WO2006123434A1 - 金属スラリー製造方法、金属スラリー製造装置、鋳塊製造方法および鋳塊製造装置 - Google Patents

金属スラリー製造方法、金属スラリー製造装置、鋳塊製造方法および鋳塊製造装置 Download PDF

Info

Publication number
WO2006123434A1
WO2006123434A1 PCT/JP2005/009586 JP2005009586W WO2006123434A1 WO 2006123434 A1 WO2006123434 A1 WO 2006123434A1 JP 2005009586 W JP2005009586 W JP 2005009586W WO 2006123434 A1 WO2006123434 A1 WO 2006123434A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
lump
cooling
cooling body
metal
Prior art date
Application number
PCT/JP2005/009586
Other languages
English (en)
French (fr)
Inventor
Tetsuichi Motegi
Kiichi Miyazaki
Kouichi Tada
Yoshitomo Tezuka
Kiyotaka Yoshihara
Original Assignee
Seiko Idea Center Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Idea Center Co., Ltd. filed Critical Seiko Idea Center Co., Ltd.
Priority to PCT/JP2005/009586 priority Critical patent/WO2006123434A1/ja
Priority to US10/574,493 priority patent/US20070215311A1/en
Priority to CNA2005800012718A priority patent/CN1984736A/zh
Publication of WO2006123434A1 publication Critical patent/WO2006123434A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • B22D11/11Treating the molten metal
    • B22D11/112Treating the molten metal by accelerated cooling

