WO2006126527A1 - 銀被覆ボールおよびその製造方法 - Google Patents

銀被覆ボールおよびその製造方法 Download PDF

Info

Publication number
WO2006126527A1
WO2006126527A1 PCT/JP2006/310227 JP2006310227W WO2006126527A1 WO 2006126527 A1 WO2006126527 A1 WO 2006126527A1 JP 2006310227 W JP2006310227 W JP 2006310227W WO 2006126527 A1 WO2006126527 A1 WO 2006126527A1
Authority
WO
WIPO (PCT)
Prior art keywords
silver
dispersion
coated
core
ball
Prior art date
Application number
PCT/JP2006/310227
Other languages
English (en)
French (fr)
Inventor
Ken Asada
Fumiaki Kikui
Original Assignee
Neomax Materials Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neomax Materials Co., Ltd. filed Critical Neomax Materials Co., Ltd.
Priority to KR1020077005098A priority Critical patent/KR101244396B1/ko
Priority to CN2006800009230A priority patent/CN101031384B/zh
Priority to US11/915,659 priority patent/US8039107B2/en
Priority to EP06756483A priority patent/EP1900471A4/en
Priority to JP2007517833A priority patent/JP5042017B2/ja
Publication of WO2006126527A1 publication Critical patent/WO2006126527A1/ja
Priority to US13/227,566 priority patent/US20110318484A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3006Ag as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4853Connection or disconnection of other leads to or from a metallisation, e.g. pins, wires, bumps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L24/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13083Three-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13075Plural core members
    • H01L2224/1308Plural core members being stacked
    • H01L2224/13084Four-layer arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13144Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13155Nickel [Ni] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/1357Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/1354Coating
    • H01L2224/13599Material
    • H01L2224/136Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/13638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/13639Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00013Fully indexed content
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01016Sulfur [S]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01027Cobalt [Co]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01075Rhenium [Re]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15182Fan-in arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15182Fan-in arrangement of the internal vias
    • H01L2924/15184Fan-in arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1531Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
    • H01L2924/15311Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0215Metallic fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0242Shape of an individual particle
    • H05K2201/0257Nanoparticles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10234Metallic balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3463Solder compositions in relation to features of the printed circuit board or the mounting process
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12181Composite powder [e.g., coated, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated
    • Y10T428/2998Coated including synthetic resin or polymer

