechanism for adding and removing the built-in weight, and a control unit for controlling the weight adding / deleting mechanism.
  • the creep was corrected for the load for a certain period of time.
  • the load cell type electronic balance of the present invention is configured as described above, and can reduce the cleave error in all use environments.
  • the load cell type electronic balance of the present invention memorizes the creep characteristics in the environment used by the user and performs the correction calculation process, so that the correct correction of the creep characteristics suitable for the temperature and humidity in the usage environment is performed. Is possible.
  • FIG. 1 is a block configuration diagram of an electronic balance according to the present invention.
  • FIG. 2 is a flowchart showing a procedure for acquiring a creep correction formula.
  • FIG. 3 is a diagram showing a creep characteristic curve and a creep correction curve.
  • FIG. 4 is a flowchart showing a measurement value display procedure of the electronic balance.
  • FIG. 5 is a block diagram of an electronic balance according to another embodiment.
  • FIG. 6 is a flowchart showing a procedure for displaying a measured value of an electronic balance according to another embodiment.
  • FIG. 7 is a perspective view showing a configuration of a load cell.
  • FIG. 8 Configuration diagram of the Wheatstone bridge.
  • FIG. 9 is a graph showing fluctuations in the weight value of the electronic balance due to the creep characteristics of the load cell.
  • FIG. 10 is a perspective view showing another configuration of the load cell. Explanation of symbols
  • the load cell type electronic balance provided by the present invention has the following characteristics.
  • the first feature is the creep corresponding to the load amount and load time of the load on the pan in the use environment in a load cell type electronic balance that uses a load cell formed by attaching a plurality of strain gauges to the strain body as the load detection unit.
  • a creep amount storage means for measuring the amount of creep and measuring the creep amount measurement data; and a creep correction amount calculation storage means for calculating the creep correction amount in the usage environment and storing the creep correction amount data.
  • the creep error is corrected by adding the creep correction amount to the measured load.
  • the second feature is that it has a built-in weight, a weight addition mechanism that adds and removes the built-in weight, and a control unit that controls the weight addition and removal mechanism. This is a point that is corrected. Therefore, the basic configuration of the best mode is a load cell type electronic balance having the configuration having the features of claims 1 and 2.
  • Fig. 1 is a block diagram showing the configuration of the electronic balance.
  • This electronic balance has the same load cell as the load cell shown in FIG.
  • the output signal of the load detection circuit 1b and the output signal of the temperature sensor 4 for detecting the temperature T in the load detection unit 1 are alternately switched to perform AZD conversion, the switching switch 5 and the AZD converter 2, and the switching switch 5 and From the control unit 3 that controls the AZD transformation 2 and takes the digital signal from the AZD transformation 2 and converts it into a weight value, and the display 6 that displays the weight value. It is configured.
  • the arithmetic control unit 3 is mainly composed of a microcomputer, and includes a CPU 31, a ROM 32, a RAM 33, an interface 34, and an input device 35 with a tally correction key 35a for inputting execution of creep error correction.
  • the ROM 32 obtains a temperature correction program for obtaining a correction value for eliminating a load detection error due to a temperature difference between the reference temperature and the measured temperature T, and a creep characteristic described later, and the correction.
  • a creep correction program is written.
  • an area for storing a tally correction expression acquired by the creep correction program is set in the RAM 33 in addition to an area for storing digital conversion data from the load detection circuit lb and a work area.
  • FIG. 2 is a flowchart for obtaining a creep correction formula for correcting a change in load detection sensitivity of a load cell caused by a creep phenomenon of a strain gauge.