Definitions

  • the present invention relates to a metal slurry manufacturing method, a metal slurry manufacturing apparatus, and a metal slurry manufacturing apparatus for manufacturing a semi-molten (semi-solid) metal slurry in which a molten (liquid phase) metal and a solid (solid phase) metal are mixed, and
  • the present invention relates to a lump producing method and a lump producing apparatus for producing lump from a semi-molten (semi-solidified) state metal slurry.
  • the former is the rheological method and the thixotropy of semi-molten semi-solid metals, that is, the forging method using the property of low viscosity and low fluidity.
  • Strength is known as the thixocasting method (semi-melting method).
  • forging is performed using a semi-molten / semi-solidified metal slurry in which a molten liquid phase metal and a solid phase metal are mixed.
  • the forged structure of various metals including the ingot mass and the magnesium alloy of the porcelain produced by the above-mentioned forging method, has no crystal orientation, various mechanical properties, Since it is required to have few prayers, it is desirable that the whole is a fine sphere.
  • molten metal is poured into an inclined cooling body, the molten metal is cooled with this inclined cooling body, or a micronizing agent is added to the molten metal.
  • Electromagnetic stirring and mechanical stirring are given to the molten metal.
  • the magnesium alloy has low latent heat of solidification and tends to solidify, so it is difficult to produce a metal slurry continuously.
  • an object of the present invention is to provide a method and apparatus for producing a metal slurry suitably and continuously using an inclined cooling body.
  • Another object of the present invention is to provide a method and an apparatus for producing a metal slurry suitably and continuously even when the molten metal is a magnesium alloy.
  • Another object of the present invention is to provide a method and an apparatus for producing a metal slurry that does not increase the size of the apparatus as compared with a mechanical stirring apparatus or an electric stirring apparatus, and that suppresses energy costs. Disclosure of the invention
  • the molten metal is poured into the inclined cooling body, and the molten metal is cooled by the inclined cooling body.
  • the metal slurry manufacturing method of the present invention is characterized in that a molten metal is poured into a vibrating cooling body, and the molten metal is cooled by the cooling body to manufacture a metal slurry.
  • the molten metal is a magnesium alloy.
  • the present invention provides a metal slurry production apparatus for producing a metal slurry by pouring molten metal into an inclined cooling body and cooling the molten metal with the inclined cooling body.
  • An inclined cooling body vibration mechanism for providing vibration to the inclined cooling body is provided.
  • the metal slurry manufacturing apparatus of the present invention includes a cooling body into which molten metal is poured, and a cooling body vibration mechanism that vibrates the cooling body.
  • the molten metal is a magnesium alloy.
  • the present invention is characterized in that a molten metal supplied to a saddle mold is cooled by cooling the saddle mold to produce a lump lump, wherein the saddle mold is vibrated.
  • the molten metal supplied to the bowl is cooled by cooling the bowl, and in the bowl production method for producing the bowl, the molten metal is poured into a vibrating body that vibrates. The molten metal is cooled and then supplied to the saddle.
  • the molten metal is a magnesium alloy.
  • the present invention provides a saddle lump manufacturing apparatus for cooling the molten metal supplied to the saddle mold by cooling the saddle mold to produce a lump lump. It is characterized by that.
  • the molten metal supplied to the bowl is cooled by cooling the bowl, and the molten metal poured is cooled and supplied to the bowl in a bowl production apparatus for producing the bowl.
  • the present invention is characterized in that a cooling body and a cooling body vibration mechanism that vibrates the cooling body are provided.
  • the molten metal is a magnesium alloy.
  • a tilted cooling body vibrating mechanism is provided to prevent the molten metal from solidifying on the tilted cooling body, and crystals generated on the surface of the tilted cooling body
  • a cooling body vibration mechanism is provided, and crystals generated on the surface of the cooling body are formed at the initial stage. Because it is forced to release and flow down, it does not increase the size of the device compared with mechanical or electromagnetic stirring devices, and does not increase energy costs.
  • the A metal slurry having fine spherical crystals can be obtained as well as being able to be produced efficiently and continuously, as compared with the case where vibration is not applied to the conventional inclined cooling body. Since the molten metal is made of a magnesium alloy, when the metal slurry is produced in the form of spherical crystals, the finishing time of the porcelain can be shortened and the number of finishing steps can be reduced.
  • a saddle type vibration mechanism is provided to prevent the molten metal from solidifying while adhering to the saddle shape, and crystals generated on the inside surface of the saddle shape are formed. Since it is forcibly released at the initial stage, or a cooling body vibration mechanism is provided to prevent the molten metal from solidifying while adhering to the cooling body, the crystals generated on the surface of the cooling body are forced at the initial stage. Therefore, it is possible to oscillate various metal fabrication structures in the conventional vertical shape without increasing the size of the device and increasing the energy cost compared to mechanical stirring or electromagnetic stirring. Even if it is not given, it can be made into a fine spherical shape overall.
  • Mg alloy slurries can be easily produced according to the present invention even for Mg alloys that are difficult to produce a semi-molten metal slurry because the solidification latent heat is small and easily solidified.
  • FIG. 1 is an explanatory view showing a schematic configuration of a continuous forged bar manufacturing apparatus to which a first embodiment of a metal slurry manufacturing apparatus according to the present invention is applied.
  • Fig. 2 is a reproduction of an optical micrograph showing a solidified structure obtained by reheating and solidifying a continuous forging bar manufactured by a conventional continuous forging bar manufacturing apparatus.
  • FIG. 3 is a reproduction of an optical micrograph showing a solidified structure obtained by reheating and solidifying the continuous forged bar produced by the continuous forged bar manufacturing apparatus of FIG.
  • FIG. 4 is a side sectional view showing a schematic configuration of a second embodiment of the lump production apparatus according to the present invention.
  • FIG. 5 is a plan view showing a schematic configuration of a vertical transport mechanism of the lump manufacturing apparatus of FIG.
  • Fig. 6 shows a solidified assembly obtained by reheating and solidifying the lump produced by a conventional lump production apparatus. It is a reproduction of an optical micrograph showing the weaving.
  • FIG. 7 is a reproduction of an optical micrograph showing a solidified structure obtained by re-heating and solidifying the lump produced by the lump producing apparatus of the second embodiment of the present invention.
  • FIG. 8 is a partial sectional side view showing a schematic configuration of the third embodiment of the lump manufacturing apparatus according to the present invention.
  • FIG. 9 is a side sectional view showing a schematic configuration of another example of a melting furnace used in a continuous forging bar manufacturing apparatus or a lump manufacturing apparatus.
  • the continuous forging bar manufacturing apparatus I adjusts the melting furnace 11 to a desired melting temperature by melting a metal into a molten magnesium alloy (molten metal M).
  • Melting furnace temperature control mechanism 1 7 and molten metal discharge control mechanism 2 1 that controls the discharge amount of molten metal M discharged from melting furnace 1 1 and melting discharged from melting furnace 1 1 and poured upward
  • An inclined cooling body 31 that cools the metal M to a semi-molten metal slurry U
  • an inclined cooling body excitation mechanism 3 6 that vibrates the inclined cooling body 31, and a metal slurry from the inclined cooling body 3 1
  • the continuous forging rod B from 1 is fed at the desired forging speed and the feed roller mechanism 7 1 and this feed roller It is composed of a cutting mechanism 81 for cutting the continuous ⁇ bars B fed by the structure 71 to a predetermined constant length of the billet L.
  • the metal slurry manufacturing apparatus S is composed of a melting furnace 11 to an inclined cooling body vibration mechanism 36.
  • the above melting furnace 11 has a melting furnace main body 12 opened at the top, and is liquid-tightly attached to the bottom of the melting furnace main body 12. The upper end is located at a predetermined position in the melting furnace main body 12. And a heater 14 embedded in the melting furnace main body 1 2 and a lid 15 for closing the upper part of the melting furnace main body 1 2.
  • the bottom of the melting furnace main body 12 is provided with a dross remover 16 for taking out impurities that precipitate, such as dross.
  • the melting furnace temperature adjusting mechanism 17 described above is configured so that the thermocouple 18 as a temperature measuring instrument for measuring the temperature in the melting furnace 11 1 and the temperature detected by the thermocouple 18 becomes the set melting temperature. It consists of an energization controller 19 that supplies power to the heater 14 and stops the supply of power to the heater 14.
  • the temperature in the melting furnace 11 is set to be equal to or higher than the liquidus temperature of the magnesium alloy in order to generate the molten metal M of the magnesium alloy by the melting furnace temperature adjusting mechanism 17.
  • the above-described molten metal discharge control mechanism 21 includes a heat-resistant control rod 2 2 inserted into a loop element 15 of the lid 15 of the melting furnace 11 and a heat-resistant control rod 2 2. Is inserted into the melting furnace 11 and a control rod drive unit 2 3 for discharging the molten metal M from the discharge pipe 1 3.
  • the inclined cooling body 31 described above is installed at an elevation angle of 20 to 80 degrees, and is set to a constant temperature by a water cooling or gas cooling inclined cooling body cooling mechanism (not shown). Therefore, the temperature of the molten metal M flowing down on the inclined cooling body 31 drops during the flow.
  • the temperature is set to be equal to or lower than the liquidus temperature of the magnesium alloy on the inclined cooling body 31 and higher than the solidus temperature of the magnesium alloy.
  • the temperature of the molten magnesium alloy flowing down the inclined cooling body 31 was set to a temperature lower than the liquidus temperature of the magnesium alloy and higher than the solidus temperature of the magnesium alloy. This is based on the reason that the spherical crystals formed by cooling do not dissolve or disappear, and maintain a semi-molten slurry without completely solidifying.
  • the inclined cooling body vibration mechanism 36 described above is composed of, for example, an eccentric shaft and a motor, and forcibly releases the solidified shell of molten metal M adhering to the inclined cooling body 31 at an initial stage.
  • the inclined cooling body 31 is given vibration.
  • the above-mentioned saddle 41 is composed of a cylindrical saddle-shaped main body 42 having both ends open, and a flange portion 43 provided on the outer periphery of one end (upper end) of this saddle-shaped main body 42.
  • the saddle shape 41 is held by the saddle shape holding unit 46 in which the flange portion 43 is engaged with the upper end in a state where the saddle shape main body portion 42 penetrates.
  • the vertical cooling mechanism 51 described above includes a cooling tank 52 in which the vertical body 4 2 of the vertical mold 41 penetrates the bottom liquid-tightly and a refrigerant 53 stored in the cooling tank 52. ing.
