WO2006122650A2 - Isoliertes photoprotein aqdecay sowie dessen verwendung - Google Patents

Isoliertes photoprotein aqdecay sowie dessen verwendung Download PDF

Info

Publication number
WO2006122650A2
WO2006122650A2 PCT/EP2006/004116 EP2006004116W WO2006122650A2 WO 2006122650 A2 WO2006122650 A2 WO 2006122650A2 EP 2006004116 W EP2006004116 W EP 2006004116W WO 2006122650 A2 WO2006122650 A2 WO 2006122650A2
Authority
WO
WIPO (PCT)
Prior art keywords
photoprotein
nucleic acid
aqdecay
seq
bioluminescence
Prior art date
Application number
PCT/EP2006/004116
Other languages
English (en)
French (fr)
Other versions
WO2006122650A3 (de
Inventor
Stefan Golz
Eugene Vysotski
Svetlana Markova
Galina A. Stepanyuk
Ludmila Frank
Original Assignee
Bayer Healthcare Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Healthcare Ag filed Critical Bayer Healthcare Ag
Priority to JP2008510450A priority Critical patent/JP2008539741A/ja
Priority to CA002608004A priority patent/CA2608004A1/en
Priority to EP06724689A priority patent/EP1881992A2/de
Priority to US11/920,386 priority patent/US20090203888A1/en
Publication of WO2006122650A2 publication Critical patent/WO2006122650A2/de
Publication of WO2006122650A3 publication Critical patent/WO2006122650A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans

Definitions

  • the invention relates to the photoprotein AQdecay, its nucleotide and amino acid sequence, as well as the activity and use of the photoprotein AQdecay.
  • Bioluminescence is the phenomenon of light generation by living beings. It is the result of biochemical reactions in cells, in which the chemical energy is released in the form of light quanta (so-called cold emission by chemiluminescence). Such generated light is monochromatic because it is emitted at a discrete electron transition, but may be shifted to longer wavelength spectral regions by secondary luminescent dyes (e.g., fluorescent jellyfish of the genus Aequoria).
  • secondary luminescent dyes e.g., fluorescent jellyfish of the genus Aequoria
  • the biological function is manifold: in the depth of the sea between 200 and 1000 m (mesopelagic), around 90% of all living beings light up.
  • the light signals are used here for partner advertising, deception and bait. Even fireflies and fireflies use the light signals to find a partner.
  • the importance of lighting bacteria, fungi and unicellular algae, however, is unclear. It is believed that it is responsible for the coordination of many
  • Single individuals of a large population is used or represents a kind of biological clock.
  • a variety of coelenterates is bioluminescent (Moria et al., 1974). These organisms emit blue or green light.
  • the aequorin from Aequoria victoria (Shimomura et al., 1969), identified as the first light-producing protein in 1962, emitted a blue light and non-green light as an isolated protein, as observed phenotypically in Aequoria victoria.
  • the green fluorescent protein could be isolated from Aequoria victoria, which makes the medusa phenotypically green due to the stimulation by the aequorin (Johnson et al., 1962, Hastings et al., 1969, Inouye et al., 1994).
  • Clytin Inouye et al., 1993
  • mitrocomin Fagan et al., 1993
  • obelin obelin
  • Table 2 Overview of some photoproteins. Given are the organism from which the protein has been isolated, the name of the photoprotein and a selection of patents or applications.
  • Bioluminescence is widely used in the art today, e.g. in the form of bio-indicators for environmental pollution or in biochemistry for the sensitive detection of proteins, for
  • Photoproteins differ not only in their nucleotide and amino acid sequence, but also in their biochemical and physical properties. It has been shown that altering the amino acid sequence of photoproteins can alter their physical and biochemical properties. Examples of mutagenized photoproteins are described in the literature (US 6,495,355, US 5,541,309, US 5,093,240, Shimomura et al., 1986).
  • Reporter or indicator genes are generally genes whose gene products can easily be detected by simple biochemical or histochemical methods. There are at least two types of reporter genes.
  • Resistance genes are genes whose expression confers on a cell resistance to antibiotics or other substances whose presence in the growth medium leads to cell death when the resistance gene is absent.
  • reporter genes The products of reporter genes are used in genetic engineering as fused or unfused indicators.
  • the most common reporter genes include beta-galactosidase (Alam et al., 1990), alkaline phosphatase (Yang et al., 1997, Cullen et al., 1992), luciferases and other photoproteins (Shinomura, 1985, Phillips GN, 1997; Snowdowne et al., 1984).
  • Luminescence refers to the emission of photons in the visible spectral range, this being done by excited emitter molecules. In contrast to fluorescence, the energy is not supplied from outside in the form of radiation of shorter wavelength.
  • Chemiluminescence is a chemical reaction that results in an excited molecule that glows when the excited electrons return to their ground state. When this reaction is catalyzed by an enzyme, it is called bioluminescence.
  • the enzymes involved in the reaction are generally referred to as luciferases.
  • Amino acids have altered spectral or biochemical properties. These include obelin W92F (Vysotski et al., 2003) and aequorin (Shrestha et al., 2002; Ohmiya et al., 1993).
  • the aequorin mutant AQdecay shows a temporally altered release of light compared to the photoprotein aequorin or other photoproteins.
  • the mutation at position 139 responsible for the temporal change in light release was combined with a mutation at position 89.
  • the change at position 89 has already been described and leads to a change in the spectral properties of the photoprotein.
  • the selected combination shows, in addition to the temporally altered release of light, also changed spectral properties.
  • a combination of replacing other amino acids with the change at position 139 is possible. Also the combination of
  • the photoprotein AQdecay surprisingly shows a hitherto not yet described slowed kinetics of the release of light or luminescence. This property allows the use of the photoprotein in addition to the usual uses specifically for the
  • the invention relates to the photoprotein AQdecay having the amino acid sequence represented by SEQ ID NO: 2.
  • the invention also relates to the nucleic acid molecule shown in SEQ ID NO: 2.
  • the invention also relates to functional equivalents of AQdecay.
  • Functional equivalents are those proteins that have comparable physicochemical properties.
  • the invention relates to aequorin photoproteins which have one or more amino acid mutations in the region of the amino acid positions 129-149, 124-134, preferably 137-141, in particular 138-140 (based on GenBank # AAA27716), which lead to an altered properties of the bioluminescence. Furthermore, the invention relates to aequorin photoproteins which have an amino acid mutation in the position 139 (based on GenBank # AAA27716), which lead to altered properties of the bioluminescence. Aequorin photoproteins may also be those photoproteins which have a similar motif in the region of amino acids 134-145 as the truncated aequorin (GenBank # AAA27716). As regions with a similar Motif here are those sequences that have an identity of 80%, preferably 90% in this area.
  • the invention relates to combinations of aequorin photoproteins in the range of amino acid positions 79-99, 84-94, preferably 87-91, in particular 88-90 (based on GenBank
  • the invention relates to combinations of aequorin photoproteins which have an amino acid mutation at position 89 (based on GenBank # AAA27716) which leads to an altered spectrum of fluorescence or bioluminescence, with mutations in the region of amino acid position 139.
  • photoproteins which have a maximum in the fluorescence or bioluminescence spectrum in the range of 480-520 nm, preferably 485-515 nm, particularly preferably in the range from 490-510 nm, 495 to 505, or in particular at 500 nm.
  • Aequorin photoproteins may also be those photoproteins which have a similar motif in the region of amino acids 84-94 as the truncated one
  • Aequorin (GenBank # AAA27716). As regions with a similar Motif here are those sequences that have an identity of 80%, preferably 90% in this area. Also functional fragments of the AQdecay protein or for such encoding nucleic acids are according to the invention.
  • the photoprotein AQdecay is particularly suitable as a reporter gene for cellular systems
  • Receptors for ion channels, for transporters, for transcription factors or for inducible systems.
  • the photoprotein AQdecay is also useful as a reporter gene by labeling, identification and characterization of cell organelles specific to mitochondria.
  • the photoprotein from AQdecay is also suitable as a reporter gene for the determination of parameters inside and outside of cell organelles, especially of mitochondria, especially of calcium concentrations.
  • the photoprotein AQdecay is suitable as a reporter gene in bacterial and eukaryotic systems, especially in mammalian cells, in bacteria, in yeasts, in bacculo, in plants.
  • the photoprotein AQdecay is suitable as a reporter gene for cellular systems in combination with bioluminescent or chemiluminescent systems, especially systems with luciferases, with oxygenases, with phosphatases.
  • the photoprotein AQdecay is particularly suitable as a fusion protein for receptors, ion channels, transporters, transcription factors, proteinases, kinases, phosphodiesterases, hydrolases, peptidases, transferases, membrane proteins and glycoproteins.
  • the photoprotein AQdecay is suitable for immobilization especially by antibodies, by biotin, by magnetic or magnetizable carriers.
  • the photoprotein AQdecay is suitable as protein for systems of energy transfer especially the fluorescence resonance energy transfer (FRET), bioluminescence resonance energy transfer (BRET), field effect transistor (FET), fluorescence polarization (FPRF), homogenous time-resolved (HTRF) fluorescence) systems.
  • FRET fluorescence resonance energy transfer
  • BRET bioluminescence resonance energy transfer
  • FET field effect transistor
  • FPRF fluorescence polarization
  • HTRF homogenous time-resolved fluorescence
  • the photoprotein AQdecay is suitable as a marker of substrates or ligands especially for proteases, for kinases, for transferases.
  • the photoprotein AQdecay is suitable for expression in bacterial systems especially for titer determination, as a substrate for biochemical systems especially for proteinases and kinases.
  • the photoprotein AQdecay is useful as a marker specifically coupled to antibodies coupled to enzymes coupled to receptors coupled to ion channels and other proteins.
  • the photoprotein AQdecay is suitable as a reporter gene for pharmacological drug discovery, especially in HTS (High Throughput Screening).
  • the photoprotein AQdecay is useful as a reporter gene in the characterization, identification and analysis of ion channels, especially of the type p2x, TRP, SCN, KCN, CNG, ACCN.
  • the photoprotein AQdecay is suitable as a component of detection systems especially for ELISA (enzyme-linked immunosorbent assay), for immunohistochemistry, for Western blot, for confocal microscopy.
  • ELISA enzyme-linked immunosorbent assay
  • the photoprotein AQdecay is useful as a marker for the analysis of interactions specifically for protein-protein interactions, for DNA-protein interactions, for DNA-RNA interactions, for RNA-RNA interactions, for RNA-protein interactions (DNA: deoxyribonucleic acid; RNA: ribonucleic acid;).
  • the photoprotein AQdecay is useful as a marker or fusion protein for expression in transgenic organisms, especially in mice, in rats, in hamsters and other mammals, in primates, in fish, in worms, in plants.
  • the photoprotein AQdecay is useful as a marker or fusion protein for the analysis of embryonic development.
  • the photoprotein AQdecay is suitable as a marker via a coupling agent specifically via biotin, via NHS (N-hydroxysulfosuccimide), via CN-Br.
  • the photoprotein AQdecay is suitable as a reporter coupled to nucleic acids, especially to DNA, to RNA.
  • the photoprotein AQdecay is suitable as a reporter coupled to proteins or peptides.
  • the photoprotein AQdecay is suitable as a reporter for the measurement of intracellular or extracellular calcium concentrations.
  • the photoprotein AQdecay is suitable for the characterization of signal cascades in cellular systems.
  • the coupled to nucleic acids or peptides photoprotein AQdecay is particularly suitable as a probe for Northern blots, for Southern blots, for Western blots, for ELISA, for nucleic acid sequencing, for protein analysis, chip analyzes.
  • the photoprotein AQdecay is suitable for the labeling of pharmacological formulations especially of infectious agents, of antibodies, of "small molecules".
  • the photoprotein AQdecay is suitable for geological investigations especially for ocean, groundwater and river currents.
  • the photoprotein AQdecay is suitable for expression in expression systems, especially in vitro
  • the photoprotein AQdecay is suitable for the visualization of tissues or cells during surgery, especially in invasive, non-invasive, minimally invasive.
  • the photoprotein AQdecay is also suitable for the marking of tumor tissues and other phenotypically altered tissues, especially during histological examination, during surgical procedures.
  • the invention also relates to the purification of the photoprotein AQdecay specifically as a wild-type protein, as a fusion protein, as a mutagenized protein.
  • the photoprotein AQdecay is suitable for the simultaneous measurement of different reporter genes in an expression system (multiplexing).
  • the invention also relates to the use of the photoprotein AQdecay in the field of cosmetics, especially bath preparations, lotions, soaps, body colors, toothpaste, body powders.
  • the invention also relates to the use of the photoprotein AQdecay for staining specifically
  • the invention also relates to the use of the photoprotein AQdecay for coloring paper, especially greetings cards, paper products, wallpaper, craft items.
  • the invention also relates to the use of the photoprotein AQdecay for dyeing liquids especially for water pistols, for fountains, for drinks, for ice cream.
  • the invention also relates to the use of the photoprotein AQdecay for the manufacture of toys especially of finger paint, make-up.
  • the invention relates to nucleic acid molecules which encode the polypeptide disclosed by SEQ ID NO: 2 or functional equivalents or functional fragments thereof.
  • the invention further relates to nucleic acid molecules or functional equivalents or functional fragments thereof, selected from the group consisting of
  • nucleic acid molecules encoding a polypeptide comprising the amino acid sequence disclosed by SEQ ID NO: 2;
  • nucleic acid molecules whose complementary strand hybridizes with a nucleic acid molecule from a) or b) under stringent conditions and whose expression product has the biological function of a photoprotein;
  • a stringent hybridization of nucleic acid molecules is carried out in an aqueous
  • the invention relates to the abovementioned nucleic acid molecules in which the sequence contains a functional promoter 5 ⁇ to the photoprotein-encoding sequence or the sequence encoding the leader or signal sequence.
  • the invention also relates to nucleic acid molecules as described above that are part of recombinant DNA or RNA vectors.
  • the invention relates to organisms containing such a vector.
  • the invention relates to photoproteins which are encoded by the nucleotide sequences described above.
  • the invention relates to methods for expressing the photoprotein polypeptides according to the invention in bacteria, eukaryotic cells or in in vitro expression systems.
  • the invention also relates to methods for the purification / isolation of a photoprotein polypeptide according to the invention.
  • the invention relates to the use of the erf ⁇ ndungshielen, coding for photoproteins
  • Nucleic acids as marker or reporter genes, in particular for pharmacological drug discovery and diagnostics.
  • the invention relates to the use of the photoproteins according to the invention or a nucleic acid according to the invention which codes for a photoprotein as marker or reporter or as marker or reporter gene.
  • the invention relates to the use of the photoprotein AQdecay (SEQ ID NO: 2) or its functional fragments or equivalents or the use of a coding for the photoprotein AQdecay nucleic acid or its functional fragments or equivalents as a marker or reporter or as a marker or reporter gene in particular for the pharmacological drug discovery and diagnostics.
  • the invention relates to the use of the nucleic acid shown in SEQ ID NO: 1 as a marker or reporter gene, in particular for the pharmacological drug discovery and diagnostics.
  • the invention also relates to polyclonal or monoclonal antibodies which recognize a polypeptide according to the invention.
  • the invention also relates to monoclonal or polyclonal antibodies containing the photoprotein
  • the invention also relates to a nucleic acid as described in the preceding paragraphs which contains a functional promoter 5 ⁇ to the coding sequence.
  • the invention includes recombinant DNA or RNA vectors containing the nucleic acids described above.
  • Organisms containing a vector as described above are also erf ⁇ ndungshiel.
  • a polypeptide encoded by a nucleic acid sequence as described above is also part of the invention. Also according to the invention is a method for the expression of the aforementioned polypeptides in bacteria, eukaryotic cells or in in vitro expression systems.
  • a component of the invention is likewise a process for the purification / isolation of a polypeptide according to the invention.
  • the invention relates to the use of a nucleic acid according to the invention as marker or
  • the invention also relates to the use of a photoprotein according to the invention as a marker or reporter.
  • polyppeptide according to the invention in combination with one or more luciferases and / or one or more photoproteins.
  • a photoprotein or a functional fragment thereof which has one or more mutations in the range of 129-149, 124-134, preferably 137-141, in particular 138-140 (based on GenBank # AAA27716) and which has an altered, specifically slowed bioluminescence signal having.
  • nucleic acid molecule which contains a sequence which codes for a protein according to the two preceding sections.
  • a further component of the invention is a process for the preparation of a photoprotein, characterized in that in a photoprotein in the region defined by position 129-149, 124-134, preferably 137-141, in particular 138-140 referred to GenBank # AAA27716 one or several mutations are introduced, resulting in a change in bioluminescence.
  • a photoprotein prepared by a method as described in the preceding section is also according to the invention.
  • the invention also relates to other photoproteins which have altered kinetics of light release by one or more changes in the amino acid sequence.
  • the invention also addresses the use of other altered photoproteins for the described uses of the photoprotein AQdecay.
  • Photoproteins with altered kinetics of light release are particularly suitable as reporter genes in cell-based methods, especially in pharmacological drug discovery and characterization, especially in diagnostics.
  • Photoproteins with altered kinetics of light release, particularly a slower release of light or a prolonged period of time in which light is released, are particularly useful in the study of ion channels.
  • the invention also relates to codon-optimized variants of the proteins according to the invention for altering the biochemical or physicochemical properties, especially the improved expression, especially the altered stability.
  • the invention also relates to fusions of erfindungsgenä built proteins with recognition peptides for the transport or localization of the proteins of the invention in cell organelles or
  • the invention also relates to variants of the proteins according to the invention which lead to a change in the spectral properties, the luminescence intensity, the substrate specificity, the use of cofactors, the calcium affinity or other physicochemical or biochemical properties.
  • Expression is the production of a molecule which, after introduction of the gene into a suitable host cell, permits the transcription and translation of the foreign gene cloned into an expression vector.
  • Expression vectors contain the control signals required for the expression of genes in cells of prokaryotes or eukaryotes.
  • expression vectors can be constructed in two different ways.
  • transcriptional fusion the protein encoded by the cloned foreign gene is synthesized as an authentic, biologically active protein.
  • the expression vector carries all the 5 'and 3' control signals required for expression.
  • the protein encoded by the cloned foreign gene is expressed as a hybrid protein together with another protein that is easily detected.
  • the 5 'and 3' control signals required for the expression, including the start codon, and possibly a part of the sequences coding for the N-terminal regions of the hybrid protein to be formed are derived from the vector.
  • the additional introduced protein portion not only in many cases stabilizes the protein encoded by the cloned foreign gene from degradation by cellular
  • Proteases can also be used to detect and isolate the resulting hybrid protein deploy.
  • Expression can be transient as well as stable. Suitable host organisms are bacteria, yeasts, viruses as well as eukaryotic systems.
  • Protein purification involves a variety of established methods and procedures
  • Solid-liquid separation is a basic operation in protein isolation. Both in the separation of the cells from the culture medium and in the clarification of the crude extract after cell disruption and removal of cell debris, in the separation of precipitates after precipitation, etc., the process step is required. It is done by centrifugation and
  • the cell wall must be destroyed or rendered permeable.
  • high pressure homogenizers or stirred ball or glass bead mills are used.
  • mechanical cell integrations and ultrasound treatment are used.
  • Extracellular proteins accumulate in relatively dilute solutions. They must be concentrated as well as extracellular proteins prior to their further use. In addition to the already mentioned methods, ultrafiltration has also proven itself - even on an industrial scale. Inorganic salts as concomitants of proteins are often undesirable for specific applications. They can be removed, inter alia, by gel filtration, dialysis and diafusion.
  • the photoprotein AQdecay is encoded by the following nucleotide sequence (SEQ ID NO: 1):
  • the photoprotein aequorin (Genbank: AAA27716) has the following amino acid sequence (SEQ ID NO: 7). Positions 89 and 139 are in bold and underlined.
  • Fig. 1 shows the plasmid map of the vector pET22b-AQdecay.
  • Fig. 2 shows the plasmid map of the vector pcDNA3-AQdecay
  • FIG. 3 shows the result of the eukaryotic expression of AQdecay in CHO cells.
  • the experimental procedure was carried out as described in Example 4.
  • Fig. 4 shows the result of the bacterial expression of AQdecay.
  • the insertion of the cDNA was carried out in the interface Ndel / Xhol of the vector pET22b (Novagen).
  • the vector was named pET22b AQdecay.
  • Fig. 1 shows the plasmid map of the vector pET22b-AQdecay.
  • the plasmid pcDNA3.1 (+) from Clontech was used as a vector for the preparation of the construct shown below.
  • the derivative of the vector was termed pcDNA3-AQdecay.
  • the vector pcDNA3-AQdecay was used to express AQdecay in eukaryotic systems.
  • Fig. 2 shows the plasmid map of the vector pcDNA3-AQdecay.
  • Bacterial expression was carried out in E. coli by transformation of the bacteria with the expression plasmids pET22b-AQdecay.
  • the transformed bacteria were incubated in LB medium at 37 0 C for 3 hours and the expression according to the manufacturer (Novagen) induced.
  • the induced bacteria were harvested by centrifugation, in 50 mM Tris / HCl (pH 9.0) + 5 mM
  • Luminometer measured. The integration time of the measurement was 40 seconds.
  • FIG. 4 shows the kinetics of the bioluminescence measurement of AQdecay in bacteria.
  • the constitutive eukaryotic expression was carried out in CHO cells by transfecting the cells with the expression plasmids pcDNA3-AQdecay and pcDNA3.1 (+) in transient experiments.
  • 10,000 cells per well in DMEM-F 12 medium were plated on 96-well microtiter plates and incubated overnight at 37 ° C.
  • the transfection was carried out using the Fugene 6 kit (Roche) according to the manufacturer's instructions.
  • the transfected cells were incubated overnight at 37 0 C in DMEM F12 medium. Subsequently, the medium was removed and replaced with 50 ⁇ l of coelenterazine (10E-07 M coelenterazine in PBS).
  • the cells were incubated for 24 hours at 28 ° C and then added ATP (adenosine triphosphate) to a final concentration of 1 uM.
  • ATP adenosine triphosphate
  • the measurement was started immediately after the addition in the luminometer.
  • the integration time was 1 second, with a total measurement time of 60 seconds.
  • Fig. 3 shows the results of the bioluminescence measurement of AQdecay in CHO cells.
  • FIG. 5 shows the kinetics of the bioluminescence measurement of AQdecay in CHO cells
  • FIG. 7 shows the alignment of AQdecay with aequorin (wildtype; wt) at the amino acid level.
  • E. coli BL21 (DE3) transformed with pET22b AQdecay or pET22b (without integrated cDNA).
  • the culture and digestion of the bacteria was carried out as described in Example 3.
  • the measurement data was collected for a period of 60 seconds with a 1 second integration time.
  • Figure 4 shows the results of the kinetic analysis of AQdecay in bacteria.
  • CHO Choinese hamster ovarian cells
  • pcDNA3 -AQdecay pcDNA3 (without integrated cDNA). Transfection and measurement were carried out as described in Example 4.
  • Measurement data was collected for a period of 60 seconds with a 1 second integration time.
  • Figure 5 shows the results of the kinetic analysis of AQdecay in CHO cells.
  • the photoprotein Aqdecay is useful as a component of multiplexing readout methods in which multiple reporter genes (e.g., luciferases or photoproteins) are used in an experimental approach.
  • multiple reporter genes e.g., luciferases or photoproteins
  • CHO cells expressing the wild-type aequorin.
  • the cell expressing the wild-type aequorin additionally expressed a G-protein coupled receptor (eg Neuromedin U Receptor 2).
  • the cell mixture was spread on 96, 384 or 1536 well microtiter plates and incubated for 24 hours at 37 0 C.
  • G-protein receptor agonist leads to intracellular calcium release, which can be read by the wild-type aequorin (light release by wild-type aequorin).
  • an agonist that activates a CHO endogenous receptor eg, ATP
  • activates the AQdecay of the second cell type e.g, ATP
  • the photoprotein AQdecay or its equivalents is suitable for fusion with peptides, leader sequences, translocation signals, proteins or protein fragments for transport or localization in specific cell compartments or organelles.
  • the photoprotein according to the invention was fused with the peptide MSVLTPLLLRGLTGSARRLPVPRAKIHSLPPEGKL. Fusion of the peptide to the amino acid sequence of AQdecay results in translocation of the fusion protein into the mitochondria of the eukaryotic host cell.
  • the mitochondrial localized photoprotein AQdecay can be used to measure calcium concentration within the
  • Mitochondria are used.
  • the fusion of the described peptide before the amino acid sequence of the AQdecay photoprotein was carried out at the nucleic acid level using standard molecular biological methods.
  • Literature / Patents
  • Green Fluorescent Protein Properties, Applications, and Protocols (Chalfie, M. and Kain, S., eds) pp. 45-70. Wiley-Liss, Inc.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Toxicology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft das Photoprotein AQdecay, dessen Nukleotid- und Aminosäuresequenz, sowie die Aktivität und Verwendung des Photoproteins Aqdecay.

Description

Isoliertes Photoprotein AQdecay sowie dessen Verwendung
Die Erfindung betrifft das Photoprotein AQdecay, dessen Nukleotid- und Aminosäuresequenz, sowie die Aktivität und Verwendung des Photoproteins AQdecay.
Photoproteine
Als Biolumineszenz bezeichnet man das Phänomen der Lichterzeugung durch Lebewesen. Sie ist das Ergebnis von biochemischen Reaktionen in Zellen, bei denen die chemische Energie in Form von Lichtquanten abgegeben wird (sog. kalte Emission durch Chemolumineszenz). Derartig erzeugtes Licht ist monochromatisch, denn es wird bei einem diskreten Elektronen-Übergang abgestrahlt, kann aber durch sekundäre Leuchtfarbstoffe (z.B. fluoreszierende Proteine bei Leuchtquallen der Gattung Aequoria) in längerwellige Spektralbereiche verschoben werden.
Die biologische Funktion ist vielfältig: In der Meerestiefe zwischen 200 und 1000 m (Mesopelagial) leuchten rund 90% aller Lebewesen. Die Leuchtsignale werden hier zur Partnerwerbung, Täuschung und als Köder eingesetzt. Auch Glühwürmchen und Leuchtkäfer nutzen die Lichtsignale zur Partnersuche. Die Bedeutung des Leuchtens von Bakterien, Pilzen und einzelligen Algen ist dagegen unklar. Es wird vermutet, dass es zur Koordination von vielen
Einzel-Individuen einer großen Population eingesetzt wird oder eine Art biologische Uhr darstellt.
Eine Vielzahl an Coelenteraten ist biolumineszent (Moria et al., 1974). Diese Organismen emittieren blaues oder grünes Licht. Das 1962 als erstes Licht produzierendes Protein identifizierte Aequorin aus Aequoria victoria (Shimomura et al., 1969) emittierte als isoliertes Protein ein blaues Licht und nicht grünes Licht wie phänotypisch beobachtet bei Aequoria victoria. Später konnte das grün fluoreszierende Protein (GFP) aus Aequoria victoria isoliert werden, das aufgrund der Anregung durch das Aequorin die Meduse phänotypisch grün erscheinen lässt (Johnson et al., 1962; Hastings et al., 1969; Inouye et al., 1994). Als weitere Photoproteine konnten noch Clytin (Inouye et al., 1993), Mitrocomin (Fagan et al., 1993) und Obelin (ülarionov et al., 1995) identifiziert und beschrieben werden. Tabelle 1: Übersicht über einige Photoproteine. Angegeben sind der Name, der Organismus aus dem das Protein isoliert worden ist und die Identifikationsnummer (Acc. No.) des Datenbankeintrages.
Figure imgf000003_0001
Tabelle 2: Übersicht über einige Photoproteine. Angegeben sind der Organismus aus dem das Protein isoliert worden ist, der Name des Photoproteins und eine Auswahl an Patenten bzw. Anmeldungen.
Figure imgf000003_0002
Biolumineszenz wird heute in der Technik vielfältig genutzt, z.B. in Form von Bio-Indikatoren für Umweltverschmutzung oder in der Biochemie zum empfindlichen Nachweis von Proteinen, zur
Quantifizierung bestimmter Verbindungen oder als sogenannte "Reporter" bei der Untersuchung zellulärer Gen-Regulation.
Die Photoproteine unterscheiden sich nicht nur aufgrund ihrer Nukleotid- und Arninosäuresequenz, sondern auch aufgrund ihrer biochemischen und physikalischen Eigenschaften. Es konnte gezeigt werden, dass durch die Veränderung der Aminosäuresequenz von Photoproteinen die physikalischen und biochemischen Eigenschaften verändert werden können. Beispiele von mutagenisierten Photoproteinen sind in der Literatur beschrieben (US 6,495,355; US 5,541,309; US 5,093,240; Shimomura et al., 1986).
Die Lichterzeugung durch die oben genannten Photoproteine erfolgt durch die Oxidation von
Coelenterazin (Haddock et al., 2001; Jones et al., 1999).
Reportersysteme
Als Reporter- oder Indikatorgen bezeichnet man generell Gene, deren Genprodukte sich mit Hilfe einfacher biochemischer oder histochemischer Methoden leicht nachweisen lassen. Man unterscheidet mindestens 2 Typen von Reportergenen.
1. Resistenzgene. Als Resistenzgene werden Gene bezeichnet, deren Expression einer Zelle die Resistenz gegen Antibiotika oder andere Substanzen verleiht, deren Anwesenheit im Wachstumsmedium zum Zelltod führt, wenn das Resistenzgen fehlt.
2. Reportergene. Die Produkte von Reportergenen werden in der Gentechnologie als fusionierte oder unfusionierte Indikatoren verwendet. Zu den gebräuchlichsten Reportergenen gehören die beta-Galaktosidase (Alam et al., 1990), alkalische Phosphatase (Yang et al., 1997; Cullen et al., 1992), Luciferasen und andere Photoproteine (Shinomura, 1985; Phillips GN, 1997; Snowdowne et al., 1984).
Als Lumineszenz bezeichnet man die Abstrahlung von Photonen im sichtbaren Spektralbereich, wobei diese durch angeregte Emittermoleküle erfolgt. Im Unterschied zur Fluoreszenz wird hierbei die Energie nicht von Außen in Form von Strahlung kürzerer Wellenlänge zugeführt.
Man unterscheidet Chemolumineszenz und Biolumineszenz. Als Chemolumineszenz bezeichnet man eine chemische Reaktion, die zu einem angeregten Molekül führt, das selbst leuchtet, wenn die angeregten Elektronen in den Grundzustand zurückkehren. Wird diese Reaktion durch ein Enzym katalysiert, spricht man von Biolumineszenz. Die an der Reaktion beteiligten Enzyme werden generell als Luziferasen bezeichnet.
Herstellung der Mutante
Zur Herstellung der Mutante wurde mit Hilfe molekularbiologische Methoden die Mutationen an der Position 89 [Y89F] (GenBank #AAA27716; Position 89 von SEQ ID 5) und Porsition 139 [Yl 39F] (GenBank #AAA27716; Position 139 von SEQ ID 5) eingefügt. Hierzu wurde das "Quick change" Verfahren der Firma Stratagene (Katalog Nummer #200521; Revision #063001b; Auflage 2003) verwendet. Als Primer wurden (SEQ ED NO: 3) und (SEQ IO NO: 4) verwendet. Der Vektor wurde als pET22b-AQdecay bezeichnet.
AQdecay
In der Literatur wurden bereits Photoproteine beschrieben, die durch Austausch einzelner
Aminosäuren verändertete spektrale oder biochemische Eigenschaften aufwiesen. Zu diesen gehört Obelin W92F (Vysotski et al., 2003) und Aequorin (Shrestha et al., 2002; Ohmiya et al., 1993)
Die Aequorin Mutante AQdecay zeigt eine zeitlich veränderte Lichtfreisetzung verglichen mit dem Photoprotein Aequorin oder anderen Photoproteinen.
Die für die zeitliche Veränderung der Lichtfreisetzung verantwortliche Mutation an Position 139 wurde mit einer Mutation an Position 89 kombiniert. Die Veränderung an Position 89 wurde bereits beschrieben und führt zu einer Veränderung der spektralen Eigenschaften des Photoproteins. Die gewählte Kombination zeigt neben der zeitlich veränderten Lichtfreisetzung auch veränderte spektrale Eigenschaften. Eine Kombination mit Austauschen anderer Aminosäuren mit der Veränderung an Position 139 ist möglich. Auch die Kombination der
Veränderung an Position 139 mit der wildtyp Sequenz des übrigen Photoproteins Aequorin ist möglich.
Das Photoprotein AQdecay zeigt überraschenderweise eine bisher noch nicht beschriebene verlangsamte Kinetik der Lichtfreisetzung bzw. Lumineszenz. Diese Eigenschaft ermöglicht die Verwendung des Photoproteins neben den üblichen Einsatzmöglichkeiten speziell für die
Untersuchung von Reaktionen oder Mechanismen mit sehr schnellen Kalziumfreisetzungen in eukaryotischen Zellen oder anderen Systemen. Die Kinetik der Lichtfreisetzung von bisher beschriebenen Photoproteinmutanten oder Photoprotein Wildtypproteinen wird als "flash" Kinetik beschrieben, da das Licht nach Aktivierung (z.B. mit Kalzium) in kürzester Zeit freigesetzt wird und die Reaktion anschließend zum Stilstand kommt oder zumindest deutlich schwächer wird. Zur
Messung dieser schnellen Kinetik sind besondere Messinstrumente erforderlich. Die beschriebene Photoproteinmutante AQdecay bzw. dessen Äquivalente ermöglicht nicht nur die Verwendung anderer Messinstrumente oder Messverfahren, sondern vor allem die Untersuchung von sehr schnellen Kinetiken. Diese Kinetiken können z.B. bei Ionenkanälen der Familie P2X auftreten.
Das Spektrum von Aequorin wurde im Maximum mit 470 nm beschrieben (Shimomuro et al.,
1966). Eine Übersicht über die spektralen Eigenschaften von Coelenterazine wurde in Shinomuro (Shimomura et al., 2000) beschrieben. Das Photoprotein AQdecay zeigt die höchste Homologie auf Aminosäureebene zu Aequorin aus Aequoria Victoria mit einer Identität von 99 % (gezeigt in Beispiel 8). Zum Sequenzvergleich wurde das BLAST-Verfahren verwendet (Altschul et al., 1997).
Die Erfindung betrifft das Photoprotein AQdecay mit der Aminosäuresequenz repräsentiert durch SEQ ID NO: 2. Ebenfalls betrifft die Erfindung das Nukleinsäuremolekül dargestellt in SEQ ID
NO: 1.
Die Erfindung betrifft auch funktionelle Äquivalente von AQdecay. Funktionelle Äquivalente sind solche Proteine, die vergleichbare physikochemische Eigenschaften haben.
Die Erfindung betrifft Aequorin Photoproteine, die im Bereich der Aminosäurepositionen 129-149, 124-134, bevorzugt 137-141, insbesondere 138-140 (bezogen auf GenBank #AAA27716) eine oder mehrere Aminosäuremutationen aufweisen, welche zu einem veränderten Eigenschaften der Biolumineszenz führen. Desweiteren betrifft die Erfindung Aequorin Photoproteine, die in der Postion 139 (bezogen auf GenBank #AAA27716) eine Aminosäuremutation aufweisen, welche zu einem veränderten Eigenschaften der Biolumineszenz führen. Hierbei können Aequorin Photoproteine auch solche Photoproteine sein, welche im Bereich der Aminosäuren 134-145 ein ähnliches Motif aufweisen wie das verkürzte Aequorin (GenBank #AAA27716). Als Bereiche mit ähnlichem Motif gelten hier solche Sequenzen, die in diesem Bereich eine Identität von 80%, bevorzugter Weise von 90% aufweisen.
Die Erfindung betrifft Kombinationen von Aequorin Photoproteinen, die im Bereich der Aminosäurepositionen 79-99, 84-94, bevorzugt 87-91, insbesondere 88-90 (bezogen auf GenBank
#AAA27716) eine oder mehrere Aminosäuremutationen aufweisen, welche zu einem veränderten Fluoreszens- oder Biolumineszensspektrum führen, mit Mutationen im Bereich Aminosäureposition 139. Desweiteren betrifft die Erfindung Kombinationen von Aequorin Photoproteinen, die in der Postion 89 (bezogen auf GenBank #AAA27716) eine Aminosäuremutation aufweisen, welche zu einem veränderten Fluoreszens- oder Biolumineszensspektrum führen, mit Mutationen im Bereich Aminosäureposition 139. Bevorzugt sind dabei solche Photoproteine, die ein Maximum im Fluoreszens- oder Biolumineszensspektrum im Bereich von 480-520 nm, bevorzugt von 485-515nm, besonders bevorzugt im Bereich von 490-510 nm, 495 bis 505, oder insbesondere bei 500 nm aufweisen. Hierbei können Aequorin Photoproteine auch solche Photoproteine sein, welche im Bereich der Aminosäuren 84-94 ein ähnliches Motif aufweisen wie das verkürzte
Aequorin (GenBank #AAA27716). Als Bereiche mit ähnlichem Motif gelten hier solche Sequenzen, die in diesem Bereich eine Identität von 80%, bevorzugter Weise von 90% aufweisen. Ebenfalls sind funktionelle Fragmente des AQdecay Proteins bzw. für solche kodierende Nukleinsäuren erfindungsgemäß.
Ebenfalls sind verkürzte funktionelle Fragmente weiterer erfindungsgemäßer Proteine bzw. für solche kodierende Nukleinsäuren Bestandteil der Erfindung.
Das Photoprotein AQdecay eignet sich als Reportergen für zelluläre Systeme speziell für
Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren oder für induzierbare Systeme.
Das Photoprotein AQdecay eignet sich auch als Reportergen durch Markierung, Identifizierung und Charakterisierung von Zellorganellen speziell für Mitochondrien.
Das Photoprotein von AQdecay eignet sich auch als Reportergen zur Bestimmung von Parametern innerhalb und ausserhalb von Zellorganellen, speziell von Mitochondrien, speziell von Kalziumkonzentrationen.
Das Photoprotein AQdecay eignet sich als Reportergen in bakteriellen und eukaryotischen Systemen speziell in Säugerzellen, in Bakterien, in Hefen, in Bacculo, in Pflanzen.
Das Photoprotein AQdecay eignet sich als Reportergen für zelluläre Systeme in Kombination mit biolumineszenten oder chemolumineszenten Systemen, speziell Systemen mit Luziferasen, mit Oxygenasen, mit Phosphatasen.
