WO2006121110A1 - 医薬物運搬用器具およびその製造方法 - Google Patents

医薬物運搬用器具およびその製造方法 Download PDF

Info

Publication number
WO2006121110A1
WO2006121110A1 PCT/JP2006/309468 JP2006309468W WO2006121110A1 WO 2006121110 A1 WO2006121110 A1 WO 2006121110A1 JP 2006309468 W JP2006309468 W JP 2006309468W WO 2006121110 A1 WO2006121110 A1 WO 2006121110A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
drug delivery
plastic material
delivery device
main material
Prior art date
Application number
PCT/JP2006/309468
Other languages
English (en)
French (fr)
Inventor
Koji Omichi
Munehisa Fujimaki
Seiji Tokumoto
Hirotoshi Adachi
Original Assignee
Hisamitsu Pharmaceutical Co., Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hisamitsu Pharmaceutical Co., Inc. filed Critical Hisamitsu Pharmaceutical Co., Inc.
Priority to JP2007528315A priority Critical patent/JP5020080B2/ja
Publication of WO2006121110A1 publication Critical patent/WO2006121110A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0046Solid microneedles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • A61M37/0015Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin by using microneedles
    • A61M2037/0053Methods for producing microneedles

Definitions

  • the present invention relates to a drug delivery device for use in a drug delivery system such as administration of a drug to a living body or aspiration and extraction of blood from vital force, and particularly, it is subdermal without pain.
  • the present invention relates to a device for transporting a pharmaceutical product that can be inserted into the device and a method for manufacturing the same.
  • TTS transdermal therapeutic system
  • Non-Patent Document 1 and Patent Documents 1 and 2 Such instruments have been proposed.
  • a pharmaceutical product obtained by forming an array of needles which are described as silicon needles in Patent Document 1
  • a silicon material which is a silicon material
  • photolithography and a dry etching process Disclose a device for transporting goods.
  • these medical supplies are manufactured by a so-called “top-down process” in which fine protrusions (needle-like bodies) are formed on a substrate that also becomes a silicon substrate using a dry etching process. .
  • the top-down process using the dry etching process has a problem in that the manufacturing process is complicated and the productivity is poor and the manufacturing cost is high.
  • Non-Patent Documents 2 to 5 and Patent Documents 3 to 4 are disclosed.
  • a mold (described as negative mold in Patent Document 3) for forming an array of needles (described in Patent Document 3 as microedle) is prepared.
  • the shape of the mold is transferred to a plastic material by a replication processing technique (described as an injection mold in Patent Document 3), and an array of needles made of the plastic material is formed.
  • a device for transporting medicinal products is disclosed.
  • An array of needles made of plastic material using such a duplication cache technology is superior in that it is very inexpensive to manufacture.
  • Patent Document 1 Japanese Patent No. 3696513
  • Patent Document 2 Japanese Patent Application Publication Gazette 2002-521222
  • Patent Document 3 International Patent Application Publication No. WO2005Z082596
  • Patent Document 4 Japan Patent Application Publication Special Table 2002-517300
  • Non-Patent Document 1 D.V. McAllister et al, "MICROFABRICATED MICRONEEDLES: A
  • Non-Patent Document 2 D.V.McAllister et al., "MICROFABRICATED MICRONEEDLES FO
  • Non-Patent Document 4 D.V. McAllister et al, "SOLID AND HOLLOW MICRONEEDLES F OR TRANSDERMAL PROTEIN DELIVERY", Proceed. Int'l. Symp. Control. Rel. Bioact. Mater. 26 (1999) Controlled Release Society, Inc.
  • Non-Patent Document 5 D.V. McAllister et al., "MICRONEEDLES FOR TRANSDERMAL DE LIVERY OF MACROMOLECULES", Proceedings of The First Joint BMES / EMBS Conference Serving Humanity, Advancing Technology (1999)
  • the array of needles made of a plastic material has a problem that the mechanical strength is insufficient and it is difficult to puncture the needles into the skin. Further, even if the skin is punctured, there is a problem that the needle-like body breaks and remains in the living body. With respect to the problem that the needle-like body folded in the living body remains, for example, as disclosed in Patent Document 4, the needle-like body that is broken by forming the needle-like body with a biodegradable plastic material is used. Means for degrading the body in vivo are conceivable, but the biodegradable plastic material is very expensive, and as a result, there is a problem that the manufacturing cost increases.
  • the present invention has been made in view of the above circumstances, is easy to manufacture, can be kept at a low manufacturing cost, and further has a high mechanical strength and a high safety for living organisms, It aims at providing the manufacturing method.
  • the present invention provides a drug delivery device comprising a plurality of substantially weight-shaped convex portions and a base force for placing the convex portions at equal intervals, wherein the convex portions And the base is made of a plastic material as a main material, and the surface of the main material is covered with a material different from the plastic material forming the main material partially or over the entire surface.
  • a drug delivery device comprising a plurality of substantially weight-shaped convex portions and a base force for placing the convex portions at equal intervals, wherein the convex portions And the base is made of a plastic material as a main material, and the surface of the main material is covered with a material different from the plastic material forming the main material partially or over the entire surface.
  • the base is further provided with a plurality of through holes penetrating from the back surface to the surface of the base.
  • the coating material is preferably a metal material.
  • the metal material is a non-toxic material for a living body.
  • the metal material that is non-toxic to the living body is preferably titanium or an alloy containing titanium.
  • a method for manufacturing a drug delivery device wherein (A) a step of forming a main material portion having a plastic material force by a replication processing technique using a mold, and (B) the main component And a step of coating the surface of the material partially or entirely with a material different from the plastic material forming the main material.
  • the step (A) includes (A1) forming a mold having pores for forming a convex portion, and further forming a through hole if necessary. (A2) a step of forming a main material portion having a plastic material strength by filling a molten plastic material or a material containing a precursor thereof into the mold, (A3) It is desirable to include a step of cooling and taking out the mold force from the main material part.
  • the step (B) is preferably carried out by a sputtering method.
  • a plurality of substantially weight-shaped convex portions and a main material portion constituting a base portion on which the convex portions are placed at equal intervals can be provided by an inexpensive manufacturing method. Since it is made of a plastic material and the surface thereof is coated with a different material such as a metal material, sufficient mechanical strength for puncturing the skin can be obtained. Also, the convex part that punctures the skin does not break and remains in the body.
  • the base is further provided with a plurality of through holes penetrating to the surface of the back surface force of the base, thereby transporting the drug from the back of the base to the surface, Surface force It is possible to transport blood to the back side.
  • the coating material is non-toxic to a living body such as titanium or an alloy containing titanium.
  • a metal material By using a metal material, it is possible to provide an instrument for carrying a pharmaceutical product that is highly safe for a living body having high mechanical strength.
  • the drug delivery device of the present invention includes (A) a step of forming a main material part having plastic material force by a replication processing technique using a mold, and (B) a part of the surface of the main material part.
  • ! / ⁇ can be realized by carrying out in a manufacturing process including a process of covering with a material different from the plastic material forming the main material portion over the entire area.
