WO2006126573A1 - 空調システム - Google Patents

空調システム Download PDF

Info

Publication number
WO2006126573A1
WO2006126573A1 PCT/JP2006/310320 JP2006310320W WO2006126573A1 WO 2006126573 A1 WO2006126573 A1 WO 2006126573A1 JP 2006310320 W JP2006310320 W JP 2006310320W WO 2006126573 A1 WO2006126573 A1 WO 2006126573A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
humidity control
humidity
air conditioning
control device
Prior art date
Application number
PCT/JP2006/310320
Other languages
English (en)
French (fr)
Inventor
Nobuki Matsui
Tetsuyuki Kondo
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to EP06756526.7A priority Critical patent/EP1887291A4/en
Priority to AU2006250507A priority patent/AU2006250507B2/en
Priority to US11/920,927 priority patent/US7857235B2/en
Publication of WO2006126573A1 publication Critical patent/WO2006126573A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1405Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification in which the humidity of the air is exclusively affected by contact with the evaporator of a closed-circuit cooling system or heat pump circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1429Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant alternatively operating a heat exchanger in an absorbing/adsorbing mode and a heat exchanger in a regeneration mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F2003/144Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by dehumidification only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0253Compressor control by controlling speed with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system that supplies air dehumidified by a humidity control device and air cooled by an air conditioning device to the same room.
  • an air conditioner that supplies conditioned air into a room to process sensible heat in the room
  • a humidity control apparatus that supplies conditioned air into the room to process indoor latent heat, and the like are known. ing.
  • Patent Document 1 discloses an air conditioner that performs a vapor compression refrigeration cycle by circulating a refrigerant in a refrigerant circuit.
  • the refrigerant circuit of this air conditioner includes a compressor, an indoor heat exchanger
  • An expansion valve, an outdoor heat exchanger, and a four-way switching valve are connected.
  • the refrigerant circulation direction is reversible by switching the four-way switching valve, and switching between cooling operation and heating operation is possible.
  • the cooling operation air cooled by an indoor heat exchanger serving as an evaporator is supplied to the room, and the indoor space is cooled.
  • heating operation air heated by an indoor heat exchanger serving as a condenser is supplied indoors, and the indoor space is heated.
  • Patent Document 2 discloses a humidity control apparatus in which an adsorption heat exchanger carrying an adsorbent that adsorbs moisture is connected to a refrigerant circuit.
  • the adsorption heat exchange functions as an evaporator or a condenser by switching the refrigerant circulation direction, and the dehumidifying operation and the humidifying operation can be switched.
  • the adsorbent is cooled by the refrigerant that evaporates in the adsorption heat exchanger.
  • the cooled adsorbent comes into contact with air, and moisture in the air is adsorbed by the adsorbent.
  • Air that has been dehumidified by applying moisture to the adsorbent is supplied to the room and the room is dehumidified.
  • the adsorbent is heated by the refrigerant condensed in the adsorption heat exchanger.
  • the heated adsorbent comes into contact with the air, and the moisture force adsorbed by the adsorbent S is released into this air.
  • This humidified air containing moisture is supplied indoors and humidified indoors.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-106609
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-294048
  • the present invention has been made in view of the strong point, and an object of the present invention is to provide an operation of V in an air conditioning system that includes a humidity control device and an air conditioning device and performs cooling and dehumidification. Even under the conditions, it is to ensure that the indoor dehumidification can be performed reliably and efficiently.
  • the first invention includes a humidity control device (10) and an air conditioner (20), and the air dehumidified by the humidity control device (10) and the air cooled by the air conditioner (20) are the same. It is assumed that the air conditioning system will be supplied to the room.
  • the air conditioning system (20) is configured such that the air conditioner (20) can be operated to condense moisture in the air and dehumidify the air when the air is cooled. It is characterized in that it can be switched between a normal operation for dehumidifying the air and a simultaneous dehumidifying operation for dehumidifying the air by the humidity control device (10) and the air conditioning device (20).
  • the humidity control device (10) processes the latent heat of the air
  • the air conditioner (20) processes the sensible heat of the air, so that the indoor cooling and dehumidification are performed simultaneously.
  • the air conditioner (20) is configured to dehumidify the air by condensing moisture in the air, for example, by setting the cooling temperature low.
  • the humidity control device (10) and the air conditioning device (20) are controlled in conjunction with each other.
  • the normal operation and the simultaneous dehumidification operation are switched. Specifically, in the normal operation described above, the cooling capacity is adjusted so that the air conditioner (20) only cools the air at the same time as the humidity controller (10) dehumidifies the air. That is, in this normal operation, operation control is performed so that the humidity controller (10) processes all the latent heat to be processed by the air conditioning system.
  • the simultaneous dehumidifying operation since the humidity control apparatus (10) cools so as to condense moisture in the air, both dehumidification and cooling of air are performed in the humidity control apparatus (10).
  • the air conditioner (20) dehumidifies the air with a predetermined dehumidifying capacity.
  • the humidity control device (10) and the air conditioning device (20) process the required humidity control amount to be processed by this air conditioning system.
  • the second invention includes a calculation unit (43) for predicting the operating efficiency of the humidity control device (10) when the air is dehumidified only by the humidity control device (10) in the first invention,
  • a calculation unit (43) for predicting the operating efficiency of the humidity control device (10) when the air is dehumidified only by the humidity control device (10) in the first invention.
  • the operating efficiency of the humidity control device (10) predicted by the calculation unit (43) exceeds the reference operation efficiency, normal operation is performed, and the operation efficiency of the humidity control device (10) predicted by the calculation unit (43) is the standard. It is characterized by simultaneous dehumidifying operation when it becomes smaller than the operating efficiency.
  • the arithmetic unit (43) is provided in the air conditioning system.
  • the calculation unit (43) predicts the operating efficiency of the humidity control apparatus (10) when the air is dehumidified only by the humidity control apparatus (10). This operating efficiency is calculated based on the current operating conditions of the air conditioning system (for example, indoor temperature / humidity, outdoor temperature / humidity, indoor target humidity, etc.).
  • this air conditioning system has a standard operating efficiency as an operating efficiency that can achieve sufficient operating efficiency with this humidity control device (10)! Speak.
  • the switching determination between the normal operation and the simultaneous dehumidifying operation is performed by comparing the operation efficiency predicted by the calculation unit (43) with the reference operation efficiency. Specifically, for example, when the operating efficiency predicted by the calculation unit (43) is equal to or higher than the reference operating efficiency under operating conditions where the outdoor humidity is relatively low, even if normal operation is performed with this air conditioning system.
  • the operating efficiency of the wet device (10) is expected to meet the standard operating efficiency. Therefore, in this case, normal operation is performed in the air conditioning system.
  • the dehumidifying capacity of the humidity control device (10) is set so that the operating efficiency of the humidity control device (10) becomes the reference operating efficiency. It is characterized by adjusting.
  • the humidity control apparatus (10) predicted by the calculation unit (43) is smaller than the reference operation efficiency
  • the humidity control apparatus (10 The humidity control capacity is adjusted so that) becomes the standard operating efficiency.
  • the simultaneous dehumidifying operation it is avoided that the actual operating efficiency of the humidity control device (10) falls below the standard operating efficiency as the operating efficiency predicted by the calculation unit (43).
  • the humidity control device (10) is configured to dehumidify outdoor air and supply the outdoor air to the room, and performs the normal operation according to the humidity of the outdoor air. The simultaneous dehumidifying operation is switched.
  • the humidity control device (10) dehumidifies the outdoor air and supplies it to the room.
  • the normal operation and the simultaneous dehumidification operation are switched based on the humidity of the outdoor air dehumidified by the humidity control device (10).
  • the humidity control apparatus (10) includes a refrigerant circuit (50) having a compressor (53) having a variable capacity, and an adsorbing member carrying an adsorbent. (51, 52), and is configured to dehumidify the air that comes into contact with the adsorbent of the adsorbing member (51, 52) cooled by the refrigerant in the refrigerant circuit (50).
  • a calculation unit (43) that predicts the operating efficiency of the humidity control device (10) when performing dehumidification of the humidity, and the operation efficiency of the humidity control device (10) predicted by the calculation unit (43) is higher than the standard operating efficiency
  • normal operation is performed and predicted by the calculation unit (43) above.
  • the simultaneous dehumidifying operation is performed.
  • the humidity control apparatus (10) of the fifth invention is provided with a refrigerant circuit (50) for performing a refrigeration cycle by circulating the refrigerant. Further, the humidity control apparatus (10) is provided with an adsorbing member (51, 52) that carries an adsorbent that adsorbs moisture in the air. The adsorbent of the adsorbing members (51, 52) is cooled by the evaporating refrigerant of the refrigerant circuit (50).
  • the air to be treated by the humidity control apparatus (10) comes into contact with the cooled adsorbent. As a result, moisture in the air is adsorbed by the adsorbent, and this air is dehumidified.
  • the humidity control apparatus (10) the refrigerant circulation amount of the refrigerant circuit (50) is changed by adjusting the operating frequency of the compressor (53). As a result, the amount of heat absorbed from the adsorbent to the refrigerant is also changed, and the water adsorption capacity of the adsorbent is adjusted.
  • the calculation unit (43) determines the operating efficiency of the humidity control device (10) when dehumidifying the air with only the humidity control device (10). Predict the power to become. Then, the switching determination between the normal operation and the simultaneous dehumidification operation is performed by comparing the operation efficiency predicted by the calculation unit (43) with the reference operation efficiency. Specifically, for example, when the outdoor humidity is relatively low, the operating conditions are high, and the operation efficiency predicted by the calculation unit (43) exceeds the above-mentioned reference operation efficiency, normal operation is performed with this air conditioning system. It is predicted that the operating efficiency of the humidity control apparatus (10) will satisfy the standard operating efficiency even if the control is performed. Therefore, in this case, normal operation is performed by the air conditioning system.
  • the operating efficiency predicted by the calculation unit (43) is smaller than the reference operating efficiency under operating conditions where the outdoor humidity is extremely high, for example, normal operation is performed with this air conditioning system. Therefore, it is predicted that the operating efficiency of the humidity control device (10) cannot be achieved. Therefore, in this case, simultaneous dehumidification operation is performed in the air conditioning system, and the humidity control apparatus (10) and the air conditioning apparatus (20) share and process the necessary dehumidification amount to be processed in this air conditioning system.
  • the humidity controller (10) includes a refrigerant circuit (50) having a compressor (53) having a variable capacity, and an adsorbing member carrying an adsorbent. (51, 52), and is configured to dehumidify the air that comes into contact with the adsorbent of the adsorbing member (51, 52) cooled by the refrigerant in the refrigerant circuit (50).
  • a calculation unit (43) that predicts the operation frequency of the compressor (53), and performs normal operation when the operation frequency of the compressor (53) predicted by the calculation unit (43) becomes lower than the upper limit frequency. When the operating frequency of the compressor (53) predicted by the section (43) exceeds the upper limit frequency, simultaneous dehumidification operation is performed.
  • the humidity control apparatus (10) is configured in the same manner as in the fifth invention.
  • the calculation unit (43) has the operating frequency of the compressor (53) of the humidity control device (10) when dehumidifying the air using only the humidity control device (10). Predict how much force will be.
  • the operating frequency is calculated based on the current operating conditions of the air conditioning system (for example, indoor temperature / humidity, outdoor temperature / humidity, indoor target humidity, etc.).
  • the air conditioning system has an upper frequency limit for efficiently operating the compressor (53) and the humidity control device (10)!
  • switching determination between the normal operation and the simultaneous dehumidifying operation is performed by comparing the operation frequency of the compressor (53) predicted by the arithmetic unit (43) with the upper limit frequency. Specifically, for example, when the operating frequency of the compressor (53) predicted by the calculation unit (43) is lower than the upper limit frequency under operating conditions where outdoor humidity is relatively low, normal operation is performed with this air conditioning system. It is predicted that the efficiency of the compressor (53) and the humidity control device (10) will not decrease even if the operation is performed. Therefore, in this case, normal operation is performed in the air conditioning system.
  • the humidity control device (10) and the air conditioning device (20) are controlled in conjunction so that the normal operation and the simultaneous dehumidification operation can be switched. For this reason, even when the required dehumidification amount to be processed by this air conditioning system is extremely high, the above-mentioned simultaneous dehumidification operation is performed by the humidity control device (10) and the air conditioning device (20). Can be shared and processed. Also this air conditioning If the required dehumidification amount to be processed by the system is very high, the necessary dehumidification amount can be reliably processed by the humidity control apparatus (10) by performing the normal operation. As described above, according to the present invention, the normal operation and the simultaneous dehumidification operation can be switched according to the operating condition of the air conditioning system, so that the air conditioning system reliably and efficiently supplies air under any operating condition. Can be dehumidified.
  • the operation efficiency of the humidity control apparatus (10) predicted by the calculation unit (43) is compared with the reference operation efficiency, and the normal operation and the simultaneous dehumidification are performed based on the comparison result.
  • the operation is switched automatically. Specifically, normal operation is performed under operating conditions in which the operating efficiency predicted by the computing unit (43) is equal to or higher than the standard operating efficiency, so this air conditioning system uses this air conditioning system by dehumidifying only the humidity controller (10). The necessary dehumidification amount to be treated can be treated reliably and efficiently.
  • the required dehumidification amount to be processed by the air conditioning system is determined with the humidity controller (10). It can be shared by both the air conditioner (20) and processed. That is, according to the present invention, when the necessary dehumidification amount to be processed by the air conditioning system becomes high, the simultaneous dehumidifying operation is automatically performed. Therefore, the air conditioning system is surely and efficiently operated under any operating condition. Air can be dehumidified.
  • the actual operating efficiency of the humidity control apparatus (10) is similar to the operating efficiency predicted by the computing unit (43), as in the reference operation. It can be surely avoided that the efficiency is lowered. That is, according to the present invention, it is possible to reliably prevent the humidity control device (10) from being overloaded, and thus it is possible to avoid a decrease in efficiency of the air conditioning system.
  • the normal operation and the simultaneous dehumidification operation can be automatically switched based on the humidity of the outdoor air to be dehumidified by the humidity control apparatus (10). Therefore, even if the humidity of the outdoor air fluctuates and the required humidity control amount to be processed by the air conditioning system fluctuates greatly, efficient dehumidification of air suitable for this condition can be performed.
