WO2006132193A1 - コンデンサマイクロホンのエレクトレット化方法、エレクトレット化装置およびこれを用いたコンデンサマイクロホンの製造方法 - Google Patents

コンデンサマイクロホンのエレクトレット化方法、エレクトレット化装置およびこれを用いたコンデンサマイクロホンの製造方法 Download PDF

Info

Publication number
WO2006132193A1
WO2006132193A1 PCT/JP2006/311248 JP2006311248W WO2006132193A1 WO 2006132193 A1 WO2006132193 A1 WO 2006132193A1 JP 2006311248 W JP2006311248 W JP 2006311248W WO 2006132193 A1 WO2006132193 A1 WO 2006132193A1
Authority
WO
WIPO (PCT)
Prior art keywords
electret
toy
dielectric film
microphone
corona discharge
Prior art date
Application number
PCT/JP2006/311248
Other languages
English (en)
French (fr)
Inventor
Yusuke Takeuchi
Hiroshi Ogura
Katuhiro Makihata
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006551138A priority Critical patent/JPWO2006132193A1/ja
Priority to US11/916,615 priority patent/US20090129612A1/en
Priority to EP06756994A priority patent/EP1890521A4/en
Publication of WO2006132193A1 publication Critical patent/WO2006132193A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G7/00Capacitors in which the capacitance is varied by non-mechanical means; Processes of their manufacture
    • H01G7/02Electrets, i.e. having a permanently-polarised dielectric
    • H01G7/025Electrets, i.e. having a permanently-polarised dielectric having an inorganic dielectric
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/01Electrostatic transducers characterised by the use of electrets
    • H04R19/016Electrostatic transducers characterised by the use of electrets for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/181Printed circuits structurally associated with non-printed electric components associated with surface mounted components