  • the production cost of the drug delivery device can be reduced.
  • step (A) a mold having a pore for forming a convex portion and a mold having a projection for forming a through hole are opposed to each other if necessary.
  • step (A2) filling the molten plastic material or a material containing a precursor thereof into the mold to form a main material portion made of a plastic material, and (A3) cooling.
  • the pharmaceutical product transporting device of the present invention can be realized more reliably.
  • FIG. 1 is a schematic plan view showing a first embodiment of the pharmaceutical product transport device of the present invention.
  • FIG. 2 is a schematic sectional view taken along line AA in FIG.
  • FIG. 3 is an enlarged schematic cross-sectional view of a part of FIG.
  • FIG. 4 is a schematic cross-sectional view showing a mold manufacturing method required in the method for manufacturing a drug delivery device according to the first embodiment of the present invention.
  • FIG. 5 is an enlarged schematic sectional view of a part of FIG. 4D.
  • FIG. 6 is a schematic cross-sectional view showing the process of FIGS.
  • FIG. 7 is an enlarged schematic cross-sectional view of a part of FIG. 4E.
  • FIG. 8 is a schematic cross-sectional view showing a method for producing the pharmaceutical product transport device according to the first embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view showing the method for manufacturing the pharmaceutical product transporting device according to the first embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view showing the method for manufacturing the drug delivery device according to the first embodiment of the present invention.
  • FIG. 11 is a schematic plan view of a drug delivery device according to a second embodiment of the present invention.
  • FIG. 12 is a schematic cross-sectional view showing a method for manufacturing a drug delivery device according to a second embodiment of the present invention.
  • FIGS. 1 to 3 are schematic views showing a first embodiment of the drug delivery device of the present invention
  • FIG. 1 is a plan view of the drug delivery device
  • FIG. 2 is a line A-A in FIG. A cross-sectional view along the line
  • FIG. 2 is an enlarged cross-sectional view of a part of 2.
  • the drug delivery device 20 of this embodiment includes a plurality of substantially weight-shaped convex portions 11 and a base portion 12 on which the convex portions 11 are placed at equal intervals.
  • the convex portion 11 and the base portion 12 are made of a plastic material as a main material (hereinafter referred to as a main material portion 10). Further, the surface of the main material portion 10 is partially or entirely covered with a covering material (hereinafter referred to as a covering portion 13).
  • the convex portion 11 has a surface 12a of the base 12 as a base end, has a substantially conical shape gradually narrowing toward the tip 11a, and is provided on the surface 12a so as to be substantially perpendicular to the surface 12a.
  • substantially pyramid indicates shapes such as a substantially conical shape, a substantially pyramid shape, a substantially truncated cone shape, and a substantially truncated pyramid shape.
  • the height d of the convex portion 11 is preferably 100 111 to 500 111, and the length (diameter) d of the lower base is 3
  • a force in which a plurality of protrusions 11 are provided at equal intervals on one surface 12a of the base 12 A distance (pitch) d between centers of the tips 11a of the protrusions 11 is 50.
  • the base 12 may have any shape as long as the one surface 12a on which the convex portion 11 is provided is a flat surface, but is preferably a square plate or a disc. In addition, when the base 12 is flat as shown in FIGS. 2 and 3, the thickness d is preferably 200 m or more.
  • the dimensions d to d are in the above range.
  • the carrying device is not limited to this, and d to d can be set to desired dimensions by the design of the mold used in the method for producing the pharmaceutical product carrying device of the present invention described later.
  • the main material portion 10 is made of a plastic material.
  • the plastic material include polyimide, polymethylmetatalylate (PMMA), polypropylene (PP), and polyurethane (PUR).
  • PMMA polymethylmetatalylate
  • PP polypropylene
  • PUR polyurethane
  • polyimide is preferable because it is a material having high biocompatibility, such as being used for a guide wire that passes through blood vessels in percutaneous coronary angioplasty.
  • the soft temperature of this plastic material is 500 ° C or lower! /.
  • Examples of the covering portion 13 include various metal materials, ceramics (titanium nitride, silicon nitride, silicon carbide, aluminum oxide, hydroxyapatite, etc.) materials, carbon materials, etc. Titanium or alloys containing titanium are desirable because they are excellent in mechanical strength and corrosion resistance and have low toxicity to living organisms.
  • Examples of the drug delivery device configured as described above include a micro-dollar array. When this drug delivery device is used as a micro-dollar array, the convex portion 11 is punctured into the skin.
  • the pharmaceutical product transporting device of the present embodiment is low in manufacturing cost because the main material portion 10 is made of a plastic material that can be provided by an inexpensive manufacturing method. Furthermore, since the surface of the main material portion 10 is covered with a different material such as a metal material, sufficient mechanical strength for puncturing the skin can be obtained. Further, the convex part 11 punctured into the skin does not break and remains in the body. Furthermore, by forming the covering portion 13 with titanium or an alloy containing titanium, it is possible to provide a device for transporting a pharmaceutical product that has low toxicity to a living body.
  • FIG. 4 is a schematic cross-sectional view showing a method for manufacturing the mold 25 required in the method for manufacturing a drug delivery device according to this embodiment.
  • FIG. 5 is an enlarged cross-sectional view of a part of FIG. 4D. Is a cross-sectional view showing the process of FIGS. 4D to 4E, and
  • FIG. 7 is an enlarged cross-sectional view of a part of FIG. 4E.
  • 8 to 10 are schematic cross-sectional views showing a method for manufacturing a pharmaceutical product transporting apparatus according to this embodiment.
  • a mold 25 obtained through the steps shown in Fig. 4 is required.
  • a substrate 21 made of single crystal silicon (Si) having a thickness of about lmm whose surface is mirror-polished is prepared.
  • a thin film 22 made of chromium (Cr) having a thickness of about 1 ⁇ m serving as an etching mask is formed on the upper surface of the substrate 21 by sputtering.
  • a photoresist having an arbitrary thickness is applied to the upper surface of the thin film 22 by a spin coating method, and the target drug delivery device is abbreviated on the surface of the photoresist.
  • a mask having a pattern for forming the pores corresponding to the cone-shaped convex portions on the substrate 21 is arranged and exposed, and then development processing is performed to remove unnecessary photoresist.
  • a resist film 23 having openings 23a having a diameter of about 10 m for forming the pores at equal intervals is formed.
  • the thin film 22 is etched using the resist film 23 as a mask, and pores corresponding to the substantially conical convex portions of the drug delivery device are formed in the thin film 22 in the substrate 21.
  • the openings 22a for this purpose are formed at equal intervals, and the resist film 23a is removed.
  • the thin film 22 is etched by wet etching using an aqueous solution mainly composed of ceric nitrate and perchloric acid. Since this wet etching is isotropic etching, the opening 22a is formed in a tapered shape. Further, as shown in FIG. 5, the diameter d of the lower base of the opening 22a is about 10 m.
  • the substrate 21 is etched, and the pores having a shape corresponding to the substantially cone-shaped convex portion of the drug delivery device from the upper surface 21a of the substrate 21 toward the lower surface 21b. 2 forms lc.
  • the substrate 21 on which the thin film 22 having the opening 22a is still provided Is placed in the chamber, the inside of the chamber is evacuated to a high vacuum, the surface temperature of the substrate 21 is kept constant at -50 ° C, and a mixed gas of sulfur hexafluoride (SF) and oxygen (O) is used as the etching gas.