  • air is dehumidified by the adsorbent of the adsorbing member (51, 52) of the humidity control apparatus (10).
  • the operation efficiency predicted by the computing unit (43) is compared with the reference operation efficiency, and the normal operation and the simultaneous dehumidification operation are automatically switched. is doing. Therefore, in this air conditioning system, air can be dehumidified reliably and efficiently under any operating conditions.
  • the operating frequency of the compressor (53) predicted by the calculation unit (43) And the upper limit frequency are automatically switched between normal operation and simultaneous dehumidification operation. Therefore, the compressor (53) and the humidity control apparatus (10) can be operated efficiently under any operating condition, and the air can be efficiently dehumidified by this air conditioning system.
  • FIG. 1 is a schematic configuration diagram of an air conditioning system according to an embodiment.
  • FIG. 2 is a piping system diagram showing the configuration of the refrigerant circuit of the humidity control apparatus of the embodiment. (A) shows the operation during the first operation, and (B) shows the second operation. Indicates an operation in progress
  • FIG. 3 is a schematic perspective view of an adsorption heat exchanger.
  • Fig. 4 is a piping system diagram showing the configuration of the refrigerant circuit of the air conditioner according to the embodiment. (A) shows the first state, and (B) shows the second state. It is shown.
  • FIG. 5 is a schematic control flow diagram showing a control operation during a cooling and dehumidifying operation of the air conditioning system of the embodiment.
  • FIG. 6 is a schematic control flow diagram showing a control operation during a cooling and dehumidifying operation of the air conditioning system of Modification 1.
  • FIG. 7 is a schematic control flow diagram showing a control operation during a cooling and dehumidifying operation of the air conditioning system of Modification 2.
  • FIG. 8 is a schematic control flow diagram showing a control operation during a cooling and dehumidifying operation of the air conditioning system of Modification 3.
  • Fig. 9 is a schematic configuration diagram of a humidity control apparatus according to a first modification of the other embodiment, in which (A) shows an operation during the first operation, and (B) shows the first operation. 2 Indicates the operation during operation.
  • FIG. 10 is a schematic perspective view of a humidity control unit in a second modification of the other embodiment. Explanation of symbols
  • the air conditioning system (1) of the present embodiment includes a humidity control device (10) and an air conditioning device (20).
  • a humidity control device (10) In this air conditioning system (1), both the air treated by the humidity control device (10) and the air treated by the air conditioning device (20) are supplied to the same room.
  • the air conditioning system (1) includes a humidity control unit (41) and an air conditioning control unit (42) as control means for the humidity control device (10) and the air conditioning device (20).
  • the humidity control apparatus (10) of the present embodiment is configured to be capable of a dehumidifying operation for supplying dehumidified air to the room and a humidifying operation for supplying humidified air to the room.
  • the humidity control apparatus (10) includes a refrigerant circuit (50).
  • the refrigerant circuit (50) includes a first adsorption heat exchange (51), a second adsorption heat exchange (52), a compressor (53), a four-way switching valve (54), and an electric expansion valve (55). It is a closed circuit provided.
  • the refrigerant circuit (50) performs a vapor compression refrigeration cycle by circulating the filled refrigerant.
  • the compressor (53) has a discharge side on the first port of the four-way switching valve (54) and a suction side on the second port of the four-way switching valve (54). Each port is connected.
  • One end of the first adsorption heat exchange (51) is connected to the third port of the four-way switching valve (54).
  • the other end of the first adsorption heat exchanger (51) is connected to the second adsorption heat exchanger via an electric expansion valve (55). It is connected to one end of (52).
  • the other end of the second adsorption heat exchanger (52) is connected to the fourth port of the four-way switching valve (54).
  • the four-way switching valve (54) is in a first state in which the first port communicates with the third port and the second port communicates with the fourth port (the state shown in FIG. 2A). Can be switched to the second state (the state shown in Fig. 2 (B)) in which the first port communicates with the fourth port and the second port communicates with the third port. .
  • each of the first adsorption heat exchanger (51) and the second adsorption heat exchanger (52) is constituted by a cross fin type fin-and-tube heat exchanger ⁇ . Speak.
  • These adsorption heat exchanges (51, 52) include a copper heat transfer tube (58) and an aluminum fin (57)!
  • the plurality of fins (57) provided in the adsorption heat exchange (51, 52) are each formed in a rectangular plate shape and arranged at regular intervals.
  • the heat transfer tube (58) is provided so as to penetrate each fin (57).
  • each of the adsorption heat exchanges (51, 52) an adsorbent is supported on the surface of each fin (57), and constitutes an adsorbing member of the present invention.
  • the air passing between the fins (57) of the adsorption heat exchange (51, 52) comes into contact with the adsorbent on the surface of the fins (57).
  • the adsorbent those capable of adsorbing water vapor in the air, such as zeolite, silica gel, activated carbon, and organic polymer material having a hydrophilic functional group are used.
  • the humidity control apparatus (10) is provided with a plurality of sensors that detect the temperature and humidity of air, not shown.
  • the plurality of sensors detect an outdoor temperature sensor that detects the temperature of outdoor air, an outdoor humidity sensor that detects the relative humidity of outdoor air, an indoor temperature sensor that detects the temperature of indoor air, and a relative humidity of indoor air. It consists of an indoor humidity sensor.
  • the air conditioner (20) of the present embodiment is configured to be capable of a cooling operation for supplying cooled air to the room and a heating operation for supplying heated air to the room.
  • the air conditioner (20) includes an indoor unit (21) and an outdoor unit (22).
  • the indoor unit (21) is disposed indoors.
  • the indoor unit (21) houses an indoor heat exchanger (62).
  • the outdoor unit (22) Arranged and beaten.
  • the outdoor unit (22) houses an outdoor heat exchanger (61), a compressor (63), a four-way switching valve (64), and an electric expansion valve (65).
  • the indoor unit (21) and the outdoor unit (22) are connected to each other by two connecting pipes (23, 24).
  • the air conditioner (20) includes a refrigerant circuit (60) that is a closed circuit.
  • the refrigerant circuit (60) performs a vapor compression refrigeration cycle by circulating the filled refrigerant.
  • the compressor (63) has a discharge side on the first port of the four-way switching valve (64) and a suction side on the second port of the four-way switching valve (64). Each port is connected.
  • One end of the outdoor heat exchange (61) is connected to the third port of the four-way switching valve (64).
  • the other end of the outdoor heat exchanger (61) is connected to one end of the indoor heat exchanger (62) through an electric expansion valve (65).
  • the other end of the indoor heat exchange (62) is connected to the fourth port of the four-way switching valve (64).
  • the four-way switching valve (64) is in a first state in which the first port communicates with the third port and the second port communicates with the fourth port (the state shown in FIG. 4A). Can be switched to the second state (the state shown in Fig. 4 (B)) where the first port communicates with the fourth port and the second port communicates with the third port. .
  • the air conditioner (20) is provided with a suction temperature sensor that detects the temperature of the suction room air from the room to the air conditioner (20).
  • the air conditioning system (1) of the present embodiment includes a humidity control unit (41) and an air conditioning control unit (42).
  • the humidity control unit (41) controls the humidity control capability of the humidity control apparatus (10). Specifically, the humidity control unit (41) controls the operating frequency of the compressor (53) of the humidity control device (10) according to the operating conditions, and adjusts the refrigerant circulation amount of the refrigerant circuit (50). . As a result, the heat absorption amount and the heat radiation amount of the refrigerant in the adsorption heat exchanger (51, 52) are changed, and the humidity control capability of the humidity control device (10) is adjusted.
  • the indoor target temperature (set temperature) is input to the air conditioning system (1) via a controller (not shown).
  • the target humidity in the room is automatically determined according to this set temperature.
  • the humidity control capability of the humidity control apparatus (10) is adjusted so that the humidity in the room approaches the target humidity.
  • the air conditioning control unit (42) adjusts the temperature control capability of the air conditioner (20). Specifically, the air conditioning control unit (42) controls the operating frequency of the compressor (63) according to the operating conditions, and adjusts the refrigerant circulation amount of the refrigerant circuit (60). Further, the air conditioning control unit (42) adjusts the refrigerant evaporation temperature or the refrigerant condensing temperature of the indoor heat exchanger (62) according to the operating conditions.
  • the heat absorption amount and heat release amount of the refrigerant in the indoor heat exchanger (62) are adjusted, and the temperature adjustment capability of the air conditioner (20) is adjusted.
  • the temperature control capability of the air conditioner (20) is adjusted so that the room temperature approaches the set temperature.
  • the air conditioner (20) reduces the evaporation temperature of the indoor heat exchanger (62) to a predetermined temperature during the cooling operation, so that the air is cooled in the air when the indoor heat exchanger (62) cools the air. It can be operated to dehumidify the air by condensing the water.
  • the humidity control apparatus (10) performs a dehumidifying operation, and at the same time, the air conditioning apparatus (20) can perform a cooling and dehumidifying operation in which the air conditioning system (20) performs a cooling operation. Further, during the cooling and dehumidifying operation, the normal operation and the simultaneous dehumidifying operation can be switched.
  • the normal operation is an operation in which only the humidity control device (10) dehumidifies air and at the same time the air conditioner (20) cools air.
  • the simultaneous dehumidifying operation is an operation in which the air conditioner (20) dehumidifies and cools the air at the same time that the humidity control device (10) dehumidifies the air.
  • a dehumidifying operation and a humidifying operation are performed.
  • the humidity control device (10) during the dehumidifying operation or humidifying operation adjusts the taken outdoor air (OA) and supplies it to the room as supply air (SA), and at the same time, discharges the taken indoor air (RA). Exhaust outside as air (EA). That is, the humidity control apparatus (10) during the dehumidifying operation or the humidifying operation performs indoor ventilation.
  • the humidity control apparatus (10) alternately repeats the first operation and the second operation at predetermined time intervals (for example, every 3 minutes) during both the dehumidifying operation and the humidifying operation.
  • the humidity control apparatus (10) takes in outdoor air (OA) as the first air and indoor air (RA) as the second air.
  • the humidity control device (10) takes in indoor air (RA) as the first air and outdoor air (OA) as the second air during the humidifying operation.
  • the first operation will be described.
  • the second air is sent to the first adsorption heat exchanger (51) and the first air is sent to the second adsorption heat exchanger (52).
  • a regeneration operation for the first adsorption heat exchanger (51) and an adsorption operation for the second adsorption heat exchanger (52) are performed.
  • the four-way switching valve (54) is set to the first state.
  • the compressor (53) When the compressor (53) is operated, the refrigerant circulates in the refrigerant circuit (50). Specifically, the refrigerant discharged from the compressor (53) dissipates heat and condenses in the first adsorption heat exchange (51).
  • the refrigerant condensed in the first adsorption heat exchanger (51) is depressurized when passing through the electric expansion valve (55), and then absorbs heat in the second adsorption heat exchanger (52) and evaporates.
  • the refrigerant evaporated in the second adsorption heat exchange (52) is sucked into the compressor (53), compressed, and discharged again from the compressor (53).
  • the first adsorption heat exchanger (51) serves as a condenser
  • the second adsorption heat exchanger (52) serves as an evaporator.
  • the first adsorption heat exchanger (51) the adsorbent on the surface of the fin (57) is heated by the refrigerant in the heat transfer tube (58), and moisture separated from the heated adsorbent is given to the second air.
  • the second adsorption heat exchanger (52) moisture in the first air is adsorbed by the adsorbent on the surface of the fin (57), and the generated adsorption heat is absorbed by the refrigerant in the heat transfer tube (58).
  • the first air dehumidified by the second adsorption heat exchanger (52) is supplied into the chamber, and the first adsorption heat exchange (51) force desorbed moisture is supplied to the first air. 2 Exhausted with air.
  • the second air humidified by the first adsorption heat exchange (51) is supplied to the room, and the first air deprived of moisture by the second adsorption heat exchanger (52) is supplied. It is discharged outside the room.
  • the second operation will be described.
  • the first air is sent to the first adsorption heat exchanger (51) and the second air is sent to the second adsorption heat exchanger (52).
  • the regeneration operation for the second adsorption heat exchanger (52) and the adsorption operation for the first adsorption heat exchanger (51) are performed.
  • the four-way switching valve (54) is set to the second state.
  • the compressor (53) When the compressor (53) is operated, the refrigerant circulates in the refrigerant circuit (50). Specifically, the refrigerant discharged from the compressor (53) dissipates heat by the second adsorption heat exchange (52) and condenses.
  • the refrigerant condensed in the second adsorption heat exchanger (52) is depressurized when passing through the electric expansion valve (55), and then absorbs heat in the first adsorption heat exchanger (51) and evaporates.
  • the refrigerant evaporated in the first adsorption heat exchanger (51) is sucked into the compressor (53), compressed, and discharged from the compressor (53) again.
  • the second adsorption heat exchanger (52) serves as a condenser
  • the first adsorption heat exchanger (51) serves as an evaporator.
  • the second adsorption heat exchanger (52) the adsorbent on the surface of the fin (57) is heated by the refrigerant in the heat transfer tube (58), and moisture desorbed from the heated adsorbent is given to the second air.
  • the first adsorption heat exchanger (51) moisture in the first air is adsorbed by the adsorbent on the surface of the fin (57), and the generated adsorption heat is absorbed by the refrigerant in the heat transfer tube (58).
  • the first air dehumidified by the first adsorption heat exchanger (51) is supplied into the chamber, and the second adsorption heat exchange (52) force desorbed moisture is supplied to the first air. 2 Exhausted with air.
  • the second air humidified by the second adsorption heat exchange (52) is supplied into the room, and the first air deprived of moisture by the first adsorption heat exchanger (51) is supplied. It is discharged outside the room.
  • the cooling operation and the heating operation are performed.
  • the four-way switching valve (64) of the refrigerant circuit (60) is set to the first state.
  • the compressor (63) When the compressor (63) is operated, the refrigerant circulates in the refrigerant circuit (60). Specifically, the refrigerant discharged from the compressor (63) is condensed by releasing heat in the outdoor heat exchanger (61). The refrigerant condensed in the outdoor heat exchanger (61) is depressurized when passing through the electric expansion valve (65), and then absorbs heat in the indoor heat exchanger (62) and evaporates. The refrigerant evaporated in the indoor heat exchanger (62) is sucked into the compressor (63), compressed, and discharged from the compressor (63) again. Is issued.
  • the outdoor heat exchanger (61) serves as a condenser, and the indoor heat exchanger.
  • the air drawn into the air conditioner (20) also passes through the indoor heat exchanger (62) serving as an evaporator. This air is cooled by the indoor heat exchanger (62) and then supplied indoors.
  • the four-way selector valve (64) of the refrigerant circuit (60) is set to the second state.
  • the compressor (63) When the compressor (63) is operated, the refrigerant circulates in the refrigerant circuit (60). Specifically, the refrigerant discharged from the compressor (63) dissipates heat in the indoor heat exchanger (62) and condenses. The refrigerant condensed in the indoor heat exchanger (62) is depressurized when passing through the electric expansion valve (65), and then absorbs heat and evaporates in the outdoor heat exchanger (61). The refrigerant evaporated in the outdoor heat exchanger (61) is sucked into the compressor (63), compressed, and discharged again by the compressor (63).
  • the outdoor heat exchanger (61) serves as an evaporator, and the indoor heat exchanger
  • the indoor heat exchanger (62) serving as a condenser. This air is heated in the indoor heat exchanger (62) and then supplied into the room.
