WO2006129569A1 - 筋繊維タイプ移行抑制剤 - Google Patents

筋繊維タイプ移行抑制剤 Download PDF

Info

Publication number
WO2006129569A1
WO2006129569A1 PCT/JP2006/310564 JP2006310564W WO2006129569A1 WO 2006129569 A1 WO2006129569 A1 WO 2006129569A1 JP 2006310564 W JP2006310564 W JP 2006310564W WO 2006129569 A1 WO2006129569 A1 WO 2006129569A1
Authority
WO
WIPO (PCT)
Prior art keywords
muscle
fiber type
recovery
atrophy
disuse
Prior art date
Application number
PCT/JP2006/310564
Other languages
English (en)
French (fr)
Inventor
Naoko Nozato
Koichi Nakazato
Hongsun Song
Original Assignee
Asahi Breweries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Breweries, Ltd. filed Critical Asahi Breweries, Ltd.
Publication of WO2006129569A1 publication Critical patent/WO2006129569A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L2/00Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
    • A23L2/52Adding ingredients
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/73Rosaceae (Rose family), e.g. strawberry, chokeberry, blackberry, pear or firethorn
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Definitions

  • the present invention relates to a muscle fiber type transition inhibitor obtained from fruit, and particularly suppresses muscle fiber type transition at the time of disuse muscle atrophy, from the effect of suppressing disuse muscle atrophy and disuse muscle atrophy.
  • the present invention relates to a muscle fiber type migration inhibitor and a muscle mass recovery accelerator having an effect of promoting the recovery of muscle mass.
  • the human body usually has more than about 600 muscles, both large and small, and these muscles can be divided into skeletal muscles, smooth muscles, and myocardium. Skeletal muscles are also called voluntary muscles because they are muscles that humans consciously drive, and myocardial and smooth muscles are also called involuntary muscles. Of these three types of muscles, smooth muscle and myocardium cannot be moved by human intention, but skeletal muscle is a muscle that can be freely moved by will, so when muscles are not used for a long period of time. It causes disuse muscle atrophy.
  • Disuse muscle atrophy is a phenomenon in which muscle mass, muscle strength, bone mass, etc., declines when muscles are not used for a long time. Long-term proneness associated with gypsum fixation and bedridden, space swimming, etc. Occurs when the muscles are not loaded for a long time under zero gravity. In addition, this kind of disuse muscle atrophy is prominently observed in the slow muscle that plays the role of antigravity muscle, and the phenomenon that the fiber type changes from slow muscle typel to fast muscle typel. It can be seen. Among muscle fiber types, fast muscle typell is a muscle used to extract instantaneous power, and slow muscle typel is a muscle used to extract endurance, and this slow muscle typel is a human typel. Supporting basic and sustainable activities such as supporting the body. As a result of disuse muscle atrophy, the muscle fiber type shifts from slow-muscle typel to fast-muscle typell along with the decrease in muscle mass. It is also a cause of trouble.
  • Non-Patent Literature l Kondo, H. et al., Acta. Physiol. Scand., 142, 527-528 (1 991)
  • Patent Document 1 Japanese Patent Laid-Open No. 7-285876
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-47196
  • Patent Document 3 Japanese Patent Laid-Open No. 9-175982
  • Patent Document 4 JP 2001-89387 A
  • Patent Document 5 Japanese Patent Application Laid-Open No. 2002-338464
  • Patent Documents 1 to 3 describe an antioxidant effect, a blood pressure lowering effect, an antimutagenic effect, an allergy suppressing effect, etc.
  • the muscle atrophy suppressing effect and the muscle atrophy are described.
  • Patent Documents 4 and 5 only mention the atrophy-suppressing effect at the time of muscle atrophy. Verification has been done. No investigation has been conducted on the transition of the slow muscle fiber type that occurs during muscle atrophy. Therefore, after investigating the muscle fiber type at the time of disuse muscle atrophy and considering the effect at the time of recovery, it is only necessary to promote recovery from muscle atrophy at the time of gypsum treatment such as fracture and rest treatment by hospitalization.
  • Naturally-used disuse muscle atrophy inhibitors and muscle atrophy that have the effect of promoting rehabilitation to improve and maintain QOL (Quality of Life) by preventing and eliminating bedridden in an aging society. There was a need to develop a power recovery accelerator.
  • the object of the present invention is to prevent the transition from slow muscle typel of muscle fiber type to fast muscle typell, which is a phenomenon seen in slow muscles where muscle atrophy occurs, particularly during disuse muscle atrophy,
  • An object of the present invention is to provide a muscle fiber type transition inhibitor or a muscle mass recovery promoting agent that suppresses disuse muscle atrophy and promotes the recovery of muscle mass at the time of recovery of the atrophied muscle.
  • fruit-derived polyphenols in particular apple-derived polyphenols, suppress the migration of muscle fiber types during disuse muscle atrophy, and during muscle atrophy. It has been found that it has a remarkable muscle mass recovery promoting effect at the time of recovery from atrophy together with the effect of suppressing the decrease in muscle mass, and has completed the present invention.
  • the present invention provides the following.
  • a muscle fiber type migration inhibitor containing fruit-derived polyphenol as an active ingredient which suppresses the migration of muscle fiber type during disuse muscle atrophy.
  • the fruit-derived polyphenol of the present invention is, for example, clarified after squeezing the fruit, and passed through a column filled with styrene dibutylbenzene-based synthetic adsorption resin to adsorb the polyphenol component. It is obtained by washing with water to completely remove saccharides and organic acids and then eluting with hydrous ethanol.
  • the fruit polyphenol obtained in this way has a high anti-oxidative activity and is a muscle fiber type slow muscle that is a phenomenon seen in the slow muscle that causes muscle atrophy especially during disuse muscle atrophy.
  • a muscle mass recovery accelerator for disused muscle atrophy comprising fruit-derived polyphenol as an active ingredient.
  • a muscle mass recovery promoter for rehabilitation comprising fruit-derived polyphenol as an active ingredient.
  • the fruit-derived polyphenol of the present invention has the effect of promoting the recovery of muscles that have been ablated as described above, it is based on muscles that have become disuse muscle atrophy due to long-term prone or the like such as casting fixation or bedridden Rehabilitation for return is improved and treated early.
  • the polyphenol has a high content of procyanidins (1) to (4) V, the muscle fiber type transition inhibitor or muscle mass recovery promoter described in V .
  • Blueberry is a fruit that contains polyphenols with high prussian-gin content.
  • Berries such as cranberries, blackberries, raspberries, strawberries, black currants, cherries, grapes, nectarines, plums (plums), apricots, kiwis, apogados, mangoes, dates (dates), bananas, apples, Fruits belonging to the family Rosaceae such as pears and peaches, especially those derived from apples are preferred.
  • the fruit may be either a mature fruit or an immature fruit, but it contains more polyphenolic compounds and contains a large amount of various active ingredients having a wide range of physiological effects. Fruits are particularly preferred.
  • Sarako may also be a wild linguistic species (Crab Apple).
  • unripe fruit means fruit before being displayed at the store as a product, and such unripe fruit itself has no commercial value and was discarded. Because it is a thing, it leads to effective use of resources
  • the composition of apple polyphenol includes procyanidins (catechin oligomers). 1-centered polymer, mainly 2-15 mer), phenol carboxylic acid (caffeic acid, chlorogenic acid, p-coumaroylquinic acid, gallic acid, etc.), catechins (flavanols), other flavonoids
  • procyanidins catechin oligomers
  • 1-centered polymer mainly 2-15 mer
  • phenol carboxylic acid caffeic acid, chlorogenic acid, p-coumaroylquinic acid, gallic acid, etc.
  • catechins flavonoids
  • the present inventors have confirmed that the majority is occupied by (flavonols, chalcones, flavones, isoflavones, etc.).
  • Muscles are roughly classified into skeletal muscles, smooth muscles, and myocardiums. Skeletal muscles are muscles that humans consciously move, so they are called voluntary muscles. Myocardial / smooth muscles are also called involuntary muscles. Of these three types of muscles, smooth muscles and myocardium cannot be moved by human intention. Since skeletal muscles are muscles that can be freely moved by will, they are abolished if the muscles are not used for a long time. Useful muscle atrophy will occur. Therefore, the muscle fiber type transition inhibitor or muscle mass recovery promoter of the present invention can suppress the muscle atrophy of skeletal muscles and promote the recovery of muscle mass.