Definitions

  • the present invention relates to a silver-coated ball, and in particular to a silver-coated ball whose surface is covered with a coating layer containing silver superfine particles having an average particle diameter of 1 nm to 50 nm.
  • solder coated balls are mainly used to connect parts of electrical and electronic devices.
  • solder-coated balls can be produced, for example, as QFP (Quarter Flat Pack Package) having lead terminals around the parts, or BGA (Ball Grid Array) and CSP (Chip), which are relatively small and capable of increasing the number of pins. Used for input / output terminals of semiconductor packages such as size package).
  • QFP Quadrater Flat Pack Package
  • BGA Ball Grid Array
  • CSP Chip
  • FIGS. 10 (a) and 10 (b) are a perspective view and a cross-sectional view of a BGA using solder-coated balls.
  • the BGA is an LSI package in which a silver-coated ball 50 is bonded to the lower surface of the LSI chip via the interposer 62.
  • the silver-coated balls 50 are arranged in a lattice array on one surface of the interposer 62 and are input / output terminals of the package.
  • the silver-coated ball 50 has, for example, a structure in which a solder layer containing lead (Pb) is provided on the surface of a microsphere which also has a metal force of about 0.1 to: 1. Omm in diameter.
  • solder containing lead is being replaced with lead-free solder (Pb-free solder) in response to environmental problems.
  • Pb-free solder lead-free solder
  • the applicant of the present application discloses a solder-coated ball in which the surface is covered with a lead-free tin-silver (Sn_Ag) -based solder layer and generation of voids during heating and melting is suppressed.
  • Sn_Ag lead-free tin-silver
  • the solder may be a middle-low temperature solder (melting temperature: about 150 ° C. to about 250 ° C.) and a high-temperature solder (melting temperature: about 250 ° C. to about 300 ° C.). It is divided roughly. Medium- and low-temperature soldering is mainly performed when connecting electronic components to printed circuit boards and the like, and high-temperature soldering is mainly performed when connecting internal wiring of electronic components and the like.
  • the melting point of the above-mentioned Sn—Ag based solder layer is about 216 ° C., and the solder coated ball provided with this solder layer is suitably used for soldering at a low temperature range. While doing it, Sn The Ag-based solder layer can not be used for soldering in high temperature range because it remelts in the high temperature range of about 250 ° C to about 300 ° C and deformation of balls occurs. Accordingly, it is desirable to provide a lead-free solder coated ball that can be applied to high temperature solder.
  • metal nanoparticles (ultrafine particles with a particle size of several nm to several hundreds of nm) are known to exhibit physical properties completely different from the Balta state.
  • silver nanoparticles are known to sinter at temperatures much lower than balta silver.
  • the column of the example of Patent Document 3 discloses a method of producing a silver colloid nanosol containing silver nanoparticles having an average particle diameter of about 32 nm.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-114123
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2004-128262
  • Patent Document 3 Japanese Patent Application Laid-Open No. 2003-159525
  • the present inventors examined using silver nanoparticles as a high temperature solder material for solder-coated balls.
  • the main object of the present invention is to provide a silver-coated ball provided with a coating layer of silver nanoparticles and a method for producing the same.
  • the silver-coated ball of the present invention has a ball-like core and a coating layer containing silver ultrafine particles provided so as to surround the core, and the average of the silver ultrafine particles contained in the coating layer is The particle size is lnm or more and 50nm or less.
  • the ratio of carbon contained in the silver-coated ball is 0.
  • the thickness of the covering layer is not less than 0.1 zm and not more than 50 z m.
  • the core is formed of copper or a resin.
  • the average particle size of the core is not less than 0.05 mm and not more than 1.5 mm.
  • the method for producing a silver-coated ball according to the present invention comprises the steps of preparing a ball-like core, a dispersion containing silver ultrafine particles and a solvent, and forming a film of the dispersion on the surface of the core. And C. removing the solvent contained in the dispersion from the film of the dispersion, and forming a coating layer containing the silver ultrafine particles on the surface of the core.
  • the average particle size is lnm or more and 50nm or less
  • the solvent contains a nonpolar hydrocarbon solvent
  • the mass ratio of the silver ultrafine particles to the solvent is 40% by mass or more and 85% by mass or less: 15% by mass or more 60% % Or less.
  • the step of forming a film of the dispersion on the surface of the core includes the step of immersing the core in the dispersion.
  • the step of forming the coating layer containing the silver ultrafine particles includes the steps of: supplying the ball on which the film of the dispersion liquid is formed to a slope; and rolling the ball on the slope And b.
  • the solvent comprises a solvent having a boiling point of greater than about 100 ° C and a solvent having a boiling point of about 100 ° C or less.
  • the nonpolar hydrocarbon solvent comprises xylene.
  • the silver-coated ball of the present invention is covered with a covering layer containing silver ultrafine particles having an average particle diameter of about 1 nm to 50 nm so as to cover the ball-like core.
  • the silver ultrafine particles also have a melting point of about 300 ° C. at about 250 ° C. force. Therefore, the silver-coated ball of the present invention can be applied as a lead-free solder material for high temperature solder. Since silver melted by soldering does not remelt up to the melting point of silver (about 960 ° C.), the present invention provides a semiconductor package having an increased bonding strength with silver-coated balls at high temperatures. it can. Brief description of the drawings
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a silver-coated ball 10 according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a preferred apparatus for producing a silver-coated ball from a dispersion film-coated ball.
  • FIG. 3 (a) and (b) illustrate an example of a method of forming a semiconductor connection structure according to the present invention
  • FIG. 4 is a photograph of the silver-coated copper ball of Example 1 according to the present invention as observed with a stereomicroscope.
  • FIG. 5 is a photograph of the silver-coated copper ball of Comparative Example 1 observed with a stereomicroscope.
  • FIG. 6 A photograph of a copper ball observed with a stereomicroscope.
  • FIG. 7 is a stereomicrograph of the silver-coated copper ball of Example 1 heated and melted at 300 ° C. for 2 hours in a nitrogen atmosphere.
  • FIG. 8 is a DTA curve of the silver-coated copper ball of Example 1.
  • FIG. 10 (a) and (b) are a perspective view and a cross-sectional view of a BGA using solder coated balls.
  • the present inventors have developed a silver-coated ball.
  • the dispersion generally contains a solvent for dissolving the silver ultrafine particles and a surfactant, and further contains a reducing agent, a protective colloid agent, and the like as required.
  • Patent Document 3 discloses a composite gel in which a noble metal compound such as ultrafine silver particles and a surfactant are mixed at a predetermined ratio.
  • This composite gel is useful as a material for producing a precious metal colloid organosol material containing a high concentration of monodispersed precious metal colloid particles, and is suitable, for example, for coloring pastes such as conductive pastes and fibers of electronic parts. Used.
  • inks and pastes containing high concentrations of ultrafine silver particles and having excellent dispersion stability and sinterability at low temperatures are commercially available (for example, “Nanometal, a conductive ink for fine wiring manufactured by Vacuum Metals Co., Ltd. Inks, such as "Nanopaste", a metal paste for fine wiring made by the company.
  • the inventor further studied by changing the composition of the dispersion, and the like. As a result, after a film of a dispersion containing a solvent and silver ultrafine particles in a predetermined ratio is formed on the surface of the core, a predetermined solvent removal process is performed to obtain a desired silver fine particle-containing coating layer. It was found that the solvent was uniformly evaporated without aggregation of the silver ultrafine particles, and the intended purpose was achieved, and the present invention was achieved.
  • the dispersion used in the present embodiment is excellent in the adsorptivity (adhesion) to the surface of the sphere, since the content ratio of the silver ultrafine particles and the solvent is appropriately controlled. Furthermore, the dispersion preferably contains a high boiling point solvent having a boiling point above about 100 ° C., so that the evaporation rate is slow. Therefore, the silver ultrafine particles can be stably dispersed in the dispersion with almost no aggregation. Furthermore, since the solvent removal process in the present embodiment is controlled so that the evaporation rate of the solvent can be controlled to a constant level, the dispersion described above is not unevenly distributed around the core.
  • FIG. 1 shows a cross-sectional view of a silver coated ball 10 according to an embodiment of the present invention.
  • the silver-coated ball 10 of the present embodiment has a ball-shaped core 1 and a coating layer containing silver ultrafine particles having an average particle diameter of 1 nm to 50 nm provided so as to surround the core 1. And have.
  • the surface of the core 1 is coated with silver superfine particles having the above-described average particle diameter.
  • the melting point of the silver ultrafine particles is in the range of about 250 ° C. to about 300 ° C., so that soldering at high temperatures is possible.
  • silver melted by heating does not remelt up to the melting point of silver (about 960 ° C.), it is possible to provide a semiconductor package extremely excellent in bonding with silver-coated balls even at high temperatures. .
  • the average particle diameter of the silver ultrafine particles constituting the coating layer 2 is in the range of 1 nm or more and 50 nm or less.
  • the average particle diameter of the ultrafine silver particles is not particularly limited as long as the above characteristics of the ultrafine silver particles are effectively exhibited, but the average particle diameter is set within the above range in consideration of dispersion stability and the like.
  • the preferred average particle size of the silver ultrafine particles is 8 nm or more and 20 nm or less.
  • the silver ultrafine particles may have an average particle size in the range of, for example, 8 nm ⁇ 2 nm to 20 nm ⁇ 2 nm.
  • the average particle diameter is measured by calculating the area equivalent circular diameter (diameter) of silver particles present in the observation field of view (lOOnm x IOOnm) using an image processing apparatus and calculating the average value thereof. .
  • the silver ultrafine particles do not necessarily have to have a narrow particle size distribution and be monodispersed. From the viewpoint of forming a dense covering layer on the surface of the sphere, for example, it is preferable that the particle size distribution be present as a polydisperse having two peaks.
  • the proportion of C (carbon) contained in the covering layer 2 is not less than 0.1% by mass and not more than 1% by mass.
  • C 1 is considered to be derived mainly from the solvent used for producing the silver-coated ball of the present embodiment.
  • the silver ultrafine particles are attached to the surface of the sphere with good adhesion.
  • the content ratio of the solvent is set higher than that of the ordinary dispersion containing silver ultrafine particles, and preferably, the coating layer contains a high boiling point solvent having a boiling point of more than about 100 ° C. It is thought that a lot of C will be introduced inside.
  • the content of C is measured by a high frequency combustion infrared absorption method using a carbon and sulfur analyzer.
  • the thickness of the covering layer 2 is preferably in the range of 0.1 ⁇ m to 50 ⁇ m. If the thickness of the covering layer 2 is less than 0.1 x m, the function as a solder layer can not be exhibited effectively.
  • the preferred thickness of the covering layer 2 is 1.5 z m or more. However, if the thickness of the covering layer 2 exceeds 50 z m, the covering layer may be melted after bonding the silver-coated ball to the substrate, which may cause a defect such as misalignment.
  • the thickness of the coating layer 2 is determined by using a microscope and determining the ball diameter (area equivalent circle diameter) of the ball after the coating layer 2 is formed on the surface of the core 1 and the ball before the coating layer 2 is formed. It is measured by observing the sphere diameter (area circle equivalent diameter) and calculating the difference between them.
  • the differential thermal curve (DTA curve) of the silver-coated ball 10 preferably exhibits an endothermic peak having a maximum value in the range of more than about 100 ° C. and about 200 ° C. or less.
  • the DTA curve in the silver-coated ball of this embodiment has an endothermic peak (about 240 ° C. force about 250 ° C.) attributed to the melting point of silver ultrafine particles. It shows an endothermic peak with a maximum at about 150 ° C (see Figure 8). The latter endothermic peak is believed to be attributable to the high boiling point solvent having a boiling point of more than about 100 ° C.
  • the covering layer 2 has a single-layer structure including silver ultrafine particles.