  • the procedure for acquiring the creep correction formula will be described below with reference to FIGS.
  • the tally correction key 35a of the input device 35 turned ON, when the weight 7 for creep correction is loaded on the pan lc shown in FIG. 1, the creep correction type acquisition program force S starts automatically (S1).
  • the calculation control unit 3 recognizes that the time t from the start has reached the time A corresponding to the sampling period A (S2), the switching switch 5 is switched to the load detection circuit lb side and the dish load W1 is AZD converted.
  • the digital signal is converted into a digital signal, taken into the arithmetic control unit 3 via the interface 34, and the dish load W1 is stored in the RAM 33 (S3). Subsequently, the switching switch 5 is switched to the temperature sensor 4 side, and the temperature T is similarly taken into the arithmetic control unit 3, and the correction value ⁇ W1 for the dish load W1 at the temperature is read from the ROM 32 (S4).
  • the dish load W1 and the correction value person AW1 are added and converted to a dish load W (S5).
  • This series of processing is performed at every sampling period A until the time t from the start reaches the total time B that is set in advance to the time when the pan load W is settled. Creep characteristics as shown in (6) are obtained (S6).
  • the creep characteristic curve C (t) is derived by a statistical method that minimizes the square sum of variance for this creep characteristic (S7).
  • the creep correction formula Y (t) is calculated by the following formula, and this correction formula Y (t) is updated and stored in the RAM 33 (S8).
  • Y (t) Wb— C (t) (1) where Wb is at time B It is the load on the pan.
  • FIG. 4 is a flowchart showing a weighing display procedure of an object to be weighed by the electronic balance.
  • the arrival of the sampling cycle is monitored (S9) .
  • a control signal is sent from the arithmetic control unit 3 to switch the switching switch 5 to the load detection circuit lb side.
  • the load wl on the weighing object is converted to a digital value by AZD change 2, and stored in RAM33 (S10).
  • switch 5 is switched to temperature sensor 4 side, temperature T is converted to a digital value in the same way, and taken into operation control unit 3, and temperature span correction value AW1 at temperature T is read from ROM32 (Sl l) .
  • the temperature span correction value AWl (wlZWl) for the dish load wl is calculated and added to the dish load w 1 to convert it to the dish load w shown in equation (2) (S12).
  • w wl
  • FIG. 5 shows the configuration of an electronic balance according to another embodiment. As shown in FIG. 5, this electronic balance is configured in the same manner as the electronic balance shown in FIG. 1. In addition, the built-in weight 8 and the lever 9a are moved up and down by a control signal from the arithmetic control unit 3 to A weight addition / removal mechanism 9 for removing or loading the load cell la is added.
  • the flowchart of FIG. 6 shows the procedure for obtaining the creep correction formula using the present electronic balance.
  • SA1 When the power is turned on with the cleave correction key 35a turned on (SA1), a weight load signal is sent from the calculation control unit 3 to the weight addition / removal mechanism 9 (SA2). Load cell la is loaded (SA3). Subsequently, the same procedure as S2 to S8 shown in FIG. 2 is executed, and the correction equation Y (t) is updated and recorded in the RAM 33. Then, a weight removal signal is transmitted from the arithmetic control unit 3 to the weight addition / subtraction mechanism 9 (SA4), and the internal weight 8 is removed from the port cell la by the weight addition / subtraction mechanism 9 (SA5).
  • the load cell type electronic balance of the present invention acquires a creep characteristic proportional to a load and a load time, converts it into a time function, derives a creep correction formula, and uses this correction formula to determine the creep characteristic.
  • the correction is made and the present invention is not limited to the above embodiment.
  • the time function may be approximated by a plurality of straight lines.
  • the calibration weight can also be used as the internal weight 8.
  • the present invention is used for a high-precision electronic balance in which the influence of creep characteristics due to temperature and humidity cannot be ignored.