  • the muscle fiber type migration inhibitor or muscle mass recovery accelerator of the present invention comprises a natural product-derived fruit polyphenol as an active ingredient, it has few side effects and is highly safe for the living body. Ingesting this also promotes the recovery of disused muscle atrophied muscles by casting treatment such as fractures and resting treatment by hospitalization, and enhances the rehabilitation enhancement effect. It can be expected to suppress a decrease in muscle mass, particularly a decrease in the muscle fiber of the slow muscle type Ty pel against the muscle atrophy. Suppressing this decrease in muscle mass leads to a decrease in muscle strength that supports basic and sustained activities such as supporting the body. Especially in elderly people, maintaining this strength leads to maintaining the balance ability of the body, reducing the risk of falling, and preventing the risk of being forced to fall asleep due to a fall. It also leads to things.
  • FIG. 1 is a graph showing soleus weight per body weight during disuse muscle atrophy and recovery.
  • FIG. 2 is a graph showing the rate of soleus muscle atrophy during disuse muscle atrophy and recovery.
  • FIG. 3 is a graph showing the ratio of soleus muscle fiber type during disuse muscle atrophy.
  • FIG. 4 is a graph showing the amount of TBARS in plasma in terms of MDA when disuse muscle atrophy and during recovery.
  • a fruit as a raw material for the fruit-derived polyphenol of the present invention (referred to as fruit polyphenol) Is a fruit belonging to the family Rosaceae, and specific examples include apples, pears, peaches and the like, with apples being particularly preferred.
  • fruit polyphenol a fruit belonging to the family Rosaceae
  • specific examples include apples, pears, peaches and the like, with apples being particularly preferred.
  • the ability to use both mature and immature fruits as the fruit contains more polyphenolic compound and a large amount of various active ingredients with a wide range of physiological effects, Especially preferred ⁇ .
  • fruit juice can be obtained by crushing and pressing the raw material as it is or with addition of sulfurous acid, and clarified fruit juice can be prepared by centrifugation, filtration or the like.
  • the clarified juice may be appropriately concentrated by a known method.
  • an extraction method for apple-derived polyphenol referred to as lingopolyphenol
  • the obtained fruit juice may be used as a raw material, but the apple fruit is mixed with alcohols, crushed, immersed as it is, pressed, Alternatively, extraction with heating under reflux and subsequent distillation of the alcohol, followed by centrifugation and filtration, or partitioning and filtration with an organic solvent such as hexane or chloroform, yields a clear extract.
  • an organic solvent such as hexane or chloroform
  • an adsorbent capable of selectively adsorbing and eluting polyphenols, for example, a synthetic adsorption of a styrene dibutene benzene, a resin, an anion exchange
  • the polyphenol component is adsorbed by passing the clarified juice or the clarified extract through a column filled with rosin.
  • a 20 to 100%, preferably 40 to 60% alcohol solution is passed through the column to elute and recover the polyphenol component.
  • the resulting alcohol solution fraction force When the alcohol is distilled off, it becomes a crude apple polyphenol fraction.
  • procyanidine 2-5 in order to obtain a proanthocyanin fraction from a crude apple polyphenol fraction, the obtained crude apple polyphenol fraction was subjected to solid-liquid extraction using methyl acetate as a liquid phase to obtain procyanidine 2-5.
  • This can be achieved by separating and purifying into a fraction of a monomer and a fraction of a hexamer or more.
  • the fraction of procyan-azine hexamer or higher that is not extracted into methyl acetate is distilled off methyl acetate by a known method.
  • the procyanidin 2-5 mer fraction extracted into methyl acetate is dissolved in distilled water after the extraction solution is concentrated by a known method.
  • procyanine dimer to pentamer fractions can be separated and purified according to the degree of polymerization (by molecular weight) by normal phase chromatography to obtain procyanin oligomers having a uniform degree of polymerization.
  • composition of the apple polyphenol obtained above includes phenol carboxylic acids (chlorine). Logogenic acid, caffeic acid, P-tamaric acid and its esters, etc.), catechinic acid ((+) -strengthene, (1) -epicatechin), proanthocyanidins that are catechin dimers (procyanidins) B, Prussian-Gin B, Prussian-Gin C, etc.), polymer type proanthocyanidin (chlorine). Logogenic acid, caffeic acid, P-tamaric acid and its esters, etc.), catechinic acid ((+) -strengthene, (1) -epicatechin), proanthocyanidins that are catechin dimers (procyanidins) B, Prussian-Gin B, Prussian-Gin C, etc.), polymer type proanthocyanidin (chlorine). Logogenic acid, caffeic acid, P-tamaric acid and its esters, etc.), catechinic acid ((+)
  • chalcones phlorizin, phloretin xilodarcoside, etc.
  • other multi-components As an example of the content of these components, procyan-azines are about 50%, phenolcarboxylic acids are about 20%, catechins are about 9%, other flavonoids are about 8%, and others are 5%.
  • the apple polyphenol obtained in the present invention has a potential S having various physiological functions.
  • the apple polyphenol has It is extremely effective as a muscle atrophy inhibitor that suppresses the transition of muscle fiber types during disuse muscle atrophy and suppresses the decrease in muscle mass during muscle atrophy.
  • the recovery of atrophied muscles It has been confirmed that it is extremely effective as a muscle mass recovery promoter that promotes muscle mass.
  • the apple polyphenol prepared as described above can be used as a medicine as it is or mixed with a conventional substance that enhances muscle mass or strength.
  • These pharmaceuticals can be made into oral preparations such as tablets, powders, granules, capsules and syrups, and parenteral preparations such as injections by known methods. In this case, various additives known to be used in pharmaceuticals can also be used.
  • alcoholic beverages include alcoholic beverages, carbonated beverages, fruit juice beverages, lactic acid bacteria beverages, soft drinks such as coffee and tea, ice creams, strawberries, gums, confectionery, breads, and potatoes.
  • Drugs include tablets, capsules, granules, syrups and the like as oral preparations.
  • the force varies depending on the type of preparation, processing status, symptoms of the recipient, physical condition, height, weight, etc. 50 to 2000 mg, preferably 100 to 10 mg per day.
  • the dose is administered once or several times a day, and the effect can be sufficiently obtained.
  • the medicament containing the muscle fiber type migration inhibitor or muscle mass recovery accelerator of the present invention is an ordinary method, using an inert, non-toxic, pharmaceutically suitable excipient, or solvent.
  • Ordinary formulation examples such as tablets, capsules, dragees, pills, tablets, fine granules, air mouths Sols, syrups, emulsions, suspensions and solutions can be used.
  • the therapeutically effective inhibitor or promoter is in each case a concentration of about 5 to: LOO wt.%, Preferably about 5 to 50 wt.
  • This formulation is prepared, for example, by increasing the amount of the above-mentioned inhibitors or accelerators with solvents and Z or excipients, if appropriate with emulsifiers and Z or suspending agents. If water is used as the diluent, an organic solvent can be used as a co-solvent if appropriate.
  • Adjuvants such as water, non-toxic organic solvents such as paraffin (eg petroleum distillates), vegetable oils (eg peanut oil, sesame oil) and alcohols (eg ethanol and glycerin), excipients such as powders Natural minerals (eg clay, alumina, talc and chalk), powdered synthetic minerals (eg highly disperse silica and oxalate), sugars (eg sucrose, ratatose and dextrose), emulsifiers (eg polyoxyethylene fatty acid esters and Lioxyethylene fatty alcohol ethers, alkyl sulfonates, aryl sulfonates), suspending agents (eg lignin sulfite waste, methylcellulose, starch and polyvinylpyrrolidone) and lubricants (eg magnesium stearate, talc, stearic acid and lauryl) Sodium sulfate Helium), and the like.
  • paraffin eg petroleum distillates
  • Administration is carried out in the usual manner, preferably by force used orally or parenterally. It can also be done translingually or intravenously in special cases.
  • an injectable medium in particular water is used, which contains the usual stabilizers, solubilizers and Z or buffer solutions in injectable solutions.
  • Such additives include, for example, tartrate buffer solution, borate buffer solution, ethanol, dimethyl sulfoxide, complexing agent (eg, ethylenediaminetetraacetic acid), high molecular polymer for adjusting viscosity (eg, liquid polyethylene oxide), Or a polyethylene derivative of hydrogenated sorbitan.
  • a flavoring agent or a coloring agent can be added to the active compound together with the adjuvants mentioned above.