  • SF sulfur hexafluoride
  • O oxygen
  • the surface temperature of the substrate 21 By keeping the surface temperature of the substrate 21 constant at ⁇ 50 ° C., side etching occurs in the layer below the thin film 22 (substrate 21), and the shape of the pore 21c is based on the upper surface 21a of the substrate 21,
  • the bottom surface 21b of the substrate 21 has a substantially conical shape that gradually becomes thinner as it is directed. At this time, as shown in FIG. 6, the diameter d of the pore 21c is about 40 m.
  • the etching rate of the substrate 21 having a single crystal silicon force is about 6 ⁇ m Zmin, when the etching time is 35 minutes, as shown in FIG. 6, the pores 21 having a depth D of about 200 m are obtained. c can be formed.
  • the thickness t of the thin film 22 as an etching mask was 0.5 / z m or more. From this, the ratio (selectivity) of the etching rate of single crystal silicon and chromium was 400: 1 or more.
  • the thin film 22 is removed by wet etching with an aqueous solution containing cerium nitrate salt and perchloric acid as main components, so that the substantially conical shape of the drug delivery device is obtained.
  • a mold 25 having a plurality of pores 21c having a shape corresponding to the convex portion is obtained.
  • the aqueous solution mainly composed of ceric nitrate and perchloric acid etches only chromium, so that the shape of the mold 25 does not change.
  • a plastic substrate 30 serving as a main material of a drug delivery device is placed on a mold 25.
  • the plastic substrate 30 is heated above its softening temperature to be softened and flow into the pores 21 c of the mold 25.
  • the mold 25 and the plastic substrate 30 disposed on the mold 25 are heated to 410 ° C. in a vacuum oven. By heating these to 410 ° C., which is the soft temperature of polyimide, the plastic substrate 30 enters the pores 21c.
  • the plastic substrate 30 was held at 410 ° C for about 30 minutes under vacuum for defoaming. Later, as shown in FIG. 8C, the plastic substrate 30 is pressurized by the pressurizer 40.
  • the plastic substrate 30 comes into close contact with the mold 25 in a completely cured state.
  • the mold 25 with the plastic substrate 30 placed is placed, and the Teflon (registered trademark) container is placed in the ultrasonic generator. Place ultrasonic waves on mold 25, plastic substrate 30 and hydrofluoric acid. As a result, the natural acid film formed on the outermost surface of the mold 25 is etched, and the plastic substrate 30 is peeled off from the mold 25 as shown in FIG. As a result, a main material portion 60 composed of base portions 62 on which the convex portions 61 are placed at equal intervals is obtained.
  • a coating material 63 is formed by coating a metal material or the like on the surface of the main material portion 60 having a plastic material force by a sputtering method, thereby obtaining a drug delivery device 70.
  • the covering portion 63 may cover the entire area of the main material portion 60, or may partially cover the main material portion 60 as in the present embodiment.
  • the drug delivery device 70 obtained through the above steps includes a plurality of substantially pyramid-shaped convex portions 61 in which the shape of the pores 21c of the mold 25 is precisely transferred, A base 62 on which the convex portions 61 are placed at equal intervals is composed of a main material 60, and the surface of the main material 60 is partially or entirely covered with a covering material 63.
  • the mold 25 after the plastic substrate 30 is peeled can be used again as a mold for molding the main material portion 60.
  • a solution containing a precursor that becomes a desired plastic after heating may be used.
  • a solution mainly composed of a polyamic acid precursor of polyimide and dimethylacetamide as a solvent may be used.
  • a method for producing a pharmaceutical product transportation device using a solution composed mainly of polyamic acid and dimethylacetamide first, the solution was provided with pores for forming convex portions by a dispenser. Supply to mold. Next, the mold supplied with the solution was tubed at 400 ° C under a nitrogen atmosphere. Hold in a cooked oven for 2 hours. As a result, it is polyamidized and chemically changed to polyimide, and dimethylacetamide as a solvent volatilizes to form a highly viscous fluid. Then, pressurization with a pressurizer, cooling of polyimide and mold, peeling of polyimide, and predetermined steps are sequentially performed. Thereby, a main material part is comprised with a polyimide material. Next, the covering part is formed by the method described above, thereby obtaining the drug delivery device of the present invention.
  • FIG. 11 and FIG. 12 are schematic views showing a second embodiment of the drug delivery device of the present invention
  • FIG. 11 is a plan view of the drug delivery device according to this embodiment
  • FIG. Sectional drawing which shows the manufacturing method of the pharmaceutical delivery instrument which concerns on this embodiment is shown.
  • the medicinal product carrying device 90 is different from the first embodiment of the medicinal product carrying device described above in that a plurality of through holes 83 penetrating from the back surface to the surface of the base portion 82 are provided at equal intervals. ⁇ ;
  • the shape and size of the through hole are not particularly limited, but the diameters m to l, 0
  • a cylindrical shape of about 00 ⁇ m is desired.
  • the through hole 83 can transport a pharmaceutical product from the back surface of the base portion 82 to the front surface, and can transport blood to the surface force and the back surface of the base portion 82.
  • the pores are formed on the upper surface 101a of the silicon substrate 101.
  • a mold 105 having a projection lOld is used.
  • the plastic substrate 120 is heated and softened, and the plastic substrate is pressed together with the mold 105 and pressed against the mold 25 as shown in FIG.
  • the surface of the main material portion 80 made of a plastic material is coated with a metal material or the like by a sputtering method to form a covering portion 84.
  • a material handling device 90 After molding, through a cooling and peeling process, as shown in FIG. 12B, the surface of the main material portion 80 made of a plastic material is coated with a metal material or the like by a sputtering method to form a covering portion 84. Obtain a material handling device 90.
  • the base is further provided with a plurality of through holes penetrating to the surface of the back surface of the base, thereby transporting the pharmaceutical from the back of the base to the surface, Surface force It is possible to transport blood to the back side.
  • the above-described production methods are merely examples of the present invention, and the drug delivery device of the present invention is not limited to those provided by these production methods, and various modifications are possible. Noh.
  • a mold 25 for manufacturing a drug delivery device may be made of nickel (Ni) produced by the following process!
  • a photolithography technique and a dry etching process are used to form a convex shape on a silicon substrate to form a master mold.
  • the surface of the master mold is sputtered with a metal such as nickel.
  • the shape of the master mold is transferred by nickel electrolysis in (c), and
  • the master mold is then transferred to, for example, hydroxyammonium hydroxide (KOH) or hydroxyammonium tetramethylammonium.
  • KOH hydroxyammonium hydroxide
  • TMAH hydroxyammonium tetramethylammonium
  • the process of forming the main part by transferring the shape of the mold having pores for forming the convex portion and the shape of the mold having the protrusion for forming the through hole to a plastic material if necessary.
  • Any technique that uses a mold to replicate can be applied, such as injection molding, imprinting, and hot embossing.
  • an appropriate method can be appropriately selected depending on the material of the mold and the material of the plastic material.
  • a drug delivery device that is easy to manufacture, can be manufactured at a low cost, and is highly safe against a living body with high mechanical strength, and a method for manufacturing the same. Can be provided.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dermatology (AREA)
  • Medical Informatics (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)

