WO2006120924A1 - 細胞観察装置、細胞観察方法、及び細胞観察プログラム - Google Patents

細胞観察装置、細胞観察方法、及び細胞観察プログラム Download PDF

Info

Publication number
WO2006120924A1
WO2006120924A1 PCT/JP2006/308888 JP2006308888W WO2006120924A1 WO 2006120924 A1 WO2006120924 A1 WO 2006120924A1 JP 2006308888 W JP2006308888 W JP 2006308888W WO 2006120924 A1 WO2006120924 A1 WO 2006120924A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
region
cells
observation
parameter
Prior art date
Application number
PCT/JP2006/308888
Other languages
English (en)
French (fr)
Inventor
Satoshi Arai
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP06732439A priority Critical patent/EP1881061A1/en
Publication of WO2006120924A1 publication Critical patent/WO2006120924A1/ja
Priority to US11/936,467 priority patent/US20080176276A1/en
Priority to US14/528,548 priority patent/US20150050687A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation

Definitions

  • Cell observation device Cell observation method, and cell observation program
  • the present invention relates to a cell observation apparatus, a cell observation method, and a cell observation program for observing living cells over time while culturing them for a long period of time.
  • cell death is classified into apoptosis (programmed cell death) and necrosis (necrosis).
  • Apoptosis is caused by the activity of proteases (proteolytic enzymes) and is part of the normal activities of cells such as being involved in the development and regulation of cell number.
  • proteases proteolytic enzymes
  • necrosis is a sudden cell death due to external factors, and corresponds to the case where cell death is caused not only by physical damage but also by toxicity of light, temperature, chemical substances and the like.
  • Patent Document 1 discloses the concept of applying a cell death determination solution to cells and observing the occurrence of cell death optically and over time.
  • bacteria are labeled using two types of fluorescent dyes, namely, a fluorescent dye for labeling live bacteria and a fluorescent dye for labeling dead bacteria, and this is irradiated with pulsed excitation light to emit fluorescence.
  • a configuration is disclosed in which the number of viable and dead bacteria is accurately counted by receiving light and electrically processing.
  • Patent Document 3 discloses a technique characterized by selectively culturing cells by adhering them onto a cell-adhesive membrane pattern as a method of selectively staining and observing dead cells. Counting is facilitated, and the effect of observing an accurate cell survival rate is achieved. Accurate survival is important for quantitative assessment of toxicity in toxicity studies.
  • Patent Document 4 detects a cell death by introducing into a cell a gene that expresses a special marker protein that leaks outside the cell when cell death occurs, and observing the behavior of the marker protein. The technology to do is disclosed. If marker protein is observed outside the cell, it means that there was cell death.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-184579
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-316596
  • Patent Document 3 Japanese Patent No. 3077628
  • Patent Document 4 International Publication No. 02Z052032 Pamphlet
  • the method of Patent Document 4 is a method of expressing and labeling a marker protein, which is less toxic than using a dye or the like, but has a special gene for observing cell death. Must be introduced.
  • the present invention has been made in view of the above, and minimizes damage to cells during long-term culture, and does not require introduction of a special dye or a special gene.
  • An object of the present invention is to provide a cell observation apparatus, a cell observation method, and a cell observation program that can accurately determine the viability of cells.
  • the cell observation device shows cells from cell image data of respective images obtained by photographing cells at a plurality of time points.
  • a cell recognizing unit for recognizing a cell region
  • a cell parameter measuring unit for measuring a cell parameter indicating the characteristics of the cell region recognized by the cell recognizing unit, the cell parameter measured by the cell parameter measuring unit and a threshold value
  • Cell viability determination means for determining whether the cells are viable or not by comparing the above.
  • the cell observation device is the same as that taken at different time points in the above invention.
  • Cell tracking means for associating cell regions recognized from the cell image data of each image is further provided, and the cell viability determination means is configured to detect each cell associated with the cell tracking means. Whether the cell is viable or not is determined by repeatedly comparing the cell parameter with the threshold value for a region.
  • the cell viability determination means may be configured such that when the ratio of the same conclusion as a result of repeated comparison is less than a predetermined ratio, the cell tracking means The cell indicated by the cell area associated with is killed! It is characterized by determining /, na.
  • the cell viability determination unit may associate the plurality of cell regions with one cell region by the cell tracking unit. In this case, it is characterized in that it is determined that the cell indicated by the one cell region is dead.
  • the cell viability determination means is set to be longer than a division period in an average cell cycle of the cell to be observed. It is characterized in that it is determined whether the cell is alive or not by repeatedly comparing the cell parameter measured at each of a plurality of time points over a predetermined imaging period with the threshold value.
  • the cell observation device is characterized in that, in the above invention, the cell parameter includes at least a circularity of the cell region.
  • the cell parameter includes at least an average luminance of the cell region.
  • the cell observation device is characterized in that, in the above invention, the cell parameter includes at least an edge strength of the cell region.
  • a cell observation device according to the above invention, further comprising a culture means for culturing the cells.
  • the cell observation device is characterized in that, in the above invention, the cell is a cell into which a fluorescent protein is introduced.
  • the cells are not localized. It is a cell into which a fluorescent protein expressed in is introduced.
  • the cell observation device is characterized in that, in the above-described invention, the cell observation device further includes imaging means for acquiring images obtained by imaging cells at a plurality of time points.
  • the cell observation program according to claim 13 is a cell observation program for observing cells with a cell observation device, and each of the cell observation programs obtained by photographing cells at a plurality of time points on the cell observation device.
  • a cell recognition step for recognizing a cell region indicating a cell from cell image data of the image
  • a cell parameter measurement step for measuring a cell parameter indicating the characteristics of the cell region recognized in the cell recognition step
  • the cell parameter measurement A cell viability determination step of determining whether the cell is viable by comparing the cell parameter measured in the step with a threshold value.
  • cell tracking is performed for associating cell regions recognized from the cell image data of the respective images taken at different time points.
  • the cell viability determination step further includes determining whether the cell is alive or not by repeatedly comparing the cell parameter with the threshold value for each cell region associated in the cell tracking step. It is characterized by.
  • the cell viability determination step is performed when a ratio of the same conclusion as a result of repeated comparison is less than a predetermined ratio. Is characterized in that the cell indicated by the cell region associated in the cell tracking step is killed and determined to be a cunning defect.
  • a plurality of the cell regions are associated with one cell region in the cell tracking step.
  • the cell indicated by the one cell region is killed! It is characterized by determining /, na.
  • the cell life / death determination step is set to be longer than a division period in an average cell cycle of the cell to be observed.
  • the cell life force of each cell at a plurality of time points over the imaging period is repeatedly compared with the threshold value to determine whether the cell is alive or dead.
  • the cell observation program according to claim 18 is characterized in that, in the above invention, the cell parameter includes at least the circularity of the cell region.
  • the cell observation program according to claim 19 is characterized in that, in the above invention, the cell parameter includes at least an average luminance of the cell region.
  • the cell observation program according to claim 20 is characterized in that, in the above invention, the cell parameter includes at least an edge strength of the cell region.
  • the cell observation method is a method of observing cells with a cell observation device comprising a culture means for culturing cells and an imaging means for photographing cells contained in the culture means.
  • the cell recognition step for recognizing, the cell parameter measurement step for measuring the cell parameter indicating the characteristics of the cell region recognized in the cell recognition step, and the cell parameter measured in the cell parameter measurement step and the threshold are compared. And a cell viability determination step for determining the viability of the cells.
  • the cell regions recognized from the cell image data of the respective images taken at different time points are associated with each other.
  • the cell parameter indicating the characteristics of the cell region photographed and measured at a plurality of time points is compared with the threshold value.
  • the life and death of cells in culture can be accurately determined without introducing special dyes or genes while minimizing damage to cells during long-term culture. There is an effect that can be. It is possible to more accurately determine the viability of individual cells by repeatedly comparing each cell parameter with a threshold value for each cell area associated by cell tracking and determining cell viability. If it can be done, it will have a positive effect.
  • FIG. 1 is a schematic block diagram showing a configuration example of a cell observation device according to an embodiment of the present invention.
  • FIG. 2 is a horizontal cross-sectional view showing a configuration example of a culture unit.
  • FIG. 3 is a longitudinal front view showing a configuration example of a culture unit.
  • FIG. 4 is a perspective view showing a configuration example of a current plate.
  • FIG. 5 is a cross-sectional view showing a heat insulation configuration example of a boundary portion between the culture unit side and the imaging unit side.
  • FIG. 6 is an explanatory diagram showing an example of a cell image in culture that has been subjected to fluorescence imaging.
  • FIG. 7 is an explanatory diagram showing a state of imaging with a plurality of fields of view (fields of view 1 to N).
  • FIG. 8 is an explanatory diagram showing an example of imaging timing for each of the visual fields 1 to N.
  • FIG. 9 is a schematic flowchart showing an example of image data processing.
  • FIG. 10 is a diagram showing an example of weighting by a sharp edge filter.
  • FIG. 11 is a schematic flowchart showing a first method example of region integration.
  • FIG. 12 is a schematic flowchart showing a second method example of region integration.
  • FIG. 13 is an explanatory diagram showing an example of measurement results of cell parameters recorded in a recording unit.
  • FIG. 14 is an explanatory diagram showing the results of calculating evaluation values for possible combinations of m and n.
  • FIG. 15 is a schematic flowchart showing a first processing procedure of cell viability determination processing.
  • FIG. 16 is a schematic flowchart showing a second processing procedure of cell viability determination processing. 17]
  • FIG. 17 is a schematic flowchart showing a third processing procedure of cell viability determination processing
  • FIG. 18 is a schematic flowchart showing a fourth processing procedure of cell viability determination processing.
  • FIG. 19 is a schematic flowchart showing a fifth processing procedure of cell viability determination processing.
  • FIG. 20 is an explanatory diagram showing an example of processing result display.
  • FIG. 21 is an explanatory diagram showing an example of highlighting.
  • the cell observation apparatus captures images of a plurality of living cells introduced with fluorescent proteins while culturing them for a long period of time, recognizes the area of each cell, and tracks position changes over time.
  • the cell parameters indicating the characteristics of individual cells are independently measured, and the viability of the cells is further detected.
  • FIG. 1 is a schematic block diagram showing a configuration example of the cell observation device according to the present embodiment.
  • the cell observation device is roughly composed of a culture unit 101 for culturing cells, an imaging unit 201 for imaging cells contained in the culture unit 101, and the entire cell observation device.
  • a control unit 301 that controls processing and operation, a recording unit 302 that centrally records various data such as image data captured by the imaging unit 201 and post-processing data, and records various types of information.
  • a preprocessing unit 305 In addition to an input unit 303 that receives input and a display unit 304 that displays various information such as image information and presents it to the operator, a preprocessing unit 305, a cell recognition unit 306, a parameter measurement unit 307, and a cell tracking unit 308 An exposure detection unit 309, an imaging number counting unit 310, an occupied area calculation unit 311, a focus detection unit 312, and a cell viability determination unit 313.
  • Each of these units 302 to 313 is connected to the control unit 301 and controlled by the control unit 301. In FIG. 1, control connections from the control unit 301 to the culture unit 101 and the imaging unit 201 are not particularly illustrated.
  • control unit 301 the preprocessing unit 305, the cell recognition unit 306, the parameter measurement unit 307, the cell tracking unit 308, the exposure detection unit 309, the imaging number counting unit 310, the occupied area calculation unit 311
  • a storage device such as a RAM based on a processing program stored in a memory such as a CPU card OM mounted in the cell observation device. This is done while writing the necessary data.
  • the culture unit 101 will be described.
  • the slide glass 102 holds a plurality of living cells C into which fluorescent proteins that are expressed without being localized are introduced in advance, and is installed in the culture unit 101.
  • the culture unit 101 has the same configuration as the culture vessel disclosed in, for example, Japanese Patent Application Laid-Open No. 2004-113175. In this case, it is possible to use general jellyfish-derived fluorescent proteins, etc., as long as the fluorescent protein does not localize. For example, BD Bioscience's Clontech's pEGFP-Nl can be used. .
  • FIG. 2 is a horizontal sectional view showing a configuration example of the culture unit 101
  • FIG. 3 is a longitudinal front view showing a configuration example of the culture unit 101.
  • the culture unit 101 as a culture means has a front and back through-hole 103 that can accommodate the slide glass 102 therein, and is made of a material having excellent heat conduction, such as a stainless or aluminum housing.
  • a body 104 an observation window 105 formed of two optically smooth glass plates that block the front and back through-holes 103 of the case 104, and a culture solution supply pipe that supplies the culture solution A into the case 104 106, a culture medium discharge pipe 107 for discharging the culture medium A that is no longer needed from the inside of the casing 104, and two rectifying plates 108 provided at the entrance of the culture medium A to the casing 104,
  • the culture solution supply pipe that supplies the culture solution A into the case 104 106
  • a culture medium discharge pipe 107 for discharging the culture medium A that is no longer needed from the inside of the casing 104
  • two rectifying plates 108 provided at the entrance of the culture medium A to the casing 104
  • FIG. 4 is a perspective view showing a configuration example of the rectifying plate 108.
  • the current plate 108 is a porous member in which a plurality of through holes 108a are formed in the thickness direction.
  • the inlet-side rectifying plate 108 distributes and distributes the culture medium A flowing in from the culture medium supply pipe 106 to the plurality of through holes 108a, and the outlet-side rectifying plate 108 flows all at once through the culture medium discharge pipe 107.
  • the culture solution A to be taken out is distributed and distributed in the plurality of through holes 108a.
  • the concentrated flow is converted into a dispersed flow, and the vicinity of the glass slide 102 on which the living cells C are arranged
  • the culture medium A can be flowed at a constant flow rate and flow rate.
  • a temperature control unit 109 is attached to the culture unit 101, and a hot water channel 110 through which the hot water W is circulated is formed around the culture unit 101.
  • a hot water channel 110 through which the hot water W is circulated is formed around the culture unit 101.
  • the heat of the hot water is transferred to the culture solution A through the housing 104.
  • temperature information of a temperature sensor (not shown) is transmitted to the control unit 301 at predetermined time intervals so that the control unit 301 maintains the temperature in the culture unit 101 within a range of 37 ⁇ 0.5 ° C.
  • the temperature and flow rate of hot water W are controlled.