  • the covering layer 2 may have a multilayer structure composed of a plurality of metal layers as long as the characteristics of the above-described ultrafine silver particles are not impaired.
  • the covering layer 2 may be composed of a first metal layer containing ultrafine silver particles and a second metal layer (plating layer) provided so as to surround the first layer.
  • the surface of the silver ultrafine particles is covered with the second contact layer, so that the silver ultrafine particles are oxidized when heated and melted at a high temperature.
  • the second metal layer preferably contains, for example, a metal that melts at a lower temperature than silver ultrafine particles such as Sn and In.
  • the core 1 is not particularly limited as long as it is generally used for solder coated balls.
  • the core 1 is more preferably formed of Cu, which is preferably formed of a metal such as Cu or A1.
  • Cu is useful as a connecting material for semiconductor packages because of its low melting point and low thermal resistance.
  • the core 1 may be formed of a resin.
  • a metal layer such as Ni is formed on the surface of the core 1 for the purpose of enhancing the heat conductivity and facilitating the formation of the cover layer 2, and then forming the cover layer 2. It is preferable to form.
  • the average particle diameter of the core 1 is preferably, for example, in the range of not less than 0.05 mm and not more than 1.5 mm.
  • the average particle size is properly adjusted according to the number of pins such as BGA.
  • the production method of the present embodiment comprises the steps of preparing a ball-shaped core, a dispersion containing silver ultrafine particles and a solvent, forming a film of the dispersion on the surface of the core, and Removing the solvent contained in the dispersion from the dispersion film, and forming a coating layer containing the silver ultrafine particles on the surface of the core.
  • a ball-shaped core and a dispersion are prepared.
  • the dispersion contains silver ultrafine particles and a solvent.
  • the dispersion used in this embodiment has a composition suitable for producing a desired silver-coated ball, as described below.
  • the dispersion contains 40% by mass or more and 85% by mass or less of silver ultrafine particles, and 15% by mass or more and 60% by mass or less of the solvent, and compared with the dispersions proposed so far, Generally, the proportion of solvent is high. As a result, it is possible to form a coating layer having a uniform thickness without aggregation of the ultrafine silver particles on the surface of the sphere with good adhesion.
  • the content ratio of the silver ultrafine particles to the solvent is out of the above range, peeling of the silver ultrafine particles, which causes poor attachment (adhesion) of the silver ultrafine particles to the core surface, occurs.
  • the preferable content ratio of the silver ultrafine particles and the solvent is 50% by mass or more and 70% by mass or less: 30% by mass or more and 50% by mass or less.
  • the solvent is not particularly limited as long as it can dissolve silver ultrafine particles, and both nonpolar solvents and polar solvents may be used. From the viewpoint of forming a coating layer containing silver ultrafine particles with good adhesion on the surface of the core, nonpolar hydrocarbon solvents preferred by nonpolar solvents are more preferable.
  • the nonpolar hydrocarbon solvent typically includes paraffin hydrocarbons or aromatic hydrocarbons.
  • paraffin hydrocarbons for example, hexane (boiling point about 69 ° C.), octone (boiling point about 126 ° C.), cyclohexane (boiling point about 81 ° C.), cyclopentane (boiling point about 51 ° C.), etc.
  • Aromatic hydrocarbons include, for example, xylene (boiling point about 140 ° C.), toluene (boiling point about 110 ° C.), benzene (boiling point about 81 ° C.), etc.
  • Group hydrocarbons are also included. These may be used alone or in combination of two or more.
  • the solvent used in the present embodiment preferably contains at least xylene.
  • the solvent preferably contains a solvent having a boiling point of more than 100 ° C. (high boiling point solvent) and a solvent having a boiling point of 100 ° C. or less (low boiling point solvent).
  • high boiling point solvents are considered to be useful because they have an appropriate vaporization rate to form the desired silver ultrafine particle coating layer.
  • the solvent may be composed of only a high boiling point solvent.
  • the dispersion may contain other additives that can normally be contained in the ultrafine silver particle-containing dispersion, as long as the effects of the present embodiment are not impaired. Agents, antifoams, anticorrosives, etc.).
  • a film of the dispersion is formed on the surface of the core.
  • the ball obtained by this process is referred to as “dispersion film-coated ball”, and “silver-coated ball” in which a silver-coated layer is formed on the surface of the core targeted in the present embodiment. To distinguish.
  • the film of the dispersion is preferably formed using a dipping method. Specifically, for example, about 3
  • the core is immersed in the dispersion heated to 0 ° C. for a predetermined time.
  • the immersion time may be appropriately adjusted depending on the composition of the dispersion, etc., but is preferably within a range of, for example, 3 minutes or less.
  • the core is degreased in advance before immersion in the dispersion. This improves the adhesion of the dispersion to the core surface.
  • the dispersion between adjacent cores In order to ridge, the dispersion is localized around the core. If the solvent is vaporized in this state, there is a risk that many silver ultrafine particles will remain at locations where a large amount of dispersion liquid is localized.
  • the solvent is removed from the film of the dispersion solution, and a coating layer containing silver ultrafine particles is formed on the surface of the core. This gives the desired silver coated balls.
  • This apparatus comprises a bevel 31 for rolling the dispersion film-coated ball and a base 32 for supporting the bevel.
  • a dispersion film coated ball is supplied to the slope 31 and the core is rolled along the slope 31.
  • a dispersion film of uniform thickness is formed on the surface of the core.
  • a coating layer of ultrafine silver particles of uniform thickness is formed on the surface of the core.
  • Such solvent removal action is further promoted, for example, by using a glass slope.
  • the solvent in order to obtain a silver-coated layer with less variation in thickness, it is preferable to control so that the solvent is vaporized uniformly.
  • excess solvent on the surface is absorbed and removed with paper (Kimwipe) or cloth before feeding the dispersion film-coated ball to the slope, or the surface is air-dried with a dryer or the like.
  • the surface in the step of rolling the dispersion film-coated ball on a slope, the surface may be air-dried with a dryer or the like.
  • connection structure in which a silver-coated ball can be used is generically referred to as a “semiconductor connection structure”.
  • a silver-coated ball 50 and a substrate 20 desired to be bonded to the silver-coated ball 50 are prepared.
  • the substrate 20 is, for example, an interposer of BGA (see FIG. 10) or CSP, and the main surface of the substrate 20 is provided with a pad 18 formed of a conductive material.
  • the pad 18 is formed of, for example, a laminate of a Cu layer 12, a Ni plating layer 14, and an Au plating layer 16.
  • the silver-coated ball 50 placed on the pad 18, the silver-coated ball is By heating 50, the coating layer 2 is melted as shown in FIG. 3 (b).
  • the solder layer in the molten state is shown as 4A in Fig. 3 (b).
  • the cover layer 4A in the molten state is cooled, solidified, and bonded to the pad 18.
  • the semiconductor connection structure is formed.
  • the bonding strength of the silver-coated ball 50 with respect to the substrate 20 is high, and problems such as misalignment are less likely to occur. Therefore, a highly reliable semiconductor connection structure is provided.
  • spherical copper cores were used to investigate how the adhesion of the silver ultrafine particles changes depending on the composition of the dispersion. Specifically, two types of copper cores having different diameters (diameter 0.53 mm, 0. 75 mm), and dispersions A and B having the following compositions were used according to the method described below. No. 2 silver-coated copper balls and silver-coated copper balls of Comparative Examples 1 to 2 were produced.
  • Dispersion A is a dispersion containing about 90% by weight of ultrafine silver particles (average particle diameter of about 3 nm to about 15 nm) and about 10% by weight of a solvent.
  • the dispersion A does not satisfy the content ratio of the silver ultrafine particles to the solvent specified in the present embodiment.
  • the solvent consists only of xylene and toluene, and contains a higher proportion of xylene than toluene.
  • the dispersion B is obtained by further adding xylene to the dispersion A, and contains about 60 mass% of silver ultrafine particles (average particle diameter of about 3 nm to about 15 nm) and about 40 mass% of a solvent. Play Dispersion B satisfies the content ratio of the silver ultrafine particles to the solvent specified in the present embodiment.
  • a copper core having a diameter of 0.75 mm was degreased using a neutral degreasing solution 506 (manufactured by Ishihara Pharmaceutical Co., Ltd.) (pretreatment). Specifically, after immersing the copper core in neutral degreasing solution (about 5 minutes at 35 ° C), it was washed with pure water under room temperature for about 3 minutes, and further washed with running water for about 1 minute . Then, it was immersed in ethanol for about 2 minutes and dried.
  • neutral degreasing solution 506 manufactured by Ishihara Pharmaceutical Co., Ltd.
  • the dispersion B was heated to about 30 ° C., and the copper core pretreated as described above was heated to about 30 ° C. Soak for about 2 minutes. By immersion, a dispersion film-coated copper ball having a dispersion film formed on the surface of the copper core is obtained.
  • the copper balls were introduced into the apparatus shown in FIG. 2 described above, supplied to a petri dish disposed in the apparatus and rolled to make the thickness of the coating layer uniform.
  • the silver-coated copper ball of Example 1 (about 0.4 ⁇ m thick of the coating layer of the silver ultrafine particles) was produced.
  • Example 2 The silver-coated copper balls of Example 2 were produced in the same manner as in Example 1 described above except that copper balls having a diameter of 0.35 mm were used instead of the copper balls having a diameter of 0.75 mm.
  • the thickness of the coating layer of silver ultrafine particles in the silver-coated copper ball of No. 2 is about 0.7 / im.
  • the silver-coated copper ball of Comparative Example 1 was produced in the same manner as Example 1 described above except that the dispersion A was used instead of the dispersion B.
  • FIG. 4 and 5 show photographs of the silver-coated copper balls of Example 1 and Comparative Example 1 observed with a stereomicroscope, respectively.
  • FIG. 6 shows a photomicrograph of a copper ball before forming a silver coating layer.
  • FIG. 7 shows a stereomicrograph of the silver-coated copper ball of Example 1 heated and melted at 300 ° C. for 2 hours in a nitrogen atmosphere. As shown in FIG. 7, even after heating and melting the silver-coated copper ball of Example 1 under high temperature, the silver ultrafine particles adhere to the surface of the copper ball. It is well formed. Thus, it can be seen that the silver-coated copper balls of Example 1 are useful as lead-free solder materials for high temperature solder.
  • the amount of C (carbon) contained in the silver-coated balls of Example 1 and Example 2 was measured by the high frequency combustion infrared absorption method described above.
  • the mass of the measurement sample is about 0.2 g.
  • unit mass (g / kpcs) means unit mass (g) per 1000 silver-coated balls.
  • Sample No. 1 corresponds to the silver-coated copper ball of Example 1
  • Example No. 2 and Sample No. 1, Sample No. 4 and Sample No. 3 the amounts of C (Sample No. 2 and Sample No. 1, Sample No. 4 and Sample No. 3) before and after the silver ultrafine particle coating layer is formed on the surface of the copper ball are compared with each other.
  • Both the silver-coated balls of Example 1 and Example 2 show an increase in the amount of C due to the formation of the silver-coated layer.
  • the increase in C content is considered to be mainly derived from the solvent used to form the silver ultrafine particle coating layer.
  • the silver-coated copper ball of Comparative Example 1 prepared without using the dispersion B in the present embodiment, as described above, does not have a uniform coating layer, so the amount of C is measured. I could not do that.
  • FIG. 8 shows the DTA curve of the silver-coated copper ball of Example 1.
  • a DTA curve was measured when a silver-coated copper ball (25 mg) was heated at a temperature rising rate of 5 ° C. in the atmosphere.
  • FIG. 9 shows the results of the DTA curve in dispersion A.
  • the DTA curve of dispersion A shows a single endothermic peak (about 240 ° C. and about 250 ° C.) attributed to the melting point of silver ultrafine particles (about 260 ° C.).
  • the DTA curve of the silver-coated ball prepared using the dispersion B further shows an endothermic peak having a maximum value at about 150 ° C.
  • the endothermic peak at about 150 ° C. is considered to be mainly derived from xylene (boiling point about 140 ° C.).
  • the present invention it has been possible to provide a silver-coated ball capable of performing soldering at a high temperature range of about 250 ° C. force and about 300 ° C.
  • the silver-coated ball of the present invention is suitably used, for example, as an input / output terminal of a semiconductor package such as BGA or CSP.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