Abstract

 複数の略錘状の凸部と該凸部を等間隔に載置する基部を構成する主材部がプラスチック材料で構成され、さらに前記主材部の表面がチタンもしくはチタンを含む合金で被覆された医薬物運搬用器具。前記医薬物運搬用器具の製造方法であって、(A)型を用いた複製加工技術によりプラスチック材料からなる主材部を形成する工程、および(B)前記主材の表面を部分的あるいは全域にわたって前記主材をなすプラスチック材料とは異種の材料で被覆する工程とを含んでいることを特徴とする。これにより、製造が容易で、製造コストが安価であり、さらには、機械的強度が高く、生体に対して安全性が高い医薬物運搬用器具およびその製造方法が提供できる。

Description

明 細 書
医薬物運搬用器具およびその製造方法
技術分野
[0001] 本発明は、生体への医薬物の投与、または、生体力もの血液の吸引抽出などの医 薬物運搬システムに用いられる医薬物運搬用器具に関し、特に、痛みを伴わずに皮 膚下に挿通可能な医薬物運搬用器具およびその製造方法に関する。
本願は、 2005年 5月 13日に日本に出願された特願 2005— 141897号に基づき 優先権を主張し、その内容をここに援用する。
背景技術
[0002] 近年、医薬物の過剰投与および副作用を抑制して、より安全かつ効果的に医薬物 を投与するために、「必要最小限の医薬物を、必要な場所に、必要なときに供給する
」ことを目的としたドラッグデリバリーシステム(Drug Delivery System、以下、 DD
Sと略記する。)の研究開発が活発に行われている。
[0003] この DDSには、(1)医薬物を一定期間にわたって一定速度で放出する、いわゆる「 医薬物の徐放化」、(2)医薬物を目的とする患部に選択的に輸送する、いわゆる「タ ーゲッティング」の大きな 2つの課題がある。
[0004] ところで、これらの課題を達成し、 DDSを実用化するためには、医薬物の改良だけ では困難であり、医薬物を担持、運搬する医薬物運搬用器具類の開発が不可欠で ある。
[0005] 例えば、経皮吸収治療システム(Transdermal Therapeutic System:TTS)と 総称される、皮膚力 医薬物を投与し、体内の一部もしくは全身に前記医薬物の作 用発現を実現させる技術がある。従来、この TTSに適用できる医薬物は、ニトロダリ セリン、硝酸イソソルビド、クロ-ジン等に代表される皮膚透過性の高いものに限られ ていた。し力しながら、近年、前記皮膚透過性の高い医薬物をより効果的に体内に吸 収させたり、さらには皮膚透過性が低い医薬物を TTSに適用させるために医薬物を 運搬する器具が提案されて ヽる。
[0006] 従来、このような医薬物運搬用器具としては、非特許文献 1および特許文献 1, 2の ような器具が提案されている。
これらの文献では、フォトリソグラフィ技術とドライエッチングプロセスによりシリコン材 料力 なるアレイ状針状体 (特許文献 1では、シリコン製の針状体と記載されてレ、る) を形成して得られる医薬物運搬用器具を開示してレ、る。
[0007] これらの医薬物運搬用器具は、前記の通りドライエッチングプロセスを用いてシリコ ンカもなる基板に微細な凸部 (針状体)を形成する、いわゆる「トップダウンプロセス」 によって製造される。
[0008] し力 ながら、ドライエッチングプロセスを用いたトップダウンプロセスは、製造工程 が複雑になるため、生産性が悪ぐ製造コストが高いという問題点がある。
[0009] 前記課題に対し、非特許文献 2〜5および特許文献 3〜4のような医薬物運搬用器 具が開示されている。これらの文献では、アレイ状針状体 (特許文献 3では、マイクロ ユードルと記載されてレ、る)を形成するための型 (特許文献 3では、ネガティブモール ドと記載されている)を用意し、該型の形状を複製加工技術 (特許文献 3では、インジ ェクシヨンモールドと記載されている)によりプラスチック材料に転写し、プラスチック材 料から構成されるアレイ状針状体を形成して得られる医薬物運搬用器具を開示して レ、る。
このような複製カ卩ェ技術を用いてプラスチック材料力 構成されるアレイ状針状体 は、製造コストが非常に安価である点で優れてレ、る。
特許文献 1 :日本国特許第 3696513号
特許文献 2 :日本国特許出願公開公報 特表 2002— 521222号
特許文献 3:国際特許出願公開公報 WO2005Z082596号
特許文献 4 :日本国特許出願公開公報 特表 2002— 517300号
非特許文献 1 :D.V. McAllister et al, "MICROFABRICATED MICRONEEDLES: A
NOVEL APPROACH TO TRANSDERMAL DRUG DELIVERY", Proceed. Int'l. Sym p. Control. Rel. Bioact. Mater., 25 (1998) Controlled Release Society, Inc.
非特許文献 2 :D.V. McAllister et al., "MICROFABRICATED MICRONEEDLES FO
R GENE AND DRUG DELIVERY", Annu. Rev. Biomed. Eng., 2 (2000) 289-313 特言午文献 3 :D.V. McAllister et al., "Microfabricated needles for transdermal deliv ery of macromolecules and nanoparticles: Fabrication methods and transport studies "、 PNAS, 100 (2003) 13755-13760
非特許文献 4: D.V. McAllister et al, "SOLID AND HOLLOW MICRONEEDLES F OR TRANSDERMAL PROTEIN DELIVERY", Proceed. Int'l. Symp. Control. Rel. Bi oact. Mater. 26 (1999) Controlled Release Society, Inc.
非特許文献 5 : D.V. McAllister et al., "MICRONEEDLES FOR TRANSDERMAL DE LIVERY OF MACROMOLECULES", Proceedings of The First Joint BMES/EMBS Conference Serving Humanity, Advancing Technology (1999)
発明の開示
発明が解決しょうとする課題
[0010] し力しながら、プラスチック材料で構成したアレイ状針状体は、機械的強度が不足し やすぐ針状体を皮膚に穿刺することが困難であるという問題がある。また、仮に皮膚 に穿刺しても、針状体が折れて生体内に残留するという問題がある。この生体内に折 れた針状体が残留する問題に対しては、例えば特許文献 4に開示されて 、るように、 生分解性プラスチック材料で針状体を構成することにより折れた針状体を生体内で 分解させる手段が考えられるが、生分解性プラスチック材料は非常に高価であるため 、結果として製造コストが高くなるという問題がある。
[0011] 本発明は前記事情に鑑みてなされ、製造が容易で、製造コストを低く抑えることが でき、さらには、機械的強度が高ぐ生体に対して安全性が高い医薬物運搬用器具 およびその製造方法の提供を目的とする。
課題を解決するための手段
[0012] 前記目的を達成するため、本発明は、複数の略錘状の凸部と該凸部を等間隔に載 置する基部力 構成される医薬物運搬用器具であって、前記凸部および基部がブラ スチック材料を主材として構成され、さらに前記主材の表面が部分的あるいは全域に わたって前記主材をなすプラスチック材料とは異種の材料で被覆されていることを特 徴とする医薬物運搬用器具を提供する。
[0013] 本発明の医薬物運搬用器具において、前記基部には、該基部の裏面から表面へ 貫通する複数の貫通穴がさらに設けられて 、ることが好ま U、。 [0014] 本発明の医薬物運搬用器具において、前記被覆材料は金属材料であることが好ま しい。
前記金属材料は、生体に対して無毒な材料であることがより望ま U、。
前記生体に対して無毒な金属材料は、チタンもしくはチタンを含む合金であること が望ましい。
[0015] また、本発明では、医薬物運搬用器具の製造方法であって、(A)型を用いた複製 加工技術によりプラスチック材料力 なる主材部を形成する工程、および (B)前記主 材の表面を部分的あるいは全域にわたって前記主材をなすプラスチック材料とは異 種の材料で被覆する工程、とを含んでいることを特徴とする医薬物運搬用器具の製 造方法を提供する。
[0016] 本発明の医薬物運搬用器具の製造方法において、前記 (A)の工程は、(A1)凸部 を形成するための細孔を有する型と、さらに必要であれば貫通穴を形成するための 突起を有する型を対向して配置する工程、(A2)該型内に溶融したプラスチック材料 又はその前駆体を含む材料を充填してプラスチック材料力 なる主材部を成形する 工程、および (A3)冷却して前記主材部を型力も取出す工程とを含んでいることが望 ましい。
[0017] 本発明の医薬物運搬用器具の製造方法において、前記 (B)の工程は、スパッタリ ング法によって実施されることが望ま 、。