  • pH information of the culture solution A is transmitted to the control unit 301 at predetermined time intervals by a pH sensor (not shown), and the control unit 301 maintains the culture solution pH within a predetermined range. Control CO concentration in A.
  • Unused culture solution is stored in a not-shown culture medium storage unit, and is kept at about 4 ° C. by a non-illustrated cooling mechanism to suppress deterioration over time.
  • the culture medium that has been kept cool is heated to about 37 ° C. by a culture liquid heating mechanism (not shown), and then supplied to the housing 104 through the culture liquid supply pipe 106.
  • the culture solution discharged through the culture solution discharge pipe 107 is stored in a waste solution storage unit (not shown).
  • a part of the discharged culture solution may be mixed with fresh culture solution and supplied to the housing 104. In this case, the impact on the cells due to the replacement of the culture solution is reduced, and the culture is continued for a longer period. It becomes the composition suitable for.
  • FIG. 5 is a cross-sectional view showing a heat insulation configuration example of a boundary portion between the culture unit 101 side and the imaging unit 201 side.
  • the heat generated by the culture unit 101 is not transmitted to the imaging unit 201 side by providing the heat insulating unit 111 as a heat insulating unit.
  • the installation location of the heat insulating unit 111 that insulates between the culture unit 101 and the imaging unit 201 has various possible powers.In the present embodiment, the space between the housing 104 of the culture unit 101 and the image sensor that constitutes the imaging unit 201 is used. Install insulation 111! / Speak.
  • the heat insulating part 111 is a sheet shape using a highly heat-insulating and elastic member, such as rubber, silicon, polyurethane, and the like, and is provided with a through-hole 112 having the same diameter as the objective lens 202.
  • the culture unit 101 and the objective lens 202 are optically connected through the through-hole 112, and can freely exchange light rays.
  • most of the heat generated by the culture unit 101 is blocked by the heat insulating unit 111.
  • the optical system is adjusted for use at around 25 ° C. Therefore, the performance assumed to be heated by the heat from the culture unit 101 cannot be exhibited.
  • a solid-state image sensor such as a CCD provided in the imaging unit 201 increases in noise and degrades SZN as the temperature rises. Therefore, it is necessary to keep the temperature as low as possible (but do not cause condensation) to capture weak fluorescence. is there.
  • the culture means it is more preferable to use a culture medium such as the culture part 101 that can exchange the culture solution, but it is also possible to observe cells using a general well plate.
  • a general well plate when a general well plate is used, the culture solution cannot be changed while maintaining the environmental condition. Therefore, compared to the case where the culture unit 101 is used, the culture solution associated with cell replacement is used.
  • the culture period is limited to a short period of time due to the deterioration of.
  • Healer cells are used as an example of living cells serving as measurement samples.
  • HeLa cells are derived from cervical cancer and are widely used in drug discovery toxicity tests and the like.
  • the type of fluorescent protein to be introduced may be changed according to the contents of the assembly.
  • the imaging unit 201 includes an excitation light illumination unit 203, a dichroic aperture mirror 204, an objective optical system 205, an imaging optical system 206, a fluorescence imaging unit 207, an infrared light illumination unit 208, and a dichroic mirror 209. And an imaging optical system 210 and an infrared light imaging unit 211. That is, the imaging unit 201 of the present embodiment is configured to have a fluorescence imaging system and an infrared light imaging system.
  • light emitted from the excitation light illuminating unit 203 is reflected by the dichroic mirror 204, and is irradiated onto the slide glass 102 through the objective optical system 205 including the objective lens 202 and the observation window 105.
  • the irradiated light as excitation light
  • fluorescent protein force fluorescence introduced into the living cells C on the slide glass 102 is emitted, and both reflected light and fluorescence of the excitation light are emitted from the observation window 105.
  • the emitted light passes through the objective optical system 205 again and reaches the dichroic mirror 204, but only the fluorescence is transmitted, and the reflected light of the excitation light is blocked.
  • the fluorescence transmitted through the dichroic mirror 204 is enlarged and projected onto a solid-state imaging device such as a CCD or CMOS provided in the fluorescence imaging unit 207 as a cell light imaging means by the imaging optical system 206 to form an image.
  • a solid-state imaging device such as a CCD or CMOS provided in the fluorescence imaging unit 207 as a cell light imaging means by the imaging optical system 206 to form an image.
  • the fluorescent image of the imaged measurement sample is imaged by the solid-state imaging device included in the fluorescence imaging unit 207.
  • the image data is converted into image data and recorded temporarily or permanently in the recording unit 302 under the control of the control unit 301.
  • FIG. 6 is an explanatory diagram showing an example of a cell image in culture that has been subjected to fluorescence imaging.
  • the light emitted from the infrared light illumination unit 208 is irradiated to the slide glass 102 through one observation window 105, and the transmitted light is emitted from the other observation window 105.
  • the emitted light passes through the objective optical system 205, and all the force infrared light that reaches the dichroic mirror 209 is reflected.
  • the reflected infrared light is enlarged and projected by the imaging optical system 210 onto a solid-state imaging device such as a CCD or CMOS provided in the infrared light imaging unit 211 as an infrared light imaging means.
  • An infrared light image of the formed measurement sample is converted into image data by a solid-state imaging device such as a CCD or CMOS provided in the infrared light imaging unit 211, and temporarily or temporarily in the recording unit 302 under the control of the control unit 301. Record permanently.
  • a solid-state imaging device such as a CCD or CMOS provided in the infrared light imaging unit 211, and temporarily or temporarily in the recording unit 302 under the control of the control unit 301. Record permanently.
  • fluorescent proteins cannot be uniformly introduced into all cells, and even if they can be introduced, they are not necessarily expressed immediately. Therefore, a means for stably observing the entire cell over time is necessary.
  • infrared light has lower phototoxicity to living cells than visible light, the activity of the cells can be maintained for a longer period of time compared to imaging using visible light.
  • the entire visible light range can be used as excitation light for fluorescence imaging, so that restrictions on available fluorescence proteins are relaxed.
  • the live cell C is imaged by imaging the live cell C on the slide glass 102 using the fluorescence imaging unit 207 and the infrared light imaging unit 211. It is possible to acquire cell image data which is image data of an image obtained by capturing the image.
  • imaging is automatically performed by the fluorescence imaging unit 207 at preset time intervals.
  • the user can observe the living cell C using the infrared imaging unit 211 at a desired time as necessary.
  • the imaging by the infrared imaging unit 211 is synchronized with the imaging by the fluorescence imaging unit 207 by the control of the control unit 301 that is not only performed by the user at a desired time. If this is done, the association between the infrared image and the fluorescence image is facilitated, and the association between the living cells C contained in both images is facilitated. As a result, when observing living cells C while culturing them for a long period of time, it is possible to efficiently observe living cells c while suppressing a decrease in cell activity.
  • a function for displaying the time when the fluorescent image or the infrared light image is captured on the display unit 304 may be added.
  • the configuration of the present embodiment includes the fluorescence imaging unit 207 and the infrared light imaging unit 211, the fluorescence image and the infrared light image can be captured in parallel. Compared to the case where the image is taken while switching, the time required for the image pickup is greatly reduced, and a switching drive unit is not required.
  • phase difference observation is performed instead of transmission observation. I can do it.
  • Phase contrast observation provides an image with higher contrast than transmission observation.
  • a polarizer and a DIC (Differential Interference Contrast) element are inserted into the infrared illumination unit 208, and a DIC slider and an analyzer are inserted in the optical path from the dichroic mirror 209 to the imaging optical system 210 for transmission observation.
  • DIC Different Interference Contrast
  • differential interference observation can be performed. Differential interference observation provides a higher contrast image than transmission observation.
  • the stage conveyance mechanism 113 changes the relative position between the slide glass 102 and the solid-state imaging device included in the fluorescence imaging unit 207 and the infrared imaging unit 211, and the number of times required for each field of view (imaging range). Repeat the imaging and recording to obtain cell image data.
  • FIG. 7 is an explanatory diagram showing a state of imaging with a plurality of fields of view (fields 1 to N).
  • the position of each visual field is arbitrary, and is not particularly limited to a lattice shape. There may also be overlap between the fields of view.
  • FIG. 8 is an explanatory diagram showing an example of imaging timing for each of the visual fields 1 to N.
  • the fields of view 1 to N are imaged in a predetermined order so that the imaging interval is substantially constant.
  • the exposure detection unit 309 detects whether or not the power at the time of image data capturing is appropriate. Immediately or any other observation site if the exposure at the time of imaging is inappropriate When the imaging is completed, the imaging of the inappropriate exposure part is performed again. At this time, the exposure condition may be changed. Similarly, the focus detection unit 312 detects whether or not focusing at the time of image data capturing is appropriate. If the focusing at the time of imaging is inappropriate, the imaging of the inadequate in-focus area is performed again immediately or when imaging of any other observation area is completed. At this time, the focusing condition may be changed.
  • the circulation may be temporarily stopped in accordance with the timing of imaging. Thereby, it is possible to avoid fluctuations in the background at the time of imaging due to the circulation of the culture solution.
  • the number of times of imaging in a predetermined field of view is counted by an imaging number counting unit 310 as an imaging time point recognition unit, and after imaging a predetermined number of times (frames) of a predetermined field of view, an image is displayed on the display unit 304 as a notification unit. It may be displayed and the operator may be asked to confirm the contents. If the operator determines that there is no problem in the content, the process is continued. If it is determined that there is a problem, an instruction from the operator is accepted for resetting the imaging conditions. Alternatively, the process may simply be stopped. If there is no response from the operator even after a certain period of time, follow the predetermined instructions and choose to continue or stop the process.
  • the number of times of imaging by the fluorescence imaging unit 207 is counted, and the operator is asked to confirm the image after imaging a predetermined number of times.
  • the time of imaging not only based on the number of times of imaging, but also means of measuring the passage of a predetermined time from the start of observation (for example, acquiring information on the time when cell image data was captured and It is possible to confirm the image by providing that the cell image data at the predetermined time point is acquired when the predetermined time is exceeded.
  • FIG. 9 is a schematic flowchart showing an example of image data processing executed by the preprocessing unit 305 and the like under the control of the control unit 301.
  • preprocessing is performed by the preprocessing unit 305 (step S2), and the cell is recognized by the cell recognition unit 306 as a cell recognition means (step S 3).
  • the cell parameter indicating the feature of the recognized cell is measured based on the cell image data by the parameter measuring unit 307 as a cell parameter measuring means (step S4).
  • the cell tracking unit 308 as a cell tracking means determines the identity of cells captured at different time points based on the cell parameters. .
  • the tracking result is further corrected (step S6).
  • the cell viability determination unit 313 as cell viability determination means determines whether the cell is alive or not (step S7). Then, the obtained tracking result, life / death determination result, and the like are displayed on the display unit 304 (step S8), and the above processing steps are similarly repeated until the observation is completed (step S9: Yes).
  • step S1 (or step S1 and step S2) is performed in advance at a plurality of times, and step S2 on and after the image data acquired at each time (or later) (or Step S3 and subsequent steps) may be performed collectively later.
  • image data captured at a plurality of times are preliminarily acquired and image data processing is performed later, imaging and image data processing are performed in parallel.
  • the system configuration is simplified and the responsiveness and stability can be improved by using an inexpensive computer.
  • step S2 the pre-processing unit 305 processes the cell image data captured and recorded in the recording unit 302 as follows.
  • an edge-preserving low-pass filter is applied to cell image data.
  • the edge-preserving low-pass filter suppresses the degradation of the spatial frequency and high-frequency components at the edge, while providing a smoothing effect other than at the edge. Noise can be removed while preserving cell contour information. Therefore, it is suitable for this method.
  • Bilateral filters Tomasi & Manduchi, "Bilateral Filtering for Gray and olor Images, Proceedings of the 1998 IEEE Intern (See National Conference on Computer Vision, Bombay, India.) Power S is known and will be used in this method.
  • a sharp edge filter for edge enhancement is further applied to the cell image data after applying the edge preserving low-pass filter.
  • the sharp edge filter is a filter that calculates the sum by weighting the target pixel and its neighboring 8 pixels as shown in Fig. 10, for example. By executing this repeatedly for each pixel, the sharp edge process is realized. it can.
  • step S3 the cell image data after the preprocessing is analyzed by the cell recognition unit 306 in the following procedure, and the area occupied by each cell is recognized.
  • the area occupied by individual cells By following this procedure, it is possible to recognize the area occupied by individual cells even when the cells are adjacent to each other and densely packed only when the cells are scattered without being adjacent to each other. It can also be applied when the edge of the cell region is not clear.
  • an image is divided into regions where high luminance pixels are concentrated.
  • cells exhibit the appearance of a cluster of high-luminance pixels. Therefore, dividing an area into areas (lumps) where high-luminance pixels are concentrated means dividing the image into areas for each cell. Equivalent to.
  • Dividing watershed region division is known as a process that satisfies such requirements.
  • this watershed region segmentation method is used. (Refer to ELLIGENCE, VOL.13, N0.6, JUNE 1991.)
  • Divided water segmentation in the original paper is to divide an image into regions where low-brightness pixels are concentrated. This is applied to the luminance region division, and each region in the obtained region division result becomes a cell region.
  • integration processing may be performed in which a plurality of cell regions are integrated into a new cell region according to the characteristics of adjacent cell regions. Since the result of the watershed area division process generally tends to be divided into small areas, the quality of the recognition result can be improved by performing the integration process.
  • FIG. 11 is a schematic flowchart showing a first method example of region integration.
  • the brightness is maximized in each cell area. Points, that is, luminance vertices are obtained (step S311).
  • step S312 any two adjacent cell regions are selected (step S312), and the distance D along the line connecting the vertices is obtained (step S313). Equation (1) is used to calculate the distance D.
  • I (P) is the luminance value of pixel P in the image after applying the edge-preserving low-pass filter
  • Zl (P) is the brightness of two vertices in the image after applying the edge-preserving low-pass filter.
  • the average of the degree values, ⁇ represents that the sum is obtained for all the pixels of the line segment connecting the vertices.
  • step S313 after obtaining the distance D between vertices for all combinations of adjacent cell regions, the distance D between the distance D and a predetermined threshold value V is determined in step S314.
  • Step S314 Yes
  • step S315) Integrate the cell areas into one area (step S315). This process is repeated until all the combinations are completed (step S316: Yes).
  • FIG. 12 is a schematic flowchart showing a second method example of region integration.