  • the air conditioning system (1) of the present embodiment four types of operation are performed by a combination of the dehumidifying operation or humidifying operation of the humidity control device (10) described above and the cooling operation or heating operation of the air conditioning device (20) described above. Is called. Specifically, in the air conditioning system (1), “cooling / dehumidification operation”, “heating / humidification operation”, “cooling / humidification operation”, and “heating / dehumidification operation” can be switched! / Speak.
  • the air conditioner (20) normally cools the air at the same time as the humidity controller (10) dehumidifies the air.
  • the humidity controller (10) dehumidifies the air.
  • the above-mentioned “normal operation” and “simultaneous dehumidifying operation” are performed according to the operating conditions. Is switched.
  • step S1 the calculation unit (43) calculates the required dehumidification amount to be processed by the lever air conditioning system (1) based on the operating conditions! Specifically, the required dehumidification amount is determined based on the outdoor temperature and humidity detected by the outdoor temperature sensor and the outdoor humidity sensor, the indoor temperature and humidity detected by the indoor temperature sensor and the indoor humidity sensor, and the target humidity of the air conditioning system (1). Calculated based on Furthermore, the calculation unit (43) calculates the operating efficiency of the humidity control apparatus (10) when this necessary dehumidification amount is processed only by the humidity control apparatus (10).
  • the calculation unit (43) previously created a database of the relationship between the required dehumidification amount of the humidity control device (10) and the COP when this required dehumidification amount is processed only by the humidity control device (10). I remember things. Then, the calculation unit (43) calculates the COP when the humidity controller (10) processes all necessary dehumidification amounts using the database, and sets the obtained value as the predicted COP.
  • the COP in the humidity control device (10) means the ratio between the power consumption required for the operation of the humidity control device (10) and the humidity control capacity of the humidity control device (10) during this operation. Is.
  • step S2 the humidity control unit (41) determines whether to switch between normal operation and simultaneous dehumidification operation. Specifically, the humidity control unit (41) compares the predicted COP calculated in step S1 with a preset reference COP, and switches between normal operation and simultaneous dehumidification operation.
  • the standard COP is a COP when sufficient operating efficiency (standard operational efficiency) can be achieved with the humidity control apparatus (10). In this embodiment, the standard COP is set to 3.5. .
  • step S2 when the predicted COP calculated in step S1 is equal to or higher than the reference COP, even if all the necessary dehumidification amount is processed only by the humidity controller (10), the humidity controller (10) Therefore, it is judged that highly efficient dehumidification can be performed. Therefore, in such a case, the process proceeds to step S3 and normal operation is performed.
  • the operating frequency of the compressor (53) of the humidity control device (10) is controlled so that the indoor humidity becomes the target humidity, and air is dehumidified only by the humidity control device (10).
  • the cooling capacity is controlled so that the indoor air is close to the target temperature, and the air conditioner (20) cools the air. Is done.
  • the evaporating temperature of the refrigerant is set to be higher than the dew point temperature of the room air so that drain water is not generated by the indoor heat exchange (62).
  • step S2 when the predicted COP calculated in step S1 is smaller than the reference COP, if all the necessary dehumidification amount is processed only by the humidity controller (10), the operation of the humidity controller (10) is performed. It is judged that the efficiency is lowered. Therefore, in such a case, step S4 is executed, and the process moves to the simultaneous dehumidifying operation.
  • step S4 the dehumidifying capacity for operating at the standard COP is calculated by the humidity controller (10), and the operating frequency of the compressor (53) that provides this dehumidifying capacity by the humidity controller (10) is calculated. Y is calculated. Then, in step S5, frequency control is performed in which the frequency of the compressor (53) of the humidity control apparatus (10) is Y. That is, in step S5, the dehumidifying capacity of the humidity control apparatus (10) is controlled so that the actual COP of the humidity control apparatus (10) does not fall below the reference COP under such operating conditions.
  • step S6 when the humidity control capacity of the humidity control apparatus (10) is changed as described above, only the humidity control apparatus (10) is removed from the required dehumidification amount to be processed by the air conditioning system (1).
  • the remaining required dehumidification amount that cannot be processed (the air conditioning side required humidity control amount) is calculated. That is, in step S6, the required dehumidification amount on the air conditioning side that should be borne by the air conditioner (20) is calculated when the humidity controller (10) performs the operation satisfying the standard COP.
  • step S7 the air conditioning side necessary humidity control amount calculating unit (43) calculated as described above is transmitted to the air conditioning control unit (42).
  • the air conditioning control unit (42) calculates a target evaporation temperature Te of the refrigerant in the indoor heat exchanger (62) required for processing this dehumidification amount on the air conditioning side by the air conditioner (20).
  • the target evaporation temperature Te is calculated based on the air conditioning side required dehumidification amount, the target humidity, the indoor temperature and humidity, and the like, and is a value lower than the dew point temperature of the indoor air.
  • step S8 moisture in the air processed by the air conditioner (20) is condensed and the air is dehumidified.
  • the water condensed by the air conditioner (20) is collected in a drain pan or the like and discharged as drain water to the outside of the air conditioner (20).
  • the humidity control device (10) and the air conditioning device (20) are controlled in conjunction to switch between the normal operation and the simultaneous dehumidifying operation.
  • normal operation is performed under an operating condition in which the predicted COP calculated by the calculation unit (43) in which the outdoor air humidity is relatively low is equal to or higher than the reference COP.
  • the humidity control device (10) performs dehumidification of air that exceeds the reference COP, so that indoor dehumidification can be performed reliably and efficiently.
  • the simultaneous dehumidifying operation is performed under the operating condition in which the predicted COP calculated by the calculation unit (43) in which the humidity of the outdoor air is extremely high is smaller than the reference COP, for example.
  • dehumidification is performed by both the humidity control device (10) and the air conditioner (20). Therefore, even under such operating conditions, indoor dehumidification can be performed reliably and efficiently. it can.
  • the operating frequency of the compressor (53) is controlled so that the reference COP is operated by the humidity control apparatus (10). Therefore, it is possible to prevent the actual COP of the humidity control device (10) from falling below the reference COP. Furthermore, when the dehumidifying capacity of the humidity control device (10) is limited in this way, the remaining required humidity control amount that could not be processed by the humidity control device (10) out of the required humidity control amount of the air conditioning system (1). It is calculated as the air conditioning side required humidity adjustment amount, and the refrigerant evaporation temperature Te of the air conditioner (20) is controlled so that the air conditioning side required humidity adjustment amount can be processed. Therefore, the humidity control device (10) can perform highly efficient dehumidification operation, and at the same time, the humidity control device (10) and the air conditioning device (20) share the required humidity control amount to be processed by the air conditioning system (1). It can be processed reliably.
  • the control operation of Modification 1 shown in FIG. 6 differs from the above embodiment in the method of calculating the target evaporation temperature Te of the air conditioner (20) during the simultaneous dehumidifying operation. Specifically, when the air conditioning system (1) shifts to the simultaneous dehumidification operation, the dew point temperature of the target humidity in the room is calculated in step S6. It is. Then, a temperature obtained by subtracting a predetermined temperature A (for example, 5 ° C.) from the dew point temperature is determined as the target evaporation temperature Te.
  • a predetermined temperature A for example, 5 ° C.
  • the air conditioning side required dehumidification amount is corrected in Step S6 described above.
  • the room humidity is detected at predetermined intervals in step S9.
  • the indoor humidity is It is judged that it has not converged to the target humidity.
  • the process proceeds to step S10, and a correction value for the required dehumidification amount on the air conditioning side is calculated from the previous indoor humidity, the current indoor humidity, and the target humidity.
  • the air conditioning side required dehumidification amount is multiplied by this correction value to reset the air conditioning side necessary dehumidification amount so that the indoor humidity converges to the target humidity.
  • the dehumidifying ability of the air conditioner (20) is corrected as described above, so that the indoor humidity can be reliably converged to the target humidity. Therefore, the reliability of the air conditioning system (1) can be improved.
  • the judgment operation for switching between the normal operation and the simultaneous dehumidification operation is different from that in the above embodiment. That is, in Modification 3, when the necessary dehumidification amount to be processed by the air conditioning system (1) is calculated in step S1, the calculation unit (43) converts the necessary dehumidification amount to the humidity control device (10). The operating frequency of the compressor (53) of the humidity control device (10) required for processing using only the above is calculated as the predicted frequency.
  • step S2 the humidity control unit (41) determines whether to switch between normal operation and simultaneous dehumidification operation. Specifically, the humidity control unit (41) compares the predicted frequency calculated in step S1 with a preset upper limit frequency, and performs dehumidification operation simultaneously with normal operation. Switch to roll.
  • the upper limit frequency is the operating frequency of the compressor (53) that is the upper limit for enabling efficient operation by the compressor (53) and the humidity control apparatus (10).
  • step S2 when the predicted frequency calculated in step S1 is smaller than the upper limit frequency, even if all the necessary dehumidification amount is processed only by the humidity controller (10), the humidity controller (10 ), It is judged that highly efficient dehumidification can be performed. Therefore, in such a case, the process proceeds to step S3 and normal operation is performed.
  • step S2 when the predicted frequency calculated in step S1 is equal to or higher than the upper limit frequency, if all the necessary dehumidification amount is processed only by the humidity controller (10), the operation of the humidity controller (10) is performed. It is judged that the efficiency is lowered. Therefore, in such a case, the process proceeds to step S4, and the simultaneous dehumidifying operation is performed.
  • the frequency of the compressor (53) is controlled to be the above upper limit frequency.
  • the normal operation and the simultaneous dehumidification operation can be automatically switched by comparing the predicted frequency of the compressor (53) with the upper limit frequency.
  • the frequency of the compressor (53) of the humidity control apparatus (10) is limited to the upper limit frequency. Therefore, it is possible to reliably avoid the overload operation of the humidity control device (10), and the air dehumidification system (1) can efficiently dehumidify the air.
  • Step S1 to Step S4 of Modification 3 may be applied to Modification 1 and Modification 2 described above.
  • the operation unit (43) predicts the operating efficiency of the humidity control device (10), and during the simultaneous dehumidification operation, the humidity control device (10) controls the dehumidification capacity so as to satisfy the standard operating efficiency. is doing.
  • the operation efficiency (for example, COP) of the air conditioner (20) during the simultaneous dehumidifying operation may be further calculated by the calculation unit (43).
  • the COP on the air conditioning side is lower than the reference COP of the humidity controller (10)
  • step S4 correction is made to lower the reference COP, and adjustment is performed so as to satisfy the corrected reference COP.
  • Pressure of wet device (10) The compression frequency may be controlled.
  • the actual COP of the humidity control device (10) is reduced, the required humidity control amount on the air conditioning side can be reduced, so that the actual COP of the air conditioning device (20) can be improved. it can.
  • step S1 and step S2 switching determination between the normal operation and the simultaneous dehumidification operation is performed by comparing the COP predicted by the calculation unit (43) with the reference COP. It is carried out.
  • switching between normal operation and simultaneous dehumidifying operation may be performed according to the humidity of outdoor air.
  • the calculation unit (43) calculates the ratio between the outdoor air humidity and the target humidity of the air conditioning system (outdoor air humidity Z target humidity), and if this ratio is lower than the reference value, The air conditioning system (1) considers that the required dehumidification amount is relatively small and shifts to normal operation. If this ratio is higher than the reference value, the air conditioning system (1) treats it. It may be considered that the necessary dehumidification amount is relatively high!
  • the humidity control apparatus (10) of each of the above embodiments is configured to dehumidify the air with the adsorbent carried on the adsorption heat exchanger (51, 52).
  • the humidity control apparatus (10) can be configured as the following modifications.
  • the humidity controller (10) of the first modification includes a refrigerant circuit (100) and two adsorbing elements (111, 112).
  • the refrigerant circuit (100) is a closed circuit in which a compressor (101), a condenser (102), an expansion valve (103), and an evaporator (104) are connected in order.
  • This refrigerant circuit (100) constitutes a heat source means.
  • the first adsorbing element (111) and the second adsorbing element (112) each include an adsorbent such as zeolite and constitute an adsorbing member.
  • Each adsorbing element (111, 112) is formed with a large number of air passages, and air contacts the adsorbent when passing through the air passages.
  • the humidity control apparatus (10) repeats the first operation and the second operation.
  • the humidity control apparatus (10) during the first operation supplies air heated by the condenser (102) to the first adsorption element (111) and supplies the adsorbent.
  • the air deprived of moisture by the second adsorption element (112) is cooled by the evaporator (104).
  • the humidity controller (10) during the second operation is The air heated by the vessel (102) is supplied to the second adsorption element (112) to regenerate the adsorbent, while the air deprived of moisture by the first adsorption element (111) is cooled by the evaporator (104) To do.
  • the humidity control apparatus (10) is configured to perform a dehumidifying operation for supplying air dehumidified when passing through the adsorption element (111, 112) into the room, and air humidified when passing through the adsorption element (111, 112). Switch between humidifying operation to supply indoors.
  • the humidity control apparatus (10) of the second modified example includes a humidity control unit (150).
  • the humidity control unit (150) includes a Peltier element (153) and a pair of suction fins (151, 152).
  • the adsorption fins (151 and 152) are obtained by carrying an adsorbent such as zeolite on the surface of a so-called heat sink.
  • the suction fins (151 and 152) constitute a suction member.
  • the Peltier element (153) has a first suction fin (151) joined to one surface and a second suction fin (152) joined to the other surface. When direct current is passed through the Peltier element (153), one of the two suction fins (151, 152) becomes the heat absorption side and the other becomes the heat dissipation side.
  • This Peltier element (153) constitutes a heat source means.
  • the humidity control apparatus (10) repeats the first operation and the second operation.
  • the humidity control unit (150) in the first operation regenerates the adsorbent of the first adsorption fin (151) on the heat dissipation side to humidify the air, while the second adsorption fin ( Adsorb moisture to the adsorbent of 152) to dehumidify the air.
  • the humidity control unit (150) during the first operation regenerates the adsorbent of the second adsorption fin (152) on the heat dissipation side to humidify the air, while the first adsorption fin ( Adsorb moisture to the adsorbent of 151) to dehumidify the air.
  • this humidity control apparatus (10) was dehumidified by supplying dehumidified air to the room when passing through the humidity control unit (150) and humidified when passing through the humidity control unit (150). Switching between humidification operation to supply air into the room.
  • the present invention is useful for an air conditioning system that supplies air dehumidified by a humidity control device and air cooled by an air conditioning device into the same room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