  • the food and drink containing the muscle fiber type migration inhibitor or muscle mass recovery promoter of the present invention may be in the form of the above-mentioned preparation, but may be any food such as solid food, semi-fluid food, gel food, and beverage.
  • any commonly used base material can be used.
  • beverages such as alcoholic beverages, carbonated beverages, fruit juice beverages, lactic acid bacteria beverages, soft drinks such as coffee and tea, ice cream, candy, gum, confectionery, bread, and potatoes.
  • the required amount can be added to each food ingredient and processed by general production methods.
  • the preferred blending amount in this case is not particularly limited, but is 0.5 to 20% by weight, preferably 1 to 5 in consideration of the characteristics, palatability, intake, safety, economy, etc. of various foods and drinks. According to the purpose of blending by weight%, it may be blended as appropriate at the stage of an appropriate production process.
  • a food or drink containing the muscle fiber type migration inhibitor or muscle mass recovery accelerator of the present invention is
  • the intake is not particularly limited, but the daily dose is 50 to 2000 mg
  • the muscle fiber type migration inhibitor or muscle mass recovery accelerator may be added as a powder. Preferably, it is added as a 1 to 2% aqueous solution or an aqueous alcohol solution or an alcoholic solution.
  • the food and drink containing the muscle fiber type migration inhibitor or muscle mass recovery accelerator of the present invention may contain various components according to the food form.
  • ingredients mentioned here include starch, corn starch, dextrin, sucrose, glucose, fructose, maltose, stevioside, corn syrup, lactose, nicotinamide, calcium pantothenate, calcium salts, vitamin B group, aspartame , Xylitol, sorbitol, sorbitan fatty acid ester, L-ascorbic acid, a-tocopherol, sodium erythorbate, citrate, tartaric acid, malic acid, succinic acid, lactic acid, arabic gum, carrageenan, pectin, amino acids, yeast extract Glycerin fatty acid ester, sucrose fatty acid ester, glycerin, propylene glycol, casein, gelatin, agar, pigment, fragrance, preservative and the like.
  • Example 1 Preparation of muscle fiber type migration inhibitor or muscle mass recovery promoter of fruit strength
  • Apple fruit pilucked fruit
  • potassium metabisulfite as an acid / wrinkle inhibitor
  • the powder was crushed using a crusher (a non-mark lasher or a hammer mill) while adding to 60 Oppm.
  • the crushed fruit was squeezed with a press (belt press).
  • pectinase pectin-degrading enzyme
  • the fruit juice was passed through a styrene dibutene benzene synthetic adsorption resin column (trade name: Sepabeads SP-850, manufactured by Mitsubishi Chemical Corporation) and loaded. After the fruit juice has passed, wash 1 to 2 column volumes of deionized water to wash the column, and then pass 1 to 2 column volumes of 50 to 65% ethanol by volume. Apple polyphenols adsorbed on fat were eluted.
  • the obtained apple polyphenol solution was concentrated with a vacuum concentrator and then subjected to a dealcohol treatment to obtain 24 L of apple polyphenol concentrate having a solid content of 20 (w / v)%. This concentrated solution was spray-dried with a spray dryer to obtain 3.4 kg of apple polyphenol preparation.
  • the HS group and the HS + AP group caused muscle atrophy by the hindlimb suspension method, and returned to the normal breeding method again 10 days after the hindlimb suspension (referred to as reloading).
  • the basic feed is AIN-93M (Oriental Bioservices) with the composition shown in Table 1, and the HS + AP group is supplemented with 5% apple polyphenol obtained in Example 1 in the basic feed AIN-93M.
  • the cont group does not perform hind-limb suspension, and continues to use basic feed AIN — Breed with 93M.
  • the hind limb suspension method is to cause hind limb suspension to cause disuse muscle atrophy.
  • the rat can move in the breeding cage with the front limb, and water and food can be freely used. Ingested.
  • W HS Soleus muscle weight per unit weight of HS group
  • W IIS 10 ⁇ Soleus muscle weight per unit weight of HS + AP group
  • Example 2 the ratio of the slow muscle part (Typel) to the fast muscle part (Typell) in the muscle cross-sectional area was calculated by the ATPase staining method for the soleus muscle sampled at 10 days on the hind limb suspension.
  • Fig. 3 shows the ratio of the slow muscle part (Typel) to the fast muscle part (Typell) in the muscle cross-sectional area of the soleus muscle of the rat for each group at the time of disuse muscle atrophy at 10 days.
  • ATPase staining was performed as follows.
  • a soleus muscle was sampled, cut with a microtome blade in a direction perpendicular to the muscle fibers, and then frozen in liquid nitrogen.
  • the prepared specimen was pre-incubated for 15 minutes in a staining tank, washed with water, and reacted with an ATP solution for 15 minutes.
  • the Typell portion occupies the HS group compared to the cont group.
  • the ratio increased from 25% to 29%, whereas in the HS + AP group, the Typell portion accounted for 23%.
  • the increase in the typell portion was suppressed, and it was revealed that the rapid muscle formation of the slow muscles observed during muscle atrophy was suppressed. It was suggested that the muscle could maintain the function as an anti-gravity muscle.
  • Example 2 The rats reared in Example 2 were dissected at the end of the hindlimb suspension 10 days and at the time of reloading 3 days, and the soleus muscle was sampled. The collected soleus muscle was frozen in liquid nitrogen and homogenized. After pulverization using a kniter or the like, total RNA was extracted using RNeasy mini kit (manufactured by QIAGEN). Cyanine 3-CTP or! ⁇ was labeled with Cyanine 5-01? using total RNA force and Low RNA Input Fluorescent Linear Amplification Kit (Agilent). 1 ⁇ ⁇ was made. The prepared cRNA was used in the Rat Oligo Micro array Kit (Agilent), and a comprehensive gene expression survey was performed by the DNA microarray method.
  • Meta-mouthonein is a protein that is induced when ingesting heavy metals such as zinc, copper, cadmium, and mercury, while maintaining the homeostasis of zinc and copper concentrations in the body, and at the same time, excessive heavy metals are harmful heavy metals.
  • heavy metals such as zinc, copper, cadmium, and mercury
  • heat shock proteins are induced by various stresses such as heat, infection, and radiation, which are proteins that are widely distributed in normal cells. It is known to perform repairs.
  • the expression of proteins with biological defense functions induced by various stresses tends to increase about 6 times for metamouthoneine-related genes and about 10 times for heat shock proteins compared to the cont group 10 days after hindlimb suspension.
  • apple polyphenol As seen in the HS + AP group, the tendency was further amplified by the administration of apple polyphenol, about 35-fold for metamouthoneone-related genes, and for heat shock proteins. It was about 30 times. This is due to various stresses such as oxidative stress during disuse muscle atrophy. The expression of stress response protein is considered to be increased. Therefore, it is thought that the defense function against stress and the repair function were enhanced. In other words, apple polyphenol is considered to exert the effect of reducing the stress experienced during muscle atrophy, leading to the suppression of muscle mass loss and the promotion of recovery during muscle atrophy.
  • TBARS lipid peroxide
  • the amount of NO was measured to investigate the effect of apple polyphenol administration on oxidative stress during recovery of muscle atrophy.
  • the amount of TBARS was measured by the following method.
  • TBARS amount Create a calibration curve with malondialdehyde preparation and calculate it by converting it to malondialdehyde (MDA; a type of lipid peroxide).
  • MDA malondialdehyde
  • the amount of NO in plasma was determined as NO.
  • Fig. 5 shows the amount of NO in plasma as (NO + NO) during atrophy (after 10 days of suspension) and recovery (after 3 days of reloading).
  • the administration of apple polyphenol during muscle atrophy and recovery suppresses the migration of muscle fiber types by enhancing the defense function of stress response proteins and reducing oxidative stress, and disuses muscle. It showed the effect of preventing muscle mass loss during atrophy and the effect of promoting recovery during reloading.
  • applepolyphenol not only promotes the recovery of muscle atrophy due to long-term proneness during cast treatments such as fractures and resting treatment by hospitalization, but also prevents bedridden in the elderly ⁇ ⁇ society in the future.
  • juice was prepared according to a conventional method.
  • cookies were prepared according to a conventional method.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Food Science & Technology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • Polymers & Plastics (AREA)
  • Nutrition Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Neurology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biotechnology (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Plant Substances (AREA)