発明の効果
[0018] 本発明の医薬物運搬用器具は、複数の略錘状の凸部と該凸部を等間隔に載置す る基部を構成する主材部が、安価な製造方法で提供可能なプラスチック材料で構成 され、さらにその表面を金属材料等の異種の材料で被覆しているため、皮膚に穿刺 するための十分な機械的強度を得ることができる。また、皮膚に穿刺した凸部が折れ て体内に残留することがな 、。
[0019] 本発明の医薬物運搬用器具は、前記基部に該基部の裏面力 表面へ貫通する複 数の貫通穴をさらに設けることにより、基部裏面から表面へ医薬物を輸送したり、基 部表面力 裏面へ血液を輸送したりすることが可能になる。
[0020] また、前記被覆材料をチタンもしくはチタンを含む合金のような生体に対して無毒な 金属材料とすることにより、機械的強度が高ぐ生体に対して安全性の高い医薬物運 搬用器具を提供することができる。
[0021] 本発明の医薬物運搬用器具は、(A)型を用いた複製加工技術によりプラスチック 材料力もなる主材部を形成する工程、および (B)前記主材部の表面を部分的ある!/ヽ は全域にわたって前記主材部をなすプラスチック材料とは異種の材料で被覆するェ 程とを含む製造工程で実施することによって実現することができる。また、該製造ェ 程を含むことによって、医薬物運搬用器具の製造コストを安価にすることができる。
[0022] また、前記 (A)の工程に、(A1)凸部を形成するための細孔を有する型と、さらに必 要であれば貫通穴を形成するための突起を有する型を対向して配置する工程、 (A2 )該型内に溶融したプラスチック材料又はその前駆体を含む材料を充填してプラスチ ック材料カゝらなる主材部を成形する工程、および (A3)冷却して前記主材部を型から 取出す工程とを含むことにより、より確実に本発明の医薬物運搬用器具を実現するこ とがでさる。
[0023] また、前記 (B)の工程を、スパッタリング法によって実施することにより、より確実に 本発明の医薬物運搬用器具を実現することができる。
図面の簡単な説明
[0024] [図 1]本発明の医薬物運搬用器具の第 1実施形態を示す概略平面図である。
[図 2]図 1の線 A— Aに沿った概略断面図である。
[図 3]図 2の一部を拡大した概略断面図である。
[図 4]本発明の第 1実施形態に係る医薬物運搬用器具の製造方法において必要とな る型の製造方法を示す概略断面図である。
[図 5]図 4Dの一部を拡大した概略断面図である。
[図 6]図 4D〜Eへの過程を示す概略断面図である。
[図 7]図 4Eの一部を拡大した概略断面図である。
[図 8]本発明の第 1実施形態に係る医薬物運搬用器具の製造方法を示す概略断面 図である。
[図 9]本発明の第 1実施形態に係る医薬物運搬用器具の製造方法を示す概略断面 図である。 [図 10]本発明の第 1実施形態に係る医薬物運搬用器具の製造方法を示す概略断面 図である。
[図 11]本発明の第 2実施形態に係る医薬物運搬用器具の概略平面図である。
[図 12]本発明の第 2実施形態に係る医薬物運搬用器具の製造方法を示す概略断面 図である。
符号の説明
[0025] 10, 60, 80···主材部、 11, 61, 81···凸部、 12, 62, 82···基部、 13, 63, 84···被 覆部、 21, 101···シリコン基板、 22···薄膜、 23···レジスト膜、 21c, 101c…細孔、 25 , 105···型、 30, 120···プラスチック基板、 40···カロ圧機、 20, 70, 90···医薬物運搬 用器具、 83···貫通穴、 101d…突起
発明を実施するための最良の形態
[0026] 以下、図面を参照して本発明の実施形態を説明する。
図 1〜図 3は、本発明の医薬物運搬用器具の第 1実施形態を示す概略図であり、 図 1は医薬物運搬用器具の平面図、図 2は図 1の線 A— Aに沿った断面図、図 3は図
2の一部を拡大した断面図である。
[0027] この実施形態の医薬物運搬用器具 20は、複数の略錘状の凸部 11と、この凸部 11 を等間隔に載置する基部 12から構成されて 、る。前記凸部 11および基部 12はブラ スチック材料を主材 (以下、主材部 10)として構成されている。さら〖こ、主材部 10の表 面は、部分的あるいは全域にわたって被覆材により被覆 (以下、被覆部 13)されてい る。
[0028] 凸部 11は、基部 12の一面 12aを基端として、その先端 11aに向力つて次第に細く なる略錐状をなし、一面 12aとほぼ垂直となるように、一面 12a上に設けられている。 なお、ここで、略錐状とは、略円錐状、略角錐状、略円錐台状、略角錐台状等の形状 を示す。
[0029] また、凸部 11の高さ dは100 111〜500 111カ望ましく、下底の長さ(直径) dは 3
1 2
0 π!〜 100 mが望まし 、。さらに、複数の凸部 11が、基部 12の一面 12a上に等 間隔に設けられている力 各々の凸部 11の先端 11aの中心間距離 (ピッチ) dは 50
3 m〜l, 000/zm力望ましい(但し、凸部 11の下底の長さより長い)。 [0030] 基部 12は、凸部 11が設けられる一面 12aが平面をなしていれば、いかなる形状で もよいが、角板状、円板状が望ましい。また、基部 12が図 2、図 3に示すように平板状 である場合、その厚み dは 200 m以上であることが望ましい。
4
[0031] なお、この実施形態では、 d〜dの寸法を前記範囲としたが、本発明の医薬物運
1 4
搬用器具はこれに限定されることはなぐ後述する本発明の医薬物運搬用器具の製 造方法において用いられる型の設計により、 d〜dを所望の寸法とすることができる
1 4
[0032] 主材部 10は、プラスチック材料からなるものである。このプラスチック材料としては、 例えば、ポリイミド、ポリメチルメタタリレート(PMMA)、ポリプロピレン(PP)、ポリウレ タン (PUR)などが挙げられる。これらの中でも、ポリイミドは、経皮冠動脈形成術にお いて、血管内を通過させるガイドワイヤに用いられるなど、生体適合性の高い材料で あることから好ましい。
また、このプラスチック材料の軟ィ匕温度は 500°C以下であることが望まし!/、。
[0033] 被覆部 13は、各種の金属材料、セラミックス(窒化チタン、窒化シリコン、炭化シリコ ン、酸ィ匕アルミニウム、ハイドロキシアパタイトなど)材料、カーボン材料などが挙げら れ、なかでも金属材料に分類されるチタンもしくはチタンを含む合金は、機械的強度 や耐食性に非常に優れ、且つ生体に対して毒性の低 、材料であることから望ま ヽ
[0034] このような構成の医薬物運搬用器具としては、例えば、マイクロ-一ドルアレイなど が挙げられる。この医薬物運搬用器具をマイクロ-一ドルアレイとして用いる場合、凸 部 11が皮膚に穿刺される。
[0035] 本実施形態の医薬物運搬用器具は、主材部 10が安価な製造方法で提供可能な プラスチック材料で構成されているため、製造コストが安価である。さらに、その前記 主材部 10の表面を金属材料等の異種の材料で被覆して ヽるため、皮膚に穿刺する ための十分な機械的強度を得られる。また、皮膚に穿刺した凸部 11が折れて体内に 残留することがない。さらに、前記被覆部 13をチタンもしくはチタンを含む合金で構 成することにより、生体に対して毒性の低い医薬物運搬用器具を提供できる。
[0036] 次に図 4〜図 10を参照して、本発明の第 1実施形態に係る医薬物運搬用器具の製 造方法について説明する。
図 4はこの実施形態に係る医薬物運搬用器具の製造方法において必要となる型 2 5の製造方法を示す概略断面図であり、図 5は図 4Dの一部を拡大した断面図、図 6 は図 4D〜Eへの過程を示す断面図、図 7は図 4Eの一部を拡大した断面図である。 また、図 8〜10はこの実施形態に係る医薬物運搬用器具の製造方法を示す概略 断面図である。
[0037] この実施形態の医薬物運搬用器具の製造方法では、図 4に示す工程を経て得られ る型 25が必要となる。この型 25を得るために、図 4Aに示すように、表面を鏡面研磨し た厚さ lmm程度の単結晶シリコン (Si)からなる基板 21を用意する。
[0038] 次いで、図 4Bに示すように、基板 21の上面にスパッタリング法により、エッチングの マスクとなる膜厚約 1 μ m程度のクロム (Cr)からなる薄膜 22を形成する。
[0039] 次 、で、図 4Cに示すように、薄膜 22の上面に、スピンコート法により任意の厚みの フォトレジストを塗布し、このフォトレジストの表面に目的とする医薬物運搬用器具の 略錐状の凸部に対応した細孔を基板 21に形成するためのパターンを有するマスクを 配置して露光した後、現像処理を行って不必要なフォトレジストを除去する。これによ り前記細孔を形成するための直径 10 m程度の開口部 23aを等間隔に有するレジ スト膜 23を形成する。
[0040] 次いで、図 4Dに示すように、レジスト膜 23をマスクとして薄膜 22をエッチングして、 薄膜 22に医薬物運搬用器具の略錐状の凸部に対応した細孔を基板 21に形成する ための開口部 22aを等間隔に形成するとともに、レジスト膜 23aを除去する。
薄膜 22のエッチングでは、硝酸第二セリウム塩と過塩素酸を主成分とする水溶液 によるウエットエッチングを用いる。このウエットエッチングは等方性エッチングである ため、開口部 22aはテーパ状に形成される。また、図 5に示すように、この開口部 22a の下底の直径 dは約 10 mとなる。
5
[0041] 次いで、薄膜 22をマスクとして、基板 21をエッチングして、基板 21の上面 21aから 、下面 21bに向かって、医薬物運搬用器具の略錐状の凸部に対応した形状の細孔 2 lcを形成する。
[0042] 基板 21のエッチングでは、開口部 22aを有する薄膜 22が設けられたままの基板 21 をチャンバ内に配置し、チャンバ内を高真空排気した後、基板 21の表面温度を— 50 °Cで一定に保ち、エッチングガスとして六フッ化硫黄 (SF )と酸素(O )の混合ガスを
6 2
用い、ドライエッチングを行う。基板 21の表面温度を— 50°Cで一定に保つことにより 、薄膜 22より下の層(基板 21)にサイドエッチングが発生し、細孔 21cの形状は基板 21の上面 21aを基端として、その基板 21の下面 21bに向力つて次第に細くなる略錐 状となる。このとき、図 6に示すように、細孔 21cの直径 dは約 40 mとなる。
6
[0043] また、単結晶シリコン力もなる基板 21のエッチング速度は約 6 μ mZminであること から、エッチング時間 35分とすると、図 6に示すように、深さ Dが約 200 mの細孔 21 cを形成できる。
なお、基板 21を約 200 mエッチングした後でも、エッチングマスクである薄膜 22 の厚み tは 0. 5 /z m以上であった。このことから、単結晶シリコンとクロムのエッチング 速度の比 (選択比)は 400: 1以上であった。
[0044] 次いで、図 4Eおよび図 7に示すように、薄膜 22を硝酸第二セリウム塩と過塩素酸を 主成分とする水溶液によるウエットエッチングにより除去して、医薬物運搬用器具の 略錐状の凸部に対応した形状の細孔 21cを複数有する型 25を得る。なお、前記硝 酸第二セリウム塩と過塩素酸を主成分とする水溶液は、クロムのみを選択的にエッチ ングするため、型 25の形状が変化することはない。
[0045] 次いで、前述の通り作製された型 25を用いて医薬物運搬用器具 70を得る工程を、 図 8〜10を参照して説明する。
[0046] まず、図 8Aに示すように、型 25上に医薬物運搬用器具の主材となるプラスチック 基板 30を配置する。
[0047] 次いで、図 8Bに示すように、プラスチック基板 30をその軟ィ匕温度以上に加熱して 軟化させ、型 25の細孔 21c内に流動させる。
このプラスチック基板 30として、例えばポリイミドを用いる場合、型 25と、型 25上に 配置したプラスチック基板 30を真空オーブン内にて 410°Cまで加熱する。これらをポ リイミドの軟ィ匕温度である 410°Cまで加熱することにより、プラスチック基板 30は細孔 21c内に入り込む。
[0048] 次 、で、脱泡のために、プラスチック基板 30を真空下 410°Cで約 30分間保持した 後に、図 8Cに示すように、プラスチック基板 30を、加圧機 40で加圧する。
[0049] 次!、で、真空オーブン内の加熱を停止して、真空オーブン内の温度を室温まで冷 却することにより、図 9Aに示すように、プラスチック基板 30を硬化させる。
この後、プラスチック基板 30が載置されたままの型 25を真空オーブン内から取り出 すと、プラスチック基板 30は完全に硬化した状態で型 25に密着して 、る。
[0050] 次 、で、フッ酸で満たしたテフロン (登録商標)容器内に、プラスチック基板 30が載 置されたままの型 25を配置し、このテフロン (登録商標)容器を超音波発生装置内に 配置して、型 25、プラスチック基板 30およびフッ酸に超音波を加える。これにより、型 25の最表面に形成されている自然酸ィ匕膜がエッチングされて、図 9Bに示すように、 型 25からプラスチック基板 30が剥離して、複数の略錐状の凸部 61と、この凸部 61を 等間隔に載置する基部 62から構成される主材部 60を得る。
[0051] 次いで、図 10に示すように、プラスチック材料力もなる主材部 60の表面にスパッタリ ング法により金属材料などを被覆して被覆部 63を形成し、医薬物運搬用器具 70を 得る。このとき、被覆部 63は主材部 60の全域を被覆しても構わないし、本実施例の ように主材部 60を部分的に被覆しても構わな 、。
[0052] 以上の工程を経て得られた医薬物運搬用器具 70は、型 25の細孔 21cの形状が精 密に転写された略錘状の複数の略錘状の凸部 61と、この凸部 61を等間隔に載置す る基部 62とが主材 60で構成され、主材 60の表面が部分的あるいは全域にわたって 被覆材 63により被覆されている。
[0053] なお、この医薬物運搬用器具の製造方法にあっては、プラスチック基板 30を剥離し た後の型 25は、再度、主材部 60の成形用の型として使用することができる。
[0054] また、主材部 60をなす材料としては、プラスチック基板 30の替わりに、加熱後に、 所望のプラスチックとなる前駆体を含む溶液を用いてもよい。例えば、ポリイミドの前 駆体のポリアミド酸と溶媒のジメチルァセトアミドとを主成分とする溶液を用いてもよ ヽ
[0055] ポリアミド酸とジメチルァセトアミドとを主成分とする溶液を用いた医薬物運搬用器 具の製造方法では、まず、この溶液をデイスペンサにより凸部を形成するための細孔 を備えた型に供給する。次いで、溶液が供給された型を窒素雰囲気下で 400°Cに管 理されたオーブン内にて 2時間保持する。これにより、ポリアミド酸力 ミド化してポリイ ミドに化学変化するとともに、溶媒であるジメチルァセトアミドが揮発して高粘度の流 体となる。ついで、加圧機による加圧、ポリイミドおよび型の冷却、ポリイミドの剥離と、 所定の工程を順次行う。これにより、主材部がポリイミド材料で構成される。次いで、 被覆部は前述に記載の方法で形成することにより、本発明の医薬物運搬用器具を得 ることがでさる。
[0056] 図 11および図 12は、本発明の医薬物運搬用器具の第 2実施形態を示す概略図で あり、図 11はこの実施形態に係る医薬物運搬用器具の平面図、図 12はこの実施形 態に係る医薬物運搬用器具の製造方法を示す断面図を示す。
[0057] この医薬物運搬用器具 90が上述した医薬物運搬用器具の第 1実施形態と異なる 点は、基部 82の裏面から表面へ貫通する複数の貫通穴 83が等間隔に設けられてい る^;である。
[0058] この貫通穴の形状や大きさは特に限定されるものではないが、直径 m〜l, 0
00 μ m程度の円柱形状が望ま 、。
[0059] この貫通穴 83は、基部 82の裏面から表面へ医薬物を輸送したり、基部 82の表面 力 裏面へ血液を輸送したりすることができる。
[0060] また、この実施形態に係わる医薬物運搬用器具の製造方法では、凸部を形成する ための細孔を有する型 25に加え、シリコン基板 101の上面 101aに細孔を形成する ための突起部 lOldを有する型 105を用いる。
[0061] 次いで、型 25と型 105を対向して配し、その間にプラスチック基板 120を配置した後
、プラスチック基板 120を加熱して軟ィ匕させ、図 12Aに示すように、プラスチック基板 を型 105とともに加圧して型 25に押し付けて成形する。
[0062] 成形後、冷却および剥離の工程を経て、図 12Bに示すように、プラスチック材料から なる主材部 80の表面にスパッタリング法により金属材料などを被覆して被覆部 84を 形成し、医薬物運搬用器具 90を得る。
[0063] 本発明の医薬物運搬用器具は、前記基部に該基部の裏面力 表面へ貫通する複 数の貫通穴をさらに設けることにより、基部裏面から表面へ医薬物を輸送したり、基 部表面力 裏面へ血液を輸送したりすることが可能になる。 [0064] なお、前述した各製造方法は本発明の例示に過ぎず、本発明の医薬物運搬用器 具はこれらの製造方法で提供されるものに限定されるものではなぐ種々の変更が可 能である。
例えば、医薬物運搬用器具を製造するための型 25は、以下の工程で作製した-ッ ケル (Ni)製のものを使用しても良!、。
まず、(a)シリコン基板にフォトリソグラフィ技術とドライエッチングプロセスを用いて 凸部となる形状を形成してマスタ型とし、 (b)次 、でニッケル等の金属をスパッタする ことでマスタ型表面を導電化し、 (c)次 、でニッケル電铸によってマスタ型の形状を 転写し、(d)次いで、マスタ型を例えば水酸ィ匕カリウム (ィ匕学式: KOH)や水酸ィ匕テト ラメチルアンモ -ゥム(略式名称: TMAH)などの強アルカリ溶液でシリコン製のマス タ型を選択的に除去して作製したニッケル製の型を得る。
また、凸部を形成するための細孔を有する型と、さらに必要であれば貫通穴を形成 するための突起を有する型の形状をプラスチック材料に転写して主材部を形成する 工程は、射出成形、インプリント、ホットエンボスなど、型を利用して複製加工するあら ゆる技術を適用することができる。
さらに、型力 プラスチック材料を剥離する方法は、型の材質とプラスチック材料の 材質により、適宜適当な方法を選択することができる。
産業上の利用可能性
[0065] 本発明によれば、製造が容易で、製造コストを低く抑えることができ、さらには、機械 的強度が高ぐ生体に対して安全性が高い医薬物運搬用器具およびその製造方法 を提供可能である。