  • the refrigerant cooling mechanism 61 described above is provided in the middle of the pipe 62, which is connected to the cooling tank 52, both ends of the pipe 62, the refrigerant cooling part 63 in the middle of the pipe 62, and the pipe 62. And a pump 6 4 for circulating the refrigerant 53 in the cooling tank 52.
  • the refrigerant 53 described above is set to a constant temperature at which the semi-molten metal slurry U is solidified by the refrigerant cooling mechanism 61, for example, a temperature equal to or lower than the solidus temperature of the magnesium alloy.
  • the above-mentioned feed roller one mechanism 71 includes a pair of rollers 72 that sandwich and pull out the continuous forging rod B from the mold 41 and at least one of the pair of rollers 72 has a desired forging speed. And a rotation drive unit (7 3) (not shown).
  • the cutting mechanism 8 1 described above includes a cutting blade 8 2 for cutting the continuous forging rod B fed out by the feed re-roller mechanism 71 into a billet of predetermined length, and a motor 8 3 for rotating the cutting blade 8 2. And a moving drive unit (8 4) (not shown) for moving the motor 83 in the horizontal direction.
  • the molten metal M is sequentially discharged from the discharge pipe 13 to the inclined cooling body 31 by driving and lowering the heat resistant control rod 22 by the control rod drive unit 23.
  • the magnesium alloy has the lowest specific gravity among the practical metals, so most of the impurities and compounds will settle to the bottom of the melting furnace body 12, so the supernatant of the molten metal M
  • the molten metal M from which most impurities and compounds have been removed can be supplied to the upper part of the inclined cooling body 31.
  • Impurities that settle on the bottom of the melting furnace body 1 2 are called dross. If this dross force is mixed, it will not be a clean magnesium alloy and will be defective, so the heat resistance control rod 2 2 should be lowered.
  • the amount of molten metal M that can be discharged is below the upper end of the discharge pipe 1 3 It is desirable that the volume is 70% to 80% of the volume in the melting furnace main body 1 2.
  • the dross deposited on the bottom of the melting furnace body 12 may be discharged by appropriately operating the dross remover 16.
  • the molten metal M discharged onto the inclined cooling body 31 as described above is cooled in contact with the surface of the inclined cooling body 31 to partially crystallize.
  • the metal slurry U is supplied to the vertical mold 41.
  • the solidified shell is forced to be released in a small spherical state at the initial stage even if it adheres to the inclined cooling body 31. Spheroidized.
  • the metal slurry U supplied into the vertical mold 41 is cooled by the vertical cooling mechanism 51, it is formed into a continuous forging bar B using a dummy bar.
  • the continuous forging bar B manufactured in this way is fed by the feed roller mechanism 71 and cut into the billet L having a predetermined length by the cutting mechanism 81.
  • This billet L is used for forging, extruding, etc., or semi-molten by heating to a semi-molten state if necessary.
  • FIG. 2 shows the solidified structure obtained by re-heating and solidifying the billet manufactured by the continuous forging bar manufacturing apparatus without the inclined cooling body vibration mechanism, and the continuous forging of the first embodiment of the present invention.
  • Fig. 3 shows the solidified structure obtained by re-heating and solidifying Billet ⁇ L manufactured by Bar Manufacturing Equipment I using an optical microscope.
  • the solidified structure of billet koji manufactured with a continuous forging bar manufacturing device without an inclined cooling body vibration mechanism grows into a size of several hundreds / m or more as spheroidized crystals grow. .
  • the solidified structure of billet L manufactured by the continuous forging rod manufacturing apparatus I of the first embodiment of the present invention is a fine spherical crystal of 10 m to 200 ⁇ m. It becomes.
  • the inclined cooling body vibrating mechanism 36 is provided in order to prevent the molten metal M from solidifying on the inclined cooling body 31. Since crystals generated on the surface of the inclined cooling body 31 are forcibly released and flowed down in the initial stage, the size of the apparatus should not be increased compared to mechanical stirring or electromagnetic stirring. In addition, it is possible to efficiently and continuously produce a metal slurry U having fine spherical crystals, for example, spherical crystals of 10 m to 2 00 // m, without increasing the energy cost. Thus, the metal slurry U having fine spherical crystals can be obtained as compared with the case where the conventional inclined cooling body is not vibrated.
  • molten metal M is made of magnesium alloy
  • billet L with fine spherical crystals can be manufactured, and forging or semi-molten forging using this billet L can shorten the finishing time and the number of finishing steps
  • the finishing time of the porcelain can be shortened and the number of finishing steps can be reduced.
  • FIG. 4 is an explanatory view corresponding to a side sectional view showing a schematic configuration of the lump producing apparatus according to the second embodiment of the present invention
  • FIG. 5 shows a lump in the lump producing apparatus according to the second embodiment of the present invention. It is explanatory drawing equivalent to the top view which shows schematic structure of a type
  • the lump production apparatus P has a melting furnace 1 1 1 which melts the metal into a molten magnesium alloy (molten metal M), and a desired melting temperature of the melting furnace 1 1 1 Melting furnace temperature adjustment mechanism 1 1 7 to adjust to the molten metal discharge control mechanism 1 2 1 to control the discharge amount of the molten metal M discharged from the melting furnace 1 1 1 and the molten metal M from the melting furnace 1 1 1
  • the vertical mold 1 3 1 that is supplied with, the vertical transport mechanism 1 4 1 that transports this vertical mold 1 3 1, and the vertical mold 1 3 1 that is transported by this vertical transport mechanism 1 4 1 is cooled.
  • the melting furnace 1 1 1 described above has a melting furnace main body 1 1 2 opened at the top, and is liquid-tightly attached to the bottom of the main body 1 1 2 of the melting furnace, with the upper end in the melting furnace main body 1 1 2 It consists of a discharge pipe 1 1 3 located at the specified position, a heater 1 1 4 embedded in the melting furnace body 1 1 2, and a lid 1 1 5 that closes the top of the melting furnace body 1 1 2 Has been.
  • the bottom of the melting furnace body 1 1 2 is provided with a dross remover 1 1 6 for taking out impurities that precipitate, for example, dross.
  • the melting furnace temperature adjustment mechanism 1 1 7 described above is composed of a thermocouple 1 1 8 as a temperature measuring instrument for measuring the temperature in the melting furnace 1 1 1 and a melting temperature set by the temperature detected by the thermocouple 1 1 8. It consists of an energization control unit 1 1 9 that supplies power to the heater 1 1 4 so as to reach the temperature and stops supplying power to the heater 1 1 4.
  • the temperature in the melting furnace 1 1 1 is set to be equal to or higher than the liquidus temperature of the magnesium alloy in order to generate the molten metal M of the magnesium alloy by the melting furnace temperature adjusting mechanism 1 1 7. Yes.
  • the above-mentioned molten metal discharge control mechanism 1 2 1 includes a heat resistance control rod 1 2 2 passed through a through hole 1 1 5 a provided in the lid 1 1 5 of the melting furnace 1 1 1, and The heat-resistant control rod 1 2 2 is inserted into the melting furnace 1 1 1 and is composed of a control rod drive unit 1 2 3 for discharging molten metal M from the discharge pipe 1 1 3.
  • the above-mentioned saddle type 1 3 1 is, for example, a cylindrical saddle type main body 1 3 2 with one end (upper) open, and a flange portion 1 provided on the outer periphery of one end (upper side) of this saddle type main body 1 3 2. It consists of 3 and 3.
  • the vertical transport mechanism 1 4 1 described above has a vertical holder 1 4 2 in which the flange 1 3 3 is detachably fixed to the upper end while the vertical body 1 3 2 is passed therethrough,
  • the conveyors 1 4 3 that convey the eight vertical holders 1 4 2 in an elliptical shape at regular intervals, the drive gear 1 4 4 and the driven gear 1 4 5 that convey this conveyor 1 4 3 in an elliptical shape,
  • the conveyor 1 4 3 is repeatedly driven, for example, by a predetermined distance in the clockwise direction in FIG. 5 to drive the drive gear 1 4 4 and stop for a predetermined time. 6).
  • P s is the saddle-type holding part 1 4 2 where the saddle-shaped holding part 1 4 1 is sent by the conveyor 14 3
  • Pa is the saddle-type 1 where the conveyor 1 4 3 is sent.
  • 3 Melting furnace 1 1 Molten metal supply position for supplying molten metal M from 1 or Conveyor 1 4 3
  • Vertical oscillation mechanism 1 7 1 The position, Po, indicates the vertical removal position where the vertical mold 1 3 1 is removed from the vertical holder 1 4 2 sent by the conveyor 1 4 3.
  • the vertical cooling mechanism 1 5 1 described above includes a cooling tank 1 5 2 through which the vertical mold 1 3 1 conveyed by the vertical transfer mechanism 1 4 1 passes, and a refrigerant 1 5 2 accommodated in the cooling tank 1 5 2. Consists of 3 and Has been.
  • the cooling tank 15 2 is formed in an elliptical shape, but the partition wall 15 2 2 a provided upstream of the vertical mounting position P s and the vertical Refrigerant 15 3 is accommodated between the partition wall 15 2 b provided at a position downstream of the removal position P o.
  • the vertical cooling refrigerant cooling mechanism 1 6 1 includes a pipe 1 6 2 connected to both ends of the cooling tank 1 5 2, a refrigerant cooling unit 1 6 3 provided in the middle of the pipe 1 6 2, The pump 1 6 4 is provided in the middle of the pipe 1 6 2 and circulates the refrigerant 1 5 3 in the cooling tank 1 5 2.
  • the above-mentioned refrigerant 15 3 is set to a certain temperature at which the molten metal M is solidified, for example, a temperature below the solidus temperature of the magnesium alloy, by the vertical cooling refrigerant cooling mechanism 16 1. .
  • the temperature of the refrigerant 15 3 was set to a temperature lower than the solidus temperature of the magnesium alloy because the crystal formed on the inner surface of the vertical body 1 3 2 was caused by the vibration of the vertical body 1 3 2 ⁇ It is based on the reason that it is released from the inner surface of the mold body 1 3 2 to change from a semi-solid state to a solid state.
  • the above-described vertical vibration mechanisms 1 and 1 have, for example, a transmission member 1 7 2 provided with a notch 1 ⁇ 2 a for accommodating the flange portion 1 3 3 of the vertical shape 1 3 1 at one end (left end).
  • a vibration part 1 7 3 composed of an eccentric shaft and a motor, for example, is mounted on the upper right side of the transmission member 1 7 2, and a flange part 1 3 3 is formed in the notch 1 7 2 a.
  • the retracted position where the vertical mold 1 3 1 can be transferred by the vertical transfer mechanism 1 4 1 without being accommodated (the position of the solid line in Fig. 4 and Fig. 5), and the flange portion 1 3 3 is in the notch 1 7 2 a
  • the transmission member 1 7 2 is moved between the forward positions accommodated (the positions of the two-dot chain lines in FIGS. 4 and 5). It is configured.
  • a predetermined metal is put into the melting furnace main body 1 1 2 in the state shown in FIG. 4, the melting furnace main body 1 1 2 is closed with the lid 1 1 5, and the melting furnace main body 1 1 with the heater 1 1 4.
  • the molten metal M of the magnesium alloy is produced.
  • move the conveyor 1 4 3 by operating the vertical transfer mechanism 1 4 1
  • hold the vertical mold 1 3 1 to the vertical holder 1 4 2 which is sequentially transported to the vertical mounting position P s, and attach a part of the vertical main body 1 3 2 to the cooling tank 1 5 2 refrigerant. Immersed in 1 5 3.
  • the transmission member 1 7 2 is moved forward by the transmission drive for the transmission member (1 7 4) to accommodate the flange portion 1 3 3 of the saddle type 1 3 1 in the notch 1 ⁇ 2 a and the excitation portion 1 7 3 To give vibration to the vertical type 1 3 1.
  • a predetermined amount of molten metal M is discharged from the discharge pipe 1 1 3 into the vertical mold 1 3 1 by driving and lowering the heat resistant control rod 1 2 2 by the control rod drive unit 1 2 3.
