WO2006128621A2 - Verfahren zur herstellung, reifung und trocknung von negativen und positiven platten für bleiakkumulatoren - Google Patents

Verfahren zur herstellung, reifung und trocknung von negativen und positiven platten für bleiakkumulatoren Download PDF

Info

Publication number
WO2006128621A2
WO2006128621A2 PCT/EP2006/004921 EP2006004921W WO2006128621A2 WO 2006128621 A2 WO2006128621 A2 WO 2006128621A2 EP 2006004921 W EP2006004921 W EP 2006004921W WO 2006128621 A2 WO2006128621 A2 WO 2006128621A2
Authority
WO
WIPO (PCT)
Prior art keywords
plates
lead
drying
air
active material
Prior art date
Application number
PCT/EP2006/004921
Other languages
English (en)
French (fr)
Other versions
WO2006128621A3 (de
Inventor
Werner Nitsche
Uwe Schwinhorst
Original Assignee
Bernd Münstermann Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bernd Münstermann Gmbh & Co. Kg filed Critical Bernd Münstermann Gmbh & Co. Kg
Priority to DE502006004383T priority Critical patent/DE502006004383D1/de
Priority to EP06753823A priority patent/EP1886366B1/de
Priority to AT06753823T priority patent/ATE438204T1/de
Priority to US11/915,258 priority patent/US8101299B2/en
Publication of WO2006128621A2 publication Critical patent/WO2006128621A2/de
Publication of WO2006128621A3 publication Critical patent/WO2006128621A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/14Electrodes for lead-acid accumulators
    • H01M4/16Processes of manufacture
    • H01M4/20Processes of manufacture of pasted electrodes
    • H01M4/21Drying of pasted electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Definitions