Definitions

  • the present invention relates to an electret toy dredge method for a condenser microphone, an electret toy dredge device, and a method for producing a condenser microphone using the same, and particularly using a microfabrication technique for a semiconductor substrate such as silicon.
  • the present invention relates to an electret toe dredging method and an electret toy dredging device for a dielectric film in a condenser microphone formed in this manner.
  • the electret condenser microphone detects the change in capacitance of the condenser due to sound waves as an electrical signal and eliminates the need for a DC bias of the condenser by using an electret film with semi-permanent polarization. It is a small acoustoelectric converter.
  • the electret film (dielectric film at least partially polarized) in ECM is made of an organic dielectric film such as FEP (fluoroethylene 'propylene), for example, and charges are injected into this dielectric film. It is formed by fixing. Due to the electric field formed by the electric charge injected into the dielectric film, a potential difference occurs between the two electrodes of the capacitor. Injecting electric charges into a dielectric film and fixing it is called electret toy.
  • FEP fluoroethylene 'propylene
  • the dielectric film is composed of a thin film such as FEP, and a metal such as gold or nickel is attached to the outer surface thereof by vapor deposition or the like.
  • FIGS. 7 and 8 As a method for injecting electric charges into a dielectric film for forming an electret, there are methods shown in FIGS. 7 and 8 (see, for example, Non-Patent Document 1 and Patent Document 1).
  • FIG. 7 is a cross-sectional view of a principal part of an apparatus for generating a corona discharge by using a needle-like electrode to electret a dielectric film.
  • a FEP (fluoroethylene propylene) thin film 4 is placed on a ground electrode (metal tray) 5, and a direct current corona discharge is generated by the needle-like electrode 6, and ions are fed into the FEP thin film 4.
  • Electret toys are made by injecting and fixing to.
  • Reference numeral 7 denotes a high voltage source. is there.
  • FIG. 8 is a cross-sectional view of a main part of an apparatus for electretizing a dielectric film by generating corona discharge using a wire electrode.
  • the same reference numerals are assigned to the parts common to the apparatus of FIG. 8.
  • an FEP (fluoroethylene.propylene) thin film 4 is placed on a ground electrode (metal tray) 5, a DC corona discharge is generated by the wire electrode 21, and ions are applied to the FEP thin film 4. Perform electret toys by pouring and fixing.
  • the apparatus of FIG. 8 has an advantage that a wide range of ions can be irradiated because the wire electrode 21 has a two-dimensional extent.
  • the dielectric film itself which is the target of electretization, is taken out and electret toe soot processing is performed.
  • This technology can be said to be based on ECM that consists of assembling mechanical parts.
  • silicon condenser microphones manufactured using so-called MEMS (microelectromechanical system) element manufacturing technology are called “silicon microphones (or silicon microphones)”. It is attracting attention as an ECM manufacturing technology for use in mobile phone terminals and the like that are becoming thinner (see, for example, Patent Document 2).
  • the silicon microphone is manufactured by caloeing a silicon substrate using semiconductor process technology, electretization processing unrelated to semiconductor processing enters the manufacturing process. (In other words, it is not possible to take out the dielectric film and electretize it individually.) [0015] Therefore, the silicon microphone described in Patent Document 3 is a condenser microphone without an electret film.
  • the silicon microphone described in Patent Document 4 which does not mean that an electret toy can not be used in a silicon microphone, is capable of an electret toy with a dielectric film.
  • the silicon microphone described in Patent Document 4 includes a first silicon substrate (microphone film) including a dielectric film formed on a semiconductor substrate and a second silicon bonded to the first silicon substrate.
  • the silicon substrate (microphone back plate) is composed of a dielectric substrate, and the dielectric film is electretized at the end of the manufacturing process of the first substrate, and then the second silicon substrate is bonded.
  • Non-Patent Document 1 Microphone lecture for broadcast engineers (Ninmura Nakamura Broadcasting Technology Kenrokukan Publishing November 1982 issue)
  • Patent Document 1 JP 56-58220 A
  • Patent Document 2 Japanese Patent Laid-Open No. 11-88992
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-20411 (Fig. 1)
  • Patent Document 4 Japanese Translation of Special Publication 2000-508860 (Fig. 1A, Fig. 1B)
  • the present invention has been made in view of the above circumstances, and it is possible to easily electretize a dielectric film of a capacitor microphone formed by micro-processing a silicon substrate.
  • Another object of the present invention is to provide a novel electret method for silicon microphones that can cope with fluctuations in microphone sensitivity caused by manufacturing variations and component characteristic variations.
  • a capacitor microphone formed by finely processing a semiconductor substrate such as a silicon substrate is mounted on a mounting substrate, and then a dielectric that is a component of the capacitor microphone.
  • An electret method for electretizing a membrane wherein one electrode of the condenser microphone is connected to a predetermined potential via its terminal, and at least one corona discharge is caused by this and one acicular electrode. Is performed individually on one of the condenser microphones, thereby electretizing the dielectric film.
  • a silicon microphone formed using a semiconductor substrate such as a silicon substrate cannot take out electret films individually and cannot be electretized.
  • the silicon microphone mouthphone is manufactured in two parts, the manufacturing process is complicated. Therefore, in the present invention, a silicon substrate is processed to complete a capacitor microphone (semiconductor chip thereof), which is mounted on a mounting substrate, and in this state, the dielectric film is electretized. Electretization is performed by corona discharge from the needle-like electrode to the dielectric film of the silicon microphone. At this time, corona discharge from one needle-like electrode is applied to the dielectric of one microphone. Do this individually.
  • the corona discharge of the needle electrode more ions can be concentrated and irradiated on the dielectric film of the microphone than in the case of the corona discharge by the wire electrode. Therefore, due to the structure of the microphone, for example, even when ions are irradiated onto the dielectric film through the opening of the fixed electrode, an appropriate amount of ions can be supplied. Let's toy can be used.
  • the dielectric film of one microphone is electretized with one needle-like electrode, it is easy to determine the conditions. Therefore, it is advantageous in improving the accuracy of electret toys. It becomes.
  • the condenser microphone includes a fixed electrode having a plurality of sound holes, a vibration film disposed at a predetermined interval from the fixed electrode, and the vibration microphone on the vibration film.
  • the dielectric film provided on the dielectric film and the vibrating electrode brought into contact with the dielectric film are mounted on a mounting substrate, and the dielectric film in the capacitor microphone is Provided on the mounting substrate and electrically connected to an electrode terminal connected to the vibration electrode to be at a ground potential.
  • the one needle-like electrode is located above the fixed electrode.
  • the corona discharge is caused to occur, and ions generated by the corona discharge are intensively caused to arrive at the dielectric film via the plurality of sound holes provided in the fixed electrode.
  • Body membrane electric Including those that perform the Retsutoi spoon.
  • ions generated by corona discharge reach the dielectric film via a plurality of sound holes (openings for guiding sound waves to the vibration film) provided in the fixed electrode.
  • the dielectric film is fixed at the ground potential and the ions are irradiated from one acicular electrode under the specified conditions, it can be applied to the dielectric film in a large amount of ions. . Therefore, even if the internal structure of the microphone is not suitable for applying ions to the dielectric film, the dielectric film can be electretized.
  • the electret toy soaking method of the present invention includes a method of electretizing the dielectric film by a plurality of corona discharges.
  • the electretization process is performed in several times. Electretization can be performed without difficulty, and it is advantageous in that the accuracy of the electret process is increased.
  • an initial electret treatment of the dielectric film by corona discharge is performed under predetermined conditions, and then the conditions are reset and the corona discharge is performed again. Includes those that carry out electret toy processing of additional cards.
  • an initial electret toy bowl is achieved with the initial electret toy bowl, and then an additional electret toy bowl is performed under different conditions to achieve the desired electret toy bowl. It is to be.
  • Electret toy can be performed without difficulty, and it is also advantageous in increasing the accuracy of electret processing.
  • the sensitivity of the condenser microphone is measured, and the additional electretization process is performed based on the measurement result. And performing the additional electret process under the determined conditions.
  • a certain amount of dielectric film is electreted one by one to obtain an electret condenser microphone, and then the electret The sensitivity of the condenser microphone is measured, and based on the measurement result, the conditions for the electret toy by re-corona discharge are determined.
  • the microphone can be adjusted to the specified sensitivity by individually adjusting the electret amount in one electret toy bowl process.
  • variations in microphone sensitivity due to manufacturing variations can be absorbed by adjusting the amount of electrets in the additional electret processing, and in addition, FET (field effect transistors) Sensitivity variations due to capacitance, parasitic capacitance, etc. can also be absorbed by adjusting the electret amount in the additional electret process. Therefore, it is possible to take measures against fluctuations in microphone sensitivity caused by manufacturing variations and component characteristic variations.
  • the electret toy soaking method of the present invention includes a method in which the charge amount of the dielectric film is adjusted by an applied voltage of corona discharge.
  • the electretization amount can be adjusted by the applied voltage during corona discharge.
  • the electret toy method of the present invention includes a method in which the charge amount of the dielectric film is adjusted by the distance between the needle-like electrode that performs corona discharge and the dielectric film.
  • the electretization amount can be adjusted by adjusting the distance between the needle electrode and the dielectric film.
  • the electretization method of the present invention includes a method in which the charge amount of the dielectric film is adjusted by the time for performing corona discharge.
  • the electret toy amount can be adjusted by adjusting the duration of corona discharge.
  • the charge amount of the dielectric film is adjusted by the ratio of negative ions and positive ions generated by corona discharge.
  • the amount of electret toy can be adjusted by the ratio of negative ions and positive ions generated by corona discharge.
  • the condenser microphone of the present invention includes the dielectric film that has been electretized by the electretization method of the present invention as a component of the capacitor.
  • An electret toy dredge apparatus is an electretizing apparatus for carrying out the electret toy dredge method according to the present invention, wherein at least one corona discharge is individually applied to one condenser microphone.
  • a needle electrode for carrying out the above operation, a high voltage power source for applying a high voltage to the needle electrode, a grounding pin for setting a film to be electretized in the condenser microphone to a ground potential, And a stage for mounting the mounting substrate on which the condenser microphone is mounted.
  • the electret toy device of the present invention includes a device further having a sensitivity measuring unit for measuring the sensitivity of the condenser microphone.
  • the sensitivity measurement unit of the silicon condenser microphone that has been electretized is provided in the electret toy device to measure the sensitivity of the microphone mouthphone after the electret toy processing. Then, based on the measurement result, it is possible to set the conditions for the next electret toy processing.
  • the applied voltage of corona discharge and corona discharge are performed. At least one of the distance between the negative electrode and the dielectric portion, the time during which corona discharge is performed, and the ratio of negative ions and positive ions generated by corona discharge can be adjusted.
  • At least one of the applied voltage of corona discharge, the distance from the dielectric film, the discharge time, and the polarity of the discharge ions is at least one.
  • the present invention is a method of manufacturing a condenser microphone using the above-described electret toy method, wherein the condenser microphone is shaped by finely processing a semiconductor substrate, and the condenser microphone is used.
  • the present invention with respect to a silicon microphone obtained by micro-processing a silicon substrate, it is possible to individually electret the dielectric film to a specified amount. In addition, electret toy can be performed in the mounted state, which makes it possible to accurately form a silicon microphone having desired characteristics.
  • a silicon microphone (silicon microphone) is a force that has been considered difficult to adopt the electret method because only the dielectric film cannot be taken out and electretized. This makes it possible to manufacture electret-type silicon microphones.
  • the sensitivity of the microphone due to variations in film thickness can also be compensated by adjusting the electret toy amount.
  • the electret toy is performed and the amount of the electret toy is individually adjusted. Because the sensitivity of the microphone can be adjusted, the number of defective products with non-standard (standard) sensitivity is reduced, and the yield of microphone manufacturing is dramatically improved. Therefore, mass production of electret type silicon microphones becomes possible.
  • FIG. 1 is a cross-sectional view of a device for explaining the structure of a silicon microphone phone manufactured by micro-processing a silicon substrate according to the first embodiment of the present invention and its mounting mode.
  • FIG.2 Cross-sectional view showing mounting structure of electret microphone using silicon substrate (structure after enclosing case)
  • FIG. 3 is a diagram showing a main configuration of an electret toy dredge apparatus according to the present invention.
  • FIG. 4 is a process flow diagram showing the main processes of the electret toy bowl method of the present invention.
  • FIG. 5 is a diagram showing a configuration for measuring the sensitivity of a silicon microphone provided in the electret toy dredge device of FIG.
  • FIG. 6 is an explanatory diagram showing an electret toy bowl method according to Embodiment 2 of the present invention.
  • FIG. 7 Cross-sectional view of the essential parts of an apparatus that uses an acicular electrode to cause corona discharge to electret dielectric film
  • FIG. 8 Cross-sectional view of the essential parts of an apparatus for producing a corona discharge using a wire electrode to electret dielectric film
  • 45 Electronic components (FET, resistor, amplifier, etc.)
  • FIG. 1 is a cross-sectional view of a device for explaining a structure of a silicon microphone manufactured by micro-processing a silicon substrate and a mounting mode thereof.