  • an edge extraction filter such as a Sobel filter
  • the edge preserving low-pass filter is applied to the output result of the edge preserving low-pass filter to obtain an edge image (step S321).
  • step S322 select any two adjacent cell regions (step S322), and obtain the edge strength D defined by equation (2) (steps).
  • E (P) represents the luminance value of the pixel P in the edge image
  • represents that the sum is obtained for all the pixels included in the boundary between the cell regions.
  • step S323 edge strength D for all combinations of adjacent cell regions.
  • step S324 the edge strength D is compared with a predetermined threshold value V. If the comparison result shows that the threshold value is equal to or lower than the predetermined threshold V (step S324: Yes), the cell region
  • step S325 Merge them into one area (step S325). This process is repeated until all combinations are completed (step S326: Yes).
  • first and second region integration methods may be used separately, or may be used successively in any order. Furthermore, the validity of each cell region may be verified using luminance information. For this purpose, a pixel having the maximum luminance value is obtained for each divided cell area. If the luminance value is smaller than a predetermined threshold value Vtmin, it is determined that the area is not a cell area, and the pixel to which it belongs is included. Excluded from subsequent processing. As a result, cells with insufficient introduction or expression of fluorescent protein, and background regions other than cells can be excluded.
  • the luminance of each pixel in the cell region may be compared with a predetermined threshold value Vpmin, and pixels having a luminance lower than the threshold value Vpmin may be excluded from the cell region force.
  • the pixels excluded in this way are not used for the subsequent processing.
  • the obtained cell region and a set of pixels belonging to each cell region are recorded in the recording unit 302.
  • the infrared light image is a phase difference image
  • the luminance value of the area where the cells exist is observed as a luminance value different from the background. Therefore, the difference from the representative background brightness value P is calculated for each pixel in the image, and only pixels whose difference is greater than the predetermined threshold V are obtained.
  • the parameter measurement unit 307 measures the cell parameter for each cell region recognized by the cell recognition unit 320, and records the measurement result in the recording unit 302.
  • FIG. 13 is an explanatory diagram showing an example of measurement results of cell parameters recorded in the recording unit 302.
  • M is the number of recognized cell regions.
  • the cell meter has, for example, the position of the center of gravity, the area, the circularity, the sum of luminance, the average luminance, and the standard deviation of luminance as measurement item targets, and is recorded in association with the cell image data and the cell region. Record in part 302.
  • General measurement items such as perimeter, ferret diameter, length, width, and maximum brightness may be added depending on the content of the assembly.
  • the total area of all the cells in the image that is, the area corresponding to the cell occupation value indicating the degree of the cell region in the image is used as the occupation area calculation means.
  • the control unit 301 may further notify the operator through the display unit 304 serving as a notification unit, or may change the control state of the culture unit 101, according to the settings designated by force. ! ⁇ Alternatively, you can simply ignore the notification. With this function, if the culture is continued for a long time, the free space of the medium may decrease due to cell growth and so on. This is effective for notification.
  • the occupied area calculation unit 311 obtains the area occupied by the cell region in the cell image as the cell occupation value.
  • the cell image may be either a fluorescent image or an infrared light image.
  • the area of the cell region is measured by the parameter measurement unit 307. Therefore, if the areas of all the cell regions in the image are summed, the area occupied by the cell region in the image can be obtained. it can.
  • the luminance value of the area where the cell exists is observed as a luminance value different from the background. Therefore, for each pixel in the image, a typical background brightness value P
  • the area occupied by the cell region in the image can be obtained.
  • cell parameters can be measured after obtaining the area of each individual cell for a single cell image including a plurality of cell images. By repeatedly capturing a cell image and measuring parameters at predetermined time intervals At, cell parameters can be accumulated with time.
  • the cell region association is performed in the cell tracking unit 308 as follows in steps S5 and S6.
  • R is the cell region recognized at time t, and t
  • R denote the cell region recognized at 1 tl, m 2.
  • time t is time t2
  • m and n are the identification numbers of cell regions that do not overlap in the same image
  • l ⁇ m ⁇ M, l ⁇ n ⁇ N, and M and N are the cell regions recognized at time t and t, respectively.
  • equation (3) an evaluation function related to the relationship between two cell regions R and R is defined by equation (3).
  • FIG. 14 is an explanatory diagram showing the results of calculating the evaluation values for possible combinations of m and n. However, in FIG. 14, for simplicity of description, it is abbreviated as J (R, R) 3 ⁇ 4J.
  • the region R at time t corresponding to the region R at time t is determined according to Equation (4).
  • R is t2, n tl, m 1 2 in the region at time t that minimizes the evaluation town between region R.
  • the evaluation function is applied to determine a combination that is smaller than the evaluation city 21S. Second evaluation value
  • the region R at time t and the region R at time t are the result of recognizing the same cell at different times.
  • both measured cell parameters can be regarded as measured values at the same time for the same cell. Therefore, the parameter measurement over time is completed by associating the value of the cell parameter with the cell image, the cell region, the association information of the cell region, and the time information together with the recording unit 302 as a recording means. .
  • the fluorescence intensity of the fluorescent protein decreases over time, the cells that were in the observation screen move to the outside of the observation screen, multiple cells overlap, or the cells die.
  • the number of cell regions recognized by the cell recognition unit 306 is reduced, there is no cell region at time t corresponding to the cell region at time t, or there is a duplication of time t.
  • the number of cells corresponds to one cell at time t.
  • the cell region association may be a modified example with the following improvements.
  • the first variation is that if the minimum evaluation iiij is greater than a predetermined threshold v.
  • the modification is effective for reducing the influence of noise.
  • mapping is considered invalid. In this case, region dmax
  • the meter measurement is discontinued until time tl. This modification is effective to reduce errors in the cell region association processing.
  • step S7 the cell viability determination unit 313 determines whether each cell is alive.
  • cell viability determination includes a plurality of processing procedures as described below, and the determination processing is performed using one or more of these procedures.
  • FIG. 15 is a schematic flowchart showing a first processing procedure of cell viability determination processing.
  • the schematic flow chart shown in Fig. 15 shows that cells that die without being physically damaged during culturing have a roughly circular shape, stop their activity, and maintain a generally circular shape! / Based on the characteristics of the cells, an example of the cell viability determination processing procedure will be exemplified.
  • the circularity C of the cell region R in each frame taken at different time points is acquired as a cell parameter, and the acquired circularity C is compared with a predetermined threshold V and t, m C.
  • the process of determining whether or not the threshold value V is exceeded is repeatedly performed for each frame (scan
  • step S715 If the circularity C is greater than the threshold value V in the frame of the threshold value P% or more (step S715
  • the result of the correspondence between t and m over time is acquired, and it is repeatedly determined for each frame whether the correspondence is one-to-one (steps S7 16 to S719). Within this frame period, the correspondence is established with frames that are greater than or equal to the predetermined threshold P%.
  • step S720 If it is one-to-one (step S720: Yes), cell death and t, m
  • step S721 This is because it can be recognized that cell regions that can be regarded as identical over time remain rounded by cell death.
  • Step S715 No
  • this cell region R is not cell death
  • step S720: No If there is a one-to-one correspondence in F1 12 (step S720: No), it is determined that t, m is not a cell death for this cell region R (step S722).
  • M phase mitotic phase
  • step S722 When the cell shape is roughly circular, it is observed even in the mitotic phase (M phase) in the average cell cycle, not only in the case of cell death.
  • M phase mitotic phase
  • P% One-to-many mapping of cell regions over time, and the number of frames with one-to-one mapping is below the predetermined threshold P%
  • N which defines the number of frames corresponding to the time over time, is based on the imaging period that goes back N frames.
  • the predetermined threshold value P% is 100%.
  • FIG. 16 is a schematic flowchart showing a second processing procedure of the cell viability determination process.
  • the schematic flow chart shown in FIG. 16 is similar to the first processing procedure, and cells that have undergone cell death without being physically damaged during culturing have an approximately circular shape, and the activity is stopped as is. If the shape is maintained, the cell viability determination processing procedure is exemplified based on the characteristics of the cells.
  • the circularity C of the cell region R in each frame taken at different time points is acquired as a cell parameter, and the acquired circularity C is compared with a predetermined threshold V and t, m C.
  • the process of determining whether or not the threshold value V is exceeded is repeatedly performed for each frame (scan
  • the circularity C is as defined in the first processing procedure.
  • Frame force at time t N More than a predetermined threshold P% among multiple frames up to the previous frame
  • Cell death is determined for t and m (step S736). This is because it can be recognized that the cell region maintains a rounded state due to cell death.
  • Step S735 No
  • this cell region R is determined not to be a cell death
  • N which specifies the number of frames corresponding to the time over time, is N frames before.
  • the threshold P% For the predetermined threshold P%, the threshold P%
  • FIG. 17 is a schematic flowchart showing a third processing procedure of cell viability determination processing.
  • the schematic flowchart shown in FIG. 17 is for detecting dead cells that have floated in the culture medium A among cells that have undergone cell death!
  • the glass that has undergone cell death and the force of the slide glass 102 is peeled off from the in-focus position (the surface of the slide glass 102) to the near side in addition to the approximately circular shape as in the case of the processing procedure described above.
  • the cell position (depth of focus) relative to the slide glass 102 surface is comprehensively determined using the edge intensity and! Is to detect peeling.
  • An edge image is obtained by applying a general edge extraction filter, such as a Sobel filter, to the output result of the one-pass filter (steps S 741 and S742). Then, considering the boundary between any adjacent cell regions with respect to the cell region R belonging to the frame at time t, any adjacent t, m
  • a general edge extraction filter such as a Sobel filter
  • edge strength E defined by equation (6) is obtained as a cell parameter, and it is determined whether this edge strength E exceeds a predetermined threshold V (step S743).
  • E (P) represents the luminance value of the pixel P in the edge image
  • represents that the sum is obtained for all the pixels on the contour between the cell regions.
  • Step S745 Next, t, m C2 where the circularity C of the cell region R is greater than a predetermined threshold V
  • Such a cell death false-positive determination process is performed for each frame while going back in time from the frame at time t, m to which the target cell region R belongs, to a predetermined N frames.
  • step S 749: Yes If it is determined that the cell death is false positive in the upper frame (step S 749: Yes), it is determined that the cell is dead (step S750). On the other hand, if the number of frames determined to be false positive for cell death falls below the predetermined threshold P% (step S749: No), it is determined that cell death is not the case.
  • N which defines the number of frames corresponding to the time over time, is the average cell cycle of the cells to be observed during the imaging period going back N frames.
  • 3% it may be 100% as in the case of the threshold P%, etc.
  • FIG. 18 is a schematic flowchart showing a fourth processing procedure of cell viability determination processing.
  • the schematic flow chart shown in Fig. 18 shows the characteristics of a cell that undergoes cell death without being physically damaged during culture, contracts due to the surface tension of the cell membrane when rounded, and stops its activity as it is.
  • the cell survival / death determination processing procedure based on this is illustrated.
  • the apparent area decreases due to contraction, and as a result, the average brightness is higher than that in the case of living cells. It is.
  • the average brightness (ZM) of the cell region R in each frame taken at different time points is acquired as a cell parameter, and the acquired average brightness (ZM) is taken as t, m
  • step S761 to S764 The process of comparing with a predetermined threshold value V and determining whether or not the threshold value V is exceeded is repeated for each frame (steps S761 to S764). Multiple frames from time t to N frames before
  • the average luminance (ZM) is greater than the threshold value V at a predetermined threshold value of p% or more.
  • step S765 Yes
  • this cell region R is cell death (t, m
  • Step S766 This is because it can be recognized that the cell region becomes round due to cell death and maintains a bright brightness state as V.
  • the number of frames whose average luminance (ZM) is greater than the threshold V is less than the predetermined threshold P%
  • Step S765 No
  • N which defines the number of frames corresponding to the time over time, is the average cell period of the cells to be observed during the imaging period that goes back N frames.
  • FIG. 19 is a schematic flowchart showing a fifth processing procedure of cell viability determination processing.
  • the schematic flow chart shown in FIG. 19 is for detecting dead cells that are suspended in the culture medium A among cells that have undergone cell death! Cells that have undergone cell death and the slide glass 102 has also peeled off are observed with increased brightness because they move away from the focus position of the imaging (the surface of the slide glass 102) in the same way as in Procedure 3 above.
  • the image becomes a blurry image and the edge strength at the contour portion decreases, an example of the cell viability determination processing procedure based on the characteristics is illustrated.
  • An edge image is obtained by applying a general edge extraction filter such as a Sobel filter to the output result of the one-pass filter (steps S771 and S772). And the cell region R belonging to the frame at time t
  • step S773 determine the edge strength E defined by the above equation (6) as a cell parameter, and determine whether this edge strength E exceeds a predetermined threshold V
  • the average brightness (ZM) of the cell region R is a predetermined threshold V t, m
  • Step S776 Such cell death false-positive determination processing is performed in the target cell region. T, m F5 while going back in time from the frame at time t to which the area R belongs to a predetermined N frames before
  • step S777, S778, S772 to S776 If it is determined that the cell death is false positive in a frame with a predetermined threshold value P% or more (step S779:
  • step S780 it is determined that the cell is dead (step S780). On the other hand, if the number of frames determined to be false positive for cell death is below the predetermined threshold P% (step S779: No),
  • N which defines the number of frames corresponding to the time over time, is the average cell cycle of the cells to be observed during the imaging period that goes back N frames.
  • 5% it may be 100% as in the case of the threshold P%, etc.
  • any of these first to fifth treatment procedures may be used when determining whether a cell is alive or dead.
  • the cell viability determination of the present embodiment since it is possible to determine whether or not each cell has the power of cell death, it is possible to accurately grasp the number of live cells and dead cells, and regarding the cells in culture, Cell viability can be accurately determined. Furthermore, since cell viability is determined for each cell by measuring the cell meter over time, the process of cell death during the long-term culture is analyzed based on the data. Can be reproduced accurately. Such a determination does not require special dyes or special gene transfer, and can accurately determine the viability of cells while minimizing damage to cells during culture.
  • FIG. 20 is an explanatory diagram showing an example of the display of the processing result.
  • the display screen 3 14 provided in the display unit 304 has two display areas 314a and 314b.
  • the individual cell regions recognized in are displayed.
  • a labeling process is applied to the cell region, and a color, brightness, line type, and pattern that can be identified for each region are given and displayed as, for example, label images a to e.