Abstract

 廃用性筋萎縮時において、特に筋萎縮が生じる遅筋に見られる現象である筋繊維タイプの遅筋型TypeIから速筋型TypeIIへの移行を阻止し、廃用性筋萎縮を抑制すると同時に、萎縮した筋肉の回復時における筋肉量の回復を促進する筋繊維タイプ移行抑制剤または筋肉量回復促進剤を提供する。  遅筋型TypeIから速筋型TypeIIと筋繊維タイプの移行を抑制と、廃用性筋萎縮した筋肉の筋肉量の回復促進に有効な果実由来ポリフェノールを有効成分とする廃用性筋萎縮時の筋繊維タイプの移行を抑制する筋繊維タイプ移行抑制剤または廃用性萎縮した筋肉の筋肉量回復促進剤およびそれを含む飲食品、医薬品。

Description

明 細 書
筋繊維タイプ移行抑制剤
技術分野
[0001] 本発明は、果実より得られる筋繊維タイプ移行抑制剤に関し、特に廃用性筋萎縮 時の筋繊維タイプ移行を抑制し、廃用性筋萎縮の抑制効果と廃用性筋萎縮からの 筋肉量の回復を促進する効果を有する筋繊維タイプ移行抑制剤および筋肉量回復 促進剤に関する。
背景技術
[0002] 人体には、通常は、大小含めて約 600を越える筋肉が存在しており、この筋肉を大 別すると骨格筋、平滑筋、心筋に分けられる。骨格筋は人間が意識して動力せる筋 肉であることから随意筋ともよばれ、心筋 ·平滑筋は不随意筋ともよばれている。この 3種類の筋肉のうち、平滑筋や心筋は人の意思により動かすことはできないが、骨格 筋は意思により自由に動かすことのできる筋肉であるため、筋肉を使わない状態が長 期間に及ぶと廃用性筋萎縮をおこしてしまう。
[0003] 廃用性筋萎縮とは、筋肉の不使用状態が長く続いた時に、筋肉量や筋力、骨量等 が低下する現象で、ギプス固定や寝たきりに伴う長期伏臥、さらには宇宙遊泳等の 無重力下で筋肉に負荷が懸カ ない状態が長く続いた時に生じる。またこのような廃 用性筋萎縮は抗重力筋としての役割を果たす遅筋で顕著に見られ、その際に筋繊 維タイプが遅筋型の Typelから速筋型の Typellに移行する現象が見られる。筋繊維 タイプのうち、速筋型の Typellは瞬発力を引き出すために使われる筋肉であり、遅 筋型の Typelは持久力を引き出すときに使われる筋肉であり、この遅筋型の Typel は人の体を支えるなどの基本的、持続的な活動を支えている。廃用性筋萎縮により、 筋肉量の低下とあわせて筋繊維タイプが遅筋型の Typelから速筋型の Typellに移 行することにより、長期伏臥の後、立って歩けなくなるなど日常生活での支障をきた す原因ともなっている。
[0004] このような廃用性筋萎縮進行後も、再び重力が負荷される (再負荷ともいう)と、筋 肉量や筋力は回復に転じることが知られている。筋肉量や筋力を増強する物質とし ては、アナボリックステロイド(蛋白同ィ匕ステロイド)や成長ホルモン等が存在するが、 肝機能異常や心筋梗塞、行動変化'毛髪の消失'男性の女性化、女性の男性化等と いった重篤な副作用が引き起こされるため、廃用性筋萎縮抑制や廃用性筋萎縮力も の筋肉量の回復促進を目的とした利用には適して!/、な!/、。
[0005] ところで廃用性筋萎縮時には、萎縮した筋肉内での脂質過酸ィ匕反応生成物や酸 ィ匕ストレスが増加することが報告されているため (非特許文献 1)、抗酸化活性を有す る物質の投与が筋萎縮抑制や筋萎縮した筋肉の回復促進効果を有する可能性があ ると考えられるので、重篤な副作用がない物質として、天然由来の抗酸ィ匕物質が望 まれる。
[0006] 一方、果実力 得られる果実ポリフエノールには高い抗酸ィ匕活性があることが報告 されている(例えば、特許文献 1、特許文献 2、特許文献 3参照)。また、ポリフエノー ルによる廃用性筋萎縮に対する効果として、果実ポリフ ノールを有効成分とする筋 萎縮抑制組成物および廃用性筋萎縮時の骨重量および骨塩量低下抑制組成物( 特許文献 4)や、プロアントシァ-ジンを有効成分と含有する筋肉萎縮抑制剤 (特許 文献 5)の報告がある。
非特許文献 l :Kondo, H. et al. , Acta. Physiol. Scand. , 142, 527- 528 (1 991)
特許文献 1:特開平 7— 285876号公報
特許文献 2 :特開 2002— 47196号公報
特許文献 3:特開平 9— 175982号公報
特許文献 4 :特開 2001— 89387号公報
特許文献 5:特開 2002 - 338464号公報
発明の開示
発明が解決しょうとする課題
[0007] し力しながら、特許文献 1乃至 3には、酸化防止効果、血圧降下効果、抗変異原生 作用、アレルギー抑制効果等は記載されているが、筋萎縮抑制効果や筋萎縮した筋 肉の回復促進効果については言及されていない。また、特許文献 4、 5には、筋萎縮 時における萎縮抑制効果にしか言及されておらず、再負荷による回復時での効果の 検証は為されて 、な 、。また筋萎縮時に生じる遅筋の筋繊維タイプの移行に関して も、調査検討が為されていない。そこで、廃用性筋萎縮時の筋繊維タイプについて の調査や回復時における効果も踏まえた検討をした上で、骨折等のギプス治療や入 院による安静加療時の筋萎縮からの回復促進だけでなぐ今後の高齢化社会におけ る寝たきりの予防や解消による QOL (Quality Of Life ;生活の質)維持向上のた めにもリハビリ増進効果を有する天然由来の廃用性筋萎縮抑制剤や筋萎縮力 の回 復促進剤の開発が求められていた。
[0008] 本発明の目的は、廃用性筋萎縮時において、特に筋萎縮が生じる遅筋に見られる 現象である筋繊維タイプの遅筋型 Typelから速筋型 Typellへの移行を阻止し、廃用 性筋萎縮を抑制すると同時に、萎縮した筋肉の回復時における筋肉量の回復を促 進する筋繊維タイプ移行抑制剤または筋肉量回復促進剤を提供することにある。 課題を解決するための手段
[0009] 本発明者らは、前記の課題について鋭意検討した結果、果実由来ポリフ ノール、 特にリンゴ由来ポリフエノールが、廃用性筋萎縮時の筋繊維タイプの移行を抑制し、 筋萎縮時における筋肉量低下を抑制する効果と共に、萎縮からの回復時における顕 著な筋肉量回復促進効果を有することを見出し、本発明を完成するに至った。
[0010] より具体的には、本発明は以下のようなものを提供する。
[0011] (1)果実由来ポリフエノールを有効成分とする廃用性筋萎縮時の筋繊維タイプの移 行を抑制する筋繊維タイプ移行抑制剤。
[0012] 本発明の果実由来ポリフエノールは、例えば、果実を搾汁後清澄化し、スチレンジ ビュルベンゼン系の合成吸着榭脂等が充填されたカラムへ通液してポリフエノール 成分を吸着させ、これを水洗浄し、糖類や有機酸類を完全除去するようにしてから、 含水エタノールによって溶出することにより得られる。このようにして得られた果実ポリ フエノールは、高い抗酸ィ匕活性があり、廃用性筋萎縮時において、特に筋萎縮が生 じる遅筋に見られる現象である筋繊維タイプの遅筋型 Typelから速筋型 Typellへの 移行を阻止して廃用性筋萎縮を抑制すると同時に、萎縮した筋肉の回復時における 筋肉量の回復を促進する作用を有し、廃用性筋萎縮の予防剤や筋萎縮した筋肉の 回復のための治療剤として用いることができる。 [0013] (2) 前記筋繊維タイプが遅筋型の Typelから速筋型の Typellに移行するのを抑 制する(1)に記載の筋繊維タイプ移行抑制剤。
[0014] 本発明によれば、廃用性筋萎縮の際に、抗重量筋としての役割を果たす遅筋の減 少が抑制されるので、体を支えるなどの基本的、持続的な活動を支える筋力が維持 されることにつながる。これが体のバランス能力の維持につながり、転倒する危険を 低下させること〖こなる。
[0015] (3) 果実由来ポリフエノールを有効成分とする廃用性筋萎縮した筋肉の筋肉量回 復促進剤。
[0016] (4) 果実由来ポリフ ノールを有効成分とするリハビリ増進用筋肉量回復促進剤。
[0017] 本発明の果実由来ポリフ ノールは、上記のように萎縮した筋肉の回復を促進する 効果を有するので、ギプス固定や寝たきりなどの長期伏臥等で廃用性筋萎縮した筋 肉を元に戻すためのリハビリが増進され、早期に治療されることになる。
[0018] (5) 前記ポリフエノールは、プロシア-ジン類が高含有されているものである(1)か ら (4) V、ずれか記載の筋繊維タイプ移行抑制剤または筋肉量回復促進剤。
[0019] 本発明によれば、ポリフエノールに含有されるプロシア-ジン類の強 、抗酸化作用 により、筋萎縮が抑制され、また、筋萎縮した筋肉の回復が促進されることになる。プ ロシア-ジン類が高含有されるポリフエノールを含有する果実としては、ブルーベリー
、クランベリー、ブラックベリー、ラズベリー等のベリー類、イチゴ、クロフサスグリ、チェ リー、ブドウ、ネクタリン、プラム (梅)、アプリコット、キーウィ、アポガド、マンゴー、デー ッ (ナツメヤシ)、バナナ等があるが、リンゴ、ナシ、モモ等のバラ科に属する果実、特 にリンゴ由来のものが好ましい。また果実としては成熟果実、未熟果実いずれであつ てもよいが、より多くのポリフエノールイ匕合物を含むこと、および広範な生理作用を有 する各種活性成分を多量に含むことから、リンゴ未熟果が特に好ましい。さら〖こは、リ ンゴ野生種 (Crab Apple)であってもよい。ここで「未熟果」というのは、商品として店 頭に陳列される以前の果実のことを意味し、このような未熟果はそれ自体としては商 品価値を有さずに捨てられて 、たものであることから、資源の有効利用にもつながる
[0020] また、リンゴポリフエノールの組成としては、プロシア-ジン類 (カテキン類のオリゴマ 一が中心の重合体で 2〜15量体)が主体で、さらにフエノールカルボン酸(カフェ一 酸、クロロゲン酸、 p—クマロイルキナ酸、没食子酸等)、カテキン類 (フラバノール類) 、その他のフラボノイド類 (フラボノール類、カルコン類、フラボン類、イソフラボン類等 )などにより大部分が占められることを本発明者らは確認している。