 本発明の銀被覆ボール10は、ボール状のコア1と、コア1を包囲するように設けられた銀超微粒子を含む被覆層2とを有している。被覆層2に含まれる銀超微粒子の平均粒径は1nm以上50nm以下である。

Description

明 細 書
銀被覆ボールおよびその製造方法
技術分野
[0001] 本発明は銀被覆ボールに関し、詳細には、平均粒径 lnm以上 50nm以下の銀超 微粒子を含む被覆層でコアの表面が覆われた銀被覆ボールに関する。
背景技術
[0002] はんだ被覆ボールは、主に、電気 ·電子機器の部品を接続するのに用いられる。具 体的には、はんだ被覆ボールは、例えば、部品周囲にリード端子を持つ QFP (Quar d Flatpack Package)や、比較的小型で、多ピン化が可能な BGA (Ball Grid Array)および CSP (Chip size package)などの半導体パッケージの入出力端子 に用いられる。
[0003] 図 10 (a)および(b)は、はんだ被覆ボールを用いた BGAの斜視図および断面図で ある。図 10 (a)および(b)に示すように、 BGAは、 LSIチップの下面に、インターポー ザ 62を介して、銀被覆ボール 50が接合された LSIパッケージである。銀被覆ボール 50は、インターポーザ 62の一方の面に格子配列状に配列されており、パッケージの 入出力端子である。銀被覆ボール 50は、例えば直径が 0. 1〜: 1. Omm程度の金属 力もなる微小球の表面に、鉛 (Pb)を含むはんだ層が設けられた構成からなる。
[0004] 近年、鉛を含むはんだは、環境問題に対応して、無鉛はんだ(Pbフリーはんだ)に 置き換えられつつある。このような事情に鑑み、本願出願人は、鉛を含まない錫—銀 (Sn_Ag)系はんだ層によって表面が被覆され、加熱溶融時におけるボイドの発生 が抑制されたはんだ被覆ボールを開示している(特許文献 1および特許文献 2)。
[0005] ところで、はんだは、はんだ付け温度により、中低温はんだ (溶融温度:約 150°Cか ら約 250°C)と高温はんだ (溶融温度:約 250°Cから約 300°C)とに大別される。中低 温はんだは、主に、電子部品をプリント基板などに接続する際に行われ、高温はんだ は、主に、電子部品の内部配線などを接続する際に行われる。
[0006] 前述した Sn— Ag系はんだ層の融点は約 216°Cであり、このはんだ層を備えたはん だ被覆ボールは、中低温域でのはんだ付けに好適に用いられる。し力しながら、 Sn _Ag系はんだ層は、約 250°Cから約 300°Cの高温域になると再溶融し、ボールの変 形などが生じるため、高温域でのはんだ付けに使用することはできない。従って、高 温はんだに適用することが可能な無鉛はんだ被覆ボールの提供が切望されている。
[0007] 一方、金属のナノ粒子 (粒径が数 nmから数百 nm程度の超微粒子)は、バルタ状態 とは全く異なる物性を示すことが知られている。例えば、銀ナノ粒子は、バルタ状態の 銀よりもはるかに低い温度で焼結することが知られている。銀ナノ粒子に関し、特許 文献 3の実施例の欄には、平均粒径が約 32nmの銀ナノ粒子を含む銀コロイドォノレ ガノゾルの製造方法が開示されている。
特許文献 1:特開 2004— 114123号公報
特許文献 2 :特開 2004— 128262号公報
特許文献 3:特開 2003— 159525号公幸艮
発明の開示
発明が解決しょうとする課題
[0008] 本発明者は、銀ナノ粒子をはんだ被覆ボールの高温はんだ材料として用いることを 検討した。
[0009] 本発明の主な目的は、銀ナノ粒子の被覆層を備えた銀被覆ボールおよびその製 造方法を提供することにある。
課題を解決するための手段
[0010] 本発明の銀被覆ボールは、ボール状のコアと、前記コアを包囲するように設けられ た銀超微粒子を含む被覆層とを有し、前記被覆層に含まれる銀超微粒子の平均粒 径は lnm以上 50nm以下である。
[0011] ある好ましい実施形態において、前記銀被覆ボール中に含まれる炭素の比率は 0
. 01質量%以上 1質量%以下である。
[0012] ある好ましい実施形態において、前記被覆層の厚さは 0. l z m以上 50 z m以下で ある。
[0013] ある好ましい実施形態において、前記コアは銅または樹脂で形成されている。
[0014] ある好ましい実施形態において、前記コアの平均粒径は 0. 05mm以上 1. 5mm以 下である。 [0015] 本発明による銀被覆ボールの製造方法は、ボール状のコアと、銀超微粒子および 溶媒を含む分散液とを用意する工程と、前記コアの表面に前記分散液の膜を形成す る工程と、前記分散液の膜から前記分散液に含まれる前記溶媒を除去し、前記コア の表面に前記銀超微粒子を含む被覆層を形成する工程と、を包含し、前記銀超微 粒子の平均粒径は lnm以上 50nm以下であり、前記溶媒は非極性炭化水素溶媒を 含み、前記銀超微粒子と前記溶媒との質量比率は 40質量%以上 85質量%以下: 1 5質量%以上 60質量%以下である。
[0016] ある好ましい実施形態において、前記コアの表面に前記分散液の膜を形成するェ 程は、前記分散液中に前記コアを浸漬する工程を含む。
[0017] ある好ましい実施形態において、前記銀超微粒子を含む被覆層を形成する工程は 、前記分散液の膜が形成された前記ボールを斜面に供給する工程と、前記ボールを 前記斜面に転動させる工程とを含む。
[0018] ある好ましい実施形態において、前記溶媒は、沸点が約 100°C超の溶媒と沸点が 約 100°C以下の溶媒とを含む。
[0019] ある好ましい実施形態において、前記非極性炭化水素溶媒はキシレンを含む。
発明の効果
[0020] 本発明の銀被覆ボールは、ボール状のコアを覆うように平均粒径が約 lnm以上 50 nm以下の銀超微粒子を含む被覆層で覆われている。この銀超微粒子は、約 250°C 力も約 300°Cの融点を有している。そのため、本発明の銀被覆ボールは、高温はん だ用の無鉛はんだ材料として適用することができる。はんだ付けによって溶融した銀 は、銀の融点(約 960°C)までは再溶融しないため、本発明によれば、高温における 銀被覆ボールとの接合強度が高められた半導体パッケージを提供することができる。 図面の簡単な説明
[0021] [図 1]本発明による実施形態の銀被覆ボール 10の構成を模式的に示す断面図であ る。
[図 2]分散液膜被覆ボールから銀被覆ボールを作製するための好ましい装置の概略 を示す図である。
[図 3] (a)および (b)は、本発明による半導体接続構造の形成方法の一例を説明する 図である。
[図 4]本発明による実施例 1の銀被覆銅ボールを実体顕微鏡で観察した写真である。
[図 5]比較例 1の銀被覆銅ボールを実体顕微鏡で観察した写真である。
[図 6]銅ボールを実体顕微鏡で観察した写真である。
[図 7]実施例 1の銀被覆銅ボールを、窒素雰囲気下、 300°Cで 2時間加熱溶融したと きの実体顕微鏡写真である。
[図 8]実施例 1の銀被覆銅ボールの DTA曲線である。
[図 9]分散液 Aにおける DTA曲線である。
[図 10] (a)および (b)は、はんだ被覆ボールを用いた BGAの斜視図および断面図で ある。
符号の説明
[0022] 1 コア
2 被覆層
4A 溶融状態にあるはんだ層
10 銀被覆ボール
12 Cu層
14 Niめっき層
16 Auめっき層
18 パッド
20 基板
31 斜面
32 台座
50 銀被覆ボール
62 インターポーザ
発明を実施するための最良の形態
[0023] 本発明者は、銀超微粒子を含む被覆層(以下、「銀被覆層」と呼ぶ場合がある。 )に よってコアの表面が均一に覆われた銀被覆ボールを提供するため、銀超微粒子の分 散液に着目して鋭意検討した。 [0024] 一般に、銀超微粒子は表面活性が高ぐ室温で凝集しやすレ、。そのため、分散液 の組成は、一般に、所望とする粒度分布の銀超微粒子が分散液中で凝集することな く安定に存在し得るよう、用途などに応じて適切に調整されている。分散液は、通常、 銀超微粒子を溶解する溶媒や界面活性剤を含み、必要に応じて、還元剤や保護コ ロイド剤などを更に含んでいる。
[0025] 例えば、前述した特許文献 3には、銀超微粒子などの貴金属化合物と界面活性剤 とを所定の比率で混合した複合ゲルが開示されている。この複合ゲルは、単分散の 貴金属コロイド粒子を高濃度で含む貴金属コロイドオルガノゾル材料を製造するため の材料として有用であり、例えば、電子部品の導電性ペーストや繊維などの着色顔 料に好適に用いられる。そのほか、高濃度の銀超微粒子を含み、分散安定性や低温 での焼結性に優れたインクやペーストなどが市販されている(例えば、真空冶金株式 会社製の微細配線用導電性インク「ナノメタルインク」、同社製の微細配線用金属ぺ 一スト「ナノペースト」など)。
[0026] し力しながら、これまでに提案されている分散液はいずれも、本実施形態のように、 球状の表面への適用を全く考慮していない。そのため、従来の分散液を用いても、コ ァの表面に所望とする銀被覆層を均一に形成することはできず、銀超微粒子の凝集 体が生成したり、被覆層の一部が剥離することが、本発明者の実験によって明らかに なった (後記する実施例を参照)。
[0027] このような実験結果を踏まえて、本発明者は、分散液の組成などを変えて更に検討 を重ねた。その結果、溶媒と銀超微粒子とを所定比率で含む分散液の膜をコアの表 面に形成してから、所望とする銀微粒子含有被覆層を得るための所定の溶媒除去処 理を行うと、銀超微粒子が凝集することなく溶媒が均一に気化し、所期の目的が達成 されることを見出し、本発明に到達した。