  • An infrared light image or a fluorescent image in the same display range as the label image may be displayed in conjunction with each other, or a plurality of label images, infrared light images, and fluorescent images may be displayed in an overlapping manner. Alternatively, superimpose display may be performed.
  • the measured cell parameters are displayed as a line chart with time on the horizontal axis and parameter values on the vertical axis in the display area 314b.
  • FIG. 21 is an explanatory diagram showing an example in which a line chart of cell parameters corresponding to, for example, a label image c selected and designated as an instruction to be highlighted is also highlighted.
  • a line chart of cell parameters corresponding to, for example, a label image c selected and designated as an instruction to be highlighted is also highlighted.
  • the operator selects and emphasizes one of them, the corresponding other is also highlighted in synchronization.
  • cells that are determined to be dead are displayed with a visually distinguishable highlight. For example, graphics or characters having different colors, brightness, shapes, or patterns may be added or blinked. Alternatively, these displays that may be excluded from the display may be switched.
  • fluorescent protein is introduced into living cells C for observation, but if a luminescent gene, for example, a luciferase gene is introduced instead of the fluorescent protein, a luminescent image is taken instead of the fluorescent image. it can.
  • the excitation light illumination unit 203 and the dichroic mirror 204 are not necessary, and the configuration can be simplified.
  • the luminescence image is captured by a fluorescence imaging unit 207 as a cell light imaging unit.
  • the light emission image may be processed in the same procedure as the fluorescence image. In this way, cell image data can be acquired and observed even when the cell emits light other than infrared light, for example, when the cell emits light or emits fluorescence.
  • a fluorescent protein that is expressed without being localized in the cell is used.
  • the cell parameters measured by the parameter measuring unit 307 are not limited to those exemplified in the present embodiment, and further, the area, the perimeter, the circumscribed rectangle position, the X-direction ferret diameter, Y-direction flange diameter, minimum flange diameter, maximum flange diameter, average flange diameter, convex circumference, roundness (roundness), number of holes, roughness (ratio of convex circumference to circumference), Euler Number, length, width, flatness, sum of brightness, minimum brightness, maximum brightness, average brightness, standard deviation of brightness, dispersion of brightness, entropy, center of gravity, second moment, main axis direction, or There may be multiple.
  • the parameter measurement unit 307 performs the cell number, the minimum intercellular distance, the maximum intercellular distance, the average intercellular distance, the standard deviation of the intercellular distance, One or more of the dispersion of the intercellular distance and the minimum value, maximum value, average value, standard deviation, fractional difference, sum, intermediate value of each parameter measured for each cell may be obtained.
  • a plurality of living cells labeled with a fluorescent substance are imaged over time, the individual cells are recognized, and the change in position over time is tracked and given to the cells. It is possible to realize a device that accurately determines cell viability by minimizing damage and without using special dyes or special gene transfer.
  • the processing procedure by each unit such as the cell recognition unit 306, the parameter measurement unit 307, the cell tracking unit 308, and the cell viability determination unit 313 is executed by a microcomputer such as the control unit 301 prepared in advance. It may be realized by doing so.
  • This cell observation program can also be distributed via a network such as the Internet. Further, the cell observation program can be executed by being recorded on a recording medium readable by a microcomputer such as a hard disk, FD, CD-ROM, MO, DVD, etc., and being read by the recording medium with the microcomputer.
  • the cell observation device, the cell observation method, and the cell observation program according to the present invention are useful for observing living cells over time while culturing them for a long period of time. It is suitable for judging the life and death of cells inside.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pathology (AREA)
  • Multimedia (AREA)
  • Sustainable Development (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

 長期培養中の細胞に与えるダメージを最小限に抑えつつ、特殊な染料や特殊な遺伝子の導入を要せず、培養中の細胞の生死を精度よく判定できるようにする。培養中に物理的な損傷を受けずに細胞死を起こした細胞は形状が概略円形となり、そのまま活動を停止し、概略円形の形状を維持する点に着目し、複数の時点で撮影されて計測された細胞領域Rt,mの特徴を示す細胞パラメータとしての円形度を閾値と比較し(ステップS732~S735)、細胞の生死を判定する(ステップS736,S737)ことで、特殊な染料や特殊な遺伝子の導入を要せず、長期培養中の細胞に与えるダメージを最小限に抑えつつ、培養中の細胞の生死を精度よく判定できるようにした。

Description

明 細 書
細胞観察装置、細胞観察方法、及び細胞観察プログラム
技術分野
[0001] 本発明は、生細胞を長期間培養しながら経時的に観察する細胞観察装置、細胞観 察方法、及び細胞観察プログラムに関するものである。
背景技術
[0002] 一般に、新 、薬品開発や細胞の培養などの分野にお!、て、細胞死の把握は、成 分の適否、培養条件の決定等のために重要な要素の一つである。ここで、細胞死は 、アポトーシス(プログラム細胞死)とネクロシス (壊死)とに分類される。アポトーシスは 、プロテアーゼ (タンパク質分解酵素)の活性ィ匕によって引き起こされ、発生や細胞数 の調節にも関与する等、細胞の正常な活動の一環である。一方、ネクロシスは、外的 な要因等による突発的な細胞の死であり、物理的な損傷の他、光、温度、化学物質 等の毒性によって細胞死が引き起こされる場合が相当する。
[0003] 従来、細胞死を検出するために様々な手法が提案されている。特許文献 1は、細胞 に細胞死判定液を適用し、細胞死の発生を光学的かつ経時的に観察する概念を開 示している。また、特許文献 2は、 2種類の蛍光染料、すなわち生細菌標識用の蛍光 染料と死細菌標識用の蛍光染料とを用いて細菌を標識し、これにパルス励起光を照 射して蛍光を受光し、電気的に処理することで生死細菌数を精度よく計数する構成 を開示している。特許文献 3は、死細胞を選択的に染色して観察する手法に関して、 細胞接着性膜パターン上に細胞を接着させて培養する点を特徴とする技術を開示し ており、これにより、細胞数の計数が容易となり、細胞の正確な生存率を観測すること ができるという効果を奏している。生存率の正確な把握は、毒性試験における毒性の 定量評価に重要である。
[0004] 一方、特許文献 4は、細胞死が起きると細胞外に漏洩するような特殊なマーカータ ンパク質を発現する遺伝子を細胞に導入し、マーカータンパク質の挙動を観察する ことで細胞死を検出する技術を開示している。細胞外でマーカータンパク質が観察さ れれば、それは細胞死があったことを意味する。 [0005] 特許文献 1 :特開平 5— 184579号公報
特許文献 2 :特開 2000— 316596号公報
特許文献 3:特許第 3077628号公報
特許文献 4:国際公開第 02Z052032号パンフレット
発明の開示
発明が解決しょうとする課題
[0006] ところで、生細胞を長期培養しながら経時的に観察する場合、細胞へのダメージは 最小限に抑える必要がある。化学物質の投与を含めた外的な環境変動は、細胞にと つて程度の違いはあるものの少な力もず毒性を有し、細胞の生存期間を縮める一因 となり得る。すなわち、細胞死を観察するための試薬は、それ自体が細胞死の原因と なり得る。ところが、特許文献 1〜3のものは、死細胞を標識するために染料や試薬を 投与しなくてはならず、長期培養中の生細胞にダメージを与えてしまうものであり、生 細胞が培養過程で死滅する様子を精度よく観察するのには適さない。
[0007] 一方、特許文献 4のものは、マーカータンパク質を発現させて標識する方式であり、 染料などを用いる場合と比較して毒性は低いものの、細胞死を観察するために、特 別な遺伝子の導入を必須とする。
[0008] 本発明は、上記に鑑みてなされたものであって、長期培養中の細胞に与えるダメー ジを最小限に抑えつつ、特殊な染料や特殊な遺伝子の導入を要せず、培養中の細 胞の生死を精度よく判定できる細胞観察装置、細胞観察方法、及び細胞観察プログ ラムを提供することを目的とする。
課題を解決するための手段
[0009] 上述した課題を解決し、目的を達成するために、請求項 1に係る細胞観察装置は、 複数の時点で細胞を撮影して得られたそれぞれの画像の細胞画像データから細胞 を示す細胞領域を認識する細胞認識手段と、該細胞認識手段で認識した前記細胞 領域の特徴を示す細胞パラメータを計測する細胞パラメータ計測手段と、該細胞パ ラメータ計測手段で計測した前記細胞パラメータと閾値とを比較して前記細胞の生死 を判定する細胞生死判定手段と、を備えたことを特徴とする。
[0010] 請求項 2に係る細胞観察装置は、上記発明にお 、て、異なる時点で撮影されたそ れぞれの画像の前記細胞画像データから認識された細胞領域同士の対応付けを行 う細胞追跡手段をさらに備え、前記細胞生死判定手段は、前記細胞追跡手段で対 応付けられたそれぞれの細胞領域について前記細胞パラメータと前記閾値との比較 を繰り返し行うことで前記細胞の生死を判定することを特徴とする。