Claims

請求の範囲
[1] 複数の略錘状の凸部と該凸部を等間隔に載置する基部力 構成される医薬物運 搬用器具であって、
前記凸部および基部はプラスチック材料を主材として構成され、さらに前記主材の 表面が部分的あるいは全域にわたって前記主材をなすプラスチック材料とは異種の 材料で被覆されて!、る医薬物運搬用器具。
[2] 前記基部の裏面から表面へ貫通する複数の貫通穴をさらに備える請求項 1に記載 の医薬物運搬用器具。
[3] 前記被覆材料が金属材料である請求項 1又は 2に記載の医薬物運搬用器具。
[4] 前記被覆材料が生体無毒性の金属材料である請求項 3に記載の医薬物運搬用器 具。
[5] 前記被覆材料がチタンもしくはチタンを含む合金である請求項 4に記載の医薬物 運搬用器具。
[6] (A)型を用いた複製加工技術によりプラスチック材料カゝらなる主材部を形成するェ 程、および (B)前記主材の表面を部分的ある!/、は全域にわたって前記主材をなすプ ラスチック材料とは異種の材料で被覆する工程、とを含んで!/ヽる請求項 1〜5の 、ず れかに記載の医薬物運搬用器具の製造方法。
[7] 前記 (A)の工程が、(A1)凸部を形成するための細孔を有する型と、さらに必要で あれば貫通穴を形成するための突起を有する型を配置する工程と、(A2)該型内に 溶融したプラスチック材料又はその前駆体を含む材料を充填してプラスチック材料か らなる主材部を成形する工程と、(A3)冷却して前記主材部を型から取出す工程、と を含んでいる請求項 6に記載の医薬物運搬用器具の製造方法。
[8] 前記 (B)の工程力スパッタリング法によって実施される請求項 6又は 7に記載の医 薬物運搬用器具の製造方法。
PCT/JP2006/309468 2005-05-13 2006-05-11 医薬物運搬用器具およびその製造方法 WO2006121110A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007528315A JP5020080B2 (ja) 2005-05-13 2006-05-11 医薬物運搬用器具の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005141897 2005-05-13
JP2005-141897 2005-05-13

Publications (1)

Publication Number Publication Date
WO2006121110A1 true WO2006121110A1 (ja) 2006-11-16

Family

ID=37396618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309468 WO2006121110A1 (ja) 2005-05-13 2006-05-11 医薬物運搬用器具およびその製造方法

Country Status (2)