[0028] 本実施形態に用いられる分散液は、銀超微粒子と溶媒との含有比率が適切に制 御されているため、球の表面への吸着性 (密着性)に優れている。更に、上記分散液 は、好ましくは、沸点が約 100°C超の高沸点溶媒を含んでいるため、気化速度が遅 レ、。そのため、銀超微粒子は、この分散液中で、殆ど凝集することなく安定に分散し 得る。 [0029] 更に、本実施形態における溶媒除去処理は、溶媒の気化速度を一定に制御し得る ように制御されてレ、るため、コアの周囲に上述した分散液は偏在しなレ、。
[0030] 従って、本実施形態によれば、密着性に優れた銀超微粒子の被覆層をコアの表面 に均一な厚さで形成することができる。
[0031] (実施形態)
図 1に、本発明による実施形態の銀被覆ボール 10の断面図を示す。図 1に示すよう に、本実施形態の銀被覆ボール 10は、ボール状のコア 1と、コア 1を包囲するように 設けられた平均粒径 lnm以上 50nm以下の銀超微粒子を含む被覆層 2とを有して いる。
[0032] 本実施形態の銀被覆ボール 10は、コア 1の表面が上記の平均粒径を有する銀超 微粒子によって被覆されている。この銀超微粒子の融点は、約 250°Cから約 300°C の範囲内にあるため、高温域でのはんだ付けが可能である。しかも、加熱によって溶 融した銀は、銀の融点(約 960°C)までは再溶融しないため、高温においても、銀被 覆ボールとの接合性に極めて優れた半導体パッケージを提供することができる。
[0033] 被覆層 2を構成する銀超微粒子の平均粒径は、 lnm以上 50nm以下の範囲内で ある。銀超微粒子の平均粒径は、銀超微粒子による上記特性が有効に発揮される限 り、特に限定されないが、分散安定性などを考慮して、上記の範囲に定めた。銀超微 粒子の好ましい平均粒径は、 8nm以上 20nm以下である。粒子のバラツキなどを考 慮すると、銀超微粒子は、例えば、 8nm± 2nmから、 20nm± 2nmの範囲の平均粒 径を含み得る。本明細書において、平均粒径は、画像処理装置を用い、観察視野( lOOnm X IOOnm)中に存在する銀粒子の面積円相当径(直径)を求め、その平均 値を算出することによって測定した。
[0034] 銀超微粒子は、必ずしも、粒度分布が狭レ、単分散で存在する必要はなレ、。球の表 面に緻密な被覆層を形成するという観点からすれば、例えば、粒度分布が 2つのピ ークを有する多分散で存在することが好ましレ、。
[0035] 被覆層 2に含まれる C (炭素)の比率は、 0. 01質量%以上 1質量%以下である。 C は、主に、本実施形態の銀被覆ボールを作製するのに用レ、られる溶媒に由来すると 考えられる。後記するとおり、本実施形態では、球の表面に銀超微粒子を密着性良く 被覆する目的で、通常の銀超微粒子含有分散液に比べ、溶媒の含有比率を高めに 設定しており、好ましくは、沸点が約 100°C超の高沸点溶媒を含んでいるため、被覆 層中に多くの Cが導入されると思料される。 Cの含有量は、炭素'硫黄分析装置を用 レ、た高周波燃焼赤外線吸収法によって測定される。
[0036] 被覆層 2の厚さは、 0. l x m以上 50 x m以下の範囲内であることが好ましい。被覆 層 2の厚さが 0. l x m未満では、はんだ層としての作用が有効に発揮されない。被 覆層 2の好ましい厚さは 1. 5 z m以上である。ただし、被覆層 2の厚さが 50 z mを超 えると、銀被覆ボールを基板に接合した後に被覆層が溶融し、位置ずれなどの不具 合が生じる恐れがある。被覆層 2の厚さは、顕微鏡を用い、コア 1の表面に被覆層 2 が形成された後のボールの球径(面積円相当直径)と、被覆層 2が形成される前のボ ールの球径(面積円相当直径)とを観察し、これらの差を算出することによって測定さ れる。
[0037] 銀被覆ボール 10の示差熱曲線(DTA曲線)は、約 100°C超約 200°C以下の範囲 内に最大値をとる吸熱ピークを示すことが好ましい。後記する実施例の欄で詳しく説 明するとおり、本実施形態の銀被覆ボールにおける DTA曲線は、銀超微粒子の融 点に起因する吸熱ピーク(約 240°C力 約 250°C)のほかに、約 150°Cに最大値を有 する吸熱ピークを示している(図 8を参照)。後者の吸熱ピークは、おそらぐ銀被覆ボ ールの調製に用いた沸点が約 100°C超の高沸点溶媒 (後記する実施例では、沸点 が約 140°Cのキシレン)に起因すると考えられる。本実施形態によって所望の銀被覆 層が均一に形成されるメカニズムは詳細には不明である力 主な要因として、上記の ような高沸点溶媒を含む分散液を用いることによって溶媒の気化が適切な速度で進 行するため、コアの表面への銀超微粒子の偏在化 (凝集)を抑えられると考えられる。
[0038] 被覆層 2は、図 1に示すように、銀超微粒子を含む単層構造を有していている。
[0039] あるいは、被覆層 2は、前述した銀超微粒子の特性を損なわない限り、複数の金属 層で構成される多層構造を有していてもよい。例えば、被覆層 2は、銀超微粒子を含 む第 1の金属層と、第 1の層を包囲するように設けられた第 2の金属層(めっき層)とで 構成されていてもよい。上記の多層構造によれば、銀超微粒子の表面は第 2のめつ き層によって被覆されているため、高温での加熱溶融時に、銀超微粒子が酸化され て銀超微粒子の特性が損なわれることはない。第 2の金属層は、例えば、 Snや Inな どのような銀超微粒子よりも低い温度で溶融する金属を含有することが好ましい。
[0040] コア 1は、はんだ被覆ボールに通常使用されるものであれば、特に限定されない。
[0041] 例えば、コア 1は、 Cuや A1などの金属で形成されていることが好ましぐ Cuで形成 されていることがより好ましい。 Cuは、融点および熱伝導率が高ぐ抵抗値が低いた め、半導体パッケージの接続材料として有用である。
[0042] コア 1は、樹脂で形成されていてもよい。コア 1が樹脂で形成されている場合、熱伝 導性を高め、被覆層 2の形成を容易にする目的で、コア 1の表面に Niなどの金属層 を形成してから、被覆層 2を形成することが好ましい。
[0043] コア 1の平均粒径は、例えば、 0. 05mm以上 1. 5mm以下の範囲内であることが 好ましい。平均粒径は、 BGAなどのピン数に応じて適切に調整される。
[0044] 次に、本実施形態による銀被覆ボール 10の製造方法を説明する。
[0045] 本実施形態の製造方法は、ボール状のコアと、銀超微粒子および溶媒を含む分散 液とを用意する工程と、前記コアの表面に前記分散液の膜を形成する工程と、前記 分散液の膜から前記分散液に含まれる前記溶媒を除去し、前記コアの表面に前記 銀超微粒子を含む被覆層を形成する工程とを包含する。
[0046] 以下、各工程を詳しく説明する。
[0047] まず、ボール状のコアと、分散液とを用意する。
[0048] 分散液は、銀超微粒子および溶媒を含んでいる。本実施形態に用いられる分散液 は、以下に説明するとおり、所望とする銀被覆ボールを製造するのに適した組成を有 している。
[0049] 分散液は、 40質量%以上 85質量%以下の銀超微粒子と、 15質量%以上 60質量 %以下の溶媒とを含有しており、これまでに提案されている分散液に比べ、概して、 溶媒の比率が高い。これにより、銀超微粒子が凝集することなぐ厚さが均一な被覆 層を球の表面に密着性良く形成することができる。銀超微粒子と溶媒との含有比率 が上記範囲を外れると、コア表面への銀超微粒子の付き回り(付着性)が悪ぐ銀超 微粒子の剥がれなどが生じる。銀超微粒子と溶媒との好ましい含有比率は、 50質量 %以上 70質量%以下: 30質量%以上 50質量%以下である。 [0050] 溶媒は、銀超微粒子を溶解し得る溶剤であれば特に限定されず、非極性溶媒およ び極性溶媒のいずれでも良レ、。コアの表面に銀超微粒子を含む被覆層を密着性良 く形成するという観点からすれば、非極性溶媒が好ましぐ非極性炭化水素溶媒がよ り好ましい。
[0051] 非極性炭化水素溶媒は、典型的には、パラフィン炭化水素または芳香族炭化水素 が挙げられる。パラフィン炭化水素としては、例えば、へキサン (沸点約 69°C)、ォクタ ン(沸点約 126°C)、シクロへキサン(沸点約 81°C)、シクロペンタン(沸点約 51°C)な どが挙げられる。芳香族炭化水素としては、例えば、キシレン (沸点約 140°C)、トノレ ェン(沸点約 110°C)、ベンゼン(沸点約 81°C)などが挙げられ、クロ口ベンゼンなど のハロゲンィ匕芳香族炭化水素も含まれる。これらは単独で使用しても良いし、 2種以 上を併用しても良い。本実施形態に用いられる溶媒は、少なくともキシレンを含有し ていることが好ましい。
[0052] 本実施形態において、溶媒は、沸点が 100°C超の溶媒(高沸点溶媒)と沸点が 10 0°C以下の溶媒 (低沸点溶媒)とを含んでいることが好ましい。特に、高沸点溶媒は、 所望の銀超微粒子被覆層を形成するのに適切な気化速度を有しているため、有用 であると考えられる。溶媒は、高沸点溶媒のみから構成されていてもよい。
[0053] 分散液は、前述した銀超微粒子および溶媒のほか、本実施形態による作用を損な わない限り、銀超微粒子含有分散液に通常含まれ得る他の添加剤 (例えば、界面活 性剤、消泡剤、防食剤など)を含有してもよい。
[0054] 次に、コアの表面に分散液の膜を形成する。以下では、説明の便宜のため、このェ 程で得られるボールを「分散液膜被覆ボール」と呼び、本実施形態で目的とするコア の表面に銀被覆層が形成された「銀被覆ボール」と区別する。
[0055] 分散液の膜は、浸漬法を用いて形成することが好ましい。具体的には、例えば約 3