 空調システム(1)では、運転条件に応じて、調湿装置(10)のみで空気の除湿を行う通常運転と、調湿装置(10)で空気の除湿を行うと同時に空調装置(20)で空気中の水分を凝縮させて空気の除湿を行う同時除湿運転とが選択的に切り換えられる。

Description

技術分野
[0001] 本発明は、調湿装置で除湿した空気と、空調装置で冷却した空気とを同一の室内 に供給する空調システムに関するものである。
背景技術
[0002] 従来より、調湿した空気を室内に供給して室内の顕熱を処理する空調装置や、調 湿した空気を室内に供給して室内の潜熱を処理する調湿装置などが知られている。
[0003] 例えば特許文献 1には、冷媒回路で冷媒が循環して蒸気圧縮冷凍サイクルを行う 空調装置が開示されている。この空調装置の冷媒回路には、圧縮機、室内熱交換器
、膨張弁、室外熱交^^、及び四方切換弁が接続されている。この空調装置は、四 方切換弁の切換によって冷媒の循環方向が可逆となっており、冷房運転と暖房運転 とが切換可能となっている。そして、例えば冷房運転では、蒸発器となる室内熱交換 器で冷却された空気が室内に供給され、室内空間の冷房が行われる。一方、暖房運 転では、凝縮器となる室内熱交換器で加熱された空気が室内に供給され、室内空間 の暖房が行われる。
[0004] また、例えば特許文献 2には、水分の吸着を行う吸着剤を担持する吸着熱交換器 が冷媒回路に接続された調湿装置が知られている。この調湿装置は、冷媒の循環方 向が切り換わることによって上記吸着熱交^^が蒸発器又は凝縮器として機能し、 除湿運転と加湿運転とが切換可能となっている。例えば除湿運転では、吸着熱交換 器で蒸発する冷媒によって吸着剤が冷却される。空気が吸着熱交換器を通過すると 、冷却された吸着剤と空気とが接触し、空気中の水分がこの吸着剤に吸着される。吸 着剤に水分を付与して除湿された空気は室内に供給され、室内の除湿が行われる。 一方、加湿運転では、吸着熱交換器で凝縮する冷媒によって吸着剤が加熱される。 空気が吸着熱交換器を通過すると、加熱された吸着剤と空気とが接触し、吸着剤に 吸着された水分力 Sこの空気に放出される。この水分を含んで加湿された空気は室内 に供給され、室内の加湿が行われる。 特許文献 1 :特開 2003— 106609号公報
特許文献 2:特開 2004— 294048号公報
発明の開示
発明が解決しょうとする課題
[0005] ところで、室内の調湿と温調とを同時に行うために、上述の空調装置及び調湿装置 を同一の室内で併用する空調システムが考えられる。例えばこの空調システムでは、 空調装置で空気の冷却を行うと同時に調湿装置で空気の除湿を行い、室内を冷房 除湿することが可能となる。ここで、この空調システムの冷房除湿運転時に、室外空 気の湿度が極端に高くなると、調湿装置で処理する潜熱負荷も極端に増大してしまう 。その結果、この調湿装置が過負荷運転状態となり、この調湿装置の運転効率が低 下してしまう。したがって、空調システムの効率が低下してしまう、あるいは室内の除 湿を確実に行えなくなるという問題が生じる。
[0006] 本発明は、力かる点に鑑みてなされたものであり、その目的は、調湿装置と空調装 置とを備えて冷房除湿を行う空調システムにお 、て、 V、かなる運転条件にぉ 、ても、 室内の除湿を確実かつ効率的に行えるようにすることである。
課題を解決するための手段
[0007] 第 1の発明は、調湿装置(10)及び空調装置 (20)を備え、上記調湿装置(10)で除 湿した空気と上記空調装置 (20)で冷却した空気とを同一の室内に供給する空調シ ステムを前提としている。そして、この空調システムは、上記空調装置 (20)が、空気の 冷却時に空気中の水分を凝縮させて該空気を除湿する運転が可能に構成され、上 記調湿装置(10)のみで空気の除湿を行う通常運転と、該調湿装置(10)及び空調装 置 (20)で空気を除湿する同時除湿運転とを切り換え可能に構成されていることを特 徴とするちのである。
[0008] 第 1の発明では、調湿装置(10)が空気の潜熱を処理すると共に、空調装置 (20)が 空気の顕熱を処理することで、室内の冷房と除湿とが同時に行われる。上記空調装 置 (20)は、例えば冷却温度を低く設定することで、空気中の水分を凝縮させて空気 を除湿可能に構成されて 、る。
[0009] 本発明の空調システムでは、調湿装置(10)と空調装置 (20)とが連動して制御され 、通常運転と同時除湿運転とが切り換えられる。具体的に、上記通常運転では、調湿 装置(10)が空気の除湿を行うと同時に、空調装置 (20)は空気の冷却のみを行うよう に冷却能力が調節される。つまり、この通常運転では、この空調システムで処理すベ き潜熱を調湿装置(10)が全て処理するような運転制御がなされる。一方、上記同時 除湿運転では、調湿装置(10)が空気中の水分を凝縮させるように冷却するため、調 湿装置(10)において空気の除湿と冷却との双方が行われる。同時に、空調装置 (20 )は所定の除湿能力で空気の除湿を行う。つまり、この同時除湿運転では、この空調 システムで処理すべき必要な調湿量を調湿装置(10)と空調装置 (20)とが分担して 処理する。
[0010] 第 2の発明は、第 1の発明において、調湿装置(10)のみで空気の除湿を行う場合 の調湿装置 (10)の運転効率を予測する演算部 (43)を備え、上記演算部 (43)で予測 した調湿装置(10)の運転効率が基準運転効率以上になると通常運転を行い、上記 演算部 (43)で予測した調湿装置(10)の運転効率が基準運転効率よりも小さくなると 同時除湿運転を行うことを特徴とするものである。
[0011] 第 2の発明では、空調システムに演算部 (43)が設けられる。この演算部 (43)は、調 湿装置(10)のみで空気の除湿をする場合に、この調湿装置(10)の運転効率がどの 程度になるかを予測する。この運転効率は、この空調システムの現時点での運転条 件 (例えば室内温湿度、室外温湿度、室内の目標湿度等)に基づいて算出される。 また、この空調システムには、この調湿装置(10)で充分な運転効率を達成できる運 転効率として基準運転効率が設定されて!ヽる。
[0012] 本発明の空調システムでは、上記演算部 (43)で予測される運転効率と、上記基準 運転効率との大小比較によって上記通常運転と同時除湿運転との切り換え判定が 行われる。具体的には、例えば室外の湿度が比較的低い運転条件において、演算 部 (43)で予測された運転効率が上記基準運転効率以上となる場合、この空調システ ムで通常運転を行っても調湿装置(10)の運転効率は基準運転効率を満たすと予測 される。したがって、この場合、空調システムで通常運転が行われる。逆に、例えば室 外の湿度が極端に高!、運転条件にお!、て、演算部 (43)で予測された運転効率が上 記基準運転効率よりも小さくなる場合、この空調システムで通常運転を行ってしまうと 調湿装置(10)の運転効率を基準運転効率を達成できな!/、と予測される。したがって 、この場合、空調システムで同時除湿運転が行われ、この空調システムで処理すべき 必要除湿量を調湿装置(10)と空調装置 (20)とが分担して処理する。
[0013] 第 3の発明は、第 2の発明において、上記同時除湿運転時には、調湿装置(10)の 運転効率が上記基準運転効率となるように該調湿装置(10)の除湿能力を調節する ことを特徴とするものである。
[0014] 第 3の発明では、演算部 (43)で予測した調湿装置(10)の運転効率が上記基準運 転効率よりも小さくなつて同時除湿運転が行われる際、調湿装置(10)が基準運転効 率となるように調湿能力が調節される。その結果、同時除湿運転において、実際の調 湿装置(10)の運転効率が、演算部 (43)で予測した運転効率と同様に基準運転効率 を下回ってしまうことは回避される。
[0015] 第 4の発明は、第 1の発明において、上記調湿装置(10)は、室外空気を除湿して 室内に供給するように構成され、室外空気の湿度に応じて上記通常運転と上記同時 除湿運転とを切り換えることを特徴とするものである。
[0016] 第 4の発明では、調湿装置(10)が室外空気を除湿して室内に供給する。ここで、こ の空調システムでは、調湿装置(10)で除湿する室外空気の湿度に基づ 、て上記通 常運転と同時除湿運転とが切り換えられる。
[0017] 具体的には、例えば室外空気の湿度がさほど高くない場合には、この空調システム で通常運転が行われる。その結果、この空調システムで処理すべき必要除湿量は、 調湿装置(10)のみで処理される。一方、室外空気の湿度が極端に高い場合には、こ の空調システムで同時除湿運転が行われる。その結果、この空調システムで処理す べき必要除湿量は、調湿装置(10)と空調装置 (20)との双方で処理される。
[0018] 第 5の発明は、第 1の発明において、上記調湿装置(10)が、容量が可変な圧縮機( 53)を有する冷媒回路 (50)と、吸着剤が担持された吸着部材 (51,52)とを備え、冷媒 回路 (50)の冷媒で冷却した吸着部材 (51,52)の吸着剤と接触する空気を除湿するよ うに構成され、調湿装置(10)のみで空気の除湿を行う場合の調湿装置(10)の運転 効率を予測する演算部 (43)を備え、上記演算部 (43)で予測した調湿装置 (10)の運 転効率が基準運転効率以上になると通常運転を行い、上記演算部 (43)で予測した 調湿装置(10)の運転効率が基準運転効率よりも小さくなると同時除湿運転を行うこと を特徴とするものである。
[0019] 第 5の発明の調湿装置(10)には、冷媒が循環して冷凍サイクルを行う冷媒回路 (50 )が設けられる。また、調湿装置(10)には、空気中の水分を吸着する吸着剤を担持 する吸着部材 (51,52)が設けられる。この吸着部材 (51,52)の吸着剤は、冷媒回路 (5 0)の蒸発冷媒によって冷却される。
[0020] 調湿装置(10)で処理される空気は、冷却された吸着剤と接触する。その結果、空 気中の水分が吸着剤に吸着され、この空気が除湿される。この調湿装置(10)では、 圧縮機 (53)の運転周波数を調節することで、冷媒回路 (50)の冷媒循環量が変更さ れる。その結果、吸着剤から冷媒へ奪われる吸熱量も変更され、吸着剤による水分 の吸着能力が調節される。
[0021] ここで、演算部 (43)は、第 2の発明と同様に、調湿装置(10)のみで空気の除湿を する場合に、この調湿装置(10)の運転効率がどの程度になる力を予測する。そして、 上記演算部 (43)で予測される運転効率と、上記基準運転効率との大小比較によつ て通常運転と同時除湿運転との切り換え判定が行われる。具体的には、例えば室外 の湿度が比較的低!、運転条件にお!、て、演算部 (43)で予測された運転効率が上記 基準運転効率以上となる場合、この空調システムで通常運転を行っても調湿装置(1 0)の運転効率は基準運転効率を満たすと予測される。したがって、この場合、空調シ ステムで通常運転が行われる。逆に、例えば室外の湿度が極端に高い運転条件に ぉ 、て、演算部 (43)で予測された運転効率が上記基準運転効率よりも小さくなる場 合、この空調システムで通常運転を行ってしまうと調湿装置(10)の運転効率を基準 運転効率を達成できないと予測される。したがって、この場合、空調システムで同時 除湿運転が行われ、この空調システムで処理すべき必要除湿量を調湿装置(10)と 空調装置 (20)とが分担して処理する。
[0022] 第 6の発明は、第 1の発明において、上記調湿装置(10)は、容量が可変な圧縮機( 53)を有する冷媒回路 (50)と、吸着剤が担持された吸着部材 (51,52)とを備え、冷媒 回路 (50)の冷媒で冷却した吸着部材 (51,52)の吸着剤と接触する空気を除湿するよ うに構成され、調湿装置(10)のみで空気の除湿を行う場合の調湿装置(10)の圧縮 機 (53)の運転周波数を予測する演算部 (43)を備え、上記演算部 (43)で予測した圧 縮機 (53)の運転周波数が上限周波数よりも小さくなると通常運転を行い、上記演算 部 (43)で予測した圧縮機 (53)の運転周波数が上限周波数以上になると同時除湿運 転を行うことを特徴とするものである。
[0023] 第 6の発明では、調湿装置(10)が第 5の発明と同様に構成される。一方、第 5の発 明と異なり、演算部 (43)は、調湿装置(10)のみで空気の除湿をする場合に、この調 湿装置(10)の圧縮機 (53)の運転周波数がどの程度になる力を予測する。この運転 周波数は、この空調システムの現時点での運転条件 (例えば室内温湿度、室外温湿 度、室内の目標湿度等)に基づいて算出される。また、この空調システムには、圧縮 機 (53)及び調湿装置(10)を効率的に運転するための上限周波数が設定されて!、る
[0024] この空調システムでは、上記演算部 (43)で予測される圧縮機 (53)の運転周波数と 、上限周波数との大小比較によって上記通常運転と同時除湿運転との切り換え判定 が行われる。具体的には、例えば室外の湿度が比較的低い運転条件において、演 算部 (43)で予測された圧縮機 (53)の運転周波数が上限周波数よりも小さくなる場合 、この空調システムで通常運転を行っても圧縮機 (53)及び調湿装置(10)の効率が 低下しないと予測される。したがって、この場合、空調システムで通常運転が行われ る。逆に、例えば室外の湿度が極端に高い運転条件において、演算部 (43)で予測さ れた圧縮機 (53)の運転周波数が上記上限周波数以上となる場合、この空調システ ムで通常運転を行ってしまうと圧縮機 (53)及び調湿装置(10)の効率が低下してしま うと予測される。したがって、この場合、空調システムで同時除湿運転が行われ、この 空調システムで処理すべき必要除湿量を調湿装置(10)と空調装置 (20)とが分担し て処理する。
発明の効果
[0025] 本発明では、調湿装置(10)と空調装置 (20)とを連動して制御し、通常運転と同時 除湿運転とを切り換え可能としている。このため、この空調システムで処理すべき必 要除湿量が極端に高い場合にも、上記同時除湿運転を行うことで、この必要除湿量 を調湿装置(10)と空調装置 (20)とで分担して処理することができる。また、この空調 システムで処理すべき必要除湿量がさほど高くな 、場合には、上記通常運転を行う ことで、この必要除湿量を調湿装置(10)で確実に処理することができる。以上のよう に本発明によれば、この空調システムの運転条件に応じて通常運転と同時除湿運転 とを切り換えることができるので、いかなる運転条件においても、この空調システムで 確実且つ効率的に空気を除湿することができる。
[0026] 特に、上記第 2の発明では、演算部 (43)で予測した調湿装置(10)の運転効率と、 基準運転効率とを比較し、その比較結果に基づいて通常運転と同時除湿運転とを自 動的に切り換えるようにしている。具体的には、演算部 (43)で予測した運転効率が基 準運転効率以上となる運転条件では、通常運転が行われるので、調湿装置(10)の みの除湿によって、この空調システムで処理すべき必要除湿量を確実且つ効率的に 処理できる。一方、演算部 (43)で予測した運転効率が基準運転効率よりも小さくなる 運転条件では、同時除湿運転が行われるので、空調システムで処理すべき必要除 湿量を調湿装置(10)と空調装置 (20)との双方で分担して処理することができる。即 ち、本発明では、空調システムで処理すべき必要除湿量が高くなると、自動的に同 時除湿運転を行うようにしているので、いかなる運転条件においても、この空調システ ムで確実且つ効率的に空気を除湿することができる。
[0027] 更に、上記第 3の発明によれば、同時除湿運転時において、調湿装置(10)の実際 の運転効率が、演算部 (43)で予測された運転効率と同様に、基準運転効率を下回 つてしまうのを確実に回避できる。即ち、本発明によれば、調湿装置(10)が過負荷運 転となってしまうのを確実に防止できるので、この空調システムの効率の低下を回避 することができる。
[0028] 上記第 4の発明では、調湿装置(10)で除湿する室外空気の湿度に基づ!/、て通常 運転と同時除湿運転とを自動的に切り換えられる。したがって、室外空気の湿度が変 動し、空調システムで処理すべき必要調湿量が大きく変動しても、この条件に適した 効率的な空気の除湿を行うことができる。
[0029] 上記第 5の発明では、調湿装置(10)の吸着部材 (51,52)の吸着剤で空気を除湿す るようにしている。ここで、この空調システムでは、演算部 (43)で予測した運転効率と 、基準運転効率とを比較し、通常運転と同時除湿運転とを自動的に切り換えるように している。したがって、この空調システムにおいて、いかなる運転条件においても、確 実且つ効率的に空気を除湿することができる。
[0030] また、上記第 6の発明では、第 5の発明と同様の構成の調湿装置(10)を有する空 調システムにおいて、演算部 (43)で予測した圧縮機 (53)の運転周波数と、上限周波 数とを比較し、通常運転と同時除湿運転とを自動的に切り換えるようにしている。した がって、いかなる運転条件においても、圧縮機 (53)及び調湿装置(10)を効率的に 運転させることができ、この空調システムで効率的に空気を除湿することができる。 図面の簡単な説明
[0031] [図 1]図 1は、実施形態の空調システムの概略の構成図である。
[図 2]図 2は、実施形態の調湿装置の冷媒回路の構成を示す配管系統図であって、 ( A)は第 1動作中の動作を示すものであり、(B)は第 2動作中の動作を示すものである
[図 3]図 3は、吸着熱交^^の概略斜視図である。
[図 4]図 4は、実施形態の空調装置の冷媒回路の構成を示す配管系統図であって、 ( A)は第 1の状態を示すものであり、(B)は第 2の状態を示すものである。
[図 5]図 5は、実施形態の空調システムの冷房除湿運転時の制御動作を示す概略の 制御フロー図である。
[図 6]図 6は、変形例 1の空調システムの冷房除湿運転時の制御動作を示す概略の 制御フロー図である。
[図 7]図 7は、変形例 2の空調システムの冷房除湿運転時の制御動作を示す概略の 制御フロー図である。
[図 8]図 8は、変形例 3の空調システムの冷房除湿運転時の制御動作を示す概略の 制御フロー図である。
[図 9]図 9は、その他の実施形態の第 1変形例における調湿装置の概略構成図であ つて、(A)は第 1動作中の動作を示すものであり、(B)は第 2動作中の動作を示すもの である。
[図 10]図 10は、その他の実施形態の第 2変形例における調湿ユニットの概略斜視図 である。 符号の説明
1 空調システム
10 調湿
20 空調装置
41 空調制御部
42 調湿制御部
43 演算部
50 冷媒回路
51 吸着部材
52 吸着部材
53 圧縮機
発明を実施するための最良の形態
[0033] 本発明の実施形態について説明する。図 1に示すように、本実施形態の空調シス テム(1)は、調湿装置(10)と空調装置 (20)とを備えている。この空調システム(1)で は、調湿装置(10)で処理した空気と、空調装置 (20)で処理した空気との双方が同一 の室内に供給される。また、この空調システム(1)は、上記調湿装置(10)及び空調装 置 (20)の制御手段として調湿制御部 (41)及び空調制御部 (42)を備えて!/、る。
[0034] く調湿装置の概略構成〉
本実施形態の調湿装置(10)は、除湿した空気を室内へ供給する除湿運転と、加湿 した空気を室内へ供給する加湿運転とが可能に構成されている。
[0035] 図 2に示すように、上記調湿装置(10)は、冷媒回路 (50)を備えている。この冷媒回 路 (50)は、第 1吸着熱交翻 (51)、第 2吸着熱交翻 (52)、圧縮機 (53)、四方切換 弁 (54)、及び電動膨張弁 (55)が設けられた閉回路である。この冷媒回路 (50)は、充 填された冷媒を循環させることによって、蒸気圧縮冷凍サイクルを行う。
[0036] 上記冷媒回路 (50)にお 、て、圧縮機 (53)は、その吐出側が四方切換弁 (54)の第 1のポートに、その吸入側が四方切換弁 (54)の第 2のポートにそれぞれ接続されてい る。第 1吸着熱交翻(51)の一端は、四方切換弁 (54)の第 3のポートに接続されて いる。第 1吸着熱交換器 (51)の他端は、電動膨張弁 (55)を介して第 2吸着熱交換器 (52)の一端に接続されている。第 2吸着熱交換器 (52)の他端は、四方切換弁 (54) の第 4のポートに接続されて 、る。
[0037] 上記四方切換弁 (54)は、第 1のポートと第 3のポートが連通して第 2のポートと第 4 のポートが連通する第 1状態(図 2(A)に示す状態)と、第 1のポートと第 4のポートが 連通して第 2のポートと第 3のポートが連通する第 2状態(図 2(B)に示す状態)とに切 り換え可能となっている。
[0038] 図 3に示すように、第 1吸着熱交換器 (51)及び第 2吸着熱交換器 (52)は、何れもク ロスフィン型のフィン'アンド ·チューブ熱交^^によって構成されて ヽる。これら吸着 熱交翻 (51,52)は、銅製の伝熱管(58)とアルミニウム製のフィン (57)とを備えて!/、 る。吸着熱交翻 (51,52)に設けられた複数のフィン (57)は、それぞれが長方形板 状に形成され、一定の間隔で並べられている。また、伝熱管(58)は、各フィン (57)を 貫通するように設けられて 、る。
[0039] 上記各吸着熱交翻 (51,52)では、各フィン (57)の表面に吸着剤が担持されてお り、本発明の吸着部材を構成している。この吸着熱交翻 (51,52)のフィン (57)の間 を通過する空気がフィン (57)の表面の吸着剤と接触する。この吸着剤としては、ゼォ ライト、シリカゲル、活性炭、親水性の官能基を有する有機高分子材料など、空気中 の水蒸気を吸着できるものが用いられる。
[0040] また、この調湿装置(10)には、図示しな 、が空気の温度や湿度を検出する複数の センサが設けられている。これら複数のセンサは、室外空気の温度を検出する室外 温度センサと、室外空気の相対湿度を検出する室外湿度センサと、室内空気の温度 を検出する室内温度センサと、室内空気の相対湿度を検出する室内湿度センサとで 構成されている。
[0041] く空調装置の概略構成〉
本実施形態の空調装置 (20)は、冷却した空気を室内へ供給する冷房運転と、加熱 した空気を室内へ供給する暖房運転とが可能に構成されている。
[0042] 図 4に示すように、上記空調装置(20)は、室内ユニット(21)及び室外ユニット(22) を備えている。上記室内ユニット(21)は室内に配置されている。この室内ユニット(21 )には、室内熱交換器 (62)が収納されている。一方、上記室外ユニット(22)は室外に 配置されて ヽる。この室外ユニット (22)には、室外熱交換器 (61)、圧縮機 (63)、四方 切換弁 (64)、及び電動膨張弁 (65)が収納されている。上記室内ユニット (21)と上記 室外ユニット (22)とは、 2本の連絡配管(23,24)で互いに接続されている。そして、空 調装置 (20)には、閉回路である冷媒回路 (60)が構成されている。この冷媒回路 (60) は、充填された冷媒を循環させることによって、蒸気圧縮冷凍サイクルを行う。
[0043] 上記冷媒回路 (60)にお 、て、圧縮機 (63)は、その吐出側が四方切換弁 (64)の第 1のポートに、その吸入側が四方切換弁 (64)の第 2のポートにそれぞれ接続されてい る。室外熱交翻 (61)の一端は、四方切換弁 (64)の第 3のポートに接続されている 。室外熱交換器 (61)の他端は、電動膨張弁 (65)を介して室内熱交換器 (62)の一端 に接続されている。室内熱交翻 (62)の他端は、四方切換弁 (64)の第 4のポートに 接続されている。
[0044] 上記四方切換弁 (64)は、第 1のポートと第 3のポートが連通して第 2のポートと第 4 のポートが連通する第 1状態(図 4(A)に示す状態)と、第 1のポートと第 4のポートが 連通して第 2のポートと第 3のポートが連通する第 2状態(図 4(B)に示す状態)とに切 り換え可能となっている。また、この空調装置 (20)には、室内から空調装置 (20)への 吸込室内空気の温度を検出する吸込温度センサが設けられている。
[0045] く調湿制御部及び空調制御部の構成〉
図 1に示すように、本実施形態の空調システム(1)には、調湿制御部 (41)、及び空 調制御部 (42)が設けられて 、る。
[0046] 上記調湿制御部 (41)は、調湿装置(10)の調湿能力を制御するものである。具体的 に、調湿制御部 (41)は、運転条件に応じて調湿装置(10)の圧縮機 (53)の運転周波 数を制御し、冷媒回路 (50)の冷媒循環量を調節する。その結果、吸着熱交換器 (51, 52)における冷媒の吸熱量や放熱量が変更され、調湿装置(10)の調湿能力が調節 される。
[0047] なお、空調システム(1)には、図示しないコントローラを介して室内の目標温度 (設 定温度)が入力される。この空調システム(1)では、この設定温度に応じて室内の目 標湿度も自動的に決定される。そして、この調湿装置(10)の調湿能力は、室内の湿 度が上記目標湿度に近づくよう調節される。 [0048] 空調制御部 (42)は、空調装置 (20)の温調能力を調節するものである。具体的に、 空調制御部 (42)は、運転条件に応じて圧縮機 (63)の運転周波数を制御し、冷媒回 路 (60)の冷媒循環量を調節する。更に、空調制御部 (42)は、運転条件に応じて室 内熱交換器 (62)の冷媒蒸発温度ゃ冷媒凝縮温度を調節する。その結果、室内熱交 換器 (62)での冷媒の吸熱量や放熱量が調節され、空調装置 (20)の温調能力が調 節される。この空調装置 (20)の温調能力は、室内の温度が上記設定温度に近づくよ うに調節される。
[0049] また、空調装置 (20)は、冷房運転時において、室内熱交換器 (62)の蒸発温度を 所定温度に低下させることで、室内熱交換器 (62)による空気の冷却時に空気中の水 分を凝縮させて空気を除湿する運転が可能に構成されている。
[0050] この空調システム(1)では、調湿装置(10)が除湿運転を行うと同時に空調装置 (20 )が冷房運転を行う冷房除湿運転が可能となっている。更に、この冷房除湿運転時に は、通常運転と同時除湿運転とが切り換え可能に構成されている。上記通常運転は 、上記調湿装置(10)のみが空気の除湿を行うと同時に、空調装置 (20)が空気の冷 却を行う運転である。一方、上記同時除湿運転は、調湿装置(10)が空気の除湿を行 うと同時に空調装置 (20)が空気の除湿と冷却とを行う運転である。空調システム(1) の冷房除湿運転では、この 2種類の運転の切り換えが自動的に行われる。この 2種類 の運転の切り換えは、調湿制御部 (41)に設けられる演算部 (43)の算出結果に基づ Vヽて行われる(詳細は後述する)。
[0051] 運転動作
く調湿装置の運転動作〉
図 2に示すように、本実施形態の調湿装置(10)では、除湿運転と加湿運転とが行 われる。除湿運転中や加湿運転中の調湿装置(10)は、取り込んだ室外空気(OA)を 調湿してから供給空気 (SA)として室内へ供給すると同時に、取り込んだ室内空気 (R A)を排出空気 (EA)として室外へ排出する。つまり、除湿運転中や加湿運転中の調 湿装置(10)は、室内の換気を行っている。また、上記調湿装置(10)は、除湿運転中 と加湿運転中の何れにおいても、第 1動作と第 2動作を所定の時間間隔 (例えば 3分 間隔)で交互に繰り返す。 [0052] 上記調湿装置(10)は、除湿運転中であれば第 1空気として室外空気 (OA)を、第 2 空気として室内空気 (RA)をそれぞれ取り込む。また、上記調湿装置(10)は、加湿運 転中であれば第 1空気として室内空気 (RA)を、第 2空気として室外空気 (OA)をそれ ぞれ取り込む。
[0053] 先ず、第 1動作について説明する。第 1動作中には、第 1吸着熱交翻(51)へ第 2 空気が、第 2吸着熱交換器 (52)へ第 1空気がそれぞれ送り込まれる。この第 1動作で は、第 1吸着熱交換器 (51)についての再生動作と、第 2吸着熱交換器 (52)について の吸着動作とが行われる。
[0054] 図 2(A)に示すように、第 1動作中の冷媒回路 (50)では、四方切換弁 (54)が第 1状 態に設定される。圧縮機 (53)を運転すると、冷媒回路 (50)内で冷媒が循環する。具 体的に、圧縮機 (53)から吐出された冷媒は、第 1吸着熱交翻 (51)で放熱して凝縮 する。第 1吸着熱交 (51)で凝縮した冷媒は、電動膨張弁 (55)を通過する際に減 圧され、その後に第 2吸着熱交 (52)で吸熱して蒸発する。第 2吸着熱交 (5 2)で蒸発した冷媒は、圧縮機 (53)へ吸入されて圧縮され、再び圧縮機 (53)から吐 出される。
[0055] このように、第 1動作中の冷媒回路 (50)では、第 1吸着熱交換器 (51)が凝縮器とな り、第 2吸着熱交換器 (52)が蒸発器となる。第 1吸着熱交換器 (51)では、フィン (57) 表面の吸着剤が伝熱管 (58)内の冷媒によって加熱され、加熱された吸着剤から脱 離した水分が第 2空気に付与される。一方、第 2吸着熱交換器 (52)では、フィン (57) 表面の吸着剤に第 1空気中の水分が吸着され、発生した吸着熱が伝熱管 (58)内の 冷媒に吸熱される。
[0056] そして、除湿運転中であれば、第 2吸着熱交換器 (52)で除湿された第 1空気が室 内へ供給され、第 1吸着熱交 (51)力 脱離した水分が第 2空気と共に室外へ排 出される。一方、加湿運転中であれば、第 1吸着熱交 (51)で加湿された第 2空 気が室内へ供給され、第 2吸着熱交換器 (52)に水分を奪われた第 1空気が室外へ 排出される。
[0057] 次に、第 2動作について説明する。第 2動作中には、第 1吸着熱交翻 (51)へ第 1 空気が、第 2吸着熱交換器 (52)へ第 2空気がそれぞれ送り込まれる。この第 2動作で は、第 2吸着熱交換器 (52)についての再生動作と、第 1吸着熱交換器 (51)について の吸着動作とが行われる。
[0058] 図 2(B)に示すように、第 2動作中の冷媒回路 (50)では、四方切換弁 (54)が第 2状 態に設定される。圧縮機 (53)を運転すると、冷媒回路 (50)内で冷媒が循環する。具 体的に、圧縮機 (53)から吐出された冷媒は、第 2吸着熱交翻 (52)で放熱して凝縮 する。第 2吸着熱交 (52)で凝縮した冷媒は、電動膨張弁 (55)を通過する際に減 圧され、その後に第 1吸着熱交 (51)で吸熱して蒸発する。第 1吸着熱交 (5 1)で蒸発した冷媒は、圧縮機 (53)へ吸入されて圧縮され、再び圧縮機 (53)から吐 出される。
[0059] このように、冷媒回路 (50)では、第 2吸着熱交換器 (52)が凝縮器となり、第 1吸着 熱交換器 (51)が蒸発器となる。第 2吸着熱交換器 (52)では、フィン (57)表面の吸着 剤が伝熱管 (58)内の冷媒によって加熱され、加熱された吸着剤から脱離した水分が 第 2空気に付与される。一方、第 1吸着熱交換器 (51)では、フィン (57)表面の吸着剤 に第 1空気中の水分が吸着され、発生した吸着熱が伝熱管 (58)内の冷媒に吸熱さ れる。
[0060] そして、除湿運転中であれば、第 1吸着熱交換器 (51)で除湿された第 1空気が室 内へ供給され、第 2吸着熱交 (52)力 脱離した水分が第 2空気と共に室外へ排 出される。一方、加湿運転中であれば、第 2吸着熱交 (52)で加湿された第 2空 気が室内へ供給され、第 1吸着熱交換器 (51)に水分を奪われた第 1空気が室外へ 排出される。
[0061] く空調装置の運転動作〉
本実施形態の空調装置 (20)では、冷房運転と暖房運転とが行われる。
[0062] 空調装置 (20)の冷房運転では、図 4(A)に示すように、冷媒回路 (60)の四方切換 弁 (64)が第 1状態に設定される。圧縮機 (63)を運転すると、冷媒回路 (60)内で冷媒 が循環する。具体的に、圧縮機 (63)から吐出された冷媒は、室外熱交 (61)で放 熱して凝縮する。室外熱交換器 (61)で凝縮した冷媒は、電動膨張弁 (65)を通過す る際に減圧され、その後に室内熱交換器 (62)で吸熱して蒸発する。室内熱交換器( 62)で蒸発した冷媒は、圧縮機 (63)へ吸入されて圧縮され、再び圧縮機 (63)から吐 出される。
[0063] このように、冷媒回路 (60)では、室外熱交換器 (61)が凝縮器となり、室内熱交換器
(62)が蒸発器となる。一方、室内力も空調装置 (20)に吸い込まれた空気は、蒸発器 となる室内熱交換器 (62)を通過する。この空気は、室内熱交換器 (62)で冷却された 後、室内に供給される。
[0064] 一方、空調装置 (20)の暖房運転では、図 4(B)に示すように、冷媒回路 (60)の四方 切換弁 (64)が第 2状態に設定される。圧縮機 (63)を運転すると、冷媒回路 (60)内で 冷媒が循環する。具体的に、圧縮機 (63)から吐出された冷媒は、室内熱交換器 (62 )で放熱して凝縮する。室内熱交換器 (62)で凝縮した冷媒は、電動膨張弁 (65)を通 過する際に減圧され、その後に室外熱交換器 (61)で吸熱して蒸発する。室外熱交 換器 (61)で蒸発した冷媒は、圧縮機 (63)へ吸入されて圧縮され、再び圧縮機 (63) 力 吐出される。
[0065] このように、冷媒回路 (60)では、室外熱交換器 (61)が蒸発器となり、室内熱交換器
(62)が凝縮器となる。一方、室内から空調装置 (20)に吸い込まれた空気は、凝縮器 となる室内熱交 (62)を通過する。この空気は、室内熱交 (62)で加熱された 後、室内に供給される。
[0066] 冷房除湿運転における制御動作
本実施形態の空調システム(1)では、上述した調湿装置(10)の除湿運転又は加湿 運転と、上述した空調装置 (20)の冷房運転又は暖房運転との組み合わせによって 4 通りの運転が行われる。具体的に、空調システム(1)では、「冷房除湿運転」、「暖房 加湿運転」、「冷房加湿運転」、及び「暖房除湿運転」とが切換可能となって!/ヽる。
[0067] 上記冷房除湿運転時においては、通常、調湿装置(10)が空気の除湿を行うと同時 に空調装置 (20)が空気の冷却を行う。ところで、このような冷房除湿運転時において 、例えば室外空気の湿度が極端に高くなり、この空調システム(1)で処理すべき必要 除湿量が増大してしまうと、従来であれば調湿装置(10)が過負荷運転となり、この空 調システム(1)の運転効率が低下したり、室内の湿度を目標湿度に維持するのが困 難となったりする恐れがある。この問題を解決するため、本実施形態の空調システム ( 1)の冷房除湿運転時には、運転条件に応じて上述した「通常運転」と「同時除湿運 転」とが切り換えられる。
[0068] 以下には、本実施形態の空調システム(1)の冷房除湿運転時における通常運転と 同時除湿運転との切り換え制御動作について、図 5を参照しながら説明する。
[0069] ステップ S1にお 、て、演算部 (43)は運転条件に基づ!/、てこの空調システム(1)で 処理すべき必要除湿量を算出する。具体的にこの必要除湿量は、室外温度センサ 及び室外湿度センサで検出した室外温湿度と、室内温度センサ及び室内湿度セン サで検出した室内温湿度と、空調システム(1)の目標湿度とに基づいて算出される。 更に、演算部 (43)は、この必要除湿量を調湿装置(10)のみで処理する場合におけ る調湿装置(10)の運転効率を算出する。具体的に、演算部 (43)は、調湿装置(10) の必要除湿量と、この必要除湿量を調湿装置(10)のみで処理した際の COPとの関 係を予めデータベース化したものを記憶している。そして、演算部 (43)は、調湿装置 (10)が必要除湿量を全て処理する場合の COPを上記データベースを用いて算出し 、得られた値を予測 COPとする。なお、調湿装置(10)での COPとは、調湿装置(10) の運転に要する電力消費量と、この運転時の調湿装置(10)の調湿能力との比を意 味するものである。
[0070] 次に、ステップ S2において、調湿制御部 (41)は、通常運転と同時除湿運転との切 り換えの判定を行う。具体的に、調湿制御部 (41)では、ステップ S1で算出した予測 C OPと、予め設定された基準 COPとの大小比較を行い、通常運転と同時除湿運転と の切り換えを行う。なお、上記基準 COPは、この調湿装置(10)で充分な運転効率( 基準運転効率)を達成できる際の COPであり、本実施形態では、この基準 COPが 3 . 5に設定されている。
[0071] ここで、ステップ S2において、ステップ S1で算出された予測 COPが基準 COP以上 となる場合、調湿装置(10)のみで必要除湿量を全て処理したとしても、調湿装置(10 )で効率の高い除湿を行うことができると判断される。したがって、このような場合には 、ステップ S3に移行し、通常運転が行われる。この通常運転では、室内の湿度が目 標湿度となるように調湿装置(10)の圧縮機 (53)の運転周波数が制御され、調湿装 置(10)のみで空気の除湿が行われる。通常運転中の空調装置 (20)では、室内の空 気を目標温度に近くづけるように冷却能力が制御され、空調装置 (20)で空気の冷却 が行われる。その際、空調装置 (20)では、冷媒の蒸発温度を室内空気の露点温度 よりも高く設定し、室内熱交 (62)でドレン水を生じさせな 、ようにして 、る。
[0072] 一方、ステップ S2において、ステップ S1で算出された予測 COPが基準 COPよりも 小さくなる場合、調湿装置(10)のみで必要除湿量を全て処理すると、調湿装置(10) の運転効率が低下してしまうと判断される。したがって、このような場合には、ステップ S4が実行され、同時除湿運転に移行する。
[0073] ステップ S4では、調湿装置(10)で基準 COPでの運転を行うための除湿能力が算 出され、調湿装置(10)でこの除湿能力となる圧縮機 (53)の運転周波数 Yが算出され る。そして、ステップ S5において、調湿装置(10)の圧縮機 (53)の周波数を Yとする周 波数制御が行われる。つまり、ステップ S5では、このような運転条件下で、調湿装置( 10)の実際の COPが基準 COPを下回らな 、ように、調湿装置(10)の除湿能力が制 御される。更に、ステップ S6では、以上のようにして調湿装置(10)の調湿能力を変更 した場合に、空調システム(1)で処理すべき必要除湿量のうち調湿装置(10)のみの 除湿では処理できない残りの必要除湿量 (空調側必要調湿量)が算出される。つまり 、ステップ S6では、調湿装置(10)で基準 COPを満たす運転を行う際、空調装置 (20 )で負担すべき空調側の必要除湿量の算出が行われる。
[0074] ステップ S7では、以上のようにして算出された空調側必要調湿量力 演算部 (43) から)空調制御部 (42)に送信される。空調制御部 (42)は、この空調側必要除湿量を 空調装置 (20)で処理するために要する室内熱交換器 (62)の冷媒の目標蒸発温度 T eを算出する。具体的に、この目標蒸発温度 Teは、上記空調側必要除湿量、目標湿 度、室内温湿度等に基づいて算出され、室内空気の露点温度よりも低い値となる。
[0075] ステップ S8で空調装置 (20)の冷媒蒸発温度が目標蒸発温度 Teに制御されると、 空調装置 (20)で処理された空気中の水分が凝縮してこの空気が除湿される。なお、 空調装置 (20)で凝縮した後の水分は、ドレンパンなどに回収され、ドレン水といして 空調装置 (20)の外部に排出される。
[0076] 以上のように、同時除湿運転時には、調湿装置(10)で基準 COPを満たすような空 気の除湿が行われる。同時に空調装置 (20)では、上記調湿装置(10)の除湿だけで は処理できない残りの水分が除湿され、最終的に室内の湿度が目標湿度に維持さ れる。
[0077] 一実施形態の効果
上記実施形態では、空調システム(1)の冷房除湿運転時において、調湿装置(10) と空調装置 (20)とを連動して制御し、通常運転と同時除湿運転とを切り換えるように している。具体的に、例えば室外空気の湿度が比較的低ぐ演算部 (43)で算出した 予測 COPが基準 COP以上となる運転条件では、通常運転を行うようにしている。こ の通常運転時では、調湿装置(10)では、基準 COPを上回る空気の除湿が行われる ことになるので、室内の除湿を確実かつ効率的に行うことができる。
[0078] 一方、例えば室外空気の湿度が極端に高ぐ演算部 (43)で算出した予測 COPが 基準 COPよりも小さくなる運転条件では、同時除湿運転を行うようにしている。この同 時除湿運転時では、調湿装置(10)と空調装置 (20)との双方で除湿が行われるため 、このような運転条件においても、室内の除湿を確実かつ効率的に行うことができる。
[0079] 特に、同時除湿運転では、調湿装置(10)で基準 COPの運転が行われるように、圧 縮機 (53)の運転周波数を制御している。したがって、調湿装置(10)の実際の COP が基準 COPを下回ることを未然に防止できる。更に、このように調湿装置(10)の除湿 能力を制限した場合に、空調システム(1)の必要調湿量のうち調湿装置(10)で処理 できなかった残りの必要調湿量を空調側必要調湿量として算出し、この空調側必要 調湿量を処理できるように空調装置 (20)の冷媒蒸発温度 Teを制御するようにして ヽ る。したがって、調湿装置(10)で効率の高い除湿運転を行えると同時に、空調システ ム(1)で処理すべき必要調湿量を調湿装置(10)及び空調装置 (20)で分担して確実 に処理できる。
[0080] く制御動作の変形例〉
空調システム(1)の冷房除湿運転時には、上述の実施形態以外に以下のような変 形例の制御動作を行うことができる。
[0081] 一変形例 1
図 6に示す変形例 1の制御動作は、同時除湿運転時における空調装置 (20)の目 標蒸発温度 Teの算出方法が上記実施形態と異なる。具体的に、空調システム(1)が 同時除湿運転に移行すると、ステップ S6では室内の目標湿度の露点温度が算出さ れる。そして、この露点温度に所定温度 A (例えば 5°C)を差し引いた温度が上記目 標蒸発温度 Teとして決定される。
[0082] この変形例 1の制御動作では、調湿装置(10)の除湿能力に拘わらず、空調装置 (2 0)の室内熱交換器 (62)の冷媒蒸発温度が確実に空気の露点温度以下となる。した がって、同時除湿運転時において、空調装置 (20)で確実に空気中の水分を凝縮さ せ空気の除湿を行うことができる。
[0083] 一変形例 2—
図 7に示す変形例 2の制御動作では、上述したステップ S6において、空調側必要 除湿量の補正が行われる。具体的に、変形例 2の制御動作では、ステップ S9におい て、室内湿度が所定間隔おきに検出される。ここで、室内の目標湿度と現在の室内 湿度との湿度差の絶対値が、室内の目標湿度と前回の検出時の室内湿度との湿度 差の絶対値よりも大きい場合に、室内の湿度が目標湿度に収束していないと判断さ れる。その結果、ステップ S 10に移行し、上記前回の室内湿度、現状の室内湿度、及 び目標湿度から空調側必要除湿量の補正値が算出される。ステップ S6では、空調 側必要除湿量にこの補正値が乗じられ、室内の湿度が目標湿度に収束するような空 調側必要除湿量が再設定される。
[0084] この変形例 2の制御動作では、以上のようにして空調装置 (20)の除湿能力の補正 が行われるため、室内の湿度を確実に目標湿度に収束させることができる。したがつ て、この空調システム(1)の信頼性を向上させることができる。
[0085] 一変形例 3—
図 8に示す変形例 3の制御動作では、通常運転と同時除湿運転との切り換えの判 定動作が上記実施形態と異なる。即ち、この変形例 3では、ステップ S1において、空 調システム(1)で処理すべき必要除湿量が算出されると、演算部 (43)は、この必要除 湿量を調湿装置(10)のみで処理する場合に要する調湿装置(10)の圧縮機 (53)の 運転周波数を予測周波数として算出する。
[0086] 次に、ステップ S2において、調湿制御部 (41)は、通常運転と同時除湿運転との切 り換えの判定を行う。具体的に、調湿制御部 (41)では、ステップ S1で算出した予測 周波数と、予め設定された上限周波数との大小比較を行い、通常運転と同時除湿運 転との切り換えを行う。なお、上記上限周波数は、圧縮機 (53)及びこの調湿装置(10 )で効率的な運転を行うことができるための上限となる圧縮機 (53)の運転周波数であ る。
[0087] ここで、ステップ S2において、ステップ S1で算出された予測周波数が上限周波数 よりも小さくなる場合、調湿装置(10)のみで必要除湿量を全て処理したとしても、調 湿装置(10)で効率の高い除湿を行うことができると判断される。したがって、このよう な場合には、ステップ S3に移行し、通常運転が行われる。
[0088] 一方、ステップ S2において、ステップ S1で算出された予測周波数が上限周波数以 上となる場合、調湿装置(10)のみで必要除湿量を全て処理すると、調湿装置(10)の 運転効率が低下してしまうと判断される。したがって、このような場合には、ステップ S 4に移行し、同時除湿運転が行われる。このステップ S4では、圧縮機 (53)の周波数 が上記上限周波数となるように制御される。その後は、上記実施形態と同様に、ステ ップ S5からステップ S7が実行され、調湿装置(10)と空調装置 (20)との双方で空気 の除湿が行われる。
[0089] この変形例 3の制御動作では、圧縮機 (53)の予測周波数と、上限周波数との大小 比較によって通常運転と同時除湿運転とを自動的に切り換えることができる。ここで 同時除湿運転時にぉ 、ては、調湿装置(10)の圧縮機 (53)の周波数が上限周波数 となるように制限される。したがって、調湿装置(10)が過負荷運転となってしまうことを 確実に回避でき、この空調システム(1)で空気の除湿を効率的に行うことができる。
[0090] なお、変形例 3のステップ S1からステップ S4までの切り換え判定動作を、上述した 変形例 1や変形例 2に適用するようにしてもよい。
[0091] くその他の実施形態〉
上記各実施形態では、演算部 (43)で調湿装置(10)の運転効率を予測し、同時除 湿運転時には、調湿装置(10)で基準の運転効率を満たすように除湿能力を制御し ている。し力しながら、例えば同時除湿運転時の空調装置 (20)の運転効率 (例えば COP)を演算部 (43)で更に算出するようにしてもよい。ここで、この空調側の COPが 調湿装置(10)の基準 COPより低い場合には、ステップ S4において、上記基準 COP が低くする補正を行 、、この補正された基準 COPを満たすように調湿装置(10)の圧 縮機周波数を制御するようにしてもよい。この場合には、調湿装置(10)の実際の CO Pが低下するものの、空調側必要調湿量を低減させることができるため、空調装置 (2 0)の実際の COPを向上させることができる。
[0092] また、上記各実施形態では、ステップ S 1及びステップ S2にお 、て、演算部 (43)で 予測した COPと基準 COPとの大小比較によって通常運転と同時除湿運転との切り 換え判定を行っている。これ以外に室外空気の湿度に応じて通常運転と同時除湿運 転との切り換え判定を行ってもよい。具体的には、演算部 (43)が、室外空気の湿度と 空調システムの目標湿度との比(室外空気湿度 Z目標湿度)を算出し、この比が基 準値よりも低 、場合には、この空調システム(1)で処理すべき必要除湿量が比較的 少ないとみなして通常運転に移行する一方、この比が基準値よりも高い場合には、こ の空調システム(1)で処理すべき必要除湿量が比較的高!、とみなして同時除湿運転 へ移行するようにしてもょ ヽ。
[0093] また、上記各実施形態の調湿装置(10)は、吸着熱交翻 (51,52)に担持した吸着 剤で空気の除湿を行うようにしている。し力しながら、この調湿装置(10)を以下のよう な変形例の構成とすることもできる。
[0094] 調湿装置の第 1変形例
図 9に示すように、第 1変形例の調湿装置(10)は、冷媒回路(100)と 2つの吸着素 子(111, 112)とを備えている。冷媒回路(100)は、圧縮機(101)と凝縮器 (102)と膨張 弁(103)と蒸発器 (104)が順に接続された閉回路である。冷媒回路(100)で冷媒を循 環させると、蒸気圧縮冷凍サイクルが行われる。この冷媒回路(100)は、熱源手段を 構成している。第 1吸着素子(111)及び第 2吸着素子(112)は、ゼォライト等の吸着剤 を備えており、それぞれ吸着部材を構成している。また、各吸着素子(111,112)には 多数の空気通路が形成されており、この空気通路を通過する際に空気が吸着剤と接 触する。
[0095] この調湿装置(10)は、第 1動作と第 2動作を繰り返す。図 9(A)に示すように、第 1動 作中の調湿装置(10)は、凝縮器 (102)で加熱された空気を第 1吸着素子(111)へ供 給して吸着剤を再生する一方、第 2吸着素子 (112)に水分を奪われた空気を蒸発器 (104)で冷却する。また、図 9(B)に示すように、第 2動作中の調湿装置(10)は、凝縮 器 (102)で加熱された空気を第 2吸着素子(112)へ供給して吸着剤を再生する一方 、第 1吸着素子(111)に水分を奪われた空気を蒸発器(104)で冷却する。そして、こ の調湿装置(10)は、吸着素子(111,112)を通過する際に除湿された空気を室内へ 供給する除湿運転と、吸着素子(111,112)を通過する際に加湿された空気を室内へ 供給する加湿運転とを切り換えて行う。
[0096] 調湿装置の第 2変形例
図 10に示すように、第 2変形例の調湿装置(10)は、調湿ユニット(150)を備えてい る。この調湿ユニット(150)は、ペルチェ素子(153)と一対の吸着フィン(151, 152)とを 備えている。吸着フィン(151,152)は、いわゆるヒートシンクの表面にゼォライト等の吸 着剤を担持させたものである。この吸着フィン(151,152)は、吸着部材を構成している 。ペルチェ素子(153)は、その一方の面に第 1吸着フィン(151)が、他方の面に第 2吸 着フィン(152)がそれぞれ接合されている。ペルチェ素子(153)に直流を流すと、 2つ の吸着フィン(151, 152)の一方が吸熱側になつて他方が放熱側になる。このペルチェ 素子(153)は、熱源手段を構成している。
[0097] この調湿装置(10)は、第 1動作と第 2動作を繰り返す。第 1動作中の調湿ユニット(1 50)は、放熱側となった第 1吸着フィン(151)の吸着剤を再生して空気を加湿する一 方、吸熱側となった第 2吸着フィン(152)の吸着剤に水分を吸着させて空気を除湿す る。また、第 1動作中の調湿ユニット(150)は、放熱側となった第 2吸着フィン(152)の 吸着剤を再生して空気を加湿する一方、吸熱側となった第 1吸着フィン(151)の吸着 剤に水分を吸着させて空気を除湿する。そして、この調湿装置(10)は、調湿ユニット (150)を通過する際に除湿された空気を室内へ供給する除湿運転と、調湿ユニット(1 50)を通過する際に加湿された空気を室内へ供給する加湿運転とを切り換えて行う。
[0098] なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、 あるいはその用途の範囲を制限することを意図するものではない。
産業上の利用可能性
[0099] 以上説明したように、本発明は、調湿装置で除湿した空気と、空調装置で冷却した 空気とを同一の室内に供給する空調システムについて有用である。