  • the amount of molten metal M that can be discharged by lowering the heat-resistant control rod 1 2 2 to discharge clean magnesium alloy that does not mix dross is the discharge pipe 1
  • the melting furnace body 1 1 2 below the upper end of 1 3 has a volume of 70% to 8 ⁇ / ⁇ .
  • the dross deposited on the bottom of the melting furnace body 1 1 2 may be discharged by appropriately operating the dross remover 1 1 6.
  • the predetermined amount of molten metal M discharged into the vertical main body 1 3 2 as described above is cooled by contacting the inner surface of the vertical main body 1 3 2 to be crystallized into a spherical shape. It adheres to the inside surface of the saddle-type body 1 3 2.
  • the vertical type 1 3 1 is vibrated by the vertical type excitation mechanism 1 7 1, the spherical crystals are forcibly released from the inner surface of the vertical type main body 1 3 2 while growing, and the vertical type It settles to the bottom of the main body 1 3 2 and becomes a lump N.
  • the vibration unit 1 7 3 When the molten metal supply position (vibration position) 1 3 1 is applied to the mold 1 3 1 for a specified time, for example, about 1 to 5 minutes, the vibration unit 1 7 3 The transmission member 1 7 2 is moved backward by the transmission drive unit for transmission member (1 7 4) (not shown). And the vertical mold 1 3 1 supplied with the molten metal M by the vertical conveyance mechanism 1 4 1 is conveyed to the vertical mold removal position Po side by a predetermined distance and to the molten metal supply position (excitation position) Pa. The next mold 1 3 1 is transported to the molten metal supply position (excitation position) Pa
  • the vertical mold 1 3 1 conveyed to the vertical mold removal position Po has a semi-solid state metal slurry U solidified into a solid mass N. Remove it and turn it upside down to discharge the lump N, then clean the inner surface for the next use.
  • FIG. 6 shows a solidified structure by an optical microscope obtained by reheating and solidifying a lump produced by a lump producing apparatus without a saddle-type vibration mechanism, and the lump producing apparatus according to the second embodiment of the present invention.
  • Fig. 7 shows the solidification structure obtained by re-heating and solidifying the ingot N produced in P using an optical microscope.
  • the solidified structure of the koji produced by the koji making device without the saddle-type vibration mechanism grows to a size of several hundred // m or more.
  • the solidified structure of the lumps N produced by the staling apparatus P of the second embodiment of the present invention is a fine spherical crystal of 10 to 2 200.
  • the saddle type vibration mechanism 1 7 1 is used to prevent the molten metal M from solidifying while adhering to the saddle type 1 3 1. Since the crystals formed on the inner surface of the vertical type 1 3 1 are forcibly released at an early stage, the size of the device is not increased compared to mechanical stirring and electromagnetic stirring, and the energy cost is increased. Without making it, the overall structure of various metals can be made into a finer spherical shape, for example, 10 m to 20 O im, compared to the case where vibration is not applied to the conventional mold.
  • the finishing time of the lump N can be shortened and the number of finishing steps can be reduced.
  • FIG. 8 is an explanatory view corresponding to a partial cross-sectional view showing a schematic configuration of the lump production apparatus according to the third embodiment of the present invention.
  • the same reference numerals are used in FIG. 4 and FIG. The description is omitted.
  • the lump production apparatus P adjusts the melting furnace (1 1 1) that melts the metal into the molten metal M of the magnesium alloy, and adjusts the melting furnace (1 1 1) to the desired melting temperature.
  • a melting furnace temperature control mechanism (1 1 7), a molten metal discharge control mechanism (1 2 1) for controlling the discharge amount of molten metal M discharged from the melting furnace (1 1 1), and a melting furnace (1 1 1) A mold 1 3 1 to which molten metal M is supplied, and a mold to convey this mold 1 3 1 Conveying mechanism 1 41, vertical cooling mechanism (1 51) that cools vertical mold 1 31 conveyed by vertical transfer mechanism 1 41, and refrigerant (1 53) of vertical cooling mechanism (1 51) Refrigerant cooling mechanism for vertical cooling (1 61) to be cooled and inserted into vertical mold 1 31 located at molten metal supply position (excitation position) (P a), and molten metal M is poured, for example A hemispherical cooling body 21 1, a cooling body vibration mechanism 22 1 that vibrates the cooling body 21 1, and
  • the cooling body exciting mechanism 221 is bent into a crank shape, one end (right end) is closed, one end is fixed, and the other end (left end) supports the cooling body 211.
  • at least one of the pipes 222 for example, a vibration part 223 that applies vibration from the lower side, and a vibration position (lowering position) where the cooling body 211 is located in the vertical mold 1 31 (shown in FIG. 8) Position)
  • the cooling body 21 1 is moved between the non-excited position (ascending position) where the cooling body 21 1 is located outside the vertical mold 1 31, with one end (right end) as a fulcrum. (224).
  • the cooling body cooling mechanism 231 described above has a flexible structure in which one end is connected to one pipe 222 and the other end is connected to the other pipe 222 so as to communicate with a flow path formed in the cooling body 211.
  • the predetermined amount of molten metal M discharged into the vertical body (1 3 2) in this way is poured into the cooling body 2 1 1 and cooled by the cooling body cooling mechanism 2 3 1 When it comes into contact with the surface of 2 1 1 and is cooled, it crystallizes into a spherical shape and adheres to the surface of the cooling body 2 1 1.
  • the cooling body 2 1 1 Since the cooling body 2 1 1 is vibrated by the cooling body vibration mechanism 2 2 1, the spherical crystals are forcibly released from the surface of the cooling body 2 1 1 while growing. Drops into the mold body 1 3 2.
  • the molten metal M that has fallen into the saddle-shaped body 1 3 2 contacts the inner surface of the saddle-shaped body 1 3 2 and is cooled to grow into a spherical crystal. Adhere to the inner surface.
  • the excitation unit 2 2 3 is stopped, and the cooling body moving drive unit (2 2 4) (not shown) is operated to place the cooling body 2 1 1 in the non-vibration position (upward position).
  • the molten metal M is cooled even by the cooling body 2 11, and the molten metal M is solidified on the cooling body 2 11.
  • a cooling body vibration mechanism 2 2 1 is installed, and crystals generated on the surface of the cooling body 2 1 1 are forced to be released and flowed down at the initial stage, so that compared to mechanical stirring and electromagnetic stirring equipment It is possible to efficiently generate a solid mass N having a fine spherical crystal without increasing the size of the material and without increasing the energy cost. Since the cooling body cooling mechanism 2 3 1 for cooling the cooling body 2 1 1 is provided, the cooling body 2 1 1 can be maintained at a constant temperature, and the solid mass of fine spherical crystals can be efficiently used. Can be generated well.
  • FIG. 9 is an explanatory view corresponding to a side sectional view showing a schematic configuration of another example of the melting furnace used in the continuous forging bar manufacturing apparatus or the lump manufacturing apparatus.
  • the melting furnaces 1 1 and 1 1 1 were removably accommodated in the melting furnace main bodies 1 2 and 1 1 2 opened upward and in the melting furnace main bodies 1 2 and 1 1 2.
  • the crucibles 1 2A, 1 1 2 A and the crucibles 1 2 A, 1 1 2 A are penetrated through the bottom of the crucible and attached liquid-tight, and the bottom of the melting furnace body 1 2, 1 1 2 can be removed.
  • 1 2A, 1 1 2 A discharge pipe located at a predetermined position in the crucible 1 3, 1 1 3 and the heater embedded in the melting furnace body 1 2, 1 1 2 1 4 1 4 and lid bodies 1 5 and 1 1 5 that block the upper part of the melting furnace main bodies 1 2 and 1 1 2.
  • the melting furnace temperature adjustment mechanisms 17, 1 1 7 include thermocouples 18, 1 1 8 as temperature measuring instruments for measuring the temperatures in the melting furnaces 1 1, 1 1 1, 1 1 1 Energization control unit 1 that supplies power to heaters 1 and 4 and stops supply of power to heaters 1 and 4 so that the temperature detected at 8 becomes the set melting temperature 9, 1 1 9
  • the temperature in the melting furnaces 1 1 and 1 1 1 is higher than the liquidus temperature of the magnesium alloy because the molten metal M of the magnesium alloy is generated by the melting furnace temperature adjusting mechanism 17 and 1 17. Is set.
  • the molten metal discharge control mechanisms 21, 1 21 were passed through through holes 15 a, 1 1 5 a provided in the lid bodies 15, 1 1 5 of the melting furnaces 1 1, 1 1 1 1 Control that heat-resistant control rods 22 and 122 and these heat-resistant control rods 22 and 122 are inserted into melting furnaces 1 1 and 1 1 1 and molten metal M is discharged from discharge pipes 1 3 and 1 1 3 It consists of rod drive units 23 and 1 23.
  • the melting furnaces 1 1 and 1 1 1 are not provided with dross removal, if a predetermined amount of molten metal M has been discharged and a slight amount of molten metal M and dross remain, Open the lid 1 5 and 1 1 5 and take out the crucibles 1 2A and 1 1 2 A from the melting furnace main body 1 2 and 1 1 2, and the new crucibles 1 2A and 1 1 2 A are shown in Fig. 9.
  • the melting furnace main body 1 2, 1 1 2 is housed.
  • the molten metal M of the magnesium alloy is produced.
  • the molten metal discharge control mechanisms 21 and 121 are operated to sequentially discharge the molten metal M by a predetermined amount.
  • the melting furnaces 1 1 and 1 1 1 have crucibles 1 2 A and 1 1 2 A installed in place of dross removal. By replacing crucibles 1 2 A and 1 1 2 A, dross removal from dross removal is possible.
  • the molten metal M can be newly generated sooner than when the molten metal M is newly generated by removing.
  • the crucibles 1 2 A and 1 1 2 A taken out from the melting furnace main body 1 2 and 1 1 2 can be taken out, for example, if water is stored and dross or the like hardens due to changes over time. .
  • the crucibles 1 2 A and 1 1 2 A from which the solid dross has been removed can be prepared for the next use by cleaning the inner peripheral surface.
  • the molten metal M of the magnesium alloy to be handled is easily oxidized, so that it is performed in a nonflammable atmosphere, for example, an argon gas, hexafluoride (SF 6 ) gas and carbon dioxide mixed gas atmosphere. desirable.
  • a nonflammable atmosphere for example, an argon gas, hexafluoride (SF 6 ) gas and carbon dioxide mixed gas atmosphere.
  • molten metal M has been described as an example of a magnesium alloy, but it goes without saying that it can be applied to aluminum alloys and other metals.
  • the plate can be manufactured using the force ⁇ , the metal slurry U described in the example of manufacturing the continuous forging bar B and the billet L.
  • the cooling body 2 11 and the cooling body vibration mechanism 2 2 1 in the third embodiment instead of the inclined cooling body 31 and the inclined cooling body vibration mechanism 36, the cooling body 2 11 and the cooling body vibration mechanism 2 2 1 in the third embodiment (further, the cooling body cooling mechanism 2 3 1) or the cooling body 2 11 in the third embodiment, the cooling body vibration mechanism 2 2 1 (and the cooling body cooling mechanism 2 3 1), and the inclined cooling body 3 1
  • the cooling body vibration mechanism 2 2 1 and the cooling body cooling mechanism 2 3 1
  • the example of producing the column-shaped cake lump N has been described.
  • the cake (slag lump) is directly produced by forging for producing the cake. be able to.
  • the cooling body 2 1 1 in the third embodiment the cooling body vibration
  • mechanism 2 2 1 further cooling body cooling mechanism 2 3 1
  • the generated cooling crystal is forcibly released and flowed down by applying vibration to the inclined cooling body.
  • a metal slurry having fine spherical crystals can be produced efficiently and continuously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