  • the present invention relates to a process for producing, maturing and drying of negative and positive plates for lead-acid batteries, wherein first in a pasting step, the plates are made by introducing from the main ingredients lead oxide, water and sulfuric acid existing lead paste as an active mass in an electrode carrier.
  • the active materials for the negative and positive plates are produced from the main constituents lead oxide, water and sulfuric acid. These substances are processed in a mixing process to a pasty lead paste.
  • the additives which are commonly referred to as spreading agents, essentially barium sulfate, carbon black and special forms of lignin compounds and / or humic acids, are added to the negative active compositions.
  • the negative and positive plates are made by introducing the negative active material or the positive active material into an electrode carrier.
  • the introduction of the pasty lead paste into the electrode carrier is referred to as pasting and is usually carried out by machine on corresponding paste. Taurine lines, which consist essentially of a pasting machine and a subsequent pre-dryer.
  • the pre-dryer is used for superficial drying of the plates in order to obtain tack-free and thus stackable plates.
  • stacking the plates is to avoid the sticking of the plates usually a residual moisture of the active mass of less than 9 wt .-% sought.
  • release papers are applied to the top and bottom of the manufactured plates, which permit an increase in the residual moisture to about 12% by weight.
  • Electrodes are usually casts, expanded metal mesh or continuously cast or punched grid used.
  • the plates are usually stacked at the end of the Pastierline mainly fully automatic, sometimes manually, lying down and placed on pallets vertically or predominantly horizontally. In the case of cast casings double plates are sometimes loosely hung in racks.
  • the active materials are converted in a subsequent process step, the so-called maturation and drying, into a porous network of preferably 3-basic and / or 4-basic lead sulfate crystals and there is a connection of the active material to the electrode carrier by oxidation the surface of the electrode carrier is generated.
  • This process step determines to a substantial extent by the quality of the cross-linking of the 3-basic or 4-basic lead sulfate crystals, by the height of the porosity of the active material and by the connection to the electrode carrier, the electrical performance data and the life of the lead-acid battery.
  • the ripening and drying takes place almost exclusively in batch chambers, which ensure temperature and humidity control during the ripening phase and drying during the drying phase.
  • lead-acid batteries dusty lead oxides with a significant proportion of unoxidized lead are used.
  • the lead oxides used contain unoxidized lead in a proportion of usually 25-35 wt .-%.
  • an exothermic oxidation of the residual lead of the lead oxides used occurs.
  • the exothermic reaction is essentially dependent on the manufacturing method of lead dust.
  • lead oxides produced by the Barton process are less prone to spontaneous oxidation than lead oxides from lead mills. There are also considerable differences between the systems of different manufacturers with regard to the spontaneous oxidation rate of the lead oxides.
  • both the loading time of the batch chambers and the entire maturation time to form a 3-basic and / or 4-basic lead sulfate crystal skeleton are as short as possible to prevent dehydration, because this dehydration would counteract the formation of a stable crystal framework and a good chemical bonding to the electrode carrier.
  • the usual batch chambers for maturing and drying sheets for lead-acid batteries have a capacity to accommodate a production quantity of several hours, usually from 8 to 16 hours.
  • Negative and positive plates are usually matured into 3-basic lead sulfate crystals within 16 to 24 hours and then dried for 1 to 3 days.
  • the size of the 4-basic crystals can be controlled by adding micronized 4-basic lead sulfate. It can crystals of comparable size as in 3-basic lead sulfates produced.
  • micronised 4-basic lead sulphate is based on crystal sizes of less than 1 .mu.m comminuted 4-basic understood fine lead sulfate with the addition of finely divided fumed silica, which is described in the document WO2004 / 059772 A2.
  • the positive active material is added during the preparation of 4 basic micronized lead sulfate. In the subsequent maturation at high temperatures,. preferably in a water vapor-saturated atmosphere, a complete small-crystal 4-basic crystal structure is formed within one hour, which is also described in the document WO2004 / 059772 A2.
  • the prior art discloses the rapid ripening of lead-acid battery panels in the case of exposed surfaces.
  • the document EP 0 949 700 B1 describes a process in which lead plates are ripened and dried within a few hours in a continuous process in a three-stage process. It is described that by means of the use of a climate membrane and kept free for a uniform treatment plate surfaces, the moisture content of the plates is controlled and can be done by the depleted surfaces of the metal degradation of the residual lead and a quick drying can be done.
  • An essential prerequisite for the method is that both plate surfaces are kept free for a uniform treatment and provided with a climate-effective membrane that can transport and store humidities.
  • a climate-effective membrane is proposed as a particularly advantageous solution to use the separator, which is part of the lead-acid batteries.
  • EP 1 235 287 A1 also shows a process for maturing positive lead-acid battery plates, in which it is essential that the plates are singulated.
  • the separation of the plates by separation of the plates by means of a climate membrane This is to be achieved that a steam treatment for maturation of the plates must be made only for a few hours, and this is attributed in particular to the fact that the plates are separated for the maturation process. The separation should take place at least during the steam treatment.
  • the plates taking advantage of one of the active mass due to the resulting from the maturation porosity own permeability and the oxidation of Residual lead in the active material in the plate stack by applying an overpressure or underpressure, which has a pressure difference of more than 10 mbar between an inflow side and a downstream side of the plate stack, dried by means of the oxygen-containing gas flowing through the active mass to a desired final moisture.
  • positive and negative plates can be ripened and dried in stacks without the use of climatic membranes, without the need for exposed surfaces and without the use of support racks in a short period of time.
  • the invention is based on the finding that, contrary to the common doctrine, negative and positive plates for lead-acid batteries have a remaining permeability which, for the purpose of oxidation of the residual lead and drying, ensures adequate passage of a gas upon application of the mentioned overpressure or underpressure. The gas stream thus flows through the material from which the plates are made. This permeability can be used by the applied positive or negative pressure such that drying is guaranteed to the desired low residual moisture substantially by oxidation of the rest of the lead in a relatively short period of time.
  • the rapid drying to a low residual moisture by the oxidation of the residual lead using the permeability of the active mass advantageously leads to an increase in the porosity of the negative and positive plates and provides crack-free plates.
  • the disadvantage that, given a relatively low moisture content of, for example, about 5-7% by weight, spontaneous oxidation of the lead oxides takes place, which undesirably increases the desiccation of the active materials.
  • the invention provides that the residual moisture during maturation is kept so high that a spontaneous oxidation of lead oxides is avoided or at least reduced.
  • crystals in the form of the 3- and / or 4-basic lead sulfates form from the paste forming the starting material.
  • the paste in practice has a density in the range between about 3.8 and 4.4 g / cm 3 .
  • 3-basic lead sulfate in crystal form has a density of 6.7 g / cm 3
  • 4 basic lead sulfate in crystal form has a density of 8.0 g / cm 3 .
  • the plates are arranged directly adjacent to one another in stacks and matured and dried in this stacked state. Every disc stack. thus forms a compact body in which the individual plates are arranged without clearance of gaps.
  • the inventively designed leadership of the ripening process results in a porosity of the plates, which is used for the passage of a gas for the purpose of drying the plates in the plate stack.
  • the direction of flow through the plate stack is in principle arbitrary. At most, the flow resistances in different directions of the Plate stack. On these different Strömungswi ⁇ arrears can be responded by an adapted change in the pressure difference to always achieve a sufficient gas flow rate for drying.
  • the actual final moisture content depends on the intended use of the plates, since different values of the residual moisture are expedient for plates in different batteries.
  • the plates are used after maturing and drying in cassettes for forming. It is to avoid dusts in the loading of the cassettes a relatively high residual moisture content of about 2 wt .-% desired.
  • the lowest possible and even as possible residual moisture is desirable in wet supplied standard car batteries to ensure the lowest possible fluctuations in the final acid density of the finished battery.
  • the maturation ie the formation of 3- and / or 4-basic lead sulfate crystals takes place at temperatures above 7O 0 C, preferably at a relative humidity of about 80%. Preferably, the temperature is even above 80 ° C.
  • steam is preferably used during the ripening in order to avoid an additional supply of oxygen.
  • Maturing takes place over a period of at least 30 minutes. Since the plates are in stacks, even for relative humidity of 80%, unwanted drying out of the plates can be avoided. A maturing time of 1 hour is preferred, however, to improve the surface corrosion of particularly resistant electrode carrier alloys, eg PbCaAg or PbSn alloys, in exceptional cases or in the presence of crystallization retardants, such as the lignin sulfates or humic acids, preferably up to 3 hours. It is technically preferred that for the heating of the plates, the introduction of water vapor takes place in the bottom region of a ripening chamber. A forced circulation by blower or forced convection is preferably deliberately avoided here, since this leads to an unwanted drying out of the outer plates of the plate stack.
  • particularly resistant electrode carrier alloys eg PbCaAg or PbSn alloys
  • crystallization retardants such as the lignin sulfates or humic acids
  • the drying of the plates according to the invention is started directly, taking advantage of the permeability of the active masses. Due to the permeability of the active masses, the supply of oxygen for the oxidation of the free lead in the active material to lead oxide is achieved by a pressure gradient of more than 10 mbar, preferably of more than 40 mbar. The exothermic reaction of the oxidation of the residual lead provides an essential component of the energy needed to dry the plates.
  • the oxygen content is advantageously kept at drying on the natural oxygen content of the air of about 20 vol .-%, but at least to 15 vol .-%. It is important to ensure a sufficient exchange of used, oxygen-poor air against fresh air.
  • the temperature in the drying is preferably over a period of about 1 hour in an advantageous manner held at 50 - 70 0 C. In this area, an optimal lead reduction to lead oxide is achieved.
  • the period of time required for lead degradation to lead dioxide can be reduced to less than 30 minutes.
  • this variant of the method according to the invention may currently be of subordinate importance, but may be advantageous in special cases.
  • the drying can be done without air heater and without ventilation systems, such as pressure or vacuum units, solely by the spontaneous oxidation of the residual lead. This is of technical importance for lead shot from mill production with high oxidation susceptibility.
  • the final drying of the plates is over a preferably relatively short period of preferably about 30 minutes to 2 hours by a suitable pressure difference at a temperature which corresponds at least to the boiling point of the water and preferably at normal pressure at sea level (above sea level) just above at 105 to 115 ° C, reached. After this period, final moisture contents of less than 0.5% by weight of residual moisture are present.
  • the process step of the final drying can also be shortened depending on the desired final moisture content or omitted entirely in special cases. When using mill dust, which has a higher tendency to oxidation and a high residual lead content, the final drying usually takes place in a much shorter time than in the case of plates which are produced from lead dust produced by the Barton process.
  • chording and rapid drying is applicable to all negative and positive plates for lead-acid batteries in stacks without a change in the existing equipment technique in the stacking and stacking of the plates.
  • the use of micronised 4-basic lead sulfate is particularly advantageous since it guarantees small-crystalline 4-basic lead sulfate crystals for positive and negative plates with a high internal surface area.
  • An important aspect of the invention is the recognition that at a pressure differential of at least 10 mbar, advantageously at least 40 mbar, the active masses of positive and negative plates in the stack have sufficient oxygen-containing gas permeability, such as air Drying essentially by an oxidation of the residual lead to residual moisture of about 2 wt .-% to ensure.
  • Another important aspect of the invention is the recognition that by the rapid drying by means of oxidation and by utilizing the gas permeability of the active materials, the porosity of the finished plates by about 5-7% compared to plates from a conventional batch maturation or to plates, the are ripened according to the method mentioned in EP 0 949 700 B1 or in EP 1 '235 287 A1. investigations have shown that during the slow drying over a period of one day in batch chambers or when drying of individual plates, a loss of drying leads to shrinkage of the active material, which reduces the porosity.
  • the active mass per plate can be reduced by almost the same factor of 5-7% while maintaining the electrical properties be because in high-current applications, eg starter batteries, only the amount of electrolyte stored in the pores of crucial importance is.
  • the acid density in the pores determines the terminal voltage of the battery. Acid replacement is of minor importance in high current applications.
  • the porosity is also important because the negative and the positive plate undergo an increase in volume during the discharge, which reduces the porosity until the pores have almost no free volume at the end of the discharge. The removable amount of energy is thus directly dependent on the porosity.
  • the rapid maturing according to the invention enables a continuous production flow, whereby storage areas, expenses for logistics and interim storage can be omitted. This can reduce the costs of logistics and capital commitment.
  • the short process time allows a high material turnover. Even in batch operation with rapid maturing and rapid drying, the plates can be fed to the next production process after the paste- ing process, at the latest after 2 to 6 hours. Dehydration of the plates by oxidation of the remaining lead can be excluded. This has significant positive effects on the board quality.
  • the significantly lower variation in plate quality leads, according to experience, to a mass saving of about 3%.
  • the present invention effectively conducted and significantly improved drying process in which the oxidation of the residual lead is selectively performed, resulting in a saving of at least 20% of energy used.
  • Figure 1 is a plurality of free-standing stacks of plates in a device only partially shown for passing a gas through the plates in the stack and
  • FIG. 2 shows a plurality of plate stacks in a carrier frame, in which the plate stacks can be transported by a device, not shown here, for the passage of a gas through the plates in the stack.
  • a plurality of plate stacks 10 arranged side by side are forcibly exposed to a transversely directed differential pressure gradient 'with plates arranged close to each other on a conveyor belt 20.
  • the plates lie horizontally aligned with each other; Alternatively, they can also be close together in vertical alignment
  • the arrow 4 indicates the conveying direction of the conveyor belt 20; the differential pressure gradient runs perpendicular to it. There are no support racks or frames needed.
  • the achievement of a sufficient pressure gradient can be achieved by a running flexible fixing and sealing tape 21 as well as an aperture 31 are provided with opening surfaces 30 for air passage.
  • the plate stacks 10 are transferred immediately after pasting the ripening and drying plant.
  • the method can also be used for plate stacks 10 which are arranged standing or lying in pallets or carrier racks 3.
  • the pallets or support racks 3 must have a sufficient opening area 30 in the inflow and outflow area.
  • Clamping devices are used, which hold the plates in the stacks 10 sufficiently tight and tight.
  • the plates for reasons of visibility are shown at a distance from each other; in reality, the plates are close to each other, as shown in Figure 1.
  • the systems for carrying out the method can be executed both as continuous and as batch systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Herstellung, Reifung und Trocknung von negativen und positiven Platten (1) für Bleiakkumulatoren, wobei in einem Pastierschritt die Platten (1) durch Einbringen von Bleipaste als aktive Masse in einen Elektrodenträger gefertigt werden.Das neue Verfahren ist dadurch gekennzeichnet, daß die Platten (1) unmittelbar aneinander anliegend in Stapeln (10) angeordnet werden, daß die Platten (1) bei Temperaturen oberhalb von 70ºC unter Aufrechterhaltung einer eine spontane Oxidation der Bleioxide vermeidenden oder vermindernden Restfeuchte der aktiven Masse zu einem porösen vernetzten Gefüge aus 3- und/oder 4 -basischen Bleisulfaten gereift werden, wobei die 3- und/oder 4-basischen Bleisulfate eine höhere Dichte als die das Ausgangsmaterial bildenden aktiven Massen haben, und daß die Platten (1) unter Ausnutzung einer der aktiven Masse infolge der durch die Reifung entstandenen Porosität eigenen Durchlässigkeit und der Oxidation von Restblei in der aktiven Masse im Plattenstapel (10) durch Anlegen eines Über- oder Unterdrucks, der eine Druckdifferenz von mehr als 10 mbar zwischen einer Anströmseite und einer Abströmseite des Plattenstapels (10) hat, mittels die aktive Masse durchströmenden sauerstoffhaltigen Gases auf eine gewünschte Endfeuchte getrocknet werden.

