WO2006129490A1 - 伝送線路駆動回路 - Google Patents

伝送線路駆動回路 Download PDF

Info

Publication number
WO2006129490A1
WO2006129490A1 PCT/JP2006/309922 JP2006309922W WO2006129490A1 WO 2006129490 A1 WO2006129490 A1 WO 2006129490A1 JP 2006309922 W JP2006309922 W JP 2006309922W WO 2006129490 A1 WO2006129490 A1 WO 2006129490A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
transmission line
circuit
driving circuit
gain
Prior art date
Application number
PCT/JP2006/309922
Other languages
English (en)
French (fr)
Inventor
Takayuki Nakamura
Takashi Sekino
Original Assignee
Advantest Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advantest Corporation filed Critical Advantest Corporation
Priority to DE112006001472T priority Critical patent/DE112006001472T5/de
Priority to US11/916,232 priority patent/US7902835B2/en
Priority to KR1020077027687A priority patent/KR100933977B1/ko
Priority to CNA2006800191021A priority patent/CN101208920A/zh
Priority to JP2007518906A priority patent/JP4685099B2/ja
Publication of WO2006129490A1 publication Critical patent/WO2006129490A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/04Control of transmission; Equalising
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0264Arrangements for coupling to transmission lines
    • H04L25/028Arrangements specific to the transmitter end
    • H04L25/0286Provision of wave shaping within the driver
    • H04L25/0288Provision of wave shaping within the driver the shape being matched to the transmission line
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks

Definitions

  • the present invention relates to a transmission line drive circuit that compensates for deterioration in timing accuracy due to transmission line loss in a semiconductor test apparatus or the like.
  • a transmission line is formed by using a relatively thin coaxial cable, a thin line having a wiring width formed on a multilayer wiring board or a microstrip line.
  • the conductor loss and dielectric loss due to the skin effect are large.
  • losses due to connectors and sockets occur. Therefore, the signal waveform at the DUT end deteriorates due to these losses.
  • Conventional techniques for compensating for such signal waveform degradation include a transmission driver that sends a signal to a transmission line, a frequency compensation circuit consisting of a resistor and a coil, a transition signal consisting of a switch, capacitor, current mirror circuit, etc.
  • a method of adding a driving means is known! / Speak (for example, see Patent Document 1).
  • peaking current is generated in accordance with the rise or fall timing of the transmission signal to prevent signal waveform deterioration at the DUT end.
  • Patent Document 1 JP-A-10-190747 (Page 2-5, Fig. 1-9)
  • the present invention has been created in view of the above points, and an object of the present invention is to cope with high-speed transmission signals and to perform appropriate loss compensation according to the signal pattern.
  • An object of the present invention is to provide a transmission line driving circuit capable of performing the above-described.
  • a transmission line driving circuit includes a signal analysis unit that analyzes the content of a signal pattern of an input signal, and the input signal according to an analysis result by the signal analysis unit.
  • Phase adjustment means for outputting a signal in which the phase of the input signal is adjusted in a direction to cancel the timing shift caused by the loss that occurs when passing through the transmission line, and sending the output signal of the phase adjustment means to the transmission line ing.
  • the signal received through the transmission line changes in timing when it exceeds or falls below a predetermined threshold voltage.
  • the high level is changed from low to high, or the low level force is completely changed from low to high.
  • the signal analysis means described above analyzes the frequency characteristics of the input signal.
  • the phase in consideration of the frequency characteristics of the input signal, when a signal with a high frequency is transmitted through the transmission line, the signal goes from the low level to the high level or high Even if there is no complete transition from low to low level, it is possible to adjust the timing at which the signal passes the predetermined threshold voltage, and it is possible to easily cope with the increase in transmission signal speed. .
  • the signal analysis means described above has a filter that passes the low-frequency component of the input signal, and the phase adjustment means desirably performs phase adjustment according to the output voltage of the filter. Yes. This makes it possible to easily detect the frequency characteristics of the input signal.
  • the signal analysis means described above has a plurality of filters having different cutoff frequencies that allow low-frequency components of the input signal to pass through, and a combining means that combines the output voltages of the plurality of filters. It is desirable that the phase adjusting unit adjusts the phase according to the combined voltage by the combining unit. This makes it possible to perform appropriate loss compensation according to the actual transmission line loss.
  • the signal analysis means described above preferably includes gain adjustment means for adjusting the gain of the output voltage of the filter.
  • the gain adjusted by the above-described gain adjusting means is desirably set according to the degree of signal loss due to the transmission line.
  • the phase of the signal can be adjusted in consideration of the characteristics of the transmission line, and loss compensation using a common circuit is possible for various transmission lines.
  • the phase adjusting unit described above is a differential amplifier in which the reference voltage is changed according to the analysis result by the signal analyzing unit.
  • the above-described phase adjusting unit is preferably a voltage comparator in which the reference voltage is changed according to the analysis result by the signal analyzing unit.
  • the phase adjusting means described above is preferably a variable delay circuit in which the delay amount is changed according to the analysis result by the signal analyzing means.
  • the signal analysis means and the phase adjustment means described above are preferably incorporated in a chip or module in which a circuit for outputting an input signal is formed. This makes it possible to reduce the size of the entire configuration including the transmission line drive circuit and the circuit that outputs the input signal, and to simplify the manufacturing process and reduce the cost associated with the reduction in the number of components.
  • FIG. 1 is a diagram illustrating a configuration of a transmission line driving circuit according to an embodiment.
  • FIG. 2 is an explanatory diagram of signal attenuation caused by a transmission line loss.
  • FIG. 3 is a circuit diagram partially showing a specific configuration of a transmission line driving circuit.
  • IV is a diagram for explaining the operation of the first circuit.
  • FIG. 5 is a diagram for explaining the operation of the second circuit. Explanation of symbols
  • FIG. 1 is a diagram illustrating a configuration of a transmission line driving circuit according to an embodiment.
  • the transmission line drive circuit 1 of the present embodiment includes one driver input circuit 10, a plurality of driver circuits 20, a plurality of low-pass filters (LPF) 30 (30A, 30B,...), A plurality of Gain adjustment circuit 40, a plurality of adders 50, one adder 52, and one driver output circuit 60.
  • This transmission line drive circuit 1 is provided between a transmission line 2 in which a loss occurs and a driver 3 that is provided in the preceding stage and sends a signal to the transmission line 2, and the signal sent to the transmission line 2 An operation of adjusting the signal change timing according to the pattern is performed.
  • the driver input circuit 10 receives a signal output from the driver 3, performs waveform shaping on this signal, and outputs an in-phase signal. This signal is fed by a differential amplifier. Is input to a driver output circuit 60 configured as follows. Each driver input circuit 20 performs the same operation as the driver input circuit 10 and outputs a signal in phase with the driver pattern signal output from the driver 3. Each low-pass filter 30 (30A, 30B,...) Passes the low-frequency component of the signal output from the corresponding driver input circuit 20. Each gain adjustment circuit 40 has a gain that can be set by control data Sl, S2,... To which an external force is also input, and a voltage corresponding to the low-frequency component output from the corresponding low-pass filter 30 is set to this gain adjustment circuit 40.
  • Each adder 50 adds the output voltages of a plurality of gain adjustment circuits 40 included in the plurality of sets of processing systems.
  • the adder 52 adds the voltage added by the plurality of adders 50 and a predetermined voltage V to obtain the reference voltage V.
  • the path 60 receives the signal output from the driver input circuit 10 and the reference signal of the reference voltage V output from the adder 52, and performs differential amplification using these two signals.
  • a signal output from the driver output circuit 60 is sent to the transmission line 2 as an output signal of the transmission line drive circuit 1 toward a receiver circuit (not shown).
  • the plurality of low-pass filters 30 described above serve as signal analysis means, one adder 52, one driver output circuit 60 serves as phase adjustment means, a plurality of adders 50 serve as synthesis means, and a plurality of gains.
  • the adjustment circuit 40 corresponds to each gain adjustment means.
  • the transmission line drive circuit 1 of the present embodiment has such a configuration, and the operation thereof will be described next.
  • Each of the plurality of low-pass filters 30A, 30B,... Has a different cutoff frequency, and allows different frequency components to pass therethrough.
  • the effects of the actual transmission line can be made equal by combining the output of each filter. Or you can switch between several filters to compensate.
  • FIG. 2 is an explanatory diagram of signal attenuation caused by loss due to the transmission line 2.
  • FIG. 2 shows a case where the loss is extremely large in order to explain the attenuation state of the signal.
  • a signal of high frequency signal pattern A is input to transmission line 2.
  • the state is indicated by a dotted line. If the loss in transmission line 2 is large, the next state change occurs before the signal voltage sufficiently transitions from low level to high level or from high level to low level. The timing difference at this time is tl0, til.
  • FIG. 2 (B) a state in which the signal of the low frequency signal pattern C is input to the transmission line 2 is indicated by a dotted line.
  • the signal voltage needs a certain amount of time to make a sufficient transition from low level to high level, or from high level to low level.
  • the signal period is long, so the signal is close to high level or low level!
  • the timing shift at this time is t20 ( ⁇ tl0) and t21 ( ⁇ tll).
  • the actual transmission line 2 receives a signal in which the signal shown in FIG. 2 (A) and the signal shown in FIG. 2 (B) are appropriately combined.
  • the signal rise timing deviation t30 is equal to the signal pattern C rise timing t20 shown in Fig. 2 (B).
  • t31 is not equal to the falling timing shift t21 of signal pattern C shown in Fig. 2 (B).
  • the amount of rising timing and falling timing varies depending on the signal pattern input to the transmission line 2.
  • Each gain adjustment circuit 40 provided in the subsequent stage of each low-pass filter 30 is set according to control data (Sl, S2,%) With respect to the output voltage of the corresponding low-pass filter 30. Amplifies or attenuates the signal with a gain.