Abstract

【課題】クリープ現象による荷重検出感度の変動を低減したロードセル式電子天びんを提供する。【解決手段】荷重検出に使用するロードセル1aのクリープ特性が安定するまでの一定期間、一定の荷重を前記ロードセル1aに負荷してマイクロコンピュータで構成される演算制御部3で荷重をサンプリング測定し、クリープ特性による荷重の時間的変化を補正する補正式を算出し記憶する。次回電源投入時から前記補正式を用いて測定データを補正する。

Description

明 細 書
ロードセル式電子天びん
技術分野
[0001] 本発明は、ロードセル式電子天びんに関し、特に起歪体に複数の歪みゲージを貼着 してなるロードセル式電子天びんに関する。
背景技術
[0002] 従来のロードセル式電子天びんでは、クリープ対策として歪みゲージのパターンが少 しずつ相違する、より詳しくはタブ比が互いに相違する複数種の歪みゲージを用意し 、クリープを測定しつつ 4枚の歪みゲージの!/、ずれ力もしくはすべてをパターンの相 違するものに変化させながら、最適な組み合わせを探すという手法が採られている。 歪みゲージ式のロードセルにおいては、一般に、荷重の作用により弾性変形する起 歪体に複数の歪みゲージを貼着し、その各歪みゲージによりホイトストーンブリッジを 形成して、そのホイトストーンブリッジの出力を起歪体に作用する荷重の大きさの検出 出力として用いている。
[0003] 図 7は従来のロードセルの斜視図である。このロードセルの起歪体は、一対の柱部 1 1、 12を備えるとともに、その各柱部 11、 12をそれぞれの両端部に可撓部を有する 上下 2本の梁で連結した構造を有している。そして、 4箇所の可撓部にそれぞれ 1枚 ずつ、合計 4枚の歪みゲージ S1〜S4を貼着し、図 8に示すような基準電圧 Eなるホイ トストーンブリッジが組まれる。
[0004] 以上の構成において、各柱部 11、 12のうちのいずれか一方、例えば柱部 11を固定 し、他方の柱部 12に荷重を作用させたとき、各可撓部の弾性変形により各歪みゲー ジ S1〜S4の抵抗値が変化し、ホイトストーンブリッジの出力端 Vから荷重に比例した 電圧信号が発生する。
[0005] 上記のようなロードセルを例えば電子天びんの荷重センサとして用い、正確な荷重検 出が要求される場合には、図 9に示すような計量値が時間とともに変化するクリープ 現象が問題となる。このクリープ対策として、従来のロードセルにおいては、パターン が少しずつ相違する、より詳しくは歪みゲージのパターンに基づくタブ比が互いに相 違する複数種の歪みゲージを用意し、クリープ量を測定しつつ歪みゲージ S1〜S4 のいずれかもしくは全てをパターンの相違するものに変化させながら、最適な組み合 わせを探すと!、う手法が採られて!/、る。
[0006] 以上のような従来のロードセルによると、クリープ量の調整のために多くの種類の歪 みゲージを用意する必要があるばかりでなく、最適な歪みゲージの組み合わせを確 定するまでに多大な労力と時間を要するという問題がある。
[0007] また、歪みゲージの接着後のクリープ量調整が実質的に不可能であるため、例えば 電子天びんの荷重センサとして用いた場合、電子天びんの高分解能につれて問題 となる、同一電子天びん間でのクリープ量のばらつきを補正する手段がないという問 題もある。この問題を解決するものとして、例えば特開 2003— 322571号公報に示 されるようなロードセルが開示されている。このロードセルは図 10に示すように 1つの 起歪体に貼着した歪みゲージ S1〜S4及び S5〜S8により複数のホイトストーンブリツ ジを形成し、その出力の線形和で荷重検出値を表すように構成するとともに、その線 形和の算出時に各ホイトストーンブリッジの出力に乗じるべき係数を、各ホイトストーン ブリッジに表れるクリープ量を相殺する値とするようにして 、る。
特許文献 1:特開 2003— 322571号公報
発明の開示
発明が解決しょうとする課題
[0008] 従来のロードセル式電子天びんは、上記のように構成されており、タブ比が互いに相 違する複数種の歪みゲージを用意し、クリープ量を測定しつつ歪みゲージ S1〜S4 のいずれかもしくは全てをパターンの相違するものに変化させながら、最適な組み合 わせを探す方法や 1つの起歪体に貼着した複数の歪みゲージ S1〜S8により複数の ホイトストーンブリッジを形成する方法では、電子天びんが使用される環境、具体的 には温度、湿度により大幅にクリープ特性が変化するため、天びんの使用環境全て でクリープ誤差を無くすことは困難だった。 電子天びんが使用される環境に対応し てクリープ誤差を減少することが本発明の課題である。 本発明は、このような事情に 鑑みてなされたものであって、電子天びんが使用される環境によらず、クリープ誤差 を減少し得るロードセル式電子天びんを提供することを目的とする。 課題を解決するための手段