0°Cに加温した分散液中にコアを所定時間浸漬する。浸漬時間は、分散液の組成な どに応じて、適宜適切に調整され得るが、例えば、 3分間以下の範囲内であることが 好ましい。なお、分散液に浸漬する前に、コアは予め脱脂しておくことが好ましい。こ れにより、コア表面への分散液の付着性が向上する。
[0056] このようにして形成された分散液膜被覆ボールでは、隣接するコア間を分散液がブ リッジするため、分散液がコアの周囲に偏在する。この状態のまま、溶媒を気化させる と、分散液が多く偏在した箇所には多くの銀超微粒子が残存する恐れがある。
[0057] そのため、本実施形態では、分散液膜被覆ボールにおいて、分散液の膜から溶媒 を除去し、コアの表面に銀超微粒子を含む被覆層を形成する。これにより、所望の銀 被覆ボールが得られる。
[0058] 具体的には、例えば、図 2に示す装置を用いて銀被覆ボールを作製することが好ま しい。この装置は、分散液膜被覆ボールを転動させる斜面 31と、斜面を支持する台 座 32とを備えてレ、る。
[0059] まず、分散液膜被覆ボールを斜面 31に供給し、斜面 31に沿ってコアを転がす。分 散液膜被覆ボールが斜面 31に沿って連続的に転がることによってコアの表面には 均一な厚さの分散液膜が形成される。その結果、コアの表面には、均一な厚さの銀 超微粒子の被覆層が形成される。このような溶媒除去作用は、例えば、ガラス製の斜 面を用いると、より一層促進される。また、斜面 31の角度を変えることにより、溶媒の 気化速度を調整することもできる。
[0060] 本実施形態では、厚さのバラツキのより少ない銀被覆層を得るため、溶媒が均一に 気化するように制御することが好ましい。例えば、溶媒の気化を促進する目的で、分 散液膜被覆ボールを斜面に供給する前に、表面の過剰な溶媒を紙 (キムワイプ)や 布などで吸収除去したり、ドライヤーなどで表面を風乾してもよレ、。そのほか、分散液 膜被覆ボールを斜面に転動させる工程で、ドライヤーなどで表面を風乾してもよい。
[0061] 次に、図 3を参照しながら、本実施形態の銀被覆ボールを備えた半導体接続構造 の形成方法を説明する。ここでは、少なくとも半導体チップを含む素子または装置に おいて、銀被覆ボールが使用され得る接続構造を総称して「半導体接続構造」と呼 ぶ。
[0062] まず図 3 (a)に示すように、銀被覆ボール 50と、この銀被覆ボール 50を接合する所 望の基板 20とを用意する。基板 20は、例えば、 BGA (図 10を参照)や CSPのインタ 一ポーザであり、基板 20の主面には、導電材料で形成されたパッド 18が設けられて いる。パッド 18は例えば、 Cu層 12と、 Niめっき層 14と、 Auめっき層 16との積層体で 構成される。次に、銀被覆ボール 50をパッド 18上に配置した状態で、銀被覆ボール 50を加熱することによって、図 3 (b)に示すように被覆層 2を溶融させる。溶融状態に あるはんだ層を図 3 (b)では 4Aで示す。次に、この溶融状態にある被覆層 4Aを冷却 して固化させて、パッド 18に接合する。以上により、半導体接続構造が形成される。
[0063] この半導体接続構造では、基板 20に対する銀被覆ボール 50の接合強度が高ぐ また、位置ずれなどの不具合が生じにくい。従って、信頼性の高い半導体接続構造 が提供される。
実施例
[0064] 以下では、球状の銅コアを用い、分散液の組成によって銀超微粒子の密着性がど のように変化するかを調べた。具体的には、直径が異なる 2種類の銅コア(直径 0. 3 5mm、 0. 75mm)と、下記組成の分散液 Aおよび Bとを用レ、、以下に示す方法によ つて実施例 1から 2の銀被覆銅ボール、および比較例 1から 2の銀被覆銅ボールを作 製した。
[0065] (分散液 A)
分散液 Aは、約 90質量%の銀超微粒子(平均粒径約 3nmから約 15nm)と約 10質 量%の溶媒とを含有する分散液である。分散液 Aは、本実施形態で規定する銀超微 粒子と溶媒との含有比率を満足していない。溶媒は、キシレンとトルエンのみからなり 、トルエンよりもキシレンを高い比率で含有している。
[0066] (分散液 B)
分散液 Bは、分散液 Aに対し、キシレンを更に添加したものであり、約 60質量%の 銀超微粒子(平均粒径約 3nmから約 15nm)と約 40質量%の溶媒とを含有してレヽる 。分散液 Bは、本実施形態で規定する銀超微粒子と溶媒との含有比率を満足してい る。
[0067] (実施例 1)
まず、直径 0. 75mmの銅コアを中性脱脂液 506 (石原薬品製)を用いて脱脂した( 前処理)。具体的には、銅コアを中性脱脂液中に浸潰した (35°Cで約 5分間)後、室 温下、純水で約 3分間洗浄し、更に流水中で約 1分間洗浄した。次いで、エタノール 中に約 2分間浸漬し、乾燥した。
[0068] 次に、分散液 Bを約 30°Cに加温し、これに、上記のようにして前処理した銅コアを 約 2分間浸漬した。浸漬により、銅コアの表面に分散液の膜が形成された分散液膜 被覆銅ボールが得られる。
[0069] 浸漬後、分散液膜被覆銅ボールの表面に付着している余分な分散液をキムワイプ を用いて除去した。
[0070] この銅ボールを、前述した図 2に示す装置に導入し、装置内に配置されたシャーレ に供給して転がすことによって被覆層の厚さを均一にした。
[0071] 以上のようにして、実施例 1の銀被覆銅ボール (銀超微粒子の被覆層の厚さ約 0. 4 μ m)が作製された。
[0072] (実施例 2)
実施例 2の銀被覆銅ボールは、直径 0. 75mmの銅ボールの代わりに直径 0. 35m mの銅ボールを用いたこと以外は、前述した実施例 1と同様にして作製した。実施例
2の銀被覆銅ボールにおける銀超微粒子の被覆層の厚さは、約 0. 7 /i mである。
[0073] (比較例 1)
比較例 1の銀被覆銅ボールは、分散液 Bの代わりに分散液 Aを用いたこと以外は、 前述した実施例 1と同様にして作製した。
[0074] (銀被覆層の観察)
図 4および図 5に、実施例 1および比較例 1の銀被覆銅ボールを実体顕微鏡で観 察した写真を、それぞれ、示す。参考までに、図 6に、銀被覆層を形成する前の銅ボ ールの顕微鏡観察写真を示す。
[0075] 図 4に示すように、本実施形態における分散液 Bを用いた実施例 1の銀被覆銅ボー ルでは、銀超微粒子が凝集することなぐ均一な被覆層が銅ボールの表面に密着性 良く形成されてレ、ることが分かる。
[0076] これに対し、本実施形態における分散液 Bを用いずに作製した比較例 1の銀被覆 銅ボールでは、図 5に示すように、銀超微粒子の凝集体が生じ、均一な被覆層を形 成できなかった。
[0077] 参考までに、実施例 1の銀被覆銅ボールを、窒素雰囲気下、 300°Cで 2時間加熱 溶融したときの実体顕微鏡写真を図 7に示す。図 7に示すように、実施例 1の銀被覆 銅ボールを高温下で加熱溶融した後も、銅ボールの表面には銀超微粒子が密着性 良く形成されている。従って、実施例 1の銀被覆銅ボールは、高温はんだ用の無鉛 はんだ材料として有用であることが分かる。
[0078] (C量の分析)
実施例 1および実施例 2の銀被覆ボール中に含まれる C (炭素)の量を、前述した 高周波燃焼赤外線吸収法によって測定した。測定試料の質量は約 0. 2gである。
[0079] 比較のため、実施例 1および 2に用いた銅ボール(直径 0. 75mm, 0. 35mm)中 に含まれる Cの量を同様にして測定した。
[0080] これらの結果を表 1に示す。表 1中、単位質量(g/kpcs)は、銀被覆ボール 1000 個当たりの単位質量 (g)を意味する。
[0081] [表 1]
Figure imgf000014_0001
* :試料番号 1は実施例 1の銀被覆銅ボールに対 J©する。
**:試料番号 3は実施例 2の銀被覆銅ボールに対 する。
[0082] 表 1において、銅ボールの表面に銀超微粒子被覆層が形成される前後の C量 (試 料番号 2と試料番号 1、試料番号 4と試料番号 3)をそれぞれ比較すると、実施例 1お よび実施例 2の銀被覆ボールは、いずれも、銀被覆層の形成によって C量が増加し てレ、ることが分力る。 C量の増加は、主に、銀超微粒子被覆層の形成に用いた溶媒 に由来すると考えられる。
[0083] なお、本実施形態における分散液 Bを用いずに作製した比較例 1の銀被覆銅ボー ルは、前述したように、均一な被覆層を有していないため、 C量を測定することはでき なかった。
[0084] (DTA曲線)
図 8に、実施例 1の銀被覆銅ボールの DTA曲線を示す。具体的には、銀被覆銅ボ ール(25mg)を大気中にて 5°CZ分の昇温速度で加熱したときの DTA曲線を測定 した。参考のため、図 9に、分散液 Aにおける DTA曲線の結果を示す。 [0085] 図 9に示すように、分散液 Aの DTA曲線は、銀超微粒子の融点(約 260°C)に起因 する単一の吸熱ピーク(約 240°C力も約 250°C)を示しているのに対し、分散液 Bを用 いて作製された銀被覆ボールの DTA曲線は、上記吸熱ピークのほかに、約 150°C に最大値を有する吸熱ピークを更に示している。約 150°Cの吸熱ピークは、主に、キ シレン (沸点約 140°C)に由来すると考えられる。
産業上の利用可能性
[0086] 本発明によれば、約 250°C力 約 300°Cの高温域でのはんだ付けを行うことが可 能な銀被覆ボールを提供することができた。本発明の銀被覆ボールは、例えば、 BG Aや CSPなどの半導体パッケージの入出力端子に好適に用いられる。