Description

Beschreibung :
Verfahren zur Herstellung, Reifung und Trocknung von negativen und positiven Platten für Bleiakkumulatoren
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung, Reifung und Trocknung von negativen und positiven Platten für Bleiakkumulatoren, wobei zunächst in einem Pastierschritt die Platten durch Einbringen von aus den Hauptinhaltsstoffen Bleioxid, Wasser und Schwefelsäure bestehender Bleipaste als aktive Masse in einen Elektrodenträger gefertigt werden.
Nach dem aus der einschlägigen Praxis bekannten Stand der Technik werden bei der Herstellung von Bleiakkumulatoren die aktiven Massen für die negativen und positiven Platten aus den Hauptinhaltsstoffen Bleioxid, Wasser und Schwefelsäure hergestellt. Diese Stoffe werden in einem Mischprozeß zu einer pastösen Bleipaste verarbeitet. Innerhalb des Mischprozesses werden den negativen aktiven Massen noch die üblicherweise als Spreizmittel bezeichneten Zusatzstoffe, im wesentlichen Bariumsulfat, Ruß sowie spezielle Formen von Lignin-Verbindungen und/oder Humin- säuren, zugegeben. Die negativen und positiven Platten werden durch Einbringen der negativen aktiven Masse bzw. der positiven aktiven Masse in einen Elektrodenträger gefertigt. Das Einbringen der pastösen Bleipaste in den Elektrodenträger wird als Pastierung bezeichnet und erfolgt üblicherweise maschinell auf entsprechenden Pa- Stierlinien, die im wesentlichen aus einer Pastiermaschine und einem nachfolgenden Vortrockner bestehen.
Der Vortrockner dient zur oberflächlichen Trocknung der Platten, um klebfreie und damit stapelbare Platten zu erhalten. Beim Abstapeln der Platten wird zur Vermeidung des Klebens der Platten üblicherweise eine Restfeuchte der aktiven Masse von weniger als 9 Gew.-% angestrebt.
Bei kontinuierlich hergestellten Elektrodenträgern werden auf die Ober- und Unterseite der gefertigten Platten Trennpapiere aufgebracht, die eine Anhebung der Rest- feuchte auf bis ungefähr 12 Gew.-% gestatten.
Als Elektrodenträger werden üblicherweise Fallgußgitter, Streckmetallgitter oder kontinuierlich gegossene oder gestanzte Gitter verwendet.
Die Platten werden üblicherweise am Ende der Pastierlinie vorwiegend vollautomatisch, teils auch manuell, liegend abgestapelt und auf Paletten vertikal oder vorwiegend horizontal abgelegt. Im Fall gegossener Fallgußgitter werden Doppelplatten teilweise noch locker in Gestelle gehängt .
Die aktiven Massen werden in einem folgenden Prozeßschritt, der so genannten Reifung und Trocknung, zu einem porösen vernetzten Gefüge aus vorzugsweise 3 -basischen und/oder 4 -basischen Bleisulfat-Kristallen umgewandelt und es wird eine Anbindung der aktiven Masse an den Elektrodenträger durch eine Oxidation der Oberfläche des Elektrodenträgers erzeugt. Dieser Prozeßschritt bestimmt zu einem wesentlichen Teil durch die Güte der Vernetzung der 3-basischen bzw. 4-basischen Bleisulfat-Kristalle, durch die Höhe der Porosität der aktiven Masse sowie durch die Anbindung an den Elektrodenträger die elektrischen Leistungsdaten und die Lebensdauer des Bleiakkumulators .
Nach dem Stand der Technik erfolgt die Reifung und Trocknung nahezu ausschließlich in Chargenkammern, die eine Temperatur- und Feuchtigkeitssteuerung während der Reifephase gewährleisten und eine Trocknung während der Trocknungsphase .
Bei der Herstellung von Bleiakkumulatoren werden staub- förmige Bleioxide mit einem nennenswerten Anteil nicht oxidierten Bleis eingesetzt. Die eingesetzten Bleioxide enthalten nicht oxidiertes Blei mit einem Anteil von üblicherweise 25 - 35 Gew.-%. Während der Reifung tritt eine exotherme Oxidation des Restbleis der verwendeten Bleioxide auf. Die exotherme Reaktion ist im wesentlichen von der Herstellstellmethode des Bleistaubes abhängig. Als Faustregel neigen Bleioxide, die nach dem Barton-Verfahren hergestellt werden, weniger stark zur spontanen Oxidation als Bleioxide aus Bleimühlen. Auch zwischen den Anlagen verschiedener Hersteller finden sich nennenswerte Unterschiede im Hinblick auf die spontane Oxidationsrate der Bleioxide.
Die spontane Oxidation der Bleioxide innerhalb der aktiven Massen in den gefertigten Elektrodenträgern findet stets statt, bevorzugt bei einem Feuchtigkeitsgehalt von 5 - 7 Gew.-% der aktiven Masse. Die aktive Masse neigt somit während der Reifung zur Oxidation. Die exotherme Reaktion durch die Oxidation erhöht ihrerseits die Austrocknung der aktiven Massen. Bei der Reifung ist deshalb sowohl die Beladezeit der Chargenkammern als auch die gesamte Reifezeit zur Ausbildung eines 3 -basischen und/oder 4-basischen Bleisulfat-Kristallgerüstes möglichst kurz zu halten, um eine Austrocknung zu vermeiden, weil diese Austrocknung der Ausbildung eines stabilen Kristallgerüstes sowie einer guten chemischen Anbindung an den Elektrodenträger entgegenwirken würde.
Die üblichen Chargenkammern zur Reifung und Trocknung von Platten für Bleiakkumulatoren haben ein Fassungsvermögen zur Aufnahme einer mehrstündigen Produktionsmenge, üblicherweise von 8 bis 16 Stunden. Negative und positive Platten werden üblicherweise innerhalb von 16 bis 24 Stunden zu 3-basischen Bleisulfat-Kristallen gereift und anschließend 1 bis 3 Tage getrocknet.
Mit der Einführung von Elektrodenträgern auf der Basis von Ca-Legierungen für positive Platten hat die Reifung zu 4-basischen Bleisulfat-Kristallen zunehmend an Bedeutung gewonnen. 4 -basische Kristallstrukturen treten nur bei Temperaturen oberhalb ca. 700C auf, werden bei hoher relativer Feuchte innerhalb von etwa 2 bis 6 Stunden gebildet, weisen jedoch sehr große Kristalle auf, die sich negativ auf die innere Oberfläche der porösen Elektroden auswirken und eine deutlich längere Formationszeit der Elektroden mit erhöhtem elektrischen Energiebedarf benötigen. Vorteilhafterweise zeigen positive Platten mit 4- basischen Bleisulfat-Kristallen jedoch eine verbesserte Lebensdauer sowie einen Schutz vor Passivierung bei Tiefentladung (Antimon- freier Effekt) .
Bei der Herstellung der aktiven Masse für positive Platten kann durch Zugabe von mikronisiertem 4 -basischem Bleisulfat die Größe der 4-basischen Kristalle gesteuert werden. Es lassen sich Kristalle vergleichbarer Größe wie bei 3-basischen Bleisulfaten herstellen. Unter dem Begriff des mikronisierten 4-basischen Bleisulfates wird auf Kristallgrößen von unter 1 μm zerkleinertes 4-basi- sches Bleisulfat unter Zusatz feinteiliger pyrogener Kieselsäure verstanden, was in dem Dokument WO2004/059772 A2 beschrieben ist. Der positiven aktiven Masse wird während der Herstellung 4 -basisches mikronisiertes Bleisulfat zugegeben. Bei der anschließenden Reifung bei hohen Temperaturen, . vorzugsweise in einer wasserdampfgesättigten Atmosphäre, bildet sich bereits innerhalb einer Stunde eine vollständige kleinkristalline 4-basische Kristallstruktur aus, was ebenfalls in dem Dokument WO2004/059772 A2 beschrieben ist.
Nach dem Stand der Technik ist die Schnellreifung von Platten für Bleiakkumulatoren im Fall von freiliegenden Oberflächen bekannt. In dem Dokument EP 0 949 700 Bl wird ein Verfahren beschrieben, in dem in einem dreistufigen Prozeß im kontinuierlichen Durchlauf Bleiplatten innerhalb einiger Stunden gereift und getrocknet werden. Es wird beschrieben, daß mittels des Einsatzes einer Klimamembran und mittels für eine gleichmäßige Behandlung freigehaltener Plattenoberflächen der Feuchtegehalt der Platten gesteuert wird und durch die freigehaltenen Oberflächen der Metallabbau des Restbleis erfolgen kann und eine Schnelltrocknung erfolgen kann. Eine wesentliche Voraussetzung für das Verfahren besteht darin, daß beide Plattenoberflächen für eine gleichmäßige Behandlung freigehalten und mit einer klimawirksamen Membran versehen werden, die Feuchtigkeiten transportieren und speichern kann. Als klimawirksame Membran wird als besonders vorteilhafte Lösung vorgeschlagen, den Separator zu verwenden, der Bestandteil der Bleiakkumulatoren ist.
Die EP 1 235 287 Al zeigt ebenfalls ein Verfahren zur Reifung von positiven Bleiakkumulatorplatten, bei dem wesentlich ist, daß die Platten vereinzelt werden. In weiterer Ausgestaltung gemäß dem Anspruch 4 dieser Schrift ist vorgesehen, daß die Vereinzelung der Platten durch Trennung der Platten mittels einer Klimamembran erfolgt. Hiermit soll erreicht werden, daß eine Wasserdampfbehandlung zur Reifung der Platten nur für wenige Stunden erfolgen muß, wobei dies insbesondere darauf zurückgeführt wird, daß die Platten für den Reifungsprozeß vereinzelt werden. Dabei soll die Vereinzelung wenigstens während der Wasserdampfbehandlung erfolgen.
Die Notwendigkeit, daß beide Plattenoberflachen freigehalten bzw. mit einer Klimamembran versehen werden müssen, ist bei der gängigen, weiter oben erläuterten Fertigungstechnologie nicht gegeben. Es ist vielmehr gängige Praxis, die Platten nach der Pastierung ohne eine Klimamembran und ohne Abstände zwischen den Platten abzusta- peln. Aus diesem Grund kann die Technik der Schnellreifung von Platten gemäß EP 0 949 700 Bl oder gemäß EP 1 235 287 Al ohne erhebliche Änderungen bezüglich der Anlagentechnik nicht eingesetzt werden. Die hohen Investitionskosten und die komplexe technische Realisierung für die Einbringung der Klimamembranen stehen einer Verbreitung der in der EP 0 949 700 Bl und in der EP 1 235 287 Al beschriebenen Technologie entgegen.
Eine Möglichkeit, bei einer Abstapelung der Platten in Stapeln die Plattenoberflächen ohne die Einführung von Klimamembranen teilweise freizuhalten, besteht durch die Verwendung von Trägergestellen oder Rahmen, in denen die Platten mit im wesentlichen vertikaler Ausrichtung angeordnet werden. Dabei erfahren die Plattenstapel in diesen Trägergestellen oder Rahmen durch ein für das Be- und Entladen erforderliches Bewegungsspiel eine Auflockerung, die in gewissem Maße freiliegende Plattenoberflächen mit sehr kleinen Spalten erzeugt. Die Platten müssen zu diesem Zweck aufgerichtet werden, um die gewisse Auflocke- rung der danach auf dem Trägergestell oder Rahmen stehenden Platten zu erreichen. Die Abmessung der Plattenstapel muß daher geringer sein als die lichte Weite des Trägergestells oder Rahmens. Plattenstapel mit horizontal aufgestapelten Platten können hier nicht eingesetzt werden. Der Nachteil dieses Verfahrens besteht in der Notwendigkeit, Trägergestelle oder Rahmen zu verwenden, die auf die spezielle Plattengeometrie abgestimmt sein müssen. Ein Wechsel der Plattengeometrie bedingt unweigerlich auch einen Wechsel der Trägergestelle oder Rahmen oder die Verwendung und den Austäusch von austauschbaren Einlagen in den Trägergestellen oder Rahmen.
Es stellt sich deshalb die Aufgabe, ein Verfahren der eingangs genannten Art zu schaffen, das die vorstehend dargelegten Nachteile des Standes der Technik vermeidet und mit dem bei einer hohen Wirtschaftlichkeit Platten mit verbesserten Eigenschaften produziert werden können.
Die Lösung der Aufgabe gelingt erfindungsgemäß mit einem Verfahren der eingangs genannten Art, das dadurch gekennzeichnet ist,
- daß die Platten unmittelbar aneinander anliegend in Stapeln angeordnet werden,
- daß die Platten bei Temperaturen oberhalb von 700C unter Aufrechterhaltung einer eine spontane Oxidation der Bleioxide vermeidenden oder vermindernden Restfeuchte der aktiven Masse zu einem porösen vernetzten Gefüge aus 3- und/oder 4-basi-schen Bleisulfaten gereift werden, wobei die 3- und/oder 4 -basischen Bleisulfate eine höhere Dichte als die das Ausgangsmaterial bildenden aktiven Massen haben, und
- daß die Platten unter Ausnutzung einer der aktiven Masse infolge der durch die Reifung entstandenen Porosität eigenen Durchlässigkeit und der Oxidation von Restblei in der aktiven Masse im Plattenstapel durch Anlegen eines Über- oder Unterdrucks, der eine Druckdifferenz von mehr als 10 mbar zwischen einer Anströmseite und einer Abströmseite des Plattenstapels aufweist, mittels die aktive Masse durchströmenden sauerstoffhaltigen Gases auf eine gewünschte Endfeuchte getrocknet werden.
Vorteilhafte Ausgestaltungen und Weiterbildungen des erfindungsgemäßen Verfahrens sind in den Unteransprüchen angegeben.
Mit der Erfindung wird vorteilhaft erreicht, daß positive wie negative Platten in Stapeln ohne den Einsatz von Klimamembranen, ohne die Notwendigkeit von freiliegenden Oberflächen und ohne Verwendung von Trägergestellen in einem kurzen Zeitraum gereift und getrocknet werden können. Der Erfindung liegt die Erkenntnis zugrunde, daß entgegen der gängigen Lehrmeinung negative und positive Platten für Bleiakkumulatoren eine verbleibende Durchlässigkeit aufweisen, die zum Zwecke der Oxidation des Restbleies sowie der Trocknung einen ausreichenden Durchtritt eines Gases bei Anlegen des erwähnten Über- oder Unterdruckes gewährleistet. Der Gasstrom durchströmt also das Material, aus dem die Platten bestehen. Diese Durchlässigkeit kann durch den angelegten Über- oder Unterdruck derart genutzt werden, daß eine Trocknung bis auf gewünschte geringe Restfeuchten wesentlich durch eine Oxidation des Restbleies in einem relativ kurzen Zeitraum gewährleistet ist. Die schnelle Trocknung auf eine geringe Restfeuchte durch die Oxidation des Restbleies unter Nutzung der Durchlässigkeit der aktiven Massen führt vorteilhaft zu einer Erhöhung der Porosität der negativen sowie positiven Platten und liefert rißfreie Platten. Bei bekannten Verfahren gemäß dem Stand der Technik tritt dagegen der Nachteil auf, daß bei einem relativ geringen Feuchtigkeitsgehalt von z.B. etwa 5 - 7 Gew.-% eine spontane Oxidation der Bleioxide stattfindet, die in unerwünschter Weise die Austrocknung der aktiven Massen erhöht. Um diesen unerwünschten Effekt zu vermeiden, ist erfindungsgemäß vorgesehen, daß die Restfeuchte während der Reifung so hoch gehalten wird, daß eine spontane Oxidation der Bleioxide vermieden oder zumindest vermindert wird.
Bei der erfindungsgemäßen Reifung der aktiven Masse bilden sich Kristalle in Form der 3- und/oder 4 -basischen Bleisulfate aus der das Ausgangsmaterial bildenden Paste. Die Paste hat in der Praxis eine Dichte im Bereich zwischen etwa 3,8 und 4,4 g/cm3. 3 -basisches Bleisulfat in Kristallform hat dagegen eine Dichte von 6,7 g/cm3 und 4- basisches Bleisulfat in Kristallform eine Dichte von 8,0 g/cm3. Dies bedeutet, daß bei der Reifung infolge der Dichterhöhung in den Kristallen vorteilhaft zwischen den Kristallen Freiräume entstehen, die zu der erwünschten Porosität führen.
Erfindungsgemäß werden die Platten unmittelbar aneinander anliegend in Stapeln angeordnet und in diesem gestapelten Zustand gereift und getrocknet. Jeder Plattenstapel . bildet also einen kompakten Körper, in welchem die einzelnen Platten ohne Freihaltung von Zwischenräumen angeordnet sind. Durch die erfindungsgemäß gestaltete Führung des Reifeprozesses ergibt sich eine Porosität der Platten, die für die Hindurchleitung eines Gases zum Zweck der Trocknung der Platten im Plattenstapel genutzt wird. Die Richtung der Durchströmung des Plattenstapels ist dabei im Prinzip beliebig. Unterschiedlich sind höchstens die Strömungswiderstände in verschiedenen Richtungen des Plattenstapels. Auf diese unterschiedlichen Strömungswi¬ derstände kann durch eine angepaßte Änderung der Druckdifferenz reagiert werden, um stets einen ausreichenden Gasdurchsatz für die Trocknung zu erreichen.
Die konkrete Endfeuchte richtet sich nach dem Verwendungszweck der Platten, da für Platten in unterschiedlichen Batterien verschiedene Werte der Restfeuchte zweckmäßig sind. Bei trocken vorgeladenen Batterien werden die Platten nach der Reifung und Trocknung in Kassetten zur Formierung eingesetzt. Dabei ist zur Vermeidung von Stäuben bei der Beladung der Kassetten eine relativ hohe Restfeuchte von etwa 2 Gew.-% erwünscht. Im Unterschied dazu ist bei naß gelieferten üblichen PKW-Batterien eine möglichst niedrige und möglichst gleichmäßige Restfeuchte erwünscht, um möglichst geringe Schwankungen der End- Säuredichte der fertigen Batterie zu gewährleisten.
Die Reifung, d.h. die Ausbildung der 3- und/oder 4 -basischen Bleisulfat-Kristalle erfolgt bei Temperaturen oberhalb von 7O0C, vorzugsweise bei einer relativen Feuchte von über 80%. Vorzugsweise liegt die Temperatur sogar oberhalb von 800C. Für den Wärmetransport wird bei der Reifung bevorzugt Wasserdampf benutzt, um eine zusätzliche Sauerstoffzufuhr zu vermeiden.
Die Reifung erfolgt über einem Zeitraum von wenigstens 30 Minuten. Da sich die Platten in Stapeln befinden, kann bereits für relative Luftfeuchten von 80% ein unerwünschtes Austrocknen der Platten vermieden werden. Bevorzugt ist eine Reifungszeit von 1 Stunde, die jedoch zur Verbesserung der Oberflächenkorrosion besonders beständiger Elektrodenträgerlegierungen, z.B. PbCaAg- oder PbSn- Legierungen, in Ausnahmefällen oder bei Vorliegen von Kristallisationsverzögerern, wie z.B. den Ligninsulfaten oder Huminsäuren, vorzugsweise bis zu 3 Stunden ausgedehnt werden kann. Es ist anlagentechnisch bevorzugt, daß für die Beheizung der Platten das Einleiten von Wasserdampf im Bodenbereich einer Reifekammer erfolgt. Auf eine erzwungene Zirkulation durch Gebläse oder erzwungene Kon- vektion wird hier vorzugsweise bewußt verzichtet, da dies zu einer ungewollten Austrocknung der Außenplatten des Plattenstapels führt.
Im Anschluß an die Reifung wird unmittelbar mit der erfindungsgemäßen Trocknung der Platten unter der Ausnutzung der Durchlässigkeit der aktiven Massen begonnen. Infolge der Durchlässigkeit der aktiven Massen wird die Zuführung von Sauerstoff zur Oxidation des freien Bleis in der aktiven Masse zu Bleioxid durch ein Druckgefälle von mehr als 10 mbar, vorzugsweise von mehr als 40 mbar, erreicht. Die exotherme Reaktion der Oxidation des Restbleis liefert eine wesentliche Komponente der notwendigen Energie zur Trocknung der Platten.
Als von Vorteil hat sich dabei die Verwendung von Druckluft gezeigt, die einerseits sehr trockene Luft liefert und andererseits die Aufrechterhaltung eines ausreichenden Sauerstoffgehalts gewährleistet.
Um einen ausreichenden Bleiabbau zu Bleioxid zu gewährleisten, wird zweckmäßig der Sauerstoffgehalt bei der Trocknung auf dem natürlichen Sauerstoffgehalt der Luft von ca. 20 Vol.-% gehalten, mindestens jedoch auf 15 Vol.-%. Hierbei ist auf einen ausreichenden Austausch von verbrauchter, sauerstoffarmerer Luft gegen Frischluft zu achten.
Die Temperatur wird bei der Trocknung bevorzugt über einen Zeitraum von ungefähr 1 Stunde in vorteilhafter Weise auf 50 - 700C gehalten. In diesem Bereich wird ein optimaler Bleiabbau zu Bleioxid erreicht.
Bei Anreicherung des Sauerstoffgehalts der Luft, die durch die aktiven Massen hindurchgeleitet wird, auf oberhalb von 40 Vol.-% kann der für den Bleiabbau zu Bleioxid benötigte Zeitraum auf unter 30 Minuten verkürzt werden. Aus Kostengründen dürfte diese Variante des erfindungsgemäßen Verfahrens zwar derzeit von untergeordneter Bedeutung sein, kann aber in speziellen Fällen von Vorteil sein. Bei Anreicherung des Sauerstoffgehalts auf oberhalb von 40 Vol.-% kann die Trocknung ohne Lufterhitzer und ohne lufttechnische Anlagen, wie Druck- oder Unterdruckaggregate, allein durch die spontane Oxidation des Restbleis erfolgen. Dies ist für Bleistäube aus Mühlenproduktion mit hoher Neigung zur Oxidation von technischer Bedeutung .
Die Endtrocknung der Platten wird über einen vorteilhaft relativ kurzen Zeitraum von vorzugsweise ca. 30 Minuten bis 2 Stunden durch eine geeignete Druckdifferenz bei einer Temperatur, die mindestens dem Siedepunkt des Wasser entspricht und die bevorzugt bei Normaldruck auf Meeres- höhe (über NN) knapp darüber bei 105 bis 115°C liegt, erreicht. Nach diesem Zeitraum liegen Endfeuchten von weniger als 0,5 Gew.-% Restfeuchte vor. Der Prozeßschritt der Endtrocknung kann je nach gewünschter Endfeuchte auch verkürzt werden oder in speziellen Fällen ganz entfallen. Bei Verwendung von Mühlenstäuben, die eine höhere Oxida- tionsneigung und einen hohen Restbleigehalt aufweisen, erfolgt die Endtrocknung üblicherweise in deutlich kürzerer Zeit als bei Platten, die aus Bleistäuben, die nach dem Barton-Prozeß erzeugt werden, gefertigt werden. Das zuvor beschriebene Verfahren, das man aufgrund des geringen Zeitbedarfs als Sehne11reifung und Schnelltrocknung bezeichnen kann, ist für sämtliche negativen und positiven Platten für Bleiakkumulatoren in Stapeln ohne eine Änderung der vorhandenen Anlagentechnik bei der Pa- stierung und Abstapelung der Platten anwendbar. Für Hochstrombatterien ist die Verwendung von mikronisiertem 4- basischen Bleisulfat besonders vorteilhaft, da durch dieses kleinkristalline 4-basische Bleisulfat-Kristalle bei positiven sowie negativen Platten mit hoher innerer Oberfläche garantiert werden.
Ein wichtiger Punkt der Erfindung ist die Erkenntnis, daß bei einer Druckdifferenz von minimal 10 mbar, in vorteilhafter Weise von minimal 40 mbar, die aktiven Massen von positiven sowie negativen Platten im Stapel eine ausreichende Durchlässigkeit für ein sauerstoffhaltiges Gas, wie Luft, aufweisen, um eine Trocknung im wesentlichen durch eine Oxidation des Restbleis auf Restfeuchten von ca. 2 Gew.-% zu gewährleisten.
Bei der Ausführung von technischen Anlagen für die Durchführung des Verfahrens ist darauf zu achten, daß keine Falschluft an den Plattenstapeln vorbeiströmen kann. Zu diesem Zweck sind entsprechende Maßnahmen zur Abdichtung vorzusehen.
Ein weiterer wichtiger Punkt der Erfindung ist die Erkenntnis, daß durch die schnelle Trocknung mittels der Oxidation und mittels der Ausnutzung der Gasdurchlässigkeit der aktiven Massen die Porosität der fertigen Platten um ca. 5 - 7 % gegenüber Platten aus einer herkömmlichen Chargenreifung oder gegenüber Platten, die gemäß der in der EP 0 949 700 Bl oder in der EP 1 '235 287 Al genannten Methode gereift sind, erhöht ist. Untersuchungen haben gezeigt, daß während der langsamen Trocknung über einen Zeitraum von einem Tag in Chargenkammern oder bei Trocknung von vereinzelten Platten ein Trocknungsverlust zum Schrumpfen der aktiven Masse führt, was die Porosität verringert. Bei schneller Trocknung durch Oxidation des Restbleies innerhalb von z.B. 1 - 2 Stunden unter Nutzung der Gasdurchlässigkeit der aktiven Massen und unter Aufrechterhaltung eines geeigneten Druckgefälles sowie ausreichender Sauerstoffzufuhr, gemäß der obigen Beschreibung des erfindungsgemäßen Verfahrens, tritt dagegen kein Trocknungsverlust, der zum Schrumpfen der aktiven Massen führt, auf. Visuell zeigen die aktiven Massen von nach herkömmlichen, nicht erfindungsgemäßen Verfahren hergestellten Platten Risse, vorzugsweise im Bereich des Trägergerüstes des Elektrodenträgers. Besonders deutlich sichtbar sind die Risse bei den aktiven Massen der negativen Platten, die im allgemeinen infolge der enthaltenen Spreizmittel alkalischer sind und eine höhere Dichte aufweisen als positive Platten. Beim erfindungsgemäßen Verfahren werden dagegen aufgrund des fehlenden Trocknungs- verlustes rißfreie Platten erhalten und es ergibt sich zugleich eine höhere Porosität der negativen und positiven Massen.
Die vorliegende Erfindung bietet eine Reihe von wirtschaftlichen Vorteilen gegenüber dem Stand der Technik:
Durch die im Vergleich zum Stand der Technik aufgrund des fehlenden Trocknungsverlustes um 5 - 7 % höhere Porosität der aktiven Massen in den negativen und positiven Platten kann die aktive Masse pro Platte um nahezu den gleichen Faktor von 5 - 7 % bei Beibehaltung der elektrischen Eigenschaften reduziert werden, weil bei Hochstromanwendungen, z.B. bei Starterbatterien, nur die in den Poren gespeicherte Elektrolytmenge von entscheidender Bedeutung ist. Die Säuredichte in den Poren bestimmt die Klemmenspannung der Batterie. Der Säureaustausch ist bei Hochstromanwendungen von untergeordneter Bedeutung. Für die Kapazität des Bleiakkumulators ist ebenfalls die Porosität von Bedeutung, da die negative und die positive Platte bei der Entladung eine Volumenzunahme erfahren, die die Porosität verringert, bis die Poren zum Ende der Entladung nahezu kein freies Volumen mehr aufweisen. Die entnehmbare Energiemenge ist damit direkt von der Porosität abhängig.
Bei der Schnellreifung gemäß Erfindung werden nur kleine Reifekammern benötigt, so daß die Kosten für die Anschaffung geringer sind als für konventionelle Reife- und Trockenkammern. Die Kosten für Reife- und Trockenkammern hängen wesentlich etwa proportional von der Mantelfläche des umbauten Raumes ab.
Die Schnellreifung gemäß Erfindung ermöglicht einen kontinuierlichen Fertigungsfluß, wodurch Lagerflächen, Aufwendungen für Logistik sowie Zwischenlager entfallen können. Hierdurch können die Kosten für Logistik und Kapitalbindung verringert werden.
Die kurze Prozeßzeit ermöglicht einen hohen Materialumschlag. Selbst im Chargenbetrieb bei der Schnellreifung und Schnelltrocknung können die Platten nach der Pastie- rung nach spätestens 2 - 6 Stunden dem weiteren Fertigungsprozeß zugeführt werden. Eine Austrocknung der Platten durch Oxidation des Restbleies kann ausgeschlossen werden. Dies hat erhebliche positive Auswirkungen auf die Plattenqualität. Die deutlich geringere Schwankung in der Plattenqualität führt erfahrungsgemäß zu einer Masseeinsparung von ca. 3%. Der erfindungsgemäß effektiv geführte und deutlich verbesserte Trocknungsprozeß, in dem die Oxidation des Restbleis gezielt geführt wird, ergibt eine Einsparung von wenigstens 20 % an eingesetzter Energie.
Für die Umsetzung des erfindungsgemäßen Verfahrens zur Reifung und Trocknung im Stapel bieten sich die im folgenden anhand einer Zeichnung erläuterten Realisierungsvorschläge an. Die Figuren der Zeichnung zeigen:
Figur 1 mehrere freistehende Stapel von Platten in einer nur teilweise dargestellten Vorrichtung zur Hindurchleitung eines Gases durch die Platten im Stapel und
Figur 2 mehrere Plattenstapel in einem Trägergestell, in welchen die Plattenstapel durch eine hier nicht gezeigte Vorrichtung zur Hindurchleitung eines Gases durch die Platten im Stapel transportierbar sind.
Gemäß Figur 1 werden mehrere nebeneinander angeordnete Plattenstapel 10 mit dicht an dicht auf einem Förderband 20 stehenden Platten zwangsmäßig einem quer gerichteten Differenzdruckgefälle' ausgesetzt. Im dargestellten Beispiel liegen die Platten mit horizontaler Ausrichtung dicht aufeinander; alternativ können sie auch in vertikaler Ausrichtung dicht nebeneinander liegen
Der Pfeil 4 gibt die Förderrichtung des Förderbandes 20 an; das Differenzdruckgefälle verläuft senkrecht dazu. Es werden dabei keine Trägergestelle oder Rahmen benötigt. Die Erzielung eines ausreichenden Druckgefälles kann durch ein mitlaufendes flexibles Fixier- und Abdichtband 21 sowie eine Öffnungsblende 31 mit Öffnungsflächen 30 für einen Luftdurchtritt gewährleistet werden.
Bei der technischen Ausführung ist besonders vorteilhaft, daß in diesem vorgeschlagenen Realisierungsbeispiel keine Umrüstung der Anlage bei wechselnden Plattenabmessungen erfolgen muß. Die Plattenstapel 10 werden unmittelbar nach der Pastierung der Reifungs- und Trocknungsanlage übergeben.
Gemäß Figur 2 kann das Verfahren auch für Plattenstapel 10, die stehend oder liegend in Paletten oder Trägergestellen 3 angeordnet sind, angewendet werden. Dabei müssen die Paletten oder Trägergestelle 3 im An- und Abströmbereich über eine ausreichende Öffnungsfläche 30 verfügen. Bei der Verwendung von Trägergestellen 3. ist außerdem darauf zu achten, daß keine Auflockerung der Plattenstapel 10 erfolgen kann. Hierzu können z.B. Klemmeinrichtungen eingesetzt werden, die die Platten in den Stapeln 10 ausreichend fest und dicht zusammenhalten. In der zeichnerischen Darstellung in Figur 2 sind die Platten aus Gründen der Erkennbarkeit mit Abstand zueinander dargestellt; in der Realität liegen die Platten dicht aneinander an, wie in Figur 1 gezeigt.
Die Anlagen zur Ausführung des Verfahrens sind sowohl als Durchlauf- als auch als Chargenanlagen ausführbar.

Claims

Patentansprüche :
Verfahren zur Herstellung, Reifung und Trocknung von negativen und positiven Platten (1) für Bleiakkumulatoren, wobei zunächst in einem Pastierschritt die Platten (1) durch Einbringen von aus den Hauptinhaltsstoffen Bleioxid, Wasser und Schwefelsäure bestehender Bleipaste als aktive Masse in einen Elektrodenträger gefertigt werden, d a d u r c h g e k e n n z e i c h n e t ,
- daß die Platten (1) unmittelbar aneinander anliegend in Stapeln (10) angeordnet werden,
- daß die Platten (1) bei Temperaturen oberhalb von 700C unter Aufrechterhaltung einer eine spontane Oxidation der Bleioxide vermeidenden oder vermindernden Restfeuchte der aktiven Masse zu einem porösen vernetzten Gefüge aus 3- und/oder 4 -basischen Bleisulfaten gereift werden, wobei die 3- und/oder 4 -basischen Bleisulfate eine höhere Dichte als die das Ausgangsmaterial bildenden aktiven Massen haben, und
- daß die Platten (1) unter Ausnutzung einer der aktiven Masse infolge der durch die Reifung entstandenen Porosität eigenen Durchlässigkeit und der Oxidation von Restblei in der aktiven' Masse im Plattenstapel (10) durch Anlegen eines Über- oder Unterdrucks, der eine Druckdifferenz von mehr als 10 mbar zwischen einer Anströmseite und einer Abströmseite des Plattenstapels (10) aufweist, mit- tels die aktive Masse durchströmenden sauerstoffhaltigen Gases auf eine gewünschte Endfeuchte getrocknet werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Platten (1) bei Temperaturen oberhalb von 8O0C gereift werden.
3. Verfahren nach .Anspruch 1 oder 2 , dadurch gekennzeichnet, daß die Platten (1) bei der Reifung durch Einleiten von Wasserdampf erwärmt werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Platten (1) über einen Zeitraum von wenigstens 30 Minuten gereift werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Platten (1) über einen Zeitraum von 1 Stunde gereift werden.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Platten (1) über einen Zeitraum von 30 Minuten bis zu 3 Stunden gereift werden.
7. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß vor dem Pastierschritt den aktiven Massen für die positiven und/oder negativen Platten (1) mikronisiertes 4-basisches Bleisulfat zugeben wird, wodurch die aktiven Massen vollständig gemäß stöchiometrischer Zusammensetzung zu 4-basischem Bleisulfat mit definierten Kristallgrößen gereift werden.
8. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Platten (1) mit Luft als sauerstoffhaltiges Gas getrocknet werden.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, daß die Luft eine Temperatur von 50 - 70°C hat.
10. Verfahren nach Anspruch 8 oder 9, dadurch gekennzeichnet, daß die Luft einen Sauerstoffgehalt von mehr als 15 Vol.-% hat.
11. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß die Druckdifferenz mehr als 40 mbar beträgt.
12. Verfahren nach einem der Ansprüche 8 bis 11, dadurch gekennzeichnet, daß der Luft für die Trocknung der Platten (1) trockene Druckluft zugegeben wird.
13. Verfahren nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß der Luft für die Trocknung der Platten (1) soviel Sauerstoff zugegeben wird, daß die Luft einen Sauerstoffgehalt von mehr als 20 Vol. -% hat.
14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, daß der Luft für die Trocknung der Platten (1) soviel Sauerstoff zugegeben wird, daß die Luft einen Sauerstoffgehalt von mehr als 60 Vol.-% hat.
15. Verfahren nach einem der Ansprüche 9 bis 14, dadurch gekennzeichnet, daß die Platten (1) in einem abschließenden Endtrocknungsschritt mittels die aktive Masse durchströmender Luft einer Temperatur, die mindestens der Siedetemperatur des Wassers entspricht, getrocknet werden.
16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, daß die Platten (1) in dem abschließenden Endtrock- nungsschritt bis zu einer Restfeuchte der aktiven Masse von unter 0,5 Gew.-% getrocknet werden.
PCT/EP2006/004921 2005-05-28 2006-05-24 Verfahren zur herstellung, reifung und trocknung von negativen und positiven platten für bleiakkumulatoren WO2006128621A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE502006004383T DE502006004383D1 (de) 2005-05-28 2006-05-24 Verfahren zur herstellung, reifung und trocknung von negativen und positiven platten für bleiakkumulatoren
EP06753823A EP1886366B1 (de) 2005-05-28 2006-05-24 Verfahren zur herstellung, reifung und trocknung von negativen und positiven platten für bleiakkumulatoren
AT06753823T ATE438204T1 (de) 2005-05-28 2006-05-24 Verfahren zur herstellung, reifung und trocknung von negativen und positiven platten für bleiakkumulatoren
US11/915,258 US8101299B2 (en) 2005-05-28 2006-05-24 Method for producing, maturing and drying negative and positive plates for lead accumulators

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005024526A DE102005024526B4 (de) 2005-05-28 2005-05-28 Verfahren zur Herstellung, Reifung und Trocknung von negativen und positiven Platten für Bleiakkumulatoren
DE102005024526.9 2005-05-28

Publications (2)

Publication Number Publication Date
WO2006128621A2 true WO2006128621A2 (de) 2006-12-07
WO2006128621A3 WO2006128621A3 (de) 2007-03-15

Family

ID=37309154

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004921 WO2006128621A2 (de) 2005-05-28 2006-05-24 Verfahren zur herstellung, reifung und trocknung von negativen und positiven platten für bleiakkumulatoren

Country Status (5)

Country Link
US (1) US8101299B2 (de)
EP (1) EP1886366B1 (de)
AT (1) ATE438204T1 (de)
DE (2) DE102005024526B4 (de)
WO (1) WO2006128621A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2385570A1 (de) * 2010-05-08 2011-11-09 HOPPECKE Batterien GmbH & Co. KG Verfahren zur Herstellung von Platten für Bleiakkumulatoren
CN112467090A (zh) * 2020-11-06 2021-03-09 浙江天能汽车电池有限公司 一种起停蓄电池正极板的固化干燥工艺及蓄电池极群

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102903893A (zh) * 2012-10-18 2013-01-30 双登集团股份有限公司 铅酸蓄电池极板固化干燥的叠放方法
DE102014007920A1 (de) * 2014-05-27 2015-12-03 Werner Nitsche Formation von nassen und AGM Bleisäure-Batterien am Siedepunkt des Elektrolyten
CN110429245A (zh) * 2019-08-30 2019-11-08 卧龙电气驱动集团股份有限公司 可适当夹紧的极板固化用安装架
CN112259711A (zh) * 2020-09-30 2021-01-22 超威电源集团有限公司 一种电池极板堆叠方法及装置
CN113839011B (zh) * 2021-08-30 2022-09-16 天能电池集团股份有限公司 一种耐低温铅蓄电池用负极铅膏及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1163082A (en) * 1966-01-13 1969-09-04 Lucas Industries Ltd Drying of Electric Storage Batteries.
US5384217A (en) * 1992-07-06 1995-01-24 Globe-Union Inc. Battery plates having rounded lower corners
JPH10149815A (ja) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd 電池用極板の乾燥装置
JP2002313333A (ja) * 2001-04-13 2002-10-25 Japan Storage Battery Co Ltd 鉛蓄電池用正極板とその製造方法
US20040121233A1 (en) * 2002-12-24 2004-06-24 Penarroya Oxide Gmbh Additive for producing a positive active material for lead-acid storage batteries, a method for its production and a method for its use

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2159897T3 (es) * 1998-01-05 2001-10-16 Hoppecke Zoellner Sohn Accu Procedimiento y dispositivo para la elaboracion de placas de plomo en acumuladores de plomo
EP1235287A1 (de) * 2001-02-24 2002-08-28 Accumulatorenwerke Hoppecke Carl Zoellner & Sohn GmbH & Co. KG Reifung positiver Platten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1163082A (en) * 1966-01-13 1969-09-04 Lucas Industries Ltd Drying of Electric Storage Batteries.
US5384217A (en) * 1992-07-06 1995-01-24 Globe-Union Inc. Battery plates having rounded lower corners
JPH10149815A (ja) * 1996-11-19 1998-06-02 Matsushita Electric Ind Co Ltd 電池用極板の乾燥装置
JP2002313333A (ja) * 2001-04-13 2002-10-25 Japan Storage Battery Co Ltd 鉛蓄電池用正極板とその製造方法
US20040121233A1 (en) * 2002-12-24 2004-06-24 Penarroya Oxide Gmbh Additive for producing a positive active material for lead-acid storage batteries, a method for its production and a method for its use

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2385570A1 (de) * 2010-05-08 2011-11-09 HOPPECKE Batterien GmbH & Co. KG Verfahren zur Herstellung von Platten für Bleiakkumulatoren
US8980368B2 (en) 2010-05-08 2015-03-17 Hoppecke Batterien Gmbh & Co. Kg Process for the preparation of plates for lead-acid batteries
CN112467090A (zh) * 2020-11-06 2021-03-09 浙江天能汽车电池有限公司 一种起停蓄电池正极板的固化干燥工艺及蓄电池极群

Also Published As

Publication number Publication date
WO2006128621A3 (de) 2007-03-15
DE102005024526A1 (de) 2006-11-30
US8101299B2 (en) 2012-01-24
DE502006004383D1 (de) 2009-09-10
US20080196241A1 (en) 2008-08-21
EP1886366A2 (de) 2008-02-13
EP1886366B1 (de) 2009-07-29
DE102005024526B4 (de) 2010-04-22
ATE438204T1 (de) 2009-08-15

Similar Documents

Publication Publication Date Title
EP1886366B1 (de) Verfahren zur herstellung, reifung und trocknung von negativen und positiven platten für bleiakkumulatoren
DE102014224424A1 (de) Trennmembran für Lithiumschwefelbatterien
EP1576679B1 (de) Additiv zur herstellung der positiven aktiven masse für bleiakkumulatoren ein verfahren zu dessen herstellung und dessen verwendung
DE102011102040A1 (de) Additiv zur Herstellung von positiven aktiven Massen für Bleiakkumulatoren
DE3415328A1 (de) Ueberzogenes pulver fuer die elektrolytmatrix fuer eine carbonat-brennstoffzelle
DE1237193C2 (de) Akkumulator mit positiver silberund negativer cadmiumelektrode
EP0949700B1 (de) Verfahren und Vorrichtung zur Herstellung von Bleiplatten für Bleiakkumulatoren
EP0126490B1 (de) Diaphragma auf Nickeloxidbasis und Verfahren zur Herstellung desselben
DE112023000121T5 (de) Poröse kugelförmige Kobaltoxidteilchen und Verfahren zu ihrer Herstellung
DE112015006162T5 (de) Bleiakkumulator
EP2385570B1 (de) Verfahren zur Herstellung von Platten für Bleiakkumulatoren
EP2850676B1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
DE2835976A1 (de) Organische elektrolyt-zelle
DE102007060272A1 (de) Bipolarplatte und Verfahren zum Herstellen einer Schutzschicht an einer Bipolarplatte
WO2013135790A1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
DE2929308C2 (de) Verfahren zur Alterung von Tantal-Festelektrolytkondensatoren
DE19921955A1 (de) Separator mit Ventil-Struktur und Batteriezelle, die mit diesem Separator ausgestattet ist
DE1814673A1 (de) Verfahren zur Bildung von Elektrodenplatten fuer Akkumulatoren
WO2014005773A1 (de) Speicherstruktur einer elektrischen energiespeicherzelle
DE2239064A1 (de) Element und verfahren zu seiner herstellung
DE1489120C (de) Elektrischer Kondensator und Verfahren zu seiner Herstellung
DE10163388A1 (de) Kohleträgermaterial für eine Elektrode und Verfahren zu dessen Herstellung
WO1995003638A1 (de) Verfahren und vorrichtung zur verringerung der mit den leckströmen verbundenen energieverluste elektrochemischer zellen
WO2014111228A1 (de) Verfahren zur herstellung einer elektroden-elektrolyt-einheit für einen wiederaufladbaren elektrischen energiespeicher, insbesondere einen metalloxid-luft-energiespeicher, mit einem zwischen zwei elektroden angeordneten elektrolyten
DE102012202978A1 (de) Verfahren zur Herstellung einer Speicherstruktur eines elektrischen Energiespeichers

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006753823

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11915258

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006753823

Country of ref document: EP