[0009] 上記の目的を達成するため、本発明のロードセル式電子天びんは、起歪体に複数の 歪みゲージを貼着してなるロードセルを荷重検出部とするロードセル式電子天びん において、使用環境での皿上荷重の負荷量及び負荷時間に対応するクリープ量を 測定し、このクリープ量測定データを記憶するクリープ量記憶手段と、前記クリープ量 測定データ力 使用環境でのクリープ補正量を算出し、このクリープ補正量データを 記憶するクリープ補正量算出記憶手段を備え、測定された荷重に前記クリープ補正 量を加算演算してクリープ誤差を補正するようにした。
[0010] また、本発明のロードセル式電子天びんは、内蔵分銅と該内蔵分銅を加除する分銅 加除機構と該分銅加除機構を制御する制御部を備え、分銅加除機構を制御すること により内蔵分銅の負荷を一定時間行 、、クリープ誤差を補正するようにした。 本発 明のロードセル式電子天びんは、上記のように構成されており、使用環境の全てでク リーブ誤差を低減することができる。
発明の効果
[0011] 本発明のロードセル式電子天びんは、ユーザが使用する環境でのクリープ特性を記 憶して、補正演算処理を行うので、使用環境での温度'湿度に適合したクリープ特性 の正確な補正が可能となる。
図面の簡単な説明
[0012] [図 1]本発明の電子天びんのブロック構成図である。
[図 2]クリープ補正式を取得する手順を示すフローチャート図である。
[図 3]クリープ特性曲線とクリープ補正曲線を示す図である。
[図 4]本電子天びんの計量値表示手順を示すフローチャート図である。
[図 5]他の実施例の電子天びんのブロック構成図である。
[図 6]他の実施例の電子天びんの計量値表示手順を示すフローチャート図である。
[図 7]ロードセルの構成を示す斜視図である。
[図 8]ホイトストーンブリッジの構成図である。
[図 9]ロードセルのクリープ特性による電子天びんの計量値の変動を示す図である。
[図 10]ロードセルの他の構成を示す斜視図である。 符号の説明
[0013] 1 荷重検出部 la ロードセル lb 荷重検出回路 lc 受け皿 2 A/D 変換器 3 制御部 31 CPU 32 ROM 33 RAM 34 インターフ ース 35 入力装置 35a クリープ補正キー 4 温度センサ 5 切替スイツ チ 6 表示器 7 分銅 8 内蔵分銅 9 分銅加除機構 9a レバー E 基準電圧 S1、S2、S3、S4 歪みゲージ V 出力端
発明を実施するための最良の形態
[0014] 本発明が提供するロードセル式電子天びんはつぎのような特徴を有している。第 1の 特徴は起歪体に複数の歪みゲージを貼着してなるロードセルを荷重検出部とする口 ードセル式電子天びんにおいて、使用環境での皿上荷重の負荷量及び負荷時間に 対応するクリープ量を測定し、このクリープ量測定データを記憶するクリープ量記憶 手段と、前記クリープ量測定データ力も使用環境でのクリープ補正量を算出し、この クリープ補正量データを記憶するクリープ補正量算出記憶手段を備え、測定された 荷重に前記クリープ補正量を加算演算してクリープ誤差を補正するようにした点であ る。 第 2の特徴は内蔵分銅と該内蔵分銅を加除する分銅加除機構と該分銅加除機 構を制御する制御部を備え、分銅加除機構を制御することにより内蔵分銅の負荷を 一定時間行い、クリープ誤差を補正するようにした点である。 したがって最良の形態 の基本的な構成は、請求項 1及び 2項の特徴を備えた構成を具備するロードセル式 電子天びんである。
実施例 1
[0015] 以下実施例により本発明のロードセル式電子天びんを詳細に説明する。図 1は本電 子天びんの構成を示すブロック図である。本電子天びんは図 7に示した前記ロードセ ルと同様に歪みゲージを起歪部に貼着したロードセル laと歪みゲージでホイトスト一 ンブリッジを構成した荷重検出回路 lb力 なる荷重検出部 1と、前記荷重検出回路 1 bの出力信号と荷重検出部 1内の温度 Tを検出する温度センサ 4の出力信号を交互 に切り替えて AZD変換する切替スィッチ 5及び AZD変換器 2と、前記切替スィッチ 5及び AZD変翻2を制御するとともに、前記 AZD変翻2からのディジタル信号 を採り込み重量値に換算する演算制御部 3及び前記重量値を表示する表示器 6から 構成されている。
[0016] 前記演算制御部 3は、マイクロコンピュータを主体に構成されており、 CPU31、 RO M32、 RAM33、インターフェース 34及びクリープ誤差補正の実行を入力するタリー プ補正キー 35a付きの入力装置 35から構成されている。前記 ROM32には、通常の 計量表示プログラムの他に、基準温度と測定温度 Tとの温度差による荷重検出誤差 を無くすための補正値を求める温度補正プログラムや後述するクリープ特性を取得し 、その補正を行うためのクリープ補正プログラムが書き込まれている。また、 RAM33 には、荷重検出回路 lbからのディジタル変換データを格納するエリアやワークエリア のほか、前記クリープ補正プログラムにより取得されるタリープ補正式を記憶するエリ ァが設定されている。