Claims

請求の範囲
[1] ボール状のコアと、
前記コアを包囲するように設けられた銀超微粒子を含む被覆層とを有し、 前記被覆層に含まれる銀超微粒子の平均粒径は lnm以上 50nm以下である、銀 被覆ボール。
[2] 前記銀被覆ボール中に含まれる炭素の比率は 0. 01質量%以上 1質量%以下で ある、請求項 1に記載の銀被覆ボール。
[3] 前記被覆層の厚さは 0. 1 μ m以上 50 μ m以下である、請求項 1または 2に記載の 銀被覆ボール。
[4] 前記コアは銅または樹脂で形成されている、請求項 1から 3のいずれかに記載の銀 被覆ボール。
[5] 前記コアの平均粒径は 0. 05mm以上 1. 5mm以下である、請求項 1から 4のいず れかに記載の銀被覆ボール。
[6] ボール状のコアと、銀超微粒子および溶媒を含む分散液とを用意する工程と、 前記コアの表面に前記分散液の膜を形成する工程と、
前記分散液の膜から前記分散液に含まれる前記溶媒を除去し、前記コアの表面に 前記銀超微粒子を含む被覆層を形成する工程と、を包含し、
前記銀超微粒子の平均粒径は lnm以上 50nm以下であり、
前記溶媒は非極性炭化水素溶媒を含み、
前記銀超微粒子と前記溶媒との質量比率は 40質量%以上 85質量%以下: 15質 量%以上 60質量%以下である、銀被覆ボールの製造方法。
[7] 前記コアの表面に前記分散液の膜を形成する工程は、前記分散液中に前記コアを 浸漬する工程を含む、請求項 6に記載の銀被覆ボールの製造方法。
[8] 前記銀超微粒子を含む被覆層を形成する工程は、前記分散液の膜が形成された 前記ボールを斜面に供給する工程と、前記ボールを前記斜面に転動させる工程とを 含む請求項 6または 7に記載の銀被覆ボールの製造方法。
[9] 前記溶媒は、沸点が約 100°C超の溶媒と沸点が約 100°C以下の溶媒とを含む請 求項 6から 8のいずれかに記載の銀被覆ボールの製造方法。 前記非極性炭化水素溶媒はキシレンを含む、請求項 6から 9のいずれかに記載の 銀被覆ボールの製造方法。
PCT/JP2006/310227 2005-05-27 2006-05-23 銀被覆ボールおよびその製造方法 WO2006126527A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020077005098A KR101244396B1 (ko) 2005-05-27 2006-05-23 은피복 볼 및 그 제조 방법
CN2006800009230A CN101031384B (zh) 2005-05-27 2006-05-23 银包覆球
US11/915,659 US8039107B2 (en) 2005-05-27 2006-05-23 Silver-coated ball and method for manufacturing same
EP06756483A EP1900471A4 (en) 2005-05-27 2006-05-23 SILVER COATED BALL AND MANUFACTURING METHOD THEREFOR
JP2007517833A JP5042017B2 (ja) 2005-05-27 2006-05-23 銀被覆ボールおよびその製造方法
US13/227,566 US20110318484A1 (en) 2005-05-27 2011-09-08 Silver-coated ball and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005156226 2005-05-27
JP2005-156226 2005-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/227,566 Division US20110318484A1 (en) 2005-05-27 2011-09-08 Silver-coated ball and method for manufacturing same

Publications (1)

Publication Number Publication Date
WO2006126527A1 true WO2006126527A1 (ja) 2006-11-30

Family

ID=37451952

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/310227 WO2006126527A1 (ja) 2005-05-27 2006-05-23 銀被覆ボールおよびその製造方法

Country Status (6)