  • the silicon microphone 43 in FIG. 1 includes a silicon substrate (silicon diaphragm) 34, a vibrating film 33 that functions as a capacitor pole, an inorganic dielectric film 32 as a film to be electretized, and a spacer. Part 37 and fixed electrode 31 functioning as the other electrode of the capacitor.
  • the fixed electrode 31 is provided with a plurality of sound holes (openings for guiding sound waves to the vibrating membrane 33) 35. It is.
  • Reference numeral 36 indicates an air gap.
  • the vibrating film 33, the fixed electrode 31, and the inorganic dielectric film 32 constituting the microphone are manufactured using a silicon microfabrication technique and a CMOS (complementary field effect transistor) manufacturing process technique.
  • CMOS complementary field effect transistor
  • the silicon microphone 43 is mounted on the mounting substrate 42.
  • the vibrating membrane 33 that forms one pole of the capacitor and the fixed electrode 31 that forms the other pole of the capacitor are electrically connected to the wiring patterns 60a and 60b on the mounting board via bonding wires 44a and 44b, respectively.
  • each wiring pattern 60a, 60b is electrically connected to the ground pattern 46 and the microphone signal output pattern 47 provided on the back surface of the mounting board 42 via the wiring LI, L2 inside the mounting board, respectively! RU
  • the silicon microphone 43 is manufactured using a microfabrication technology for manufacturing a MEMS element and a C MOS manufacturing process technology of LSI.
  • a silicon substrate 34 is prepared, on which a silicon oxide film 33 doped with boron or phosphorus at a high concentration, and also a silicon oxide film 32 (a dielectric film, a tetrafluoride film). Tylene resin or the like can also be used), and a silicon layer is formed thereon using a selective epitaxial technique or the like.
  • a silicon oxide film serving as a fixed electrode is formed on the silicon layer by injecting and diffusing impurities such as phosphorus and boron in a high concentration in the region which becomes the sacrificial layer 36 (the portion removed by etching) of the silicon layer. 31 is formed, and an opening (sound hole) 35 is provided by patterning.
  • the etching solution is permeated through the opening 35, and the sacrificial layer 36 is removed by utilizing the difference in etching rate between the silicon layer into which the impurity is introduced at a high concentration and the non-doped layer.
  • the sacrificial layer portion becomes the air gap 36 and, at the same time, the spacer portion 37 is formed.
  • the back surface of the silicon substrate 34 is etched with an alkaline etching solution such as KOH to form a deep groove 38. As a result, a processed silicon substrate (silicon diaphragm) 34 is formed. In this way, the silicon microphone 43 of FIG. 1 is obtained.
  • a silicon microphone cannot take out only a dielectric film and electretize like a conventional ECM. Therefore, in the present invention, the dielectric film 32 is electretized using corona discharge while the microphone is mounted on the mounting substrate. I do.
  • the inorganic dielectric 32 is located between the fixed electrode 31 and the vibrating membrane electrode 33 on the silicon substrate 34, and ions generated by corona discharge are fixed electrodes.
  • the inorganic dielectric film 32 is reached through an opening (sound hole) 35 provided in 31. That is, the structure is such that ions due to corona discharge do not easily reach the inorganic dielectric film 32, and a contrivance is required to make the inorganic dielectric film 32 an electret.
  • a sacrificial layer for forming the vibration membrane electrode 33, the inorganic dielectric film 32, the fixed electrode 31, and the air gap 36 is formed by laminating a silicon oxide film. Then, after the diffusion process is completed, the sacrificial layer is etched, and this portion becomes the air gap 36.
  • variations in the thickness of the silicon layer during mass production (this thickness determines the value of the air gap 36) occur by about 10%. For this reason, the distance between the diaphragm electrode 33 and the fixed electrode 31 also varies by about 10%.
  • microphone sensitivity is inversely proportional to the distance between electrodes. Therefore, if the distance between the electrodes varies, the sensitivity of the microphone varies.
  • the dielectric film 32 is made into an electret without difficulty, and furthermore, the microphone mouthphone caused by device manufacturing variation or electronic component characteristic variation, etc.
  • the variation in sensitivity is absorbed by adjusting the electret amount.
  • FIG. 2 is a cross-sectional view showing an electret microphone mounting structure using a silicon substrate (structure after enclosing the case).
  • FIG. 2 parts that are the same as those in FIG. 1 are given the same reference numerals.
  • the silicon microphone (semiconductor device) 43 is depicted in a simplified manner (the actual structure is as shown in FIG. 1).
  • a silicon microphone (semiconductor device) 43 and other elements (FET, resistance element, etc.) 45 are mounted on a plastic or ceramic mounting substrate 42.
  • a ground pattern 46 and a microphone signal output pattern 47 are arranged on the back surface of the mounting substrate 42 .
  • the fixed electrode 31 and the diaphragm electrode 33 of the silicon microphone (semiconductor device) 43 are connected to the wiring patterns 60a and 60b on the mounting board 42 via wires 44a and 44b.
  • the shield case 41 is mounted on the mounting substrate 42 after the electretization process is completed.
  • the shield case 41 is provided with a wide opening 49 for guiding sound waves.
  • Fig. 3 is a diagram showing a main configuration of the electret toy bowl device of the present invention.
  • the electret toy device shown in Fig. 3 is a so-called single-wafer type (several pieces) that performs electret toy soot by irradiating one silicon microphone with ions from corona discharge of one acicular electrode.
  • This is a processing device that processes each device individually, rather than the batch method that processes all devices at once.
  • corona discharge using the needle-like electrode 51 is used for the electretization process. That is, the needle electrode 51 is positioned above the silicon microphone (semiconductor device) 43. The acicular electrode 51 is connected to a high voltage source 53 for generating corona discharge.
  • a grounding pin (charging device pin) 52 is connected to the ground pattern 46 on the back surface of the mounting substrate 42.
  • the diaphragm electrode 33 (see Fig. 1) of the silicon microphone is connected to the ground pattern provided on the back surface of the mounting board 42 via the wire 44a, the wiring pattern 60a on the substrate 42, and the internal wiring L1. It is electrically connected to 46. Therefore, by connecting the grounding pin (charging device pin) 52 to the ground pattern 46, the diaphragm electrode 33 becomes the ground potential.
  • the opening 35 of the fixed electrode 31 Even when the dielectric film 32 is irradiated with ions through the metal film, an appropriate amount of ions can be supplied, and thus the dielectric film 32 can be electretized.
  • the needle film 51 performs electret toning of the dielectric film 32 of one silicon microphone (semiconductor device) 43, it is easy to determine the conditions. Therefore, the accuracy of the electret toy is improved. Is advantageous.
  • the dielectric film 32 is fixed to the ground potential and ions are irradiated from one acicular electrode 51 under a predetermined condition, a large amount of ions are concentratedly applied to the dielectric film 32. be able to. Therefore, even if the situation is not suitable for applying ions to the dielectric film 32 due to the internal structure of the microphone, the dielectric film 32 can be easily electretized.
  • FIG. 4 is a process flow diagram showing the main steps of the electret toy bowl method of the present invention.
  • the electret toy method of FIG. 4 electrets the dielectric film by a plurality of corona discharges.
  • step S100 chip mounting is performed (step S100). That is, silicon microphone
  • Step S101 As a result, an electret condenser microphone is formed.
  • step S102 the sensitivity of the silicon microphone 43 is measured.
  • FIG. 5 is a diagram showing a configuration for measuring the sensitivity of the silicon microphone, which is provided in the electret toy device of FIG.
  • reference numeral 71 is a speaker
  • reference numeral 72 is a speaker amplifier
  • reference numeral 73 is a sensitivity measuring device.
  • Reference numeral 76 is a shield case for sensitivity measurement.
  • the shield case 76 is used only for sensitivity measurement (that is, a substitute for the shield case 41 in FIG. 2).
  • the shield case 76 is provided with an opening 77 for allowing sound waves to pass therethrough.
  • a constant pressure sound is emitted from the speaker 71 toward the silicon microphone 43.
  • the measurement pins 74 and 75 are connected to the ground pattern 46 and the microphone signal output pattern 47 provided on the back surface of the mounting substrate 42.
  • This measuring pin is connected to a device 73 for measuring the output signal of the microphone.
  • the sound emitted from the speaker 71 reaches the diaphragm 33 of the silicon microphone 43, and the diaphragm 33 is vibrated accordingly.
  • the capacitance of the capacitor changes, the change in capacitance is taken out as an electrical signal, and the electrical signal is sent to the sensitivity measuring device 73 via the measurement pins 74 and 75.
  • the sensitivity of the silicon microphone 43 that has been subjected to a certain amount of electret toe soot processing is measured.
  • step S the amount of electret toy required in the next electretization process (additional electretization process) is determined (step S). 103).
  • the desired microphone sensitivity cannot be obtained with one electret toy bowl. Therefore, the amount of electret toy required to obtain the desired sensitivity is obtained according to the current measurement sensitivity and the characteristic information indicating the relationship between the amount of electret toy and the microphone sensitivity that has been obtained in advance. It is.
  • the electret toy bowl shown in Fig. 3 is then used to perform the electret toy dredging as determined.
  • the conditions are set in the device (charging device) (step 104: details of this step will be described later).
  • step S105 an additional electret toy padding process is performed (step S105), and then a shield case 41 is mounted as shown in FIG. 2 (step S106), and as shown in FIG. A silicon microphone is completed (step S107).
  • step S 104 condition setting in the electret toy bowl device in FIG. 4 will be described.
  • FIG. 3 There are four possible elements for setting conditions in the electre toy dredge device (Fig. 3). That is, voltage, ion polarity, distance, and time. By combining one or more of these, the target electret amount can be accurately measured for the dielectric film 32. You can perform electret toys.
  • the amount of electret distortion can be adjusted by adjusting the corona discharge voltage.
  • the adjustment of the corona discharge voltage is realized by changing the voltage value of the power supply voltage 53 in the electret toy device shown in FIG.
  • the present invention is not limited to the force ground potential in which one electrode is connected to the ground potential. Any potential can be used as long as a predetermined potential difference can be formed between the electrode and the needle-like electrode.
  • the potential connected to the electrode terminal is not the ground potential but the plus side. Or you may adjust by shifting to the minus side.
  • the electret toy amount can also be adjusted by adjusting the ratio of positive ions to negative ions of the discharge ions by changing the maximum value of the power supply voltage 53 with time. It is.
  • the electret toy amount can also be adjusted by changing the distance a (see FIG. 3) between the dielectric film 32 and the needle electrode 51.
  • the electret toy amount can also be adjusted by changing the corona discharge time. The longer the discharge time, the greater the amount of charge.
  • the electret toy processing is performed in several steps (for example, the initial electret toy achieves the minimum level of electret toy, and then the conditions are changed to add additional electronics. It is possible to perform the electret toy process without difficulty by performing the tattle toy process to achieve the desired electret toy process, and to increase the accuracy of the electret toy process.
  • the sensitivity of the microphone is measured, and the next electret toy amount is determined from the actual measurement result to adjust the microphone to the specified (standard) sensitivity. be able to.
  • variations in microphone sensitivity due to manufacturing variations can be absorbed by adjusting the electret amount of the additional electret toy processing.
  • the condenser microphone of the present invention manufactured through the steps including the above-described electret toe soaking process is a dielectric film manufactured using the electret toy soot method of the electret of the present invention. Is an ultra-small condenser microphone formed by microfabrication of a silicon substrate. Therefore, according to the present invention, an electret “silicon” condenser microphone (ESCM) having a very small size, having a sensitivity that can withstand practical use, and an excellent characteristic can be obtained.
  • ECM electret “silicon” condenser microphone
  • a silicon microphone (silicon microphone) is a force that has been considered difficult to adopt the electret method because it is impossible to take out only a dielectric film and perform electret toning. This makes it possible to manufacture electret-type silicon microphones.
  • the electret toy is performed and the amount of the electret toy is adjusted individually. Because the sensitivity of the microphone can be adjusted, the number of defective products with non-standard (standard) sensitivity is reduced, and the yield of microphone manufacturing is dramatically improved. Therefore, mass production of electret type silicon microphones becomes possible.
  • a silicon substrate is usually used, but it goes without saying that a semiconductor substrate other than silicon, such as a compound semiconductor substrate, can be used.
  • the condenser microphone chip after the condenser microphone chip is mounted on the mounting substrate, it may be before the force mounting in which the electret toy method is performed.
  • FIG. 6 is a diagram showing an electret toy bowl method according to Embodiment 2 of the present invention.
  • the electret toy dredge device of Fig. 6 is similar to the electret toy dredge device of Fig. 3 by irradiating one silicon microphone mouthphone with ions by corona discharge of one needle electrode. It is a so-called single-wafer type processing apparatus (not a batch type in which a plurality of devices are processed at a time, but a method in which each device is individually processed) that performs dredging.
  • corona discharge using the needle-like electrode 51 is used for the electretization process. That is, the needle electrode 51 is positioned above the silicon microphone (semiconductor device) 43. The acicular electrode 51 is connected to a high voltage source 53 for generating corona discharge.
  • grounding pin (grounding device pin) 52 is electrically connected to a terminal 44a (see Fig. 1) taken out from the diaphragm electrode 33 (see Fig. 1) of the silicon microphone. Therefore, the diaphragm electrode 33 is set to the ground potential by connecting the grounding pin (charging device pin) 52 to the ground potential.
  • the silicon microphone 43 electretized in this way is mounted on a desired mounting board.
  • the present invention relates to silicon using a semiconductor chip formed by finely processing a silicon substrate.
  • the microphone (silicon microphone) has the effect of realizing the electretization of a dielectric film with high precision that is unreasonable, and the ultra-small silicon microphone mouthphone mounted on a mobile communication device, its electret toy method, In addition, it is useful as an electret toy device used for its manufacture.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrostatic, Electromagnetic, Magneto- Strictive, And Variable-Resistance Transducers (AREA)

Abstract

 シリコン基板をマイクロ加工して形成されるコンデンサマイクロホンの誘電体膜を、無理なくエレクトレット化することが可能であり、また、製造ばらつきや部品の特性ばらつきに起因して生じるマイクロホン感度の変動についても対策可能である、シリコンマイクロホン用の新規なエレクトレット化技術を提供する。  シリコンマイクロホンチップを完成させ、これを実装基板に実装し、この状態にて、一つの針状電極51によるコロナ放電によって、一つのシリコンマイクロホンチップ内の誘電体膜に対して個別にエレクトレット化処理を実施する。複数回のエレクトレット化、2回目以降のエレクトレット化量をマイク感度の実測結果に基づいて適応的に決定することによって、誘電体膜のエレクトレット化を正確かつ、効率よく実施する。

Description

明 細 書
コンデンサマイクロホンのエレクトレツトイ匕方法、エレクトレット化装置およ びこれを用いたコンデンサマイクロホンの製造方法
技術分野
[0001] 本発明は、コンデンサマイクロホンのエレクトレツトイ匕方法、エレクトレツトイ匕装置およ びこれを用いたコンデンサマイクロホンの製造方法にかかり、特にシリコンなどの半導 体基板の微細加工技術を用いて形成されたコンデンサマイクロホンにおける誘電体 膜のエレクトレツトイ匕方法、および、エレクトレツトイ匕装置に関する。 背景技術
[0002] エレクトレット'コンデンサ ·マイクロホン(ECM)は、音波によるコンデンサの容量変 化を電気信号として検出すると共に、半永久的な分極をもつエレクトレット膜を利用 することにより、コンデンサの直流バイアスを不要とした、小型の音響電気変換装置 である。
[0003] ECMにおけるエレクトレット膜 (少なくとも一部が分極している誘電体膜)は、例え ば、 FEP (フロロエチレン 'プロピレン)などの有機誘電体膜からなり、この誘電体膜に 電荷を注入して固定することによって形成される。誘電体膜に注入された電荷が形 成する電場により、コンデンサの両極に電位差が発生する。なお、誘電体膜に電荷 を注入して固定することを、エレクトレツトイ匕という。
[0004] 誘電体膜 (エレクトレット膜)は、 FEPなどの薄膜で構成されており、この外面に、金 、ニッケルなどの金属が蒸着等によって付着される。
[0005] エレクトレット形成のための誘電体膜への電荷の注入方法としては、図 7や図 8に示 す方法がある(例えば、非特許文献 1および特許文献 1参照)。
[0006] 図 7は、針状電極を用いてコロナ放電を生じさせて誘電体膜をエレクトレット化する 装置の要部断面図である。
[0007] 図 7の装置では、接地電極 (金属トレイ) 5上に FEP (フロロエチレン.プロピレン)薄 膜 4を載置し、針状電極 6によって直流コロナ放電を生じさせ、イオンを FEP薄膜 4に 注入、固定することによってエレクトレツトイ匕を行う。なお、参照符号 7は、高電圧源で ある。
[0008] 図 8は、ワイヤ電極を用いてコロナ放電を生じさせて誘電体膜をエレクトレツトイ匕する 装置の要部断面図である。図 8において、図 7の装置と共通する部分には、同じ参照 符号を付すものとする。
[0009] 図 8の装置では、接地電極 (金属トレイ) 5上に FEP (フロロエチレン.プロピレン)薄 膜 4を載置し、ワイヤ電極 21によって直流コロナ放電を生じさせ、イオンを FEP薄膜 4 に注入、固定することによってエレクトレツトイ匕を行う。この図 8の装置は、ワイヤ電極 2 1が 2次元的な広がりをもつことから、広範隨こイオンを照射できるという利点がある。
[0010] したがって、通常、 ECMの製造に際し、量産性を考慮し、複数枚の FEP薄膜 (誘 電体膜)を、金属性のトレイに並べ、図 8の装置でコロナ放電し、一度に大量の FEP をエレクトレツトイ匕している。但し、この方法では、イオンの放射が均一にいかないこと があるためトレイ上の位置によってエレクトレット量がばらつくことがある。これにより、 マイクロホンの感度にばらつきが生じる。また、このほかにも、寄生容量、 FET容量の ばらつき等による、感度のばらつきが発生する場合もある。
[0011] 以上説明した先行技術では、エレクトレット化の対象である誘電体膜自体を取り出 して、エレクトレツトイ匕処理を行っている。この技術は、機械的な部品を組み立てること によって構成される ECMを前提とした技術ということができる。
[0012] これに対し、近年、機械部品を組立てるのではなぐシリコン基板をマイクロ加工し て、超小型のコンデンサマイクロホンを形成する技術が提案されている(例えば、特 許文献 2、特許文献 3、特許文献 4参照)。
[0013] V、わゆる MEMS (微小電気機械システム)素子の製造技術を用いて製造されるシリ コンのコンデンサマイクロホンは、 「シリコンマイクロホン(あるいは、シリコンマイク)」と 呼ばれており、小型化、薄型化が進展する携帯電話端末等に搭載するための ECM の製造技術として注目されて 、る (例えば、特許文献 2参照)。
[0014] ここで、シリコンマイクロホンは、半導体プロセス技術を用いて、シリコン基板をカロェ することにより製造されるものであるため、半導体加工と関係のないエレクトレット化処 理は、その製造過程に入り込むことができない(つまり、誘電体膜だけを取り出して個 別にエレクトレツトイ匕することができな 、)。 [0015] したがって、特許文献 3に記載されるシリコンマイクロホンは、エレクトレット膜を具備 しな 、コンデンサマイクロホンとなって 、る。
[0016] ただし、シリコンマイクロホンにおけるエレクトレツトイ匕ができないわけではなぐ特許 文献 4に記載されるシリコンマイクロホンでは、誘電体膜のエレクトレツトイ匕が可能とな つている。
[0017] すなわち、特許文献 4に記載のシリコンマイクロホンは、半導体基板上に形成され た誘電体膜を含む第 1のシリコン基板 (マイクロホン膜)と、この第 1のシリコン基板に 貼り合わされる第 2のシリコン基板 (マイクロホン裏板)とからなり、第 1の基板の製造 工程の最後に誘電体膜のエレクトレツトイ匕を行い、し力る後、第 2のシリコン基板を貼 り合わせている。
非特許文献 1 :放送技術者のためのマイクロホン講座(中村仁一郎 放送技術 兼六 館出版 昭和 57年 11月号)
特許文献 1:特開昭 56 - 58220号公報
特許文献 2:特開平 11― 88992号公報
特許文献 3:特開 2005 - 20411号公報(図 1)
特許文献 4:特表 2000 - 508860号公報(図 1A,図 1B)
発明の開示
発明が解決しょうとする課題
[0018] 上記のとおり、シリコン基板を半導体製造プロセスを用いてマイクロ加工して得られ るシリコンマイクロホンは、本質的に、誘電体膜だけを取りだしてエレクトレツトイ匕でき な!、ことから ECM (エレクトレットコンデンサマイクロホン)を製造しにく 、。
[0019] 特許文献 4に記載の技術のように、シリコンマイクロホンを 2つの基板に分けて各々 を別個に製造し、最後に各基板を貼り合わせる方法では、誘電体膜のエレクトレット 化は可能である力 シリコンマイクロホンの製造工程が複雑ィ匕する。
[0020] また、シリコン基板のマイクロ加工の際、デバイスの寸法にばらつきが生じやすぐ あるいは、実装基板上に搭載される FET (電界効果トランジスタ)等の電子部品の性 能のばらつきも無視できない場合があり、このため、シリコンマイクロホンの感度にば らつきが生じる。特許文献 4では、このようなシリコンマイクロホンの感度のばらつきに 関する対策については、何ら記載されていない。
[0021] 本発明は、前記実情に鑑みてなされたものであり、シリコン基板をマイクロ加工して 形成されるコンデンサマイクロホンの誘電体膜を、無理なくエレクトレツトイ匕することが 可能であり、また、製造ばらつきや部品の特性ばらつきに起因して生じるマイクロホン 感度の変動についても対応可能である、シリコンマイクロホン用の新規なエレクトレツ ト化方法を提供することを目的とする。
課題を解決するための手段
[0022] 本発明のエレクトレツトイ匕方法では、シリコン基板などの半導体基板を微細加工する ことによって形成されるコンデンサマイクロホンを実装基板上に実装した後に、前記コ ンデンサマイクロホンの構成要素である誘電体膜をエレクトレツトイ匕するエレクトレット 化方法であって、前記コンデンサマイクロホンの一方の電極を、その端子を介して所 定の電位に接続し、これと一つの針状電極による少なくとも 1回のコロナ放電を、一つ の前記コンデンサマイクロホンに対して個別に実施することにより、前記誘電体膜を エレクトレット化する。
[0023] シリコン基板などの半導体基板を用いて形成されるシリコンマイクロホンは、エレクト レット膜を個別に取り出して、エレクトレツトイ匕することができない。また、シリコンマイク 口ホンを 2つの部品に分けて製造する場合は、製造工程が複雑ィ匕する。そこで、本発 明では、シリコン基板を加工してコンデンサマイクロホン (の半導体チップ)を完成させ 、これを実装基板に実装し、この状態で、誘電体膜のエレクトレツトイ匕を行うようにする 。エレクトレット化は、シリコンマイクロホンの誘電体膜に対して、針状電極からコロナ 放電をすることにより行われ、かつ、このとき、一つの針状電極からのコロナ放電を、 一つのマイクロホンの誘電体に対して個別に行うようにする。針状電極のコロナ放電 によれば、ワイヤ電極によるコロナ放電の場合よりも多くのイオンをマイクロホンの誘 電体膜に集中して照射することができる。したがって、マイクロホンの構造上、例えば 、固定電極の開口部を介して誘電体膜へのイオンの照射が行われる場合でも、適切 な量のイオンの供給が可能であり、したがって、誘電体膜のエレクトレツトイ匕が可能で ある。また、一つの針状電極で一つのマイクロホンの誘電体膜のエレクトレット化を行 うため、条件出しがし易ぐしたがって、エレクトレツトイ匕の精度を向上させる点で有利 となる。
[0024] また、本発明のエレクトレツトイ匕方法では、前記コンデンサマイクロホンは、複数の音 孔を有する固定電極と、この固定電極と所定間隔を置いて配置される振動膜と、この 振動膜上に設けられる前記誘電体膜と、前記誘電体膜に当接せしめられた振動電 極とを有し、実装基板上に実装されており、また、前記コンデンサマイクロホンにおけ る前記誘電体膜は、前記実装基板に設けられ、前記振動電極に接続された電極端 子に電気的に接続されて接地電位となっており、この状態で、前記固定電極の上方 にお 、て前記一つの針状電極によるコロナ放電を行 、、そのコロナ放電によって発 生するイオンを、前記固定電極に設けられた前記複数の音孔を経由して前記誘電体 膜に集中的に到来させ、これによつて前記誘電体膜のエレクトレツトイ匕を行うものを含 む。
[0025] エレクトレツトイ匕に際し、コロナ放電によるイオンは、固定電極に設けられた複数の 音孔 (音波を振動膜に導くための開口部)を経由して誘電体膜に到達する構造であ るが、誘電体膜を接地電位に固定した上で、 1つの針状電極から所定条件の下でィ オンの照射を行うため、多量のイオン^^中的に誘電体膜に当てることができる。し たがって、マイクロホンの内部構造上、誘電体膜にイオンを当てるのに適さない状況 となったとしても、誘電体膜のエレクトレツトイ匕を行うことができる。
[0026] 本発明のエレクトレツトイ匕方法では、複数回のコロナ放電によって前記誘電体膜を エレクトレット化するものを含む。
[0027] 何回かに分けてエレクトレット化処理を行うものである。無理なくエレクトレット化を行 うことができ、また、エレクトレット化処理の精度を高める点でも有利となる。
[0028] また、本発明のエレクトレツトイ匕方法では、所定条件の下で、コロナ放電による前記 誘電体膜の初期のエレクトレット化処理を実施し、その後、条件を再設定して再度、 コロナ放電による追カ卩のエレクトレツトイ匕処理を実施するものを含む。
[0029] 例えば、初期エレクトレツトイ匕によって最低限度のエレクトレツトイ匕を達成し、次に、 条件を変えて追カ卩のエレクトレツトイ匕を行 、所望のエレクトレツトイ匕を達成するようにす るものである。無理なくエレクトレツトイ匕を行うことができ、また、エレクトレット化処理の 精度を高める点でも有利となる。 [0030] 本発明のエレクトレツトイ匕方法では、前記初期エレクトレツトイ匕を行った後、前記コン デンサマイクロホンの感度を測定し、その測定結果に基づ 、て前記追加のエレクトレ ット化処理の条件を決定し、決定された条件下で前記追加のエレクトレット化処理を 実施するものを含む。
[0031] シリコンマイクロホンの製造ばらつき (膜厚ばらつき等)による感度のばらつきをなく すため、一つずつ誘電体膜を一定量エレクトレツトイ匕してエレクトレットコンデンサマイ クロホンを得、次に、そのエレクトレットコンデンサマイクロホンの感度を測定し、その 測定結果に基づ 、て、再度のコロナ放電によるエレクトレツトイ匕の条件を決定するも のである。 1回のエレクトレツトイ匕処理におけるエレクトレット量を個別に調整すること により、マイクロホンを規定の感度に調整することができる。特に、製造ばらつき (膜厚 のばらつき等)によるマイクロホンの感度のばらつきを、追加のエレクトレツトイ匕処理の エレクトレット量を調整することによって吸収することができ、さらに、 FET (電界効果ト ランジスタ)の容量、寄生容量等に起因する感度のばらつきも、追加のエレクトレット 化処理のエレクトレット量を調整することによって吸収することができる。したがって、 製造ばらつきや部品の特性ばらつきに起因して生じるマイクロホン感度の変動につ いても対策可能となる。
[0032] 本発明のエレクトレツトイ匕方法では、前記誘電体膜の帯電電荷量を、コロナ放電の 印加電圧により調整するものを含む。
[0033] この構成により、コロナ放電の際の印加電圧により、エレクトレット化量を調整するこ とがでさる。
[0034] 本発明のエレクトレツトイ匕方法では、前記誘電体膜の帯電電荷量を、コロナ放電を 行う前記針状電極と前記誘電体膜との距離により調整するものを含む。
[0035] この構成により、針状電極と誘電体膜との間の距離を調整することによって、エレク トレット化量を調整することができる。
[0036] 本発明のエレクトレット化方法では、前記誘電体膜の帯電電荷量を、コロナ放電を 行う時間により調整するものを含む。
[0037] この構成により、コロナ放電の継続時間を調整することによって、エレクトレツトイ匕量 を調整することができる。 [0038] 本発明のエレクトレット化方法では、前記誘電体膜の帯電電荷量を、コロナ放電で 発生するマイナスイオンとプラスイオンの割合により調整する。
[0039] この構成により、コロナ放電で発生するマイナスイオンとプラスイオンの割合により、 エレクトレツトイ匕量を調整することができる。
[0040] また、本発明のコンデンサマイクロホンは、本発明のエレクトレット化方法によりエレ タトレット化された前記誘電体膜をコンデンサの構成要素として有する。
[0041] この構成によれば、上記エレクトレット化方法を用いて製造された誘電体膜をコンデ ンサの構成要素としてもつ、シリコン基板を微細加工して形成されるコンデンサマイク 口ホンを用いることにより、超小型で、実用に耐える感度をもつ、エレクトレット'シリコ ン 'コンデンサ ·マイクロホン(ESCM)を得ることができる。
[0042] 本発明のエレクトレツトイ匕装置は、本発明のエレクトレツトイ匕方法を実施するための エレクトレット化装置であって、少なくとも 1回のコロナ放電を、一つのコンデンサマイ クロホンに対して個別に実施するための一つの針状電極と、この針状電極に高電圧 を印加するための高電圧電源と、前記コンデンサマイクロホンにおけるエレクトレット 化対象の膜を接地電位とするための接地用ピンと、前記コンデンサマイクロホンが実 装された実装基板を載置するためのステージと、を有する。
[0043] この構成によれば、一つのコンデンサマイクロホンに対してコロナ放電によるイオン 照射を行うための構成 (エレ外レット化対象の膜を接地するための接地用ピンを含 む)と、実装基板をセットするためのステージ (載置台)をもつエレクトレツトイ匕装置を構 成しているため、実装状態のシリコンマイクロホンについてエレクトレツトイ匕処理を行う ことが可能となる。
[0044] 本発明のエレクトレツトイ匕装置は、前記コンデンサマイクロホンの感度を測定する感 度測定部を、さらに有するものを含む。
[0045] この構成によれば、エレクトレツトイ匕装置に、エレクトレツトイ匕されたシリコンコンデン サマイクロホンの感度測定部を併設することにより、エレクトレツトイ匕処理後に、マイク 口ホンの感度を測定し、その測定結果に基づ 、て次のエレクトレツトイ匕処理の条件を 設定することが可能となる。
[0046] また、本発明のエレクトレツトイ匕装置では、コロナ放電の印加電圧、コロナ放電を行 う電極と前記誘電体部との距離、コロナ放電を行う時間、およびコロナ放電で発生す るマイナスイオンとプラスイオンの割合、の少なくとも一つを調整可能である。
[0047] この構成によれば、 1回のエレクトレット化処理のエレクトレット量を調整するために、 コロナ放電の印加電圧、誘電体膜との距離、放電時間、放電イオンの極性の少なくと も一つを調整することが可能な調整手段を設けることにより、エレクトレット量の微調 整が可能となる。特に、 2度目のエレクトレット量を調整することによって、規定のマイ クロホン感度を得ることができ、これにより、製造ばらつきや電子部品の特性ばらつき をもつマイクロホンであっても、規定の感度に調整することが可能となる。
[0048] また本発明は、上記エレクトレツトイ匕方法を用いた、コンデンサマイクロホンの製造 方法であって、半導体基板を微細加工することによってコンデンサマイクロホンの形 状加工をおこなう工程と、前記コンデンサマイクロホンを実装基板上に実装する工程 と、前記実装する工程の前または後に、前記コンデンサマイクロホンの一方の電極を 、その端子を介して所定の電位に接続し、これと一つの針状電極による少なくとも 1回 のコロナ放電を、一つの前記コンデンサマイクロホンに対して個別に実施することに より、前記コンデンサマイクロホンの構成要素である誘電体膜をエレクトレツトイ匕する 工程とを含む。
この構成により、製造ばらつきや特性ばらつきが小さく感度のそろったマイクロホン を提供することが可能となる。
発明の効果
[0049] 本発明によれば、シリコン基板をマイクロ加工して得られるシリコンマイクロホンに関 し、個別に、誘電体膜を規定の量にエレクトレツトイ匕することが可能となる。また、実装 状態でエレクトレツトイ匕することもでき、これにより、所望の特性をもつシリコンマイクロ ホンを精度よく形成することが可能となる。
[0050] すなわち、従来、シリコンマイクロホン (シリコンマイク)は、誘電体膜だけを取り出し てエレクトレツトイ匕することができないことからエレクトレット方式を採用するのが困難と されていた力 本発明により、現実的な手法を用いて、エレクトレット方式のシリコンマ イク口ホンの製造が可能となる。
[0051] また、膜厚等のばらつき(デバイスの製造ばらつき)に起因するマイクロホンの感度 のばらつきも、エレクトレツトイ匕量を調整することによって補償することができる。
[0052] さらに、エレクトレット量や寄生容量、 FET容量のばらつき等に起因するマイクロホ ン感度のばらつきも、本発明によって、補償することが可能となる。
[0053] 本発明によれば、シリコン 'コンデンサ 'マイクロホンが完成した状態(実装基板に実 装された状態)において、エレクトレツトイ匕を行い、かつ、そのエレクトレツトイ匕量を個別 に調整してマイクロホンの感度を調整することができるため、規格 (規定)外の感度の 不良品が少なくなり、マイクロホン製造の歩留まりが飛躍的に向上する。したがって、 エレクトレット方式のシリコンマイクロホンの量産化が可能となる。
図面の簡単な説明
[0054] [図 1]本発明の実施の形態 1のシリコン基板をマイクロ加工して製造されるシリコンマ イク口ホンの構造と、その実装態様を説明するためのデバイスの断面図
[図 2]シリコン基板を用いたエレクトレットマイクロホンの実装構造 (ケース封入後の構 造)を示す断面図
[図 3]本発明のエレクトレツトイ匕装置の要部構成を示す図
[図 4]本発明のエレクトレツトイ匕方法の主要な工程を示す工程フロー図
[図 5]図 3のエレクトレツトイ匕装置に併設される、シリコンマイクロホンの感度を測定する ための構成を示す図
[図 6]本発明の実施の形態 2のエレクトレツトイ匕方法を示す説明図
[図 7]針状電極を用いてコロナ放電を生じさせて誘電体膜をエレクトレツトイ匕する装置 の要部断面図
[図 8]ワイヤ電極を用いてコロナ放電を生じさせて誘電体膜をエレクトレツトイ匕する装 置の要部断面図
符号の説明
[0055] 31 固定電極
32 誘電体膜 (無機誘電体膜)
33 振動膜電極 (振動膜)
34 シリコン基板 (シリコンダイヤフラム)
35 固定電極に設けられる音孔(開口部) 36 犠牲層のエッチングにより形成されるエアギャップ
41 シーノレドケース
42 プラスチックまたはセラミック力もなる実装基板
43 シリコン基板を用いた半導体チップ (シリコンマイクロホンチップ)
44 (44a, 44b) ボンディングワイヤ
45 (45a, 45b) 電子部品(FET、抵抗、アンプ等)
46 接地パターン
47 マイク信号出力パターン
49 マイクパッケージの音孔(開口部)
51 針状電極
52 接地用ピン (着電装置ピン)
53 高電圧電源
71 スピーカ
72 スピーカアンプ
73 感度測定装置
74 感度測定装置用ピン (接地パターン用)
75 感度測定装置用ピン (マイク信号パターン用)
76 感度測定装置用シールドケース (接地パターン用)
LI, L2 実装基板内の配線
発明を実施するための最良の形態
[0056] 本発明の実施の形態について、図面を参照しつつ詳細に説明する。
(実施の形態 1)
[0057] 図 1は、シリコン基板をマイクロ加工して製造されるシリコンマイクロホンの構造と、そ の実装態様を説明するためのデバイスの断面図である。
[0058] 図 1のシリコンマイクロホン 43は、シリコン基板(シリコンダイヤフラム) 34と、コンデン サのー極として機能する振動膜 33と、エレクトレット化対象の膜としての無機誘電体 膜 32と、スぺーサ部 37と、コンデンサの他極として機能する固定電極 31と、を有する 。固定電極 31には、複数の音孔 (音波を振動膜 33に導くための開口部) 35が設けら れている。なお、参照符号 36はエアギャップを示す。
[0059] マイクロホンを構成する振動膜 33、固定電極 31、無機誘電膜 32は、シリコンの微 細加工技術と、 CMOS (相補型電界効果トランジスタ)の製造プロセス技術とを利用 して製造される。
[0060] シリコンマイクロホン 43は、実装基板 42上に実装されている。コンデンサの一極を なす振動膜 33ならびにコンデンサの他極をなす固定電極 31は各々、ボンディングヮ ィャ 44a, 44bを介して、実装基板上の配線パターン 60a, 60bに電気的に接続され ている。また、各配線パターン 60a, 60bは各々、実装基板の内部の配線 LI, L2を 介して、実装基板 42の裏面に設けられたグランドパターン 46およびマイク信号出力 パターン 47と電気的に接続されて!、る。
[0061] シリコンマイクロホン 43は、 MEMS素子の製造のための微細加工技術と、 LSIの C MOS製造プロセス技術を利用して製造される。
[0062] すなわち、シリコン基板 34を用意し、この上に、ボロンやリンが高濃度にドープされ たシリコン酸ィ匕膜 33、同じくシリコン酸ィ匕膜 32 (誘電体膜であり、四フッ化工チレン榭 脂等も使用することができる)を積層形成し、その上にシリコン層を、選択ェピタキシャ ル技術等を用いて形成する。そのシリコン層の犠牲層 36 (エッチングにより除去され る部分)となる領域に、リンやボロン等の不純物を高濃度に注入、拡散し、そのシリコ ン層上に固定電極となるシリコン酸ィ匕膜 31を形成し、パターユングして開口部 (音孔 ) 35を設ける。そして、その開口部 35を介してエッチング液を浸透させ、不純物が高 濃度に導入されたシリコン層とノンドープの層とのエッチングレートの差を利用して、 犠牲層 36の部分を除去する。これによつて、犠牲層の部分はエアギャップ 36となり、 同時に、スぺーサ部 37が形成される。また、シリコン基板 34の裏面を、 KOH等のァ ルカリエッチング液にてエッチングして深い溝 38を形成する。これによつて、加工され たシリコン基板 (シリコンダイヤフラム) 34が形成される。このようにして、図 1のシリコン マイクロホン 43が得られる。
[0063] 先に説明したように、シリコンマイクロホンは、従来の ECMのように、誘電体膜だけ を取り出してエレクトレツトイ匕することができない。そこで、本発明では、マイクロホンが 実装基板に装着された状態で、コロナ放電を利用して誘電体膜 32のエレクトレット化 を行う。
[0064] 但し、図 1のシリコンマイクロホン 43では、無機誘電体 32がシリコン基板 34上の固 定電極 31と振動膜電極 33の間に位置しており、コロナ放電により発生するイオンは 、固定電極 31に設けられた開口部 (音孔) 35を経由して無機誘電体膜 32に到達す ることになる。つまり、無機誘電膜 32に、コロナ放電によるイオンが到達しにくい構造 となっており、無機誘電体膜 32のエレクトレット化には工夫を要する。
[0065] また、シリコンマイクロホン 43の製造に際しては、シリコン酸ィ匕膜を積層することで振 動膜電極 33、無機誘電体膜 32、固定電極 31、エアギャップ 36となるための犠牲層 を形成し、拡散工程の終了の後、犠牲層をエッチングすることで、この部分がエアギ ヤップ 36となる。この製造工程において、量産時のシリコン層の膜厚 (この膜厚がェ ァギャップ 36の値を決める)のばらつきは、 10%程度、生じる。そのため、振動膜電 極 33と固定電極 31の電極間距離も 10%程度ばらつきが生じることになる。 ECMに おいて、マイクロホンの感度は、電極間距離に反比例する。したがって、電極間距離 にばらつきが生じると、マイクロホンの感度にばらつきが発生してしまう。
[0066] 本発明では、この点も考慮し、誘電体膜 32を無理なくエレクトレット化すると共に、さ らに、デバイスの製造ばらつき、あるいは、電子部品の特性ばらつき等に起因するマ イク口ホンの感度のばらつきを、エレクトレット量を調整することにより吸収する。
[0067] 図 2は、シリコン基板を用いたエレクトレットマイクロホンの実装構造 (ケース封入後 の構造)を示す断面図である。図 2において、図 1と共通する部分には同じ参照符号 を付してある。また、図 2において、シリコンマイクロホン(半導体デバイス) 43は、簡略 化して描 、て 、る(実際の構造は、図 1に示すとおりである)。
[0068] 図 2に示されるように、プラスチックまたはセラミックの実装基板 42上に、シリコンマイ クロホン(半導体デバイス) 43とその他の素子 (FET、抵抗素子等) 45が実装されて いる。
[0069] 実装基板 42の裏面には、グランドパターン 46と、マイク信号出力パターン 47が配 置されている。図 1で示したように、シリコンマイクロホン(半導体デバイス) 43の固定 電極 31および振動膜電極 33は、ワイヤ 44a, 44bを介して実装基板 42上の配線パ ターン 60a, 60bに接続されて!ヽる。なお、図 2では、ワイヤ 44aと酉己線ノ ターン 60a のみを記載してある。
[0070] シールドケース 41は、エレクトレット化処理が済んだ後に、実装基板 42上に取り付 けられる。このシールドケース 41には、音波を導くための広い開口部 49が設けられて いる。
[0071] 以下、本発明のエレクトレツトイ匕方法 (ならびに本発明のエレクトレツトイ匕装置)につ いて、図 3〜図 5を用いて具体的に説明する。
[0072] 図 3は、本発明のエレクトレツトイ匕装置の要部構成を示す図である。