この発明は、金属を溶融させて溶融金属(M)にする溶融炉(11)と、この溶融炉(11)から排出された溶融金属(M)が上部に注がれる傾斜冷却体(31)と、この傾斜冷却体(31)に振動を与える傾斜冷却体加振機構(36)とを備え、微細な球状結晶を有する金属スラリーを効率よく連続して製造することができる。

Description

明 細 書 金属スラリー製造方法、 金属スラリー製造装置、 錶塊製造方法および錶塊製造装 置 技術分野
この発明は、 溶融 (液相) 状態の金属と凝固 (固相) 状態の金属とが混在する 半溶融 (半凝固) 状態の金属スラリーを製造する金属スラリー製造方法、 金属ス ラリー製造装置、 および、 半溶融 (半凝固) 状態の金属スラリーから錶塊を製造 する錶塊製造方法、 錶塊製造装置に関する。 背景技術
一般的に、 半溶融■半凝固金属のレオロジ一やチキソトロピー、 つまり、 粘性 力《低くて流動性に優れている性質を利用した錶造法として、 前者はレオキャス卜 法 (半凝固錶造法) 力 また、 後者はチキソキャス卜法 (半溶融錶造法) が知ら れている。
これらの錶造法は、 いずれも溶融した液相の金属と、 固相の金属とが混在する 半溶融 ·半凝固状態の金属スラリーを用いて錶造を行うものである。
上記した錶造法で製造された錶塊および錶物のマグネシウム合金を初めとする 各種金属の錶造組織は、 結晶の方向性がないこと、 各種機械的性質が良好である こと、 成分の偏祈が少ないことが求められるため、 全体的に微細球状であること が望ましい。
そこで、 錶造組織の微細化かつ球状化を図るため、 例えば、 溶融金属を傾斜冷 却体へ注ぎ、 この傾斜冷却体で溶融金属を冷却したり、 溶融金属に微細化剤を添 加したり、 溶融金属に電磁攪拌や機械攪拌を与えている。 (例えば、 日本特開 2 0 0 1 - 2 5 2 7 5 9号公報及び日本特開平 1 0— 1 2 8 5 1 6号公報を参照) しかしながら、 溶融金属を傾斜冷却体へ注ぎ、 この傾斜冷却体で溶融金属を冷 却する場合、 溶融金属が傾斜冷却体の表面で急冷されることにより、 金属スラリ 一が傾斜冷却体上で固化することがしばしば発生し、 連続して金属スラリ一を製 造することができなくなる場合がある。
特に、 溶融金属がマグネシウム合金の場合、 マグネシウム合金は凝固潜熱が小 さく、 固まり易いため、 連続して金属スラリーを製造することが難しいのが現状 である。
また、 溶融金属に微細化剤を添加して微細球状結晶を形成する場合、 全ての金 属に適用することができず、 アルミニウム合金やマグネシウム合金に限られると ともに、 微細化剤の添加量や添加温度を正確に制御する必要があり、 更に微細化 剤添加後の結晶の微細化状態の保持時間に限界がある。
さらに、 溶融金属に電磁攪拌や機械攪拌を与える場合、 装置が大型化するとと もに、 エネルギーコストが増加する。
従って、 この発明は、 傾斜冷却体を用いて好適に連続して金属スラリーを製造 する方法及び装置を提供することを目的としている。
この発明は、 更に、 溶融金属がマグネシウム合金であっても好適に連続して金 属スラリーを製造する方法及び装置を提供することを目的としている。
この発明は、 更にまた、 機械攪拌装置や電気撹拌装置に比べて装置を大型化さ せることなく、 またエネルギーコストを抑制した金属スラリーを製造する方法及 び装置を提供することを目的としている。 発明の開示
本発明は、 溶融金属を傾斜冷却体へ注ぎ、 この傾斜冷却体で前記溶融金属を冷 却することにより、 金属スラリーを製造する金属スラリー製造方法において、 前 記傾斜冷却体に振動を与えることを特徴とする。
また、 本発明の金属スラリーの製造方法は、 溶融金属を振動する冷却体へ注ぎ、 この冷却体で前記溶融金属を冷却することにより、 金属スラリ一を製造すること を特徴とする。
上記金属スラリー製造方法において、 前記溶融金属がマグネシウム合金である ことを特徴とする。
本発明は、 溶融金属を傾斜冷却体へ注ぎ、 この傾斜冷却体で前記溶融金属を冷 却することにより、 金属スラリーを製造する金属スラリー製造装置において、 前 記傾斜冷却体に振動を与える傾斜冷却体加振機構を設けたことを特徴とする。 また、 本発明の金属スラリー製造装置は、 溶融金属が注がれる冷却体と、 この 冷却体に振動を与える冷却体加振機構とを備えることを特徴とする。
上記金属スラリー製造装置において、 前記溶融金属がマグネシウム合金である ことを特徴とする。
本発明は、 錶型へ供給した溶融金属を、 前記錶型を冷却することによって冷却 し、 錶塊を製造する錶塊製造方法において、 前記錶型に振動を与えることを特徴 とする。
本発明は、 錶型へ供給した溶融金属を、 前記錶型を冷却することによって冷却 し、 錶塊を製造する錶塊製造方法において、 溶融金属を振動する冷却体へ注ぎ、 この冷却体で前記溶融金属を冷却した後に前記錶型へ供給することを特徴とする。 上記の錶塊製造方法において、 前記溶融金属がマグネシウム合金であることを 特徴とする。
本発明は、 錶型へ供給した溶融金属を、 前記錶型を冷却することによって冷却 し、 錶塊を製造する錶塊製造装置において、 前記錶型に振動を与える錶型加振機 構を設けたことを特徴とする。
本発明は、 錶型へ供給した溶融金属を、 前記錶型を冷却することによって冷却 し、 錶塊を製造する錶塊製造装置において、 注がれる溶融金属を冷却して前記錶 型へ供給する冷却体と、 この冷却体に振動を与える冷却体加振機構とを設けたこ とを特徴とする。
上記錶塊製造装置において、 前記溶融金属がマグネシウム合金であることを特 徴とする。
この発明の金属スラリー製造方法及び金属スラリー製造装置によれば、 傾斜冷 却体上で溶融金属が固化するのを防ぐために傾斜冷却体加振機構を設け、 傾斜冷 却体の表面に生成する結晶を初期段階で強制的に遊離させて流下させるか、 また は、 冷却体上で溶融金属が固化するのを防ぐために冷却体加振機構を設け、 冷却 体の表面に生成する結晶を初期段階で強制的に遊離させて流下させるようにした ので、 機械攪拌や電磁攪拌装置に比べて装置を大型化させることなく、 また、 ェ ネルギーコストを增加させることなく、 微細な球状結晶を有する金属スラリ一を 効率よく連続して製造することができるとともに、 従来の傾斜冷却体に振動を与 えない場合よりも微細な球状結晶を有する金属スラリーを得ることができる。 そして、 溶融金属をマグネシウム合金としたので、 金属スラリーを球状結晶の まま錶造する場合、 錶物の仕上げ時間を短縮でき、 仕上げ工程数を少なくするこ とができる。
この発明の錶塊製造方法及び錶塊製造装置によれば、 溶融金属が錶型に付着し たまま固化するのを防ぐために錶型加振機構を設け、 錶型の内側表面に生成する 結晶を初期段階で強制的に遊離させるので、 または、 溶融金属が冷却体に付着し たまま固化するのを防ぐために冷却体加振機構を設け、 冷却体の表面に生成する 結晶を初期段階で強制的に遊離させて流下させるので、 機械攪拌や電磁攪拌装置 に比べて装置を大型化させることなく、 また、 エネルギーコストを増加させるこ となく、 各種金属の錶造組織を従来の錶型に振動を与えない場合よリも全体的に 微細な球状にすることができる。
特に凝固潜熱が小さく固まり易くて半溶融状態の金属スラリーの製造が困難な M g合金についても本発明に依れば容易に M g合金スラリーを製造することがで さる。 図面の簡単な説明
第 1図は、 この発明に依る金属スラリー製造装置の第 1実施例を適用した連続 錶造棒製造装置の概略構成を示す説明図である。
第 2図は、 従来の連続錶造棒製造装置で製造した連続錶造棒を再加熱して凝固 させた凝固組織を示す光学顕微鏡写真の複写である。
第 3図は、 第 1図の連続錶造棒製造装置で製造した連続錶造棒を再加熱して凝 固させた凝固組織を示す光学顕微鏡写真の複写である。
第 4図は、 この発明に依る錶塊製造装置の第 2実施例の概略構成を示す側断面 図である。
第 5図は、 第 4図の錶塊製造装置の錶型搬送機構の概略構成を示す平面図であ る。
第 6図は、 従来の錶塊製造装置で製造した錶塊を再加熱して凝固させた凝固組 織を示す光学顕微鏡写真の複写である。
第 7図は、 この発明の第 2実施例の錶塊製造装置で製造した錶塊を再加熱して 凝固させた凝固組織を示す光学顕微鏡写真の複写である。
第 8図は、 この発明に依る錶塊製造装置の第 3実施例の概略構成を示す部分側 断面図である。
第 9図は、 連続錶造棒製造装置または錶塊製造装置で使用する溶融炉の他の例 の概略構成を示す側断面図である。 発明を実施するための最良の形態
本発明をより詳細に詳述するために、 添付の図面に従ってこれを説明する。 第 1図において、 連続錶造棒製造装置 Iは、 金属を溶融させて溶融マグネシゥ ム合金 (溶融金属 M) にする溶融炉 1 1と、 この溶融炉 1 1を所望の溶融温度に 」調整する溶融炉温度調整機構 1 7と、 溶融炉 1 1から排出させる溶融金属 Mの排 出量を制御する溶融金属排出制御機構 2 1と、 溶融炉 1 1から排出されて上部へ 注がれた溶融金属 Mを冷却して半溶融状態の金属スラリー Uにする傾斜冷却体 3 1と、 この傾斜冷却体 3 1に振動を与える傾斜冷却体加振機構 3 6と、 傾斜冷却 体 3 1から金属スラリー Uが供給される円筒状の錶型 4 1と、 この錶型 4 1を冷 却する錶型冷却機構 5 1と、 この錶型冷却機構 5 1の冷媒 5 3を冷却する冷媒冷 却機構 6 1と、 錶型 4 1からの連続錶造棒 Bを所望の錶造速度で引き出す送リロ 一ラー機構 7 1 と、 この送リローラー機構 7 1で送り出される連続錶造棒 Bを所 定長のビレット Lに切断する切断機構 8 1とで構成されている。
なお、 金属スラリー製造装置 Sは、 溶融炉 1 1〜傾斜冷却体加振機構 3 6で構 成されている。
上記した溶融炉 1 1は、 上方が開放した溶融炉本体 1 2と、 この溶融炉本体 1 2の底に貫通させて液密に取り付けられ、 上端が溶融炉本体 1 2内の所定位置に 位置する排出管 1 3と、 溶融炉本体 1 2に埋め込まれたヒーター 1 4と、 溶融炉 本体 1 2の上方を閉塞する蓋体 1 5とで構成されている。
そして、 溶融炉本体 1 2の底には、 沈殿する不純物、 例えば、 ドロスを取り出 すためのドロス抜き 1 6が設けられている。 上記した溶融炉温度調整機構 1 7は、 溶融炉 1 1内の温度を計測する温度計測 器としての熱電対 1 8と、 この熱電対 1 8で検出した温度が設定した溶融温度に なるようにヒーター 1 4へ電力を供給したり、 ヒーター 1 4への電力の供給を停 止する通電制御部 1 9とで構成されている。
なお、 上記した溶融炉 1 1内の温度は、 この溶融炉温度調整機構 1 7により、 マグネシウム合金の溶融金属 Mを生成するため、 マグネシウム合金の液相線温度 以上に設定されている。
上記した溶融金属排出制御機構 2 1は、 溶融炉 1 1の蓋体 1 5に設けられた揷 通子 L 1 5 aに挿通された耐熱性制御棒 2 2と、 この耐熱性制御棒 2 2を溶融炉 1 1内へ挿入して溶融金属 Mを排出管 1 3から排出させる制御棒駆動部 2 3とで構 成されている。
上記した傾斜冷却体 3 1は、 2 0度〜 8 0度の仰角で設置され、 図示を省略し た水冷または気体冷却の傾斜冷却体冷却機構によって一定温度に設定されている。 したがって、 傾斜冷却体 3 1上を流下する溶融金属 Mは、 流下中に温度が降下 する。
すなわち、 傾斜冷却体 3 1上でマグネシウム合金の液相線温度以下で、 マグネ シゥム合金の固相線温度以上の温度になるように設定されている。
ここで、 傾斜冷却体 3 1上を流下させる溶融マグネシウム合金の温度をマグネ シゥム合金の液相線温度以下で、 マグネシウム合金の固相線温度以上の温度に設 定したのは、 溶融金属 Mが冷却されて生成した球状結晶が溶解、 消滅せず、 また、 完全に固化しないで半溶融状態のスラリーを維持させるという理由に基づいてい る。
上記した傾斜冷却体加振機構 3 6は、 例えば、 偏心軸とモーターなどで構成さ れ、 傾斜冷却体 3 1に付着した溶融金属 Mの凝固殻を初期段階で強制的に遊離さ せるため、 傾斜冷却体 3 1に振動を与えるものである。
上記した錶型 4 1は、 両端が開放した円筒状の錶型本体 4 2と、 この錶型本体 4 2の一端 (上端) の外周に設けられたフランジ部 4 3とで構成されている。 そして、 錶型 4 1は、 錶型本体部 4 2が貫通した状態で、 フランジ部 4 3が上 端に係合する錶型保持ユニット 4 6によって保持されている。 上記した錶型冷却機構 5 1は、 錶型 4 1の錶型本体 4 2が底を液密に貫通する 冷却槽 5 2と、 この冷却槽 5 2に収容された冷媒 5 3とで構成されている。
上記した冷媒冷却機構 6 1は、 冷却槽 5 2に両端が接続された配管 6 2と、 こ の配管 6 2の途中に設けられた冷媒冷却部 6 3と、 配管 6 2の途中に設けられ、 冷却槽 5 2内の冷媒 5 3を循環させるポンプ 6 4とで構成されている。
なお、 上記した冷媒 5 3は、 この冷媒冷却機構 6 1により、 半溶融状態の金属 スラリー Uを凝固させる一定温度、 例えば、 マグネシウム合金の固相線温度以下 の温度に設定されている。
上記した送りローラ一機構 7 1は、 錶型 4 1からの連続錶造棒 Bを挟持して引 き出す一対のローラー 7 2と、 この一対のローラー 7 2の少なくとも一方を所望 の錶造速度で回転させる、 図示を省略した回転駆動部 (7 3 ) とで構成されてい る。