Country Link
JP (1) JP5020080B2 (ja)
WO (1) WO2006121110A1 (ja)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011959A (ja) * 2006-07-04 2008-01-24 Toppan Printing Co Ltd 針状体の製造方法
WO2008062832A1 (fr) 2006-11-22 2008-05-29 Toppan Printing Co., Ltd. Matrice à micro-aiguilles et son procédé de production
JP2009083125A (ja) * 2007-09-27 2009-04-23 Fujifilm Corp 機能性膜の製造方法および製造装置
JP2009201956A (ja) * 2008-02-28 2009-09-10 Kosumedei Seiyaku Kk マイクロニードルアレイ
JP2010068840A (ja) * 2008-09-16 2010-04-02 Toppan Printing Co Ltd 針状体および針状体製造方法
JP2010188681A (ja) * 2009-02-20 2010-09-02 Toppan Printing Co Ltd 針状構造物の製造装置および製造方法、および針状構造物
JP2010221675A (ja) * 2009-03-25 2010-10-07 Toppan Printing Co Ltd 成形品の成形装置及び成形方法
JP2010247479A (ja) * 2009-04-17 2010-11-04 Japan Steel Works Ltd:The 貫通孔を有する微細構造成形体の製造方法及び製造装置
EP2633881A1 (en) * 2010-10-25 2013-09-04 Teijin Limited Microneedle
US8696638B2 (en) 2009-07-23 2014-04-15 Hisamitsu Pharmaceutical Co., Inc. Microneedle array
US8747362B2 (en) 2009-06-10 2014-06-10 Hisamitsu Pharmaceutical Co., Inc Microneedle device
US8911422B2 (en) 2010-02-24 2014-12-16 Hisamitsu Pharmaceutical Co., Inc. Micro-needle device
US9028463B2 (en) 2008-06-30 2015-05-12 Hisamitsu Pharmaceutical Co., Inc. Microneedle device, and method for enhancing the efficacy of influenza vaccine by using microneedle device
JP2015128499A (ja) * 2014-01-07 2015-07-16 凸版印刷株式会社 マイクロニードルの製造方法
CN109078260A (zh) * 2018-07-02 2018-12-25 华中科技大学 一种制备中空微针阵列的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115674523A (zh) * 2021-07-28 2023-02-03 上海悦肤达生物科技有限公司 制备微针的设备及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501161A (ja) * 1999-06-09 2003-01-14 ザ プロクター アンド ギャンブル カンパニー 皮内用ミクロ針構造体の製造方法
JP2004526581A (ja) * 2001-03-14 2004-09-02 ザ プロクター アンド ギャンブル カンパニー ソフトリソグラフィ及びフォトリソグラフィを使用して微小針(microneedles)構造を製造する方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003501161A (ja) * 1999-06-09 2003-01-14 ザ プロクター アンド ギャンブル カンパニー 皮内用ミクロ針構造体の製造方法
JP2004526581A (ja) * 2001-03-14 2004-09-02 ザ プロクター アンド ギャンブル カンパニー ソフトリソグラフィ及びフォトリソグラフィを使用して微小針(microneedles)構造を製造する方法

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008011959A (ja) * 2006-07-04 2008-01-24 Toppan Printing Co Ltd 針状体の製造方法
WO2008062832A1 (fr) 2006-11-22 2008-05-29 Toppan Printing Co., Ltd. Matrice à micro-aiguilles et son procédé de production
JPWO2008062832A1 (ja) * 2006-11-22 2010-03-04 凸版印刷株式会社 マイクロニードルアレイ及びマイクロニードルアレイの製造方法
JP2009083125A (ja) * 2007-09-27 2009-04-23 Fujifilm Corp 機能性膜の製造方法および製造装置
JP2009201956A (ja) * 2008-02-28 2009-09-10 Kosumedei Seiyaku Kk マイクロニードルアレイ
US9028463B2 (en) 2008-06-30 2015-05-12 Hisamitsu Pharmaceutical Co., Inc. Microneedle device, and method for enhancing the efficacy of influenza vaccine by using microneedle device
JP2010068840A (ja) * 2008-09-16 2010-04-02 Toppan Printing Co Ltd 針状体および針状体製造方法
JP2010188681A (ja) * 2009-02-20 2010-09-02 Toppan Printing Co Ltd 針状構造物の製造装置および製造方法、および針状構造物
JP2010221675A (ja) * 2009-03-25 2010-10-07 Toppan Printing Co Ltd 成形品の成形装置及び成形方法
JP2010247479A (ja) * 2009-04-17 2010-11-04 Japan Steel Works Ltd:The 貫通孔を有する微細構造成形体の製造方法及び製造装置
US8747362B2 (en) 2009-06-10 2014-06-10 Hisamitsu Pharmaceutical Co., Inc Microneedle device
US8696638B2 (en) 2009-07-23 2014-04-15 Hisamitsu Pharmaceutical Co., Inc. Microneedle array
US8911422B2 (en) 2010-02-24 2014-12-16 Hisamitsu Pharmaceutical Co., Inc. Micro-needle device
EP2633881A4 (en) * 2010-10-25 2014-02-19 Teijin Ltd MICRO NEEDLE
EP2633881A1 (en) * 2010-10-25 2013-09-04 Teijin Limited Microneedle
US9636490B2 (en) 2010-10-25 2017-05-02 Medrx Co., Ltd. Microneedle
JP2015128499A (ja) * 2014-01-07 2015-07-16 凸版印刷株式会社 マイクロニードルの製造方法
CN109078260A (zh) * 2018-07-02 2018-12-25 华中科技大学 一种制备中空微针阵列的方法

Also Published As

Publication number Publication date
JPWO2006121110A1 (ja) 2008-12-18
JP5020080B2 (ja) 2012-09-05

Similar Documents

Publication Publication Date Title
WO2006121110A1 (ja) 医薬物運搬用器具およびその製造方法
JP2006341089A (ja) 医薬物運搬用器具およびその製造方法
Chen et al. Rapid fabrication of microneedles using magnetorheological drawing lithography
JP6038173B2 (ja) 経皮吸収シートの製造方法
JP4908893B2 (ja) 医薬物運搬用器具とその製造方法及び医薬物運搬用器具製造用金型の製造方法
JP6034398B2 (ja) モールド成形体及び経皮吸収シートの製造方法
JP5063544B2 (ja) 経皮吸収シート及びその製造方法
WO2011043085A1 (ja) マイクロニードルシートのスタンパー及びその製造方法とそれを用いたマイクロニードルの製造方法
WO2011043086A1 (ja) マイクロニードルスタンパーの製造方法
JP2013153866A (ja) 経皮吸収シート及び経皮吸収シートの製造方法
WO2006075716A1 (ja) 医薬物運搬用器具とその製造方法
JP2009233170A (ja) 高アスペクト比構造シートの製造方法
US10814118B2 (en) Transdermal absorption sheet
JP6588864B2 (ja) 経皮吸収シートの製造方法
JP2011083387A (ja) 針状体の製造方法並びに針状体および針状体保持シート
WO2016208635A1 (ja) 針状体及び針状体の製造方法
JP5179976B2 (ja) ニードルシートの製造方法
JP5285943B2 (ja) 針状体アレイおよび針状体アレイ製造方法
JP7398606B2 (ja) 微小構造アレイ成形型を形成するハイブリッド方法、微小構造アレイを作製する方法、および使用方法
JPWO2015177976A1 (ja) 針状体の製造方法、及び針状体
JP4888011B2 (ja) 針状体およびその製造方法
Mishra et al. MEMS-based hollow microneedles for transdermal drug delivery
JP2009233808A (ja) 中空ニードルシート及び中空ニードルシートの製造方法
JP5412045B2 (ja) 針状体アレイおよびそのアレイ製造方法
JP6525017B2 (ja) マイクロニードルデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007528315

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06746277

Country of ref document: EP

Kind code of ref document: A1