[0073] 図 3のエレクトレツトイ匕装置は、一つのシリコンマイクロホンに対して、一つの針状電 極のコロナ放電によるイオンを照射してエレクトレツトイ匕を行う、いわゆる枚葉式 (複数 個のデバイスを一度に処理するバッチ式ではなぐ一つ一つのデバイスを個別に処 理する方式)の処理装置である。
[0074] 図示したように、エレクトレット化処理には、針状電極 51を用いたコロナ放電を利用 する。すなわち、シリコンマイクロホン(半導体デバイス) 43の上方に針状電極 51を位 置させる。針状電極 51はコロナ放電を生じさせるための高電圧源 53が接続されてい る。
[0075] また、接地用ピン (着電装置ピン) 52が、実装基板 42の裏面のグランドパターン 46 に接続されている。先に説明したように、シリコンマイクロホンの振動膜電極 33 (図 1 参照)はワイヤ 44a、基板 42上の配線パターン 60a、内部配線 L1を経由して実装基 板 42の裏面に設けられたグランドパターン 46に電気的に接続されている。したがつ て、接地用ピン (着電装置ピン) 52をグランドパターン 46に接続することによって、振 動膜電極 33は、接地電位となる。
[0076] この状態で、シリコンマイクロホン 43の内部の誘電体膜 32 (図 1参照)に対して、針 状電極 51によるコロナ放電のイオンを照射する。これにより、シリコンマイクロホン 43 の誘電体膜 32 (図 1参照)を無理なくエレクトレツトイ匕することができる。
[0077] すなわち、針状電極 51のコロナ放電によれば、図 8に示されるワイヤ電極によるコロ ナ放電の場合よりも多くのイオンを、シリコンマイクロホン 43の誘電体膜 32に集中し て照射することができる。
[0078] したがって、図 1に示されるように、マイクロホンの構造上、固定電極 31の開口部 35 を介して誘電体膜 32へのイオンの照射が行われる場合でも、適切な量のイオンの供 給が可能であり、したがって、誘電体膜 32のエレクトレツトイ匕が可能である。また、一 つの針状電極 51で一つのシリコンマイクロホン(半導体デバイス) 43の誘電体膜 32 のエレクトレツトイ匕を行うため、条件出しがし易ぐしたがって、エレクトレツトイ匕の精度 を向上させる点で有利となる。
[0079] また、誘電体膜 32を接地電位に固定した上で、 1つの針状電極 51から所定条件の 下でイオンの照射を行うため、多量のイオンを集中的に誘電体膜 32に当てることが できる。したがって、マイクロホンの内部構造上、誘電体膜 32にイオンを当てるのに 適さない状況であったとしても、誘電体膜 32のエレクトレツトイ匕を無理なく行うことがで きる。
[0080] 次に、本発明のエレクトレツトイ匕方法の具体例について説明する。
[0081] 図 4は、本発明のエレクトレツトイ匕方法の主要な工程を示す工程フロー図である。
[0082] 図示されるように、図 4のエレクトレツトイ匕方法は、複数回のコロナ放電によって誘電 体膜をエレクトレツトイ匕する。
[0083] すなわち、まず、チップ実装を行う(ステップ S100)。すなわち、シリコンマイクロホン
(半導体チップ) 43、その他の電子部品 (FETや抵抗素子)等を実装基板 42上に実 装する。
[0084] 次に、図 3のエレクトレツトイ匕装置を用いて、針状電極 51のコロナ放電によって、シリ コンマイク口ホン(半導体チップ) 43内の誘電体膜 32を一定量、エレクトレツトイ匕する( ステップ S101)。これによつて、エレクトレット方式のコンデンサマイクロホンが形成さ れる。
[0085] 次に、そのシリコンマイクロホン 43の感度を実測する(ステップ S102)。
[0086] 図 5は、図 3のエレクトレツトイ匕装置に併設される、シリコンマイクロホンの感度を測定 するための構成を示す図である。図 5において、前掲の図面と共通する部分には同 じ参照符号を付してある。図 5において、参照符号 71はスピーカであり、参照符号 72 はスピーカアンプであり、参照符号 73は感度測定装置である。また、参照符号 76は 、感度測定用のシールドケースである。このシールドケース 76は、感度測定時におい てのみ使用されるもの(つまり、図 2のシールドケース 41の代わりをするもの)である。 シールドケース 76には、音波を通過させるための開口部 77が設けられている。図 5 の装置において、スピーカ 71からシリコンマイクロホン 43に向けて、一定圧の音を発 出する。このとき、実装基板 42の裏面に設けられているグランドパターン 46ならびに マイク信号出力パターン 47に対して、測定用ピン 74、 75が接続される。この測定用 ピンはマイクロホンの出力信号を測定する装置 73に接続している。スピーカ 71から 発出された音はシリコンマイクロホン 43の振動膜 33に到達し、これによつて振動膜 3 3が振動する。これに応じてコンデンサの容量が変化し、その容量の変化が電気信 号として取り出され、その電気信号は、測定用ピン 74, 75を介して感度測定装置 73 に送られる。これによつて、一定量のエレクトレツトイ匕処理がなされたシリコンマイクロ ホン 43の感度が測定される。
[0087] 図 4に戻り、次に、シリコンマイクロホン 43の感度の測定結果に基づき、次のエレクト レット化処理(追加のエレクトレット化処理)において必要な、エレクトレツトイ匕量を決定 する(ステップ S 103)。
[0088] すなわち、通常、 1回のエレクトレツトイ匕では所望のマイク感度は得られない。したが つて、所望の感度を得るために必要なエレクトレツトイ匕量を、現在の測定感度と、予め 求められているエレクトレツトイ匕量とマイク感度との関係を示す特性情報に従って求め るものである。
[0089] 2回目のエレクトレツトイ匕処理におけるエレクトレツトイ匕量が決定されると、次に、その 決定されたとおりの量のエレクトレツトイ匕を行うために、図 3のエレクトレツトイ匕装置 (着 電装置)における条件設定を行う(ステップ 104 :この工程の詳細は後述する)。
[0090] そして、追加のエレクトレツトイ匕処理を実施し (ステップ S 105)、次に、図 2のようにシ 一ルドケース 41を装着し (ステップ S106)、これによつて、図 2に示されるシリコンマイ クロホンが完成する(ステップ S 107)。
[0091] 次に、図 4における、ステップ S 104 (エレクトレツトイ匕装置における条件設定)につ いて説明する。
[0092] エレクトレツトイ匕装置(図 3)における条件設定の要素として、 4つの要素が考えられ る。すなわち、電圧、イオンの極性、距離、時間である。このうちの 1つ、もしくは複数 を組み合わせることで、誘電体膜 32に対して、 目標とするエレクトレット量の、正確な エレクトレツトイ匕を行うことができる。
[0093] 以上説明したように、エレクトレツトイ匕量は、コロナ放電電圧を調整することにより調 整可能である。コロナ放電電圧の調整は、図 3のエレクトレツトイ匕装置における電源電 圧 53の電圧値を変更することによって実現される。
[0094] 放電電圧を高くするほど、より多くのイオンが発生するため、より高い着電量 (エレク トレツトイ匕量)となる。このとき、一定以下の電圧であると、コロナ放電が起こらない。ま た、ある一定値以上の電圧になると、放電によりエレクトレット材料が損傷する。したが つて、上限値と下限値との間で、適切な放電電圧を設定する必要がある。なお、前記 実施の形態では、一方の電極を接地電位に接続した力 接地電位に限定されるもの ではない。針状電極との間に所定の電位差を形成することのできる電位であればよく 、また、前述したようにコロナ放電電圧を調整するのに、電極端子に接続する電位を 接地電位ではなぐプラス側あるいはマイナス側にシフトさせることによって調整しても よい。
[0095] また、上記のとおり、エレクトレツトイ匕量は、電源電圧 53の極 ¾を時間によって変え ることで、放電イオンのプラスイオンとマイナスイオンの割合を調整することによつても 調整可能である。
[0096] また、上記のとおり、エレクトレツトイ匕量は、誘電体膜 32と針状電極 51の距離 a (図 3 参照)を変化させることによつても調整可能である。距離 aが短いほど、着電量が増大 する。
[0097] また、上記のとおり、エレクトレツトイ匕量は、コロナ放電時間を変化させることによって も調整可能である。放電時間が長いほど、着電量が増大する。
[0098] このように、何回かに分けてエレクトレツトイ匕処理を行うこと(例えば、初期エレクトレ ットイ匕によって最低限度のエレクトレツトイ匕を達成し、次に、条件を変えて追加のエレ タトレツトイ匕を行い所望のエレクトレツトイ匕を達成すること)によって、無理なくエレクトレ ットイ匕を行うことができ、また、エレクトレツトイ匕処理の精度を高めることもできる。
[0099] また、 1回目のエレクトレツトイ匕の後、マイクロホンの感度を実測し、その実測結果か ら次のエレクトレツトイ匕量を決めることにより、マイクロホンを規定 (規格)の感度に調整 することができる。 [0100] 特に、製造ばらつき (膜厚のばらつき等)によるマイクロホンの感度のばらつきを、追 加のエレクトレツトイ匕処理のエレクトレット量を調整することによって吸収することができ
、さらに、 FET (電界効果トランジスタ)の容量、寄生容量等に起因する感度のばらつ きも、追カ卩のエレクトレツトイ匕処理のエレクトレット量を調整することによって吸収するこ とがでさる。
[0101] したがって、本発明によれば、製造ばらつきや部品の特性ばらつきに起因して生じ るマイクロホン感度の変動につ 、ても対策可能となる。
[0102] 以上のようなエレクトレツトイ匕処理を含む工程を経て製造された、本発明のコンデン サマイクロホンは、このようなエレクトレット本発明のエレクトレツトイ匕方法を用いて製造 された誘電体膜をコンデンサの構成要素としてもつ、シリコン基板を微細加工して形 成される超小型のコンデンサマイクロホンである。したがって、本発明によって、超小 型で、実用に耐える感度をもつ、非常に優れた特性をもつうエレクトレット'シリコン'コ ンデンサ ·マイクロホン(ESCM)が得られる。
[0103] 以上説明したように、本発明によれば、シリコン基板をマイクロ加工して得られるシリ コンマイク口ホンに関し、実装状態のまま、誘電体膜を規定の量にエレクトレット化す ることが可能となる。
[0104] すなわち、従来、シリコンマイクロホン (シリコンマイク)は、誘電体膜だけを取り出し てエレクトレツトイ匕することができないことからエレクトレット方式を採用するのが困難と されていた力 本発明により、現実的な手法を用いて、エレクトレット方式のシリコンマ イク口ホンの製造が可能となる。
[0105] また、膜厚等のばらつき(デバイスの製造ばらつき)に起因するマイクロホンの感度 のばらつきも、エレクトレツトイ匕量を調整することによって補償することができる。
[0106] さらに、エレクトレット量や寄生容量、 FET容量のばらつき等に起因するマイクロホ ン感度のばらつきも、本発明によって、補償することが可能となる。
[0107] 本発明によれば、シリコン 'コンデンサ 'マイクロホンが完成した状態 (実装基板に実 装された状態)において、エレクトレツトイ匕を行い、かつ、そのエレクトレツトイ匕量を個別 に調整してマイクロホンの感度を調整することができるため、規格 (規定)外の感度の 不良品が少なくなり、マイクロホン製造の歩留まりが飛躍的に向上する。 [0108] したがって、エレクトレット方式のシリコンマイクロホンの量産化が可能となる。
なお、半導体基板としては通常シリコン基板が用いられるが、化合物半導体基板な どシリコン以外の半導体基板を用いることも可能であることは 、うまでもな!/、。
[0109] また、前記実施の形態 1では、実装基板上に、コンデンサマイクロホンチップを搭載 した後に、エレクトレツトイ匕方法をおこなうようにした力 実装前であってもよい。
[0110] (実施の形態 2)
次に、実装基板上に、コンデンサマイクロホンチップを搭載するに先立ち、エレクト レツトイ匕方法をおこなう方法について説明する。
図 6は、本発明の実施の形態 2のエレクトレツトイ匕方法を示す図である。
[0111] 図 6のエレクトレツトイ匕装置は、図 3のエレクトレツトイ匕装置と同様、一つのシリコンマ イク口ホンに対して、一つの針状電極のコロナ放電によるイオンを照射してエレクトレ ットイ匕を行う、いわゆる枚葉式 (複数個のデバイスを一度に処理するバッチ式ではなく 、一つ一つのデバイスを個別に処理する方式)の処理装置である。
[0112] 図示したように、エレクトレット化処理には、針状電極 51を用いたコロナ放電を利用 する。すなわち、シリコンマイクロホン(半導体デバイス) 43の上方に針状電極 51を位 置させる。針状電極 51はコロナ放電を生じさせるための高電圧源 53が接続されてい る。
[0113] また、接地用ピン (着電装置ピン) 52が、シリコンマイクロホンの振動膜電極 33 (図 1 参照)からとりだされた端子 44a (図 1参照)に電気的に接続されている。したがって、 接地用ピン (着電装置ピン) 52をグランド電位に接続することによって、振動膜電極 3 3は、接地電位となる。
[0114] この状態で、シリコンマイクロホン 43の内部の誘電体膜 32 (図 1参照)に対して、針 状電極 51によるコロナ放電のイオンを照射する。これにより、シリコンマイクロホン 43 の誘電体膜 32 (図 1参照)を無理なくエレクトレツトイ匕することができる。
そして最後に、このようにしてエレクトレツトイ匕されたシリコンマイクロホン 43を所望の 実装基板に実装する。
産業上の利用可能性
[0115] 本発明は、シリコン基板を微細加工して形成される半導体チップを用いたシリコン マイクロホン (シリコンマイク)において、無理なぐ精度の高い誘電体膜のエレクトレツ ト化を実現するという効果を奏し、移動体通信機に搭載される超小型のシリコンマイク 口ホン、そのエレクトレツトイ匕方法、ならびに、その製造に使用されるエレクトレツトイ匕装 置として有用である。