上記した切断機構 8 1は、 送リローラー機構 7 1で送り出される連続錶造棒 B を所定長のビレツ卜しに切断する切断刃 8 2と、 この切断刃 8 2を回転させるモ 一ター 8 3と、 このモーター 8 3を水平方向へ移動させる、 図示を省略した移動 駆動部 (8 4 ) とで構成されている。
次に、 連続錶造棒 Bおよびビレット Lの製造について説明する。
まず、 溶融炉本体 1 2内へ所定の金属を投入して蓋体 1 5で溶融炉本体 1 2を 閉塞し、 ヒーター 1 4で溶融炉本体 1 2を加熱して金属を溶融させることにより、 マグネシウム合金の溶融金属 Mを生成する。
そして、 制御棒駆動部 2 3で耐熱性制御棒 2 2を駆動して下降させることによ リ、 排出管 1 3から傾斜冷却体 3 1へ溶融金属 Mを順次排出させる。
このようにして溶融金属 Mを排出させる場合、 マグネシウム合金は実用金属中 で比重力《最も小さいため、 殆どの不純物や化合物は溶融炉本体 1 2の底に沈殿す るので、 溶融金属 Mの上澄みを排出することにより、 殆どの不純物や化合物を除 去した溶融金属 Mを、 傾斜冷却体 3 1の上部へ供給することができる。
また、 溶融炉本体 1 2の底に沈殿する不純物はドロスと呼ばれ、 このドロス力《 混入すると、 清浄なマグネシウム合金とならず、 不良品となるので、 耐熱性制御 棒 2 2を下降させて排出できる溶融金属 Mの量は、 排出管 1 3の上端よりも下側 の溶融炉本体 1 2内の体積の 7 0 %〜 8 0 %であることが望ましい。
そして、 溶融炉本体 1 2の底に沈殿したドロスは、 ドロス抜き 1 6を適宜操作 して排出させればよい。
上記のようにして傾斜冷却体 3 1上へ排出された溶融金属 Mは、 傾斜冷却体 3 1の表面に接触して冷却されることにより、 一部が結晶化して半溶融■半凝固状 態の金属スラリー Uとなって錶型 4 1へ供給される。
このとき、 傾斜冷却体 3 1が傾斜冷却体加振機構 3 6によって加振されている ので、 凝固殻は、 傾斜冷却体 3 1に付着したとしても初期段階で強制的に小さな 球状状態で遊離させられ、 球状化する。
そして、 錶型 4 1内に供給された金属スラリー Uは、 錶型冷却機構 5 1によつ て冷却されるので、 ダミーバーを使用して連続錶造棒 Bに錶造される。
このようして製造された連続錶造棒 Bは、 送りローラ一機構 7 1で送られ、 切 断機構 8 1によって所定の長さのビレツト Lに切断される。
このビレット Lを、 鍛造、 押出などに使用したり、 必要に応じて半溶融状態ま で加熱して半溶融加工する。
傾斜冷却体加振機構のない連続錶造棒製造装置で製造したビレットを再加熱し て凝固させた光学顕微鏡による凝固組織を第 2図に示すとともに、 この発明の第 1実施例の連続錶造棒製造装置 Iで製造したビレツ卜 Lを再加熱して凝固させた 光学顕微鏡による凝固組織を第 3図に示す。
傾斜冷却体加振機構のない連続錶造棒製造装置で製造したビレツ卜の凝固組織 は、 第 2図から分かるように、 球状化結晶が成長して数百 / / m以上の大きさに なる。
しかし、 この発明の第 1実施例の連続錶造棒製造装置 Iで製造したビレット L の凝固組織は、 第 3図から分かるように、 1 0 m〜2 0 0〃mの微細な球状結 晶となる。
上述したように、 この発明の第 1実施例の金属スラリー製造装置 Sによれば、 傾斜冷却体 3 1上で溶融金属 Mが固化するのを防ぐために傾斜冷却体加振機構 3 6を設け、 傾斜冷却体 3 1の表面に生成する結晶を初期段階で強制的に遊離させ て流下させるので、 機械攪拌や電磁攪拌装置に比べて装置を大型化させることな く、 また、 エネルギーコストを増加させることなく、 微細な球状結晶、 例えば、 1 0 m〜2 0 0 // mの球状結晶を有する金属スラリー Uを効率よく連続して製 造することができるとともに、 従来の傾斜冷却体に振動を与えない場合よりも微 細な球状結晶を有する金属スラリー Uを得ることができる。
そして、 溶融金属 Mをマグネシウム合金としたので、 微細な球状結晶を有する ビレット Lを製造でき、 このビレット Lを用いて鍛造、 または、 半溶融錶造する と、 仕上げ時間を短縮でき、 仕上げ工程数を少なくすることができ、 また、 金属 スラリー Uを球状結晶のまま錶造する場合、 錶物の仕上げ時間を短縮でき、 仕上 げ工程数を少なくすることができる。
第 4図はこの発明の第 2実施例である錶塊製造装置の概略構成を示す側断面図 に相当する説明図、 第 5図はこの発明の第 2実施例である錶塊製造装置における 錶型搬送機構の概略構成を示す平面図に相当する説明図である。
なお、 第 4図は、 第 5図の A _ A線による断面に相当する。
第 4図または第 5図において、 錶塊製造装置 Pは、 金属を溶融させて溶融マグ ネシゥム合金 (溶融金属 M) にする溶融炉 1 1 1と、 この溶融炉 1 1 1を所望の 溶融温度に調整する溶融炉温度調整機構 1 1 7と、 溶融炉 1 1 1から排出させる 溶融金属 Mの排出量を制御する溶融金属排出制御機構 1 2 1と、 溶融炉 1 1 1か ら溶融金属 Mが供給される錶型 1 3 1と、 この錶型 1 3 1を搬送する錶型搬送機 構 1 4 1と、 この錶型搬送機構 1 4 1で搬送される錶型 1 3 1を冷却する錶型冷 却機構 1 5 1と、 この錶型冷却機構 1 5 1の冷媒 1 5 3を冷却する錶型冷却用冷 媒冷却機構 1 6 1と、 溶融炉 1 1 1から溶融金属 Mが供給される溶融金属供給位 置 (加振位置) P aへ錶型搬送機構 1 4 1で搬送された錶型 1 3 1に振動を与え る錶型加振機構 1 7 1とで構成されている。
上記した溶融炉 1 1 1は、 上方が開放した溶融炉本体 1 1 2と、 この溶融炉本 体 1 1 2の底に貫通させて液密に取り付けられ、 上端が溶融炉本体 1 1 2内の所 定位置に位置する排出管 1 1 3と、 溶融炉本体 1 1 2に埋め込まれたヒータ一 1 1 4と、 溶融炉本体 1 1 2の上方を閉塞する蓋体 1 1 5とで構成されている。 そして、 溶融炉本体 1 1 2の底には、 沈殿する不純物、 例えば、 ドロスを取り 出すためのドロス抜き 1 1 6が設けられている。 上記した溶融炉温度調整機構 1 1 7は、 溶融炉 1 1 1内の温度を計測する温度 計測器としての熱電対 1 1 8と、 この熱電対 1 1 8で検出した温度が設定した溶 融温度になるようにヒーター 1 1 4へ電力を供給したり、 ヒーター 1 1 4への電 力の供給を停止する通電制御部 1 1 9とで構成されている。
なお、 上記した溶融炉 1 1 1内の温度は、 この溶融炉温度調整機構 1 1 7によ リ、 マグネシウム合金の溶融金属 Mを生成するため、 マグネシウム合金の液相線 温度以上に設定されている。
上記した溶融金属排出制御機構 1 2 1は、 溶融炉 1 1 1の蓋体 1 1 5に設けら れた揷通孔 1 1 5 aに揷通された耐熱性制御棒 1 2 2と、 この耐熱性制御棒 1 2 2を溶融炉 1 1 1内へ挿入して溶融金属 Mを排出管 1 1 3から排出させる制御棒 駆動部 1 2 3とで構成されている。
上記した錶型 1 3 1は、 例えば、 一端 (上方) が開放した円筒状の錶型本体 1 3 2と、 この錶型本体 1 3 2の一端 (上方) の外周に設けられたフランジ部 1 3 3とで構成されている。
上記した錶型搬送機構 1 4 1は、 錶型本体 1 3 2を貫通させた状態で、 フラン ジ部 1 3 3が上端に着脱可能に固定される錶型保持部 1 4 2と、 複数、 この実施 例では 8つの錶型保持部 1 4 2を一定間隔で楕円状に搬送するコンベア 1 4 3と、 このコンベア 1 4 3を楕円状に送る駆動歯車 1 4 4および従動歯車 1 4 5と、 コ ンベア 1 4 3を、 例えば、 第 5図において時計方向へ一定距離送る分だけ駆動歯 車 1 4 4を駆動して所定時間停止するのを繰り返す、 図示を省略した搬送駆動部 ( 1 4 6 ) とで構成されている。
なお、 第 5図において、 P sはコンベア 1 4 3で送られる錶型保持部 1 4 2に 錶型 1 3 1を取り付ける錶型取付位置、 P aはコンベア 1 4 3で送られる錶型 1 3 1へ溶融炉 1 1 1から溶融金属 Mを供給する溶融金属供給位置、 または、 コン ベア 1 4 3で送られる錶型 1 3 1へ錶型加振機構 1 7 1で振動を与える加振位置、 P oはコンベア 1 4 3で送られる錶型保持部 1 4 2から錶型 1 3 1を取り外す錶 型取外位置を示す。
上記した錶型冷却機構 1 5 1は、 錶型搬送機構 1 4 1で搬送される錶型 1 3 1 が通過する冷却槽 1 5 2と、 この冷却槽 1 5 2に収容された冷媒 1 5 3とで構成 されている。
なお、 冷却槽 1 5 2は、 第 5図に示すように、 楕円状に形成されているが、 錶 型取付位置 P sよりも上流の位置に設けた区画壁 1 5 2 aと、 錶型取外位置 P o よリも下流の位置に設けた区画壁 1 5 2 bとの間に冷媒 1 5 3とが収容されてい る。
上記した錶型冷却用冷媒冷却機構 1 6 1は、 冷却槽 1 5 2に両端が接続された 配管 1 6 2と、 この配管 1 6 2の途中に設けられた冷媒冷却部 1 6 3と、 配管 1 6 2の途中に設けられ、 冷却槽 1 5 2内の冷媒 1 5 3を循環させるポンプ 1 6 4 とで構成されている。
なお、 上記した冷媒 1 5 3は、 この錶型冷却用冷媒冷却機構 1 6 1により、 溶 融金属 Mを凝固させる一定温度、 例えば、 マグネシウム合金の固相線温度以下の 温度に設定されている。
ここで、 冷媒 1 5 3の温度をマグネシウム合金の固相線温度以下の温度に設定 したのは、 錶型本体 1 3 2の内側表面に生成した結晶を錶型本体 1 3 2の振動で 錶型本体 1 3 2の内側表面から遊離させて半凝固状態から凝固状態にするという 理由に基づいている。
上記した錶型加振機構 1, 1は、 一端 (左端) に、 例えば、 錶型 1 3 1のフラ ンジ部 1 3 3が収容される切欠 1 Ί 2 aが設けられた伝達部材 1 7 2と、 この伝 達部材 1 7 2の右側上面に取り付けられた、 例えば、 偏心軸とモーターなどで構 成された加振部 1 7 3と、 切欠 1 7 2 a内にフランジ部 1 3 3が収容されずに錶 型 1 3 1を錶型搬送機構 1 4 1で搬送できる後退位置 (第 4図および第 5図の実 線の位置) 、 切欠 1 7 2 a内にフランジ部 1 3 3が収容される前進位置 (第 4図 および第 5図の二点鎖線の位置) の間を、 伝達部材 1 7 2を移動させる、 図示を 省略した伝達部材用移動駆動部 (1 7 4 ) とで構成されている。
次に、 錶塊 Nの製造について説明する。
まず、 第 4図に示す状態の溶融炉本体 1 1 2内へ所定の金属を投入して蓋体 1 1 5で溶融炉本体 1 1 2を閉塞し、 ヒーター 1 1 4で溶融炉本体 1 1 2を加熱し て金属を溶融させることにより、 マグネシウム合金の溶融金属 Mを生成する。 そして、 錶型搬送機構 1 4 1を動作させることにより、 コンベア 1 4 3を移動 させるとともに、 錶型取付位置 P sへ順次搬送されてくる錶型保持部 1 4 2に錶 型 1 3 1を保持させて取り付け、 錶型本体 1 3 2の一部分を冷却槽 1 5 2の冷媒 1 5 3内に埋没させる。
このようにして錶型保持部 1 4 2に取り付けられてコンベア 1 4 3で溶融金属 供給位置 (加振位置) P aへ錶型 1 3 1が搬送されてきて停止すると、 図示を省 略した伝達部材用移動駆動部 (1 7 4 ) で伝達部材 1 7 2を前進させて切欠 1 Ί 2 a内に錶型 1 3 1のフランジ部 1 3 3を収容するとともに、 加振部 1 7 3を動 作させ、 錶型 1 3 1に振動を与える。
そして、 制御棒駆動部 1 2 3で耐熱性制御棒 1 2 2を駆動して下降させること により、 排出管 1 1 3から錶型 1 3 1内へ所定量の溶融金属 Mを排出させる。 このようにして溶融金属 Mを排出させる場合、 ドロスの混入しない清浄なマグ ネシゥム合金を排出させるため、 耐熱性制御棒 1 2 2を下降させて排出できる溶 融金属 Mの量は、 排出管 1 1 3の上端よりも下側の溶融炉本体 1 1 2の体積の 7 0 %〜 8 θ ο/οであることが望ましい。
そして、 溶融炉本体 1 1 2の底に沈殿したドロスは、 ドロス抜き 1 1 6を適宜 操作して排出させればよい。
上記のようにして錶型本体 1 3 2内へ排出された所定量の溶融金属 Mは、 錶型 本体 1 3 2の内側表面に接触して冷却されることにより、 結晶化して球状になり、 錶型本体 1 3 2の内側表面に付着する。
しかし、 錶型 1 3 1は錶型加振機構 1 7 1によって振動が加えられているので、 球状結晶は成長しながら錶型本体 1 3 2の内側表面から強制的に遊離させられ、 錶型本体 1 3 2の底へと順次沈殿して錶塊 Nとなる。
上記のょゔにして溶融金属供給位置 (加振位置) P aに位置する錶型 1 3 1に 所定時間、 例えば、 1分〜 5分位振動を加えたならば、 加振部 1 7 3を停止させ、 図示を省略した伝達部材用移動駆動部 (1 7 4 ) で伝達部材 1 7 2を後退させる。 そして、 錶型搬送機構 1 4 1で溶融金属 Mが供給された錶型 1 3 1を錶型取外 位置 P o側へ所定距離搬送するとともに、 溶融金属供給位置 (加振位置) P aへ 次の錶型 1 3 1を搬送し、 溶融金属供給位置 (加振位置) P aへ搬送された錶型
1 3 1に、 上述したように、 振動を加えながら溶融炉 1 1 1から溶融金属 Mを供 給するのを繰り返して行う。
一方、 錶型取外位置 P oへ搬送された錶型 1 3 1は、 内部の半凝固状態の金属 スラリー Uが固まって錶塊 Nになっているので、 錶型保持部 1 4 2力、ら取り外し、 逆さにして錶塊 Nを排出させた後、 内周面を清掃して次の使用に備える。
錶型加振機構などのない錶塊製造装置で製造した錶塊を再加熱して凝固させた 光学顕微鏡による凝固組織を第 6図に示すとともに、 この発明の第 2実施例の錶 塊製造装置 Pで製造した錶塊 Nを再加熱して凝固させた光学顕微鏡による凝固組 織を第 7図に示す。
錶型加振機構などのない錶塊製造装置で製造した錶塊の凝固組織は、 第 6図か ら分かるように、 結晶が成長して数百 // m以上の大きさになる。
しかし、 この発明の第 2実施例の錶塊製造装置 Pで製造した錶塊 Nの凝固組織 は、 第 7図から分かるように、 1 0〃 〜2 0 0 の微細な球状結晶となる。 上述したように、 この発明の第 2実施例の錶塊製造装置 Pによれば、 溶融金属 Mが錶型 1 3 1に付着したまま固化するのを防ぐために錶型加振機構 1 7 1を設 け、 錶型 1 3 1の内側表面に生成する結晶を初期段階で強制的に遊離させるので、 機械攪拌や電磁攪拌装置に比べて装置を大型化させることなく、 また、 エネルギ —コストを増加させることなく、 各種金属の錶造組織を従来の錶型に振動を与え ない場合よりも全体的に微細な球状、 例えば、 1 0 m〜2 0 O i mにすること ができる。
そして、 溶融金属 Mをマグネシウム合金どしたので、 錶塊 Nの仕上げ時間を短 縮でき、 仕上げ工程数を少なくすることができる。
第 8図はこの発明の第 3実施例である錶塊製造装置の概略構成を示す部分側断 面図に相当する説明図であり、 第 4図および第 5図と同一または相当部分に同一 符号を付して説明を省略する。
第 8図において、 錶塊製造装置 Pは、 金属を溶融させてマグネシウム合金の溶 融金属 Mにする溶融炉 (1 1 1 ) と、 この溶融炉 (1 1 1 ) を所望の溶融温度に 調整する溶融炉温度調整機構 (1 1 7 ) と、 溶融炉 (1 1 1 ) から排出させる溶 融金属 Mの排出量を制御する溶融金属排出制御機構 (1 2 1 ) と、 溶融炉 (1 1 1 ) 力、ら溶融金属 Mが供給される錶型 1 3 1と、 この錶型 1 3 1を搬送する錶型 搬送機構 1 41 と、 この錶型搬送機構 1 41で搬送される錶型 1 31を冷却する 錶型冷却機構 (1 51 ) と、 この錶型冷却機構 (1 51 ) の冷媒 (1 53) を冷 却する錶型冷却用冷媒冷却機構 (1 61 ) と、 溶融金属供給位置 (加振位置) (P a) に位置する錶型 1 31内へ挿入され、 溶融金属 Mが注がれる、 例えば、 半球状の冷却体 21 1と、 この冷却体 21 1に振動を与える冷却体加振機構 22 1と、 冷却体 21 1を冷却する冷却体冷却機構 231とで構成されている。 上記した溶融炉 (1 1 1 ) 〜錶型冷却用冷媒冷却機構 (1 61 ) は、 図示を省 略されているが、 第 2実施例と同様に構成されている。
上記した冷却体加振機構 221は、 クランク状に折り曲げられ、 一端 (右端) が閉塞されるとともに、 一端が固定されて他端 (左端) で冷却体 21 1を支持す る 2本のパイプ 222と、 このパイプ 222の少なくとも一方に、 例えば、 下側 から振動を与える加振部 223と、 冷却体 21 1が錶型 1 31内に位置する加振 位置 (下降位置) (第 8図に示す位置) 、 冷却体 21 1が錶型 1 31外に位置す る非加振位置 (上昇位置) の間を、 一端 (右端) を支点にして移動させる、 図示 を省略した冷却体用移動駆動部 (224) とで構成されている。
上記した冷却体冷却機構 231は、 一方のパイプ 222に一端が接続されると ともに、 他方のパイプ 222に他端が接続され、 冷却体 21 1内に形成された流 路に連通する可撓性を有した配管 232と、 この配管 232の途中に設けられた 冷媒貯留部 233と、 配管 232の途中に設けられ、 冷媒を冷却する冷媒冷却部 234と、 配管 232の途中に設けられ、 冷媒を循環させるポンプ 235とで構 成されている。
次に、 錶塊 Nの製造について説明するが、 第 2実施例と殆ど同じなので、 第 2 実施例と異なる部分について説明する。
第 4図および第 5図に示す第 2実施例において、 溶融金属供給位置 (加振位 置) (Pa) へ錶型 1 31が搬送されて停止すると、 図示を省略した冷却体用移 動駆動部 (224) を動作させて錶型 1 31内へ冷却体 21 1を挿入して加振位 置 (下降位置) に位置させるとともに、 加振部 223を作動させる。
そして、 制御棒駆動部 (1 23) で耐熱性制御棒 (1 22) を駆動して下降さ せることにより、 排出管 (1 1 3) から錶型 1 31内へ所定量の溶融金属 Mを排 出させる。
このようにして錶型本体 (1 3 2 ) 内へ排出された所定量の溶融金属 Mは、 冷 却体 2 1 1に注がれ、 冷却体冷却機構 2 3 1で冷却されている冷却体 2 1 1の表 面に接触して冷却されることにより、 結晶化して球状になり、 冷却体 2 1 1の表 面に付着する。
し力、し、 冷却体 2 1 1は冷却体加振機構 2 2 1によって振動が加えられている ので、 球状結晶は成長しながら冷却体 2 1 1の表面から強制的に遊離させられ、 錶型本体 1 3 2内へ落下する。
そして、 錶型本体 1 3 2内へ落下した溶融金属 Mは、 錶型本体 1 3 2の内側表 面に接触して冷却されることにより、 球状結晶に成長して錶型本体 1 3 2の内側 表面に付着する。
上記のようにして溶融金属供給位置 (加振位置) (P a ) に位置する錶型 1 3 1に所定時間、 例えば、 1分〜 5分位振動を加えたならば、 加振部 2 2 3を停止 させ、 図示を省略した冷却体用移動駆動部 (2 2 4 ) を動作させて冷却体 2 1 1 を非加振位置 (上昇位置) に位置させる。
以後は、 第 2実施例と同様である。
上述したように、 この発明の第 3実施例の錶塊製造装置 Pによれば、 冷却体 2 1 1でも溶融金属 Mを冷却するとともに、 冷却体 2 1 1上で溶融金属 Mが固化す るのを防ぐために冷却体加振機構 2 2 1を設け、 冷却体 2 1 1の表面に生成する 結晶を初期段階で強制的に遊離させて流下させるので、 機械攪拌や電磁攪拌装置 に比べて装置を大型化させることなく、 また、 エネルギーコストを増加させるこ となく、 微細な球状結晶を有する固相の錶塊 Nを効率よく生成することができる。 そして、 冷却体 2 1 1を冷却する冷却体冷却機構 2 3 1を設けたので、 冷却体 2 1 1を一定温度に保持することができ、 微細な球状結晶の固相の錶塊 Nを効率 よく生成することができる。
第 9図は連続錶造棒製造装置または錶塊製造装置で使用する溶融炉の他の例の 概略構成を示す側断面図に相当する説明図である。
第 9図において、 溶融炉 1 1, 1 1 1は、 上方が開放した溶融炉本体 1 2, 1 1 2と、 この溶融炉本体 1 2 , 1 1 2の中に、 取り出し可能に収容された内側容 器としてのるつぼ 1 2A, 1 1 2 Aと、 このるつぼ 1 2 A, 1 1 2 Aの底に貫通 させて液密に取り付けられるとともに、 溶融炉本体 1 2, 1 1 2の底を取り外し 可能に貫通し、 上端がるつぼ 1 2A, 1 1 2 A内の所定位置に位置する排出管 1 3, 1 1 3と、 溶融炉本体 1 2, 1 1 2に埋め込まれたヒーター 1 4, 1 1 4と、 溶融炉本体 1 2, 1 1 2の上方を閉塞する蓋体 1 5, 1 1 5とで構成されている。 そして、 溶融炉温度調整機構 1 7, 1 1 7は、 溶融炉 1 1 , 1 1 1内の温度を 計測する温度計測器としての熱電対 1 8, 1 1 8と、 この熱電対 1 8, 1 1 8で 検出した温度が設定した溶融温度になるようにヒーター 1 4, 1 1 4へ電力を供 給したり、 ヒーター 1 4, 1 1 4への電力の供給を停止する通電制御部 1 9, 1 1 9とで構成されている。
なお、 溶融炉 1 1 , 1 1 1内の温度は、 溶融炉温度調整機構 1 7, 1 1 7によ リ、 マグネシウム合金の溶融金属 Mを生成するため、 マグネシウム合金の液相線 温度以上に設定されている。
そして、 溶融金属排出制御機構 21 , 1 21は、 溶融炉 1 1 , 1 1 1の蓋体 1 5, 1 1 5に設けられた揷通孔 1 5 a, 1 1 5 aに揷通された耐熱性制御棒 22, 1 22と、 この耐熱性制御棒 22, 1 22を溶融炉 1 1 , 1 1 1内へ挿入して溶 融金属 Mを排出管 1 3, 1 1 3から排出させる制御棒駆動部 23, 1 23とで構 成されている。
次に、 この溶融炉 1 1 , 1 1 1について説明する。
この溶融炉 1 1 , 1 1 1にはドロス抜きが設けられていないので、 所定量の溶 融金属 Mを排出し終え、 僅かな溶融金属 Mとドロスとが残った状態になったなら ば、 蓋体 1 5, 1 1 5を開放させて溶融炉本体 1 2, 1 1 2内からるつぼ 1 2A, 1 1 2 Aを取り出し、 新たなるつぼ 1 2A, 1 1 2Aを、 第 9図に示すように、 溶融炉本体 1 2, 1 1 2内に収容させる。
そして、 るつぼ 1 2A, 1 1 2 A内へ所定の金属を投入して蓋体 1 5, 1 1 5 で溶融炉本体 1 2, 1 1 2を閉塞し、 ヒーター 1 1 4で溶融炉本体 1 1 2を加熱 して金属を溶融させることにより、 マグネシウム合金の溶融金属 Mを生成する。 以後は、 先の説明と同様に、 溶融金属排出制御機構 21 , 1 21を動作させて 溶融金属 Mを所定量ずつ順次排出させる。 この溶融炉 1 1 , 1 1 1は、 ドロス抜きに代えてるつぼ 1 2 A , 1 1 2 Aを設 けたので、 るつぼ 1 2 A , 1 1 2 Aを交換することにより、 ドロス抜きからドロ スを抜いて新たに溶融金属 Mを生成するよリも早く新たに溶融金属 Mを生成する ことができる。
したがって、 金属スラリー Uまたは錶塊 Nを効率よく製造することができる。 なお、 溶融炉本体 1 2, 1 1 2内から取り出したるつぼ 1 2 A , 1 1 2 Aは、 例えば、 水を収容させておくと、 経時変化によってドロスなどが固まり、 取り出 すことができる。
したがって、 固まったドロスなどを取り除いたるつぼ 1 2 A , 1 1 2 Aは、 内 周面を清掃して次の使用に備えることができる。
上記した各実施例において、 扱うマグネシウム合金の溶融金属 Mは酸化し易い ので、 不燃性雰囲気、 例えば、 アルゴンガスや六弗化ィォゥ (S F6) ガスと二 酸化炭素混合ガス雰囲気中で行うのが望ましい。
また、 溶融金属 Mをマグネシウム合金とした例で説明したが、 アルミニウム合 金や、 他の金属にも適用できることは言うまでもない。
次に、 第 1実施例では、 連続錶造棒 B、 ビレット Lを製造する例で説明した力《、 金属スラリー Uを利用して板を製造することもできる。
そして、 第 1実施例において、 傾斜冷却体 3 1および傾斜冷却体加振機構 3 6 に代えて第 3実施例における冷却体 2 1 1および冷却体加振機構 2 2 1 (さらに 冷却体冷却機構 2 3 1 ) を設けることにより、 または、 第 3実施例における冷却 体 2 1 1、 冷却体加振機構 2 2 1 (さらに冷却体冷却機構 2 3 1 ) を設け、 傾斜 冷却体 3 1からの溶融金属 Mを冷却体 2 1 1へ注ぐことにより、 第 1実施例また は第 3実施例と同様な効果を得ることができる。
この場合、 第 3実施例のように、 冷却体加振機構 2 2 1を移動させる必要はな しゝ。
次に、 第 2実施例および第 3実施例では、 円柱状の錶塊 Nを製造する例を説明 したが、 錶物製造用として錶造することにより、 直接錶物 (錶塊) を製造するこ とができる。
そして、 第 2実施例において、 第 3実施例における冷却体 2 1 1、 冷却体加振 機構 2 2 1 (さらに冷却体冷却機構 2 3 1 ) を設け、 冷却体 2 1 1からの溶融金 属 Mを錶型 1 3 1内へ注ぐことにより、 第 3実施例と同様な効果を得ることがで さる。
次に、 第 3実施例において冷却体冷却機構 2 3 1を設けなくても同様な効果を 得ることができる。 産業上の利用可能性
この発明に依る金属スラリー製造は、 溶融金属を傾斜冷却体へ注ぎ、 溶融金属 を冷却する際に、 上記傾斜冷却体に振動を与えることにより、 生成する結晶を強 制的に遊離、 流下させるので、 微細な球状結晶を有する金属スラリーを効率良く 連続して製造することができる。
従って、 凝固潜熱が小さく固まり易い M g合金についても容易に金属スラリー を製造することができる。 その際に振動を与えることにより球状結晶が冷却体か ら遊離するまでの時間が短縮され、 より微細な結晶粒とすることができる。 また、 この発明に依る錶塊製造は、 錶型に冷却加振機構を設けるようにしたの で、 得られた金属の錶造組織を機械的性質の優れた微細な球状とすることができ る。

Claims

請 求 の 範 囲
1. 溶融金属 (M) を傾斜冷却体 (31 ) へ注ぎ、 この傾斜冷却体で前記溶融 金属を冷却することにより、 金属スラリー (U) を製造する金属スラリー製造方 法において、
前記傾斜冷却体に振動を与える、
ことを特徴とする金属スラリー製造方法。
2. 溶融金属 (M) を振動する冷却体 (31 ) へ注ぎ、 この冷却体で前記溶融 金属を冷却することにより、 金属スラリー (U) を製造する、 ことを特徴とする 金属スラリー製造方法。
3. 前記溶融金属がマグネシウム合金である、 ことを特徴とする請求の範囲第 1項又は第 2項記載の金属スラリ一製造方法。
4. 溶融金属 (M) を傾斜冷却体 (31 ) へ注ぎ、 この傾斜冷却体で前記溶融 金属を冷却することにより、 金属スラリー (U) を製造する金属スラリー製造装 置において、
前記傾斜冷却体に振動を与える傾斜冷却体加振機構 (36) を設けた、 ことを特徴とする金属スラリ一製造装置。
5. 溶融金属 (M) が注がれる冷却体 (31 ) と、
この冷却体に振動を与える冷却体加振機構 (36) とを備える、
ことを特徴とする金属スラリ一製造装置。
6. 前記溶融金属がマグネシウム合金である、
ことを特徴とする請求の範囲第 4項又は第 5項記載の金属スラリ一製造装置。
7. 錶型 (41 ) へ供給した溶融金属 (M) を、 前記錶型を冷却することによ つて冷却し、 錶塊 (B、 N) を製造する錶塊製造方法において、
前記錶型に振動を与える、
ことを特徴とする錶塊製造方法。
8. 錶型 (41 ) へ供給した溶融金属 (M) を、 前記錶型を冷却することによ つて冷却し、 錶塊 (N) を製造する錶塊製造方法において、
溶融金属を振動する冷却体 (31) へ注ぎ、 この冷却体で前記溶融金属を冷却 した後に前記錶型へ供給する、
ことを特徴とする錶塊製造方法。
9. 前記溶融金属がマグネシウム合金である、 ことを特徴とする請求の範囲第 7項又は第 8項記載の錶塊製造方法。
1 0. 錶型 (1 31 ) へ供給した溶融金属 (U) を、 前記錶型を冷却することに よって冷却し、 錶塊 (B、 N) を製造する錶塊製造装置において、
前記錶型 (1 31 ) に振動を与える錶型加振機構 (1 71 ) を設けた、 ことを特徴とする錶塊製造装置。
1 1. 錶型 (1 31 ) へ供給した溶融金属 (U) を、 前記錶型を冷却することに よって冷却し、 錶塊 (B、 N) を製造する錶塊製造装置において、
注がれる溶融金属を冷却して前記錶型へ供給する冷却体 (21 1 ) と、 この冷却体に振動を与える冷却体加振機構 (221 ) とを設けた、
ことを特徴とする錶塊製造装置。
1 2. 前記溶融金属がマグネシウム合金である、
ことを特徴とする請求の範囲第 1 0項又は第 1 1項記載の錶塊製造装置。
PCT/JP2005/009586 2004-01-26 2005-05-19 金属スラリー製造方法、金属スラリー製造装置、鋳塊製造方法および鋳塊製造装置 WO2006123434A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2005/009586 WO2006123434A1 (ja) 2005-05-19 2005-05-19 金属スラリー製造方法、金属スラリー製造装置、鋳塊製造方法および鋳塊製造装置
US10/574,493 US20070215311A1 (en) 2004-01-26 2005-05-19 Method and Device for the Production of Metal Slurry, and Method and Device for Produciton of Ingot
CNA2005800012718A CN1984736A (zh) 2005-05-19 2005-05-19 金属浆料制造方法、金属浆料制造装置、铸块制造方法以及铸块制造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/009586 WO2006123434A1 (ja) 2005-05-19 2005-05-19 金属スラリー製造方法、金属スラリー製造装置、鋳塊製造方法および鋳塊製造装置

Publications (1)

Publication Number Publication Date
WO2006123434A1 true WO2006123434A1 (ja) 2006-11-23

Family

ID=37431018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/009586 WO2006123434A1 (ja) 2004-01-26 2005-05-19 金属スラリー製造方法、金属スラリー製造装置、鋳塊製造方法および鋳塊製造装置

Country Status (2)

Country Link
CN (1) CN1984736A (ja)
WO (1) WO2006123434A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325652A (ja) * 1995-05-29 1996-12-10 Ube Ind Ltd 半溶融金属の成形方法
JP2004188420A (ja) * 2002-12-06 2004-07-08 Sumitomo Metal Ind Ltd マグネシウム合金溶湯の連続鋳造方法および連続鋳造装置
JP2005205478A (ja) * 2004-01-26 2005-08-04 Seikoo Idea Center Kk 金属スラリー製造方法、金属スラリー製造装置、鋳塊製造方法および鋳塊製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08325652A (ja) * 1995-05-29 1996-12-10 Ube Ind Ltd 半溶融金属の成形方法
JP2004188420A (ja) * 2002-12-06 2004-07-08 Sumitomo Metal Ind Ltd マグネシウム合金溶湯の連続鋳造方法および連続鋳造装置
JP2005205478A (ja) * 2004-01-26 2005-08-04 Seikoo Idea Center Kk 金属スラリー製造方法、金属スラリー製造装置、鋳塊製造方法および鋳塊製造装置

Also Published As

Publication number Publication date
CN1984736A (zh) 2007-06-20

Similar Documents

Publication Publication Date Title
JP3211754B2 (ja) 半溶融成形用金属の製造装置
US4434839A (en) Process for producing metallic slurries
EP2606994B1 (en) Induction stirred, ultrasonically modified investment castings and apparatus for producing
JP4382152B1 (ja) 鉄系合金の半凝固スラリー製造方法、その半凝固スラリー製造方法を用いた鋳鉄鋳物製造方法及び鋳鉄鋳物
US6769473B1 (en) Method of shaping semisolid metals
JP2003535695A (ja) チキソトロピ金属スラリを製造する方法及び装置
JP2004538153A (ja) 半固体成形時に使用し得るよう攪拌せずにスラリー材料を製造する装置及び方法
JPH1133692A (ja) 半凝固鋳造用金属スラリーの作製方法
EP0931607B1 (en) Method of preparing a shot of semi-solid metal
JPH0770666A (ja) アルミニウムスクラップの連続精製方法及び装置
US20070215311A1 (en) Method and Device for the Production of Metal Slurry, and Method and Device for Produciton of Ingot
US20110193273A1 (en) Process and apparatus for producing semi-solidified slurry of iron alloy
US20070256807A1 (en) Continuous casting apparatus
KR100830006B1 (ko) 금속 슬러리 제조방법, 금속 슬러리 제조장치, 주괴제조방법 및 주괴 제조장치
WO2006123434A1 (ja) 金属スラリー製造方法、金属スラリー製造装置、鋳塊製造方法および鋳塊製造装置
JPH09137239A (ja) 半溶融金属の成形方法
CN1301166C (zh) 一种高速钢坯料的制备方法及设备
JP4122308B2 (ja) 金属スラリー製造装置および鋳塊製造装置
JP5035508B2 (ja) アルミニウム合金凝固体およびその製造方法
JPH10128516A (ja) 半溶融金属の成形方法
US3662810A (en) Method of internal nucleation of a casting
RU2146185C1 (ru) Способ изготовления направленной кристаллизацией детали с монокристаллической структурой и устройство для его осуществления
RU89102U1 (ru) Литейная машина с вертикальным валом привода центробежного кристаллизатора
JP2005179735A (ja) Mg合金の製造方法およびこれに用いる製造装置
JPH08197216A (ja) 半溶融成形に適したアルミニウム合金鋳造素材の製造 方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200580001271.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020067006675

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020067006675

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10574493

Country of ref document: US

Ref document number: 2007215311

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10574493

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05743523

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP