WO2008107104A1 - Isoliertes photoprotein mtclytindecay, sowie dessen verwendung - Google Patents

Isoliertes photoprotein mtclytindecay, sowie dessen verwendung Download PDF

Info

Publication number
WO2008107104A1
WO2008107104A1 PCT/EP2008/001561 EP2008001561W WO2008107104A1 WO 2008107104 A1 WO2008107104 A1 WO 2008107104A1 EP 2008001561 W EP2008001561 W EP 2008001561W WO 2008107104 A1 WO2008107104 A1 WO 2008107104A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
mtclytindecay
photoprotein
nucleic acid
photoproteins
Prior art date
Application number
PCT/EP2008/001561
Other languages
English (en)
French (fr)
Inventor
Stefan Golz
Eugene Vysotski
Svetlana Markova
Natalia Malikova
Ludmila Frank
Original Assignee
Bayer Schering Pharma Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Schering Pharma Aktiengesellschaft filed Critical Bayer Schering Pharma Aktiengesellschaft
Publication of WO2008107104A1 publication Critical patent/WO2008107104A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/43504Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates
    • C07K14/43595Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from invertebrates from coelenteratae, e.g. medusae

Definitions

  • the invention relates to the photoproteins mtClytinDecay-141F and mtClytinDecay 182F, its nucleotide and amino acid sequences, as well as the activity and use of the photoproteins mtClytinDecay-141F and mtClytinDecay 182F.
  • Bioluminescence is the phenomenon of light generation by living beings. It is the result of biochemical reactions in cells, in which the chemical energy is released in the form of light quanta (so-called cold emission by chemiluminescence). Such generated light is monochromatic because it is emitted at a discrete electron transition, but may be shifted to longer wavelength spectral regions by secondary luminescent dyes (e.g., fluorescent jellyfish of the genus Aequoria).
  • secondary luminescent dyes e.g., fluorescent jellyfish of the genus Aequoria
  • the biological function is manifold: in the depth of the sea between 200 and 1000 m (mesopelagic), around 90% of all living beings light up.
  • the light signals are used here for partner advertising, deception and bait. Even fireflies and fireflies use the light signals to find a partner.
  • the importance of lighting bacteria, fungi and unicellular algae, however, is unclear. It is thought to be used to coordinate many individuals of a large population or to be a biological clock.
  • a variety of coelenterates are bioluminescent (Morin et al., 1974). These organisms emit blue or green light.
  • the aequorin from Aequoria victoria (Shimomura et al., 1969), identified as the first light-producing protein in 1962, emitted a blue light and non-green light as an isolated protein, as observed phenotypically in Aequoria victoria.
  • the green fluorescent protein could be isolated from Aequoria victoria, which makes the medusa phenotypically green due to the stimulation by the aequorin (Johnson et al., 1962, Hastings et al., 1969, Inouye et al., 1994).
  • Clytin Inouye et al., 1993
  • mitrocomin Fagan et al., 1993
  • obelin Illarionov et al., 1995
  • Bioluminescence is widely used in the art today, e.g. in the form of bio-indicators for environmental pollution or in biochemistry for the sensitive detection of proteins, for the quantification of certain compounds or as so-called “reporters” in the study of cellular gene regulation.
  • Photoproteins differ not only in their nucleotide and amino acid sequence, but also in their biochemical and physical properties.
  • the light generation by the above-mentioned photoproteins is carried out by the oxidation of coelenterazine (Haddock et al., 2001, Jones et al., 1999).
  • Reporter or indicator genes are generally genes whose gene products can easily be detected by simple biochemical or histochemical methods. There are at least two types of reporter genes.
  • Resistance genes are genes whose expression confers on a cell resistance to antibiotics or other substances whose presence in the growth medium leads to cell death when the resistance gene is absent.
  • Reporter genes The products of reporter genes are used in genetic engineering as fused or unfused indicators. The most common Reporter genes include beta-galactosidase (Alam et al., 1990), alkaline phosphatase (Yang et al., 1997, Cullen et al., 1992), luciferases and other photoproteins (Shinomura, 1985, Phillips GN, 1997, Snowdowne et al , 1984).
  • Luminescence refers to the emission of photons in the visible spectral range, this being done by excited emitter molecules. In contrast to fluorescence, the energy is not supplied from outside in the form of radiation of shorter wavelength.
  • Chemiluminescence is a chemical reaction that results in an excited molecule that glows when the excited electrons return to their ground state. When this reaction is catalyzed by an enzyme, it is called bioluminescence.
  • the enzymes involved in the reaction are generally referred to as luciferases.
  • photoproteins have already been described which have altered spectral or biochemical properties by substitution of individual amino acids. These include obelin W92F (Vysotski et al., 2003) and aequorin (Shrestha et al., 2002; Ohmiya et al., 1993).
  • the mtClytin mutant mtClytinDecay shows a temporally altered release of light compared to the photoprotein mtClytin or other photoproteins.
  • the photoprotein mtClytinDecay surprisingly shows a previously not described slowed kinetics of the release of light or luminescence. This feature allows the use of the photoprotein especially for the study of reactions or mechanisms with very fast calcium release in eukaryotic cells or other systems.
  • the kinetics of the release of light from previously described photoprotein mutants or photoprotein wild-type proteins is described as "flash" kinetics, since the light is released after activation (eg with calcium) in the shortest possible time and the reaction then comes to a level of style or at least significantly weaker.
  • mtClytinDecay is characterized not only by a changed kinetics, but surprisingly also by a particularly high release of light. This high
  • Light release also allows the use of measuring devices or methods that provide insufficient results with the release of light to other photoproteins or reporter systems.
  • the photoprotein mtClytinDecay shows the highest homology at the amino acid level to mtClytin from Clytia gregaria with an identity of 99%.
  • the invention relates to the photoproteins mtClytinDecay- 14 IF and mtClytinDecay- 182F with the amino acid sequence represented by SEQ ID NO: 2 and SEQ ID NO: 4.
  • the invention also relates to the nucleic acid molecules represented in SEQ ID NO: 1 and SEQ ID NO: 3.
  • the invention also relates to functional equivalents or fragments of mtClytinDecay-14 IF and mtClytinDecay-182F. Functional equivalents or fragments are those proteins which have comparable functional properties.
  • the invention relates to mtClytin photoproteins which have an amino acid mutation in the position 141 which leads to an altered properties of the
  • Bioluminescence in particular the bioluminescence kinetics lead here mtClytin
  • Photoproteins also be those photoproteins which are in the range of amino acids 131-
  • the invention relates to mtClytin photoproteins which have an amino acid mutation in the position 182, which lead to an altered properties of the bioluminescence, in particular the bioluminescence kinetics.
  • mtClytin photoproteins may also be those photoproteins which have an amino acid mutation in the region of the amino acids 172-192, 177-187, preferably 180-184, in particular 181-183, which lead to an altered properties of the bioluminescence, in particular of the bioluminescence kinetics.
  • regions with a similar Motif here are those sequences which have an identity of 80%, preferably of 90%, in particular 95% in this area.
  • the invention relates to combinations of mtClytin photoproteins which have one or more amino acid mutations in the region of the amino acid positions 131-151, 136-146, preferably 139-143, in particular 140-142, which lead to altered properties of the bioluminescence, with mutations in the region of amino acid position 182 or mutations in the region of amino acid position 182, which lead to altered properties of bioluminescence. Furthermore, the invention relates to combinations of mtClytin photoproteins which have an amino acid mutation in the position 182 which lead to an altered bioluminescent reaction, in particular bioluminescence kinetics, with mutations in the region of amino acid position 141. Photoproteins may also be photoproteins which have a similar structure in the fields according to the invention Have a motif. As areas Similar motifs are here those sequences which have an identity of 80%, preferably 90%, in particular 95% in this area.
  • mutant mtClytin leading to altered bioluminescent properties in particular bioluminescence kinetics
  • mutations or derivatives of mtClytin or Clytin which lead to altered physicochemical properties, in particular spectral properties, calcium sensitivity or substrate binding.
  • the photoproteins mtClytinDecay are suitable as reporter genes for cellular systems especially for receptors, for ion channels, for transporters, for transcription factors or for inducible systems.
  • the photoproteins mtClytinDecay are also useful as reporter genes by labeling, identification and characterization of cell organelles specifically for mitochondria.
  • the photoproteins mtClytinDecay are also suitable as reporter genes for the determination of parameters inside and outside of cell organelles, especially of mitochondria, especially of calcium concentrations.
  • the photoproteins mtClytinDecay are useful as reporter genes in bacterial and eukaryotic systems especially in mammalian cells, in bacteria, in yeasts, in bacculo, in plants.
  • the photoproteins mtClytinDecay are suitable as reporter genes for cellular systems in combination with bioluminescent or chemiluminescent systems, especially systems with luciferases, with oxy genases, with phosphatases.
  • the photoproteins mtClytinDecay are suitable as fusion proteins especially for receptors, for ion channels, for transporters, for transcription factors, for proteinases, for kinases, for phosphodiesterases, for hydrolases, for peptidases, for transferases, for membrane proteins and for glycoproteins.
  • the photoproteins mtClytinDecay are suitable for immobilization especially by antibodies, by biotin, by magnetic or magnetizable carriers.
  • the photoproteins mtClytinDecay are suitable as proteins for systems of energy transfer especially the fluorescence resonance energy transfer (FRET), Bioluminescence Resonance Energy Transfer (BRET), FET (field effect transistor), FP (fluorescence polarization), HTRF (Homogeneous time-resolved fluorescence) systems.
  • FRET fluorescence resonance energy transfer
  • BRET Bioluminescence Resonance Energy Transfer
  • FET field effect transistor
  • FP fluorescence polarization
  • HTRF Homogeneous time-resolved fluorescence
  • the photoproteins mtClytinDecay are suitable as labels of substrates or ligands especially for proteases, for kinases, for transferases.
  • the photoproteins mtClytinDecay are suitable for expression in bacterial systems especially for titer determination, as a substrate for biochemical systems especially for proteinases and kinases.
  • the photoproteins mtClytinDecay are useful as markers specifically coupled to antibodies coupled to enzymes coupled to receptors coupled to ion channels and other proteins.
  • the photoproteins mtClytinDecay are suitable as reporter genes in pharmacological drug discovery, especially in HTS (High Throughput Screening).
  • the photoproteins mtClytinDecay are useful as reporter genes in the characterization, identification and investigation of ion channels, especially of the type P2X, TRP, SCN, KCN, CNG, ACCN.
  • the photoproteins mtClytinDecay are suitable as components of detection systems especially for ELISA (enzyme-linked immunosorbent assay), for immunohistochemistry, for Western blot, for confocal microscopy.
  • the photoproteins mtClytinDecay are suitable as markers for the analysis of interactions specifically for protein-protein interactions, for DNA-protein interactions, for DNA-RNA interactions, for RNA RNA Interactions, for RNA-protein interactions (DNA: deoxyribonucleic acid; RNA: ribonucleic acid;).
  • the photoproteins mtClytinDecay are useful as markers or fusion proteins for expression in transgenic organisms, especially in mice, in rats, in hamsters and other mammals, in primates, in fish, in worms, in plants.
  • the photoproteins mtClytinDecay are useful as markers or fusion proteins for the analysis of embryonic development.
  • the photoproteins mtClytinDecay are useful as markers via a coupling agent specifically via biotin, via NHS (N-hydroxysulfosuccimide), via CN-Br.
  • the photoproteins mtClytinDecay are suitable as reporters coupled to nucleic acids, especially to DNA, to RNA.
  • the photoproteins mtClytinDecay are suitable as reporters coupled to proteins or peptides.
  • the photoproteins mtClytinDecay are suitable as reporters for the measurement of intracellular or extracellular calcium concentrations.
  • the photoproteins mtClytinDecay are suitable for the characterization of signal cascades in cellular systems.
  • the photoproteins mtClytinDecay coupled to nucleic acids or peptides are suitable as probes especially for Northern blots, for Southern blots, for Western blots, for ELISA, for nucleic acid sequencing, for protein analyzes, chip analyzes.
  • the photoproteins mtClytinDecay are suitable for labeling pharmacological formulations especially of infectious agents, of antibodies, of "small molecules”.
  • the photoproteins mtClytinDecay are suitable for geological investigations especially for marine, groundwater and river currents.
  • the photoproteins mtClytinDecay are suitable for expression in expression systems, especially in in vitro translation systems, in bacterial systems, in yeast systems, in bacculo systems, in viral systems, in eukaryotic systems.
  • the photoproteins mtClytinDecay are suitable for the visualization of tissues or cells during surgical interventions, especially in invasive, non-invasive, minimally invasive.
  • the photoproteins mtClytinDecay are also suitable for the marking of tumor tissues and other phenotypically altered tissues especially in the histological examination, in surgical procedures.
  • the invention also relates to the purification of photoproteins mtClytinDecay specifically as a wild-type protein, as a fusion protein, as a mutagenized protein.
  • the photoproteins mtClytinDecay are suitable for the simultaneous measurement of different reporter genes in an expression system (multiplexing).
  • the invention also relates to the use of photoproteins mtClytinDecay in the field of cosmetics, especially bath preparations, lotions, soaps, body colors, toothpaste, body powders.
  • the invention also relates to the use of photoproteins mtClytinDecay for coloring especially food, bath additives, ink, textiles, plastics.
  • the invention also relates to the use of the photoproteins mtClytinDecay for coloring paper, especially greetings cards, paper products, wallpaper, craft items.
  • the invention also relates to the use of the photoprotein mtClytinDecay for dyeing liquids especially for water pistols, for fountains, for drinks, for ice cream.
  • the invention also relates to the use of the photoproteins mtClytinDecay for the production of toys especially of finger paint, make-up.
  • the invention relates to nucleic acid molecules which encode the polypeptide disclosed by SEQ ID NO: 2 or functional equivalents or functional fragments thereof.
  • the invention relates to nucleic acid molecules which encode the polypeptide disclosed by SEQ ID NO: 4 or functional equivalents or functional fragments thereof.
  • the invention further relates to nucleic acid molecules or functional equivalents or functional fragments thereof, selected from the group consisting of:
  • nucleic acid molecules encoding a polypeptide comprising the amino acid sequence disclosed by SEQ ID NO: 2 or SEQ ID NO: 4;
  • nucleic acid molecules whose complementary strand hybridizes with a nucleic acid molecule from a) or b) under stringent conditions and whose expression product has the biological function of a photoprotein;
  • the invention relates to the abovementioned nucleic acid molecules in which the sequence contains a functional promoter 5 'to the photoprotein-encoding sequence or the sequence encoding the leader or signal sequence.
  • the invention relates to organisms containing such a vector.
  • the invention relates to photoproteins encoded by the previously described nucleotide sequences.
  • the invention relates to methods for expressing the photoprotein polypeptides according to the invention in bacteria, eukaryotic cells or in in vitro expression systems.
  • the invention also relates to methods for the purification / isolation of a photoprotein polypeptide according to the invention.
  • the invention relates to the use of the nucleic acids according to the invention, which encode photoproteins, as marker or reporter genes, in particular for the pharmacological search for active ingredients and diagnostics.
  • the invention relates to the use of the photoproteins according to the invention or a nucleic acid according to the invention which codes for a photoprotein as marker or reporter or as marker or reporter gene.
  • the invention relates to the use of the photoproteins mtClytinDecay (SEQ ID NO: 2 and SEQ ID NO: 4) or its functional fragments or equivalents or the use of a nucleic acid coding for the photoprotein mtClytinDecay or their functional fragments or equivalents as a marker or reporter or as a marker or reporter gene, in particular for pharmacological drug discovery and diagnostics.
  • the invention relates to the use of the nucleic acid shown in SEQ ID NO: 1 and SEQ ID NO: 3 as a marker or reporter gene, in particular for the pharmacological drug discovery and diagnostics.
  • the invention also relates to polyclonal or monoclonal antibodies which recognize a polypeptide according to the invention.
  • the invention also relates to monoclonal or polyclonal antibodies which recognize the photoprotein mtClytinDecay (SEQ ID NO: 2 and SEQ ID NO: 4).
  • the invention also relates to a nucleic acid as described in the preceding paragraphs which contains a functional promoter 5 'to the coding sequence.
  • the invention includes recombinant DNA or RNA vectors containing the nucleic acids described above.
  • Organisms containing a vector as described above are also within the scope of the invention.
  • a polypeptide encoded by a nucleic acid sequence as described above is also part of the invention.
  • Also according to the invention is a method for the expression of the aforementioned polypeptides in bacteria, eukaryotic cells or in in vitro expression systems.
  • a component of the invention is likewise a process for the purification / isolation of a polypeptide according to the invention.
  • the invention relates to the use of a nucleic acid according to the invention as a marker or reporter gene.
  • the invention also relates to the use of a photoprotein according to the invention as a marker or reporter.
  • polyppeptide according to the invention in combination with one or more luciferases and / or one or more photoproteins.
  • a photoprotein or a functional fragment thereof which has one or more mutations in the region of position 131-151, 136-146, preferably 139-143, in particular 140-142 or one or more mutations in the region of position 172-192, 177 -187, preferably 180-184, in particular 181-183 or a combination of both, and which has an altered, specially slowed bioluminescence signal.
  • Another part of the invention is a process for producing a photoprotein, characterized in that in a photoprotein in the region defined by position 131-151, 136-146, preferably 139-143, in particular 140-142 or one or more mutations in the region 172-192, 177-187, preferably 180-184, in particular 181-183 one or more mutations are introduced, which leads to a change in the bioluminescence, in particular bioluminescence kinetics.
  • a photoprotein prepared by a method as described in the preceding section is also according to the invention.
  • the invention also relates to other photoproteins which have altered kinetics of light release by one or more changes in the amino acid sequence.
  • the invention also relates to the use of other altered photoproteins for the described uses of the mutants of the photoprotein mtClytinDecay.
  • Photoproteins with altered kinetics of light release are particularly useful as reporter genes in cell-based methods, especially in pharmacological drug discovery and characterization, especially in diagnostics.
  • Photoproteins with altered kinetics of light release, particularly slowed-down light release or prolonged time in which light is released, are particularly useful in the study of ion channels.
  • the invention also relates to codon-optimized variants of the proteins according to the invention for altering the biochemical or physicochemical properties, especially the improved expression, especially the altered stability.
  • the invention also relates to fusions of the proteins according to the invention with recognition peptides for the transport or localization of the proteins according to the invention in cell organelles or compartments.
  • the invention also relates to variants of the proteins according to the invention which lead to a change in the spectral properties, the luminescence intensity, the substrate specificity, the use of cofactors, the calcium affinity or other physicochemical or biochemical properties.
  • the kinetic course of the release of light may vary depending on the experimental conditions.
  • Figure 7 shows the kinetics of the release of light for mtClytinDecay.
  • Expression is the production of a molecule which, after introduction of the gene into a suitable host cell, permits the transcription and translation of the foreign gene cloned into an expression vector.
  • Expression vectors contain the control signals required for the expression of genes in cells of prokaryotes or eukaryotes.
  • expression vectors can be constructed in two different ways.
  • transcriptional fusion the protein encoded by the cloned foreign gene is synthesized as an authentic, biologically active protein.
  • the protein encoded by the cloned foreign gene is expressed as a hybrid protein together with another protein that is easily detected.
  • the 5 'and 3' control signals required for the expression, including the start codon, and possibly a part of the sequences coding for the N-terminal regions of the hybrid protein to be formed are derived from the vector.
  • the additional introduced protein portion not only stabilizes the protein encoded by the encoded foreign gene from degradation by cellular proteases in many cases, but can also be used to detect and isolate the hybrid protein formed.
  • Expression can be transient as well as stable. Suitable host organisms are bacteria, yeasts, viruses as well as eukaryotic systems.
  • the isolation of proteins is often referred to as protein purification.
  • protein purification a variety of established methods and procedures are available. Solid-liquid separation is a basic operation in protein isolation. Both in the separation of the cells from the culture medium and in the clarification of the crude extract after cell disruption and removal of cell debris, in the separation of precipitates after precipitation, etc., the process step is required. It is done by centrifugation and filtration.
  • the cell wall must be destroyed or rendered permeable.
  • high pressure homogenizers or stirred ball or glass bead mills are used.
  • mechanical cell integrations and ultrasound treatment are used.
  • Extracellular proteins accumulate in relatively dilute solutions. They must be concentrated as well as extracellular proteins prior to their further use. In addition to the already mentioned methods, ultrafiltration has also proven itself - even on an industrial scale. Inorganic salts as concomitants of proteins are often undesirable for specific applications. They can be removed, inter alia, by gel filtration, dialysis and diafiltration.
  • the photoprotein mtClytinDecay-141F is encoded by the following nucleotide sequence (SEQ ID NO: 1):
  • the photoprotein mtClytinDecay-182F is encoded by the following nucleotide sequence (SEQ ID NO: 3):
  • the photoprotein mtClytin is described in patent application WO2005035559 and is encoded by the following nucleotide sequence (SEQ ID NO: 5):
  • the putative signal peptide of the photoprotein mtClytin has the following sequence (SEQ ID NO: 7):
  • FIG. 1 shows the plasmid map of the vector pTriplEx2-mtClytinDecay-141F.
  • FIG. 2 shows the plasmid map of the vector pTriplEx2-mtClytinDecay-l 82F
  • FIG. 3 shows the plasmid map of the vector pcDNA3-mtClytinDecay-141F.
  • FIG. 4 shows the plasmid map of the vector pcDNA3-mtClytinDecay-182F.
  • FIG. 5 shows the alignment of the photoproteins mtClytin, mtClytinDecay-141F and mtClytin-182F at the amino acid level.
  • Figure 6 shows the bioluminescent reaction of mtClytinDecay after bacterial expression
  • X-axis time in seconds
  • Y axis relative light units.
  • FIG. 7 shows the bioluminescent reaction of mtClytinDecay after eukaryotic expression.
  • X-axis time in seconds;
  • Y axis relative light units;
  • the data in the legend correspond to the final concentration of ATP (adenosine triphosphate) in the described experimental approach. Examples
  • the mutations were inserted at the position 141 or 182 using molecular biological methods.
  • the "quick change” method of Stragene USA was used.
  • primers SEQ ID NO: 9 + 10
  • the insertion of the cDNA was carried out in the interface SfilA-SfilB of the vector pTriplEx2.
  • the vectors were designated pTriplEx2-mtClytinDecay-141F and pTriplEx2-mtClytinDecay-182F.
  • FIG. 1 shows the plasmid map of the vector pTirplEx2-mtClytinDecay-141F.
  • FIG. 2 shows the plasmid map of the vector pTirplEx2-mtClytinDecay-182F.
  • the plasmid pcDNA3.1 (+) from Clontech was used as a vector for the preparation of the construct shown below.
  • the derivatives of the vector were termed pcDNA3-mtClytinDecay-141F and pcDNA3-mtClytinDecay-182F.
  • the vectors pcDNA3-mtClytinDecay-141F and pcDNA3-mtClytinDecay-182F were used to express mtClytinDecay-141F and mtClytinDecay-182F in eukaryotic systems.
  • FIG. 3 shows the plasmid map of the vector pcDNA3-mtClytinDecay-141F.
  • FIG. 4 shows the plasmid map of the vector pcDNA3-mtClytinDecay-182F.
  • Bacterial expression was carried out in E. coli by transformation of the bacteria with the expression plasmids pTriplEx2-mtClytinDecay-141F or pTriplEx2-mtClytinDecay-182F.
  • the transformed bacteria were incubated in LB medium at 37 ° C. for 3 hours and the expression was induced according to the manufacturer's instructions.
  • the induced bacteria were harvested by centrifugation, in 50 mM Tris / HCl (pH 9.0) + 5 mM EDTA resuspended and disrupted by ultrasound. The lysate was then centrifuged for 15 minutes at 13,000 revolutions per minute (16,000 rcf) and the supernatant removed.
  • the supernatant was incubated for 3 hours with coelenterazine (10E-07 M coelenterazine in Tris / HCl pH 9.0) in the dark. Immediately after the addition of 5 mM calcium chloride, the bioluminescence in the luminometer was measured. The integration time of the measurement was 60 seconds.
  • FIG. 6 shows the kinetics of the bioluminescence measurement of mtClytinDecay in bacteria.
  • Constitutive eukaryotic expression was carried out in CHO cells by transfecting the cells with the expression plasmids pcDNA3-mtClytinDecay-141F, pcDNA3-mtClytinDecay-182F and pcDNA3.1 (+) in transient or stable experiments.
  • 10,000 cells per well in DMEM-F 12 medium were plated on 96-well microtiter plates and incubated overnight at 37 ° C.
  • the transfection was carried out using the Fugene 6 kit (Roche) according to the manufacturer's instructions.
  • the transfected cells were incubated overnight at 37 ° C in DMEM-F12 medium.
  • the medium was removed and replaced with 50 ⁇ l of coelenterazine (10E-07 M coelenterazine in PBS).
  • the cells were incubated for 24 hours at 28 ° C and then added ATP (adenosine triphosphate) to a final concentration of 5 uM.
  • ATP adenosine triphosphate
  • the measurement was started immediately after the addition in the luminometer.
  • the integration time was 1 second, with a total measurement time of 90 seconds.
  • Figure 7 shows the results of the bioluminescence measurement of mtClytin Decay in CHO cells.
  • FIG. 5 shows the alignment of mtClytinDecay 141 F, mtClytinDecay 182F with mtClytin (wildtype; wt) at the amino acid level.
  • Example 6 shows the alignment of mtClytinDecay 141 F, mtClytinDecay 182F with mtClytin (wildtype; wt) at the amino acid level.
  • CHO Choinese hamster ovarian cells
  • pcDNA3-mtClytinDecay-141F or pcDNA3 without integrated cDNA.
  • Transfection and measurement were carried out as described in Example 4. The measurement data was collected for a period of 60 seconds with a 1 second integration time.
  • Figure 7 shows the results of the kinetic analysis of mtClytin Decay in CHO cells.
  • the photoproteins mtClytinDecay-141F and mtClytin-182F are suitable as components of multiplexing readout methods in which multiple reporter genes (eg, luciferases or photoproteins) are used in an experimental approach.
  • mtClytinDecay-141F or mtClytinDecay 182F expressing CHO cells were mixed in a ratio of 1: 1 (or 1: 2, 1: 3, ..) with CHO cells expressing the wild-type photoprotein mtClytin.
  • the cell expressing the wild-type mtCyltin additionally expressed a G-protein coupled receptor (eg Neuromedin U Receptor 2).
  • the cell mixture was spread on 96, 384 or 1536 well microtiter plates and incubated for 24 hours at 37 0 C.
  • Green Fluorescent Protein Properties, Applications, and Protocols (Chalfie, M. and Kain, S., eds) pp. 45-70. Wiley-Liss, Inc. Yang Te-Tuan, Yale Parisa, Kitts Paul A. Kain Seven R., Quantification of gene expression with a secreted alkaline phosphatase reporter system. Biotechnique. 1997 23 (6) ll

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Die Erfindung betrifft die Photoproteine mtClytinDecay-141F und mtCIytinDecay-182F, deren Nukleotid- und Aminosäuresequenzen, sowie die Aktivität und Verwendung der Photoproteine mtClytinDecay-141F und mtClytinDecay-182F.

Description

Isoliertes Photoprotein mtClytinDecay, sowie dessen Verwendung
Die Erfindung betrifft die Photoproteine mtClytinDecay-141F und mtClytinDecay- 182F, dessen Nukleotid- und Aminosäuresequenzen, sowie die Aktivität und Verwendung der Photoproteine mtClytinDecay-141F und mtClytinDecay- 182F.
Photoproteine
Als Biolumineszenz bezeichnet man das Phänomen der Lichterzeugung durch Lebewesen. Sie ist das Ergebnis von biochemischen Reaktionen in Zellen, bei denen die chemische Energie in Form von Lichtquanten abgegeben wird (sog. kalte Emission durch Chemolumineszenz). Derartig erzeugtes Licht ist monochromatisch, denn es wird bei einem diskreten Elektronen-Übergang abgestrahlt, kann aber durch sekundäre Leuchtfarbstoffe (z.B. fluoreszierende Proteine bei Leuchtquallen der Gattung Aequoria) in längerwellige Spektralbereiche verschoben werden.
Die biologische Funktion ist vielfältig: In der Meerestiefe zwischen 200 und 1000 m (Mesopelagial) leuchten rund 90% aller Lebewesen. Die Leuchtsignale werden hier zur Partnerwerbung, Täuschung und als Köder eingesetzt. Auch Glühwürmchen und Leuchtkäfer nutzen die Lichtsignale zur Partnersuche. Die Bedeutung des Leuchtens von Bakterien, Pilzen und einzelligen Algen ist dagegen unklar. Es wird vermutet, dass es zur Koordination von vielen Einzel-Individuen einer großen Population eingesetzt wird oder eine Art biologische Uhr darstellt.
Eine Vielzahl an Coelenteraten ist biolumineszent (Morin et al., 1974). Diese Organismen emittieren blaues oder grünes Licht. Das 1962 als erstes Licht produzierendes Protein identifizierte Aequorin aus Aequoria victoria (Shimomura et al., 1969) emittierte als isoliertes Protein ein blaues Licht und nicht grünes Licht wie phänotypisch beobachtet bei Aequoria victoria. Später konnte das grün fluoreszierende Protein (GFP) aus Aequoria victoria isoliert werden, das aufgrund der Anregung durch das Aequorin die Meduse phänotypisch grün erscheinen lässt (Johnson et al., 1962; Hastings et al., 1969; Inouye et al., 1994). Als weitere Photoproteine konnten noch Clytin (Inouye et al., 1993), Mitrocomin (Fagan et al., 1993) und Obelin (Illarionov et al., 1995) identifiziert und beschrieben werden. Tabelle 1; Übersicht über einige Photoproteine. Angegeben sind der Name, der Organismus aus dem das Protein isoliert worden ist und die Identifikationsnummer (Acc. No.) des Datenbankeintrages.
Figure imgf000003_0001
Tabelle 2; Übersicht über einige Photoproteine. Angegeben sind der Organismus aus dem das Protein isoliert worden ist, der Name des Photoproteins und eine Auswahl an Patenten bzw. Anmeldungen.
Figure imgf000003_0002
Figure imgf000004_0001
Biolumineszenz wird heute in der Technik vielfaltig genutzt, z.B. in Form von Bio- Indikatoren für Umweltverschmutzung oder in der Biochemie zum empfindlichen Nachweis von Proteinen, zur Quantifizierung bestimmter Verbindungen oder als sogenannte "Reporter" bei der Untersuchung zellulärer Gen-Regulation.
Die Photoproteine unterscheiden sich nicht nur aufgrund ihrer Nukleotid- und Aminosäuresequenz, sondern auch aufgrund ihrer biochemischen und physikalischen Eigenschaften.
Es konnte gezeigt werden, dass durch die Veränderung der Aminosäuresequenz von Photoproteinen die physikalischen und biochemischen Eigenschaften verändert werden können. Beispiele von mutagenisierten Photoproteinen sind in der Literatur beschrieben (US 6,495,355; US 5,541,309; US 5,093,240; Shimomura et al., 1986).
Die Lichterzeugung durch die oben genannten Photoproteine erfolgt durch die Oxidation von Coelenterazin (Haddock et al., 2001 ; Jones et al., 1999).
Reportersysteme
Als Reporter- oder Indikatorgen bezeichnet man generell Gene, deren Genprodukte sich mit Hilfe einfacher biochemischer oder histochemischer Methoden leicht nachweisen lassen. Man unterscheidet mindestens 2 Typen von Reportergenen.
1. Resistenzgene. Als Resistenzgene werden Gene bezeichnet, deren Expression einer Zelle die Resistenz gegen Antibiotika oder andere Substanzen verleiht, deren Anwesenheit im Wachstumsmedium zum Zelltod führt, wenn das Resistenzgen fehlt.
2. Reportergene. Die Produkte von Reportergenen werden in der Gentechnologie als fusionierte oder unfusionierte Indikatoren verwendet. Zu den gebräuchlichsten Reportergenen gehören die beta-Galaktosidase (Alam et al., 1990), alkalische Phosphatase (Yang et al., 1997; Cullen et al., 1992), Luciferasen und andere Photoproteine (Shinomura, 1985; Phillips GN, 1997; Snowdowne et al., 1984).
Als Lumineszenz bezeichnet man die Abstrahlung von Photonen im sichtbaren Spektralbereich, wobei diese durch angeregte Emittermoleküle erfolgt. Im Unterschied zur Fluoreszenz wird hierbei die Energie nicht von Außen in Form von Strahlung kürzerer Wellenlänge zugeführt.
Man unterscheidet Chemolumineszenz und Biolumineszenz. Als Chemolumineszenz bezeichnet man eine chemische Reaktion, die zu einem angeregten Molekül führt, das selbst leuchtet, wenn die angeregten Elektronen in den Grundzustand zurückkehren. Wird diese Reaktion durch ein Enzym katalysiert, spricht man von Biolumineszenz. Die an der Reaktion beteiligten Enzyme werden generell als Luziferasen bezeichnet.
Herstellung der Mutante
Zur Herstellung der Mutanten wurden mit Hilfe molekularbiologische Methoden die Mutationen an den Position 141 [141F] (SEQ ID 1) und Position 182 [182F] (SEQ ID 3) eingefügt. Hierzu wurde das "Quick change" Verfahren der Firma Stratagene (Katalog
Nummer #200521 ; Revision #063001b; Auflage 2003) verwendet. Als Primer wurden SEQ
ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11 und SEQ ID NO: 12 verwendet. Die Vektoren wurde als pTriplEx2-mtClytinDecay-141F und pTriplEx2-mtClytinDecay-182F bezeichnet.
mtClytinDecay
In der Literatur wurden bereits Photoproteine beschrieben, die durch Austausch einzelner Aminosäuren verändertete spektrale oder biochemische Eigenschaften aufwiesen. Zu diesen gehört Obelin W92F (Vysotski et al., 2003) und Aequorin (Shrestha et al., 2002; Ohmiya et al., 1993).
Die mtClytin Mutante mtClytinDecay zeigt eine zeitlich veränderte Lichtfreisetzung verglichen mit dem Photoprotein mtClytin oder anderen Photoproteinen. Das Photoprotein mtClytinDecay zeigt überraschenderweise eine bisher noch nicht beschriebene verlangsamte Kinetik der Lichtfreisetzung bzw. Lumineszenz. Diese Eigenschaft ermöglicht die Verwendung des Photoproteins speziell für die Untersuchung von Reaktionen oder Mechanismen mit sehr schneller Kalziumfreisetzungen in eukaryotischen Zellen oder anderen Systemen. Die Kinetik der Lichtfreisetzung von bisher beschriebenen Photoproteinmutanten oder Photoprotein Wildtypproteinen wird als "flash" Kinetik beschrieben, da das Licht nach Aktivierung (z.B. mit Kalzium) in kürzester Zeit freigesetzt wird und die Reaktion anschließend zum Stilstand kommt oder zumindest deutlich schwächer wird. Zur Messung dieser schnellen Kinetik sind besondere Messinstrumente erforderlich. Die beschriebene Photoproteinmutante mtClytinDecay bzw. dessen Äquivalente ermöglicht nicht nur die Verwendung anderer Messinstrumente oder Messverfahren, sondern vor allem die Untersuchung von sehr schnellen Kinetiken. Diese Kinetiken können z.B. bei Ionenkanälen der Familie P2X auftreten.
mtClytinDecay zeichnet sich nicht nur durch eine veränderte Kinetik, sondern überraschenderweise auch durch eine besonders hohe Lichtfreisetzung aus. Diese hohe
Lichtfreisetzung - verglichen mit anderen Mutanten Photoproteinen - ermöglicht die
Verwendung der mtClytinDecay Mutanten als sensitives Reportergen. Die hohe
Lichtfreisetzung ermöglicht auch die Verwendung von Messgeräten oder Verfahren, die mit der Lichtfreisetzung anderen Photoproteine oder Reportersystemen nur unzureichende Ergbenisse liefern.
Das Spektrum von mtClytin wurde im Maximum mit 470 nm beschrieben (Shimomuro et al., 1966). Eine Übersicht über die spektralen Eigenschaften von Coelenterazine wurde in Shinomuro (Shimomura et al., 2000) beschrieben.
Das Photoprotein mtClytinDecay zeigt die höchste Homologie auf Aminosäureebene zu mtClytin aus Clytia gregaria mit einer Identität von 99 %.
Die Erfindung betrifft die Photoproteine mtClytinDecay- 14 IF und mtClytinDecay- 182F mit der Aminosäuresequenz repräsentiert durch SEQ ID NO: 2 und SEQ ID NO: 4. Ebenfalls betrifft die Erfindung die Nukleinsäuremoleküle dargestellt in SEQ ID NO: 1 und SEQ ID NO: 3. Die Erfindung betrifft auch funktionelle Äquivalente oder Fragmente von mtClytinDecay- 14 IF und mtClytinDecay-182F. Funktionelle Äquivalente oder Fragmente sind solche Proteine, die vergleichbare funktionelle Eigenschaften aufweisen.
Die Erfindung betrifft mtClytin Photoproteine, die in der Postion 141 eine Aminosäuremutation aufweisen, welche zu einem veränderten Eigenschaften der
Biolumineszenz, insbesondere der Biolumineszenzkinetik führen Hierbei können mtClytin
Photoproteine auch solche Photoproteine sein, welche im Bereich der Aminosäuren 131-
151, 136-146, bevorzugt 139-143, insbesondere 140-142 eine oder mehrere
Aminosäuremutationen aufweisen, welche zu veränderten Eigenschaften der Biolumineszenz, insbesondere der Biolumineszentkinetik führen.
Desweiteren betrifft die Erfindung mtClytin Photoproteine, die in der Postion 182 eine Aminosäuremutation aufweisen, welche zu einem veränderten Eigenschaften der Biolumineszenz, insbesondere der Biolumineszenzkinetik führen. Hierbei können mtClytin Photoproteine auch solche Photoproteine sein, welche im Bereich der Aminosäuren 172- 192, 177-187, bevorzugt 180-184, insbesondere 181-183 eine Aminosäuremutation aufweisen, welche zu einem veränderten Eigenschaften der Biolumineszenz, insbesondere der Biolumineszenzkinetik führen. Als Bereiche mit ähnlichem Motif gelten hier solche Sequenzen, die in diesem Bereich eine Identität von 80%, bevorzugter Weise von 90%, insbesondere 95 % aufweisen.
Die Erfindung betrifft Kombinationen von mtClytin Photoproteinen, die im Bereich der Aminosäurepositionen 131-151, 136-146, bevorzugt 139-143, insbesondere 140-142 eine oder mehrere Aminosäuremutationen aufweisen, welche zu veränderten Eigenschaften der Biolumineszenz, führen, mit Mutationen im Bereich Aminosäureposition 182 oder Mutationen im Bereich von Aminosäureposition 182, welche zu einem veränderten Eigenschaften der Biolumineszenz führen. Desweiteren betrifft die Erfindung Kombinationen von mtClytin Photoproteinen, die in der Postion 182 eine Aminosäuremutation aufweisen, welche zu einer veränderten Biolumineszenzreaktion, insbesondere Biolumineszenzkinetik führen, mit Mutationen im Bereich Aminosäureposition 141. Hierbei können Photoproteine auch solche Photoproteine sein, welche in den erfindungsgemäßen Bereichen ein ähnliches Motiv aufweisen. Als Bereiche mit ähnlichem Motiv gelten hier solche Sequenzen, die in diesem Bereich eine Identität von 80%, bevorzugter Weise von 90% , insbesondere 95 % aufweisen.
Desweiteren sind Kombinationen von mutanten mtClytin, die zu veränderten biolumineszenten Eigenschaften, insbesondere der Biolumineszenzkinetik, fuhren mit Mutationen oder Derivaten von mtClytin oder Clytin, die zu veränderten physikochemischen Eigenschaften fuhren, insbesondere spektrale Eigenschaften, Kalziumsensitivität oder Substratbindung.
Ebenfalls sind funktionelle Fragmente des mtClytinDecay Proteins bzw. für solche kodierende Nukleinsäuren erfindungsgemäß.
Ebenfalls sind verkürzte funktionelle Fragmente weiterer erfindungsgemäßer Proteine bzw. für solche kodierende Nukleinsäuren Bestandteil der Erfindung.
Die Photoproteine mtClytinDecay eignen sich als Reportergene für zelluläre Systeme speziell für Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren oder für induzierbare Systeme.
Die Photoproteine mtClytinDecay eignen sich auch als Reportergene durch Markierung, Identifizierung und Charakterisierung von Zellorganellen speziell für Mitochondrien.
Die Photoproteine mtClytinDecay eignen sich auch als Reportergene zur Bestimmung von Parametern innerhalb und ausserhalb von Zellorganellen, speziell von Mitochondrien, speziell von Kalziumkonzentrationen.
Die Photoproteine mtClytinDecay eignen sich als Reportergene in bakteriellen und eukaryotischen Systemen speziell in Säugerzellen, in Bakterien, in Hefen, in Bacculo, in Pflanzen.
Die Photoproteine mtClytinDecay eignen sich als Reportergene für zelluläre Systeme in Kombination mit biolumineszenten oder chemolumineszenten Systemen, speziell Systemen mit Luziferasen, mit Oxy genasen, mit Phosphatasen.
Die Photoproteine mtClytinDecay eignen sich als Fusionsproteine speziell für Rezeptoren, für Ionenkanäle, für Transporter, für Transkriptionsfaktoren, für Proteinasen, für Kinasen, für Phosphodiesterasen, für Hydrolasen, für Peptidasen, für Transferasen, für Membranproteine und für Glykoproteine.
Die Photoproteine mtClytinDecay eignen sich zur Immobilisierung speziell durch Antikörper, durch Biotin, durch magnetische oder magnetisierbare Träger.
Die Photoproteine mtClytinDecay eignen sich als Proteine für Systeme des Energietransfers speziell der FRET- (Fluorescence Resonance Energy Transfer), BRET- (Bioluminescence Resonance Energy Transfer), FET (field effect transistors), FP (fluorescence polarization), HTRF (Homogeneous time-resolved fluorescence) Systemen.
Die Photoproteine mtClytinDecay eignen sich als Markierung von Substraten oder Liganden speziell für Proteasen, für Kinasen, für Transferasen.
Die Photoproteine mtClytinDecay eignen sich zur Expression in bakteriellen Sytemen speziell zur Titerbestimmung, als Substrat für biochemische Systeme speziell für Proteinasen und Kinasen.
Die Photoproteine mtClytinDecay eignen sich als Marker speziell gekoppelt an Antikörper, gekoppelt an Enzyme, gekoppelt an Rezeptoren, gekoppelt an Ionenkanäle und andere Proteine.
Die Photoproteine mtClytinDecay eignen sich als Reportergene bei der pharmakologischen Wirkstoffsuche speziell im HTS (High Throughput Screening).
Die Photoproteine mtClytinDecay eignen sich als Reportergene bei der Charakterisierung, Identifizierung und Untersuchung von Ionenkanälen, speziell des Typs P2X, TRP, SCN, KCN, CNG, ACCN.
Die Photoproteine mtClytinDecay eignen sich als Komponenten von Detektionssystemen speziell für ELISA (enzyme-linked immunosorbent assay), für Immunohistochemie, für Western-Blot, für die konfokale Mikroskopie.
Die Photoproteine mtClytinDecay eignen sich als Marker für die Analyse von Wechselwirkungen speziell für Protein-Protein-Wechselwirkungen, für DNA-Protein- Wechselwirkungen, für DNA-RNA-Wechselwirkungen, für RNA-RNA- Wechselwirkungen, für RNA-Protein-Wechselwirkungen (DNA: deoxyribonucleic acid; RNA: ribonucleic acid; ).
Die Photoproteine mtClytinDecay eignen sich als Marker oder Fusionsprotein für die Expression in transgenen Organismen speziell in Mäusen, in Ratten, in Hamstern und anderen Säugetieren, in Primaten, in Fischen, in Würmern, in Pflanzen.
Die Photoproteine mtClytinDecay eignen sich als Marker oder Fusionsprotein zur Analyse der Embryonalentwicklung.
Die Photoproteine mtClytinDecay eignen sich als Marker über einen Kopplungsvermittler speziell über Biotin, über NHS (N-hydroxysulfosuccimide), über CN-Br.
Die Photoproteine mtClytinDecay eignen sich als Reporter gekoppelt an Nukleinsäuren speziell an DNA, an RNA.
Die Photoproteine mtClytinDecay eignen sich als Reporter gekoppelt an Proteine oder Peptide.
Die Photoproteine mtClytinDecay eignen sich als Reporter zur Messung von intra- oder extrazellulären Calziumkonzentrationen.
Die Photoproteine mtClytinDecay eignen sich zur Charakterisierung von Signalkaskaden in zellulären Systemen.
Die an Nukleinsäuren oder Peptiden gekoppelten Photoproteine mtClytinDecay eignen sich als Sonden speziell für Northern-Blots, für Southern-Blots, für Western-Blots, für ELISA, für Nukleinsäuresequenzierungen, für Proteinanalysen, Chip- Analysen.
Die Photoproteine mtClytinDecay eignen sich zur Markierung von pharmakologischen Formulierungen speziell von infektiösen Agentien, von Antikörpern, von „small molecules".
Die Photoproteine mtClytinDecay eignen sich für geologische Untersuchungen speziell für Meeres-, Grundwasser- und Flussströmungen. Die Photoproteine mtClytinDecay eignen sich zur Expression in Expressionssystemen speziell in in-vitro Translationssystemen, in bakteriellen Systemen, in Hefe Systemen, in Bacculo Systemen, in viralen Systemen, in eukaryotischen Systemen.
Die Photoproteine mtClytinDecay eignen sich zur Visualisierung von Geweben oder Zellen bei chirurgischen Eingriffen speziell bei invasiven, bei nicht-invasiven, bei minimal- invasiven.
Die Photoproteine mtClytinDecay eignen sich auch zur Markierung von Tumorgeweben und anderen phänotypisch veränderten Geweben speziell bei der histologischen Untersuchung, bei operativen Eingriffen.
Die Erfindung betrifft auch die Reinigung der Photoproteine mtClytinDecay speziell als wildtyp Protein, als Fusionsprotein, als mutagenisiertes Protein.
Die Photoproteine mtClytinDecay eignen sich zur gleichzeitigen Messung verschiedener Reportergene in einem Expressionsystem (multiplexing).
Die Erfindung betrifft auch die Verwendung der Photoproteine mtClytinDecay auf dem Gebiet der Kosmetik speziell von Badezusätzen, von Lotionen, von Seifen, von Körperfarben, von Zahncreme, von Körperpudern.
Die Erfindung betrifft auch die Verwendung der Photoproteine mtClytinDecay zur Färbung speziell von Nahrungsmitteln, von Badezusätzen, von Tinte, von Textilien, von Kunststoffen.
Die Erfindung betrifft auch die Verwendung der Photoproteine mtClytinDecay zur Färbung von Papier speziell von Grußkarten, von Papierprodukten, von Tapeten, von Bastelartikeln.
Die Erfindung betrifft auch die Verwendung der Photoprotein mtClytinDecay zur Färbung von Flüssigkeiten speziell für Wasserpistolen, für Springbrunnen, für Getränke, für Eis.
Die Erfindung betrifft auch die Verwendung der Photoproteine mtClytinDecay zur Herstellung von Spielwaren speziell von Fingerfarbe, von Schminke.
Die Erfindung betrifft Nukleinsäuremoleküle, die das Polypeptid offenbart durch SEQ ID NO: 2 bzw. funktionelle Äquivalente oder funktionelle Fragmente desselben kodieren. Die Erfindung betrifft Nukleinsäuremoleküle, die das Polypeptid offenbart durch SEQ ID NO: 4 bzw. funktionelle Äquivalente oder funktionelle Fragmente desselben kodieren.
Die Erfindung bezieht sich des weiteren auf Nukleinsäuremoleküle bzw. funktionelle Äquivalente oder funktionelle Fragmente derselben, ausgewählt aus der Gruppe bestehend aus:
a) Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäuresequenz offenbart durch SEQ ID NO: 2 oder SEQ ID NO: 4 beinhaltet;
b) Nukleinsäuremolekülen, welche die durch SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellte Sequenz enthalten;
c) Nukleinsäuremolekülen, deren komplementärer Strang mit einem Nukleinsäuremolekül aus a) oder b) unter stringenten Bedingungen hybridisiert und deren Expressionsprodukt die biologische Funktion eines Photoproteins aufweisen;
Eine stringente Hybridisierung von Nukleinsäuremolekülen wird in einer wässrigen Lösung, die 0,2 x SSC (Ix Standard saline-citrate = 150 mM NaCl, 15 mM Trinatriumcitrat) enthält, bei 68 0C durchgeführt (Sambrook et al., 1989).
d) Nukleinsäuremolekülen, welche sich auf Grund der Degenerierung des genetischen Kodes von den unter c) genannten unterscheiden.
Die Erfindung betrifft die oben genannten Nukleinsäuremoleküle, bei denen die Sequenz einen funktionalen Promotor 5' zu der das Photoprotein kodierenden Sequenz bzw. der das Leader- oder Signalsequenz kodierenden Sequenz enthält.
Die Erfindung betrifft auch Nukleinsäuremoleküle wie vorhergehend beschrieben, die Bestandteil von rekombinanten DNA oder RNA Vektoren sind.
Die Erfindung betrifft Organismen, die einen solchen Vektor enthalten.
Die Erfindung betrifft Photoproteine, die durch die vorhergehend beschriebenen Nukleotidsequenzen kodiert sind. Die Erfindung bezieht sich auf Verfahren zur Expression der erfindungsgemäßen Photoprotein Polypeptide in Bakterien, eukaryontischen Zellen oder in in vitro Expressionssystemen.
Die Erfindung betrifft auch Verfahren zur Aufreinigung/Isolierung eines erfindungsgemäßen Photoprotein Polypeptides.
Die Erfindung betrifft die Verwendung der erfindungsgemäßen, für Photoproteine kodierende Nukleinsäuren als Marker- oder Reportergene, insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.
Die Erfindung betrifft die Verwendung der erfindungsgemäßen Photoproteine bzw. eine erfindungsgemäße, für ein Photoprotein kodierende Nukleinsäure als Marker oder Reporter bzw. als Marker- oder Reportergen.
Die Erfindung betrifft die Verwendung der Photoproteine mtClytinDecay (SEQ ID NO: 2 und SEQ ID NO: 4) oder seiner funktionellen Fragmente oder Äquivalente bzw. die Verwendung einer für das Photoprotein mtClytinDecay kodierenden Nukleinsäure oder ihrer funktionellen Fragmente oder Äquivalente als Marker oder Reporter bzw. als Marker oder Reportergen insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.
Die Erfindung betrifft die Verwendung der in SEQ ID NO: 1 und SEQ ID NO: 3 dargestellten Nukleinsäure als Marker- oder Reportergen, insbesondere für die pharmakologische Wirkstoffsuche und Diagnostik.
Gegenstand der Erfindung sind auch polyklonale oder monoklonale Antikörper, welche ein erfindungsgemäßes Polypeptid erkennen.
Die Erfindung betrifft auch monoklonale oder polyklonale Antikörper, die das Photoprotein mtClytinDecay (SEQ ID NO:2 und SEQ ID NO: 4) erkennen.
Die Erfindung betrifft auch eine Nukleinsäure wie in den vorangehenden Absätzen beschrieben, welche einen funktionalen Promotor 5' zur kodierenden Sequenz enthält.
Die Erfindung beinhaltet rekombinante DNA oder RNA Vektoren, welche die vorangehend beschriebenen Nukleinsäuren enthalten. Organismen, die einen wie vorangehend beschriebenen Vektor enthalten, sind ebenfalls erfindungsgemäß .
Ein Polypeptid, das durch eine wie oben beschriebene Nukleinsäuresequenz kodiert ist, ist ebenfalls Teil der Erfindung.
Erfindungsgemäß ist auch ein Verfahren zur Expression der vorangehend genannten Polypeptide in Bakterien, eukaryontischen Zellen oder in in vitro Expressionssystemen.
Bestandteil der Erfindung ist ebenfalls ein Verfahren zur Aufreinigung/Isolierung eines erfindungsgemäßen Polypeptides.
Die Erfindung betrifft die Verwendung einer erfindungsgemäßen Nukleinsäure als Marker- oder Reportergen.
Die Erfindung betrifft auch die Verwendung eines erfindungsgemäßen Photoproteins als Marker oder Reporter.
Bestandteil der Erfindung ist auch die Verwendung eines erfindungsgemäßen Polyppeptids in Kombination mit einer oder mehrerer Luziferasen und/oder einem oder mehrerer Photoproteine.
Erfindungsgemäß ist ein Photoprotein oder ein funktionelles Fragment desselben, welches eine oder mehrere Mutationen im Bereich der Position 131-151, 136-146, bevorzugt 139- 143, insbesondere 140-142 oder eine oder mehrere Mutationen im Bereich der Position 172-192, 177-187, bevorzugt 180-184, insbesondere 181-183 oder einer Kombination aus beiden, besitzt und welches ein verändertes, speziell verlangsamtes Biolumineszenzsignal aufweist.
Ebenfalls erfindungsgemäß ist ein Nukleinsäuremolekül, welches eine Sequenz beinhaltet, die für ein Protein gemäß der beiden vorangehenden Abschnitte kodiert.
Ein weiteres Bestandteil der Erfindung ist ein Verfahren zur Herstellung eines Photoproteins, dadurch gekennzeichnet, dass in einem Photoprotein in der Region definiert durch Position 131-151, 136-146, bevorzugt 139-143, insbesondere 140-142 oder eine oder mehrere Mutationen im Bereich der Position 172-192, 177-187, bevorzugt 180-184, insbesondere 181-183 eine oder mehrere Mutationen eingeführt werden, was zu einer Veränderung der Biolumineszenz, insbesondere Biolumineszenzkinetik fuhrt.
Ein Photoprotein, hergestellt durch ein Verfahren wie im vorangehenden Abschnitt beschrieben ist ebenfalls erfindungsgemäß.
Die Erfindung betrifft auch andere Photoproteine, die durch eine oder mehrere Veränderungen in der Aminosäuresequenz eine veränderte Kinetik der Lichtfreisetzung aufweisen.
Die Erfindung betrifft auch die Verwendung anderer veränderter Photoproteine für die beschriebenen Verwendungen der Mutanten des Photoproteins mtClytinDecay.
Photoproteine mit veränderter Kinetik der Lichtfreisetzung, besonders einer verlangsamten Lichtfreisetzung oder verlängerten Zeitspanne, in der Licht freigesetzt wird, eignen sich besonders als Reportergene in zeilbasierten Verfahren, speziell in der pharmakologischen Wirkstoffsuche und Charakterisierung, speziell in der Diagnostik.
Photoproteine mit veränderter Kinetik der Lichtfreisetzung, besonders einer verlangsamten Lichtfreisetzung oder verlängerten Zeitspanne, in der Licht freigesetzt wird, eignen sich besonders zur Untersuchung von Ionenkanälen.
Die Erfindung betrifft auch kodonoptimierte Varianten der erfindungsgemäßen Proteine zur Veränderung der biochemischen oder physikochemischen Eigenschaften, speziell der verbesserten Expression, speziell der veränderten Stabilität.
Die Erfindung betrifft auch Fusionen der erfindungsgemäßen Proteine mit Erkennungspeptiden zum Transport oder Lokalisierung der erfindungsgemäßen Proteinen in Zellorganellen oder Kompartimenten.
Die Erfindung betrifft auch Varianten der erfindungsgemäßen Proteine, die zu einer Veränderung der spektralen Eigenschaften, der Lumineszenzintensität, der Substratspezifität, der Verwendung von Cofaktoren, der Kalziumaffinität oder anderer physikochemischen oder biochemischen Eigenschaften führen. Der kinetische Verlauf der Lichtfreisetzung kann in Abhängigkeit von den experimentellen Bedingungen variieren. In Abbildung 7 ist der kinetische Verlauf der Lichtfreisetzung für mtClytinDecay beispielhaft gezeigt.
Expression der erfindungsgemäßen Photoproteine
Als Expression bezeichnet man die Produktion eines Moleküls, das nach dem Einbringen des Gens in eine geeignete Wirtszelle die Transcription und Translation des in einen Expressionsvektor klonierte Fremdgen erlaubt. Expressionsvektoren enthalten die für die Expression von Genen in Zellen von Prokaryonten oder Eukaryonten erforderlichen Kontrollsignale.
Expressionsvektoren können prinzipiell auf zwei verschiedene Weisen konstruiert werden. Bei den sogenannten Transkriptionsfusionen wird das vom einklonierten Fremdgen codierte Protein als authentisches, biologisch aktives Protein synthetisiert. Der Expressionsvektor trägt hierzu alle zur Expression benötigten 5"- und 3Λ- Kontrollsignale.
Bei den sogenannten Translationsfusionen wird das vom einklonierten Fremdgen codierte Protein als Hybridprotein zusammen mit einem anderen Protein exprimiert, das sich leicht nachweisen lässt. Die zur Expression benötigten 5'- und 3'- Kontrollsignale inklusive des Startcodons und eventuell ein Teil der für die N-terminalen Bereiche des zu bildenden Hybridproteins codierenden Sequenzen stammen vom Vektor. Der zusätzliche eingeführte Proteinteil stabilisiert nicht nur in vielen Fällen das vom einklonierten Fremdgen codierte Protein vor dem Abbau durch zelluläre Proteasen, sondern lässt sich auch zum Nachweis und zur Isolierung des gebildeten Hybridproteins einsetzen. Die Expression kann sowohl transient, als auch stabil erfolgen. Als Wirtsorganismen eignen sich sowohl Bakterien, Hefen, Viren als auch eukaryotische Systeme.
Reinigung der erfindungsgemäßen Photoproteine
Die Isolierung von Proteinen (auch nach Überexpression) wird häufig als Proteinreinigung bezeichnet. Zur Proteinreinigung steht eine Vielzahl an etablierten Methoden und Verfahren zur Verfügung. Die Fest-Flüssig-Trennung ist eine Grundoperation bei Proteinisolierungen. Sowohl bei der Abtrennung der Zellen vom Kulturmedium als auch bei der Klärung des Rohextraktes nach Zellaufschluss und Entfernung der Zelltrümmer, bei der Abtrennung von Niederschlägen nach Fällungen usw. ist der Verfahrensschritt erforderlich. Er erfolgt durch Zentrifugation und Filtration.
Durch Gewinnung intrazellulärer Proteine muss die Zellwand zerstört bzw. durchlässig gemacht werden. Je nach Maßstab und Organismus werden dazu Hochdruckhomogenisatoren oder Rührwerkskugel- bzw. Glasperlenmühlen eingesetzt. Im Labormaßstab kommen u. a. mechanische Zellintegrationen und Ultraschallbehandlung zum Einsatz.
Sowohl für extrazelluläre als auch intrazelluläre Proteine (nach Zellaufschluss) sind verschiedene Fällungsverfahren mit Salzen (insbesondere Ammoniumsulfat) oder organischen Lösungsmitteln (Alkohole, Aceton) eine schnelle und effiziente Methode zur Konzentration von Proteinen. Bei der Reinigung intrazellulärer Proteine ist die Entfernung der löslichen Nukleinsäuren erstrebenswert (Fällung z.B. mit Streptomycin- oder Protaminsulfat). Bei der Gewinnung extrazellulärer Proteine werden häufig Träger (z.B. Stärke, Kieselgur) vor Zugabe der Fällungsmittel zugesetzt, um besser handhabbare Niederschläge zu erhalten.
Für die Feinreinigung stehen zahlreiche chromatographische und Verteilungsverfahren zur Verfügung (Absorptions- und Ionenaustauschchromatographie, Gelfiltration, Affinitätschromatographie, Elektrophoresen). Eine Säulenchromatographie wird auch im technischen Maßstab angewandt. Für den Labormaßstab ist vor allem die Affinitätschromatographie von Bedeutung, die Reinigungsfaktoren bis zu mehreren 100 pro Schritt ermöglicht.
Extrazelluläre Proteine fallen in relativ verdünnten Lösungen an. Sie müssen ebenso wie extrazelluläre Proteine vor ihrer weiteren Verwendung konzentriert werden. Neben den schon erwähnten Verfahren hat sich - auch im industriellen Maßstab - die Ultrafiltration bewährt. Anorganische Salze als Begleitstoffe von Proteinen sind für spezifische Anwendungen häufig unerwünscht. Sie können u. a. durch Gelfiltration, Dialyse und Diafiltration entfernt werden.
Zahlreiche Proteine kommen als Trockenpräparate zum Einsatz. Als Trocknungsverfahren sind die Vakuum-, Gefrier- und Sprühtrocknung von Bedeutung.
Nukleotid- und Aminosäuresequenzen
Das Photoprotein mtClytinDecay-141F wird durch die folgende Nukleotidsequenz kodiert (SEQ ID NO: 1):
5 " - GACAGATAAAAAATTCACTCCTTAGATTATTTAGTGAATAAGAGAAAAAAAGGATAAGAAA TCAAGATGCAAAGGTTTACAAATCGTCTTCTTTCCATGTCGGCTTTACGTGCAAGATCAAG ATTGCAACGCACGGCAAATTTTCACACCAGCATACTCTTGGCTACAGATTCAAAATACGCG GTCAAACTCGATCCTGATTTTGCAAATCCAAAATGGATCAACAGACACAAATTTATGTTCA ACTTTTTGGACATAAACGGTAAGGGGAAAATCACATTAGATGAAATCGTCTCCAAAGCTTC AGACGACATTTGTGCTAAACTGGATGCAACACCAGAACAGACCAAACGTCACCAGGATGCT GTTGAAGCCTTTTTCAAGAAAATGGGCATGGATTATGGTAAAGAAGTTGCATTCCCAGAAT TTATTAAGGGATGGGAAGAGTTGGCCGAACACGACTTGGAACTCTGGTCTCAAAACAAAAG TACATTGATCCGTGAATGGGGAGATGCTGTTTTCGACATTTTCGACAAAGACGCAAGTGGC TCAATCAGTTTAGACGAATGGAAGGCTTACGGACGAATCTCTGGAATCTGTCCATCAGACG AAGACGCTGAGAAGACGTTCAAACATTGTGATTTGGACAACAGTGGCAAACTTGATGTTGA TGAGATGACCAGGCAACATTTAGGCTTCTTCTACACATTAGATCCAACTTCTGATGGTCTT TATGGCAATTTTGTTCCCTAAGAAGCGTTCAGTTAAAAACGCTAAACATTGTTCAGTTGTA
AAATTATATTCATTTTCATTTCGTAAAATTAGTATTTATAAATTTGTATCATAAATTGTAT CCATGTTGTAGACTAAATAAGACTCGGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA - 3~.
Daraus ergibt sich eine Aminosäuresequenz von (SEQ ID NO: 2):
MQRFTNRLLSMSALRARSRLQRTANFHTSILLATDSKYAVKLDPDFANPKWINRH
KFMFNFLDINGKGKITLDEIVSKASDDICAKLDATPEQTKRHQDAVEAFFKKMGM
DYGKEVAFPEFIKGWEELAEHDLELWSQNKSTLIREWGDAVFDIFDKDASGSISLD EWKAYGRJSGICPSDEDAEKTFKHCDLDNSGKLDVDEMTRQHLGFFYTLDPTSDG
LYGNFVP Das Photoprotein mtClytinDecay-182F wird durch die folgende Nukleotidsequenz kodiert (SEQ ID NO: 3):
GACAGATAAAAAATTCACTCCTTAGATTATTTAGTGAATAAGAGAAAAAAAGGATAAGAAA TCAAGATGCAAAGGTTTACAAATCGTCTTCTTTCCATGTCGGCTTTACGTGCAAGATCAAG ATTGCAACGCACGGCAAATTTTCACACCAGCATACTCTTGGCTACAGATTCAAAATACGCG GTCAAACTCGATCCTGATTTTGCAAATCCAAAATGGATCAACAGACACAAATTTATGTTCA ACTTTTTGGACATAAACGGTAAGGGGAAAATCACATTAGATGAAATCGTCTCCAAAGCTTC AGACGACATTTGTGCTAAACTGGATGCAACACCAGAACAGACCAAACGTCACCAGGATGCT GTTGAAGCCTTTTTCAAGAAAATGGGCATGGATTATGGTAAAGAAGTTGCATTCCCAGAAT TTATTAAGGGATGGGAAGAGTTGGCCGAACACGACTTGGAACTCTGGTCTCAAAACAAAAG TACATTGATCCGTGAATGGGGAGATGCTGTTTTCGACATTTTCGACAAAGACGCAAGTGGC TCAATCAGTTTAGACGAATGGAAGGCGTTTGGACGAATCTCTGGAATCTGTCCATCAGACG AAGACGCTGAGAAGACGTTCAAACATTGTGATTTGGACAACAGTGGCAAACTTGATGTTGA TGAGATGACCAGGCAACATTTAGGCTTCTGGTACACATTGGATCCAACTTCTGATGGTCTT TATGGCAATTTTGTTCCCTAAGAAGCGTTCAGTTAAAAACGCTAAACATTGTTCAGTTGTA AAATTATATTCATTTTCATTTCGTAAAATTAGTATTTATAAATTTGTATCATAAATTGTAT CCATGTTGTAGACTAAATAAGACTCGGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Daraus ergibt sich eine Aminosäuresequenz von (SEQ ID NO: 4):
MQRFTNRLLSMSALRARSRLQRTANFHTSILLATDSKYAVKLDPDFANPKWINRH KFMFNFLDINGKGKΓΓLDEIVSKASDDICAKLDATPEQTKRHQDA VEAFFKKMGM
DYGKEVAFPEFIKGWEELAEHDLELWSQNKSTLIREWGDAVFDIFDKDASGSISLD EWKAFGRISGICPSDEDAEKTFKHCDLDNSGKLDVDEMTRQHLGFWYTLDPTSDG LYGNFVP
Das Photoprotein mtClytin wird in Patentanmeldung WO2005035559 beschrieben und wird durch die folgende Nukleotidsequenz kodiert (SEQ ID NO: 5):
5'-
GACAGATAAAAAATTCACTCCTTAGATTATTTAGTGAATAAGAGAAAAAAAGG ATAAGAAATCAAGATGCAAAGGTTTACAAATCGTCTTCTTTCCATGTCGGCTTT ACGTGCAAGATCAAGATTGCAACGCACGGCAAATTTTCACACCAGCATACTCT TGGCTACAGATTCAAAATACGCGGTCAAACTCGATCCTGATTTTGCAAATCCA AAATGGATCAACAGACACAAATTTATGTTCAACTTTTTGGACATAAACGGTAA GGGGAAAATCACATTAGATGAAATCGTCTCCAAAGCTTCAGACGACATTTGTG CTAAACTGGATGCAACACCAGAACAGACCAAACGTCACCAGGATGCTGTTGAA GCCTTTTTCAAGAAAATGGGCATGGATTATGGTAAAGAAGTTGCATTCCCAGA ATTTATTAAGGGATGGGAAGAGTTGGCCGAACACGACTTGGAACTCTGGTCTC AAAACAAAAGTACATTGATCCGTGAATGGGGAGATGCTGTTTTCGACATTTTC GACAAAGACGCAAGTGGCTCAATCAGTTTAGACGAATGGAAGGCTTACGGAC GAATCTCTGGAATCTGTCCATCAGACGAAGACGCTGAGAAGACGTTCAAACAT TGTGATTTGGACAACAGTGGCAAACTTGATGTTGATGAGATGACCAGGCAACA TTTAGGCTTCTGGTACACATTGGATCCAACTTCTGATGGTCTTTATGGCAATTTT GTTCCCTAAGAAGCGTTCAGTTAAAAACGCTAAACATTGTTCAGTTGTAAAATT ATATTCATTTTCATTTCGTAAAATTAGTATTTATAAATTTGTATCATAAATTGTA TCCATGTTGTAGACTAAATAAGACTCGGCAAAAAAAAAAAAAAAAAAAAAAA AAAAAAA -3'.
Daraus ergibt sich eine Aminosäuresequenz von (SEQ ID NO: 6):
MQRFTNRLLSMSALRARSRLQRTANFHTSILLATDSKYAVKLDPDFANPKWINRH KFMFNFLDINGKGKITLDEIVSKASDDICAKLDATPEQTKRHQDAVEAFFKKMGM DYGKEVAFPEFIKGWEELAEHDLELWSQNKSTLIREWGDAVFDIFDKDASGSISLD EWKAYGRISGICPSDEDAEKTFKHCDLDNSGKLDVDEMTRQHLGFWYTLDPTSDG LYGNFVP
Das putative Signalpeptide des Photoprotein mtClytin besitzt folgende Sequenz (SEQ ID NO: 7):
MQRFTNRLLSMSALRA
und weist folgende Nukleinsäuresequenz auf:
5'- ATGCAAAGGTTTACAAATCGTCTTCTTTCCATGTCGGCTTTACGTGCA - 3* (SEQ ID NO 8) Zu Herstellung der Mutante mtClytinDecay-141F wurde folgende primer verwendet :
SEQ ID NO 9 : 5'-GACGAATGGAAGGCGTTTGGACGAATCTCTG-S'
SEQ ID NO 10 : 5'-CAGAGATTCGTCCAAACGCCTTCCATTCGTC-S'
Zu Herstellung der Mutante mtClytinDecay-182F wurde folgende primer verwendet :
SEQ ID NO 11 : 5'-CAACATTTAGGCTTCTTCTACACATTAGATCCAAC-S'
SEQ ID NO 12 : 5'-GTTGGATCTAATGTGTAGAAGAAGCCTAAATGTTG-S '
Diese Sequenzen finden sich im Sequenzlisting wieder.
Kurze Beschreibung der Figuren
Fig. 1 : Die Figur 1 zeigt die Plasmidkarte des Vektors pTriplEx2- mtClytinDecay-141F.
Fig. 2: Die Figur 2 zeigt die Plasmidkarte des Vektors pTriplEx2-mtClytinDecay-l 82F
Fig. 3: Die Figur 3 zeigt die Plasmidkarte des Vektors pcDNA3- mtClytinDecay-141F.
Fig. 4: Die Figur 4 zeigt die Plasmidkarte des Vektors pcDNA3-mtClytinDecay-182F.
Fig. 5: Die Figur 5 zeigt das Alignment der Photoproteine mtClytin, mtClytinDecay-141F und mtClytin- 182F auf Aminosäureebene.
Fig. 6: Die Figur 6 zeigt die Biolumineszenzreaktion von mtClytinDecay nach bakterieller Expression X-Achse : Zeit in Sekunden; Y-Achse : relative Lichteinheiten (relative light units).
Fig. 7: Die Figur 8 zeigt die Biolumineszenzreaktion von mtClytinDecay nach eukaryotischer Expression. X-Achse : Zeit in Sekunden; Y-Achse : relative Lichteinheiten (relative light units); Die Angaben in der Legende entsprechen der finalen Konzentration an ATP (Adenosintriphosphat) im beschriebenen experimentellen Ansatz. Beispiele
Beispiel 1
Zur Herstellung der Mutante wurde mit Hilfe molekularbiologische Methoden die Mutationen an der Position 141 oder 182 eingefügt. Hierzu wurde das "Quick change" Verfahren der Firma Stragene (USA) verwendet. Als Primer wurden (SEQ ID NO: 9 + 10) und (SEQ ID NO: 11 + 12) verwendet. Die Insertion der cDNA erfolgte in die Schnittstelle SfilA-SfilB des Vektors pTriplEx2. Die Vektoren wurde als pTriplEx2- mtClytinDecay-141F und pTriplEx2-mtClytinDecay-182F bezeichnet.
Die Figur 1 zeigt die Plasmidkarte des Vektors pTirplEx2-mtClytinDecay-141F.
Die Figur 2 zeigt die Plasmidkarte des Vektors pTirplEx2-mtClytinDecay- 182F.
Beispiel 2
Als Vektor zur Herstellung des im folgenden dargestellten Konstruktes wurde das Plasmid pcDNA3.1(+) der Firma Clontech verwendet. Die Derivate des Vektors wurde als pcDNA3-mtClytinDecay-141F und pcDNA3-mtClytinDecay-182F bezeichnet. Die Vektoren pcDNA3-mtClytinDecay-141F und pcDNA3-mtClytinDecay-182F wurden zur Expression von mtClytinDecay-141F und mtClytinDecay-182F in eukaryotischen Systemen verwendet.
Die Figur 3 zeigt die Plasmidkarte des Vektors pcDNA3-mtClytinDecay-141F .
Die Figur 4 zeigt die Plasmidkarte des Vektors pcDNA3-mtClytinDecay-182F .
Beispiel 3
Bakterielle Expression
Die bakterielle Expression erfolgte in E. coli durch Transformation der Bakterien mit den Expressionsplasmiden pTriplEx2-mtClytinDecay-141F oder pTriplEx2-mtClytinDecay- 182F. Die transformierten Bakterien wurden in LB-Medium bei 37°C für 3 Stunden inkubiert und die Expression nach Herstellerangaben induziert. Die induzierten Bakterien wurden durch Zentrifugation geerntet, in 50 mM Tris/HCl (pH 9,0) + 5 mM EDTA resuspendiert und durch Ultraschall aufgeschlossen. Das Lysat wurde anschliessend für 15 Minuten bei 13000 Umdrehungen pro Minute (16000 rcf) zentrifugiert und der Überstand abgenommen. Der Überstand wurde 3 Stunden mit Coelenterazin (10E-07 M Coelenterazine in Tris/HCl pH 9,0) im dunkeln inkubiert. Direkt nach der Zugabe von 5 mM Calziumchlorid wurde die Biolumineszenz im Luminometer gemessen. Die Integrationszeit der Messung betrug 60 Sekunden.
Die Figur 6 zeigt die Kinetik der Biolumineszenzmessung von mtClytinDecay in Bakterien.
Beispiel 4
Eukaryotische Expression
Die konstitutive eukaryotische Expression erfolgte in CHO-Zellen durch Transfektion der Zellen mit den Expressionsplasmiden pcDNA3-mtClytinDecay-141F, pcDNA3- mtClytinDecay-182F und pcDNA3.1(+) in transienten oder stabilen Experimenten. Hierzu wurden 10000 Zellen pro Loch in DMEM-F 12 Medium auf 96 Loch Mikrotiterplatten plattiert und über Nacht bei 37°C inkubiert. Die Transfektion erfolgte mit Hilfe des Fugene 6 Kits (Roche) nach Herstellerangaben. Die transfizierten Zellen wurden über Nacht bei 37°C in DMEM-F 12 Medium inkubiert. Anschliessend wurde das Medium entfernt und durch 50 μl Coelenterazin (10E-07 M Coelenterazine in PBS) ersetzt. Die Zellen wurden für 24 Stunden bei 28 °C inkubiert und anschliessend ATP (Adenosintriphosphat) bis zu einer Finalkonzentration von 5 μM zugegeben. Die Messung wurde direkt nach der Zugabe im Luminometer gestartet. Die Integrationszeit betrug 1 Sekunde, bei einer Gesamtmessdauer von 90 Sekunden.
Die Fig. 7 zeigt die Ergebnisse der Biolumineszenzmessung von mtClytinDecay in CHO Zellen.
Beispiel 5
Die Figur 5 zeigt das Alignment von mtClytinDecay- 141 F, mtClytinDecay- 182F mit mtClytin (wildtype; wt) auf Aminosäureebene. Beispiel 6
Kinetische Analyse von mtClytinDecay in expremiert in CHO Zellen
Zur kinetischen Analyse der Biolumineszenz von mtClytinDecay- 14 IF, wurden CHO (Chinese Hamster Ovarian Cells) Zellen mit pcDNA3-mtClytinDecay-141F bzw. pcDNA3 (ohne integrierte cDNA) transfiziert. Die Transfektion und Messung erfolgte wie unter Beispiel 4 beschrieben. Die Messdaten wurden für einen Zeitraum von 60 Sekunden mit einer Integrationszeit von 1 Sekunde erhoben.
Die Figur 7 zeigt die Ergebnisse der kinetischen Analyse von mtClytinDecay in CHO Zellen.
Beispiel 7
Verwendung von mtClytinDecay in multiplexing Experimenten
Die Photoproteine mtClytinDecay-141F und mtClytin-182F eignen sich als Komponenten von multiplexing Readout- Verfahren, in denen mehrere Reportergene (z.B. Luziferasen oder Photoproteine) in einem experimentellen Ansatz verwendet werden. Hierzu wurden mtClytinDecay-141F oder mtClytinDecay- 182F expremierende CHO-Zellen im Verhältnis 1:1 (oder 1 :2, 1:3, ..) mit CHO Zellen gemischt, die das wildtyp Photoprotein mtClytin expremierten. Die Zelle, die das wildtyp mtCyltin expremierten, expremierten zusätzlich einen G-Protein gekoppelten Rezeptor (z.B. Neuromedin U Rezeptor 2). Die Zellmischung wurde auf 96, 384 oder 1536 Loch-Mikrotiterplatten ausgebracht und für 24 Stunden bei 37 0C inkubiert.
Anschliessend wurden die Zellen mit Coelenterazine beladen (wie unter Beispiel 4 beschrieben). Durch die Zugabe des G-Protein Rezeptor Agonisten kommt es zur intrazellulären Kalziumfreisetzung, die durch das wildtyp mtClytin ausgelesen werden kann (Lichtfreisetunzung durch wildtyp Aequorin). Durch die anschliessende Zugabe eines Agonisten, der einen CHO endogenen Rezeptor aktiviert (z. B. ATP), kann das mtClytinDecay-141F oder mtClytin-182F des zweiten Zelltyps aktiviert werden. Literatur / Patente
US 6,495,355
US 5,541,309
US 5,093,240
US-0908909
US 6,152,358
GB-0024357
WO03006497
WO200168824
WO2005035559
Alam J, Cook JL. Reporter genes: application to the study of mammalian gene transcription. Anal Biochem. 1990 Aug l;188(2):245-54
Altschul, Stephen F., Thomas L. Madden, AIejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997); Gapped BLAST and PSI- BLAST: a new generation of protein database search programs; Nucleic Acids Res. 25:3389-3402
Chiesa A, Rapizzi E, Tosello V, Pinton P, de Virgilio M, Fogarty KE, Rizzuto R.
Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signalling. Biochem J. 2001 Apr l;355(Pt 1):1-12.
Claros, M.G., Vincens, P. (1996); Computational method to predict mitochondrially imported proteins and their targeting seqeunces. Eur. J. Biochem 241, 779-786.
CuIIen Bryan R., Malim Michael H., Secreted placental alkaline Phosphatase as a eukaryotic reporter gene. Methods in Enzymology. 216:362ff Fagan TF, Ohmiya Y, Blinks JR, Inouye S, Tsuji FI. Cloning, expression and sequence analysis of cDNA for the Ca(2+)-binding photoprotein, mitrocomin. FEBS Lett. 1993 Nov l;333(3):301-5
Hastings, J.W. and Morin, J.G. (1969) Comparative biochemistry of calcium-activated photoproteins from the ctenophore, Mnemiopsis and the coelenterates Aequorea, Obelia, and Pelagia. Biol. Bull. 137, 402.
Haddock SH, Rivers TJ, Robison BH. Can coelenterates make coelenterazine? Dietary requirement for luciferin in cnidarian bioluminescence. Pr oc Natl Acad Sei USA 2001 Sep 25;98(20):l 1148-51
Inouye S, Tsuji FI. (1994) Aequorea green fluorescent protein. Expression of the gene and fluorescence characteristics of the recombinant protein. FEBS Lett 1994 Mar 21;341(2- 3):277-80
Inouye S, Tsuji FI. Cloning and sequence analysis of cDNA for the Ca(2+)-activated photoprotein, elytin. FEBS Lett. 1993 Jan 11;315(3):343-6.
Illarionov BA, Bondar VS, Illarionova VA, Vysotski ES. Sequence of the cDNA encoding the Ca(2+)-activated photoprotein obelin from the hydroid polyp Obelia longissima. Gene. 1995 Feb 14;153(2):273-4.
Jones K, Hibbert F, Keenan M. Glowing jellyfish, luminescence and a molecule called coelenterazine. Trends Biotechnol 1999 Dec;17(12):477-81
Johnson, F.H., Shimomura, O., Saiga, Y., Gershman, L.C., Reynolds, G.T., and Waters, J.R. (1962) Quantum efficiency of Cypridina luminescence, with a note on that of Aequorea. J. Cell. Comp. Physiol 60, 85-103.
Morin, J.G. and Hastings, J.W. (1971) Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J. Cell. Physiol. 77, 305-31 1.
Ohmiya Y, Tsuji FI. Bioluminescence of the Ca(2+)-binding photoprotein, aequorin, after histidine modification. FEÄS Letf. 1993 Apr 12;320(3):267-70. Phillips GN. Structure and dynamics of green fluorescent protein. Curr Opin Struct Biol. 1997 Dec;7(6):821-7
Sambrook, J., Fritsch, E. Maniatis, T. 1989, Molecular cloning. A laboratory manual VoI 1-3, CoId Spring Harbor, New York : CoId Spring Harbor Laboratory Press
Shimomura O, Johnson FH. Properties of the bioluminescent protein aequorin. Biochemistry. 1969 Oct;8(10):3991-7
Shimomura O., Bioluminescence in the sea: photoprotein Systems. Symp Soc Exp Biol. 1985;39:351-72
Shimomura, O. and Teranishi K. (2000) Luminescence 15, 51-58.
Shimomura O. Isolation and properties of various molecular forms of aequorin. Biochem J. 1986 Mar l;234(2):271-7.
Shimomura, O. and Johnson, F.H. (1966) in: Bioluminescence in Progress (Johnson, F.H. and Haneda, Y., Eds.) pp. 496-521, Princeton University Press, Princeton, NJ.
Shrestha S, Paeng IR, Deo SK, Daunert S. Cysteine-free mutant of aequorin as a photolabel in immunoassay development. Bioconjug Chem. 2002 Mar-Apr;13(2):269-75
Snowdowne KW, Borle AB. Measurement of cytosolic free calcium in mammalian cells with aequorin. Am JPhysiol. 1984 Nov;247(5 Pt l):C396-408.
Vysotski ES, Liu ZJ, Markova SV, Blinks JR, Deng L, Frank LA, Herko M, Malikova NP, Rose JP, Wang BC, Lee J. Violet bioluminescence and fast kinetics from W92F obelin: structure-based proposals for the bioluminescence triggering and the identification of the emitting species. Biochemistry. 2003 May 27;42(20):6013-24.
Ward, W.W. (1998) Biochemical and physical properties of green fluorescent protein. In: Green Fluorescent Protein: Properties, Applications, and Protocols (Chalfie, M. and Kain, S., eds) pp. 45-70. Wiley-Liss, Inc. Yang Te-Tuan, Sinai Parisa, Kitts Paul A. Kain Seven R., Quantification of gene expresssion with a secreted alkaline Phosphatase reporter system. Biotechnique. 1997 23(6) l l lOff

Claims

Patentansprüche
1. Nukleinsäuremolekül oder ein funktionelles Fragment desselben, ausgewählt aus der Gruppe bestehend aus
a) Nukleinsäuremolekülen, die ein Polypeptid kodieren, welches die Aminosäuresequenz offenbart durch SEQ ID NO: 2 oder SEQ ID NO :4 beinhaltet;
b) Nukleinsäuremolekülen, welche die in SEQ ID NO: 1 oder SEQ ID NO: 3 dargestellte Sequenz beinhalten;
c) Nukleinsäuremolekülen, die Fragmente von Nukleinsäuremolekülen gemäß a) oder b) enthalten, wobei die Nukleinsäuremoleküle funktionelle
Photoproteine kodieren und die Fragmente Polypeptide kodieren, die die Aminosäure 141 bezogen auf die SEQ ID NO:2 oder die Aminosäure 182 bezogen auf die SEQ ID NO:4 enthalten.
2. Polypeptid oder ein funktionelles Fragment desselben, das durch eine Nukleinsäuresequenz nach Anspruch 1 kodiert ist und die Eigenschaft eines
Photoproteins besitzt.
3. Polypeptid, die Sequenzen dargestellt in SEQ ID NO:2 oder SEQ ID NO:4 enthaltend.
4. Photoprotein oder ein funktionelles Fragment desselben, welches eine oder mehrere Mutationen in Position 131 bis 152 bezogen auf SEQ ID NO: 2 besitzt und welches eine veränderte zeitliche Biolumineszenz aufweist.
5. Photoprotein oder ein funktionelles Fragment desselben, welches eine Mutation in Position 172 bis 192 bezogen auf SEQ ID NO: 4 besitzt und welches eine veränderte zeitliche Biolumineszenz aufweist.
6. Nukleinsäuremolekül, welches eine Sequenz beinhaltet, die für ein Protein gemäß Ansprüchen 4 oder 5 kodiert.
7. Nukleinsäure nach Anspruch 1 oder 6, welche einen funktionalen Promotor 5* zur kodierenden Sequenz enthält.
8. Rekombinanter DNA oder RNA Vektor, welcher Nukleinsäuren nach Anspruch 7 enthält.
9. Prokaryontische oder eukaryontische Zelle oder ein nicht humaner Organismus, einen Vektor gemäß Anspruch 8 enthaltend.
10. Verfahren zur Expression der Polypeptide gemäss Anspruch 2, 3, 4 oder 5 in Bakterien, eukaryontischen Zellen oder in in vitro Expressionssystemen.
1 1. Verfahren zur Aufreinigung/Isolierung eines gemäß Anspruch 10 expremierten Photoprotein Polypeptides.
12. Verwendung einer Nukleinsäure gemäß den Ansprüchen 1 oder 6 als Marker- oder Reportergen.
13. Verwendung einer Nukleinsäure gemäß den Ansprüchen 1 oder 6 als Markeroder Reportergen in Kombination mit anderen Reportergenen.
14. Verfahren zur Herstellung eines Photoproteins, dadurch gekennzeichnet, dass in einem Photoprotein in der Region definiert durch Position 131 bis 152 bezogen auf SEQ ID NO: 2 eine oder mehrere Mutationen eingeführt werden, was zu einer Veränderung der zeitlichen Biolumineszenz führt.
15. Photoprotein, hergestellt durch ein Verfahren gemäß Anspruch 14.
16. Verwendung eines Photoproteins gemäß Anspruch 2, 3, 4, 5 oder 15 als Marker oder Reporter.
17. Verwendung eines Photoproteins gemäß Anspruch 2, 3, 4, 5 oder 15 als Marker oder Reporter in Kombination mit anderen Reportergenen.
18. Eine Variante des Photoproteins mtClytin, welche eine veränderte zeitliche Bioluminszenz aufweist.
PCT/EP2008/001561 2007-03-08 2008-02-28 Isoliertes photoprotein mtclytindecay, sowie dessen verwendung WO2008107104A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200710011241 DE102007011241A1 (de) 2007-03-08 2007-03-08 Isoliertes Photoprotein mtClytinDecay, sowie dessen Verwendung
DE102007011241.8 2007-03-08

Publications (1)

Publication Number Publication Date
WO2008107104A1 true WO2008107104A1 (de) 2008-09-12

Family

ID=39284194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2008/001561 WO2008107104A1 (de) 2007-03-08 2008-02-28 Isoliertes photoprotein mtclytindecay, sowie dessen verwendung

Country Status (3)

Country Link
DE (1) DE102007011241A1 (de)
TW (1) TW200900418A (de)
WO (1) WO2008107104A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470277A (en) * 2009-05-14 2010-11-17 Chisso Corp Calcium binding photoproteins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035559A1 (de) * 2003-09-16 2005-04-21 Bayer Healthcare Ag Isoliertes photoprotein mtclytin, sowie dessen verwendung
EP1700865A1 (de) * 2005-03-11 2006-09-13 AXXAM S.r.l. Photoproteine mit erhöhter Biolumineszenz und deren Verwendung als intrazelluläre Calcium-Indikatoren

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5093240A (en) 1986-10-15 1992-03-03 Chisso Corporation Variant aequorin genes and process for producing variant aequorin proteins
US5360728A (en) 1992-12-01 1994-11-01 Woods Hole Oceanographic Institution (W.H.O.I.) Modified apoaequorin having increased bioluminescent activity
US5876995A (en) 1996-02-06 1999-03-02 Bryan; Bruce Bioluminescent novelty items
GB9824357D0 (en) 1998-11-07 1998-12-30 Univ Wales Medicine Protein and DNA coding therefor
US6495355B1 (en) 1999-06-22 2002-12-17 The Board Of Trustees Of The Leland Stanford Junior University Red-shifted luciferase
JP4830063B2 (ja) 2000-03-15 2011-12-07 プロルーム・リミテッド Renillareniformis蛍光タンパク質、その蛍光タンパク質をコードする核酸、および診断、ハイスループットスクリーニングおよび新規アイテムにおけるその使用
FR2827292B1 (fr) 2001-07-12 2004-06-18 Centre Nat Rech Scient Photoproteines mutees et leurs applications

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005035559A1 (de) * 2003-09-16 2005-04-21 Bayer Healthcare Ag Isoliertes photoprotein mtclytin, sowie dessen verwendung
EP1700865A1 (de) * 2005-03-11 2006-09-13 AXXAM S.r.l. Photoproteine mit erhöhter Biolumineszenz und deren Verwendung als intrazelluläre Calcium-Indikatoren

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE EPO Proteins [online] 3 April 2003 (2003-04-03), "Sequence 30 from Patent WO03006497.", XP002477460, retrieved from EBI accession no. EPOP:AX702132 Database accession no. AX702132 *
DATABASE UniProt [online] 1 October 1994 (1994-10-01), "Clytin precursor (Phialidin).", XP002300448, retrieved from EBI accession no. UNIPROT:Q08121 Database accession no. Q08121 *
INOUYE S ET AL: "CLONING AND SEQUENCE ANALYSIS OF CDNA FOR THE CA2+-ACTIVATED PHOTOPROTEIN, CLYTIN", FEBS LETTERS, ELSEVIER, AMSTERDAM, NL, vol. 315, no. 3, January 1993 (1993-01-01), pages 343 - 346, XP001180448, ISSN: 0014-5793 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2470277A (en) * 2009-05-14 2010-11-17 Chisso Corp Calcium binding photoproteins
GB2470277B (en) * 2009-05-14 2013-12-04 Jnc Corp Calcium-binding photoprotein, gene encoding the same and use thereof
US8772452B2 (en) 2009-05-14 2014-07-08 Jnc Corporation Calcium-binding photoprotein
US10156557B2 (en) 2009-05-14 2018-12-18 Jnc Corporation Calcium-binding photoprotein

Also Published As

Publication number Publication date
DE102007011241A1 (de) 2008-09-11
TW200900418A (en) 2009-01-01

Similar Documents

Publication Publication Date Title
CA2454031A1 (en) Novel chromophores/fluorophores and methods for using the same
WO2008095622A2 (de) Sekretierte luziferase mluc7 und deren verwendung
EP1664102B1 (de) Isoliertes photoprotein mtclytin, sowie dessen verwendung
EP1572732B1 (de) Isoliertes fluoreszierendes protein aus clytia gregaria cgfp, sowie dessen verwendung
WO2008107104A1 (de) Isoliertes photoprotein mtclytindecay, sowie dessen verwendung
WO2006122650A2 (de) Isoliertes photoprotein aqdecay sowie dessen verwendung
WO2006010454A1 (de) Isoliertes photoprotein aequorin y89f, sowie dessen verwendung
DE10339567A1 (de) Isoliertes Photoprotein Berovin, sowie dessen Verwendung
WO2006108518A1 (de) Isoliertes photoprotein gr-bolinopsin, sowie dessen verwendung
WO2006081976A1 (de) MUTANTEN DES FLUORESZIERENDEN PROTEINS CGFPs, SOWIE DEREN VERWENDUNG
DE10328067A1 (de) Isoliertes Photoprotein Bolinopsin, sowie dessen Verwendung
WO2007140983A1 (de) FLUORESZIERENDE PROTEINE wfCGFP, SOWIE DEREN VERWENDUNG

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08707813

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08707813

Country of ref document: EP

Kind code of ref document: A1