Country Link
US (2) US8039107B2 (ja)
EP (1) EP1900471A4 (ja)
JP (1) JP5042017B2 (ja)
KR (1) KR101244396B1 (ja)
CN (2) CN101664804B (ja)
WO (1) WO2006126527A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527123A (ja) * 2011-08-01 2014-10-09 ザ ユニバーシティ オブ バーミンガム 粒子集合体の製造方法
JP2015050380A (ja) * 2013-09-03 2015-03-16 千住金属工業株式会社 バンプ電極、バンプ電極基板及びその製造方法
JP2016008337A (ja) * 2014-06-25 2016-01-18 古河機械金属株式会社 コアシェル型金属微粒子の製造方法、コアシェル型金属微粒子、導電性インクおよび基板の製造方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5456545B2 (ja) 2009-04-28 2014-04-02 昭和電工株式会社 回路基板の製造方法
JP2012174332A (ja) * 2011-02-17 2012-09-10 Fujitsu Ltd 導電性接合材料、導体の接合方法、及び半導体装置の製造方法
US9290671B1 (en) 2012-01-03 2016-03-22 Oceanit Laboratories, Inc. Low cost semiconducting alloy nanoparticles ink and manufacturing process thereof
JP6136690B2 (ja) * 2012-08-01 2017-05-31 三菱マテリアル株式会社 ハンダペースト
JP6164416B2 (ja) * 2013-09-25 2017-07-19 株式会社スリーボンド 導電性接着剤組成物
JP6607006B2 (ja) * 2015-12-01 2019-11-20 三菱マテリアル株式会社 ハンダ粉末及びこの粉末を用いたハンダ用ペーストの調製方法
DE102017208533B4 (de) * 2017-05-19 2021-04-15 Infineon Technologies Ag Fügematerialien, elektronische Vorrichtungen und Verfahren zur Herstellung davon

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070141A (ja) * 1996-06-28 1998-03-10 Internatl Business Mach Corp <Ibm> チップ・キャリア・モジュール、情報処理システム及び形成方法
JP2000248303A (ja) * 1999-03-03 2000-09-12 Dowa Mining Co Ltd 銀被覆銅粉の製法
JP2004128262A (ja) * 2002-10-03 2004-04-22 Sumitomo Special Metals Co Ltd はんだ被覆ボールの製造方法、およびはんだ被覆ボール
JP2005060831A (ja) * 2003-07-29 2005-03-10 Mitsubishi Materials Corp 複合金属粉末とその製造方法、および銀粘土

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1370253A (en) 1972-04-20 1974-10-16 Rolls Royce Method of brazing
DE3640586A1 (de) * 1986-11-27 1988-06-09 Norddeutsche Affinerie Verfahren zur herstellung von hohlkugeln oder deren verbunden mit wandungen erhoehter festigkeit
JP3205793B2 (ja) * 1996-12-19 2001-09-04 株式会社巴製作所 超微粒子及びその製造方法
US6679937B1 (en) * 1997-02-24 2004-01-20 Cabot Corporation Copper powders methods for producing powders and devices fabricated from same
US6344272B1 (en) * 1997-03-12 2002-02-05 Wm. Marsh Rice University Metal nanoshells
EP1184898A1 (en) * 1999-11-30 2002-03-06 Ebara Corporation Method and apparatus for forming thin film of metal
TW476073B (en) * 1999-12-09 2002-02-11 Ebara Corp Solution containing metal component, method of and apparatus for forming thin metal film
US6743395B2 (en) * 2000-03-22 2004-06-01 Ebara Corporation Composite metallic ultrafine particles and process for producing the same
JP4169994B2 (ja) 2001-09-14 2008-10-22 戸田工業株式会社 貴金属コロイドオルガノゾル用材料及び貴金属コロイドオルガノゾルの製造方法
GB0126663D0 (en) * 2001-11-06 2002-01-02 Oxonica Ltd Cerium oxide nanoparticles
EP1551211B1 (en) 2002-09-27 2008-12-31 Neomax Materials Co., Ltd. Solder-coated ball and method for manufacture thereof, and method for forming semiconductor interconnecting structure
JP4047304B2 (ja) * 2003-10-22 2008-02-13 三井金属鉱業株式会社 微粒銀粒子付着銀粉及びその微粒銀粒子付着銀粉の製造方法
KR20050113971A (ko) * 2004-05-31 2005-12-05 (주)나노클러스터 은 나노입자가 코팅된 은 분말 및 그 제조방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1070141A (ja) * 1996-06-28 1998-03-10 Internatl Business Mach Corp <Ibm> チップ・キャリア・モジュール、情報処理システム及び形成方法
JP2000248303A (ja) * 1999-03-03 2000-09-12 Dowa Mining Co Ltd 銀被覆銅粉の製法
JP2004128262A (ja) * 2002-10-03 2004-04-22 Sumitomo Special Metals Co Ltd はんだ被覆ボールの製造方法、およびはんだ被覆ボール
JP2005060831A (ja) * 2003-07-29 2005-03-10 Mitsubishi Materials Corp 複合金属粉末とその製造方法、および銀粘土

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1900471A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014527123A (ja) * 2011-08-01 2014-10-09 ザ ユニバーシティ オブ バーミンガム 粒子集合体の製造方法
US10233545B2 (en) 2011-08-01 2019-03-19 The University Of Birmingham Method for producing particulate clusters
JP2015050380A (ja) * 2013-09-03 2015-03-16 千住金属工業株式会社 バンプ電極、バンプ電極基板及びその製造方法
US9662730B2 (en) 2013-09-03 2017-05-30 Senju Metal Industry Co., Ltd. Bump electrode, board which has bump electrodes, and method for manufacturing the board
JP2016008337A (ja) * 2014-06-25 2016-01-18 古河機械金属株式会社 コアシェル型金属微粒子の製造方法、コアシェル型金属微粒子、導電性インクおよび基板の製造方法
KR20170021223A (ko) * 2014-06-25 2017-02-27 후루카와 기카이 긴조쿠 가부시키가이샤 코어쉘형 금속 미립자의 제조방법, 코어쉘형 금속 미립자, 전도성 잉크 및 기판의 제조방법
KR102284027B1 (ko) 2014-06-25 2021-07-29 후루카와 기카이 긴조쿠 가부시키가이샤 코어쉘형 금속 미립자의 제조방법, 코어쉘형 금속 미립자, 도전성 잉크 및 기판의 제조방법

Also Published As

Publication number Publication date
JPWO2006126527A1 (ja) 2008-12-25
EP1900471A4 (en) 2010-06-02
CN101031384B (zh) 2010-05-19
US8039107B2 (en) 2011-10-18
EP1900471A1 (en) 2008-03-19
US20110318484A1 (en) 2011-12-29
US20090286099A1 (en) 2009-11-19
CN101664804B (zh) 2011-09-14
KR20080010378A (ko) 2008-01-30
JP5042017B2 (ja) 2012-10-03
CN101664804A (zh) 2010-03-10
KR101244396B1 (ko) 2013-03-25
CN101031384A (zh) 2007-09-05

Similar Documents

Publication Publication Date Title
WO2006126527A1 (ja) 銀被覆ボールおよびその製造方法
JP3764349B2 (ja) 金属微粒子分散液を用いたメッキ代替導電性金属皮膜の形成方法
JP5940782B2 (ja) 焼結される銀ペーストにおける溶媒としての、脂肪族炭化水素およびパラフィンの使用
US20100126631A1 (en) Carbon nanotubes solder composite for high performance interconnect
Tsao et al. Effect of TiO 2 nanoparticles on the microstructure and bonding strengths of Sn0. 7Cu composite solder BGA packages with immersion Sn surface finish
JP2004107728A (ja) 接合材料及び接合方法
KR100737498B1 (ko) 반도체 소자의 실장 방법 및 실장 구조
JP2013055193A (ja) 導電性金属膜の形成方法
JP2004128357A (ja) 電極配設基体及びその電極接合方法
Zhang et al. Shear performance and accelerated reliability of solder interconnects for fan-out wafer-level package
JP2011211137A (ja) 半導体装置及びその製造方法、電子装置及びその製造方法
JP4106447B2 (ja) 導電性金ペーストを用いた無電解金メッキ代替導電性金皮膜の形成方法
JP5275736B2 (ja) 導電性微粒子の製造方法、導電性微粒子、異方性導電材料、及び、導電接続構造体
CN109411437A (zh) 一种具有表面复合膜的银合金线及其制作方法
WO2012060022A1 (ja) 鍚またははんだ皮膜の形成方法及びその装置
JP4112946B2 (ja) 非鉛系接合材、ソルダーペースト及び接合方法
Li et al. Isotropically conductive adhesives (ICAs)
JP2010075934A (ja) はんだ組成物
KR102389258B1 (ko) 고온 안정성과 필렛특성이 개선된 접합 페이스트 및 그의 제조방법
WO2006038376A1 (ja) はんだ組成物及びこれを用いたはんだ層形成方法
JP5552957B2 (ja) 端子構造、プリント配線板、モジュール基板及び電子デバイス
Lau et al. Effect of Contact Pad’s Roughness and Ni–P Plating Thickness on Leadless Packages’ Shear Strength Variation
Lu et al. Conductive adhesives for flip-chip applications
JP5438454B2 (ja) 導電性微粒子、異方性導電材料、及び、接続構造体
KR20230120584A (ko) 플럭스 코트 볼 및 그의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2007517833

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077005098

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200680000923.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11915659

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006756483

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU