WO2006132007A1 - 半導体集積回路 - Google Patents

半導体集積回路 Download PDF

Info

Publication number
WO2006132007A1
WO2006132007A1 PCT/JP2006/302521 JP2006302521W WO2006132007A1 WO 2006132007 A1 WO2006132007 A1 WO 2006132007A1 JP 2006302521 W JP2006302521 W JP 2006302521W WO 2006132007 A1 WO2006132007 A1 WO 2006132007A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
noise
area
region
semiconductor integrated
Prior art date
Application number
PCT/JP2006/302521
Other languages
English (en)
French (fr)
Inventor
Takashi Kakemizu
Yoshihiko Fukumoto
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP06713662A priority Critical patent/EP1890328A4/en
Priority to JP2006536975A priority patent/JPWO2006132007A1/ja
Publication of WO2006132007A1 publication Critical patent/WO2006132007A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823481MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type isolation region manufacturing related aspects, e.g. to avoid interaction of isolation region with adjacent structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/761PN junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits

Definitions

  • the present invention relates to a semiconductor integrated circuit in which a circuit whose characteristics deteriorate due to the influence of noise and a circuit that becomes a noise source are mixedly mounted.
  • a guard band is provided between the analog circuit and the digital circuit to reduce noise propagation.
  • semiconductor integrated circuits that can be used (see, for example, Patent Document 1 and Patent Document 2).
  • FIG. 12 is a plan view showing a configuration of a semiconductor integrated circuit 900 provided with the guard band.
  • FIG. 13 is a cross-sectional view of the semiconductor integrated circuit 900 (cross-section along the cross-sectional line AA in FIG. 12).
  • a semiconductor integrated circuit 900 includes a semiconductor substrate 910, an analog circuit area.
  • Analog circuit region 920 is a region where an analog circuit is formed. Circuits in this area are circuits whose characteristics deteriorate due to noise propagated through a power supply that is vulnerable to noise.
  • the digital circuit area 930 is a level that degrades the circuit characteristics of the analog circuit area 920. This is an area where digital circuit power that generates noise is also generated.
  • the guard band region 940 includes a base contact 941, and the base contact 941 is connected to a digital circuit power source 960.
  • the analog circuit power supply 950 supplies a power supply voltage to the circuits in the analog circuit region 920.
  • the digital circuit power source 960 is configured to supply a power source voltage to the circuits in the digital circuit region 930.
  • an analog circuit region 920 and a digital circuit region 930 are arranged on a semiconductor substrate 910, and a guard band region 940 is arranged between the analog circuit region 920 and the digital circuit region 930.
  • noise generated in the digital circuit region 930 passes through the guard band region 940 before propagating to the analog circuit region 920.
  • the noise passes through the substrate contact 941, passes through the digital power source 960, and is released to the outside of the semiconductor substrate 910. That is, the noise is absorbed by the guard band region 940 and released outside the semiconductor substrate 910. Therefore, the noise generated in the digital circuit area 930 can be prevented from deteriorating the characteristics of the analog circuit area 920 that does not propagate to the analog circuit area 920.
  • Patent Document 1 Japanese Patent No. 3075892
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-246553
  • the conventional semiconductor integrated circuit requires a guard band region as a physical region on the semiconductor integrated circuit, there is a problem that the area of the semiconductor integrated circuit increases. It was. In addition, noise absorption by the guard band region is more effective as the area of the guard band region is larger. Therefore, if a larger noise absorption effect is obtained, the increase in the area of the semiconductor integrated circuit becomes more remarkable. .
  • an object of the present invention is to provide a semiconductor integrated circuit capable of preventing deterioration of characteristics of a circuit that is susceptible to noise without increasing the area of the semiconductor integrated circuit (semiconductor substrate).
  • the circuit area to be protected whose characteristics deteriorate according to the level of the noise level, and the amount of deterioration given to the circuit in the circuit area to be protected are larger than those permitted for the circuit in the circuit area to be protected.
  • a high-noise circuit area consisting of circuit modules that generate noise of a certain level
  • a low-noise circuit region comprising circuit members that generate noise at a level that causes the amount of deterioration given to the circuit in the circuit region to be protected to be within the amount of deterioration allowed for the circuit in the circuit region to be protected;
  • the low noise circuit area is configured to prevent the protection target circuit area and the high noise circuit area from contacting each other.
  • the circuit in the circuit area to be protected, the circuit in the high noise circuit area, and the circuit in the low noise circuit area are mutually connected among the three or more types of individual power supplies. It is characterized in that each power supply voltage is supplied by different power sources.
  • noise generated in the high noise circuit area is released to the outside of the semiconductor substrate through the low noise circuit area before propagating to the circuit area to be protected. , It does not propagate to the circuit area to be protected that is vulnerable to noise. Therefore, it is possible to prevent deterioration of circuit characteristics in the circuit area to be protected.
  • the circuits in the high noise circuit region and the low noise circuit region are circuits that generate noise at a level corresponding to the magnitude of the frequency of a signal to be handled
  • the maximum frequency of the signal handled in the low noise circuit area is the high noise circuit area. It is characterized by being lower than the frequency of the signal handled in the region.
  • a high noise circuit region and a low noise circuit region are configured based on the frequency of the signal handled by the circuit.
  • the circuit in the circuit area to be protected is an analog circuit
  • the circuit in the high noise circuit region is a digital circuit.
  • the circuit in the circuit area to be protected is an analog circuit
  • the circuit in the high noise circuit region is a digital circuit.
  • the present invention it is possible to prevent the circuit characteristics from being deteriorated due to the influence of noise without increasing the area of the semiconductor integrated circuit.
  • FIG. 1 is a plan view showing a configuration of a semiconductor integrated circuit according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view of the semiconductor integrated circuit according to Embodiment 1 of the present invention.
  • FIG. 3 is a plan view showing a configuration of a semiconductor integrated circuit according to Embodiment 2 of the present invention.
  • FIG. 4 is a plan view showing a modification of the semiconductor integrated circuit according to Embodiment 2 of the present invention.
  • FIG. 5 is a plan view showing a configuration of a semiconductor integrated circuit according to Embodiment 3 of the present invention.
  • FIG. 6 is a diagram showing a connection relationship between a semiconductor substrate and a lead frame.
  • FIG. 7 is a plan view showing a configuration of a semiconductor integrated circuit according to Embodiment 4 of the present invention.
  • FIG. 8 is a plan view showing a modification of the semiconductor integrated circuit according to Embodiment 4 of the present invention.
  • FIG. 9 is a plan view showing another modification of the semiconductor integrated circuit according to Embodiment 4 of the present invention.
  • FIG. 10 shows the spectral distribution of the noise generated in the digital circuit domain and the signal handled in the analog circuit domain.
  • FIG. 11 is a plan view showing an example in which a guard band region is added to the semiconductor integrated circuit according to the first embodiment of the present invention.
  • FIG. 12 is a plan view showing a configuration of a conventional semiconductor integrated circuit.
  • FIG. 13 is a cross-sectional view of a conventional semiconductor integrated circuit.
  • FIG. 1 is a plan view showing a configuration of a semiconductor integrated circuit 100 according to Embodiment 1 of the present invention.
  • 2 is a sectional view of the semiconductor integrated circuit 100 (cross section AA in FIG. 1).
  • the semiconductor integrated circuit 100 includes a semiconductor substrate 110, an analog circuit region 120, a digital circuit region 130, a digital circuit region 140, and power supplies 151 to 153.
  • an analog semiconductor integrated circuit an analog semiconductor integrated circuit
  • a digital semiconductor integrated circuit digital circuit
  • the analog circuit area 120 is an area where an analog circuit is formed.
  • the analog circuit formed in the analog circuit area 120 is a circuit such as a tuner, an AD converter, a DA converter, a PLL (Phase Locked Loop), a VCO (Voltage Controlled Oscillator), a filter, and an operational amplifier.
  • the characteristics of these circuits generally deteriorate depending on the noise level contained in the signal that is handled weakly by noise and the noise level propagated through the semiconductor substrate. Therefore, the analog circuit region 120 is a! / ⁇ region (protection target circuit region) that prevents the propagation of noise generated in other circuit regions.
  • the digital circuit area 130 is an area (high noise circuit area) composed of circuit members that generate noise at a level that degrades characteristics more than allowed for the circuit in the circuit area to be protected.