[0011] 請求項 3に係る細胞観察装置は、上記発明において、前記細胞生死判定手段は、 繰り返し行った比較の結果として同一の結論となる割合が所定の割合を下回る場合 には前記細胞追跡手段で対応付けられた前記細胞領域で示される前記細胞が死滅 して!/、な 、と判定することを特徴とする。
[0012] 請求項 4に係る細胞観察装置は、上記発明にお!/、て、前記細胞生死判定手段は、 前記細胞追跡手段で 1つの前記細胞領域に対して複数の前記細胞領域が対応付け られて 、るときには該 1つの前記細胞領域で示される前記細胞が死滅して 、な 、と 判定することを特徴とする。
[0013] 請求項 5に係る細胞観察装置は、上記発明にお!/、て、前記細胞生死判定手段は、 観察対象となる前記細胞の平均的な細胞周期における分裂期より長くなるように設 定された撮影期間に渡る複数の時点のそれぞれの前記細胞領域力 計測された前 記細胞パラメータと前記閾値との比較を繰り返し行うことで前記細胞の生死を判定す ることを特徴とする。
[0014] 請求項 6に係る細胞観察装置は、上記発明にお 、て、前記細胞パラメータは、少な くとも前記細胞領域の円形度を含むことを特徴とする。
[0015] 請求項 7に係る細胞観察装置は、上記発明にお 、て、前記細胞パラメータは、少な くとも前記細胞領域の平均輝度を含むことを特徴とする。
[0016] 請求項 8に係る細胞観察装置は、上記発明にお 、て、前記細胞パラメータは、少な くとも前記細胞領域のエッジ強度を含むことを特徴とする。
[0017] 請求項 9に係る細胞観察装置は、上記発明にお!/ヽて、細胞を培養する培養手段を さらに備えたことを特徴とする。
[0018] 請求項 10に係る細胞観察装置は、上記発明において、前記細胞は、蛍光タンパク を導入した細胞であることを特徴とする。
[0019] 請求項 11に係る細胞観察装置は、上記発明にお 、て、前記細胞は、局在化せず に発現する蛍光タンパクを導入した細胞であることを特徴とする。
[0020] 請求項 12に係る細胞観察装置は、上記発明にお 、て、複数の時点で細胞を撮影 した画像を取得する撮像手段をさらに備えたことを特徴とする。
[0021] 請求項 13に係る細胞観察プログラムは、細胞観察装置で細胞の観察を行う細胞観 察プログラムであって、前記細胞観察装置に、複数の時点で細胞を撮影して得られ たそれぞれの画像の細胞画像データから細胞を示す細胞領域を認識する細胞認識 ステップと、該細胞認識ステップで認識した前記細胞領域の特徴を示す細胞パラメ ータを計測する細胞パラメータ計測ステップと、該細胞パラメータ計測ステップで計測 した前記細胞パラメータと閾値とを比較して前記細胞の生死を判定する細胞生死判 定ステップと、を実行させることを特徴とする。
[0022] 請求項 14に係る細胞観察プログラムは、上記発明にお 、て、異なる時点で撮影さ れたそれぞれの画像の前記細胞画像データから認識された細胞領域同士の対応付 けを行う細胞追跡ステップをさらに含み、前記細胞生死判定ステップは、前記細胞追 跡ステップで対応付けられたそれぞれの細胞領域について前記細胞パラメータと前 記閾値との比較を繰り返し行うことで前記細胞の生死を判定することを特徴とする。
[0023] 請求項 15に係る細胞観察プログラムは、上記発明にお 、て、前記細胞生死判定ス テツプは、繰り返し行った比較の結果として同一の結論となる割合が所定の割合を下 回る場合には前記細胞追跡ステップで対応付けられた前記細胞領域で示される前 記細胞が死滅して ヽな ヽと判定することを特徴とする。
[0024] 請求項 16に係る細胞観察プログラムは、上記発明にお 、て、前記細胞生死判定ス テツプは、前記細胞追跡ステップで 1つの前記細胞領域に対して複数の前記細胞領 域が対応付けられているときには該 1つの前記細胞領域で示される前記細胞が死滅 して!/、な 、と判定することを特徴とする。
[0025] 請求項 17に係る細胞観察プログラムは、上記発明にお 、て、前記細胞生死判定ス テツプは、観察対象となる前記細胞の平均的な細胞周期における分裂期より長くなる ように設定された撮影期間に渡る複数の時点のそれぞれの前記細胞領域力 計測さ れた前記細胞パラメータと前記閾値との比較を繰り返し行うことで前記細胞の生死を 判定することを特徴とする。 [0026] 請求項 18に係る細胞観察プログラムは、上記発明にお 、て、前記細胞パラメータ は、少なくとも前記細胞領域の円形度を含むことを特徴とする。
[0027] 請求項 19に係る細胞観察プログラムは、上記発明にお 、て、前記細胞パラメータ は、少なくとも前記細胞領域の平均輝度を含むことを特徴とする。
[0028] 請求項 20に係る細胞観察プログラムは、上記発明にお 、て、前記細胞パラメータ は、少なくとも前記細胞領域のエッジ強度を含むことを特徴とする。
[0029] 請求項 21に係る細胞観察方法は、細胞を培養する培養手段と、該培養手段に収 容されている細胞を撮影する撮像手段とを備えた細胞観察装置で細胞の観察を行う 細胞観察方法であって、前記培養手段で培養して!/ヽる最中の細胞を前記撮像手段 によって複数の時点で撮影して得られたそれぞれの画像の細胞画像データから細胞 を示す細胞領域を認識する細胞認識工程と、該細胞認識工程で認識した前記細胞 領域の特徴を示す細胞パラメータを計測する細胞パラメータ計測工程と、該細胞パ ラメータ計測工程で計測した前記細胞パラメータと閾値とを比較して前記細胞の生死 を判定する細胞生死判定工程と、を備えたことを特徴とする。
[0030] 請求項 22に係る細胞観察方法は、上記発明にお 、て、異なる時点で撮影されたそ れぞれの画像の前記細胞画像データから認識された細胞領域同士の対応付けを行 う細胞追跡工程をさらに含み、前記細胞生死判定工程は、前記細胞追跡工程で対 応付けられたそれぞれの細胞領域について前記細胞パラメータと前記閾値との比較 を繰り返し行うことで前記細胞の生死を判定することを特徴とする。
発明の効果
[0031] 本発明に係る細胞観察装置、細胞観察方法、及び細胞観察プログラムによれば、 複数の時点で撮影されて計測された細胞領域の特徴を示す細胞パラメータを閾値と 比較することで、細胞の生死を判定するようにしたので、長期培養中の細胞に与える ダメージを最小限に抑えつつ、特殊な染料や遺伝子の導入を要せず、培養中の細 胞の生死を精度よく判定することができるという効果を奏する。カロえて、細胞追跡によ つて対応付けられたそれぞれの細胞領域についてそれぞれの細胞パラメータと閾値 との比較を繰り返し行って細胞の生死を判定することで、個々の細胞の生死の判定 を一層正確に行うことができると 、う効果を奏する。 図面の簡単な説明
[図 1]図 1は、本発明の実施の形態に係る細胞観察装置の構成例を示す概略ブロッ ク図である。
[図 2]図 2は、培養部の構成例を示す水平断面図である。
[図 3]図 3は、培養部の構成例を示す縦断正面図である。
[図 4]図 4は、整流板の構成例を示す斜視図である。
[図 5]図 5は、培養部側と撮像部側との境界部分の断熱構成例を示す断面図である。
[図 6]図 6は、蛍光撮像された培養中の細胞画像の一例を示す説明図である。
[図 7]図 7は、複数の視野 (視野 1〜N)による撮像の様子を示す説明図である。
[図 8]図 8は、各視野 1〜Nの撮像タイミング例を示す説明図である。
[図 9]図 9は、画像データ処理例を示す概略フローチャートである。
[図 10]図 10は、先鋭ィ匕フィルタによる重み付け例を示す図である。
[図 11]図 11は、領域統合の第 1の手法例を示す概略フローチャートである。
[図 12]図 12は、領域統合の第 2の手法例を示す概略フローチャートである。
[図 13]図 13は、記録部に記録された細胞パラメータの計測結果例を示す説明図であ る。
[図 14]図 14は、 mと nの可能な組み合わせについて評価値を計算した結果を示す説 明図である。
[図 15]図 15は、細胞生死定処理の第 1の処理手順を示す概略フローチャートである [図 16]図 16は、細胞生死定処理の第 2の処理手順を示す概略フローチャートである [図 17]図 17は、細胞生死定処理の第 3の処理手順を示す概略フローチャートである
[図 18]図 18は、細胞生死定処理の第 4の処理手順を示す概略フローチャートである
[図 19]図 19は、細胞生死定処理の第 5の処理手順を示す概略フローチャートである [図 20]図 20は、処理結果の表示の一例を示す説明図である。
[図 21]図 21は、強調表示の一例を示す説明図である。
符号の説明
[0033] 101 培養部
201 撮像部
306 細胞認識部
307 パラメータ計測部
308 細胞追跡部
313 細胞生死判定部
発明を実施するための最良の形態
[0034] 以下に添付図面を参照して、本発明に係る好適な実施の形態について詳述する。
本発明の実施の形態に係る細胞観察装置は、蛍光タンパクを導入した複数の生細 胞を長期間培養したまま撮像し、個々の細胞の領域を認識し、経時的な位置変化を 追尾しつつ、個々の細胞の特徴を示す細胞パラメータを独立に計測した上で、さらに 細胞の生死を検出する。
[0035] 図 1は、本実施の形態に係る細胞観察装置の構成例を示す概略ブロック図である。
本実施の形態に係る細胞観察装置は、概略的には、細胞を培養する培養部 101と、 この培養部 101に収容されている細胞を撮像する撮像部 201と、細胞観察装置の全 体の処理及び動作を制御する制御部 301と、撮像部 201で撮像した画像のデータ や処理後のデータなどの各種データを集中して一時的或いは永続的に記録する記 録部 302と、各種情報の入力を受ける入力部 303と、画像情報等の各種情報を表示 して操作者に提示する表示部 304とを備える他、前処理部 305、細胞認識部 306、 パラメータ計測部 307、細胞追跡部 308、露出検出部 309、撮像回数計数部 310、 占有面積算出部 311、合焦検出部 312、及び細胞生死判定部 313を備える。これら の各部 302〜313は、制御部 301に接続され、制御部 301により制御される。なお、 図 1では、制御部 301から培養部 101や撮像部 201に対する制御接続は特に図示し ていない。また、制御部 301、前処理部 305、細胞認識部 306、パラメータ計測部 30 7、細胞追跡部 308、露出検出部 309、撮像回数計数部 310、占有面積算出部 311 、合焦検出部 312、及び細胞生死判定部 313によって行われる各処理は、細胞観察 装置に搭載された CPUカ¾OM等のメモリに記憶された処理プログラムに基づいて、 適宜 RAM等の記憶装置に必要なデータを書き込みながら行われる。
[0036] まず、培養部 101について説明する。スライドガラス 102は、局在化せずに発現す る蛍光タンパクをあらかじめ導入した複数の生細胞 Cを保持し、培養部 101内に設置 されている。この培養部 101は、例えば特開 2004— 113175号公報によって開示さ れた培養容器と同様の構成である。この場合、蛍光タンパクは局在化しないものであ れば何でも良ぐ一般的なクラゲ由来の蛍光タンパク等が利用可能で、一例として B Dバイオサイエンス 'クロンテック社の pEGFP—Nlを使用することができる。
[0037] 図 2は、培養部 101の構成例を示す水平断面図であり、図 3は、培養部 101の構成 例を示す縦断正面図である。培養手段としての培養部 101は、図 2及び図 3に示すよ うに、スライドガラス 102を内部に収容可能な表裏貫通孔 103を有する熱伝導に優れ た材質、例えば、ステンレス製又はアルミニウム製の筐体 104と、その筐体 104の表 裏貫通孔 103を塞ぐ光学的に平滑な 2枚のガラス板で形成された観察窓 105と、筐 体 104内部に培養液 Aを供給する培養液供給パイプ 106と、筐体 104内部から不要 となった培養液 Aを排出する培養液排出パイプ 107と、筐体 104への培養液 Aの出 入口に設けられた 2つの整流板 108とを備えて 、る。
[0038] 生細胞 Cを健全に育成するためには、スライドガラス 102上の全域に渡って常に新 鮮な培養液 Aが供給されることが望ましい。しかし、培養液 Aの流れが急激な場合、 スライドガラス 102上に着床した生細胞 Cが剥離する可能性がある。このため、本実 施の形態は、各ノイブ 106, 107付近に整流板 108を設置し、培養液 Aの流れを均 一に分散、回収できるようにしている。
[0039] 図 4は、整流板 108の構成例を示す斜視図である。整流板 108は、図 4に示すよう に、厚さ方向に複数の貫通孔 108aを形成した多孔性の部材である。入口側の整流 板 108は、培養液供給パイプ 106から流入する培養液 Aを複数の貫通孔 108aに分 散させて流通させ、出口側の整流板 108は、培養液排出パイプ 107を経て一気に流 出しようとする培養液 Aを複数の貫通孔 108aに分散させて流通させる。これにより、 集中的な流れを分散流に変換し、生細胞 Cが配置されているスライドガラス 102近傍 にお 、て、一定の流速及び流量で培養液 Aを流動させることができる。
[0040] 培養部 101には、温度制御ユニット 109が取り付けられ、培養部 101の周囲に温水 Wを流通させる温水流路 110を形成する。温水流路 110に温水 Wを循環させること により、筐体 104を介して温水の熱を培養液 Aに伝達させる。この時、図示しない温 度センサ力もの温度情報が制御部 301に所定時間間隔毎に伝達され、制御部 301 は培養部 101内の温度が 37±0. 5°Cの範囲に維持されるように温水 Wの温度と流 量を制御する。
[0041] また、図示しない pHセンサによって培養液 Aの pH情報が制御部 301に所定時間 間隔毎に伝達され、制御部 301は培養液の pHが所定の範囲に維持されるように培 養液 A内の CO濃度を制御する。
2
[0042] 未使用の培養液は、図示しな!ヽ培養液保存部に保存されており、経時的な劣化を 抑えるため、図示しない保冷機構で約 4°Cに保冷される。保冷された培養液は、図示 しな 、培養液加温機構によって約 37°Cに加温された後、培養液供給パイプ 106を 通じて筐体 104内に供給される。
[0043] 培養液排出パイプ 107を通じて排出された培養液は、図示しない廃液保存部に保 存される。排出された培養液の一部を新鮮な培養液と混合して筐体 104内に供給す る構成としても良ぐこの場合、培養液の交換に伴う細胞への衝撃を和らげ、より長期 の培養に適した構成となる。
[0044] 図 5は、培養部 101側と撮像部 201側との境界部分の断熱構成例を示す断面図で ある。培養部 101の発する熱は、断熱手段としての断熱部 111を設けることで、撮像 部 201側には伝達しな ヽようにする。培養部 101と撮像部 201との断熱を行う断熱部 111の設置個所は、種々考えられる力 本実施の形態では、培養部 101の筐体 104 と撮像部 201を構成する撮像素子との間に断熱部 111を設置して!/ヽる。断熱部 111 は、断熱性が高く伸縮性のある部材、例えばゴム、シリコン、ポリウレタン等を使用し たシート状であって、対物レンズ 202と概略同じ直径の貫通孔 112が設けられている 。培養部 101と対物レンズ 202とは貫通孔 112を通して光学的に接続されており、自 由に光線をやり取りできる。一方、培養部 101の発する熱は断熱部 111によってその ほとんどが遮られる。一般に、光学系は 25°C前後での使用を前提として調整されて おり、培養部 101からの熱で加熱されると想定した性能を発揮できない。特に、撮像 部 201の備える CCD等の固体撮像素子は、高温になる程ノイズが増加して SZNが 劣化するため、微弱な蛍光を捉えるためにはできるだけ低温 (ただし、結露させない) に保つ必要がある。
[0045] 培養手段としては、培養部 101のように培養液の交換を行うことができるものを用い るとより好ましいが、一般的なゥエルプレートを用いて細胞を観察することも可能であ る。ただし、一般的なゥエルプレートを用いた場合には、環境状態を維持したまま培 養液を交換することができないため、培養部 101を用いる場合に比べて、細胞の代 謝に伴う培養液の劣化の影響で培養期間は短期に制限されてしまう。
[0046] 以上の構成により、培養部 101内部の温度と培養液 Aの pHはほぼ一定に保たれ ている。測定試料となる生細胞の一例として、ヒーラ細胞を用いる。ヒーラ細胞は、子 宫頸癌由来であり、創薬毒性試験等で広く用いられている。導入する蛍光タンパクの 種類は、アツセィの内容に応じて変更しても良い。
[0047] 次に、撮像部 201について説明する。撮像部 201は、励起光照明部 203と、ダイク 口イツクミラー 204と、対物光学系と 205と、結像光学系 206と、蛍光撮像部 207と、 赤外光照明部 208と、ダイクロイツクミラー 209と、結像光学系 210と、赤外光撮像部 211とを有して構成されている。すなわち、本実施の形態の撮像部 201は、蛍光撮 像系と赤外光撮像系とを有する構成とされている。
[0048] まず、励起光照明部 203から放射された光は、ダイクロイツクミラー 204によって反 射され、対物レンズ 202を含む対物光学系 205と観察窓 105を経てスライドガラス 10 2に照射される。照射された光を励起光として、スライドガラス 102上の生細胞 Cに導 入された蛍光タンパク力 蛍光が発せられ、励起光の反射光と蛍光は共に観察窓 10 5から射出される。射出された光は、再度対物光学系 205を通過し、ダイクロイツクミラ 一 204に到達するが、蛍光のみが透過し、励起光の反射光は遮断される。ダイクロイ ックミラー 204を透過した蛍光は、結像光学系 206によって細胞光撮像手段としての 蛍光撮像部 207が備える CCDや CMOS等の固体撮像素子上に拡大投影されて結 像する。
[0049] 結像した測定試料の蛍光像を蛍光撮像部 207が備える固体撮像素子によって画 像データに変換し、制御部 301による制御の下に記録部 302において一時的或い は永続的に記録する。図 6は、蛍光撮像された培養中の細胞画像の一例を示す説 明図である。
[0050] また、赤外光照明部 208から放射された光は、一方の観察窓 105を経てスライドガ ラス 102に照射され、その透過光が他方の観察窓 105から射出される。射出された 光は、対物光学系 205を通過し、ダイクロイツクミラー 209に到達する力 赤外光は全 て反射される。反射された赤外光は、結像光学系 210によって赤外光撮像手段とし ての赤外光撮像部 211が備える CCDや CMOS等の固体撮像素子上に拡大投影さ れて結像する。結像した測定試料の赤外光像を赤外光撮像部 211が備える CCDや CMOS等の固体撮像素子によって画像データに変換し、制御部 301による制御の 下に、記録部 302において一時的或いは永続的に記録する。
[0051] 一般に、蛍光タンパクは全ての細胞に均等に導入できる訳ではなぐまた導入でき た場合でも直ちに発現するとは限らないため、細胞の全体像を経時的に安定して観 察する手段が必要であり、本実施の形態では赤外光像がこれに当たる。赤外光像を 表示する場合、初期状態では蛍光タンパクが殆ど或いは全く発現して 、な 、測定試 料であっても、細胞像を視認しながら観察範囲の確認や調整を行える。
[0052] 赤外光は、可視光と比較して生細胞に対する光毒性が低いため、可視光を用いて 撮像した場合と比較して、より長期間細胞の活性を維持することができる。また、蛍光 撮像用の励起光として可視光全域を使用できるようになるため、利用可能な蛍光タン パクの制約が緩和される。
[0053] このように、本実施の形態の撮像部 201によれば、蛍光撮像部 207や赤外光撮像 部 211を用いてスライドガラス 102上の生細胞 Cを撮像することで、生細胞 Cを撮像し た画像の画像データである細胞画像データを取得することが可能である。本実施の 形態では、制御部 301の制御により、あら力じめ設定した時間間隔で自動的に蛍光 撮像部 207によって撮像を行う。そして、細胞の様子を観察したいときに、必要に応 じて、ユーザが所望の時期に赤外光撮像部 211を用いた生細胞 Cの観察を行うこと ができる。なお、赤外光撮像部 211による撮像は、ユーザが所望の時期に行うばかり ではなぐ制御部 301の制御によって、蛍光撮像部 207による撮像と同期したタイミン グで行えば、赤外光像と蛍光像との対応付けが容易になるだけでなぐ両画像に含 まれる生細胞 C同士の対応付けも容易になる。その結果、生細胞 Cを長期に培養し ながら観察する場合に、細胞の活性低下を抑えながら、効率よく生細胞 cの観察を 行うことが可能となる。蛍光像や赤外光像を撮像した時間を、表示部 304に表示する 機能を付加してもよい。
[0054] 本実施の形態の構成は、蛍光撮像部 207と赤外光撮像部 211とを備えるため、蛍 光像の撮像と赤外光像の撮像とを並行して行うことができ、両者を切り替えながら撮 像する場合と比較して、撮像に要する時間が大幅に短縮され、切り替え用の駆動部 も不要である。
[0055] 赤外光照明部 208にリング絞りをカ卩え、ダイクロイツクミラー 209から結像光学系 21 0に至る光路に位相板を挿入すれば、透過観察に代えて位相差観察を行うことがで きる。位相差観察は、透過観察と比較して、よりコントラストの高い画像が得られる。
[0056] 赤外光照明部 208にポラライザと DIC (DifferentiallnterferenceContrast)素子を揷 入し、ダイクロイツクミラー 209から結像光学系 210に至る光路に DICスライダとアナラ ィザを挿入すれば、透過観察に代えて微分干渉観察を行うことができる。微分干渉 観察は、透過観察と比較して、よりコントラストの高い画像が得られる。
[0057] ステージ搬送機構 113によって、スライドガラス 102と、蛍光撮像部 207や赤外光 撮像部 211が備える固体撮像素子との相対位置を変化させながら、各視野 (撮像範 囲)について必要な回数だけ撮像と記録を反復し、細胞画像データを取得する。複 数の視野を切り替えながら撮像する場合は、各視野でのステージ位置を記録してお き、各視野の 2回目以降の撮像に先立って、ステージ搬送機構 113によりステージ位 置を再現する。図 7は、複数の視野 (視野 1〜N)による撮像の様子を示す説明図で ある。各視野の位置は任意であり、また、特に格子状に限定されるものではない。ま た、視野同士に重なりがあってもよい。図 8は、各視野 1〜Nの撮像タイミング例を示 す説明図である。各視野 1〜Nは、撮像間隔が概略一定となるように所定の順番で撮 像を行う。
[0058] ここで、露出検出部 309により画像データ撮像時の露出が適正であった力否かを 検出する。撮像時の露出が不適正だった場合、直ちに或いは他の任意の観察部位 の撮像が完了した時点で、露出不適正部位の撮像をやり直す。この際、露出条件を 変更しても良い。同様に、合焦検出部 312により画像データ撮像時の焦点合わせが 適正であつたか否かを検出する。撮像時の焦点合わせが不適正だった場合、直ちに 或いは他の任意の観察部位の撮像が完了した時点で、合焦不適正部位の撮像をや り直す。この際、焦点合わせの条件を変更しても良い。
[0059] また、培養部 101内は培養液 Aが循環して ヽるが、撮像を行うタイミングに合わせて 一時的に循環を停止させても良い。これにより、培養液の流通に由来する撮像時の 背景の揺らぎを回避することができる。
[0060] さらに、所定の視野における撮像回数を撮像時点認識手段としての撮像回数計数 部 310により計数し、所定の視野の所定回数 (フレーム)の撮像後、報知手段として の表示部 304に画像を表示し、その内容について操作者に確認を求めるようにして もよい。内容に問題が無いと操作者が判断した場合は処理を継続し、問題ありと判断 した場合は、撮像条件の再設定について操作者力もの指示を受け付ける。或いは、 単に処理を中止してもよい。一定時間経っても操作者からの応答が無い場合は、既 定の指示に従い、処理の継続或いは中止を選択する。
[0061] なお、本実施の形態では、蛍光撮像部 207 (又は、赤外光撮像部 211)による撮像 回数を計数し、所定回数の撮像後に操作者に画像の確認を求めるようにしたが、撮 像回数を基準にするだけではなぐ撮像時点認識手段として、観察開始から所定時 間の経過を計測する手段 (例えば、細胞画像データを撮像した時刻の情報も取得し て、その時刻があら力じめ定めた時刻を超えた場合に、所定時点の細胞画像データ を取得したことを認識する)を設けることで、画像の確認を行うようにしてもょ 、。
[0062] 培養期間が長期となると、培養中の細胞に関して、想定した範囲を逸脱した増殖、 死滅、画像輝度値の過大等が起こる可能性があり、或る時点で細胞観察にとって適 切な画像を取得できなくなる場合も予想される。そこで、上述のように、所定の時点が 経過したことを操作者に認識させたり、処理を中止したりすることで、操作者はそれま でに取得した画像や、その時点の画像を確認して、その後の細胞観察を適切に行う ことが可能となる。
[0063] っ 、で、撮像した画像のうち、蛍光撮像部 207で取得した画像データの処理手順 について説明する。図 9は、制御部 301による制御の下に、前処理部 305等により実 行される画像データ処理例を示す概略フローチャートである。前述したような撮像部 201による細胞画像の撮像 (ステップ S1)に引き続き、前処理部 305で前処理を行い (ステップ S2)、細胞認識手段としての細胞認識部 306で細胞を認識する (ステップ S 3)。ついで、認識した細胞の特徴を示す細胞パラメータを細胞パラメータ計測手段と してのパラメータ計測部 307で細胞画像データに基づき計測する (ステップ S4)。さら に、細胞追跡手段としての細胞追跡部 308で、異なる時点で撮像された画像の細胞 画像データ力 認識された異なる時点の細胞同士の同一性を細胞パラメータに基づ いて判別する (ステップ S5)。或いは、さらに追跡結果を修正する (ステップ S6)。さら に、細胞生死判定手段としての細胞生死判定部 313で、細胞の生死を判定する (ス テツプ S7)。そして、得られた追跡結果、生死判定結果等を表示部 304に表示させ( ステップ S8)、観察が終了するまで (ステップ S9 : Yes)、上述の処理ステップを同様 に繰り返す。
[0064] なお、ステップ S1 (又は、ステップ S1及びステップ S2)の処理を、複数の時期にお いてあら力じめ行っておいて、各時期に取得した画像データに対するステップ S 2以 降 (又は、ステップ S3以降)の処理を後にまとめて行うようにしてもよい。このように、 複数の時期において撮像した画像データをあらカゝじめ取得しておいて、後にまとめて 画像データの処理を行うようにする場合、撮像と画像データの処理とを並行して行う 場合と比較し、装置構成が単純化され、安価な計算機を用いて応答性と安定性を向 上させることができる。
[0065] 各処理ステップの内容を個別に説明する。撮像し記録部 302に記録された細胞画 像データを、ステップ S2では、前処理部 305において以下のように処理する。まず、 細胞画像データにエッジ保存型のローパスフィルタを適用する。エッジ保存型のロー パスフィルタは、エッジ部における空間周波数高周波成分の劣化を抑えつつ、エッジ 部以外に平滑ィ匕の効果をもたらすものであり、細胞の輪郭情報を保存したままノイズ 除去ができる点で、本手法に好適である。
[0066] このような要件を満たすフィルタとして、バイラテラルフィルタ(Tomasi & Manduchi," Bilateral Filtering for Gray andし olor Images , Proceedings of the 1998 IEEE Intern ational Conference on Computer Vision, Bombay, India参照)力 S知られており、本手 法でもこれを使用する。
[0067] 次に、エッジ保存型ローパスフィルタ適用後の細胞画像データに、さらにエッジ強 調のための先鋭ィ匕フィルタを適用する。先鋭ィ匕フィルタは、注目画素とその近傍の 8 画素に例えば図 10に示すような重み付けを行って総和を求めるフィルタであり、これ を画素毎に反復実行することで、先鋭ィ匕処理が実現できる。
[0068] ステップ S3では、前処理後の細胞画像データを、細胞認識部 306において以下の ような手順で分析し、個々の細胞の占める領域を認識する。この手順に従えば、細胞 が互いに隣接せずに散在する場合だけでなぐ細胞が互いに隣接し、密集している 場合にも個々の細胞の占める領域を認識できる。また、細胞領域のエッジが明瞭で ない場合にも適用することができる。
[0069] まず、画像を高輝度画素の集中する領域毎に領域分割する。一般に、蛍光画像に おいて、細胞は高輝度画素の塊の様相を呈するため、高輝度画素の集中する領域( 塊)毎に領域分割することは、画像を細胞毎の領域に分割することに相当する。
[0070] このような要件を満たす処理として、分水嶺領域分割が知られて 、る。本実施の形 態の細胞認識の処理手順として、この分水嶺領域分割方式を使用する (Vincent & S oille , Watersheds in Digital Spaces: An Efficient Algontnm Based on Immersion bi mulations", IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INT ELLIGENCE, VOL.13, N0.6, JUNE 1991参照)。原論文における分水嶺領域分割は 、画像を低輝度画素の集中する領域に分割するものであるが、ここでは輝度を反転 して考え、高輝度領域の分割に適用する。得られた領域分割結果における個々の領 域が細胞領域となる。
[0071] ここで、隣接する細胞領域の特性に応じて複数の細胞領域を統合し新たな 1つの 細胞領域とするような、統合処理を行っても良い。分水嶺領域分割処理の結果は、 一般に、小領域に分割され易い傾向があるため、統合処理を行うことで認識結果の 品質を高めることができる。
[0072] 領域統合の第 1の手法を、図 11を参照して説明する。図 11は、領域統合の第 1の 手法例を示す概略フローチャートである。まず、各細胞領域において輝度が最大とな る点、すなわち輝度の頂点を求める (ステップ S311)。次に、隣接する任意の 2つの 細胞領域を選択し (ステップ S312)、それらの頂点間を結ぶ線分に沿った道のり距 離 D を求める (ステップ S313)。道のり距離 D の計算には式 (1)を用いる。
UW UW
[0073] [数 1]
DUw =∑(I(P)- I(^)) … (1 )
P
[0074] ここで、 I(P)は、エッジ保存型ローノ スフィルタ適用後の画像における画素 Pの輝度 値、 Zl(P )は、エッジ保存型ローパスフィルタ適用後の画像における 2つの頂点の輝
S
度値の平均、∑は、頂点間を結ぶ線分の全画素について総和を求めることを表す。
[0075] ステップ S313で、隣接する細胞領域の全ての組み合わせについて頂点間の道の り距離 D を求めた後、ステップ S314で、この道のり距離 D と所定の閾値 V との
UW UW UW
比較を行う。比較の結果、所定の閾値 V 以下である場合には (ステップ S314 : Yes
UW