  • the characteristics vary depending on the length and shape of transmission line 2. For this reason, even if the input signal is the same, the degree of attenuation after passing through the transmission line 2 is different.
  • the contents of the control data Sl, S2,... are changed, and the gain in each gain adjustment circuit 40 is variably set. For example, by using experiments and simulations in advance, it is possible to determine what value the control data Sl, S2,... Can be appropriately compensated for for a plurality of transmission lines 2 having various characteristics. It is only necessary to measure the characteristics of the transmission line 2 actually used and use the control data Sl, S2,... Corresponding to the measured characteristics.
  • the adder 52 has a predetermined voltage V V, a plurality of adders 5
  • a reference signal of reference voltage V is generated by adding the voltages added by 0, and this
  • the generated reference signal is input to the driver output circuit 60.
  • the average voltage (50% voltage) of the low level and high level of the input signal is used as the predetermined voltage V.
  • the frequency component of the input signal is applied to this voltage V using each low-pass filter 30.
  • the output voltage of the adder 50 in the final stage obtained by analysis is superimposed and input to the driver output circuit 60. Therefore, the voltage level of the reference signal input to the driver output circuit 60 can be changed according to the frequency of the input signal, and the rising timing of the signal obtained as the differential amplification output with respect to the voltage level of the reference signal and The fall timing can be adjusted according to the contents of the signal pattern of the input signal.
  • the signal before being input to the transmission line 2, the signal changes so as to cancel the timing change caused by the loss caused by passing through the transmission line 2.
  • this phase adjustment it is possible to perform appropriate loss compensation.
  • since it is not necessary to increase the amplitude of the signal for loss compensation it is possible to easily cope with an increase in transmission signal speed.
  • phase adjustment according to the content of the signal pattern of the input signal it becomes possible to perform appropriate loss compensation according to the signal pattern.
  • the phase of the signal can be adjusted in consideration of the characteristics of the transmission line 2, and various transmission lines 2 can be adjusted.
  • loss compensation using a common transmission line drive circuit 1 becomes possible.
  • a differential amplifier as the driver output circuit 60, it is possible to reliably and easily change the change timing (signal phase) of the signal sent to the transmission line 2.
  • FIG. 3 is a circuit diagram partially showing a specific configuration of the transmission line driving circuit 1.
  • the configuration shown in FIG. 3 shows the specific configuration from the driver input circuit 20 to the adder 52 shown in FIG. 1 for two processing systems.
  • the configuration shown in FIG. 3 includes a first circuit 100 corresponding to one processing system, a second circuit 200 corresponding to the other processing system, a transistor 300 that generates a predetermined voltage V, a resistor 302, and a constant current circuit 304.
  • the predetermined voltage V corresponding to one processing system
  • a second circuit 200 corresponding to the other processing system
  • a transistor 300 that generates a predetermined voltage V
  • a resistor 302 corresponding to the other processing system
  • a constant current circuit 304 the predetermined voltage V
  • BB-DC B includes three resistors 310, 312 and 314 that calculate the output voltage of the two processing systems. Yes.
  • the first circuit 100 includes two transistors 102 and 104 constituting a differential amplifier, a variable constant current circuit 106 commonly connected to the emitters of the two transistors 102 and 104, and two transistors.
  • Resistors 110 and 112 as load resistors connected individually to the collectors of 102 and 104, a capacitor 114 connected in parallel to one resistor 112, a transistor 120 and a constant connected to the collector of the transistor 104 Current circuit 122 and
  • the signal output from the driver 3 is input to the base of one transistor 102.
  • a reference signal having a predetermined reference voltage V (for example, an average voltage between a low level and a high level of the signal input to the transistor 102) V is input to the base of the other transistor 104.
  • a signal in phase with the signal input to one transistor 102 is output from the collector of the other transistor 104.
  • the voltage level of this output signal can be varied by changing the constant current output value of the variable constant current circuit 106 by the control data S1.
  • the signal output from the collector of transistor 104 is smoothed by a low-pass filter consisting of resistor 112 and capacitor 114, and only the low frequency component below the cutoff frequency determined by these element constants (resistance value and capacitance value). Is output through transistor 120.
  • the two transistors 102 and 104 correspond to one driver input circuit 20
  • the resistor 112 and the capacitor 114 correspond to the low-pass filter 30A
  • the variable constant current circuit 106 corresponds to one gain adjustment circuit 40, respectively.
  • the second circuit 200 includes two transistors 202 and 204 constituting a differential amplifier, a variable constant current circuit 206 connected in common to the emitters of the two transistors 202 and 204, and two transistors Resistors 210 and 212 as load resistors individually connected to the collectors of the transistors 202 and 204, a capacitor 214 connected in parallel to one resistor 212, and a transistor connected to the collector of the transistor 204 220 and a constant current circuit 222.
  • the configuration of the second circuit 200 and the operation of each part are basically the same as the configuration of the first circuit 100 and the operation of each part. Only the cutoff frequency of the single-pass filter 30B composed of the resistor 212 and the capacitor 214 is used. Is different.
  • the low-pass filter 30A formed by the resistor 112 and the capacitor 114 included in the first circuit 100 is cut.
  • the frequency is set higher than the cut-off frequency of the low-pass filter 30B formed by the resistor 212 and the capacitor 214 included in the second circuit 200. Therefore, the first circuit 100 can detect each frequency component up to the high frequency component of the input signal, and the second circuit 200 can detect the low frequency component of the input signal.
  • the power ends are connected via three resistors 310, 312, and 314. From this connection point, a reference signal of the reference voltage V, which is the predetermined voltage V superimposed with the output voltage of the two processing systems, is connected.
  • FIG. 4 is a diagram for explaining the operation of the first circuit 100, and shows how the reference voltage V is changed when the second circuit 200 is put into a non-operating state.
  • the first circuit 100
  • the reference signal V changes in voltage so that it follows the frequent voltage change of the input signal.
  • the phase of the pattern A signal output from the driver output circuit 60 can be adjusted.
  • FIG. 5 is a diagram for explaining the operation of the second circuit 200, and shows how the reference voltage V is changed when the first circuit 100 is put into a non-operating state.
  • the second circuit 200 shows how the reference voltage V is changed when the first circuit 100 is put into a non-operating state.
  • the voltage changes so as not to follow the frequent voltage change of the signal.
  • the present invention is not limited to the above-described embodiment, and various modifications can be made within the scope of the gist of the present invention.
  • the signal phase is adjusted using the driver output circuit 60 configured by the differential amplifier, but a voltage comparator or a variable delay circuit is used instead of the differential amplifier. May be.
  • a voltage comparator is used, the output signal of the driver input circuit 10 is input to the positive input terminal and the reference signal of the reference voltage V is input to the negative input terminal.
  • a variable delay circuit is used.
  • the delay amount according to the reference voltage V.
  • the content (frequency characteristics) of the signal pattern of the input signal is analyzed using the plurality of low-pass filters 30A, 30B,... May be replaced with a band-pass filter or a high-pass filter.
  • a configuration other than the filter for example, a plurality of signal patterns (comparison patterns) to be detected are prepared in advance, and the correlation between the input signal and the plurality of comparison patterns is obtained to determine the signal pattern of the input signal. Let's analyze the contents.
  • the driver input circuit 10 and the driver output circuit 60 are directly connected in the transmission line drive circuit 1, but there is a delay between the driver input circuit 10 and the driver output circuit 60.
  • a circuit may be inserted. By inserting a delay circuit, the phase of the signal output from the driver input circuit 10 can be adjusted.
  • the transmission line driving circuit 1 is provided between the driver 3 and the transmission line 2, but the driver 3 (circuit that outputs an input signal) and various circuits ( (Not shown) Force
  • the transmission line drive circuit 1 may be incorporated into these chips or modules.
  • appropriate loss compensation can be performed by performing phase adjustment of a signal so as to cancel out this timing change before being input to the transmission line.
  • phase adjustment is performed according to the content of the signal pattern of the input signal, and appropriate loss compensation can be performed according to the signal pattern.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Dc Digital Transmission (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Amplifiers (AREA)
  • Logic Circuits (AREA)

Abstract

 伝送信号の高速化に対応することができ、信号パターンに応じた適切な損失補償を行うことができる伝送線路駆動回路を提供することを目的とする。伝送線路駆動回路1は、入力信号の信号パターンの内容を分析する信号分析手段としての複数のドライバ入力回路20、複数のローパスフィルタ30、複数の利得調整回路40、複数の加算器50、加算器52と、信号分析結果に応じて、入力信号を伝送線路に通したときに発生する損失に伴うタイミングのずれを打ち消す向きに位相を調整した信号を出力するドライバ出力回路60とを備えており、ドライバ出力回路60の出力信号が伝送線路2に送出される。

Description

明 細 書
伝送線路駆動回路
技術分野
[0001] 本発明は、半導体試験装置等において伝送線路損失によるタイミング精度の劣化 を補償する伝送線路駆動回路に関する。
背景技術
[0002] 半導体試験装置にお!ヽては、信号発生回路と被試験デバイス (以後、「DUT」と称 する)との間で多数の信号を伝送する必要がある。このため、比較的細い同軸ケープ ルゃ、多層配線基板に形成された細 、配線幅のストリップ線路あるいはマイクロストリ ップ線路などを用いて伝送線路が形成されている。これらの伝送線路では、表皮効 果による導体損失や誘電体損失が大きい。しかも、実際の半導体試験装置では、こ れらの伝送線路損失に加えて、コネクターやソケットによる損失が発生する。したがつ て、これらの損失によって、 DUT端での信号波形が劣化する。このような信号波形の 劣化を補償する従来技術としては、伝送線路に信号を送出する伝送ドライバに、抵 抗とコイルからなる周波数補償回路や、スィッチ、コンデンサ、カレントミラー回路等か らなる遷移信号駆動手段を追加する手法が知られて!/ヽる (例えば、特許文献 1参照。 )。これらの周波数補償回路や遷移信号駆動手段を用いることにより、伝送信号の立 ち上がりあるいは立ち下がりのタイミングに合わせてピーキング電流を発生し、 DUT 端での信号波形の劣化を防止して 、る。
特許文献 1 :特開平 10— 190747号公報 (第 2— 5頁、図 1— 9)
発明の開示
発明が解決しょうとする課題
[0003] ところで、最近では DUTの多ピン'高速ィ匕が進み、より大きな損失補償が必要にな つてきており、これに対処するために信号発生回路の最大出力電圧を大きくする必 要がある。し力しながら、高速信号の発生と大振幅信号の発生とは相反する要請であ つて、特許文献 1に開示される方式においてこれらを両立させることは難しい。また、 特許文献 1に開示された手法では、伝送信号の信号パターンにかかわらず一定のピ 一キング電流を発生させているため、信号パターンに応じて変化する損失に対応す ることができな 、と!/、う問題があった。
[0004] 本発明は、このような点に鑑みて創作されたものであり、その目的は、伝送信号の 高速ィ匕に対応することができ、信号パターンに応じた適切な損失補償を行うことがで きる伝送線路駆動回路を提供することにある。
課題を解決するための手段
[0005] 上述した課題を解決するために、本発明の伝送線路駆動回路は、入力信号の信 号パターンの内容を分析する信号分析手段と、信号分析手段による分析結果に応じ て、前記入力信号を伝送線路に通したときに発生する損失に伴うタイミングのずれを 打ち消す向きに入力信号の位相を調整した信号を出力する位相調整手段とを備え、 位相調整手段の出力信号を伝送線路に送出している。伝送線路において損失が発 生するとこの伝送線路を通して受信した信号が所定の閾値電圧を超えたり下回るタ イミングが変化するが、パターンによってハイレベルからローレベルに、あるいはロー レベル力もノ、ィレベルに完全に遷移したりしな力つたりする場合には、受信側での立 ち上がりタイミングおよび立ち下がりタイミングがパターンに応じて変化してしまう。そ こで、伝送線路に入力される前に信号の位相調整を、このタイミング変化を打ち消す ように行うことにより、適切な損失補償を行うことができる。特に、損失補償のために信 号の振幅を大きくする必要がないため、伝送信号の高速ィ匕に容易に対応することが できる。これは、位相調整を入力信号の信号パターンの内容に応じて行うことになり、 信号パターンに応じた適切な損失補償を行うことが可能になる。
[0006] また、上述した信号分析手段は、入力信号の周波数特性を分析することが望ま U、 。入力信号の周波数特性を考慮して位相調整を行うことにより、周波数が高い信号を 伝送線路を介して伝送した場合に、受信側にぉ ヽて信号がローレベルからハイレべ ルに、あるいはハイレベルからローレベルに完全に遷移しな 、場合などにぉ 、ても、 信号が所定の閾値電圧を通過するタイミングを調整することが可能になり、伝送信号 の高速化に容易に対応することができる。
[0007] また、上述した信号分析手段は、入力信号の低域成分を通過させるフィルタを有し ており、位相調整手段は、フィルタの出力電圧に応じて位相調整を行うことが望まし い。これにより、入力信号の周波数特性を容易に検出することが可能になる。
[0008] また、上述した信号分析手段は、入力信号の低域成分を通過させるカットオフ周波 数が異なる複数のフィルタと、複数のフィルタの出力電圧を合成する合成手段とを有 しており、位相調整手段は、合成手段による合成電圧に応じて位相調整を行うことが 望ましい。これにより、実際の伝送線路の損失に応じた適切な損失補償を行うことが 可會 になる。
[0009] また、上述した信号分析手段は、フィルタの出力電圧の利得調整を行う利得調整 手段を有することが望ましい。特に、上述した利得調整手段によって調整される利得 は、伝送線路による信号損失の程度に応じて設定されることが望ましい。これにより、 伝送線路の特性を考慮して信号の位相調整を行うことでき、様々な伝送線路に対し て共通の回路を用いた損失補償が可能になる。
[0010] また、上述した位相調整手段は、信号分析手段による分析結果に応じて参照電圧 が変更される差動増幅器であることが望ましい。あるいは、上述した位相調整手段は 、信号分析手段による分析結果に応じて参照電圧が変更される電圧比較器であるこ とが望ましい。上述した位相調整手段は、信号分析手段による分析結果に応じて遅 延量が変更される可変遅延回路であることが望ましい。これにより、伝送線路に送出 される信号の変化のタイミング (信号の位相)を確実かつ容易に変更することができる
[0011] また、上述した信号分析手段と位相調整手段は、入力信号を出力する回路が形成 されているチップあるいはモジュールに組み込まれることが望ましい。これにより、伝 送線路駆動回路や入力信号を出力する回路を含む構成全体の小型化と、製造工程 の簡略ィ匕ゃ部品点数の削減に伴うコストダウンなどが可能になる。
図面の簡単な説明
[0012] [図 1]一実施形態の伝送線路駆動回路の構成を示す図である。
[図 2]伝送線路による損失によって発生する信号の減衰の説明図である。
[図 3]伝送線路駆動回路の具体的構成を部分的に示す回路図である。
圆 4]第 1回路の動作を説明する図である。
[図 5]第 2回路の動作を説明する図である。 符号の説明
[0013] 1 伝送線路駆動回路
2 伝送線路
3 ドライバ
10、 20 ドライバ入力回路
30 ローパスフィルタ(LPF)
40 利得調整回路
50、 52 カロ算回路
60 ドライバ出力回路
100 第 1回路
102、 104、 120、 202、 204、 220 卜ランジスタ
106、 206 可変定電流回路
110、 112、 210、 212、 302、 310、 312、 314 抵抗
114、 214 コンデンサ
122、 222、 304 定電流回路
200 第 2回路
発明を実施するための最良の形態
[0014] 以下、本発明を適用した一実施形態の伝送線路駆動回路について、図面を参照し ながら詳細に説明する。
[0015] 図 1は、一実施形態の伝送線路駆動回路の構成を示す図である。図 1に示すように 、本実施形態の伝送線路駆動回路 1は、 1つのドライバ入力回路 10、複数のドライバ 回路 20、複数のローパスフィルタ(LPF) 30 (30A、 30B、 ···)、複数の利得調整回路 40、複数の加算器 50、 1つの加算器 52、 1つのドライバ出力回路 60を備えている。 この伝送線路駆動回路 1は、損失が発生する伝送線路 2と、その前段に設けられて 伝送線路 2に信号を送出するドライバ 3との間に設けられており、伝送線路 2に送出さ れる信号パターンに応じて信号の変化タイミングを調整する動作を行う。
[0016] ドライバ入力回路 10は、ドライバ 3から出力される信号が入力されており、この信号 に対して波形整形を行って同相の信号を出力する。この信号は、差動増幅器によつ て構成されるドライバ出力回路 60に入力される。また、それぞれのドライバ入力回路 20は、ドライバ入力回路 10と同じ動作を行っており、ドライバ 3から出力されるドライ バパターン信号と同相の信号を出力する。それぞれのローパスフィルタ 30 (30A、 30 B、…;)は、対応するドライバ入力回路 20から出力される信号の低域成分を通過させ る。それぞれの利得調整回路 40は、外部力も入力される制御データ Sl、 S2、…によ つて利得が設定可能であり、対応するローパスフィルタ 30から出力される低域成分に 相当する電圧をこの設定された利得で増幅あるいは減衰して出力する。本実施形態 では、上述したドライバ入力回路 20、 ローパスフィルタ 30、利得調整回路 40からなる 処理系統が複数組備わっている。それぞれの加算器 50は、これら複数組の処理系 統に含まれる複数の利得調整回路 40の出力電圧を加算する。加算器 52は、複数の 加算器 50によって加算された電圧と所定の電圧 V とを加算して参照電圧 V を
BB-DC BB 生成する。この参照電圧 V は、ドライバ出力回路 60に入力される。ドライバ出力回
BB
路 60は、ドライバ入力回路 10から出力された信号と、加算器 52から出力された参照 電圧 V の参照信号とが入力されており、これら 2つの信号を用いた差動増幅を行う。
BB
ドライバ出力回路 60から出力される信号は、伝送線路駆動回路 1の出力信号として レシーバ回路(図示せず)に向けて伝送線路 2に送出される。
[0017] 上述した複数のローノ スフィルタ 30が信号分析手段に、 1つの加算器 52、 1つのド ライバ出力回路 60が位相調整手段に、複数の加算器 50が合成手段に、複数の利 得調整回路 40が利得調整手段にそれぞれ対応する。
[0018] 本実施形態の伝送線路駆動回路 1はこのような構成を有しており、次にその動作を 説明する。複数のローパスフィルタ 30A、 30B、…のそれぞれは、異なるカットオフ周 波数が設定されており、異なる周波数成分を通過させる。実際の伝送線路の影響を 1つのフィルタで補償することが困難な場合は、それぞれのフィルタの出力を組み合 わせることにより実際の伝送線路の影響と等しくすることができる。あるいは、いくつか のフィルタを切り替えて補償するようにしてもょ 、。
[0019] 図 2は、伝送線路 2による損失によって発生する信号の減衰の説明図である。なお 、図 2では、信号の減衰状態を説明するために極端に損失が大きい場合が示されて いる。図 2 (A)には、高い周波数の信号パターン Aの信号が伝送線路 2に入力された 状態が点線で示されている。伝送線路 2における損失が大きいと、信号の電圧がロー レベルからハイレベルに、あるいはハイレベルからローレベルに十分に遷移する前に 次の状態変化が発生する。このときのタイミングのずれは tl0、 tilとなる。また、図 2 ( B)には、低い周波数の信号パターン Cの信号が伝送線路 2に入力された状態が点 線で示されている。伝送線路 2における損失が大きいと、信号電圧がローレベルから ハイレベルに、あるいはハイレベルからローレベルに十分に遷移する際にある程度の 時間を要する力 信号パターン Cの場合にはハイレベルあるいはローレベルの期間 が長 、ため信号はハイレベルあるいはローレベルに近!、電圧レベルまで変化する。 このときのタイミングのずれは t20 (≠tl0)、 t21 (≠tll)となる。実際の伝送線路 2には 、図 2 (C)に示すように、図 2 (A)に示した信号と図 2 (B)に示した信号とが適宜組み 合わされた信号が入力される。図 2 (C)に示した例では、このときの信号の立ち上がり タイミングのずれ t30は、図 2 (B)に示した信号パターン Cの立ち上がりタイミングのず れ t20と等しくなる力 立ち下がりタイミングのずれ t31は、図 2 (B)に示した信号パター ン Cの立ち下がりタイミングのずれ t21とは等しくならない。このように、伝送線路 2に入 力される信号のパターンに応じて立ち上がりタイミングや立ち下がりタイミングがずれ る量が変動する。
[0020] それぞれのローパスフィルタ 30の後段に設けられたそれぞれの利得調整回路 40 は、対応するローパスフィルタ 30の出力電圧に対して、制御データ(Sl、 S2、 ···)に 応じて設定される利得で信号の増幅あるいは減衰を行う。伝送線路 2の長さや形状 等に応じて特性 (損失の量や損失の周波数依存性)は異なる。このため、入力信号 が同じであっても伝送線路 2を通した後の減衰の程度が異なる。伝送線路 2の特性に 対応させるために、制御データ Sl、 S2、…の内容が変更され、各利得調整回路 40 における利得が可変に設定される。例えば、数々の特性を有する複数の伝送線路 2 について、制御データ Sl、 S2、…をどのような値に設定したときに適切な補償を行う ことが可能であるかを、あらかじめ実験やシミュレーション等によって求めておいて、 実際に使用する伝送線路 2の特性を測定してこの測定された特性に対応する制御デ ータ Sl、 S2、…を用いるようにすればよい。
[0021] 複数の加算器 50では、複数の利得調整回路 40によって利得調整が行われた後の 電圧を加算 (合成)する。また、加算器 52は、所定の電圧 V 〖こ、複数の加算器 5
BB-DC
0によって加算された電圧を加算することにより参照電圧 V の参照信号を生成し、こ
BB
の生成した参照信号をドライバ出力回路 60に入力する。例えば、入力信号のローレ ベルとハイレベルの平均電圧(50%の電圧)が所定の電圧 V として用いられて
BB-DC
おり、この電圧 V に、各ローパスフィルタ 30を用いて入力信号の周波数成分を
BB-DC
分析して得られた最終段の加算器 50の出力電圧が重畳されて、ドライバ出力回路 6 0に入力される。したがって、ドライバ出力回路 60に入力される参照信号の電圧レべ ルを、入力信号の周波数に応じて変化させることができ、この参照信号の電圧レベル に対する差分増幅出力として得られる信号の立ち上がりタイミングおよび立ち下がり タイミングを、入力信号の信号パターンの内容に応じて調整することが可能になる。
[0022] このように、本実施形態の伝送線路駆動回路 1では、伝送線路 2に入力される前に 、伝送線路 2を通すことによって発生する損失によって生じるタイミング変化を打ち消 すように、信号の位相調整を行うことにより、適切な損失補償を行うことができる。特に 、損失補償のために信号の振幅を大きくする必要がないため、伝送信号の高速化に 容易に対応することができる。また、位相調整を入力信号の信号パターンの内容に 応じて行うことにより、信号パターンに応じた適切な損失補償を行うことが可能になる
[0023] また、それぞれのローパスフィルタ 30A、 30B、…の出力電圧に対して利得調整を 行うことにより、伝送線路 2の特性を考慮して信号の位相調整を行うことでき、様々な 伝送線路 2に対して共通の伝送線路駆動回路 1を用いた損失補償が可能になる。さ らに、ドライバ出力回路 60として差動増幅器を用いることにより、伝送線路 2に送出さ れる信号の変化のタイミング (信号の位相)を確実かつ容易に変更することができる。
[0024] 図 3は、伝送線路駆動回路 1の具体的構成を部分的に示す回路図である。図 3に 示す構成は、図 1に示したドライバ入力回路 20から加算器 52までの具体的構成を、 2つの処理系統について示したものもである。図 3に示す構成は、一方の処理系統に 対応する第 1回路 100と、他方の処理系統に対応する第 2回路 200と、所定の電圧 V を発生するトランジスタ 300、抵抗 302および定電流回路 304と、所定の電圧 V
BB-DC B に 2つの処理系統の出力電圧をカ卩算する 3つの抵抗 310、 312、 314とを含んで いる。
[0025] 第 1回路 100は、差動増幅器を構成する 2つのトランジスタ 102、 104と、これら 2つ のトランジスタ 102、 104のェミッタに共通に接続される可変定電流回路 106と、 2つ のトランジスタ 102、 104のそれぞれのコレクタに個別に接続される負荷抵抗としての 抵抗 110、 112と、一方の抵抗 112に並列に接続されたコンデンサ 114と、トランジス タ 104のコレクタに接続されたトランジスタ 120および定電流回路 122とを有して 、る
[0026] 一方のトランジスタ 102のベースにはドライバ 3から出力された信号が入力される。、 他方のトランジスタ 104のベースには、所定の参照電圧(例えばトランジスタ 102に入 力される信号のローレベルとハイレベルの平均電圧) V を有する参照信号が入力さ
R
れる。したがって、一方のトランジスタ 102に入力された信号と同相の信号が他方のト ランジスタ 104のコレクタから出力される。この出力信号の電圧レベルは、制御データ S1によって可変定電流回路 106の定電流出力値を変更することにより、可変するこ とができる。トランジスタ 104のコレクタから出力される信号は、抵抗 112とコンデンサ 114によって構成されるローパスフィルタによって平滑され、これらの素子定数 (抵抗 値と静電容量値)で決まるカットオフ周波数以下の低域成分のみが、トランジスタ 120 を介して出力される。 2つのトランジスタ 102、 104が 1つのドライバ入力回路 20に、 抵抗 112、コンデンサ 114がローパスフィルタ 30Aに、可変定電流回路 106が 1つの 利得調整回路 40にそれぞれ対応する。
[0027] また、第 2回路 200は、差動増幅器を構成する 2つのトランジスタ 202、 204と、これ ら 2つのトランジスタ 202、 204のェミッタに共通に接続される可変定電流回路 206と 、 2つのトランジスタ 202、 204のそれぞれのコレクタに個別に接続される負荷抵抗と しての抵抗 210、 212と、一方の抵抗 212に並列に接続されたコンデンサ 214と、トラ ンジスタ 204のコレクタに接続されたトランジスタ 220および定電流回路 222とを有し ている。第 2回路 200の構成および各部の動作は、基本的に第 1回路 100の構成お よび各部の動作と同じであり、抵抗 212およびコンデンサ 214によって構成される口 一パスフィルタ 30Bのカットオフ周波数のみが異なっている。例えば、第 1回路 100に 含まれる抵抗 112とコンデンサ 114によって構成されるローパスフィルタ 30Aのカット オフ周波数の方力 第 2回路 200に含まれる抵抗 212とコンデンサ 214によって構成 されるローパスフィルタ 30Bのカットオフ周波数よりも高く設定されている。このため、 第 1回路 100では入力信号の高周波成分までの各周波数成分の検出が可能であり 、第 2回路 200では入力信号の低周波成分の検出が可能となる。
[0028] 第 1回路 100、第 2回路 200および電圧 V を発生するトランジスタ 300の各出
BB-DC
力端は、 3つの抵抗 310、 312、 314を介して接続されており、この接続点カゝら所定の 電圧 V に 2つの処理系統の出力電圧が重畳された参照電圧 V の参照信号が
BB-DC BB 出力される。
[0029] 図 4は、第 1回路 100の動作を説明する図であり、第 2回路 200を非動作状態にし た場合に生成される参照電圧 V の変化の様子が示されている。第 1回路 100では、
BB
入力信号の高周波成分を含む各周波成分が検出されるため、入力信号の電圧が口 一レベルとハイレベルの間で頻繁に切り替わったときに、この変化の状態を反映させ た出力電圧が生成される。したがって、参照電圧 V にこの出力電圧を重畳させ
BB-DC
た参照信号 V は、入力信号の頻繁な電圧変化に追随するように電圧が変化し、ドラ
BB
ィバ出力回路 60から出力するパターン Aの信号の位相を調整することができる。
[0030] 図 5は、第 2回路 200の動作を説明する図であり、第 1回路 100を非動作状態にし た場合に生成される参照電圧 V の変化の様子が示されている。第 2回路 200では、
BB
入力信号の低周波成分が検出されるため、入力信号の電圧が比較的長い時間ロー レベルあるいはハイレベルを維持したときに、この状態を反映させた出力電圧が生成 される。したがって、参照電圧 V にこの出力電圧を重畳させた参照信号は、入力
BB-DC
信号の頻繁な電圧変化にはあまり追随しないように電圧が変化している。
[0031] なお、本発明は上記実施形態に限定されるものではなぐ本発明の要旨の範囲内 において種々の変形実施が可能である。上述した実施形態では、差動増幅器によつ て構成されるドライバ出力回路 60を用いて信号の位相調整を行ったが、差動増幅器 の代わりに、電圧比較器や可変遅延回路を用いるようにしてもよい。電圧比較器を用 いた場合には、プラス入力端子にドライバ入力回路 10の出力信号を入力し、マイナ ス入力端子に参照電圧 V の参照信号を入力すればよい。また、可変遅延回路を用
BB
いた場合には、参照電圧 V に応じて遅延量を設定すればよい。 [0032] また、上述した実施形態では、複数のローパスフィルタ 30A、 30B、…を用いて入 力信号の信号パターンの内容 (周波数特性)を分析するようにしたが、一部あるいは 全部のローパスフィルタをバンドパスフィルタやハイパスフィルタに置き換えるようにし てもよい。また、フィルタ以外の構成、例えばあらかじめ検出対象となる複数の信号パ ターン (比較パターン)を用意してぉ 、て、入力信号とこれら複数の比較パターンとの 相関を求めて入力信号の信号パターンの内容を分析するようにしてもょ 、。
[0033] また、上述した実施形態では、伝送線路駆動回路 1内で、ドライバ入力回路 10とド ライバ出力回路 60とを直接接続したが、ドライバ入力回路 10とドライバ出力回路 60と の間に遅延回路を挿入するようにしてもよい。遅延回路を挿入することにより、ドライ バ入力回路 10から出力される信号の位相を調整することが可能となる。
[0034] また、上述した実施形態では、ドライバ 3と伝送線路 2の間に伝送線路駆動回路 1を 設けたが、ドライバ 3 (入力信号を出力する回路)やその前段に設けられた各種回路( 図示せず)力 チップあるいは 1つのモジュールの一部として形成されている場合に、 伝送線路駆動回路 1をこれらのチップあるいはモジュールに組み込むようにしてもよ い。これにより、伝送線路駆動回路 1やドライバ 3等を含む回路の小型化と、製造ェ 程の簡略ィ匕ゃ部品点数の削減に伴うコストダウンなどが可能になる。
産業上の利用可能性
[0035] 本発明によれば、伝送線路に入力される前に信号の位相調整を、このタイミング変 化を打ち消すように行うことにより、適切な損失補償を行うことができる。特に、損失補 償のために信号の振幅を大きくする必要がな 、ため、伝送信号の高速化に容易に 対応することができる。これは、位相調整を入力信号の信号パターンの内容に応じて 行うことになり、信号パターンに応じた適切な損失補償を行うことが可能になる。

Claims

請求の範囲
[1] 入力信号の信号パターンの内容を分析する信号分析手段と、
前記信号分析手段による分析結果に応じて、前記入力信号を伝送線路に通したと きに発生する損失に伴うタイミングのずれを打ち消す向きに前記入力信号の位相を 調整した信号を出力する位相調整手段と、
を備え、前記位相調整手段の出力信号を前記伝送線路に送出する伝送線路駆動 回路。
[2] 請求項 1において、
前記信号分析手段は、前記入力信号の周波数特性を分析する伝送線路駆動回路
[3] 請求項 1において、
前記信号分析手段は、前記入力信号の低域成分を通過させるフィルタを有してお り
前記位相調整手段は、前記フィルタの出力電圧に応じて位相調整を行う伝送線路 駆動回路。
[4] 請求項 1において、
前記信号分析手段は、前記入力信号の低域成分を通過させるカットオフ周波数が 異なる複数のフィルタと、前記複数のフィルタの出力電圧を合成する合成手段とを有 しており、
前記位相調整手段は、前記合成手段による合成電圧に応じて位相調整を行う伝送 線路駆動回路。
[5] 請求項 3において、
前記信号分析手段は、前記フィルタの出力電圧の利得調整を行う利得調整手段を 有する伝送線路駆動回路。
[6] 請求項 5において、
前記利得調整手段によって調整される利得は、前記伝送線路による信号損失の程 度に応じて設定される伝送線路駆動回路。
[7] 請求項 4において、 前記信号分析手段は、前記フィルタの出力電圧の利得調整を行う利得調整手段を 有する伝送線路駆動回路。
[8] 請求項 7において、
前記利得調整手段によって調整される利得は、前記伝送線路による信号損失の程 度に応じて設定される伝送線路駆動回路。
[9] 請求項 1において、
前記位相調整手段は、前記信号分析手段による分析結果に応じて参照電圧が変 更される差動増幅器である伝送線路駆動回路。
[10] 請求項 1において、
前記位相調整手段は、前記信号分析手段による分析結果に応じて参照電圧が変 更される電圧比較器である伝送線路駆動回路。
[11] 請求項 1において、
前記位相調整手段は、前記信号分析手段による分析結果に応じて遅延量が変更 される可変遅延回路である伝送線路駆動回路。
[12] 前記信号分析手段と前記位相調整手段は、前記入力信号を出力する回路が形成 されて 、るチップある 、はモジュールに組み込まれる伝送線路駆動回路。
PCT/JP2006/309922 2005-06-01 2006-05-18 伝送線路駆動回路 WO2006129490A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE112006001472T DE112006001472T5 (de) 2005-06-01 2006-05-18 Übertragungsleitungs-Treiberschaltung
US11/916,232 US7902835B2 (en) 2005-06-01 2006-05-18 Transmission line driving circuit
KR1020077027687A KR100933977B1 (ko) 2005-06-01 2006-05-18 전송 선로 구동 회로
CNA2006800191021A CN101208920A (zh) 2005-06-01 2006-05-18 传输线路驱动电路
JP2007518906A JP4685099B2 (ja) 2005-06-01 2006-05-18 伝送線路駆動回路

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005160833 2005-06-01
JP2005-160833 2006-06-01

Publications (1)

Publication Number Publication Date
WO2006129490A1 true WO2006129490A1 (ja) 2006-12-07

Family

ID=37481420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309922 WO2006129490A1 (ja) 2005-06-01 2006-05-18 伝送線路駆動回路

Country Status (7)

Country Link
US (1) US7902835B2 (ja)
JP (1) JP4685099B2 (ja)
KR (1) KR100933977B1 (ja)
CN (1) CN101208920A (ja)
DE (1) DE112006001472T5 (ja)
TW (1) TWI312077B (ja)
WO (1) WO2006129490A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306448A (ja) * 2007-06-07 2008-12-18 Yokogawa Electric Corp 損失補償回路

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL138517A (en) * 2000-09-17 2005-07-25 Serconet Ltd System and method for transmission-line termination by signal cancellation, and applications thereof
TWI415064B (zh) 2010-12-30 2013-11-11 Au Optronics Corp 顯示面板之控制電路裝置及其控制方法
KR200489829Y1 (ko) 2019-05-15 2019-08-16 양용석 운동기구 겸용 그네의자
TWI764749B (zh) * 2021-06-07 2022-05-11 嘉雨思科技股份有限公司 訊號傳輸電路元件、多工器電路元件及解多工器電路元件
CN117524029A (zh) * 2024-01-05 2024-02-06 武汉精立电子技术有限公司 一种测试信号生成系统和面板检测设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331363A (ja) * 1996-06-12 1997-12-22 Fujitsu Ltd 伝送路損失等化回路
JP2001045072A (ja) * 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd 送信電力波形の調整装置
JP2002135340A (ja) * 2000-10-25 2002-05-10 Ando Electric Co Ltd 波形整形回路
JP2005057686A (ja) * 2003-08-07 2005-03-03 Renesas Technology Corp 伝送信号補正回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3426669B2 (ja) 1993-11-22 2003-07-14 三洋電機株式会社 エラー信号発生回路
GB2360427B (en) 2000-03-14 2004-02-04 Power X Ltd Data transmission driver device
DE10354113B4 (de) * 2003-11-19 2006-07-27 Infineon Technologies Ag Übertragungsvorrichtung mit variabler Impedanzanpassung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09331363A (ja) * 1996-06-12 1997-12-22 Fujitsu Ltd 伝送路損失等化回路
JP2001045072A (ja) * 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd 送信電力波形の調整装置
JP2002135340A (ja) * 2000-10-25 2002-05-10 Ando Electric Co Ltd 波形整形回路
JP2005057686A (ja) * 2003-08-07 2005-03-03 Renesas Technology Corp 伝送信号補正回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008306448A (ja) * 2007-06-07 2008-12-18 Yokogawa Electric Corp 損失補償回路

Also Published As

Publication number Publication date
KR20080006635A (ko) 2008-01-16
DE112006001472T5 (de) 2008-06-26
TW200704943A (en) 2007-02-01
TWI312077B (en) 2009-07-11
JP4685099B2 (ja) 2011-05-18
CN101208920A (zh) 2008-06-25
JPWO2006129490A1 (ja) 2008-12-25
KR100933977B1 (ko) 2009-12-28
US7902835B2 (en) 2011-03-08
US20090322395A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
US5898326A (en) Signal transmission cable driver apparatus without a peaking coil
WO2006129490A1 (ja) 伝送線路駆動回路
CN101383595B (zh) 电子音量调节器装置和使用它的音频设备、异常检测方法
JP2006345532A (ja) 信号整形回路
JP4676646B2 (ja) インピーダンス調整回路および半導体装置
US20060133814A1 (en) Optical transceiver having optical receiver with function to cancel noise originated to optical transmitter
CN107765229B (zh) 一种毫米波雷达接收链路增益自动校准方法
US20090022337A1 (en) Signal amplifier circuit
JP4937898B2 (ja) クロックバッファ
US10298426B2 (en) Communication cable module and transmission loss compensation circuit
JP4806679B2 (ja) ジッタ発生回路
KR20050036812A (ko) 오디오 신호에 대한 음질 개선 회로 및 이를 이용한오디오 증폭 회로
EP1393456A1 (en) Dynamic range extension for an electronic circuit
US9419574B2 (en) Amplifier circuit
EP1079516A2 (en) Alternating gain and phase control system and method
US20090220106A1 (en) Audio signal processing circuit
JP5231151B2 (ja) デジタルアンプシステム
US6765714B1 (en) System and method for measuring an amount of error associated with an optical amplifier
JP3348270B2 (ja) 位相調整装置
JP2009278412A (ja) 高速信号伝送線路とそれを用いた半導体試験装置
JP2001133499A (ja) 励振機
JP5521904B2 (ja) 信号増幅装置及び方法
KR200334820Y1 (ko) 오디오출력장치
JP2011094991A (ja) 任意波形発生器
JP2010164396A (ja) 任意波形発生装置及び試験装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680019102.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007518906

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077027687

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11916232

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120060014722

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06746607

Country of ref document: EP

Kind code of ref document: A1

RET De translation (de og part 6b)

Ref document number: 112006001472

Country of ref document: DE

Date of ref document: 20080626

Kind code of ref document: P

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607