  • the digital circuit region 130 is a region having a digital circuit power that generates noise at a level corresponding to the operating frequency, and the operating frequency of the circuit in the digital circuit region 130 is 60 MHz.
  • the digital circuit area 140 does not deteriorate the characteristics of the circuit in the circuit area to be protected! /, (Or the allowable level of the circuit of the analog circuit area 120 in the degree of deterioration) is limited to circuits that generate noise. This is an area (low noise circuit area).
  • the digital circuit region 140 is also a region having a digital circuit power that generates noise at a level corresponding to the operating frequency, and the operating frequency of the circuit in the digital circuit region 140 is 10 MHz. That is, the operating frequency of the circuit in the digital circuit area 130 is larger than the operating frequency of the digital circuit area 140. Therefore, the digital circuit region 130 is a region where the level of noise generated is larger than that of the digital circuit region 140.
  • the analog circuit region 120, the digital circuit region 130, and the digital circuit region 140 are configured so that the analog circuit region 120 and the digital circuit region 130 are not in contact with each other.
  • a digital circuit area 140 is physically disposed between the area 120 and the digital circuit area 130.
  • the power source 151 supplies power to the analog circuit region 120
  • the power source 152 supplies power to the digital circuit region 130
  • the power source 153 supplies power to the digital circuit region 140.
  • the power sources 151 to 153 are individual power sources, and the paths for supplying power without being connected to each other are independent.
  • noise is generated in the digital circuit region 140 and the digital circuit region 130.
  • the noise generated in the digital circuit area 130 tries to propagate through the semiconductor substrate 110 to the analog circuit area 120 that is vulnerable to noise.
  • noise generated in the digital circuit area 130 passes through the digital circuit area 140 while propagating to the analog circuit area 120.
  • the noise generated in the digital circuit area 130 passes through the power supply 153 that supplies the power supply voltage to the digital circuit area 140 before propagating to the analog circuit area 120, as shown in FIG. Escaped outside. That is, noise generated in the digital circuit area 130 does not propagate to the analog circuit area 120 that is vulnerable to noise.
  • noise generated in the high noise circuit area is not propagated to the protection target circuit area, so that it is possible to prevent deterioration of circuit characteristics in the protection target circuit area.
  • the guard band region is unnecessary, the area of the semiconductor substrate can be reduced.
  • the area of the low noise circuit area is generally larger than that of the guard band area, the noise absorption effect is also increased.
  • the operating frequencies of the digital circuit region 140 and the digital circuit region 130 are examples, and are not limited to these.
  • Embodiment 2 of the Invention The type of circuit (analog circuit or digital circuit) constituting each area such as the protection target circuit area is not limited to the example of the first embodiment.
  • the semiconductor integrated circuit according to the second embodiment is an example different from the first embodiment in the types of circuits constituting each region such as the protection target circuit region.
  • the semiconductor integrated circuit 200 includes a semiconductor substrate 110, an analog circuit region 220, an analog circuit region 230, and an analog circuit region 240. It is an area consisting of analog circuit power.
  • components having the same functions as those of the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • the analog circuit area 220 (protection target circuit area) is an area that also has analog circuit power.
  • the circuit of the analog circuit area 220 has characteristics that deteriorate depending on the noise level included in the signal to be handled or the noise level propagated through the semiconductor substrate.
  • the circuit formed in the analog circuit region 220 is an analog circuit that is weak against noise such as a tuner LNA (Low Noise Amplifier) and a mixer.
  • the analog circuit region 230 (high noise circuit region) is a region where a generated noise level is large and / or an analog circuit is provided.
  • the noise generated by the circuit in the analog circuit area 230 has a level that degrades the characteristics of the analog circuit area 220 more than allowed.
  • the circuit formed in the analog circuit region 230 is an analog circuit such as a PLL circuit of a tuner, for example.
  • the analog circuit region 240 (low noise circuit region) is a region where the generated noise level is small and an analog circuit is provided.
  • the noise generated by the circuit in the analog circuit area 240 does not have a level until the characteristics of the analog circuit area 220 are deteriorated more than allowed.
  • the circuit formed in the analog circuit region 240 is an analog circuit such as a tuner filter or VGA.
  • the entire circuit area may be an area composed of digital circuits.
  • the digital circuit in the digital circuit area 320 (protection target circuit area) is a circuit that is vulnerable to noise, such as a high-speed interface. Circuits in digital circuit area 320 are propagated The characteristic deteriorates according to the level of noise.
  • the digital circuit in the digital circuit region 330 (high noise circuit region) is a circuit that generates noise at a level corresponding to the operating frequency.
  • the level of noise generated by the digital circuit in the digital circuit area 330 has a level that degrades the characteristics of the digital circuit area 320 more than allowed.
  • the circuit in the digital circuit region 340 (low noise circuit region) is also a circuit that generates noise at a level corresponding to the operating frequency.
  • the operating frequency of the circuit in the digital circuit area 340 is lower than the operating frequency of the circuit in the digital circuit area 330.
  • the level of noise generated is such that the digital circuit area 320 can only degrade within the allowable range. is there.
  • the number of power supplies that supply power supply voltage to the circuits in each of the protection target circuit area, the high noise circuit area, and the low noise circuit area is the number of power supplies that supply power supply voltage to the protection target circuit area and the low noise circuit area.
  • the power supply that supplies the power supply voltage and the power supply that supplies the power supply voltage to the high-noise circuit region are independent from each other, they are not limited to the above examples.
  • the semiconductor integrated circuit according to the third embodiment is an example in which the number of power supplies supplied to each region such as the protection target circuit region is different from that of the first embodiment.
  • FIG. 6 is a diagram showing the connection between the semiconductor substrate 110 and the power supply terminal.
  • the lead frame 160 (power supply terminal) is supplied with a power supply voltage also from an external force of the semiconductor integrated circuit.
  • the bonding wire 170 connects the lead frame 160 and the bonding pad 180.
  • the bonding pad 180 is bonded to a circuit in each of the protection target circuit area, the high noise circuit area, and the low noise circuit area via a power supply wiring (not shown).
  • the power supply voltage supplied via the Yer 170 is supplied.
  • one of the lead frames 160 is connected to a plurality of bonding pads 180. Therefore, the power supply is not independent as a product terminal, and the power supply voltage is supplied to a plurality of regions having the same power supply terminal force. However, on the semiconductor substrate 110, the power supply paths supplied to the protection target circuit region, the high noise circuit region, and the low noise circuit region are different, and noise passes through the semiconductor substrate 110. Can not propagate directly.
  • the number of each of the protection target circuit area, the high noise circuit area, and the low noise circuit area is such that the protection target circuit area and the high noise circuit area do not contact each other. Is physically limited by the low-noise circuit area, it is not limited to the numbers and physical shapes described above! ,.
  • the semiconductor integrated circuit according to the fourth embodiment is an example in which the number and shape of the protection target circuit regions are different from those of the first embodiment.
  • the protection target circuit region, the high noise circuit region, and the low noise circuit region may be arranged.
  • the semiconductor integrated circuit 500 includes a semiconductor substrate 110, an analog circuit area 520 (circuit area to be protected), a digital circuit area 531 to 532 (high noise circuit area), and a digital circuit area 541 to 542 ( Low noise circuit area).
  • the analog circuit region 520 is a region where analog circuit power is also provided.
  • the circuits in the analog circuit area 520 are analog circuits that are vulnerable to noise, such as tuners, AD converters, DA converters, PLL circuits, VCO circuits, filters, operational amplifiers, and the like.
  • the digital circuit areas 531 to 532 and the digital circuit areas 541 to 542 are areas where the digital circuit power is also provided.
  • the circuit operating frequencies in the digital circuit area 531 to 532 and the digital circuit area 541 to 542 are expressed as f531, f53 2, f541, and f542, respectively, and f541 ⁇ f542 ⁇ f531 ⁇ f532.
  • the magnitudes of noise generated by the circuits in the digital circuit areas 531 to 532 and digital circuit areas 541 to 542 are expressed as n531, n532, n541, and n542, respectively, n541 ⁇ n54 2 ⁇ n531 ⁇ n532.
  • the noise level force is 542 or less, and the characteristic deterioration of the analog circuit area 520 is acceptable.