)、細胞領域同士を 1つの領域に統合する (ステップ S315)。このような処理を全組み 合わせについて完了するまで (ステップ S316 : Yes)、同様に繰り返す。
[0076] 領域統合の第 2の手法を、図 12を参照して説明する。図 12は、領域統合の第 2の 手法例を示す概略フローチャートである。まず、エッジ保存型ローパスフィルタの出 力結果にエッジ抽出フィルタ、例えば Sobelフィルタを適用してエッジ画像を得る (ステ ップ S321)。任意の隣接する細胞領域間の境界を考えて、隣接する任意の 2つの細 胞領域を選択し (ステップ S322)、式 (2)で定義されるエッジ強度 D を求める (ステツ
UE
プ S323)。
[0077] [数 2]
DUE =∑E(P) -(2)
P
[0078] ここで、 E(P)は、エッジ画像における画素 Pの輝度値、∑は、細胞領域間の境界に 含まれる全画素につ 、て総和を求めることを表す。
[0079] ステップ S323で、隣接する細胞領域の全ての組み合わせについてエッジ強度 D
UE
を求めた後、ステップ S324で、このエッジ強度 D と所定の閾値 V との比較を行う。 比較の結果、所定の閾値 V 以下である場合には (ステップ S324 : Yes)、細胞領域
UE
同士を 1つの領域に統合する (ステップ S325)。このような処理を全組み合わせにつ Vヽて完了するまで (ステップ S326: Yes)、同様に繰り返す。
[0080] これらの第 1,第 2の領域統合の手法は、それぞれ別個に使用しても良いし、任意 の順番で連続して用いても良い。さらに、輝度情報を用いて各細胞領域の妥当性を 検証しても良い。そのためには、分割された細胞領域毎に輝度値が最大となる画素 を求め、その輝度値が所定の閾値 Vtminより小さい場合、その領域は細胞領域では ないと判定し、所属する画素も含めて以降の処理の対象から除外する。これにより、 蛍光タンパクの導入又は発現が不十分な細胞、及び細胞ではな 、背景領域を除外 することができる。
[0081] さらに、細胞領域内の各画素の輝度を所定の閾値 Vpminと比較し、閾値 Vpminより 輝度の小さい画素を細胞領域力も除外しても良い。こうして除外された画素は、以降 の処理には使用しない。これにより、細胞領域の中でも SZNの低い低輝度部位を除 外することができ、細胞領域の境界形状をより正確に認識することが可能となる。 得られた細胞領域、及び各細胞領域に属する画素の集合を記録部 302に記録す る。
[0082] なお、赤外光撮像部 211が撮像した赤外光画像を用いて細胞領域を認識すること も可能である。赤外光画像が位相差画像である場合、細胞の存在する領域の輝度値 は、背景とは異なる輝度値として観察される。したがって、画像内の各画素について 代表的な背景の輝度値 P との差を求め、差が所定の閾値 V より大きな画素のみを
BG PG
抽出し、一般的なラベリング処理を行って隣接する画素を統合すれば、細胞領域を 認識することができる。
[0083] 図 9の処理に戻り、ステップ S4では、パラメータ計測部 307において、細胞認識部 3 06で認識した細胞領域毎に細胞パラメータを計測し、その計測結果を記録部 302に 記録する。図 13は、記録部 302に記録された細胞パラメータの計測結果例を示す説 明図である。ただし、 Mは認識された細胞領域の数である。本実施の形態では、細胞 ノ メータは、例えば、重心位置、面積、円形度、輝度の総和、平均輝度、輝度の標 準偏差を測定項目対象としており、細胞画像データ及び細胞領域と関連付けて記録 部 302に記録する。アツセィの内容に応じて、周囲長、フェレ径、長さ、幅、最大輝度 等の一般的な測定項目を追加しても良い。
[0084] ここで、本実施の形態は、画像内の全ての細胞の面積の総和、すなわち画像内で 細胞領域の占める度合いを示す細胞占有値に相当する面積を占有面積算出手段と しての占有面積算出部 311で算出し、画像内で細胞領域の占める面積が、画像の 面積に対して所定の割合を超えた場合、制御部 301にその事象を通知する。この場 合、制御部 301はあら力じめ指定された設定に従い、報知手段としての表示部 304 を通じて操作者にさらに報知しても良 、し、培養部 101の制御状態を変更しても良!ヽ 。或いは単に通知を無視しても構わない。この機能は、培養が長期になると、細胞の 増殖等によって培地の空きスペースが減少することがあるので、細胞培養の過程に お!、て培地の空きスペースが不足してきて!/、ることを通知する場合に有効である。
[0085] 占有面積計算部 311は、細胞画像内で細胞領域の占める面積を細胞占有値とし て求めるものである。細胞画像は、蛍光画像或いは赤外光画像のいずれであっても 構わない。蛍光画像を対象とする場合、パラメータ計測部 307により細胞領域の面積 が計測されているので、画像内の全ての細胞領域の面積を合計すれば、画像内で 細胞領域の占める面積を求めることができる。赤外光画像を対象とする場合、細胞の 存在する領域の輝度値は、背景とは異なる輝度値として観察される。したがって、ま ず画像内の各画素について代表的な背景の輝度値 P
BGとの差を求め、差が所定の 閾値 V より大きな画素のみを抽出する。さらに、画像内で抽出された画素の数を計
PG
数すれば、画像内で細胞領域の占める面積が得られる。
[0086] 以上の手順により、複数の細胞画像を含む単一の細胞画像に関して、個々の細胞 の領域を求めた上で細胞パラメータを計測することができる。所定の時間間隔 A t毎 に細胞画像の撮像とパラメータ計測とを反復して行うことで、細胞パラメータを時間経 過に伴って蓄積することができる。
[0087] ここで、このままの処理では、異なる時刻に計測された細胞パラメータ同士が関連 付けられておらず、経時的に計測した状態とは言えない。そこで、異なる時刻に撮影 された細胞画像間において、細胞領域の対応付けを行い、その結果を用いて細胞 パラメータ同士の関連付けを行う必要がある。 [0088] 細胞領域の対応付けは、細胞追跡部 308において、ステップ S5, S6の処理として 以下のように実行される。ここで、時刻 tにお ヽて認識された細胞領域を R 、時刻 t
1 tl,m 2 において認識された細胞領域を R と表すものとする。ただし、時刻 tは時刻 tより時 t2,n 2 1 系列的に後の時刻である。 m, nは同一画像内で重複の無い細胞領域の識別番号 で、 l≤m≤M, l≤n≤Nであり、 Mと Nはそれぞれ時刻 t , tで認識された細胞領
1 2
域の数を表す。
[0089] まず、 2つの細胞領域 R と R の関連性に関する評価関数を式 (3)で定義する。
tl,m t2,n
式 (3)で計算される評価街力 S小さい程、 2つの領域は関連性が高ぐ同一の細胞を
1
示して 、る可能性が高 、と言える。
[0090] [数 3]
J =J (R , R )=k δ +k δ +k δ …… (3)
1 1 tl,m t2,n d d a a c c
δ :重心間の距離
d
δ a:面積の差
δ :円形度の差
k , k , k:所定の重み付け係数
d a c
[0091] 図 14は、 mと nの可能な組み合わせについて評価値を計算した結果を示す説明図 である。ただし、図 14では記述の簡便のため、 J (R , R )¾J と簡略表記している
1 tl,m t2,n m,n
[0092] ここで、時刻 tの領域 R に対応する時刻 tの領域 R を式 (4)に従って決定する。
1 tl,m 2 t2,n
すなわち、 R とは、領域 R との間の評価街を最小化するような時刻 tの領域で t2,n tl,m 1 2 ある。
[0093] 画
Rt2 t5: where J,
Figure imgf000021_0001
…(
[0094] 評価 iBjが最小となる rTが複数存在する場合、それらに対して式 (5)に示す第 2の
1
評価関数を適用し、評価街 21S より小さくなる組み合わせを決定する。第 2の評価値
J
2が最小となる組み合わせも複数あった場合、操作者へのメッセージを表示部 304に 表示し、操作者が正しいと判断する組み合わせを入力部 303より入力させ、入力結
Figure imgf000022_0001
ヽて対応付けを行う。
[0095] [数 5]
J =J (R , R )=k δ +k δ +k δ …… (5)
2 2 tl,m t2,n s s m m v v
δ :輝度の総和の差
s
δ :平均輝度の差
m
δ :輝度の標準偏差の差
k , k , k:所定の重み付け係数
s m V
[0096] ただし、評価街 , Jの両方を求めず、どちらか一方のみを用いることで処理を高速
1 2
化しても良い。また、操作者へのメッセージ表示、及び操作者力もの入力ステップを 省略し、評価街又〖おを最小化する複数の対応関係を全て記録するようにしても良
1 2
い。
[0097] 時刻 tの領域 R と時刻 tの領域 R は、同一の細胞を異なる時刻に認識した結
1 tl,m 2 t2,n
果と考えられるから、両者の計測済みの細胞パラメータも同一の細胞に対する異なる 時刻での計測値とみなせる。そこで、細胞パラメータの値を、細胞画像、細胞領域、 細胞領域の対応付け情報、時刻情報と関連付け、併せて記録手段としての記録部 3 02に記録することで、経時的なパラメータ計測が完了する。
[0098] 経時的に、蛍光タンパクが新たに発現し蛍光を発するようになった場合、観察画面 外にあった細胞が観察画面内へと移動した場合、重なり合つていた複数の細胞が分 かれた場合、又は細胞が分裂した場合は、細胞認識部 306において認識される細胞 領域の数が増加するため、時刻 tの細胞領域に対応する時刻 tの細胞領域が存在
2 1
しない場合や、時刻 tの複数の細胞が時刻 tの 1つの細胞に対応する場合が発生す
2 1
る。
[0099] また、経時的に、蛍光タンパクの蛍光強度が低下した場合、観察画面内にあった細 胞が観察画面外へと移動した場合、複数の細胞が重なり合った場合、又は細胞が死 滅した場合は、細胞認識部 306にお 、て認識される細胞領域の数が減少するため、 時刻 tの細胞領域に対応する時刻 tの細胞領域が存在しない場合や、時刻 tの複
1 2 1 数の細胞が時刻 tの 1つの細胞に対応する場合が発生する。
2
[0100] 対応する細胞領域が無!、場合は、対応領域が無 、ことを意味するフラグを記録す る。 1つの細胞領域に複数の細胞領域が対応する場合は、全ての対応関係を記録 する。表示部 304を通じて操作者にメッセージを表示し、操作者力もの入力を元に対 応関係を修正しても良い。複数の細胞領域の対応を記録する際のデータ表現は、各 時刻を高さに、各細胞領域を節点に対応させた木構造を用いる。表現の自由度がよ り高 、グラフ構造を用いても良 、。
[0101] なお、細胞領域の対応付けに関しては、以下のような改良を加えた変形例であって もよい。第 1の変形例は、最小の評価 iiijが所定の閾値 v. より大きい場合、その対 jm x
応付けは無効とみなす。この場合、領域 R に対応する時刻 tの領域は発見できな tl,m 2
力つたとし、領域 R に対する経時的パラメータ計測は時刻 tまでで打ち切る。この tl,m 1
変形例は、ノイズの影響を低減させるために有効である。
[0102] 第 2の変形例は、領域 R と対応する領域 R の重心間距離を求め、重心間距離 tl,m t2,n
が所定の閾値 V より大きカゝつた場合、その対応付けは無効とみなす。この場合、領 dmax
域 R に対応する時刻 tの領域は発見できなカゝつたとし、領域 R に対する経時的 tl,m 2 tl,m
ノ メータ計測は時刻 tlまでで打ち切る。この変形例は、細胞領域対応付け処理の 誤りを低減させるために有効である。
以上の手順により、細胞のパラメータを経時的に計測することができる。
[0103] 次に、ステップ S7では、細胞生死判定部 313において各細胞の生死を判定する。
細胞生死判定部 313における細胞生死の判定には、以下に示すように複数の処理 手順が存在し、これらのうち 1つ以上の手順を用いて判定処理を行う。
[0104] 図 15は、細胞生死判定処理の第 1の処理手順を示す概略フローチャートである。
図 15に示す概略フローチャートは、培養中に物理的な損傷を受けずに細胞死を起 こした細胞は、形状が概略円形となり、そのまま活動を停止し、概略円形の形状を維 持すると!/、う細胞の特性に基づ 、た細胞生死判定処理手順を例示する。
[0105] まず、細胞領域 R の属する時刻 tのフレームから所定の N フレーム前まで 1フレ t,m F1
ームずつ経時的に遡り、異なる時点で撮影されたそれぞれのフレーム中の細胞領域 R の円形度 Cを細胞パラメータとして取得し、取得した円形度 Cを所定の閾値 Vと t,m C 比較し、閾値 Vを超えているか否かを判定する処理をフレーム毎に繰り返し行う(ス
C
テツプ S711〜S714)。ここ〖こ、円形度 Cは、細胞領域 R の面積を A、輪郭の長さ( t,m 周囲長)を Lとした場合、 ϋ = 4 π AZL2で定義され、細胞形状が丸くなつた程度を判 定する尺度として利用する。
[0106] そして、時刻 tのフレームから N フレーム前までの複数のフレーム中、所定の閾値
F1
P %以上のフレームで、円形度 Cが閾値 Vより大きいかを判定する (ステップ S715)
11 C
。閾値 P %以上のフレームで円形度 Cが閾値 Vより大きい場合には (ステップ S715
11 C
: Yes)、細胞領域 R の属する時刻 tのフレームから所定の N フレーム前まで 1フレ t,m F1
ームずつ経時的に遡り、そのフレーム期間での細胞領域 R
t,mの経時的な対応付けの 結果を取得し、 1対 1の対応であるかの判定をフレーム毎に繰り返し行う(ステップ S7 16〜S719)。このフレーム期間内で所定の閾値 P %以上のフレームで対応付けが
12
1対 1であった場合には (ステップ S720 : Yes)、この細胞領域 R に関して細胞死と t,m
判定する (ステップ S721)。経時的に同一とみなせる細胞領域が細胞死により丸くな つた状態を維持して 、ると認定できるためである。
[0107] 一方、円形度 Cが閾値 Vより大きいフレーム数が所定の閾値 P %を下回る場合に
C 11
は (ステップ S715 :No)、この細胞領域 R に関して細胞死ではないと判定する(ステ t,m
ップ S722)。これは、細胞死を起こした細胞は概略円形となった形状を継続するとい う特性が認められないためである。ここで、所定の閾値 P
11 %としては 100%に設定し
、全てのフレームで円形度 cが閾値 Vより大きくない場合に細胞死ではないと判定
C
するようにしてもよいが、 100%は必ずしも要求されず、 100%未満に設定された閾 値 P
11により規定される割合を下回った場合に細胞死ではないと判定するようにしても よい。フレームによっては、細胞パラメータ、ここでは円形度の取得が適正でない場 合もあり得る力もである。これにより、細胞死の誤検出を抑制することが可能となる。
[0108] また、 N フレーム前まで遡ったフレーム期間内で所定の閾値 P %以上のフレーム
F1 12 で対応付けが 1対 1でな力つた場合 (ステップ S720 : No)、この細胞領域 R に関し t,m て細胞死ではないと判定する (ステップ S722)。細胞形状が概略円形となる状態は、 細胞死の場合だけでなぐ平均的な細胞周期における分裂期(M期)でも観察される 力 分裂期の場合には、その直後に細胞分裂が起きるため、経時的な細胞領域の対 応付けが 1対複数となり、対応付けが 1対 1のフレーム数が所定の閾値 P %を下回り
12
、 1つの細胞領域に対して複数の細胞領域が対応付けられて 、るフレーム数が多く なることで細胞死と区別して判定することができる。このためにも、経時的な時間に相 当するフレーム数を規定する N は、 N フレーム前まで遡る撮像期間が観察対象と