[0021] (6) 前記筋肉(筋)は骨格筋である(1)から(5) Vヽずれか記載の筋繊維タイプ移行 抑制剤または筋肉量回復促進剤。
[0022] 筋肉を大別すると骨格筋、平滑筋、心筋に分けられ、骨格筋は人間が意識して動 かせる筋肉であることから随意筋ともよばれ、心筋 ·平滑筋は不随意筋ともよばれて いる。この 3種類の筋肉のうち、平滑筋、心筋は人の意思により動かすことはできない 力 骨格筋は意思により自由に動かすことのできる筋肉であるため、筋肉を使わない 状態が長期間に及ぶと廃用性筋萎縮をおこしてしまうことになる。従って、本発明の 筋繊維タイプ移行抑制剤または筋肉量回復促進剤は、この骨格筋の筋萎縮の抑制 および筋肉量回復の促進することができる。
[0023] (7) 前記果実はリンゴである(1)から(6)いずれか記載の筋繊維タイプ移行抑制 剤または筋肉量回復促進剤。
[0024] (8) (1)から (7) V、ずれか記載の筋繊維タイプ移行抑制剤または筋肉量回復促進 剤を含有する飲食品。
[0025] 本発明の飲食品を摂取することで、ギプス固定や長期伏臥等により廃用性筋萎縮 した筋肉の回復を促進できる。また、抗重量筋である遅筋の減少による筋力の低下、 特に、高齢者においては体を支えるなどの基本的、持続的活動を支える筋力の低下 を予防することができる。
[0026] (9) (1)から (7) V、ずれか記載の筋繊維タイプ移行抑制剤または筋肉量回復促進 剤を含有する医薬品。
[0027] 本発明の医薬品を投与することで、廃用性筋萎縮した筋肉の回復が促進されるの で、リハビリ効果を高め、廃用性筋萎縮した筋肉を早期に治療できる。
[0028] (10) リンゴ由来ポリフエノールを用いて、廃用性筋萎縮時の筋繊維タイプの移行 を抑制して廃用性筋萎縮を予防する方法。
[0029] (11) リンゴ由来ポリフエノールを用いて、廃用性筋萎縮した筋肉の筋肉量回復を 促進する方法。
[0030] (12) リンゴ由来ポリフエノールを筋繊維タイプ移行抑制剤の製造のために使用す る方法。
[0031] (13) リンゴ由来ポリフエノールを筋肉量回復促進剤の製造のために使用する方 法。
発明の効果
[0032] 本発明の筋繊維タイプ移行抑制剤または筋肉量回復促進剤は、天然物由来の果 実ポリフエノールを有効成分とするものであるので、副作用が少なく生体にとって安 全性が高い。また、これを摂取することで骨折等のギプス治療や入院による安静加療 による廃用性筋萎縮した筋肉の回復を促進し、リハビリ増進効果を高めることはもとよ り、酸化ストレスの関与と考えられる筋萎縮に対して筋肉量の低下、特に遅筋型の Ty pelの筋繊維の減少を抑制することが期待できる。この筋肉量の低下を抑制すること は、体を支えるなどの基本的、持続的な活動を支える筋力の低下を抑制することに つながる。特に、高齢者においてはこの筋力の維持は体のバランス能力を維持する ことにつながり、転倒する危険を低下させたり、転倒による骨折やこれによつて寝たき りの生活を強いられる危険を予防することにもつながる。
図面の簡単な説明
[0033] [図 1]廃用性筋萎縮時および回復時における体重あたりヒラメ筋重量を示した図であ る。
[図 2]廃用性筋萎縮時および回復時におけるヒラメ筋の筋萎縮率を示した図である。
[図 3]廃用性筋萎縮時におけるヒラメ筋の筋繊維タイプの比率を示した図である。
[図 4]廃用性筋萎縮時および回復時における血漿中の TBARS量を MDA換算量で 示した図である。
[図 5]廃用性筋萎縮時および回復時における血漿中の NO量を (NO +NO )量で
2 3 示した図である。
発明を実施するための形態
[0034] 以下、本発明の筋繊維タイプ移行抑制剤の実施形態にっ 、て説明する。
[0035] 本発明の果実由来ポリフ ノール (果実ポリフ ノールと称する)の原料となる果実と は、バラ科に属する果実である力 具体的には例えば、リンゴ、ナシ、モモ等が挙げら れ、特にリンゴが好ましい。また、果実としては成熟果実、未熟果実ともに用いること ができる力 より多くのポリフエノールイ匕合物を含有すること、および広範な生理作用 を有する各種活性成分を多量に含むことから、未熟果実が特に好まし ヽ。
[0036] リンゴ果実からの搾汁方法としては原料を洗浄し、そのまま、または亜硫酸を添加し ながら破砕、圧搾により果汁を得、遠心分離、濾過などにより清澄果汁を調製できる 。清澄果汁は適宜、公知の手法により濃縮してもよい。リンゴ由来ポリフエノール (リン ゴポリフエノールと称する)成分の抽出方法としては、得られた果汁を原料として用い てもよいが、リンゴ果実をアルコール類と混合して破砕し、そのまま浸漬し、圧搾、ま たは加熱還流しながら抽出し、次いでアルコールを溜去した後、遠心分離および濾 過、またはへキサン、クロ口ホルムなどの有機溶媒による分配および濾過を行い、清 澄抽出物を得る方法を挙げることができる。
[0037] また、得られた清澄果汁や清澄抽出液の精製方法としては、ポリフエノール類を選 択的に吸着且つ溶離できる吸着剤、例えばスチレンジビュルベンゼン系の合成吸着 榭脂、陰イオン交換榭脂などが充填されたカラムに上記の清澄果汁または清澄抽出 液を通すことによりポリフエノール成分を吸着させる。次いで、蒸留水によってカラム を洗浄した後、 20〜100%、好ましくは 40〜60%のアルコール溶液をカラムに通液 することによりポリフエノール成分を溶出、回収できる。得られたアルコール溶液画分 力 アルコールを溜去すると粗リンゴポリフエノール画分となる。
[0038] また、粗リンゴポリフエノール画分からプロアントシァ-ジン画分を得るには、得られ た粗リンゴポリフエノール画分を酢酸メチルを液相として用いた固液抽出によりプロシ ァ-ジン 2〜5量体画分と 6量体以上画分に分離精製することで可能である。酢酸メ チルに抽出されないプロシア-ジン 6量体以上画分は、公知の方法により酢酸メチル を溜去する。酢酸メチルに抽出されたプロシア二ジン 2〜5量体画分は公知の方法に より抽出溶液を濃縮した後、蒸留水に溶解させる。さらに、プロシア-ジン 2〜5量体 画分は順相クロマトグラフィーにより重合度別 (分子量別)に分離精製し、重合度数の 均一なプロシア-ジンオリゴマーを得ることができる。
[0039] 上記で得られたリンゴポリフエノールの組成としては、フエノールカルボン酸類(クロ ロゲン酸、カフェ一酸、 P—タマル酸とそのエステル体等)、カテキン酸(( + )—力テキ ン、(一)ーェピカテキン)、カテキンの寡量体であるプロアントシァ-ジン類(プロシア 二ジン B、プロシア-ジン B、プロシア-ジン C等)、高分子型プロアントシァ-ジン(
1 2 1
7量体以上)、カルコン類 (フロリジン、フロレチンキシロダルコシド等)などと、多成分 が含有されている。これら成分の含量の一例として、プロシア-ジン類が約 50%、フ エノールカルボン酸類が約 20%、カテキンが約 9%、その他のフラボノイドが約 8%、 その他 5%が挙げられる。
[0040] 従って、本発明で得られるリンゴポリフエノールは種々の生理機能を有する可能性 力 Sあると考えられるが、本発明者らが鋭意検討した結果、第一に、このリンゴポリフエ ノールには、廃用性筋萎縮時の筋繊維タイプの移行を抑制し、筋萎縮時における筋 肉量低下を抑制する筋萎縮抑制剤としてきわめて有効なものであること、また第二に 、萎縮した筋肉の回復を促進する筋肉量回復促進剤として極めて有効なものである ことを確認している。
[0041] このようにして調製されたリンゴポリフエノールは、そのまま、或いは従来からの筋肉 量や筋力を増強する物質と混合して医薬品として用いることができる。これら医薬品 は、公知の方法により錠剤、散剤、顆粒剤、カプセル剤、シロップ剤などの経口剤、 注射剤などの非経口剤とすることができる。この際、製薬ィ匕において用いられることが 知られて!/、る種々の添加剤を用いることもできる。
[0042] また、食品一般に添カ卩して好適に用いることができる。具体例としては、アルコール 飲料、炭酸飲料、果汁飲料、乳酸菌飲料、コーヒーや紅茶などの清涼飲料、アイスク リーム、飴、ガム、菓子、パン、麵類などに用いることができる。
[0043] 医薬品は経口剤として錠剤、カプセル剤、顆粒剤、シロップ剤等がある。これらの製 品を医薬品として人体に投与するときは、製剤の種類、加工状況、被投与者の症状 、体調、身長、体重等により異なる力 1日あたり 50〜2000mg、好ましくは 100〜10 OOmgの量を 1日に 1ないしは数回投与し、十分にその効果を奏し得るものである。
[0044] 本発明の筋繊維タイプ移行抑制剤または筋肉量回復促進剤を含有した医薬品は 、通常の方法で、不活性な、無毒性で薬学的に適当な賦形剤、または溶剤を用いて 、通常の配合例、例えば錠剤、カプセル、糖衣剤、丸薬、タブレット、細粒剤、エア口 ゾル、シロップ、乳化液、懸濁剤および液剤にすることができる。治療に有効な上記 抑制剤または促進剤は、それぞれの場合、配合剤全体に対してポリフエノール量とし て約 5〜: LOO重量%、好ましくは約 5〜50重量%の濃度、すなわち上述した効果を 達成するのに十分な量を含むよう存在することができる。この配合剤は、例えば上記 抑制剤または促進剤を溶媒および Zまたは賦形剤で、もし適当ならば乳化剤および Zまたは懸濁剤を用いて増量して製造される。希釈剤として水を使用する場合は、も し適当ならば、補助溶剤として有機溶剤を使用することもできる。補助剤として、例え ば水、非毒性有機溶剤、例えばパラフィン (例えば石油溜分)、植物油 (例えば落花 生油、胡麻油)およびアルコール類 (例えばエタノールおよびグリセリン)、賦形剤、例 えば粉末にした天然鉱物(例えばクレー、アルミナ、タルクおよびチョーク)、粉末状 合成鉱物 (例えば高度分散性シリカおよび硅酸塩)、糖類 (例えばショ糖、ラタトース およびデキストロース)、乳化剤(例えばポリオキシエチレン脂肪酸エステルおよびポ リオキシエチレン脂肪アルコールエーテル、アルキルスルホン酸塩、ァリールスルホ ン酸塩)、懸濁剤(例えばリグニン亜硫酸廃棄液、メチルセルロース、澱粉およびポリ ビニールピロリドン)および滑剤(例えばステアリン酸マグネシウム、タルク、ステアリン 酸およびラウリル硫酸ナトリウム)が挙げられる。
[0045] 投与は通常の方法、好ましくは経口で用いられる力 または非経口的にも投与され る。また、特別な場合、経舌的にまたは静脈内に行うこともできる。注射用媒体として は、特に水を使用し、これは注射溶液で常用の安定化剤、溶解補助剤および Zまた は緩衝液を含有する。このような添加剤は、例えば酒石酸塩緩衝液、ホウ酸塩緩衝 液、エタノール、ジメチルスルホキシド、錯化剤(例えばエチレンジアミンテトラ酢酸)、 粘度調整のための高分子ポリマー(例えば液状ポリエチレンォキシド)、または水素 化ソルビタンのポリエチレン誘導体である。経口投与の場合、特に水性懸濁剤の場 合、矯味矯臭剤或いは着色剤を先に挙げた補助剤と共に活性ィ匕合物に添加するこ とがでさる。
[0046] 本発明の筋繊維タイプ移行抑制剤または筋肉量回復促進剤を含有した飲食品は 、上記製剤の形態でもよいが、固形食品、半流動食品、ゲル状食品、飲料などあらゆ る食品形態にすることが可能であり、例えば、常用されている任意の基材を用いてァ ルコール飲料、炭酸飲料、果汁飲料、乳酸菌飲料、コーヒーや紅茶などの清涼飲料 、アイスクリーム、飴 (キャンディー)、ガム、菓子、パン、麵類などとすることができる。 これらの食品形態でそれぞれの食品原料に所要量を加えて、一般の製造法により加 工製造することもできる。この際の好ましい配合量は特に限定されないが、各種飲食 品の特性、嗜好性、摂取量、安全性、経済性等を考慮すれば、 0. 5〜20重量%で あり、好ましくは 1〜5重量%配合するのがよぐ目的に応じて適当な製造工程の段階 で適宜配合すればよい。
[0047] 本発明の筋繊維タイプ移行抑制剤または筋肉量回復促進剤を含有する飲食品は
、廃用性筋萎縮の予防や廃用性筋萎縮した筋肉の回復治療、健康維持等に用いら れ、その摂取量は、特に限定するものでないが、 1日当たりの量として 50〜2000mg
、好ましくは 100〜1000mgを含む加工品として摂取される。
[0048] これらの飲食品に筋繊維タイプ移行抑制剤または筋肉量回復促進剤を添加する際 には、筋繊維タイプ移行抑制剤または筋肉量回復促進剤を粉末のまま添加してもよ いが、好ましくは 1〜 2 %の水溶液またはアルコール水溶液の溶液或!、はアルコール 溶液として添加することが望ま ヽ。
[0049] また、本発明の筋繊維タイプ移行抑制剤または筋肉量回復促進剤を含有した飲食 品は、その食品形態に応じて種々の成分を配合することができる。
[0050] ここで言う種々の成分とは、澱粉、コーンスターチ、デキストリン、シユークロース、グ ルコース、フラクトース、マルトース、ステビォサイド、コーンシロップ、乳糖、ニコチン 酸アミド、パントテン酸カルシウム、カルシウム塩類、ビタミン B群、アスパルテーム、キ シリトール、ソルビトール、ソルビタン脂肪酸エステル、 L—ァスコルビン酸、 a—トコフ エロール、エリソルビン酸ナトリウム、クェン酸、酒石酸、りんご酸、コハク酸、乳酸、ァ ラビアガム、カラギナン、ぺクチン、アミノ酸類、酵母エキス、グリセリン脂肪酸エステル 、ショ糖脂肪酸エステル、グリセリン、プロピレングリコール、カゼイン、ゼラチン、寒天 、色素、香料、保存料等を意味する。
実施例
[0051] 以下に、実施例を挙げてさらに詳しく本発明について説明するが、本発明はこれら 実施例に限定されるものではな 、。 [0052] [実施例 1] (果実力 の筋繊維タイプ移行抑制剤または筋肉量回復促進剤の調製) リンゴ幼果 (摘果) 1, OOOkgを洗浄後、酸ィ匕防止剤としてメタ重亜硫酸カリウムを 60 Oppmとなるように添カロしながら、破砕機(ノヽンマークラッシャーまたはハンマーミル) を用いて破砕した。破砕した果実を圧搾機 (ベルトプレス)で搾汁した。続いて、該搾 汁 800Lにぺクチン分解酵素(ぺクチナーゼ)を 48, 000 (単位)(1L当たり 60単位) 添加し、 40〜50°Cで一晩放置して、清澄ィ匕させた果汁を得た。こうして得た果汁を 遠心分離して固形分を除き、さらに清澄度を向上させた。
[0053] 次 、で、該果汁を、スチレンジビュルベンゼン系合成吸着榭脂カラム(商品名: Sep abeads SP— 850、三菱化学社製)に通液、負荷した。果汁通液が終了後、カラム を洗浄するために脱イオン水を 1〜2カラム容量通液して洗浄し、続、て 50〜65容 量%エタノールを 1〜2カラム容量通液し、榭脂に吸着したリンゴポリフエノール類を 溶出した。得られたリンゴポリフエノール溶液を、減圧濃縮機で濃縮した後、脱アルコ ール処理を行 ヽ、固形分含量が 20 (w/v) %のリンゴポリフエノール濃縮液 24Lを得 た。この濃縮液をスプレードライヤーで噴霧乾燥を行い、リンゴポリフエノール製剤 3. 4kgを得た。
[0054] [実施例 2] (リンゴポリフ ノールによる廃用性筋萎縮抑制および筋肉量回復促進効 果)
実験例 1で得られたリンゴポリフエノールについて、 Wistar系ラット(日本クレア社 雄 7週齢)を用いて、廃用性筋萎縮した筋肉の筋肉量回復の促進効果、筋繊維タイ プ移行の抑制効果および廃用性筋萎縮の抑制効果を調べた。
[0055] まず、 Wistar系ラットを予備飼育し、予備飼育 1週間後に対照群 (cont群と称する) 、後肢懸垂群 (HS :Hindlimb suspension群と称する)、後肢懸垂 +AP (リンゴポ リフエノール)投与群 (HS + AP群と称する)の 3群に分けた。
[0056] HS群および HS +AP群は予備飼育終了後、後肢懸垂法による筋萎縮を生じさせ 、後肢懸垂 10日後に再び通常の飼育方法に戻した (再負荷と称する)。基本飼料は 表 1に示した成分組成の AIN— 93M (オリエンタルバイオサービス社製)を用い、 HS +AP群には基本飼料 AIN— 93Mに実施例 1で得られたリンゴポリフエノールを 5% 添加した飼料を与えた。 cont群は後肢懸垂を行わないで、引き続き基本飼料 AIN — 93Mを与えて飼育した。尚、後肢懸垂法とは、後肢を懸垂し廃用性筋萎縮を惹起 させることであって、後肢懸垂中は、ラットは前肢にて飼育ケージ内を移動可能であり 、水と餌料は自由に摂取させた。
[0057] 試験開始時、後肢懸垂 10日時、再負荷 3日時、再負荷 10日時に各群を 4〜5匹ず つ解剖し、採血と後肢筋肉の採材と重量測定を行った。廃用性筋萎縮時には、特に 抗重力筋としての役割を持つ遅筋での筋肉量低下が顕著に見られるので、後肢筋 肉部の中で遅筋に相当するヒラメ筋 (右足)について重量を測定し、各群についてラ ットの体重あたりのヒラメ筋重量を算出して図 1に示した。また、 HS群および HS+AP 群についての筋萎縮率を図 2に示した。筋萎縮率は、式 1に示す計算式により、 HS 群および HS+AP群の単位体重当たりヒラメ筋重量に対する cont群の単位体重当 たりヒラメ筋重量の差力も算出した。
[0058] [数 1] 筋萎縮率 (%) = (WC-WHS) /Wc X 1 0 0
或いは 筋萎縮率 (%) = (WC-WI1S_AP) /Wc X 1 0 0
但し、 wc: co 群単位体重当たり ヒラメ筋重量
WHS : H S群単位体重当たり ヒラメ筋重量
WIISΛ Ρ : HS+AP群単位体重当たり ヒラメ筋重量
[0059] [表 1]
飼料 ( A I Ν— 9 3 Μ) 組成
Ingrcdi cnt 成分組成 (%)
カゼイン 1 4. 0
コーンスターチ 6 2. 1
シユークロース 1 0. 0
セノレロース 5. 0
大^油 4. 0
t 一プチノレヒ ドロキノン 0. 0 0 0 8 ミネラル混合 3. 5
ビタ ミ ン混合 1. 0
L一システィン 0. 1 8
酒石酸コ リ ン 0. 2 5
カ ロ リ ー ( c a 1 / g ) 3 4 1. 2 [0060] 図 1および図 2に示すように、対照群 (cont)と比較すると、後肢懸垂 10日目では H S群のヒラメ筋重量が著しく減少し、筋萎縮率が約 34%程度までに萎縮していたが、 HS +AP群では、その減少が抑制され、筋萎縮率も約 22%程度と小さい結果で、筋 萎縮抑制効果が認められた。さらに再負荷 3日後では HS+AP群は HS群に比較す ると筋肉量回復が促進されており、また、筋萎縮率も約 10%と大幅に回復された。さ らに、再負荷 10日後では、 cont群を上回る筋肉量となっており、リンゴポリフエノール による筋肉量回復の促進効果が認められた。
[0061] [実施例 3] (リンゴポリフエノールによる廃用性筋萎縮時における筋繊維タイプ移行 抑制効果)
上記実施例 2にて、後肢懸垂 10日時に採材したヒラメ筋について、 ATPase染色 法により筋断面積に占める遅筋部分 (Typel)と速筋部分 (Typell)との比率を算出し 、後肢懸垂 10日時における廃用性筋萎縮時における各群についてラットのヒラメ筋 の筋断面積に占める遅筋部分 (Typel)と速筋部分 (Typell)との比率を図 3に示し た。尚、 ATPase染色は以下のように行った。
[0062] まず、各個体力もヒラメ筋を採材し、筋繊維に対して垂直方向にミクロトーム用のブ レードで切断した後、液体窒素中で凍結させた。次に— 20〜― 30°Cに冷却したミク ロトーム内で厚さ 10 mの薄切切片を裁断してスライドグラス上に貼り付け、ドライヤ 一を用いて冷風乾燥させて、 ATPase染色用標本を作成した。次に、作成した標本 を染色壷中で、 15分間予備保温した後、水で洗浄して ATP溶液で 15分間反応させ た。次に 1%塩ィ匕カルシウム溶液にて 3分間洗浄を 3回行った後、 2%塩ィ匕コバルト溶 液で 10分間反応させた。引き続き、 0. 1Mバルピタールナトリウム溶液の 1Z20希釈 液にて洗浄操作を 3回繰り返した後、水で十分洗浄を行った。次に 2% (vZv)硫ィ匕 アンモ-ゥム溶液に浸し、水にて洗浄した後、アルコールで脱水し、封入して ATPas e染色を施した筋横断切片とした。次いで、この ATPase染色を施した筋横断切片の 染色映像を顕微鏡撮影にて画像取り込みを行った後、画像解析ソフト SION— IMA GE (Scion社製)を用いて、黒く染まった Typell部分 (速筋)と肌色の Typel部分 (遅 筋)との面積を算出した。
[0063] その結果、図 3に示すように、 cont群と比較して、 HS群では Typell部分が占める 比率が 25%から 29%に増加したのに対し、 HS +AP群では、 Typell部分の占める 割合が 23%であった。このように HS +AP群では Typell部分の増加が抑制され、筋 萎縮時に見られる遅筋の速筋化が抑制されていることが明らかとなり、筋萎縮時にお いても、リンゴポリフエノール投与によりヒラメ筋が抗重力筋としての機能を保持できて いる可能性が示唆された。
[0064] [実施例 4] (筋萎縮回復時における遺伝子発現調査)
筋萎縮時および回復時におけるリンゴポリフエノール投与の影響を評価するために 、ヒラメ筋の遺伝子発現変動を DNAマイクロアレイ法を用いて調査した。尚、筋萎縮 時については後肢懸垂 10日終了時、回復時については再負荷 3日時で調査した。
[0065] 実施例 2で飼育したラットについて、後肢懸垂 10日終了時および再負荷 3日時に 解剖を行って、ヒラメ筋を採材し、採材したヒラメ筋を液体窒素中で凍結させ、ホモジ ナイザー等を用いて粉砕した後、 RNeasy mini kit (QIAGEN社製)を用いて、 to tal RNAを抽出した。 total RNA力ら Low RNA Input Fluorescent Linear Amplification Kit (Agilent社製)を用 、て Cyanine 3 - CTP或!ヽは Cyanine 5— 01?でラべル化した。1^^\を作製した。作製した cRNAを Rat Oligo Micro array Kit (Agilent社製)に供試し、 DNAマイクロアレイ法による網羅的な遺伝子 発現調査を行った。色素交換法によって cont群に対する筋萎縮時および回復時に おけるヒラメ筋の遺伝子発現変動を算出し、特に顕著な傾向を示したメタロチォネィ ン関連遺伝子とヒートショック蛋白質関連遺伝子に着目し、 HS群と HS+ AP群とを 対比してメタ口チォネイン関連遺伝子の発現変動を表 2に、また、ヒートショック蛋白 質関連遺伝子の発現変動を表 3に示した。
[0066] [表 2] メタ口チォネィン関連遺伝子の発現変動
Figure imgf000016_0001
[ε挲] 900]
l79S0lC/900Zdf/X3d 9 V 69S6ZT/900Z OAV ヒートショ ック蛋白質関連遺伝子の発現変動
Figure imgf000018_0001
[0068] メタ口チォネインは、亜鉛や銅、カドミウム、水銀等の重金属を摂取した時に誘導さ れる蛋白質で、生体内の亜鉛や銅濃度の恒常性を維持すると同時に、過剰な重金 属ゃ有害重金属、さらにはフリーラジカルや活性酸素を補足して生体防御機能を発 揮する役割を担うことが知られている。一方のヒートショック蛋白質は、平常状態の細 胞内にも広く分布する蛋白質である力 温熱、感染、放射線等の種々のストレスによ つても誘導され、蛋白の変性を抑制すると共に変性した蛋白の修復を行うことが知ら れている。この各種ストレスによって誘導され、生体防御機能を持つ蛋白質の発現が 、後肢懸垂 10日後において cont群と比較するとメタ口チォネイン関連遺伝子では約 6倍程度、ヒートショック蛋白質では約 10倍程度上昇する傾向が見られたが、その傾 向は、 HS+AP群にみられるように、リンゴポリフエノールを投与することにより、さら に増幅され、メタ口チォネイン関連遺伝子では約 35倍程度、ヒートショック蛋白質で は約 30倍程度となった。これは、廃用性筋萎縮時には酸化ストレスを始めとする様々 なストレスを受けているため、ストレス応答蛋白質の発現が上昇したと考えられる力 リ ンゴポリフエノール投与によって、その発現量がさらに上昇したことにより、ストレスに 対する防御機能や修復機能が増強されたと考えられる。すなわち、リンゴポリフエノー ルは筋萎縮時に被るストレスを低減する効果を発揮し、筋萎縮時における筋肉量低 下の抑制や回復促進効果を導 、たと考えられる。
[0069] [実施例 5] (筋萎縮回復時における酸化ストレスマーカーの変動)
廃用性筋萎縮時および回復時における酸化ストレスマーカーの挙動として、実施 例 2で飼育した後肢懸垂 10日および再負荷 3日の各群のラットについて、血漿中の TBARS (過酸化脂質)量と NO量を測定して、筋萎縮回復時における酸化ストレスに 対するリンゴポリフエノール投与による影響を調査した。尚、 TBARS量は以下の方法 で測定した。
[0070] ねじ蓋付遠心チューブ(1. 5ml容)〖こ 0. 5%BHT (ジブチルヒドロキシトルエン) Z 酢酸溶液を 10 1添カ卩した後、血漿サンプル 200 1を添加し 0. 5%TBA (チォバル ビツール酸)溶液 300 1をカ卩えた。攪拌後、 5°Cで 60min静置した後、 100°Cで 20 分間加熱を行った。放冷後、クロ口ホルム 500 1を添加して激しく攪拌後、遠心分離 を行い、上層部分を採取して波長 532nmの吸光度を測定した。 TBARS量は別途 マロンジアルデヒド標品で検量線を作成し、マロンジアルデヒド(MDA;過酸化脂質 の一種)量に換算して算出し、各群につ!、て筋萎縮時 (懸垂 10日後)および回復時( 再負荷 3日後)における血漿中の TBARS量を MDA量換算で図 4に示した。
[0071] 図 4に示すように、後肢懸垂 10日後に HS群では cont群よりも TBARS量が約 0. 7 nM程度増加した力 HS+AP群ではその上昇が約 0. 3nMと抑制された。さらに再 負荷 3日後の回復時には、その抑制傾向がより顕著となり、リンゴポリフエノール投与 により、筋萎縮時や回復時おける酸化ストレス低減効果が確認された。
[0072] 次に、同じく酸化ストレスマーカーとして、血漿中の NO量(一酸化窒素量)を NO
2
/NO Assay Kit— CII (同仁ィ匕学研究所製)を用いて測定し、各群について筋
3
萎縮時 (懸垂 10日後)および回復時 (再負荷 3日後)における血漿中の NO量を (NO +NO )量として図 5に示した。
2 3
[0073] 図 5に示すように、後肢懸垂 10日後に HS群で cont群に比べ NO量が約 16 μ mol ZL程度増加したのに対し、 HS +AP群ではその上昇が約 6 μ molZL程度と抑制さ れた。再負荷 3日後の回復時には、 HS群と HS +AP群でその差は殆んど無力つた 力 後肢懸垂後の筋萎縮時にぉ 、てリンゴポリフエノール投与することで NO量が減 少したことより、筋萎縮時における酸化ストレス低減効果が確認された。
[0074] このように、筋萎縮時および回復時におけるリンゴポリフエノールの投与は、ストレス 応答蛋白質の防御機能増強や酸化ストレスの低減効果によって、筋繊維タイプの移 行を抑制し、廃用性筋萎縮時における筋肉量低下防止効果や再負荷時における回 復促進効果を示した。
[0075] これにより、リンゴポリフエノールは骨折時等のギプス治療や入院による安静加療時 の長期伏臥に起因する筋萎縮力 の回復促進のみならず、今後の高齢ィ匕社会にお ける寝たきり予防や解消による QOL維持の向上のために有効な天然由来で安全な 筋萎縮抑制材および回復促進剤を広く提供することができる。
[0076] [実施例 6] 飴
表 4に示す各重量部の各成分を用い、常法に従って飴とした。
[0077] [表 4] 実施例 1 で得られたリ ンゴポリ フエノール 5 . 0 g ショ糖 1 5 . 0 g 水飴 ( 7 5 %同形分) 7 0 . 0 g 水 9 . 5 g 着色料 (ダイワ化成株式会社製 ハイオレンジ) 0 . 0 5 g 否料 (長谷川香料株式会社製 オレンジフレーバー) 0 . 4 5 g 合計 1 0 0 . 0 g
[実施例 7] ジュース
表 5に示す各重量部の各成分を用い、常法に従ってジュースとした。
[表 5] 実施例 1 で得られたリ ンゴポリ フユノール 2 . 5 g 濃縮ミ力ン果汁 1 5 . 0 g 果糖 2 . 5 g クェン酸 0 . 2 g 香料 (高砂香料株式会社製 オレンジフレーパー) 0 . 1 g 色素 (三栄源製 オレンジカラーベース) 0 . 1 5 g ァスコルビン酸ナト リ ウム 0 . 0 5 g 水 7 9 . 5 g
1 0 0 . 0 g
[実施例 8] クッキー
表 6に示す各重量部の各成分を用い、常法に従ってクッキーとした。
[表 6] 実施例 1 で^られたリ ンゴボリ フエノール 5 . O g 薄力粉 3 2 . 0 g 全卵 1 6 . 0 g ター 1 6 . 0 g 砂糖 2 0 . O g 水 1 0 . 8 g ベーキングバゥダー 0 . 2 g 八 一 1 0 0 . 0 g

Claims

請求の範囲
[I] 果実由来ポリフ ノールを有効成分とする廃用性筋萎縮時の筋繊維タイプの移行 を抑制する筋繊維タイプ移行抑制剤。
[2] 前記筋繊維タイプが、遅筋型の Typelから速筋型の Typellに移行するのを抑制す る請求項 1に記載の筋繊維タイプ移行抑制剤。
[3] 果実由来ポリフエノールを有効成分とする廃用性筋萎縮した筋肉の筋肉量回復促 進剤。
[4] 果実由来ポリフ ノールを有効成分とするリハビリ増進用筋肉量回復促進剤。
[5] 前記ポリフエノールは、プロシア-ジン類が高含有されているものである請求項 1か ら 4いずれか記載の筋繊維タイプ移行抑制剤または筋肉量回復促進剤。
[6] 前記筋肉(筋)は骨格筋である請求項 1から 5 、ずれか記載の筋繊維タイプ移行抑 制剤または筋肉量回復促進剤。
[7] 前記果実はリンゴである請求項 1から 6 、ずれか記載の筋繊維タイプ移行抑制剤ま たは筋肉量回復促進剤。
[8] 請求項 1から 7いずれか記載の筋繊維タイプ移行抑制剤または筋肉量回復促進剤 を含有する飲食品。
[9] 請求項 1から 7いずれか記載の筋繊維タイプ移行抑制剤または筋肉量回復促進剤 を含有する医薬品。
[10] リンゴ由来ポリフエノールを用いて、廃用性筋萎縮時の筋繊維タイプの移行を抑制 して廃用性筋萎縮を予防する方法。
[II] リンゴ由来ポリフエノールを用いて、廃用性筋萎縮した筋肉の筋肉量回復を促進す る方法。
[12] リンゴ由来ポリフエノールを筋繊維タイプ移行抑制剤の製造のために使用する方法 [13] リンゴ由来ポリフエノールを筋肉量回復促進剤の製造のために使用する方法。
PCT/JP2006/310564 2005-05-30 2006-05-26 筋繊維タイプ移行抑制剤 WO2006129569A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005157680A JP2006328031A (ja) 2005-05-30 2005-05-30 筋繊維タイプ移行抑制剤
JP2005-157680 2005-05-30

Publications (1)

Publication Number Publication Date
WO2006129569A1 true WO2006129569A1 (ja) 2006-12-07

Family

ID=37481498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310564 WO2006129569A1 (ja) 2005-05-30 2006-05-26 筋繊維タイプ移行抑制剤

Country Status (2)

Country Link
JP (1) JP2006328031A (ja)
WO (1) WO2006129569A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009015996A2 (en) * 2007-08-02 2009-02-05 Nestec S.A. Reduction of oxidative stress damage during or after exercise
JP2014012659A (ja) * 2012-06-08 2014-01-23 Kao Corp ミオスタチン/Smadシグナル阻害剤
JP2015033360A (ja) * 2013-08-09 2015-02-19 株式会社シェフコ 機能性原料を含有する水素含有飲料
JP2018534278A (ja) * 2015-11-17 2018-11-22 ネステク ソシエテ アノニム 骨格筋の健康のためポリフェノールを使用する組成物及び方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013126951A (ja) * 2010-03-01 2013-06-27 Kyushu Univ 筋萎縮阻害剤
US9492424B2 (en) 2011-12-26 2016-11-15 Morinaga Milk Industry Co., Ltd. Muscle atrophy inhibitor
JP6126443B2 (ja) * 2012-06-08 2017-05-10 花王株式会社 骨格筋遅筋化剤
US9801404B2 (en) 2012-12-26 2017-10-31 Morinaga Milk Industry Co., Ltd. IGF-1 production-promoting agent
JP6781529B2 (ja) * 2014-12-03 2020-11-04 株式会社バイオリンク販売 スキンケア化粧品組成物
CN110234334B (zh) 2016-12-05 2024-02-06 大塚制药株式会社 肌肉萎缩抑制组合物

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089387A (ja) * 1999-09-17 2001-04-03 Otsuka Pharmaceut Co Ltd 筋萎縮抑制組成物
JP2002338464A (ja) * 2001-05-14 2002-11-27 Kikkoman Corp 筋肉萎縮抑制剤
JP2005097243A (ja) * 2003-04-11 2005-04-14 L'oreal Sa 両親媒性ポリマーを含有する水中油型エマルション形態の組成物とその使用、特にその美容的使用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001089387A (ja) * 1999-09-17 2001-04-03 Otsuka Pharmaceut Co Ltd 筋萎縮抑制組成物
JP2002338464A (ja) * 2001-05-14 2002-11-27 Kikkoman Corp 筋肉萎縮抑制剤
JP2005097243A (ja) * 2003-04-11 2005-04-14 L'oreal Sa 両親媒性ポリマーを含有する水中油型エマルション形態の組成物とその使用、特にその美容的使用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KONDO H.: "Mechanism of oxidative stress in skeletal muscle atrophied by immobilization", AMERICAN JOURNAL OF PHYSIOLOGY, vol. 265, no. 6, PART 1, 1993, pages E839 - E844, XP008073381 *
LEE S.: "Effects of chronic polyphenol or vitamin ingestion on antioxidative activity during exercise in rats", FASEB JOURNAL, vol. 17, no. 4-5, 2003, pages ABSTRACT 199.3, XP008073379 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009015996A2 (en) * 2007-08-02 2009-02-05 Nestec S.A. Reduction of oxidative stress damage during or after exercise
WO2009015996A3 (en) * 2007-08-02 2009-04-02 Nestec Sa Reduction of oxidative stress damage during or after exercise
JP2014012659A (ja) * 2012-06-08 2014-01-23 Kao Corp ミオスタチン/Smadシグナル阻害剤
JP2015033360A (ja) * 2013-08-09 2015-02-19 株式会社シェフコ 機能性原料を含有する水素含有飲料
JP2018534278A (ja) * 2015-11-17 2018-11-22 ネステク ソシエテ アノニム 骨格筋の健康のためポリフェノールを使用する組成物及び方法
US11364254B2 (en) 2015-11-17 2022-06-21 Societe Des Produits Nestle S.A. Compositions and methods using a polyphenol for musculoskeletal health
US11813273B2 (en) 2015-11-17 2023-11-14 Societe Des Produits Nestle S.A. Compositions and methods using a polyphenol for musculoskeletal health

Also Published As

Publication number Publication date
JP2006328031A (ja) 2006-12-07

Similar Documents

Publication Publication Date Title
WO2006129569A1 (ja) 筋繊維タイプ移行抑制剤
KR100795327B1 (ko) 근장력 증강제
JPWO2009093584A1 (ja) 植物由来の高尿酸血症の予防または改善剤
KR101899234B1 (ko) 전나무 메탄올 추출물, 이의 분획물 또는 이들로부터 분리한 화합물을 포함하는 최종당화산물 관련 질환의 예방 또는 치료용 조성물
JP2018008911A (ja) アッカーマンシア属細菌増殖促進剤及びその使用
JP2006193502A (ja) アディポネクチン調節剤、それを含有する飲食品、食品添加物及び医薬
JP4172864B2 (ja) 育毛食品および経口育毛剤
JPWO2005074961A1 (ja) 体脂肪調整剤
KR101820096B1 (ko) 콩 발아배아 추출물을 포함하는 대사성 질환의 예방 또는 치료용 약학 조성물
KR101698201B1 (ko) 판두라틴 유도체 또는 보에센베르기아 판두라타 추출물을 포함하는 근육 증가 촉진, 항-피로 및 운동수행능력 향상용 조성물
JP4922551B2 (ja) 生理活性フェノール性化合物を強化してなるメープルシロップ
KR20180034030A (ko) 소장 상피세포에서의 카테킨 흡수 증진제
KR20170129002A (ko) 인삼열매 추출물의 정제 분획물을 포함하는 항산화용 조성물
EP1840131B1 (en) Novel polyphenol glycoside derived from acerola
CN106999532A (zh) 含有复合提取物的运动执行能力增强及体力增进用组合物
JP2010270096A (ja) グルコース吸収抑制剤
KR100778373B1 (ko) 상표초 추출물, 이로부터 분리된 아세틸도파민계 화합물또는 바이페놀 화합물을 유효성분으로 함유하는 심장순환계질환의 예방 및 치료제
KR102154092B1 (ko) 비자 열매 추출물 또는 이의 분획물을 포함하는 항산화 또는 항염증 조성물
KR20210085627A (ko) 쌍별귀뚜라미 및 갈색거저리 추출물을 유효성분으로 포함하는 면역증진용 조성물
JP2021165236A (ja) アトロジン−1発現抑制剤
JP7104193B2 (ja) 筋肉増強剤
JP2009196967A (ja) 血中多価不飽和脂肪酸相対量増加剤並びにこれを含有する医薬組成物、医薬部外品、化粧品、可食性組成物及び動物用飼料
WO2006064761A1 (ja) アディポネクチン調節剤、それを含有する飲食品、食品添加物及び医薬
KR100708486B1 (ko) 섬유근육통증후군의 증상 개선 및 예방용 조성물
KR102428082B1 (ko) 항염증 면역활성 및 항산화 활성을 가지며, 노인의 근력 또는 근육 강화를 위한 근세포 조성에 우수한 효과를 제공하는 프테로카리아 스테놉테라 추출물을 포함하는 화장료 조성물, 약학적 조성물, 및 식품 조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746893

Country of ref document: EP

Kind code of ref document: A1