Claims

請求の範囲
[1] 調湿装置及び空調装置を備え、上記調湿装置で除湿した空気と上記空調装置で 冷却した空気とを同一の室内に供給する空調システムであって、
上記空調装置は、空気の冷却時に空気中の水分を凝縮させて該空気を除湿する 運転が可能に構成され、
上記調湿装置のみで空気の除湿を行う通常運転と、該調湿装置及び空調装置で 空気を除湿する同時除湿運転とを切り換え可能に構成されていることを特徴とする空 調システム。
[2] 請求項 1において、
調湿装置のみで空気の除湿を行う場合の調湿装置の運転効率を予測する演算部 を備え、
上記演算部で予測した調湿装置の運転効率が基準運転効率以上になると通常運 転を行!、、上記演算部で予測した調湿装置の運転効率が基準運転効率よりも小さく なると同時除湿運転を行うことを特徴とする空調システム。
[3] 請求項 2において、
上記同時除湿運転時には、調湿装置の運転効率が上記基準運転効率となるように 該調湿装置の除湿能力を調節することを特徴とする空調システム。
[4] 請求項 1において、
上記調湿装置は、室外空気を除湿して室内に供給するように構成され、 室外空気の湿度に応じて上記通常運転と上記同時除湿運転とを切り換えて行うこ とを特徴とする空調システム。
[5] 請求項 1において、
上記調湿装置は、容量が可変な圧縮機を有する冷媒回路と、吸着剤が担持された 吸着部材とを備え、冷媒回路の冷媒で冷却した吸着部材の吸着剤と接触する空気 を除湿するように構成され、
調湿装置のみで空気の除湿を行う場合の調湿装置の運転効率を予測する演算部 を備え、
上記演算部で予測した調湿装置の運転効率が基準運転効率以上になると通常運 転を行!、、上記演算部で予測した調湿装置の運転効率が基準運転効率よりも小さく なると同時除湿運転を行うことを特徴とする空調システム。
請求項 1において、
上記調湿装置は、容量が可変な圧縮機を有する冷媒回路と、吸着剤が担持された 吸着部材とを備え、冷媒回路の冷媒で冷却した吸着部材の吸着剤と接触する空気 を除湿するように構成され、
調湿装置のみで空気の除湿を行う場合の調湿装置の圧縮機の運転周波数を予測 する演算部を備え、
上記演算部で予測した圧縮機の運転周波数が上限周波数よりも小さくなると通常 運転を行い、上記演算部で予測した圧縮機の運転周波数が上限周波数以上になる と同時除湿運転を行うことを特徴とする空調システム。
PCT/JP2006/310320 2005-05-24 2006-05-24 空調システム WO2006126573A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06756526.7A EP1887291A4 (en) 2005-05-24 2006-05-24 AIR CONDITIONING SYSTEM
AU2006250507A AU2006250507B2 (en) 2005-05-24 2006-05-24 Air conditioning system
US11/920,927 US7857235B2 (en) 2005-05-24 2006-05-24 Air conditioning system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005151510A JP4052319B2 (ja) 2005-05-24 2005-05-24 空調システム
JP2005-151510 2005-05-24

Publications (1)

Publication Number Publication Date
WO2006126573A1 true WO2006126573A1 (ja) 2006-11-30

Family

ID=37451997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310320 WO2006126573A1 (ja) 2005-05-24 2006-05-24 空調システム

Country Status (7)

Country Link
US (1) US7857235B2 (ja)
EP (1) EP1887291A4 (ja)
JP (1) JP4052319B2 (ja)
KR (1) KR100959227B1 (ja)
CN (1) CN100526741C (ja)
AU (1) AU2006250507B2 (ja)
WO (1) WO2006126573A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100781501B1 (ko) * 2004-03-31 2007-11-30 다이킨 고교 가부시키가이샤 공기 조화기 및 공기 조화기의 제어 방법
DK177003B1 (en) * 2009-08-20 2010-11-15 Maersk Container Ind As Dehumidifier
JP5487857B2 (ja) * 2009-09-30 2014-05-14 ダイキン工業株式会社 空調システム
US8739558B2 (en) * 2010-08-17 2014-06-03 Payman Enayati Automatic cold and hot air conditioner system
JP4993014B2 (ja) * 2010-09-30 2012-08-08 ダイキン工業株式会社 コントローラおよび空調処理システム
JP5594030B2 (ja) * 2010-09-30 2014-09-24 ダイキン工業株式会社 コントローラ、調湿用制御部および空調処理システム
JP5625878B2 (ja) * 2010-12-20 2014-11-19 株式会社デンソー 車両用空調装置
JP5533637B2 (ja) * 2010-12-23 2014-06-25 株式会社デンソー 車両用空調装置
CN104246382B (zh) * 2012-03-14 2017-03-08 大金工业株式会社 调湿装置
JP5533926B2 (ja) * 2012-04-16 2014-06-25 ダイキン工業株式会社 空気調和機
US9810467B2 (en) * 2012-12-13 2017-11-07 Lennox Industries Inc. Controlling air conditioner modes
JP6234801B2 (ja) * 2013-12-18 2017-11-22 三菱重工サーマルシステムズ株式会社 空調システムの評価支援装置及び方法並びにプログラム
JP6234574B2 (ja) * 2014-07-04 2017-11-22 三菱電機株式会社 換気装置
KR101676921B1 (ko) * 2014-11-12 2016-11-16 엘지전자 주식회사 공기조화기 및 그 제어방법
KR102403512B1 (ko) 2015-04-30 2022-05-31 삼성전자주식회사 공기 조화기의 실외기, 이에 적용되는 컨트롤 장치
CN104943704B (zh) * 2015-06-12 2017-08-01 石家庄国祥运输设备有限公司 一种轨道车辆空调通过制冷功能实现湿度控制的方法
CN105135556B (zh) * 2015-07-20 2018-01-16 江苏日晨特种装备技术有限公司 一种应用直流变频控制技术的除湿机及其控制方法
KR101973648B1 (ko) * 2017-08-07 2019-04-29 엘지전자 주식회사 환기장치의 제어방법
US11262108B2 (en) * 2017-10-10 2022-03-01 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN215336790U (zh) * 2021-03-22 2021-12-28 青岛海尔空调电子有限公司 用于调湿的装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201148A (ja) * 2000-01-14 2001-07-27 Sharp Corp 空気調和機及びその乾燥運転方法
JP2004003864A (ja) * 2003-08-08 2004-01-08 Sharp Corp 空気調和機
JP2005049059A (ja) * 2003-07-31 2005-02-24 Daikin Ind Ltd 空気調和システム

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3153914A (en) * 1962-12-06 1964-10-27 Lithonia Lighting Inc Comfort conditioning system
US3989097A (en) * 1974-09-27 1976-11-02 Marshall Erdman And Associates, Inc. Dehumidification controls
JPS5823691Y2 (ja) * 1979-03-13 1983-05-20 株式会社ボッシュオートモーティブ システム 車輌用空調機の加湿装置
US4430864A (en) * 1981-12-31 1984-02-14 Midwest Research Institute Hybrid vapor compression and desiccant air conditioning system
US4582123A (en) * 1982-02-17 1986-04-15 Roger Williams Central dehumidification (tandem) system
US4711097A (en) * 1986-10-24 1987-12-08 Ferdinand Besik Apparatus for sorption dehumidification and cooling of moist air
US5070703A (en) * 1990-02-06 1991-12-10 Battelle Memorial Institute Hybrid air conditioning system integration
US5022241A (en) * 1990-05-04 1991-06-11 Gas Research Institute Residential hybrid air conditioning system
KR930003925B1 (ko) * 1991-02-25 1993-05-15 삼성전자 주식회사 분리형 에어 컨디셔너의 자동제어방법
JP3233447B2 (ja) * 1992-06-02 2001-11-26 東芝キヤリア株式会社 空気調和機
JP3190139B2 (ja) * 1992-10-13 2001-07-23 東芝キヤリア株式会社 空気調和機
US5984002A (en) * 1994-09-01 1999-11-16 Konica Corporation Temperature and humidity control apparatus and temperature and humidity prediction apparatus used therefor
US5598715A (en) * 1995-06-07 1997-02-04 Edmisten; John H. Central air handling and conditioning apparatus including by-pass dehumidifier
US5887651A (en) * 1995-07-21 1999-03-30 Honeywell Inc. Reheat system for reducing excessive humidity in a controlled space
US5950442A (en) * 1996-05-24 1999-09-14 Ebara Corporation Air conditioning system
US6070110A (en) * 1997-06-23 2000-05-30 Carrier Corporation Humidity control thermostat and method for an air conditioning system
US5887784A (en) * 1997-07-01 1999-03-30 Electrowatt Technology Innovation Ag Desiccant device and humidity measuring means
KR100248778B1 (ko) * 1997-11-07 2000-04-01 윤종용 공기조화기의 제습장치 및 그 제어방법
JP3228731B2 (ja) * 1999-11-19 2001-11-12 株式会社荏原製作所 ヒートポンプ及び除湿装置
US6711907B2 (en) * 2001-02-28 2004-03-30 Munters Corporation Desiccant refrigerant dehumidifier systems
JP2003065586A (ja) * 2001-08-27 2003-03-05 Hitachi Ltd 空気調和機
JP3719181B2 (ja) 2001-09-28 2005-11-24 ダイキン工業株式会社 冷凍装置
US6595012B2 (en) * 2001-09-29 2003-07-22 Alexander P Rafalovich Climate control system
JP2003161465A (ja) * 2001-11-26 2003-06-06 Daikin Ind Ltd 調湿装置
US6644049B2 (en) * 2002-04-16 2003-11-11 Lennox Manufacturing Inc. Space conditioning system having multi-stage cooling and dehumidification capability
JP2004028482A (ja) * 2002-06-27 2004-01-29 Corona Corp 除湿機
US20040089015A1 (en) * 2002-11-08 2004-05-13 York International Corporation System and method for using hot gas reheat for humidity control
US6826920B2 (en) * 2002-12-09 2004-12-07 Honeywell International Inc. Humidity controller
US6755035B1 (en) * 2003-02-20 2004-06-29 Supermarket Environment Services Company HVAC system and method for conditioning air
JP3596549B2 (ja) 2003-03-10 2004-12-02 ダイキン工業株式会社 調湿装置
US7236363B2 (en) * 2003-09-22 2007-06-26 Hewlett-Packard Development Company, L.P. Liquid cooled system module
US20050269418A1 (en) * 2003-10-24 2005-12-08 Fuller Andrew C Monitoring system
US7721560B2 (en) * 2004-07-20 2010-05-25 Carpenter Frank K Climate control and dehumidification system and method
US20060288713A1 (en) * 2005-06-23 2006-12-28 York International Corporation Method and system for dehumidification and refrigerant pressure control
US20060273183A1 (en) * 2005-06-03 2006-12-07 Lennox Manufacturing Inc. Method of dehumidifying an indoor space using outdoor air
JP2007285579A (ja) * 2006-04-14 2007-11-01 Toshiba Corp 空調制御装置
US20070257121A1 (en) * 2006-05-04 2007-11-08 Maple Chase Company Humidity control algorithm

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001201148A (ja) * 2000-01-14 2001-07-27 Sharp Corp 空気調和機及びその乾燥運転方法
JP2005049059A (ja) * 2003-07-31 2005-02-24 Daikin Ind Ltd 空気調和システム
JP2004003864A (ja) * 2003-08-08 2004-01-08 Sharp Corp 空気調和機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1887291A4 *

Also Published As

Publication number Publication date
KR100959227B1 (ko) 2010-05-19
CN100526741C (zh) 2009-08-12
AU2006250507B2 (en) 2009-08-13
JP2006329485A (ja) 2006-12-07
US20090230202A1 (en) 2009-09-17
JP4052319B2 (ja) 2008-02-27
KR20080005434A (ko) 2008-01-11
US7857235B2 (en) 2010-12-28
AU2006250507A1 (en) 2006-11-30
CN101171457A (zh) 2008-04-30
EP1887291A4 (en) 2014-10-29
EP1887291A1 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
JP4052319B2 (ja) 空調システム
JP4052318B2 (ja) 空調システム
KR100959226B1 (ko) 공조 시스템
JP4525465B2 (ja) 空調システム
JP3995006B2 (ja) 調湿装置
KR101201010B1 (ko) 조습장치
AU2006253462B2 (en) Air conditioning system
KR100978442B1 (ko) 조습 장치
KR100958995B1 (ko) 조습 장치
JP2006329579A (ja) 調湿装置
JP4561476B2 (ja) 空調システム
JP2006329583A (ja) 換気装置
JP2006343038A (ja) 調湿装置及び空調システム
JP2010156504A (ja) 空調システム
JP2006329582A (ja) 調湿装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680015257.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006250507

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 1020077026962

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11920927

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006756526

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006250507

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006756526

Country of ref document: EP