  • the noise level force is 531 or more, the analog circuit area 520 circuit characteristic is acceptable. It will be deteriorated more than expected.
  • the digital circuit region 541 is physically disposed between the analog circuit region 520 and the digital circuit region 531 so that the analog circuit region 520 and the digital circuit region 531 do not contact each other.
  • the digital circuit area 542 is physically disposed between the analog circuit area 520 and the digital circuit area 532 so that the analog circuit area 520 and the digital circuit area 532 do not contact each other.
  • the power source that supplies the power source voltage to each of the above regions is independent.
  • the semiconductor integrated circuit 500 configured as described above, as in the semiconductor integrated circuit 100, noise generated in the digital circuit area 531 and 532 propagates to the analog circuit area 520 (circuit area to be protected). There is nothing to do. Therefore, the semiconductor integrated circuit 500 can also prevent the deterioration of the characteristics of the analog circuit region 520.
  • a power source that supplies a power source voltage to the digital circuit region 541 and a power source that supplies a power source voltage to the digital circuit region 542 are connected by wiring 592 as shown in FIG.
  • the power source that supplies the power source voltage to the digital circuit area 531 and the power source that supplies the power source voltage to the digital circuit area 532 may be connected by the wiring 591. Even when the power is connected in this way, the power supplied to the high noise circuit area (digital circuit area 531 and 532) and low noise circuit area (digital circuit area 541 and 542) is independent of each other! / ⁇ Therefore, noise generated in the digital circuit area 531 ⁇ 532 (high noise circuit area) is absorbed by the digital circuit area 541 and the digital circuit area 542 and is not propagated to the analog circuit area 520.
  • the protection target circuit region, the high noise circuit region, and the low noise circuit region may be arranged.
  • the semiconductor integrated circuit 600 includes a semiconductor substrate 110, analog circuit areas 621 to 623 (circuit area to be protected), digital circuit area 630 (high noise circuit area), and digital circuit area 6 41 to 642 (low noise circuit area).
  • the analog circuit areas 621 to 623 are areas in which analog circuit power is also provided.
  • the circuits in the analog circuit area 621 to 623 are, for example, analog circuits that are vulnerable to noise such as tuners, AD converters, DA converters, PLL circuits, VCO circuits, filters, and operational amplifiers.
  • the digital circuit area 630 and the digital circuit areas 641 to 642 are areas made up of digital circuits.
  • the operating frequencies of the circuits in each of the digital circuit area 630 and the digital circuit areas 641 to 642 are represented as f630, f641, and f642, respectively, and f642 ⁇ f641 ⁇ f630.
  • the magnitudes of noise generated by the circuits in the digital circuit area 630 and the digital circuit areas 641 to 642 are expressed as n630, n641, and ⁇ 642, respectively, ⁇ 642 ⁇ 641 ⁇ 630.
  • the circuits in the analog circuit areas 621 to 623 are assumed to have a characteristic degradation within an allowable range when the noise level force is 641 or less.
  • the noise level force is over 630 or more when the noise level force is over 630.
  • the digital circuit area 641 is arranged between the analog circuit area 621 and the digital circuit area 630 so that the analog circuit area 621 and the digital circuit area 630 do not contact each other. Is physically located. Further, the digital circuit area 641 is physically disposed between the analog circuit area 622 and the digital circuit area 630 so that the analog circuit area 622 and the digital circuit area 630 do not contact each other. . The digital circuit area 642 is physically disposed between the analog circuit area 623 and the digital circuit area 630 so that the analog circuit area 623 and the digital circuit area 630 do not contact each other.
  • the power supply for supplying the power supply voltage to each of the above regions is independent.
  • the noise generated in the digital circuit region 630 may propagate to the analog circuit regions 621 to 623 that are vulnerable to noise, as in the semiconductor integrated circuit 100. Degradation of characteristics of analog circuit area 621 to 623 (circuit area to be protected) can be reduced.
  • the power source for supplying the power source voltage to the digital circuit area 641 and the power source for supplying the power source voltage to the digital circuit area 642 are wired as shown in FIG. You may connect with 0. Even when power is connected in this way, the power supplied to the high noise circuit area (digital circuit area 630) and low noise circuit area (digital circuit area 641 and 642) is independent of each other! / Therefore, it is absorbed in the noise digital circuit area 641 and the digital circuit area 642 generated in the digital circuit area 630 (high noise circuit area) and is not propagated to the analog circuit areas 621 to 623.
  • the protection target circuit region, the high noise circuit region, and the low noise circuit region may be arranged.
  • the semiconductor integrated circuit 700 includes a semiconductor substrate 110, analog circuit areas 721 to 722 (circuit area to be protected), digital circuit area 730 (high noise circuit area), and digital circuit area 7 41 to 742. (Low noise circuit area).
  • the analog circuit areas 721 to 722 are areas where analog circuit power is also provided.
  • the circuits in the analog circuit areas 721 to 722 are analog circuits that are vulnerable to noise such as tuners, AD converters, DA converters, PLL circuits, VCO circuits, filters, and operational amplifiers.
  • the digital circuit area 730 and the digital circuit areas 741 to 742 are areas composed of digital circuits.
  • the operating frequencies of the circuits in each of the digital circuit region 730 and the digital circuit regions 741 to 742 are represented as f730, f741, and f742, respectively, and it is assumed that f741 ⁇ f742 ⁇ f730.
  • the magnitudes of noises generated by the circuits in the digital circuit region 730 and the digital circuit regions 741 to 742 are expressed as n730, n741, and ⁇ 742, respectively, ⁇ 741 ⁇ 742 ⁇ 730.
  • the lower limit frequency of the frequency band of the signal handled in the analog circuit region 721 is fl
  • the upper limit frequency is fh
  • the analog circuit area 721 is arranged so as not to contact the digital circuit area 741.
  • the digital circuit area 741 is physically disposed between the analog circuit area 722 and the digital circuit area 730 so that the analog circuit area 722 and the digital circuit area 730 do not contact each other.
  • the digital circuit area 742 is physically disposed between the analog circuit area 721 and the digital circuit area 730 so that the analog circuit area 721 and the digital circuit area 730 do not contact each other.
  • the analog circuit area 721 and the digital circuit area 741 do not contact each other. Although the level of noise generated when the operating frequency of the digital circuit area 741 is low is small, the operating frequency of the digital circuit area 741 is within the frequency band of the signal handled by the analog circuit area 721. It is a force that is considered to be a direct noise component.
  • the power supply for supplying the power supply voltage to each of the above regions is independent.
  • FIG. 10 shows the spectral distribution of noise generated in the digital circuit area 730 ⁇ 741 to 742 and the signal handled in the analog circuit area 721.
  • the noise generated in the digital circuit area 730 ⁇ 741 to 742 is propagated to the analog circuit area 721
  • the noise generated in the digital circuit area 741 is the signal handled in the analog circuit area 721. It overlaps with the band (fl ⁇ fh) and becomes direct noise.
  • the analog circuit region 721 and the digital circuit region 741 are arranged so as not to contact each other.
  • the large noise generated in the digital circuit area 730 is weak against noise, cannot propagate to the analog circuit areas 721 to 722, and the noise generated in the digital circuit area 741 Do not propagate to 721.
  • the deterioration of the circuit characteristics in the circuit area to be protected can be reduced.
  • a guard band region 860 may be further added between the analog circuit region 120 and the digital circuit region 140 to the semiconductor integrated circuit 100 as in the semiconductor integrated circuit 800 shown in FIG.
  • the guard band region 860 is the same as the guard band region provided in the conventional semiconductor integrated circuit. As a result, it is possible to more effectively prevent circuit characteristic deterioration in the circuit area to be protected.
  • the circuit formed in the low noise circuit region is not limited to the analog circuit and the digital circuit exemplified above!
  • circuit formed in the high noise circuit region an example of a large operating frequency and a digital circuit has been described.
  • an analog that generates a large frequency such as a VCO or the like is described.
  • Any circuit that generates noise that degrades the characteristics of the circuit in the circuit area to be protected such as a log circuit or a circuit that has a small peak and a high operating frequency, may be used.
  • a circuit formed in the low noise circuit region is not limited to a digital circuit having a low operating frequency, such as a circuit having a low peak current. Any circuit of a level that does not deteriorate the characteristics may be used.
  • the semiconductor integrated circuit according to the present invention has an effect that it is possible to prevent deterioration of circuit characteristics due to noise without increasing the area of the semiconductor integrated circuit, This is useful as a semiconductor integrated circuit in which a circuit whose characteristics deteriorate due to noise and a circuit that becomes a noise source are mixedly mounted.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

 入力される信号に含まれるノイズレベルに応じて特性が劣化する回路からなるアナログ回路領域120と、アナログ回路領域120の回路の特性を劣化させるレベルのノイズを発生する回路から成るデジタル回路領域130とが接しないように、これらの領域の間に、アナログ回路領域120の回路の特性を劣化させない(または劣化度合いが許容範囲)レベルのノイズを発生する回路のみから成るデジタル回路領域140を配置する。

Description

明 細 書
半導体集積回路
技術分野
[0001] 本発明は、ノイズの影響で特性が劣化する回路とノイズ源になる回路とが混載され た半導体集積回路に関するものである。
背景技術
[0002] 近年の半導体集積回路は、システム'オン'チップやシステム LSIと言われるように、 多くの機能力^つの半導体集積回路上に集積されるようになってきた。このような半 導体集積回路では、ノイズに弱 、アナログ回路とアナログ回路の特性を劣化させる 原因となるノイズを発生するデジタル回路とが集積される場合がある。この場合、アナ ログ回路の特性を劣化させな 、ために、デジタル回路力も発生するノイズをアナログ 回路へ伝搬させな 、ようにする必要がある。
[0003] デジタル回路力 発生するノイズをアナログ回路へ伝搬させな 、ように構成された 半導体集積回路としては、例えばアナログ回路とデジタル回路との間に、ガードバン ドを設けて、ノイズの伝搬を低減させるようにした半導体集積回路がある(例えば特許 文献 1や特許文献 2を参照)。
[0004] 図 12は、上記のガードバンドが設けられた半導体集積回路 900の構成を示す平面 図である。また、図 13は、半導体集積回路 900の断面図である(図 12の断面線 A— Aに沿った断面)。
[0005] 半導体集積回路 900は、図 12に示すように、半導体基盤 910、アナログ回路領域
920、デジタル回路領域 930、ガードバンド領域 940、アナログ回路用電源 950、お よびデジタル回路用電源 960を備えて構成されている。
[0006] 半導体基盤 910は、アナログ回路とデジタル回路とが混載されるようになっている。
[0007] アナログ回路領域 920は、アナログ回路が形成された領域である。この領域の回路 は、ノイズに弱ぐ電源などを介して伝搬されたノイズによって、特性が劣化する回路 である。
[0008] デジタル回路領域 930は、アナログ回路領域 920の回路の特性を劣化させるレべ ルのノイズを発生するデジタル回路力も成る領域である。
[0009] ガードバンド領域 940は、基盤コンタクト 941を備え、基盤コンタクト 941はデジタル 回路用電源 960に接続されて 、る。
[0010] アナログ回路用電源 950は、アナログ回路領域 920の回路に電源電圧を供給する ようになっている。
[0011] デジタル回路用電源 960は、デジタル回路領域 930の回路に電源電圧を供給する ようになっている。
[0012] 半導体集積回路 900では、半導体基盤 910上に、アナログ回路領域 920とデジタ ル回路領域 930とが配置され、アナログ回路領域 920とデジタル回路領域 930との 間にガードバンド領域 940が配置されて!、る。
[0013] 上記のように構成された半導体集積回路 900では、デジタル回路領域 930で発生 したノイズは、アナログ回路領域 920へ伝搬する前にガードバンド領域 940を通る。 その際に、ノイズは図 13に示したように、基盤コンタクト 941を通り、デジタル用電源 9 60を通って半導体基盤 910の外部へ逃がされる。すなわち、ノイズはガードバンド領 域 940で吸収され、半導体基盤 910の外部へ逃がされる。したがって、デジタル回路 領域 930で発生したノイズはアナログ回路領域 920へ伝搬することがなぐアナログ 回路領域 920の特性劣化を防止することが可能になる。
特許文献 1:特許第 3075892号公報
特許文献 2:特開 2002— 246553号公報
発明の開示
発明が解決しょうとする課題
[0014] し力しながら、上記従来の半導体集積回路では、半導体集積回路上の物理的な領 域として、ガードバンド領域を必要とするため、半導体集積回路の面積が増加すると いう問題を有していた。また、ガードバンド領域によるノイズの吸収は、ガードバンド領 域の面積が広いほど効果があるので、より大きなノイズ吸収の効果を得ようとすれば、 半導体集積回路の面積の増加がより顕著になる。
[0015] 本発明は、前記の問題に着目してなされたものであり、ノイズの影響で特性が劣化 する回路 (ノイズに弱い回路)とノイズ源になる回路とが混載された半導体集積回路 において、半導体集積回路(半導体基盤)の面積を増加させずに、ノイズに弱い回路 の特性劣化を防止することが可能な半導体集積回路を提供することを目的として!ヽ る。
課題を解決するための手段
[0016] 前記の課題を解決するため、請求項 1の発明は、
ノイズレベルの大きさに応じて特性が劣化する回路カゝら成る保護対象回路領域と、 前記保護対象回路領域の回路に与える劣化量が、前記保護対象回路領域の回路 に許容されたよりも大きな劣化量となるレベルのノイズを発生する回路カゝら成る高ノィ ズ回路領域と、
前記保護対象回路領域の回路に与える劣化量が、前記保護対象回路領域の回路 に許容された劣化量以内となるレベルのノイズを発生する回路カゝら成る低ノイズ回路 領域と、
電源電圧を供給するための経路が互いに独立した 3種類以上の個別電源とを備え 前記低ノイズ回路領域は、前記保護対象回路領域と前記高ノイズ回路領域とが接 しないように、前記保護対象回路領域と前記高ノイズ回路領域との間に配置され、 前記保護対象回路領域の回路、高ノイズ回路領域の回路、および低ノイズ回路領 域の回路は、前記 3種類以上の個別電源のうちの互いに異なる電源によって、それ ぞれの電源電圧が供給されるように構成されて ヽることを特徴とする。
[0017] これにより、高ノイズ回路領域で発生したノイズは、保護対象回路領域へ伝搬する より先に、低ノイズ回路領域通り半導体基盤の外部へ逃がされるので、高ノイズ回路 領域で発生したノイズは、ノイズに弱い保護対象回路領域に伝搬することがない。そ れゆえ、保護対象回路領域の回路の特性劣化を防止することが可能になる。
[0018] また、請求項 2の発明は、
請求項 1の半導体集積回路であって、
前記高ノイズ回路領域および低ノイズ回路領域の回路は、取り扱う信号が有する周 波数の大きさに応じたレベルのノイズを発生する回路であり、
前記低ノイズ回路領域で取り扱われる信号の最高周波数は、前記高ノイズ回路領 域内で取り扱われる信号の周波数よりも低いことを特徴とする。
[0019] これにより、回路が取り扱う信号の周波数に基づいて、高ノイズ回路領域、および低 ノイズ回路領域が構成される。
[0020] また、請求項 3の発明は、
請求項 1の半導体集積回路であって、
前記保護対象回路領域の回路は、アナログ回路であり、
前記高ノイズ回路領域の回路は、デジタル回路であることを特徴とする。
[0021] また、請求項 4の発明は、
請求項 2の半導体集積回路であって、
前記保護対象回路領域の回路は、アナログ回路であり、
前記高ノイズ回路領域の回路は、デジタル回路であることを特徴とする。
[0022] これらにより、アナログ回路とデジタル回路とが 1つの半導体基盤上に混載された場 合に、ノイズの影響で特性が劣化しやすいアナログ回路力 ノイズ源になるデジタル 回路のノイズから保護される。
発明の効果
[0023] 本発明によれば、半導体集積回路の面積を増加させずに、ノイズの影響で回路の 特性が劣化するのを防止することが可能になる。
図面の簡単な説明
[0024] [図 1]図 1は、本発明の実施形態 1に係る半導体集積回路の構成を示す平面図であ る。
[図 2]図 2は、本発明の実施形態 1に係る半導体集積回路の断面図である。
[図 3]図 3は、本発明の実施形態 2に係る半導体集積回路の構成を示す平面図であ る。
[図 4]図 4は、本発明の実施形態 2に係る半導体集積回路の変形例を示す平面図で ある。
[図 5]図 5は、本発明の実施形態 3に係る半導体集積回路の構成を示す平面図であ る。
[図 6]図 6は、半導体基盤とリードフレームとの接続関係を示す図である。 [図 7]図 7は、本発明の実施形態 4に係る半導体集積回路の構成を示す平面図であ る。
[図 8]図 8は、本発明の実施形態 4に係る半導体集積回路の変形例を示す平面図で ある。
[図 9]図 9は、本発明の実施形態 4に係る半導体集積回路の他の変形例を示す平面 図である。
[図 10]図 10は、デジタル回路領域で発生するノイズ、およびアナログ回路領域で扱 われる信号のスペクトル分布を表したものである。
[図 11]図 11は、本発明の実施形態 1に係る半導体集積回路にガードバンド領域が付 加された例を示す平面図である。
[図 12]図 12は、従来の半導体集積回路の構成を示す平面図である。
[図 13]図 13は、従来の半導体集積回路の断面図である。
符号の説明
100 半導体集積回路
110 半導体基盤
120 アナログ回路領域
130 デジタル回路領域
140 デジタル回路領域
151 -153 電源
160 リードフレーム
170 ボンディングワイヤ
180 ボンディングノッド
200 半導体集積回路
220 アナログ回路領域
230 アナログ回路領域
240 アナログ回路領域
300 半導体集積回路
320 デジタル回路領域 デジタル回路領域 デジタル回路領域 半導体集積回路
455 電源
半導体集積回路 アナログ回路領域 532 デジタル回路領域 542 デジタル回路領域 592 配線
半導体集積回路 623 アナログ回路領域 デジタル回路領域 642 デジタル回路領域 目線
半導体集積回路
722 アナログ回路領域 デジタル回路領域
742 デジタル回路領域 半導体集積回路 ガードバンド領域 半導体集積回路 半導体基盤
アナログ回路領域 デジタル回路領域 ガードバンド領域 基盤コンタクト アナログ回路用電源 デジタル回路用電源 発明を実施するための最良の形態
[0026] 以下、本発明の実施形態について図面を参照しながら説明する。
[0027] 《発明の実施形態 1》
図 1は、本発明の実施形態 1に係る半導体集積回路 100の構成を示す平面図であ る。また、図 2は、半導体集積回路 100の断面図(図 1における断面 A—A)である。 半導体集積回路 100は、図 1に示すように、半導体基盤 110、アナログ回路領域 12 0、デジタル回路領域 130、デジタル回路領域 140、および電源 151〜153を備えて 構成されている。
[0028] 半導体基盤 110は、アナログ半導体集積回路 (アナログ回路)とデジタル半導体集 積回路 (デジタル回路)とが混載されるようになって!/、る。
[0029] アナログ回路領域 120は、アナログ回路が形成された領域である。アナログ回路領 域 120に形成されるアナログ回路は、具体的には、例えばチューナ、 ADコンバータ 、 DAコンバータ、 PLL (Phase Locked Loop)、 VCO (Voltage Controlled O scillator)、フィルタ、オペアンプなどの回路である。これらの回路は、一般的にはノ ィズに弱ぐ取り扱われる信号に含まれるノイズレベルや半導体基盤を通して伝搬さ れるノイズレベルに応じて特性が劣化する。したがって、アナログ回路領域 120は、 他の回路領域で発生するノイズの伝搬を防ぎた!/ヽ領域 (保護対象回路領域)である。
[0030] デジタル回路領域 130は、前記保護対象回路領域の回路に許容された以上に、 特性を劣化させるレベルのノイズを発生する回路カゝら成る領域 (高ノイズ回路領域) である。本実施形態では、デジタル回路領域 130は、動作周波数に応じたレベルの ノイズを発生するデジタル回路力 成る領域であり、デジタル回路領域 130の回路の 動作周波数は、 60MHzである。
[0031] デジタル回路領域 140は、保護対象回路領域の回路の特性を劣化させな!/、 (また は劣化度合いがアナログ回路領域 120の回路の許容範囲)レベルのノイズを発生す る回路のみ力 成る領域 (低ノイズ回路領域)である。デジタル回路領域 140も、動作 周波数に応じたレベルのノイズを発生するデジタル回路力 成る領域であり、デジタ ル回路領域 140の回路の動作周波数は、 10MHzである。すなわち、デジタル回路 領域 130の回路の動作周波数は、デジタル回路領域 140の動作周波数よりも大きい ので、デジタル回路領域 130は、デジタル回路領域 140よりも発生するノイズのレべ ルが大きい領域である。
[0032] 上記のアナログ回路領域 120、デジタル回路領域 130、およびデジタル回路領域 1 40は、図 1に示すように、アナログ回路領域 120とデジタル回路領域 130とが接する ことがないように、アナログ回路領域 120とデジタル回路領域 130との間に、デジタル 回路領域 140が物理的に配置されている。
[0033] 電源 151は、アナログ回路領域 120に電源を供給し、電源 152はデジタル回路領 域 130に電源を供給し、電源 153はデジタル回路領域 140に電源を供給するよう〖こ なっている。電源 151〜153は、個別の電源であり、互いに接続されることなぐ電源 供給のための経路は独立している。
[0034] 半導体集積回路 100が動作すると、デジタル回路領域 140とデジタル回路領域 13 0では、ノイズが発生する。デジタル回路領域 130で発生したノイズは、半導体基盤 1 10を通して、ノイズに弱いアナログ回路領域 120へも伝搬しょうとする。
[0035] しかし、デジタル回路領域 130で発生したノイズは、アナログ回路領域 120へ伝搬 する途中で、デジタル回路領域 140を通過する。この際、デジタル回路領域 130で 発生したノイズは、図 2に示すように、アナログ回路領域 120へ伝搬するより先に、デ ジタル回路領域 140に電源電圧を供給する電源 153を通り半導体基盤 110の外部 へ逃がされる。すなわち、デジタル回路領域 130で発生したノイズは、ノイズに弱いァ ナログ回路領域 120に伝搬することがない。
[0036] したがって、本実施形態によれば、高ノイズ回路領域で発生したノイズは、保護対 象回路領域に伝搬されないので、保護対象回路領域の回路の特性劣化を防止する ことが可能になる。
[0037] また、ガードバンド領域が不要なので、半導体基盤の面積を小さくすることができる 。し力も、前記低ノイズ回路領域 (デジタル回路領域 140)は、一般にガードバンド領 域と比べて面積が大きいので、ノイズの吸収効果も大きくなる。
[0038] なお、デジタル回路領域 140およびデジタル回路領域 130の動作周波数は例示で あり、これらに限定されるものではない。
[0039] 《発明の実施形態 2》 前記保護対象回路領域等の各領域を構成する回路の種別 (アナログ回路またはデ ジタル回路の別)は、前記実施形態 1の例には限定されない。
[0040] 実施形態 2に係る半導体集積回路は、前記保護対象回路領域等の各領域を構成 する回路の種別が前記実施形態 1とは異なる例である。
[0041] 例えば、半導体集積回路 200は、図 3に示すように、半導体基盤 110、アナログ回 路領域 220、アナログ回路領域 230、およびアナログ回路領域 240を備えて構成さ れ、全ての回路領域がアナログ回路力 成る領域である。なお、以下の各実施形態 や各変形例において前記実施形態 1等と同様の機能を有する構成要素については 、同一の符号を付して説明を省略する。
[0042] アナログ回路領域 220 (保護対象回路領域)は、アナログ回路力も成る領域である 。アナログ回路領域 220の回路は、取り扱われる信号に含まれるノイズレベルや半導 体基盤を通して伝搬されるノイズレベルに応じて特性が劣化する。具体的にアナログ 回路領域 220に形成される回路は、例えば、チューナの LNA(Low Noise Ampli fier)やミキサなどのノイズに弱 、アナログ回路である。
[0043] アナログ回路領域 230 (高ノイズ回路領域)は、発生するノイズレベルが大き!/、アナ ログ回路が設けられる領域である。アナログ回路領域 230の回路が発生するノイズは 、アナログ回路領域 220の特性を、許容された以上に劣化させるだけのレベルを有し ている。具体的にアナログ回路領域 230に形成される回路は、例えば、チューナの P LL回路などのアナログ回路である。
[0044] アナログ回路領域 240 (低ノイズ回路領域)は、発生するノイズレベルが小さ 、アナ ログ回路が設けられた領域である。アナログ回路領域 240の回路が発生するノイズは 、アナログ回路領域 220の特性を、許容された以上に劣化させるまでのレベルは有し ていない。具体的にアナログ回路領域 240に形成される回路は、例えばチューナの フィルタや VGAなどのアナログ回路である。
[0045] また、図 4に示す半導体集積回路 300のように、全ての回路領域をデジタル回路か ら成る領域としてもよい。
[0046] デジタル回路領域 320 (保護対象回路領域)のデジタル回路は、例えば高速インタ 一フェースなどのノイズに弱い回路である。デジタル回路領域 320の回路は、伝搬さ れたノイズのレベルに応じて特性が劣化する。
[0047] デジタル回路領域 330 (高ノイズ回路領域)のデジタル回路は、動作周波数に応じ たレベルのノイズを発生する回路である。デジタル回路領域 330のデジタル回路が 発生するノイズのレベルは、デジタル回路領域 320の特性を、許容された以上に劣 化させるだけのレベルを有して 、る。
[0048] デジタル回路領域 340 (低ノイズ回路領域)の回路も、動作周波数に応じたレベル のノイズを発生する回路である。デジタル回路領域 340の回路の動作周波数は、デ ジタル回路領域 330の回路の動作周波数よりも低ぐ発生するノイズのレベルは、デ ジタル回路領域 320に許容された範囲内の劣化しか与えないレベルである。
[0049] 《発明の実施形態 3》
前記保護対象回路領域、高ノイズ回路領域、および低ノイズ回路領域の各領域の 回路に電源電圧を供給する電源の数は、保護対象回路領域に電源電圧を供給する 電源と、低ノイズ回路領域に電源電圧を供給する電源と、高ノイズ回路領域に電源 電圧を供給する電源とが接続されることなぐ互いに独立していれば、上記の各例に は限定されない。
[0050] 実施形態 3に係る半導体集積回路は、前記保護対象回路領域等の各領域に供給 される電源の数が前記実施形態 1とは異なる例である。
[0051] 例えば、図 5に示す半導体集積回路 400の例では、電源は、電源 451〜455の 5 種類あり、領域数の 3種類よりも多い。これらの電源は互いに独立し、 1つの電源が複 数の領域へ電源を供給するような重複もな!/ヽ。
[0052] なお、電源は、半導体基盤上で独立して 、ればよ 、。図 6は、半導体基盤 110と電 源端子との接続を示す図である。
[0053] リードフレーム 160 (電源端子)は、半導体集積回路の外部力も電源電圧が供給さ れるようになっている。
[0054] ボンディングワイヤー 170は、リードフレーム 160とボンディングパッド 180とを接続 するようになっている。
[0055] ボンディングパッド 180は、図示しない電源配線を介して、前記保護対象回路領域 、高ノイズ回路領域、および低ノイズ回路領域の各領域の回路に、ボンディングワイ ヤー 170を介して供給された電源電圧を供給するようになっている。
[0056] この例では、図 6に示すように、リードフレーム 160のうちの 1つが複数のボンディン グパッド 180に接続されている。したがって、製品の端子としては電源が独立ではなく 、同一の電源端子力 複数の領域に電源電圧が供給されることになる。しかし、半導 体基盤 110上では、前記保護対象回路領域、高ノイズ回路領域、および低ノイズ回 路領域の各領域に供給される電源の経路が別であり、ノイズが半導体基盤 110を通 して直接伝搬することがな 、。
[0057] 《発明の実施形態 4》
前記保護対象回路領域、高ノイズ回路領域、および低ノイズ回路領域の各領域の 数は、保護対象回路領域と高ノイズ回路領域とが接することがないように、保護対象 回路領域と高ノイズ回路領域とが低ノイズ回路領域によって物理的に分離されてい れば、上記で説明した数や物理的形状に限定されな!、。
[0058] 実施形態 4の半導体集積回路は、前記保護対象回路領域等の数や形状が実施形 態 1とは異なる例である。
[0059] 例えば、図 7に示す半導体集積回路 500のように、前記保護対象回路領域、高ノィ ズ回路領域、および低ノイズ回路領域の各領域を配置してもよい。半導体集積回路 500は、図 7に示すように、半導体基盤 110、アナログ回路領域 520 (保護対象回路 領域)、デジタル回路領域 531〜532 (高ノイズ回路領域)、およびデジタル回路領 域 541〜542 (低ノイズ回路領域)を備えて構成されている。
[0060] アナログ回路領域 520は、アナログ回路力もなる領域である。アナログ回路領域 52 0の回路は、例えば、チューナ、 ADコンバータ、 DAコンバータ、 PLL回路、 VCO回 路、フィルタ、オペアンプ等のノイズに弱いアナログ回路である。
[0061] デジタル回路領域 531〜532、およびデジタル回路領域 541〜542は、デジタル 回路力もなる領域である。この例では、デジタル回路領域 531〜532、およびデジタ ル回路領域 541〜542の各領域における回路の動作周波数をそれぞれ f531、f53 2、 f541、 f542と表し、 f541≤f542<f531≤f532であるとする。この場合、デジタ ル回路領域 531〜532、およびデジタル回路領域 541〜542の各領域の回路が発 生するノイズの大きさをそれぞれ n531、 n532、 n541、 n542と表すと、 n541≤n54 2<n531≤n532となる。この装置の例では、ノイズのレベル力 542以下では、アナ ログ回路領域 520の回路の特性劣化が許容範囲となる力 ノイズのレベル力 531以 上では、アナログ回路領域 520の回路の特性が許容された以上に劣化するものとす る。
[0062] 上記のデジタル回路領域 541は、アナログ回路領域 520とデジタル回路領域 531 とが接することがないように、アナログ回路領域 520とデジタル回路領域 531との間に 、物理的に配置されている。また、デジタル回路領域 542は、アナログ回路領域 520 とデジタル回路領域 532とが接することがな 、ように、アナログ回路領域 520とデジタ ル回路領域 532との間に、物理的に配置されている。
[0063] また、半導体集積回路 500でも上記の各領域に電源電圧を供給する電源は独立し ている。
[0064] 上記のように構成された半導体集積回路 500では、半導体集積回路 100と同様に して、デジタル回路領域 531 · 532で発生したノイズは、アナログ回路領域 520 (保護 対象回路領域)に伝搬することがない。したがって、半導体集積回路 500でもやはり 、アナログ回路領域 520の特性の劣化を防止できる。
[0065] なお、半導体集積回路 500では、デジタル回路領域 541に電源電圧を供給する電 源とデジタル回路領域 542に電源電圧を供給する電源とを図 7に示すように、配線 5 92で接続してもよ ヽし、デジタル回路領域 531に電源電圧を供給する電源とデジタ ル回路領域 532に電源電圧を供給する電源とを配線 591で接続してもよい。このよう に電源を接続しても、高ノイズ回路領域 (デジタル回路領域 531 · 532)と低ノイズ回 路領 (デジタル回路領域 541 · 542)とに供給される電源はそれぞれ独立して!/ヽるの で、デジタル回路領域 531 · 532 (高ノイズ回路領域)で発生したノイズが、デジタル 回路領域 541やデジタル回路領域 542で吸収され、アナログ回路領域 520に伝搬さ れることがない。
[0066] また、図 8に示す半導体集積回路 600のように、前記保護対象回路領域、高ノイズ 回路領域、および低ノイズ回路領域の各領域を配置してもよい。半導体集積回路 60 0は、図 8に示すように、半導体基盤 110、アナログ回路領域 621〜623 (保護対象 回路領域)、デジタル回路領域 630 (高ノイズ回路領域)、およびデジタル回路領域 6 41〜642 (低ノイズ回路領域)を備えて構成されている。
[0067] アナログ回路領域 621〜623は、アナログ回路力もなる領域である。アナログ回路 領域 621〜623の回路は、例えば、チューナや ADコンバータや D Aコンバータや P LL回路や VCO回路やフィルタやオペアンプ等のノイズに弱いアナログ回路である。
[0068] デジタル回路領域 630、およびデジタル回路領域 641〜642は、デジタル回路か らなる領域である。この例では、デジタル回路領域 630、およびデジタル回路領域 64 1〜642の各領域における回路の動作周波数をそれぞれ f630、 f641、 f642と表し、 f642≤f641 <f630であるとする。この場合、デジタル回路領域 630、およびデジタ ル回路領域 641〜642の各領域の回路が発生するノイズの大きさをそれぞれ n630 、 n641、 η642と表すと、 π642≤η641 <η630となる。前記アナログ回路領域 621 〜623の回路は、ノイズのレベル力 641以下では、特性の劣化は許容範囲内となる 力 ノイズのレベル力 ¾630以上では、許容された以上に特性が劣化するものとする。
[0069] 上記のデジタル回路領域 641は、図 8に示すように、アナログ回路領域 621とデジ タル回路領域 630とが接することがないように、アナログ回路領域 621とデジタル回 路領域 630との間に物理的に配置されている。また、デジタル回路領域 641は、アナ ログ回路領域 622とデジタル回路領域 630とが接することがな 、ように、アナログ回 路領域 622とデジタル回路領域 630との間に、物理的に配置されている。また、デジ タル回路領域 642は、アナログ回路領域 623とデジタル回路領域 630とが接すること がないように、アナログ回路領域 623とデジタル回路領域 630との間に、物理的に配 置されている。
[0070] また、半導体集積回路 600でも上記の各領域に電源電圧を供給する電源は独立し ている。
[0071] 上記のように構成された半導体集積回路 600においても、半導体集積回路 100と 同様にして、デジタル回路領域 630で発生したノイズは、ノイズに弱いアナログ回路 領域 621〜623に伝搬することがなぐアナログ回路領域 621〜623 (保護対象回路 領域)の特性の劣化を小さくできる。
[0072] なお、半導体集積回路 600では、デジタル回路領域 641に電源電圧を供給する電 源とデジタル回路領域 642に電源電圧を供給する電源とを図 8に示すように配線 69 0で接続してもよい。このように電源を接続しても、高ノイズ回路領域 (デジタル回路領 域 630)と低ノイズ回路領域 (デジタル回路領域 641 · 642)とに供給される電源はそ れぞれ独立して!/、るので、デジタル回路領域 630 (高ノイズ回路領域)で発生したノィ ズカ デジタル回路領域 641やデジタル回路領域 642で吸収され、アナログ回路領 域 621〜623に伝搬されることがない。
[0073] また、図 9に示す半導体集積回路 700のように、前記保護対象回路領域、高ノイズ 回路領域、および低ノイズ回路領域の各領域を配置してもよい。半導体集積回路 70 0は、図 9に示すように、半導体基盤 110、アナログ回路領域 721〜722 (保護対象 回路領域)、デジタル回路領域 730 (高ノイズ回路領域)、およびデジタル回路領域 7 41〜742 (低ノイズ回路領域)を備えて構成されている。
[0074] アナログ回路領域 721〜722は、アナログ回路力もなる領域である。アナログ回路 領域 721〜722の回路は、例えば、チューナや ADコンバータや D Aコンバータや P LL回路や VCO回路やフィルタやオペアンプ等のノイズに弱いアナログ回路である。
[0075] デジタル回路領域 730、およびデジタル回路領域 741〜742は、デジタル回路か らなる領域である。この例では、デジタル回路領域 730、およびデジタル回路領域 74 1〜742の各領域における回路の動作周波数をそれぞれ f730、 f741、 f742と表し、 f741 <f742<f730であるとする。この場合、デジタル回路領域 730、およびデジタ ル回路領域 741〜742の各領域の回路が発生するノイズの大きさをそれぞれ n730 、 n741、 η742と表すと、 π741 <η742<η730となる。
[0076] また、アナログ回路領域 721で扱われる信号の周波数帯域の下限周波数を fl、上 限周波数を fhとし、 f 1 < f 741く fh< f 742く f 730であるとする。
[0077] アナログ回路領域 721は、図 9に示すように、デジタル回路領域 741と接することが ないように配置されている。また、デジタル回路領域 741は、アナログ回路領域 722と デジタル回路領域 730との間に、アナログ回路領域 722とデジタル回路領域 730と が接することがないように物理的に配置されている。また、デジタル回路領域 742は、 アナログ回路領域 721とデジタル回路領域 730との間に、アナログ回路領域 721と デジタル回路領域 730とが接することがないように物理的に配置されている。
[0078] 上記のように、アナログ回路領域 721とデジタル回路領域 741とが接することがない ように配置されるのは、デジタル回路領域 741の動作周波数が低ぐ発生するノイズ のレベルは小さいとはいえ、デジタル回路領域 741の動作周波数がアナログ回路領 域 721で扱われる信号の周波数帯域に入っているので、直接ノイズ成分となると考え られる力 である。
[0079] また、半導体集積回路 700でも上記の各領域に電源電圧を供給する電源は独立し ている。
[0080] 図 10は、デジタル回路領域 730· 741〜742で発生するノイズ、およびアナログ回 路領域 721で扱われる信号のスペクトル分布を表したものである。図 10から分力るよ うに、デジタル回路領域 730 · 741〜742で発生するノイズがアナログ回路領域 721 に伝搬されると、デジタル回路領域 741で発生するノイズは、アナログ回路領域 721 で扱われる信号帯域 (fl〜fh)と重なり、直接のノイズとなる。
[0081] そこで、デジタル回路領域 741で発生するノイズがアナログ回路領域 721に伝搬し ないようにするために、アナログ回路領域 721とデジタル回路領域 741とは、互いに 接することがな 、ように配置される。
[0082] これにより、デジタル回路領域 730で発生した大き ゾィズは、ノイズに弱 、アナ口 グ回路領域 721〜722に伝搬することがなぐかつデジタル回路領域 741で発生し たノイズは、アナログ回路領域 721に伝搬することがな 、。
[0083] したがって、半導体集積回路 700においても、保護対象回路領域の回路の特性劣 化を小さくできる。
[0084] なお、図 11に示す半導体集積回路 800のように、半導体集積回路 100に対し、ァ ナログ回路領域 120とデジタル回路領域 140の間に、さらにガードバンド領域 860を 付加してもよい。ガードバンド領域 860は、従来の半導体集積回路に設けられていた ガードバンド領域と同じものである。これにより、より効果的に保護対象回路領域の回 路の特性劣化を防止することが可能になる。
[0085] また、低ノイズ回路領域に形成される回路は、上記に例示したアナログ回路やデジ タル回路と 、う方式に限定されな!、。
[0086] また、高ノイズ回路領域に形成される回路の例として、動作周波数の大き 、デジタ ル回路の例を説明したが、例えば、 VCOなどのような大きい周波数を発生するアナ ログ回路や、動作周波数は小さくてもピーク電流が大きい回路など、保護対象回路 領域の回路の特性を劣化させるノイズを発生させる回路であればよい。
[0087] また、低ノイズ回路領域に形成される回路は、動作周波数の小さいデジタル回路に 限定するものではなぐピーク電流が小さい回路など、発生するノイズのレベルが、保 護対象回路領域の回路の特性を劣化させないレベルの回路であればよい。
産業上の利用可能性
[0088] 本発明に力かる半導体集積回路は、半導体集積回路の面積を増加させずに、ノィ ズの影響で回路の特性が劣化するのを防止することが可能になるという効果を有し、 ノイズの影響で特性が劣化する回路とノイズ源になる回路とが混載された半導体集 積回路等として有用である。

Claims

請求の範囲
[1] ノイズレベルの大きさに応じて特性が劣化する回路力 成る保護対象回路領域と、 前記保護対象回路領域の回路に与える劣化量が、前記保護対象回路領域の回路 に許容されたよりも大きな劣化量となるレベルのノイズを発生する回路カゝら成る高ノィ ズ回路領域と、
前記保護対象回路領域の回路に与える劣化量が、前記保護対象回路領域の回路 に許容された劣化量以内となるレベルのノイズを発生する回路カゝら成る低ノイズ回路 領域と、
電源電圧を供給するための経路が互いに独立した 3種類以上の個別電源とを備え 前記低ノイズ回路領域は、前記保護対象回路領域と前記高ノイズ回路領域とが接 しないように、前記保護対象回路領域と前記高ノイズ回路領域との間に配置され、 前記保護対象回路領域の回路、高ノイズ回路領域の回路、および低ノイズ回路領 域の回路は、前記 3種類以上の個別電源のうちの互いに異なる電源によって、それ ぞれの電源電圧が供給されるように構成されていることを特徴とする半導体集積回路
[2] 請求項 1の半導体集積回路であって、
前記高ノイズ回路領域および低ノイズ回路領域の回路は、取り扱う信号が有する周 波数の大きさに応じたレベルのノイズを発生する回路であり、
前記低ノイズ回路領域で取り扱われる信号の最高周波数は、前記高ノイズ回路領 域内で取り扱われる信号の周波数よりも低いことを特徴とする半導体集積回路。
[3] 請求項 1の半導体集積回路であって、
前記保護対象回路領域の回路は、アナログ回路であり、
前記高ノイズ回路領域の回路は、デジタル回路であることを特徴とする半導体集積 回路。
[4] 請求項 2の半導体集積回路であって、
前記保護対象回路領域の回路は、アナログ回路であり、
前記高ノイズ回路領域の回路は、デジタル回路であることを特徴とする半導体集積 回路。
PCT/JP2006/302521 2005-06-06 2006-02-14 半導体集積回路 WO2006132007A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06713662A EP1890328A4 (en) 2005-06-06 2006-02-14 INTEGRATED SEMICONDUCTOR SWITCHING
JP2006536975A JPWO2006132007A1 (ja) 2005-06-06 2006-02-14 半導体集積回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-165407 2005-06-06
JP2005165407 2005-06-06

Publications (1)

Publication Number Publication Date
WO2006132007A1 true WO2006132007A1 (ja) 2006-12-14

Family

ID=37498216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302521 WO2006132007A1 (ja) 2005-06-06 2006-02-14 半導体集積回路

Country Status (6)

Country Link
US (1) US20080094132A1 (ja)
EP (1) EP1890328A4 (ja)
JP (1) JPWO2006132007A1 (ja)
KR (1) KR20080009191A (ja)
CN (1) CN101019224A (ja)
WO (1) WO2006132007A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205729A (ja) * 2012-03-29 2013-10-07 Seiko Epson Corp 集積回路装置、電気光学装置及び電子機器
JP2015095606A (ja) * 2013-11-13 2015-05-18 セイコーエプソン株式会社 半導体装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193189A (ja) * 1993-12-27 1995-07-28 Hitachi Ltd アナログ/デジタル混在lsi
JPH09181257A (ja) * 1995-12-25 1997-07-11 Hitachi Ltd 半導体集積回路装置
JP2004179255A (ja) * 2002-11-25 2004-06-24 Sony Corp 半導体集積回路

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3251735B2 (ja) * 1992-09-25 2002-01-28 株式会社東芝 半導体集積回路装置
US6295572B1 (en) * 1994-01-24 2001-09-25 Advanced Micro Devices, Inc. Integrated SCSI and ethernet controller on a PCI local bus
US5475255A (en) * 1994-06-30 1995-12-12 Motorola Inc. Circuit die having improved substrate noise isolation
JPH0884061A (ja) * 1994-09-14 1996-03-26 Hitachi Ltd 集積回路の雑音低減回路および雑音低減法
JPH11238846A (ja) * 1998-02-20 1999-08-31 Rohm Co Ltd 半導体装置
JP3934261B2 (ja) * 1998-09-18 2007-06-20 株式会社ルネサステクノロジ 半導体集積回路
JP2001094050A (ja) * 1999-09-21 2001-04-06 Mitsubishi Electric Corp 半導体装置
JP3719650B2 (ja) * 2000-12-22 2005-11-24 松下電器産業株式会社 半導体装置
JP2002313935A (ja) * 2001-04-16 2002-10-25 Niigata Seimitsu Kk 半導体装置
AU2003233604A1 (en) * 2002-05-20 2003-12-12 Imagerlabs Forming a multi segment integrated circuit with isolated substrates
US7052939B2 (en) * 2002-11-26 2006-05-30 Freescale Semiconductor, Inc. Structure to reduce signal cross-talk through semiconductor substrate for system on chip applications
JP4280672B2 (ja) * 2004-05-07 2009-06-17 富士通株式会社 半導体集積回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07193189A (ja) * 1993-12-27 1995-07-28 Hitachi Ltd アナログ/デジタル混在lsi
JPH09181257A (ja) * 1995-12-25 1997-07-11 Hitachi Ltd 半導体集積回路装置
JP2004179255A (ja) * 2002-11-25 2004-06-24 Sony Corp 半導体集積回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1890328A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013205729A (ja) * 2012-03-29 2013-10-07 Seiko Epson Corp 集積回路装置、電気光学装置及び電子機器
JP2015095606A (ja) * 2013-11-13 2015-05-18 セイコーエプソン株式会社 半導体装置
US9880285B2 (en) 2013-11-13 2018-01-30 Seiko Epson Corporation Semiconductor device

Also Published As

Publication number Publication date
US20080094132A1 (en) 2008-04-24
EP1890328A1 (en) 2008-02-20
EP1890328A4 (en) 2009-06-24
KR20080009191A (ko) 2008-01-25
JPWO2006132007A1 (ja) 2009-01-08
CN101019224A (zh) 2007-08-15

Similar Documents

Publication Publication Date Title
JP4301401B2 (ja) フロントエンドモジュール及び通信端末
JP5768375B2 (ja) 半導体装置
US8212323B2 (en) Seal ring structure for integrated circuits
US7667302B1 (en) Integrated circuit chip with seal ring structure
US8242586B2 (en) Integrated circuit chip with seal ring structure
US7095999B2 (en) Signal processing semiconductor integrated circuit device
KR19980023927A (ko) 반도체 장치
JP2007059676A (ja) 半導体装置
TW201843791A (zh) 半導體晶片
US7881679B1 (en) Method and apparatus for integrating power amplifiers with phase locked loop in a single chip transceiver
WO2006132007A1 (ja) 半導体集積回路
JP2005183696A (ja) 半導体装置
US7355219B2 (en) Integrated circuit with reduced coupling noise
US20060043425A1 (en) Semiconductor integrated circuit device which restricts an increase in the area of a chip, an increase in the number of lead terminals of a package, and can reduce parasitic inductance
US6677781B2 (en) Semiconductor integrated circuit device
JP4583233B2 (ja) 半導体装置
US5864168A (en) Apparatus and method for reduced substrate noise coupling
JP2007096170A (ja) 半導体装置
KR102217746B1 (ko) 탄성파 장치, 고주파 프론트 엔드 회로 및 통신 장치
JP2004146674A (ja) 半導体集積回路
US20090085229A1 (en) Audio power amplifier package
WO2022149474A1 (ja) 電子回路装置
JP2005019482A (ja) 半導体集積装置
WO2022215200A1 (ja) ドハティ増幅器
US20100295601A1 (en) Semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2006536975

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020077000989

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2006713662

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11660315

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200680000755.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006713662

Country of ref document: EP