Das Photoprotein AQdecay eignet sich als Fusionsprotein speziell für Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren, für Proteinasen, für Kinasen, für Phosphodiesterasen, für Hydrolasen, für Peptidasen, für Transferasen, für Membranproteine und für Glykoproteine.
Das Photoprotein AQdecay eignet sich zur Immobilisierung speziell durch Antikörper, durch Biotin, durch magnetische oder magnetisierbare Träger.
Das Photoprotein AQdecay eignet sich als Protein für Systeme des Energietransfers speziell der FRET- (Fluorescence Resonance Energy Transfer), BRET- (Bioluminescence Resonance Energy Transfer), FET (field effect transistors), FP (fluorescence polarization), HTRF (Homogeneous time-resolved fluorescence) Systemen.
Das Photoprotein AQdecay eignet sich als Markierung von Substraten oder Liganden speziell für Proteasen, für Kinasen, für Transferasen. Das Photoprotein AQdecay eignet sich zur Expression in bakteriellen Sytemen speziell zur Titerbestimmung, als Substrat für biochemische Systeme speziell für Proteinasen und Kinasen.
Das Photoprotein AQdecay eignet sich als Marker speziell gekoppelt an Antikörper, gekoppelt an Enzyme, gekoppelt an Rezeptoren, gekoppelt an Ionenkanäle und andere Proteine.
Das Photoprotein AQdecay eignet sich als Reportergen bei der pharmakologischen Wirkstoffsuche speziell im HTS (High Throughput Screening).
Das Photoprotein AQdecay eignet sich als Reportergen bei der Charakterisierung, Identifizierung und Untersuchung von Ionenkanälen, speziell des Typs p2x, TRP, SCN, KCN, CNG, ACCN.
Das Photoprotein AQdecay eignet sich als Komponente von Detektionssystemen speziell für ELISA (enzyme-linked immunosorbent assay), für Immunohistochemie, für Western-Blot, für die konfokale Mikroskopie.
Das Photoprotein AQdecay eignet sich als Marker für die Analyse von Wechselwirkungen speziell für Protein-Protein-Wechselwirkungen, für DNA-Protein-Wechselwirkungen, für DNA-RNA- Wechselwirkungen, für RNA-RNA- Wechselwirkungen, für RNA-Protein-Wechselwirkungen (DNA: deoxyribonucleic acid; RNA: ribonucleic acid; ).
Das Photoprotein AQdecay eignet sich als Marker oder Fusionsprotein für die Expression in transgenen Organismen speziell in Mäusen, in Ratten, in Hamstern und anderen Säugetieren, in Primaten, in Fischen, in Würmern, in Pflanzen.
Das Photoprotein AQdecay eignet sich als Marker oder Fusionsprotein zur Analyse der Embryonalentwicklung.
Das Photoprotein AQdecay eignet sich als Marker über einen Kopplungsvermittler speziell über Biotin, über NHS (N-hydroxysulfosuccimide), über CN-Br.
Das Photoprotein AQdecay eignet sich als Reporter gekoppelt an Nukleinsäuren speziell an DNA, an RNA.
Das Photoprotein AQdecay eignet sich als Reporter gekoppelt an Proteine oder Peptide.
Das Photoprotein AQdecay eignet sich als Reporter zur Messung von intra- oder extrazellulären Calziumkonzentrationen. Das Photoprotein AQdecay eignet sich zur Charakterisierung von Signalkaskaden in zellulären Systemen.
Das an Nukleinsäuren oder Peptiden gekoppelte Photoprotein AQdecay eignet sich als Sonde speziell für Northern-Blots, für Southern-Blots, für Western-Blots, für ELISA, für Nukleinsäure- Sequenzierungen, für Proteinanalysen, Chip-Analysen.
Das Photoprotein AQdecay eignet sich zur Markierung von pharmakologischen Formulierungen speziell von infektiösen Agentien, von Antikörpern, von „small molecules".
Das Photoprotein AQdecay eignet sich für geologische Untersuchungen speziell für Meeres-, Grundwasser- und Flussströmungen.
Das Photoprotein AQdecay eignet sich zur Expression in Expressionssystemen speziell in in-vitro
Translationssystemen, in bakteriellen Systemen, in Hefe Systemen, in Bacculo Systemen, in viralen Systemen, in eukaryotischen Systemen.
Das Photoprotein AQdecay eignet sich zur Visualisierung von Geweben oder Zellen bei chirurgischen Eingriffen speziell bei invasiven, bei nicht-invasiven, bei minimal-invasiven.
Das Photoprotein AQdecay eignet sich auch zur Markierung von Tumorgeweben und anderen phänotypisch veränderten Geweben speziell bei der histologischen Untersuchung, bei operativen Eingriffen.
Die Erfindung betrifft auch die Reinigung des Photoprotein AQdecay speziell als wildtyp Protein, als Fusionsprotein, als mutagenisiertes Protein.
Das Photoprotein AQdecay eignet sich zur gleichzeitigen Messung verschiedener Reportergene in einem Expressionsystem (multiplexing).
Die Erfindung betrifft auch die Verwendung des Photoprotein AQdecay auf dem Gebiet der Kosmetik speziell von Badezusätzen, von Lotionen, von Seifen, von Körperfarben, von Zahncreme, von Körperpudern.
Die Erfindung betrifft auch die Verwendung des Photoprotein AQdecay zur Färbung speziell von
Nahrungsmitteln, von Badezusätzen, von Tinte, von Textilien, von Kunststoffen.
Die Erfindung betrifft auch die Verwendung des Photoprotein AQdecay zur Färbung von Papier speziell von Grußkarten, von Papierprodukten, von Tapeten, von Bastelartikeln. Die Erfindung betrifft auch die Verwendung des Photoprotein AQdecay zur Färbung von Flüssigkeiten speziell für Wasserpistolen, für Springbrunnen, für Getränke, für Eis.
Die Erfindung betrifft auch die Verwendung des Photoprotein AQdecay zur Herstellung von Spielwaren speziell von Fingerfarbe, von Schminke.
Die Erfindung betrifft Nukleinsäuremoleküle, die das Polypeptid offenbart durch SEQ ID NO: 2 bzw funktionelle Äuquivalente oder funktionelle Fragmente desselben kodieren.
Die Erfindung bezieht sich des weiteren auf Nukleinsäuremoleküle bzw. funktionelle Äquivalente oder funktionelle Fragmente derselben, ausgewählt aus der Gruppe bestehend aus
a) Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäuresequenz offenbart durch SEQ TD NO : 2 beinhaltet;
b) Nukleinsäuremolekülen, welche die durch SEQ ID NO: 1 dargestellte Sequenz enthalten;
c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingungen hybridisiert und deren Expressionsprodukt die biologische Funktion eines Photoproteins aufweisen;
Eine stringente Hybridisierung von Nukleinsäuremolekülen wird in einer wässrigen
Lösung, die 0,2 x SSC (Ix Standard saline-citrate = 150 mM NaCl, 15 mM Trinatrium- citrat) enthält, bei 68 0C durchgeführt (Sambrook et al., 1989).
d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden.
Die Erfindung betrifft die oben genannten Nukleinsäuremoleküle, bei denen die Sequenz einen funktionalen Promotor 5Λ zu der das Photoprotein kodierenden Sequenz bzw. der das Leader- oder Siganlsequenz kodierenden Sequenz enthält.
Die Erfindung betrifft auch Nukleinsäuremoleküle wie vorhergehend beschrieben, die Bestandteil von rekombinanten DNA oder RNA Vektoren sind.
Die Erfindung betrifft Organismen, die einen solchen Vektor enthalten.
Die Erfindung betrifft Photoproteine, die durch die vorhergehend beschriebenen Nukleotid- sequenzen kodiert sind. Die Erfindung bezieht sich auf Verfahren zur Expression der erfindungsgemäßen Photoprotein Polypeptide in Bakterien, eukaryontischen Zellen oder in in vitro Expressionssystemen.
Die Erfindung betrifft auch Verfahren zur Aufreinigung/Isolierung eines erfindungsgemäßen Photoprotein Polypeptides.
Die Erfindung betrifft die Verwendung der erfϊndungsgemäßen, für Photoproteine kodierende
Nukleinsäuren als Marker- oder Reportergene, insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.
Die Erfindung betrifft die Verwendung der erfindungsgemäßen Photoproteine bzw. eine erfindungsgemäße, für ein Photoprotein kodierende Nukleinsäure als Marker oder Reporter bzw. als Marker- oder Reportergen.
Die Erfindung betrifft die Verwendung des Photoproteins AQdecay (SEQ ID NO: 2) oder seiner funktionellen Fragmente oder Äuquivalente bzw. die Verwendung einer für das Photoprotein AQdecay kodierenden Nukleinsäure oder ihrer funktionellen Fragmente oder Äquivalente als Marker oder Reporter bzw. als Marker oder Reportergen insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.
Die Erfindung betrifft die Verwendung der in SEQ ID NO: 1 dargestellten Nukleinsäure als Marker- oder Reportergen, insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.
Gegenstand der Erfindung sind auch polyklonale oder monoklonale Antikörper, welche ein erfindungsgemäßes Polypeptid erkennen.
Die Erfindung betrifft auch monoklonale oder polyklonale Antikörper, die das Photoprotein
AQdecay (SEQ ID NO:2) erkennen.
Die Erfindung betrifft auch eine Nukleinsäure wie in den vorangehenden Absätzen beschrieben, welche einen funktionalen Promotor 5Λ zur kodierenden Sequenz enthält.
Die Erfindung beinhaltet rekombinante DNA oder RNA Vektoren, welche die vorangehend beschriebenen Nukleinsäuren enthalten.
Organismen, die einen wie vorangehend beschriebenen Vektor enthalten, sind ebenfalls erfϊndungsgemäß .
Ein Polypeptid, das durch eine wie oben beschriebene Nukleinsäuresequenz kodiert ist, ist ebenfalls Teil der Erfindung. Erfindungsgemäß ist auch ein Verfahren zur Expression der vorangehend genannten Polypeptide in Bakterien, eukaryontischen Zellen oder in in vitro Expressionssystemen.
Bestandteil der Erfindung ist ebenfalls ein Verfahren zur Aufτeinigung/Isolierung eines erfindungsgemäßen Polypeptides.
Die Erfindung betrifft die Verwendung einer erfindungsgemäßen Nukleinsäure als Marker- oder
Reportergen.
Die Erfindung betrifft auch die Verwendung eines erfindungsgemäßen Photoproteins als Marker oder Reporter.
Bestandteil der Erfindung ist auch die Verwendung eines erfindungsgemäßen Polyppeptids in Kombination mit einer oder mehrerer Luziferasen und/oder einem oder mehrerer Photoproteine.
Erfindungsgemäß ist ein Photoprotein oder ein funktionelles Fragment desselben, welches eine oder mehrere Mutationen im Bereich der 129-149, 124-134, bevorzugt 137-141, insbesondere 138- 140 (bezogen auf GenBank #AAA27716) besitzt und welches ein verändertes speziell verlangsamtes Biolumineszenzsignal aufweist.
Ebenfalls erfindungsgemäß ist ein Nukleinsäuremolekül, welches eine Sequenz beinhaltet, die für ein Protein gemäß der beiden vorangehenden Abschnitte kodiert.
Ein weiteres Bestandteil der Erfindung ist ein Verfahren zur Herstellung eines Photoproteins, dadurch gekennzeichnet, dass in einem Photoprotein in der Region definiert durch Position 129- 149, 124-134, bevorzugt 137-141, insbesondere 138-140 bezogen auf GenBank #AAA27716 eine oder mehrere Mutationen eingeführt werden, was zu einer Veränderung der Biolumineszenz führt.
Ein Photoprotein, hergestellt durch ein Verfahren wie im vorangehenden Abschnitt beschrieben ist ebenfalls erfindungsgemäß.
Die Erfindung betrifft auch andere Photoproteine, die durch eine oder mehrere Veränderungen in der Aminosäuresequenz eine veränderte Kinetik der Lichtfreisetzung aufweisen.
Die Erfindung betriftt auch die Verwendung anderer veränderter Photoproteine für die beschriebenen Verwendungen des Photoproteins AQdecay.
Photoproteine mit veränderter Kinetik der Lichtfreisetzung, besonders einer verlangsamten Lichfreisetzung oder verlängerten Zeitspanne, in der Licht freigesetzt wird, eignen sich besonders als Reportergene in zellbasierten Verfahren, speziell in der pharmakologischen Wirkstoffsuche und Charakterisierung, speziell in der Diagnostik.
Photoproteine mit veränderter Kinetik der Lichtfreisetzung, besonders einer verlangsamten Lichfreisetzung oder verlängerten Zeitspanne, in der Licht freigesetzt wird, eignen sich besonders zur Untersuchung von Ionenkanälen.
Die Erfindung betrifft auch kodonoptimierte Varianten der erfindungsgemäßen Proteine zur Veränderung der biochemischen oder physikochemischen Eigenschaften, speziell der verbesserten Expression, speziell der veränderten Stabilität.
Die Erfindung betrifft auch Fusionen der erfindungsgenäßen Proteine mit Erkennungspeptiden zum Transport oder Lokalisierung der erfindungsgemäßen Proteinen in Zellorganellen oder
Kompartimenten.
Die Erfindung betrifft auch Varianten der erfindungsgemäßen Proteine, die zu einer Veränderung der spektralen Eigenschaften, der Lumineszenzintensität, der Substratspezifität, der Verwendung von Cofaktoren, der Kalziumaffinität oder anderer physikochemischen oder biochemischen Eigenschaften führen.
Expression der erfindungsgemäßen Photoproteine
Als Expression bezeichnet man die Produktion eines Moleküls, das nach dem Einbringen des Gens in eine geeignete Wirtszelle die Transcription und Translation des in einen Expressionsvektor klonierte Fremdgen erlaubt. Expressionsvektoren enthalten die für die Expression von Genen in Zellen von Prokaryonten oder Eukaryonten erforderlichen Kontrollsignale.
Expressionsvektoren können prinzipiell auf zwei verschiedene Weisen konstruiert werden. Bei den sogenannten Transkriptionsfusionen wird das vom einklonierten Fremdgen codierte Protein als authentisches, biologisch aktives Protein synthetisiert. Der Expressionsvektor trägt hierzu alle zur Expression benötigten 5'- und 3'- Kontrollsignale.
Bei den sogenannten Translationsfusionen wird das vom einklonierten Fremdgen codierte Protein als Hybridprotein zusammen mit einem anderen Protein exprimiert, das sich leicht nachweisen lässt. Die zur Expression benötigten 5'- und 3'- Kontrollsignale inklusive des Startcodons und eventuell ein Teil der für die N-terminalen Bereiche des zu bildenden Hybridproteins codierenden Sequenzen stammen vom Vektor. Der zusätzliche eingeführte Proteinteil stabilisiert nicht nur in vielen Fällen das vom einklonierten Fremdgen codierte Protein vor dem Abbau durch zelluläre
Proteasen, sondern lässt sich auch zum Nachweis und zur Isolierung des gebildeten Hybridproteins einsetzen. Die Expression kann sowohl transient, als auch stabil erfolgen. Als Wirtsorganismen eignen sich sowohl Bakterien, Hefen, Viren als auch eukaryotische Systeme.
Reinigung der erfindungsgemäßen Photoproteine
Die Isolierung von Proteinen (auch nach Überexpression) wird häufig als Proteinreinigung bezeichnet. Zur Proteinreinigung steht eine Vielzahl an etablierten Methoden und Verfahren zur
Verfügung.
Die Fest-Flüssig-Trennung ist eine Grundoperation bei Proteinisolierungen. Sowohl bei der Abtrennung der Zellen vom Kulturmedium als auch bei der Klärung des Rohextraktes nach Zellaufschluss und Entfernung der Zelltrümmer, bei der Abtrennung von Niederschlägen nach Fällungen usw. ist der Verfahrensschritt erforderlich. Er erfolgt durch Zentrifugation und
Filtration.
Durch Gewinnung intrazellulärer Proteine muss die Zellwand zerstört bzw. durchlässig gemacht werden. Je nach Maßstab und Organismus werden dazu Hochdruckhomogenisatoren oder Rührwerkskugel- bzw. Glasperlenmühlen eingesetzt. Im Labormaßstab kommen u.a. mechanische Zellintegrationen und Ultraschallbehandlung zum Einsatz.
Sowohl für extrazelluläre als auch intrazelluläre Proteine (nach Zellaufschluss) sind verschiedene Fällungsverfahren mit Salzen (insbesondere Ammoniumsulfat) oder organischen Lösungsmitteln (Alkohole, Aceton) eine schnelle und effiziente Methode zur Konzentration von Proteinen. Bei der Reinigung intrazellulärer Proteine ist die Entfernung der löslichen Nukleinsäuren erstrebenswert (Fällung z.B. mit Streptomycin- oder Protaminsulfat). Bei der Gewinnung extrazellulärer Proteine werden häufig Träger (z.B. Stärke, Kieselgur) vor Zugabe der Fällungsmittel zugesetzt, um besser handhabbare Niederschläge zu erhalten.
Für die Feinreinigung stehen zahlreiche chromatographische und Verteilungsverfahren zur Verfügung (Absorptions- und Ionenaustauschchromatographie, Gelfiltration, Affmitätschromato- graphie, Elektrophoresen). Eine Säulenchromatographie wird auch im technischen Maßstab angewandt. Für den Labormaßstab ist vor allem die Affinitätschromatographie von Bedeutung, die Reinigungsfaktoren bis zu mehreren 100 pro Schritt ermöglicht.
Extrazelluläre Proteine fallen in relativ verdünnten Lösungen an. Sie müssen ebenso wie extrazelluläre Proteine vor ihrer weiteren Verwendung konzentriert werden. Neben den schon erwähnten Verfahren hat sich - auch im industriellen Maßstab - die Ultrafiltration bewährt. Anorganische Salze als Begleitstoffe von Proteinen sind für spezifische Anwendungen häufig unerwünscht. Sie können u.a. durch Gelfϊltration, Dialyse und Diafütration entfernt werden.
Zahlreiche Proteine kommen als Trockenpräparate zum Einsatz. Als Trocknungsverfahren sind die Vakuum-, Gefrier- und Sprühtrocknung von Bedeutung.
Nukleotid- und Aminosäuresequenzen
Das Photoprotein AQdecay wird durch die folgende Nukleotidsequenz kodiert (SEQ ID NO: 1):
5'-
ATGTCAGTCAAGCTTACACCAGACTTCGACAACCCAAAATGGATTGGACGACACAAGC
ACATGTTTAATTTTCTTGATGTCAACCACAATGGAAGGATCTCTCTTGACGAGATGGTC TACAAGGCGTCCGATATTGTTATAAACAATCTTGGAGCAACACCTGAACAAGCCAAAC
GTCACAAAGATGCTGTAGAAGCCTTCTTCGGAGGAGCTGGAATGAAATATGGTGTAGA AACTGAATGGCCTGAATTTATCGAAGGATGGAAAAGACTGGCTTCCGAGGAATTGAA AAGGTATTCAAAAAACCAAATCACACTTATTCGTTTATGGGGTGATGCATTGTTCGAT ATCATTGACAAAGACCAAAATGGAGCTATTTCACTGGATGAATGGAAAGCATTCACCA AATCTGCTGGCATCATCCAATCGTCAGAAGATTGCGAGGAAACATTCAGAGTGTGCGA
TATTGATGAAAGTGGACAGCTCGATGTTGATGAGATGACAAGACAACATTTAGGATTT TGGTACACCATGGATCCTGCTTGCGAAAAGCTCTACGGTGGAGCTGTCCCCTAA -3\
Daraus ergibt sich eine Aminosäuresequenz von (SEQ ID NO: 2):
MTSEQYSVKLTPDFDNPKWIGRHKIIMFNFLDVNHNGWSLDEMVYKASDIVINNLGATPE QAKRHKDAVEAFFGGAGMKYGVETEWPEFIEGWKRLASEELKRYSKNQITLIRLWGDAL FDΠDKDQNGAISLDEWKAFTKSDGΠQSSEDCEETFRVCDIDESGQLDVDEMTRQHLGFW YTMDPACEKLYGGAVP
Primer :
(SEQ ID NO: 3): 5 ' - GAATGGCCTGAATTTATCGAAGGATGGAA -3 '
(SEQ ID NO: 4):
5'- TTCCATCCTTCGATAAATTCAGGCCATTC -3'
(SEQ ID NO: 5):
5'- GAATGGAAAGCATTCACCAAATCTGCTG -3' (SEQ ED NO: 6):
5 '- CAGCAGATTTGGTGAATGCTTTCCATTC -3 '
Das Photoprotein Aequorin (Genbank: AAA27716) besitzt folgende Aminosäuresequenz (SEQ ID NO: 7). Die Position 89 und 139 sind fett gedruckt und unterstrichen.
MTSEQYSVKLTPDFDNPKWIGRHKHMFNFLDVNM^
QAKRHKDA VEAFFGGAGMKYGVETEWPEYREGWKRLASEELKRYSKNQITLIRLWGDAL
FDΠDKDQNGAISLDEWKAYTKSDGΠQSSEDCEETFRVCDΓDESGQLDVDEMTRQHLGFW
YTMDPACEKLYGGAVP
Diese Sequenzen finden sich im Sequenzlisting wieder.
Kurze Beschreibung der Figuren
Fig. 1 : Die Fig. 1 zeigt die Plasmidkarte des Vektors pET22b-AQdecay.
Fig. 2: Die Fig. 2 zeigt die Plasmidkarte des Vektors pcDNA3-AQdecay
Fig. 3: Die Fig. 3 zeigt das Ergebnis der eukaryotischen Expression von AQdecay in CHO Zellen. Der Versuchsablauf erfolgte wie in Beispiel 4 beschrieben. (Y = relative light units, RLU; X = ATP log conc. / mol/1)
Fig. 4: Die Fig. 4 zeigt das Ergebnis der bakteriellen Expression von AQdecay. Der Versuchsablauf erfolgte wie in Beispiel 3 beschrieben. (Y = relative light units, RLU; X = Zeit in Sekunden; schwarze Kurve : AQdecay; graue Kurve : wildtyp Aequorin)
Fig. 5: Die Fig. 5 zeigt die Biolumineszenz-Kinetik von AQdecay (Expression in CHO Zellen). Der Versuchsablauf erfolgte wie in Beispiel 4 beschrieben. (Y = relative light units, RLU;
X = Zeit in Sekunden; schwarze Kurve : AQdecay; graue Kurve : wildtyp Aequorin) Beispiele
Beispiel 1
Zur Herstellung der Mutante wurde mit Hilfe molekularbiologische Methoden die Mutationen an der Position 132 (des verkürtzen Aequorins; GenBank #AAA27716) eingefügt. Hierzu wurde das "Quick change" Verfahren der Firma Stragene (USA) verwendet. Als Primer wurden (SEQ ID NO:
3) und (SEQ ID NO: 4) verwendet. Die Insertion der cDNA erfolgte in die Schnittstelle Ndel/Xhol des Vektors pET22b (Novagen). Der Vektor wurde als pET22b-AQdecay bezeichnet.
Die Fig. 1 zeigt die Plasmidkarte des Vektors pET22b-AQdecay .
Beispiel 2
Als Vektor zur Herstellung des im folgenden dargestellten Konstruktes wurde das Plasmid pcDNA3.1(+) der Firma Clontech verwendet. Das Derivat des Vektors wurde als pcDNA3- AQdecay bezeichnet. Der Vektor pcDNA3-AQdecay wurde zur Expression von AQdecay in eukaryotischen Systemen verwendet.
Die Fig. 2 zeigt die Plasmidkarte des Vektors pcDNA3-AQdecay .
Beispiel 3
Bakterielle Expression
Die bakterielle Expression erfolgte in E. coli durch Transformation der Bakterien mit den Expressionsplasmids pET22b-AQdecay. Die transformierten Bakterien wurden in LB-Medium bei 370C für 3 Stunden inkubiert und die Expression nach Herstellerangaben (Novagen) induziert. Die induzierten Bakterien wurden durch Zentrifugation geerntet, in 50 mM Tris/HCl (pH 9,0) + 5 mM
EDTA resuspendiert und durch Ultraschall aufgeschlossen. Das Lysat wurde anschliessend für 15 Minuten bei 13000 Umdrehungen pro Minute (16000 rcf) zentrifugiert und der Überstand abgenommen. Der Überstand (Verdünnungen 1:5; 1:10; 1:20 und 1 :50 mit Tris/HCl pH 9,0)) wurde 3 Stunden mit Coelenterazin (10E-07 M Coelenterazine in Tris/HCl pH 9,0) im dunkeln inkubiert. Direkt nach der Zugabe von 5 mM Calziumchlorid wurde die Biolumineszenz im
Luminometer gemessen. Die Integrationszeit der Messung betrug 40 Sekunden.
Die Fig. 4 zeigt die Kinetik der Biolumineszenzmessung von AQdecay in Bakterien. Beispiel 4
Eukaryotische Expression
Die konstitutive eukaryotische Expression erfolgte in CHO-Zellen durch Transfektion der Zellen mit den Expressionsplasmiden pcDNA3-AQdecay und pcDNA3.1(+) in transienten Experimenten. Hierzu wurden 10000 Zellen pro Loch in DMEM-F 12 Medium auf 96 Loch Mikrotiterplatten plattiert und über Nacht bei 37°C inkubiert. Die Transfektion erfolgte mit Hilfe des Fugene 6 Kits (Roche) nach Herstellerangaben. Die transfizierten Zellen wurden über Nacht bei 370C in DMEM- F12 Medium inkubiert. Anschliessend wurde das Medium entfernt und durch 50 μl Coelenterazin (10E-07 M Coelenterazine in PBS) ersetzt. Die Zellen wurden für 24 Stunden bei 28 °C inkubiert und anschliessend ATP (Adenosintriphosphat) bis zu einer Finalkonzentration von 1 μM zugegeben. Die Messung wurde direkt nach der Zugabe im Luminometer gestartet. Die Integrationszeit betrug 1 Sekunde, bei einer Gesamtmessdauer von 60 Sekunden.
Die Fig. 3 zeigt die Ergebnisse der Biolumineszenzmessung von AQdecay in CHO Zellen.
Die Fig. 5 zeigt die Kinetik der Biolumineszenzmessung von AQdecay in CHO Zellen
Beispiel 5
BLAST
Ergebnis einer BLAST- Analyse von AQdecay auf der Aminosäureebene.
>emb|CAC93774.1| unnamed protein product [Aequorea victoria]
Length = 196, Score = 410 bits (1054), Expect = e-113, Identities = 194/196 (98%), Positives = 196/196 (100%)
>pir||A26623 aequorin-1 precursor - hydromedusa (Aequorea victoria) sp|P07164|AEQl_AEQVI Aequorin 1 precursor gb|AAA27716.1| aequorin 1 precursor
Length = 196, Score = 410 bits (1054), Expect = e-113, Identities = 194/196 (98%), Positives = 196/196 (100%)
>gb|AAB 14842.11 Sequence 1 from patent US 5541309 gb|AAA55424.1| Sequence 2 from Patent EP 0187519
Length = 196, Score = 407 bits (1046), Expect = e-113, Identities = 193/196 (98%), Positives = 195/196 (99%) >gb| AAB 14845.11 Sequence 4 from patent US 5541309
Length = 196, Score = 405 bits (1041), Expect = e-112, Identities = 192/196 (97%), Positives
194/196 (98%)
>gb|AAB14846.1| Sequence 5 from patent US 5541309
Length = 196, Score = 405 bits (1040), Expect = e-112, Identities = 192/196 (97%), Positives 194/196 (98%)
>gb|AAB 14844.11 Sequence 3 from patent US 5541309 Length = 196, Score = 405 bits (1040), Expect = e-112, Identities = 192/196 (97%), Positives
194/196 (98%)
>emb|CAC93778.1| unnamed protein product [Aequorea victoria]
Length = 196, Score = 402 bits (1034), Expect = e-111, Identities = 191/196 (97%), Positives ; 193/196 (98%)
>dbj|BAC81730.1| apoaequorin [Aequorea victoria]
Length = 196, Score = 401 bits (1031), Expect = e-111, Identities = 189/196 (96%), Positives ; 195/196 (99%)
>emb|CAC93779.1| unnamed protein product [Aequorea victoria]
Length = 196, Score = 400 bits (1029), Expect = e-111, Identities = 190/196 (96%), Positives :
192/196 (97%)
>emb|CAC93780.11 unnamed protein product [Aequorea victoria]
Length = 196, Score = 400 bits (1028), Expect = e-110, Identities = 190/196 (96%), Positives : 192/196 (97%)
>pdb|lSL8|A Chain A, Calcium-Loaded Apo-Aequorin From Aequorea Victoria Length = 191, Score = 395 bits (1015), Expect = e-109, Identities = 187/190 (98%), Positives :
189/190 (99%)
>gb|AAB 14843.11 Sequence 2 from patent US 5541309
Length = 189, Score = 394 bits (1011), Expect = e-108, Identities = 186/189 (98%), Positives ■ 188/189 (99%) >emb|CAC93777.1| unnamed protein product [Aequorea victoria]
Length = 189, Score = 391 bits (1005), Expect = e-108, Identities = 185/189 (97%), Positives 187/189 (98%)
>emb|CAC93781.11 unnamed protein product [Aequorea victoria]
Length = 189, Score = 391 bits (1004), Expect = e-108, Identities = 184/189 (97%), Positives 187/189 (98%)
>emb|CAC93775.1| unnamed protein product [Aequorea victoria] Length = 196, Score = 384 bits (985), Expect = e-105, Identities = 176/196 (89%), Positives
192/196 (97%)
>dbj|BAC81731.1| apoaequorin [Aequorea victoria]
Length = 196, Score = 384 bits (985), Expect = e-105, Identities = 176/196 (89%), Positives 192/196 (97%)
Beispiel 6
BLAST
Ergebnis einer BLAST-Analyse von AQdecay auf Nukleinsäureebene :
>gb|M16103.1 IAEVAEQA A.victoria (jellyfish) aequorin 1 mRNA, complete cds Length = 672, Score = 1104 bits (557), Expect = 0.0, Identities = 569/573 (99%)
>dbj|AB103337.1| Aequorea victoria mRNA for apoaequorin, clone:UTAEQ04 Length = 591, Score = 961 bits (485), Expect = 0.0, Identities = 551/573 (96%)
>dbj|AB103338.1| Aequorea victoria mRNA for apoaequorin, clone:UTAEQ09
Length = 591, Score = 739 bits (373), Expect = 0.0, Identities = 523/573 (91%)
>gb|L29571.1|AEVAQ440X Aequorea victoria aequorin (AQ440) mRNA, complete cds Length = 925, Score = 731 bits (369), Expect = 0.0, Identities = 522/573 (91%)
>gb|Ml 1394.1 IAEVAEQD Aequorea victoria (jellyfish) aequorin mRNA, complete cds Length = 861, Score = 731 bits (369), Expect = 0.0, Identities = 522/573 (91%) >dbj|AB 103336.11 Aequorea victoria mRNA for apoaequorin, clone:UTAEQ01 Length = 591, Score = 724 bits (365), Expect = 0.0, Identities = 521/573 (90%)
> db j I AB 103339.11 Aequorea victoria mRNA for apoaequorin, clone:UTAEQl 1 Length = 591, Score = 716 bits (361), Expect = 0.0, Identities = 520/573 (90%)
>gb|AY601106.11 Aequorea victoria aequorin mRNA, complete cds
Length = 600, Score = 716 bits (361), Expect = 0.0, Identities = 517/569 (90%)
>gb| AY604002.11 Aequorea victoria clone AEQ_V44A modifϊed aequorin mRNA, complete cds
Length = 600, Score = 708 bits (357), Expect = 0.0, Identities = 516/569 (90%)
>gb|AY604001.1| Aequorea victoria clone AEQ_Q168R modified aequorin mRNA, complete cds Length = 600, Score = 708 bits (357), Expect = 0.0, Identities = 516/569 (90%)
>gb|AY604000.11 Aequorea victoria clone AEQN26D modifϊed aequorin mRNA, complete cds Length = 600, Score = 708 bits (357), Expect = 0.0, Identities = 516/569 (90%)
>gb|AY603999.1| Aequorea victoria clone AEQ_L 1701 modifϊed aequorin mRNA, complete cds Length = 600, Score = 708 bits (357), Expect = 0.0, Identities = 516/569 (90%)
>gb|AY603998.1| Aequorea victoria clone AEQ_F149S modifϊed aequorin mRNA, complete cds Length = 600, Score = 708 bits (357), Expect = 0.0, Identities = 516/569 (90%)
>gb|AY603997.11 Aequorea victoria clone AEQ_E35G modifϊed aequorin mRNA, complete cds
Length = 600, Score = 708 bits (357), Expect = 0.0, Identities = 516/569 (90%)
>gb|AY603996.1| Aequorea victoria clone AEQ_E128G modifϊed aequorin mRNA, complete cds Length = 600, Score = 708 bits (357), Expect = 0.0, Identities = 516/569 (90%)
>gb|AY603995.1| Aequorea victoria clone AEQ_D153G modifϊed aequorin mRNA, complete cds Length = 600, Score = 708 bits (357), Expect = 0.0, Identities = 516/569 (90%)
>gb|AY603994.1| Aequorea victoria clone AEQ_D117G modifϊed aequorin mRNA, complete cds Length = 600, Score = 708 bits (357), Expect = 0.0, Identities = 516/569 (90%) >gb|AY603993.1| Aequorea victoria clone AEQ-Q 168A-L 170V modified aequorin mRNA, complete cds
Length = 600, Score = 676 bits (341), Expect = 0.0, Identities = 512/569 (89%)
Beispiel 7
Die Fig. 7 zeigt das Alignment von AQdecay mit Aequorin (wildtype; wt) auf Aminosäureebene.
WT MTSEQYSVKLTPDFDL^KWIGRHKHMFNFLDVNHNGIUSLDEMVYKASDIVINNL
DECAY MTSEQYSVKLTPDFDWKWIGRHKHMFNFLDVNHNGRISLDEMVYKASDIVINNL
WT GATPEQAKRHKDAVΈAFFGGAGMKYGVETEWPEFIEGWKRLASEELKRYSKNQIT
DECAY GATPEQAKRHKDAVEAFFGGAGMKYGVETEWPEYIEGWKRLASEELKRYSKNQIT
WT LIRLWGDALFDIIDKDQNGAISLDEWKAFTKSDGIIQSSEDCEETFRVCDIDESG
DECAY LIRLWGDALFDIIDKDQNGAISLDEWKAYTKSDGΠQSSEDCEETFRVCDIDESG
WT QLDVDEMTRQHLGFWYTMDPACEKLYGGAVP DECAY QLDVDEMTRQHLGFWYTMDPACEKLYGGAVP
Beispiel 8
Kinetische Analyse von AQdecay expremiert in Bakterien
Zur kinetischen Analyse der Biolumineszenz von AQdecay, E. coli BL21 (DE3) mit pET22b- AQdecay bzw. pET22b (ohne integrierte cDNA) transformiert. Die Anzucht und Aufschluss der Bakterien erfolgte wie in Beispiel 3 beschrieben. Die Messdaten wurden für einen Zeitraum von 60 Sekunden mit einer Integrationszeit von 1 Sekunde erhoben.
Die Fig. 4 zeigt die Ergebnisse der kinetischen Analyse von AQdecay in Bakterien.
Beispiel 9
Kinetische Analyse von AQdecay in expremiert in CHO Zellen
Zur kinetischen Analyse der Biolumineszenz von AQdecay, wurden CHO (Chinese Hamster Ovarian Cells) Zellen mit pcDNA3 -AQdecay bzw. pcDNA3 (ohne integrierte cDNA) transient transfiziert. Die Transfektion und Messung erfolgte wie unter Beispiel 4 beschrieben. Die
Messdaten wurden für einen Zeitraum von 60 Sekunden mit einer Integrationszeit von 1 Sekunde erhoben.
Die Fig. 5 zeigt die Ergebnisse der kinetischen Analyse von AQdecay in CHO Zellen. Beispiel 10
Verwendung von AQdecay in multiplexing Experimenten
Das Photoprotein Aqdecay eignet sich als Komponente von multiplexing Readout- Verfahren, in denen mehrere Reportergene (z.B. Luziferasen oder Photoproteine) in einem experimentellen Ansatz verwendet werden. Hierzu wurden AQdecay expremierende CHO-Zellen im Verhältnis 1 : 1
(oder 1:2, 1:3, ..) mit CHO Zellen gemischt, die das wildtyp Aequorin expremierten. Die Zelle, die das wildtyp Aequorin expremierten, expremierten zusätzlich einen G-Protein gekoppelten Rezeptor (z.B. Neuromedin U Rezeptor 2). Die Zellmischung wurde auf 96, 384 oder 1536 Loch- Mikrotiterplatten ausgebracht und für 24 Stunden bei 37 0C inkubiert.
Anschließend wurden die Zellen mit Coelenterazine beladen (wie unter Beispiel 4 beschrieben).
Durch die Zugabe des G-Protein Rezeptor Agonisten kommt es zur intrazellulären Kalziumfreisetzung, die durch das wildtyp Aequorin ausgelesen werden kann (Lichtfreisetunzung durch wildtyp Aequorin). Durch die anschliessende Zugabe eines Agonisten, der einen CHO endogenen Rezeptor aktiviert (z. B. ATP), kann das AQdecay des zweiten Zelltyps aktiviert werden.
Beispiel 11
Lokalisierung von AQdecay in Zellorganellen oder Kompartimenten
Das Photoprotein AQdecay oder dessen Äquivalente eignet sich zur Fusion mit Peptiden, Leadersequenzen, Translokationssignalen, Proteinen oder Proteinfragmenten zum Transport oder Lokalisierung in speziellen Zellkompartimenten oder Organellen. Für einen Transport und der anschliessenden Lokalisation des Photoproteins AQdecay wurde das erfindungsgemäße Photoprotein mit dem Peptid MSVLTPLLLRGLTGSARRLPVPRAKIHSLPPEGKL fusioniert. Die Fusion des Peptides vor die Aminosäuresequenz von AQdecay führt zu einer Translokation des Fusionsproteins in die Mitochodrien der eukaryotischen Wirtszelle. Das mitrochondrial lokalisierte Photoprotein AQdecay kann zur Messung der Kalziumkonzentration innerhalb der
Mitochondrien verwendet werden. Die Fusion des beschriebenen Peptides vor die Aminosäuresequenz des AQdecay Photoproteins erfolgte auf Nukleinsäureebene mit Hilfe von molekularbiologischen Standardmethoden. Literatur / Patente
US 6,495,355 US 5,541,309 US 5,093,240 US-0908909
US 6,152,358 JP-O 176125 GB-0024357 WO03006497 WO200168824
Alam J, Cook JL. Reporter genes: application to the study of mammalian gene transcription. Anal Biochem. 1990 Aug l;188(2):245-54
Altschul, Stephen F., Thomas L. Madden, Alejandro A. Schaff er, Jinghui Zhang, Zh eng Zhang, Webb Miller, and David J. Lipman (1997); Gapped BLAST and PSI-BLAST: a new generation of protein database search programs; Nucleic Acids Res. 25:3389-3402
Chiesa A, Rapizzi E, Tosello V, Pinton P, de Virgilio M, Fogarty KE, Rizzuto R. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem J. 2001 Apr l;355(Pt 1):1-12.
Claros, M.G., Vincens, P. (1996); Computational method to predict mitochondrially imported proteins and their targeting seqeunces. Eur. J. Biochem 241, 779-786.
Cullen Bryan R., Malim Michael H., Secreted placental alkaline Phosphatase as a eukaryotic reporter gene. Methods in Enzymology. 216:362ff
Fagan TF, Ohmiya Y, Blinks JR, Inouye S, Tsuji FI. Cloning, expression and sequence analysis of cDNA for the Ca(2+)-binding photoprotein, mitrocomin. FEBS Lett. 1993 Nov l;333(3):301-5
Hastings, J.W. and Morin, J.G. (1969) Comparative biochemistry of calcium-activated photoproteins from the ctenophore, Mnemiopsis and the coelenterates Aequorea, Obelia, and Pelagia. Biol. Bull. 137, 402.
Haddock SH, Rivers TJ, Robison BH. Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Proc Natl Acad Sei U S A 2001 Sep 25;98(20):11148-51 Inouye S, Tsuji FI. (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett 1994 Mar 21;341(2-3):277-80
Inouye S, Tsuji FI. Cloning and sequence analysis of cDNA for the Ca(2+)-activated photoprotein, clytin. FEBS Lett. 1993 Jan 11;315(3):343-6.
Illarionov BA, Bondar VS, Illarionova VA, Vysotski ES. Sequence of the cDNA encoding the
Ca(2+)-activated photoprotein obelin from the hydroid polyp Obelia longissima. Gene. 1995 Feb 14;153(2):273-4.
Jones K, Hibbert F, Keenan M. Glowing jellyfish, luminescence and a molecule called coelenterazine. Trends Biotechnol 1999 Dec;17(12):477-81
Johnson, F.H., Shimomura, O., Saiga, Y., Gershman, L.C., Reynolds, G.T., and Waters, J.R.
(1962) Quantum efficiency of Cypridina luminescence, with a note on that of Aequorea. J. Cell. Comp. Physiol. 60, 85-103.
Morin, J. G. and Hastings, J.W. (1971) Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J. Cell. Physiol. 77, 305-311.
Ohmiya Y, Tsuji FI. Bioluminescence of the Ca(2+)-binding photoprotein, aequorin, after histidine modification. FEBS Lett. 1993 Apr 12;320(3):267-70.
Phillips GN. Structure and dynamics of green fluorescent protein. Curr Opin Struct Biol. 1997 Dec;7(6):821-7
Sambrook, J., Fritsch, E. Maniatis, T. 1989, Molecular cloning. A laboratory manual VoI 1-3, CoId Spring Harbor, New York : CoId Spring Harbor Laboratory Press
Shimomura O, Johnson FH. Properties of the bioluminescent protein aequorin. Biochemistry. 1969 Oct;8(10):3991-7
Shimomura O., Bioluminescence in the sea: photoprotein Systems. Symp Soc Exp Biol. 1985;39:351-72
Shimomura, O. and Teranishi K. (2000) Luminescence 15, 51-58.
Shimomura O. Isolation and properties of various molecular forms of aequorin. Biochem J. 1986 Mar l;234(2):271-7. Shimomura, O. and Johnson, F.H. (1966) in: Bioluminescence in Progress (Johnson, F.H. and Haneda, Y., Eds.) pp. 496-521, Princeton University Press, Princeton, NJ.
Shrestha S, Paeng ER, Deo SK, Daunert S. Cysteine-free mutant of aequorin as a photolabel in immunoassay development. Bioconjug Chem. 2002 Mar-Apr;13(2):269-75
Snowdowne KW, Borle AB. Measurement of cytosolic free calcium in mammalian cells with aequorin. Am J Physiol. 1984 Nov;247(5 Pt l):C396-408.
Vysotski ES, Liu ZJ, Markova SV, Blinks JR, Deng L, Frank LA, Herko M, Malikova NP, Rose JP, Wang BC, Lee J. Violet bioluminescence and fast kinetics from W92F obelin: structure- based proposals for the bioluminescence triggering and the identification of the emitting species. Biochemistry. 2003 May 27;42(20):6013-24.
Ward, W.W. (1998) Biochemical and physical properties of green fluorescent protein. In: Green Fluorescent Protein: Properties, Applications, and Protocols (Chalfie, M. and Kain, S., eds) pp. 45-70. Wiley-Liss, Inc.
Yang Te-Tuan, Sinai Parisa, Kitts Paul A. Kain Seven R., Quantification of gene expresssion with a secreted alkaline Phosphatase reporter System. Biotechnique. 1997 23(6) 11 lOff

Claims

Patentansprfiche
1. Nukleinsäuremolekül oder ein funktionelles Fragment desselben, ausgewählt aus der Gruppe bestehend aus
a) Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäure- Sequenz offenbart durch SEQ ID NO: 2 beinhaltet;
b) Nukleinsäuremolekülen, welche die in SEQ DD NO: 1 dargestellte Sequenz beinhalten;
c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingungen hybridisiert und deren Expressionsprodukte die biologische Funktion eines Photoproteins aufweisen;
d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden.
2. Polypeptid oder ein funktionelles Fragment desselben, das durch eine Nukleinsäure- sequenz nach Anspruch 1 kodiert ist und die Eigenschaft eines Photoproteins besitzt.
3. Photoprotein oder ein funktionelles Fragment desselben, welches eine oder mehrere
Mutationen in Position 129 bis 149 bezogen auf SEQ ED NO: 7 besitzt und welches eine veränderte zeitliche Biolumineszenz aufweist.
4. Photoprotein oder ein funktionelles Fragment desselben, welches eine Mutation in Position 139 bezogen auf SEQ ID NO: 7 besitzt und welches eine veränderte zeitliche Biolumines- zenz aufweist.
5. Nukleinsäuremolekül, welches eine Sequenz beinhaltet, die für ein Protein gemäß Ansprüchen 3 und 4 kodiert.
6. Nukleinsäure nach Anspruch 1 oder 5, welche einen funktionalen Promotor 5' zur kodierenden Sequenz enthält.
7. Rekombinanter DNA oder RNA Vektor, welcher Nukleinsäuren nach Anspruch 6 enthält.
8. Organismus, einen Vektor gemäß Anspruch 7 enthaltend.
9. Oligonukleotid mit mehr als 10 aufeinanderfolgenden Nukleotiden, die identisch oder komplementär zu einer Teilsequenz eines Nukleinsäuremoleküls gemäß Anspruch 1 oder 5 sind.
10. Verfahren zur Expression der Polypeptide gemäss Anspruch 2, 3, oder 4 in Bakterien, eukaryontischen Zellen oder in in vitro Expressionssystemen.
11. Verfahren zur Aufreinigung/Isolierung eines gemäß Anspruch 10 expremierten Photoprotein Polypeptides.
12. Verwendung einer Nukleinsäure gemäß den Ansprüchen 1 oder 5 als Marker- oder Reportergen.
13. Verwendung einer Nukleinsäure gemäß den Ansprüchen 1 oder 5 als Marker- oder
Reportergen in Kombination mit anderen Reportergenen.
14. Verfahren zur Herstellung eines Photoproteins, dadurch gekennzeichnet, dass in einem Photoprotein in der Region definiert durch Position 137 bis 141 bezogen auf SEQ TD NO: 7 eine oder mehrere Mutationen eingeführt werden, was zu einer Veränderung der zeitlichen Biolumineszenz führt.
15. Photoprotein, hergestellt durch ein Verfahren gemäß Anspruch 14.
16. Verwendung eines Photoproteins gemäß Anspruch 2, 3, 4 oder 15 als Marker oder Reporter.
17. Verwendung eines Photoproteins gemäß Anspruch 2, 3, 4 oder 15 als Marker oder Reporter in Kombination mit anderen Reportergenen.
18. Eine Variante des Photoproteins Aequorin, welche eine veränderte zeitliche Biolumins- zenz aufweist.
PCT/EP2006/004116 2005-05-13 2006-05-03 Isoliertes photoprotein aqdecay sowie dessen verwendung WO2006122650A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008510450A JP2008539741A (ja) 2005-05-13 2006-05-03 単離発光タンパク質AQdecayおよびその使用
CA002608004A CA2608004A1 (en) 2005-05-13 2006-05-03 Isolated aqdecay photoprotein and use thereof
EP06724689A EP1881992A2 (de) 2005-05-13 2006-05-03 Isoliertes photoprotein aqdecay sowie dessen verwendung
US11/920,386 US20090203888A1 (en) 2005-05-13 2006-05-03 Isolated Photoprotein Aqdecay, and Its Use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005022146.7 2005-05-13
DE102005022146A DE102005022146A1 (de) 2005-05-13 2005-05-13 Isoliertes Photoprotein AQdecay sowie dessen Verwendung

Publications (2)

Publication Number Publication Date
WO2006122650A2 true WO2006122650A2 (de) 2006-11-23
WO2006122650A3 WO2006122650A3 (de) 2007-02-15

Family

ID=36928346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/004116 WO2006122650A2 (de) 2005-05-13 2006-05-03 Isoliertes photoprotein aqdecay sowie dessen verwendung

Country Status (9)

Country Link
US (1) US20090203888A1 (de)
EP (1) EP1881992A2 (de)
JP (1) JP2008539741A (de)
KR (1) KR20080021018A (de)
CN (1) CN101223188A (de)
CA (1) CA2608004A1 (de)
DE (1) DE102005022146A1 (de)
TW (1) TW200716177A (de)
WO (1) WO2006122650A2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5793921B2 (ja) * 2011-04-05 2015-10-14 Jnc株式会社 低カルシウム感受性発光蛋白質の変異アポ蛋白質

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827292A1 (fr) * 2001-07-12 2003-01-17 Centre Nat Rech Scient Photoproteines mutees et leurs applications
WO2006010454A1 (de) * 2004-07-23 2006-02-02 Bayer Healthcare Ag Isoliertes photoprotein aequorin y89f, sowie dessen verwendung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2827292A1 (fr) * 2001-07-12 2003-01-17 Centre Nat Rech Scient Photoproteines mutees et leurs applications
WO2006010454A1 (de) * 2004-07-23 2006-02-02 Bayer Healthcare Ag Isoliertes photoprotein aequorin y89f, sowie dessen verwendung

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
HEAD JAMES F ET AL: "The crystal structure of the photoprotein aequorin at 2.3 ANG resolution" NATURE (LONDON), Bd. 405, Nr. 6784, 18. Mai 2000 (2000-05-18), Seiten 372-376, XP002399198 ISSN: 0028-0836 *
LIU ZHI-JIE ET AL: "Crystal structure of obelin after Ca2+-triggered bioluminescence suggests neutral coelenteramide as the primary excited state" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, Bd. 103, Nr. 8, Februar 2006 (2006-02), Seiten 2570-2575, XP002399197 ISSN: 0027-8424 *
STEPANYUK G A ET AL: "Interchange of aequorin and obelin bioluminescence color is determined by substitution of one active site residue of each photoprotein" FEBS LETTERS, ELSEVIER, AMSTERDAM, NL, Bd. 579, Nr. 5, 14. Februar 2005 (2005-02-14), Seiten 1008-1014, XP004745599 ISSN: 0014-5793 *
STEPANYUK G A ET AL: "Spectral difference between obelin and aequorin is determined by the residue in position 88" LUMINESCENCE, WILEY, CHICHESTER, GB, Bd. 19, Nr. 3, Mai 2004 (2004-05), Seiten 175-176, XP002345544 ISSN: 1522-7235 *
TRICOIRE LUDOVIC ET AL: "Calcium dependence of aequorin bioluminescence dissected by random mutagenesis." PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, Bd. 103, Nr. 25, 20. Juni 2006 (2006-06-20), Seiten 9500-9505, XP002399196 ISSN: 0027-8424 *
VYSOTSKI EUGENE S ET AL: "Ca2+-regulated photoproteins: structural insight into the bioluminescence mechanism." ACCOUNTS OF CHEMICAL RESEARCH. JUN 2004, Bd. 37, Nr. 6, Juni 2004 (2004-06), Seiten 405-415, XP002399199 ISSN: 0001-4842 *

Also Published As

Publication number Publication date
JP2008539741A (ja) 2008-11-20
WO2006122650A3 (de) 2007-02-15
US20090203888A1 (en) 2009-08-13
CN101223188A (zh) 2008-07-16
DE102005022146A1 (de) 2006-11-23
TW200716177A (en) 2007-05-01
KR20080021018A (ko) 2008-03-06
CA2608004A1 (en) 2006-11-23
EP1881992A2 (de) 2008-01-30

Similar Documents

Publication Publication Date Title
Matz et al. Fluorescent proteins from nonbioluminescent Anthozoa species
EP2126057A2 (de) Sekretierte luziferase mluc7 und deren verwendung
EP1664102B1 (de) Isoliertes photoprotein mtclytin, sowie dessen verwendung
EP1572732B1 (de) Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung
EP1881992A2 (de) Isoliertes photoprotein aqdecay sowie dessen verwendung
WO2008107104A1 (de) Isoliertes photoprotein mtclytindecay, sowie dessen verwendung
WO2006010454A1 (de) Isoliertes photoprotein aequorin y89f, sowie dessen verwendung
DE10339567A1 (de) Isoliertes Photoprotein Berovin, sowie dessen Verwendung
WO2006108518A1 (de) Isoliertes photoprotein gr-bolinopsin, sowie dessen verwendung
DE10328067A1 (de) Isoliertes Photoprotein Bolinopsin, sowie dessen Verwendung
WO2006081976A1 (de) MUTANTEN DES FLUORESZIERENDEN PROTEINS CGFPs, SOWIE DEREN VERWENDUNG
WO2007140983A1 (de) FLUORESZIERENDE PROTEINE wfCGFP, SOWIE DEREN VERWENDUNG

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006724689

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 8638/DELNP/2007

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2608004

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2008510450

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Ref document number: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077029004

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Ref document number: RU

WWE Wipo information: entry into national phase

Ref document number: 200680025508.0

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2006724689

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11920386

Country of ref document: US