Claims

請求の範囲
[1] 半導体基板を微細加工することによって形成されるコンデンサマイクロホンの構成 要素である誘電体膜をエレクトレツトイ匕するエレクトレツトイ匕方法であって、
前記コンデンサマイクロホンの一方の電極を、その端子を介して所定の電位に接続 し、これと一つの針状電極による少なくとも 1回のコロナ放電を、一つの前記コンデン サマイクロホンに対して個別に実施することにより、前記誘電体膜をエレクトレツトイ匕す るようにしたエレクトレツトイ匕方法。
[2] 請求項 1記載のエレクトレツトイ匕方法であって、
前記コンデンサマイクロホンは、複数の音孔を有する固定電極と、この固定電極と 所定間隔を置いて配置される振動膜と、この振動膜上に設けられる前記誘電体膜と 、前記誘電体膜に当接せしめられた振動電極とを有し、実装基板上に実装されてお り、
また、前記コンデンサマイクロホンにおける前記誘電体膜は、前記実装基板に設け られ、前記振動電極に接続された電極端子に電気的に接続されて接地電位となって おり、この状態で、前記固定電極の上方において前記一つの針状電極によるコロナ 放電を行い、そのコロナ放電によって発生するイオンを、前記固定電極に設けられた 前記複数の音孔を経由して前記誘電体膜に集中的に到来させ、これによつて前記 誘電体膜のエレクトレツトイ匕を行うエレクトレツトイ匕方法。
[3] 請求項 1または請求項 2記載のエレクトレツトイ匕方法であって、
複数回のコロナ放電によって前記誘電体膜をエレクトレツトイ匕するエレクトレツトイ匕方 法。
[4] 請求項 3記載のエレクトレツトイ匕方法であって、
所定条件の下で、コロナ放電による前記誘電体膜の初期のエレクトレットィヒ処理を 実施し、その後、条件を再設定して再度、コロナ放電による追加のエレクトレットィ匕処 理を実施するエレクトレット化方法。
[5] 請求項 4記載のエレクトレツトイ匕方法であって、
前記初期エレクトレツトイ匕を行った後、前記コンデンサマイクロホンの感度を測定し、 その測定結果に基づ 、て前記追加のエレクトレツトイ匕処理の条件を決定し、決定され た条件下で前記追カ卩のエレクトレツトイ匕処理を実施するエレクトレツトイ匕方法。
[6] 請求項 1乃至請求項 5のいずれか記載のエレクトレツトイ匕方法であって、
前記誘電体膜の帯電電荷量を、コロナ放電の印加電圧により調整するエレクトレツ ト化方法。
[7] 請求項 1乃至請求項 5のいずれか記載のエレクトレツトイ匕方法であって、
前記誘電体膜の帯電電荷量を、コロナ放電を行う前記針状電極と前記誘電体膜と の距離により調整するエレクトレット化方法。
[8] 請求項 1乃至請求項 5のいずれか記載のエレクトレツトイ匕方法であって、
前記誘電体膜の帯電電荷量を、コロナ放電を行う時間により調整するエレクトレット 化方法。
[9] 請求項 1乃至請求項 5のいずれか記載のエレクトレツトイ匕方法であって、
前記誘電体膜の帯電電荷量を、コロナ放電で発生するマイナスイオンとプラスィォ ンの割合により調整するエレクトレット化方法。
[10] 請求項 1乃至請求項 9のいずれか記載のエレクトレツトイ匕方法によりエレクトレツトイ匕 された前記誘電体膜をコンデンサの構成要素として有することを特徴とするコンデン サマイクロホン。
[11] 請求項 1乃至請求項 9のいずれか記載のエレクトレツトイ匕方法を実施するためのェ レクトレツトイ匕装置であって、
少なくとも 1回のコロナ放電を、一つのコンデンサマイクロホンに対して個別に実施 するための一つの針状電極と、この針状電極に高電圧を印加するための高電圧電 源と、前記コンデンサマイクロホンにおけるエレクトレツトイ匕対象の膜を接地電位とす るための接地用ピンと、前記コンデンサマイクロホンが実装された実装基板を載置す るためのステージと、を有するエレクトレツトイ匕装置。
[12] 請求項 11記載のエレクトレツトイ匕装置であって、
さらに、前記コンデンサマイクロホンの感度を測定する感度測定部を有するエレクト レット化装置。
[13] 請求項 11または請求項 12記載のエレクトレツトイ匕装置であって、
コロナ放電の印加電圧、コロナ放電を行う電極と前記誘電体部との距離、コロナ放 電を行う時間、およびコロナ放電で発生するマイナスイオンとプラスイオンの割合、の 少なくとも一つが調整可能であるエレクトレットィヒ装置。
請求項 1乃至請求項 9のいずれか記載のエレクトレツトイ匕方法を用いた、コンデンサ マイクロホンの製造方法であって、
半導体基板を微細加工することによってコンデンサマイクロホンの形状加工をおこ なう工程と、
前記コンデンサマイクロホンを実装基板上に実装する工程と、
前記実装する工程の前または後に、前記コンデンサマイクロホンの一方の電極を、 その端子を介して所定の電位に接続し、これと一つの針状電極による少なくとも 1回 のコロナ放電を、一つの前記コンデンサマイクロホンに対して個別に実施することに より、前記コンデンサマイクロホンの構成要素である誘電体膜をエレクトレツトイ匕する 工程とを含むコンデンサマイクロホンの製造方法。
PCT/JP2006/311248 2005-06-06 2006-06-05 コンデンサマイクロホンのエレクトレット化方法、エレクトレット化装置およびこれを用いたコンデンサマイクロホンの製造方法 WO2006132193A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006551138A JPWO2006132193A1 (ja) 2005-06-06 2006-06-05 コンデンサマイクロホンのエレクトレット化方法、エレクトレット化装置およびこれを用いたコンデンサマイクロホンの製造方法
US11/916,615 US20090129612A1 (en) 2005-06-06 2006-06-05 Electretization method of condenser microphone, electretization apparatus, and manufacturing method of condenser microphone using it
EP06756994A EP1890521A4 (en) 2005-06-06 2006-06-05 METHOD FOR TRANSFORMING A CONDENSER MICROPHONE IN ELECTRET, ELECTRET REVERSE DEVICE AND METHOD FOR PRODUCING THE CONDENSER MICROPHONE THEREWITH

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-165754 2005-06-06
JP2005165754 2005-06-06

Publications (1)

Publication Number Publication Date
WO2006132193A1 true WO2006132193A1 (ja) 2006-12-14

Family

ID=37498394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/311248 WO2006132193A1 (ja) 2005-06-06 2006-06-05 コンデンサマイクロホンのエレクトレット化方法、エレクトレット化装置およびこれを用いたコンデンサマイクロホンの製造方法

Country Status (5)