[0017] 図 2は歪みゲージのクリープ現象により発生するロードセルの荷重検出感度の変動 を補正するクリープ補正式を取得するためのフローチャート図である。以下、図 1及び 図 2を参照しながらクリープ補正式を取得する手順を説明する。入力装置 35のタリー プ補正キー 35aを ONにした状態で、図 1に示す受け皿 lcにクリープ補正用の分銅 7 を負荷すると自動的にクリープ補正式取得プログラム力 Sスタートする(S1)。演算制御 部 3はスタートからの時間 tがサンプリング周期 Aに相当する時間 Aに到達したことを 認識すると(S2)、切替スィッチ 5を荷重検出回路 lb側に切り替えて皿上荷重 W1を AZD変換してディジタル信号に変換し、インターフェース 34を介して演算制御部 3 内に取り込み、この皿上荷重 W1を RAM33に記憶する(S3)。続いて切替スィッチ 5 を温度センサ 4側に切り替えて温度 Tを同様に演算制御部 3に採り込み、温度丁での 皿上荷重 W1に対する補正値士 Δ W1を ROM32より読み出す(S4)。
[0018] 次に前記皿上荷重 W1と補正値士 AW1を加算して皿上荷重 Wに変換する(S5)。こ の一連の処理はサンプリング周期 Aごとに行われ、スタートからの時間 tが予め皿上 荷重 Wが落ち着く時間に設定されているトータル時間 Bになるまで行われ、この結果 例えば図 3に黒丸印で示したようなクリープ特性が得られる(S6)。このクリープ特性 を分散の自乗和を最小にする統計手法により、クリープ特性曲線 C (t)を導出する(S 7)。そして、次式によりクリープ補正式 Y(t)を算出し、この補正式 Y(t)を RAM33に 更新記憶する(S8)。 Y(t) =Wb— C (t) (1)なお、 Wbは時間 Bにおける 皿上荷重である。
[0019] 図 4は本電子天びんによる被計量物の計量表示手順を示すフローチャート図である 。本電子天びんの電源を入れると、サンプリング周期の到達が監視され (S9)、サン プリング周期時間に到達すると演算制御部 3から切替スィッチ 5を荷重検出回路 lb 側に切り替える制御信号が送られ、被計量物の皿上荷重 wlを AZD変 2によつ てディジタル値に変換し、 RAM33に記憶する(S10)。続いて切替スィッチ 5を温度 センサ 4側に切り替え、温度 Tを同様にディジタル値に変換して演算制御部 3に取り 込み、温度 Tでの温度スパン補正値士 AW1を ROM32より読み出す(Sl l)。次に 皿上荷重 wlに対する温度スパン補正値士 AWl (wlZWl)を算出し、皿上荷重 w 1に加算して(2)式で示される皿上荷重 wに変換する(S12)。 w= wl士
AWl (wl/Wl) (2) 次に前記クリープ補正式 Y(t)を RAM33より読み 出し、クリープ補正値 Y(t) (wlZWl)を算出し、皿上荷重 wに加算して(3)式で示さ れる皿上荷重 woに変換した後(S13)、重量換算係数を乗じて重量計量値を表示器 6に表示する(S14)。 wo=w+Y(t) (wlZWl) (3)
[0020] 図 5に他の実施例による電子天びんの構成を示す。この電子天びんは図 5に示すよ うに図 1に示した電子天びんと同様に構成されているほか、内蔵分銅 8と、演算制御 部 3からの制御信号によりレバー 9aを上下させ、前記内蔵分銅 8をロードセル laから 除去したり負荷する分銅加除機構 9が付加されて 、る。
[0021] 本電子天びんによるクリープ補正式の取得手順を図 6のフローチャート図に示す。ク リーブ補正キー 35aをオンにした状態で電源を入れると(SA1)、演算制御部 3から分 銅加除機構 9へ分銅負荷信号が送られ (SA2)、分銅加除機構 9によって内蔵分銅 8 力 Sロードセル laに負荷される(SA3)。続いて図 2に示した S2から S8と同様の手順が 実行され、補正式 Y(t)を RAM33に更新記録する。そして、演算制御部 3から分銅 加除機構 9へ分銅除去信号を送信し (SA4)、分銅加除機構 9により内蔵分銅 8を口 ードセル laから除去して終了する(SA5)。
[0022] 本発明のロードセル式電子天びんは、荷重負荷と負荷時間に比例するクリープ特性 を取得し、これを時間関数に変換してクリープ補正式を導出し、この補正式を用いて クリープ特性を補正するものであり、上記実施例に限定されるものではない。例えば、 時間関数を複数の直線で近似してもよい。また、校正用分銅を内蔵分銅 8と兼用して 用いることちでさる。
産業上の利用可能性
本発明は温度'湿度によるクリープ特性の影響が無視できない高精度の電子天びん に用いられる。

Claims

請求の範囲
[1] 起歪体に複数の歪みゲージを貼着してなるロードセルを荷重検出部とするロードセ ル式電子天びんにおいて、使用環境での皿上荷重の負荷量及び負荷時間に対応 するクリープ量を測定しこのクリープ量測定データを記憶するクリープ量記憶手段と、 前記クリープ量測定データ力 使用環境でのクリープ補正量を算出し、このクリープ 補正量データを記憶するクリープ補正量算出記憶手段を備え、測定された荷重に前 記クリープ補正量を加算演算してクリープ誤差を補正するようにしたことを特徴とする ロードセル式電子天びん。
[2] ロードセル式電子天びんは内蔵分銅と該内蔵分銅を加除する分銅加除機構と該分 銅加除機構を制御する制御部を備え、分銅加除機構を制御することにより内蔵分銅 の負荷を一定時間行 、、クリープ誤差を補正するようにしたことを特徴とする請求項 1 のロードセル式電子天びん。
PCT/JP2006/311311 2005-06-07 2006-06-06 ロードセル式電子天びん WO2006132235A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007520117A JPWO2006132235A1 (ja) 2005-06-07 2006-06-06 ロードセル式電子天びん
US11/914,202 US20090057038A1 (en) 2005-06-07 2006-06-06 Load cell-type electronic balance

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005166895 2005-06-07
JP2005-166895 2005-06-07

Publications (1)

Publication Number Publication Date
WO2006132235A1 true WO2006132235A1 (ja) 2006-12-14

Family

ID=37498436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311311 WO2006132235A1 (ja) 2005-06-07 2006-06-06 ロードセル式電子天びん

Country Status (4)

Country Link
US (1) US20090057038A1 (ja)
JP (1) JPWO2006132235A1 (ja)
CN (1) CN100567912C (ja)
WO (1) WO2006132235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212255A (ja) * 2006-02-08 2007-08-23 Shimadzu Corp 歪みゲージ式ロードセルおよびそれを用いた電子はかり
JP2011033374A (ja) * 2009-07-30 2011-02-17 Yamato Scale Co Ltd クリープ誤差補償装置及びクリープ誤差補償方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI452261B (zh) * 2009-07-28 2014-09-11 Vishay Prec Group Inc 轉換器、溫度補償轉換器、和製造轉換器之方法
JP5666930B2 (ja) * 2011-01-28 2015-02-12 株式会社エー・アンド・デイ 計量装置
NL2016315B1 (en) * 2016-02-24 2017-01-17 Xyztec B V Digital creep and drift correction.
CN107389175A (zh) * 2017-07-13 2017-11-24 铜陵凯特尔科技有限责任公司 一种基于精度调节的智能称重系统
CN107505039A (zh) * 2017-07-13 2017-12-22 铜陵凯特尔科技有限责任公司 一种基于精度调节的智能称重方法
CN107462310A (zh) * 2017-07-13 2017-12-12 铜陵凯特尔科技有限责任公司 一种高精度智能称重方法
CN107525574A (zh) * 2017-07-13 2017-12-29 铜陵凯特尔科技有限责任公司 一种基于精度校准的智能称重方法
CN107389176A (zh) * 2017-07-13 2017-11-24 铜陵凯特尔科技有限责任公司 一种基于多次校准的智能称重方法
CN107687889A (zh) * 2017-07-13 2018-02-13 铜陵凯特尔科技有限责任公司 一种基于多次校准的智能称重系统
CN109059964B (zh) * 2018-09-19 2021-07-23 中国船舶重工集团公司第七0七研究所 一种基于“重力峰”的惯性导航与重力测量双校准方法
CN110849459B (zh) * 2019-10-24 2022-02-22 华帝股份有限公司 一种称重传感器的蠕变修正方法
CN114459586B (zh) * 2020-11-09 2023-04-18 青岛海尔电冰箱有限公司 冷冻冷藏装置内称重装置的校准方法和冷冻冷藏装置
CN113819995A (zh) * 2021-10-28 2021-12-21 深圳市道中创新科技有限公司 一种重力售货柜的重力传感器形变自动矫正方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723825A (en) * 1980-07-17 1982-02-08 Shimadzu Corp Electronic direct indication balance
JPS6314885B2 (ja) * 1982-10-25 1988-04-02 Matsushita Electric Ind Co Ltd
JP2001242008A (ja) * 2000-02-29 2001-09-07 A & D Co Ltd 温度補正手段を用いてクリープ補正をする電子秤
JP2005024524A (ja) * 2003-07-04 2005-01-27 Yamato Scale Co Ltd 重量信号のクリープ誤差補償装置および補償方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4412298A (en) * 1979-09-20 1983-10-25 Pitney Bowes Inc. Method for tracking creep and drift in a digital scale under full load
US4691290A (en) * 1984-08-06 1987-09-01 Reliance Electric Company Creep-compensated weighing apparatus
US4815547A (en) * 1987-11-30 1989-03-28 Toledo Scale Corporation Load cell
US4804052A (en) * 1987-11-30 1989-02-14 Toledo Scale Corporation Compensated multiple load cell scale
US5076375A (en) * 1987-11-30 1991-12-31 Mettler-Toledo, Inc. Load cell
JPH0652190B2 (ja) * 1989-07-24 1994-07-06 株式会社島津製作所 電子天びん
US5166892A (en) * 1990-04-30 1992-11-24 Yamato Scale Company, Limited Device for compensating for time-dependent error due to creep and like of measuring apparatus
US5623128A (en) * 1994-03-01 1997-04-22 Mettler-Toledo, Inc. Load cell with modular calibration components
DE19820637A1 (de) * 1998-05-08 1999-11-11 Mettler Toledo Gmbh Waage mit einem Ankopplungsbereich für ein Kalibriergewicht
US6215078B1 (en) * 1998-12-22 2001-04-10 Ncr Corporation Method and apparatus for determining a stable weight measurement for use in a security software application of a self-service checkout terminal
US6603081B2 (en) * 2000-10-04 2003-08-05 Mettler-Toledo Gmbh Balance with a weighing compartment
DE10157804B4 (de) * 2001-11-27 2014-04-24 Mettler-Toledo Ag Gewichtssatz für eine elektronische Waage

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723825A (en) * 1980-07-17 1982-02-08 Shimadzu Corp Electronic direct indication balance
JPS6314885B2 (ja) * 1982-10-25 1988-04-02 Matsushita Electric Ind Co Ltd
JP2001242008A (ja) * 2000-02-29 2001-09-07 A & D Co Ltd 温度補正手段を用いてクリープ補正をする電子秤
JP2005024524A (ja) * 2003-07-04 2005-01-27 Yamato Scale Co Ltd 重量信号のクリープ誤差補償装置および補償方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007212255A (ja) * 2006-02-08 2007-08-23 Shimadzu Corp 歪みゲージ式ロードセルおよびそれを用いた電子はかり
JP2011033374A (ja) * 2009-07-30 2011-02-17 Yamato Scale Co Ltd クリープ誤差補償装置及びクリープ誤差補償方法

Also Published As

Publication number Publication date
CN101142465A (zh) 2008-03-12
JPWO2006132235A1 (ja) 2009-01-08
CN100567912C (zh) 2009-12-09
US20090057038A1 (en) 2009-03-05

Similar Documents

Publication Publication Date Title
WO2006132235A1 (ja) ロードセル式電子天びん
EP0295067A2 (en) Digital load shift compensation
JP5679704B2 (ja) ストレインゲージ式ロードセルの故障診断装置
JPH0652190B2 (ja) 電子天びん
JPH06103212B2 (ja) 重量検出装置
JP5669551B2 (ja) ロードセルの故障診断装置
JPS63204103A (ja) ロ−ドセルの温度補償方法及びその装置
JP3953592B2 (ja) ロードセルのスパン温度補償装置
JP4835878B2 (ja) 電子天びん
WO2006132234A1 (ja) 電子天びん
JPH07209102A (ja) ロードセルの温度補償方法及びその装置
JPS6013224A (ja) 電子天びん
JPH0746060B2 (ja) 電子天びん
JPS6039521A (ja) 温度補償付力測定装置
JP4814005B2 (ja) 計量装置
JPH11311564A (ja) ロードセル秤
JP5679837B2 (ja) 計量装置
JP2588391B2 (ja) デジタル指示計におけるゲインの初期較正方法
JP2000241234A (ja) ロードセル秤
JP3163448U (ja) 電子秤
JP2008058168A (ja) 力センサ用検出装置
JPH11211587A (ja) ひずみゲージ式変換器及びひずみゲージ式変換器用測定モジュール
JP2000111425A (ja) デジタルロードセルの温度補償装置
JPH1137827A (ja) 荷重測定装置
JP2019045181A (ja) 計測器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008329.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007520117

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11914202

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06757051

Country of ref document: EP

Kind code of ref document: A1