Country Link
US (1) US20090129612A1 (ja)
EP (1) EP1890521A4 (ja)
JP (1) JPWO2006132193A1 (ja)
CN (1) CN101189908A (ja)
WO (1) WO2006132193A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112755A (ja) * 2006-10-27 2008-05-15 Matsushita Electric Ind Co Ltd エレクトレット化方法およびエレクトレット化装置
JP2008172413A (ja) * 2007-01-10 2008-07-24 Audio Technica Corp エレクトレットコンデンサマイクロホンユニットの製造方法
JP2008277473A (ja) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd エレクトレット素子および静電動作装置
JP2009055490A (ja) * 2007-08-29 2009-03-12 Rohm Co Ltd マイクロホン装置
JP2009050560A (ja) * 2007-08-28 2009-03-12 Olympus Medical Systems Corp 超音波トランスデューサ、超音波診断装置及び超音波顕微鏡
JP2009111622A (ja) * 2007-10-29 2009-05-21 Panasonic Corp マイクロホン装置、その膜スチフネス測定装置、膜スチフネス測定方法及び電子機器の製造方法
JP2009118264A (ja) * 2007-11-07 2009-05-28 Panasonic Corp マイクロホン装置
JP2009123999A (ja) * 2007-11-16 2009-06-04 Panasonic Corp 微小コンデンサマイクロホンの製造方法
JP2009124387A (ja) * 2007-11-14 2009-06-04 Panasonic Corp 微小コンデンサマイクロホンの製造方法
JP2009177404A (ja) * 2008-01-23 2009-08-06 Panasonic Corp エレクトレットコンデンサの両極間電位の測定方法
JP2009260884A (ja) * 2008-04-21 2009-11-05 Nippon Hoso Kyokai <Nhk> 静電容量型センサの感度測定装置及びその測定方法
JP2010087994A (ja) * 2008-10-01 2010-04-15 Panasonic Corp 微小コンデンサマイクロホンの製造方法およびエレクトレット化装置
US7948731B2 (en) 2008-06-04 2011-05-24 Panasonic Corporation Static eliminator, and microphone electretizing method and apparatus using static eliminator
JP2011522456A (ja) * 2008-04-28 2011-07-28 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー 複合材料マイクロフォン、マイクロフォン・アセンブリ、およびそれらの製造方法
WO2011122345A1 (ja) * 2010-03-29 2011-10-06 シャープ株式会社 圧力検出装置およびその製造方法、表示装置およびその製造方法、ならびに圧力検出装置付きtft基板
US8866377B2 (en) 2006-12-28 2014-10-21 Universal Display Corporation Long lifetime phosphorescent organic light emitting device (OLED) structures

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI359480B (en) * 2007-06-13 2012-03-01 Advanced Semiconductor Eng Semiconductor package structure, applications ther
TWI419576B (zh) * 2010-07-09 2013-12-11 Ind Tech Res Inst 麥克風量測裝置
JP5763023B2 (ja) * 2012-08-30 2015-08-12 アオイ電子株式会社 立体型櫛歯エレクトレット電極の製造方法
CN104620606B (zh) * 2012-09-14 2018-03-30 罗伯特·博世有限公司 用于麦克风和超低压力传感器的有缺陷制造的测试
US9181086B1 (en) 2012-10-01 2015-11-10 The Research Foundation For The State University Of New York Hinged MEMS diaphragm and method of manufacture therof
DE102012221833A1 (de) * 2012-11-29 2014-06-05 Robert Bosch Gmbh Wandler mit zumindest einer Elektrode eines ersten Typs, einer Elektrode eines zweiten Typs und zumindest einem Ferroelektret
CN106686514A (zh) * 2017-01-09 2017-05-17 西南交通大学 一种三轴栅控电晕极化装置
CN109004948B (zh) * 2018-08-31 2020-07-28 北京航空航天大学 一种旋转驻极体式机械天线低频通信系统
US10841710B1 (en) * 2019-06-20 2020-11-17 Solid State System Co., Ltd. Package structure of micro-electro-mechanical-system microphone package and method for packaging the same
CN114953422A (zh) * 2022-05-24 2022-08-30 潍坊新声悦尔电子科技有限公司 一种耐高温背极板连续式加工装置及其加工工艺
CN116249338B (zh) * 2023-03-15 2024-03-22 潍坊新声悦尔电子科技有限公司 Ptfe膜覆膜背极板驻极电荷激活老化工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014091A (en) 1971-08-27 1977-03-29 Sony Corporation Method and apparatus for an electret transducer
JPS5658220A (en) 1979-10-17 1981-05-21 Tokyo Shibaura Electric Co Method of manufacturing electret
US4302633A (en) 1980-03-28 1981-11-24 Hosiden Electronics Co., Ltd. Electrode plate electret of electro-acoustic transducer and its manufacturing method
JPH1188992A (ja) 1997-09-03 1999-03-30 Hosiden Corp 集積型容量性変換器及びその製造方法
JP2000508860A (ja) 1996-04-18 2000-07-11 カリフォルニア インスティチュート オブ テクノロジー 薄膜エレクトレットマイクロフォン
JP2003047095A (ja) * 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd コンデンサマイクロホン及びその製造方法
JP2005020411A (ja) 2003-06-26 2005-01-20 Nippon Hoso Kyokai <Nhk> シリコンマイクの作製方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5149319B1 (ja) * 1971-05-17 1976-12-25
WO2000028337A2 (en) * 1998-11-06 2000-05-18 Onguard Systems, Inc. Electronic circuit with a non-continuous discharge path
JP4264007B2 (ja) * 2002-04-05 2009-05-13 パナソニック株式会社 コンデンサセンサ
EP1686599A4 (en) * 2003-11-20 2009-04-15 Panasonic Corp ELECTRIC AND ELECTRIC CAPACITOR

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4014091A (en) 1971-08-27 1977-03-29 Sony Corporation Method and apparatus for an electret transducer
JPS5658220A (en) 1979-10-17 1981-05-21 Tokyo Shibaura Electric Co Method of manufacturing electret
US4302633A (en) 1980-03-28 1981-11-24 Hosiden Electronics Co., Ltd. Electrode plate electret of electro-acoustic transducer and its manufacturing method
JP2000508860A (ja) 1996-04-18 2000-07-11 カリフォルニア インスティチュート オブ テクノロジー 薄膜エレクトレットマイクロフォン
JPH1188992A (ja) 1997-09-03 1999-03-30 Hosiden Corp 集積型容量性変換器及びその製造方法
JP2003047095A (ja) * 2001-07-31 2003-02-14 Matsushita Electric Ind Co Ltd コンデンサマイクロホン及びその製造方法
JP2005020411A (ja) 2003-06-26 2005-01-20 Nippon Hoso Kyokai <Nhk> シリコンマイクの作製方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1890521A4 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008112755A (ja) * 2006-10-27 2008-05-15 Matsushita Electric Ind Co Ltd エレクトレット化方法およびエレクトレット化装置
US8866377B2 (en) 2006-12-28 2014-10-21 Universal Display Corporation Long lifetime phosphorescent organic light emitting device (OLED) structures
JP2008172413A (ja) * 2007-01-10 2008-07-24 Audio Technica Corp エレクトレットコンデンサマイクロホンユニットの製造方法
JP2008277473A (ja) * 2007-04-27 2008-11-13 Sanyo Electric Co Ltd エレクトレット素子および静電動作装置
JP2009050560A (ja) * 2007-08-28 2009-03-12 Olympus Medical Systems Corp 超音波トランスデューサ、超音波診断装置及び超音波顕微鏡
JP2009055490A (ja) * 2007-08-29 2009-03-12 Rohm Co Ltd マイクロホン装置
JP2009111622A (ja) * 2007-10-29 2009-05-21 Panasonic Corp マイクロホン装置、その膜スチフネス測定装置、膜スチフネス測定方法及び電子機器の製造方法
JP2009118264A (ja) * 2007-11-07 2009-05-28 Panasonic Corp マイクロホン装置
JP2009124387A (ja) * 2007-11-14 2009-06-04 Panasonic Corp 微小コンデンサマイクロホンの製造方法
US7855095B2 (en) * 2007-11-16 2010-12-21 Panasonic Corporation Method of fabricating an ultra-small condenser microphone
US8114700B2 (en) 2007-11-16 2012-02-14 Panasonic Corporation Method of fabricating an ultra-small condenser microphone
JP2009123999A (ja) * 2007-11-16 2009-06-04 Panasonic Corp 微小コンデンサマイクロホンの製造方法
JP2009177404A (ja) * 2008-01-23 2009-08-06 Panasonic Corp エレクトレットコンデンサの両極間電位の測定方法
JP2009260884A (ja) * 2008-04-21 2009-11-05 Nippon Hoso Kyokai <Nhk> 静電容量型センサの感度測定装置及びその測定方法
JP2011522456A (ja) * 2008-04-28 2011-07-28 ネーデルランデ オルガニサティー ヴール トゥーヘパストナツールウェテンスハペライク オンデルズーク テーエヌオー 複合材料マイクロフォン、マイクロフォン・アセンブリ、およびそれらの製造方法
US8731226B2 (en) 2008-04-28 2014-05-20 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Composite microphone with flexible substrate and conductors
US7948731B2 (en) 2008-06-04 2011-05-24 Panasonic Corporation Static eliminator, and microphone electretizing method and apparatus using static eliminator
JP2010087994A (ja) * 2008-10-01 2010-04-15 Panasonic Corp 微小コンデンサマイクロホンの製造方法およびエレクトレット化装置
WO2011122345A1 (ja) * 2010-03-29 2011-10-06 シャープ株式会社 圧力検出装置およびその製造方法、表示装置およびその製造方法、ならびに圧力検出装置付きtft基板

Also Published As

Publication number Publication date
EP1890521A4 (en) 2009-05-13
CN101189908A (zh) 2008-05-28
JPWO2006132193A1 (ja) 2009-01-08
US20090129612A1 (en) 2009-05-21
EP1890521A1 (en) 2008-02-20

Similar Documents

Publication Publication Date Title
WO2006132193A1 (ja) コンデンサマイクロホンのエレクトレット化方法、エレクトレット化装置およびこれを用いたコンデンサマイクロホンの製造方法
US7386136B2 (en) Sound detecting mechanism
KR20060033021A (ko) 음향 검출 기구
US4524247A (en) Integrated electroacoustic transducer with built-in bias
US7040173B2 (en) Pressure sensor and method for operating a pressure sensor
US8952468B2 (en) Acoustic sensor, acoustic transducer, microphone using the acoustic transducer, and method for manufacturing the acoustic transducer
US6677176B2 (en) Method of manufacturing an integrated electronic microphone having a floating gate electrode
KR100716637B1 (ko) 음향 검출 기구 및 그 제조 방법
US20110316100A1 (en) Mems microphone and method for manufacturing same
US20120207332A1 (en) Housed Loudspeaker Array
JP2008010624A (ja) 半導体装置の製造方法および半導体装置
US20070274544A1 (en) Electretization method and apparatus
JP4861790B2 (ja) エレクトレット化方法およびエレクトレット化装置
JP4376910B2 (ja) エレクトレット化方法及びエレクトレット化装置
JP2004128957A (ja) 音響検出機構
JP2003163998A (ja) コンデンサマイクロホンの製造方法、コンデンサマイクロホンおよび電子機器
JP3926701B2 (ja) 静電型電気音響変換素子用振動膜の製造方法
US7948731B2 (en) Static eliminator, and microphone electretizing method and apparatus using static eliminator
JP4672539B2 (ja) コンデンサマイクロホン装置
KR101108853B1 (ko) 마이크로폰 모듈
KR100540712B1 (ko) 초소형 콘덴서 실리콘 마이크로폰
KR100506591B1 (ko) 일렉트릿 마이크로폰의 제조방법
KR101241588B1 (ko) 콘덴서 마이크로폰
JP2004096543A (ja) 音響検出機構
JP2011004314A (ja) Memsデバイスのエレクトレット化方法およびエレクトレット化装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680020052.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2006551138

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006756994

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11916615

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006756994

Country of ref document: EP