Fl F1
する細胞の平均的な細胞周期における分裂期よりも長くなるような値に設定すること が望ましい。所定の閾値 P %に関しても、閾値 P %の場合と同様、 100%であって
12 11
もよ 、が、 100%であることは必ずしも要求されな!、。
[0109] 図 16は、細胞生死判定処理の第 2の処理手順を示す概略フローチャートである。
図 16に示す概略フローチャートは、第 1の処理手順と同様、培養中に物理的な損傷 を受けずに細胞死を起こした細胞は、形状が概略円形となり、そのまま活動を停止し 、概略円形の形状を維持すると 、う細胞の特性に基づ 、た細胞生死判定処理手順 を例示する。
[0110] まず、細胞領域 R の属する時刻 tのフレームから所定の N フレーム前まで 1フレ
t,m F2
ームずつ経時的に遡り、異なる時点で撮影されたそれぞれのフレーム中の細胞領域 R の円形度 Cを細胞パラメータとして取得し、取得した円形度 Cを所定の閾値 Vと t,m C 比較し、閾値 Vを超えているか否かを判定する処理をフレーム毎に繰り返し行う(ス
C
テツプ S731〜S734)。ここ〖こ、円形度 Cは、第 1の処理手順で定義した通りである。 時刻 tのフレーム力 N フレーム前までの複数のフレーム中、所定の閾値 P %以上
F2 2 のフレームで、円形度 Cが閾値 Vより大きい場合には (ステップ S735 : Yes)、この細
C
胞領域 R
t,mに関して細胞死と判定する (ステップ S736)。該細胞領域が細胞死により 丸くなつた状態を維持していると認定できるためである。
[0111] 一方、円形度 Cが閾値 Vより大きいフレーム数が所定の閾値 P %を下回る場合に
C 2
は (ステップ S735: No)、この細胞領域 R に関して細胞死ではな ヽと判定する(ステ
t,m
ップ S737)。これは、細胞死を起こした細胞は概略円形となった形状を継続するとい う特性が認められないためである。すなわち、細胞形状が概略円形となる状態は、細 胞死の場合だけでなぐ平均的な細胞周期における分裂期(M期)でも観察されるが 、細胞分裂の場合には、その細胞分裂後の細胞の活動に応じて細胞形状が変化し 、概略円形となった形状を維持しないので、細胞死と区別して判定することができる。 このためにも、経時的な時間に相当するフレーム数を規定する N は、 N フレーム前
F2 F2
まで遡る撮像期間が観察対象とする細胞の平均的な細胞周期における分裂期よりも 長くなるような値に設定することが望ましい。所定の閾値 P %に関しても、閾値 P %
2 11 の場合と同様、 100%であってもよいが、 100%であることは必ずしも要求されない。
[0112] 図 17は、細胞生死判定処理の第 3の処理手順を示す概略フローチャートである。
図 17に示す概略フローチャートは、細胞死を起こした細胞のうち、特に培養液 A中に 浮遊して!/、る死細胞を検出するためのものである。細胞死を起こしスライドガラス 102 力 剥離した細胞は、前述の処理手順の場合と同様に形状が概略円形となることに 加え、撮像の合焦位置 (スライドガラス 102面)から手前側に外れるため、ぼやけ気味 の画像となり、輪郭部でのエッジ強度が低下すると 、う特性に基づ 、た細胞生死判 定処理手順を例示する。すなわち、円形度という形状特性に代えて、スライドガラス 1 02面に対する細胞位置 (焦点深度)をエッジ強度と!/、う細胞パラメータを用いて、総 合的に判断することにより、細胞死による細胞の剥離を検出するものである。
[0113] まず、細胞領域 R の属する時刻 tのフレーム画像を取得し、前述のエッジ保存型口 t,m
一パスフィルタの出力結果に一般的なエッジ抽出フィルタ、例えば Sobelフィルタを適 用してエッジ画像を得る(ステップ S 741, S742)。そして、時刻 tのフレームに属する 細胞領域 R に対して任意の隣接する細胞領域間の境界を考えて、隣接する任意の t,m
2つの細胞領域を選択し (ステップ S743)、式 (6)で定義されるエッジ強度 Eを細胞パ ラメータとして求め、このエッジ強度 Eが所定の閾値 Vを超えているかを判定する (ス
E
テツプ S 744)。
[0114] [数 6]
E =∑E(P) ■(6)
[0115] ここで、 E(P)は、エッジ画像における画素 Pの輝度値、∑は、細胞領域間の輪郭上 の全画素について総和を求めることを表す。
[0116] 同様に、細胞領域 R の円形度 Cを取得し、所定の閾値 V を超えているかを判定 t,m C2
する (ステップ S 745)。次に、細胞領域 R の円形度 Cが所定の閾値 V より大きぐ t,m C2
かつ、エッジ強度 Eが所定の閾値 Vより小さい場合、細胞死擬陽性と判定する (ステ
E
ップ S 746)。このような細胞死擬陽性の判定処理を、 目的とする細胞領域 R の属す t,m る時刻 tのフレームから、所定の N フレーム前まで経時的に遡りながら、フレーム毎
F3 に繰り返し行う(ステップ S747, S748, S742〜S746)。そして、所定の閾値 P %以
3 上のフレームで細胞死擬陽性と判定された場合には (ステップ S 749: Yes)、細胞死 であると判定する (ステップ S750)。一方、細胞死擬陽性と判定されたフレーム数が 所定の閾値 P %を下回る場合には (ステップ S749 : No)、細胞死ではないと判定す
3
る(ステップ S751)。
[0117] なお、第 3の処理手順の場合も、経時的な時間に相当するフレーム数を規定する N は、 N フレーム前まで遡る撮像期間が観察対象とする細胞の平均的な細胞周期
F3 F3
における分裂期よりも長くなるような値に設定することが望ましい。所定の閾値 P
3 %に 関しても、閾値 P %等の場合と同様、 100%であってもよいが、 100%であることは
11
必ずしも要求されない。
[0118] 図 18は、細胞生死判定処理の第 4の処理手順を示す概略フローチャートである。
図 18に示す概略フローチャートは、培養中に物理的な損傷を受けずに細胞死を起 こした細胞は、丸くなる際に細胞膜の表面張力によって収縮し、そのまま活動を停止 するという細胞の特性に基づいた細胞生死判定処理手順を例示する。ここで、丸くな る際に収縮により見掛け上の面積が減少し、その結果、平均輝度が生細胞の場合よ りも上昇することから、表面張力によって収縮するという事象を平均輝度で判断するも のである。
[0119] まず、細胞領域 R の属する時刻 tのフレームから所定の N フレーム前まで 1フレ t,m F2
ームずつ経時的に遡り、異なる時点で撮影されたそれぞれのフレーム中の細胞領域 R の平均輝度 (ZM)を細胞パラメータとして取得し、取得した平均輝度 (ZM)を所 t,m
定の閾値 Vと比較し、閾値 Vを超えているカゝ否かを判定する処理をフレーム毎に繰 り返し行う(ステップ S761〜S764)。時刻 tのフレームから N フレーム前までの複数
F4
のフレーム中、所定の閾値 p %以上のフレームで、平均輝度 (ZM)が閾値 Vより大
4
きい場合には (ステップ S765 : Yes)、この細胞領域 R に関して細胞死と判定する( t,m
ステップ S766)。該細胞領域が細胞死により丸くなり輝度的に明るい状態を維持して V、ると認定できるためである。
[0120] 一方、平均輝度 (ZM)が閾値 Vより大きいフレーム数が所定の閾値 P %を下回る
4 場合には (ステップ S765 : No)、この細胞領域 R に関して細胞死ではないと判定す る (ステップ S767)。これは、細胞死を起こした細胞は丸くなり輝度的に明るい状態を 継続するという特性が認められないためである。すなわち、細胞の輝度が一時的に 上昇する現象は、細胞死の場合だけでなぐ平均的な細胞周期における分裂期(M 期)でも観察されるが、細胞分裂の場合には、その細胞分裂後の細胞の活動に応じ てその輝度が低下し、輝度的に明るい状態を維持しないので、細胞死と区別して判 定することができる。このためにも、経時的な時間に相当するフレーム数を規定する N は、 N フレーム前まで遡る撮像期間が観察対象とする細胞の平均的な細胞周
F4 F4
期における分裂期よりも長くなるような値に設定することが望ましい。所定の閾値 P %
4 に関しても、閾値 P %等の場合と同様、 100%であってもよいが、 100%であること
11
は必ずしも要求されない。
[0121] 図 19は、細胞生死判定処理の第 5の処理手順を示す概略フローチャートである。
図 19に示す概略フローチャートは、細胞死を起こした細胞のうち、特に培養液 A中に 浮遊して!/、る死細胞を検出するためのものである。細胞死を起こしスライドガラス 102 力も剥離した細胞は、前述の処理手順 3の場合と同様に、撮像の合焦位置 (スライド ガラス 102面)から手前側に外れるため、輝度が増大して観察されるとともに、ぼやけ 気味の画像となり輪郭部でのエッジ強度が低下すると 、う特性に基づ 、た細胞生死 判定処理手順を例示する。
[0122] まず、細胞領域 R の属する時刻 tのフレーム画像を取得し、前述のエッジ保存型口 t,m
一パスフィルタの出力結果に一般的なエッジ抽出フィルタ、例えば Sobelフィルタを適 用してエッジ画像を得る(ステップ S771, S772)。そして、時刻 tのフレームに属する 細胞領域 R
t,mに対して任意の隣接する細胞領域間の境界を考えて、隣接する任意の
2つの細胞領域を選択し (ステップ S773)、前述の式 (6)で定義されるエッジ強度 Eを 細胞パラメータとして求め、このエッジ強度 Eが所定の閾値 Vを超えているかを判定
E
する(ステップ S 774)。
[0123] 同様に、細胞領域 R の平均輝度 (ZM)を取得し、所定の閾値 V を超えているか t,m 2
を判定する (ステップ S775)。次に、細胞領域 R の平均輝度 (ZM)が所定の閾値 V t,m
より大きぐかつ、エッジ強度 Eが所定の閾値 Vより小さい場合、細胞死擬陽性と判 2 E
定する (ステップ S776)。このような細胞死擬陽性の判定処理を、目的とする細胞領 域 R の属する時刻 tのフレームから、所定の N フレーム前まで経時的に遡りながら t,m F5
、フレーム毎に繰り返し行う(ステップ S777, S778, S772〜S776)。そして、所定 の閾値 P %以上のフレームで細胞死擬陽性と判定された場合には (ステップ S779:
5
Yes)、細胞死であると判定する (ステップ S780)。一方、細胞死擬陽性と判定された フレーム数が所定の閾値 P %を下回る場合には (ステップ S779 :No)、細胞死では
5
ないと判定する(ステップ S781)。
[0124] なお、第 5の処理手順の場合も、経時的な時間に相当するフレーム数を規定する N は、 N フレーム前まで遡る撮像期間が観察対象とする細胞の平均的な細胞周期
F5 F5
における分裂期よりも長くなるような値に設定することが望ましい。所定の閾値 P
5 %に 関しても、閾値 P %等の場合と同様、 100%であってもよいが、 100%であることは
11
必ずしも要求されない。
[0125] 細胞生死判定処理の第 1〜第 5の処理手順において、細胞死ではないと判定され た細胞は生きて 、るものと結論付ける。
[0126] 細胞の生死を判定する際には、これらの第 1〜第 5の処理手順のいずれを用いても よい。さら〖こは、複数の手順を実行して判定結果を組合せてよぐこの場合には、さら に精度の高 、判定が可能となる。
[0127] 本実施の形態の細胞生死判定によれば、各細胞について細胞死である力否かを 判定できるので、生細胞と死細胞との数を正確に把握でき、培養中の細胞に関して、 細胞の生存率を正確に求めることができる。さらには、各細胞について経時的に細胞 ノ メータを計測しながら細胞生死の判定を行っているので、長期培養中の細胞に 関して、どのような過程を経て細胞死に至つたかをデータ上で正確に再現することが できる。このような判定のために、特殊な染料や特殊な遺伝子導入を要せず、培養中 の細胞に与えるダメージを最小限に抑えながら、細胞の生死を精度よく判定すること ができる。
[0128] 最後に、図 9の処理に戻り、ステップ S8の処理として、細胞パラメータ表示手段とし ての表示部 304にて、認識した細胞領域と計測した細胞パラメータを表示する。図 2 0は、処理結果の表示の一例を示す説明図である。表示部 304が備える表示画面 3 14は、 2つの表示領域 314a, 314bを有し、表示領域 314aには、処理対象時点に おいて認識された個々の細胞領域が表示される。ここで、細胞領域にはラベリング処 理を適用し、領域毎に識別可能な色、輝度、線種、パターンを与え、例えばラベル画 像 a〜eとして表示する。ラベル画像と同じ表示範囲の赤外光画像或いは蛍光画像を 連動して表示させても良いし、ラベル画像、赤外光画像、蛍光画像のうち複数を重ね 合わせて表示しても良い。或いは、スーパーインポーズ表示を行っても良い。計測し た細胞パラメータは、表示領域 314bにおいて、時間を横軸、パラメータ値を縦軸とし た折れ線チャートとして表示する。
[0129] さらに、操作者による入力部 303中のマウス操作等に応じて両者の表示内容を同 期して強調表示すれば、表示内容の視認性が向上する。図 21は、例えばラベル画 像 cを強調表示の指示対象として選択指定した場合に対応する細胞パラメータの折 れ線チャートも強調表示される一例を示す説明図である。この場合、操作者が片方を 選択強調した場合、対応する他方も同期して強調表示する。この際、細胞死と判定さ れた細胞は、視覚的に識別可能な強調表示を行う。例えば、色、輝度、形状、パター ンの異なる図形や文字を付与する、点滅させる、等であってもよい。或いは、表示か ら除外してもよぐこれらの表示を切り替えてもよい。
[0130] 本実施の形態では、生細胞 Cに蛍光タンパクを導入し観察しているが、蛍光タンパ クに代えて発光遺伝子、例えばルシフェラーゼ遺伝子を導入すれば、蛍光画像に代 えて発光画像が撮像できる。この場合、励起光照明部 203及びダイクロイツクミラー 2 04は不要であり、構成を簡略化できる。発光画像は、細胞光撮像手段としての蛍光 撮像部 207によって撮像される。発光画像に対しては、蛍光画像と同じ手順で処理 を行えば良い。このように、例えば細胞が自発光する場合や蛍光を発する場合など、 細胞が赤外光以外の光を発する場合でも細胞画像データを取得して細胞観察を行 うことができる。
[0131] また、本実施の形態では、細胞内に局在せずに発現する蛍光タンパクを使用して いるが、細胞核、細胞質、核膜、細胞膜、或いはオルガネラに局在して発現する蛍光 タンパクであっても構わな 、。
[0132] なお、パラメータ計測部 307において計測する細胞パラメータは、本実施の形態に 例示したものに限定されず、さらに、面積、周囲長、外接矩形位置、 X方向フェレ径、 Y方向フ レ径、最小フ レ径、最大フ レ径、平均フ レ径、凸周囲長、円形度 (真 円度)、孔の数、ラフネス(凸周囲長と周囲長の比)、オイラー数、長さ、幅、扁平度、 輝度の総和、最小輝度、最大輝度、平均輝度、輝度の標準偏差、輝度の分散、ェン トロピー、重心位置、 2次モーメント、主軸方向、のいずれか或いは複数であっても良 い。
[0133] さらに、パラメータ計測部 307は、任意の複数の細胞力 なるグループに対して、細 胞数、最小細胞間距離、最大細胞間距離、平均細胞間距離、細胞間距離の標準偏 差、細胞間距離の分散、並びに個々の細胞に対して計測した各パラメータの最小値 、最大値、平均値、標準偏差、分差、総和、中間値、のいずれか或いは複数を求め ても良い。
[0134] 以上、本実施の形態によれば、蛍光物質によって標識された複数の生細胞を経時 的に撮像し、個々の細胞を認識し、経時的な位置変化を追尾しつつ、細胞に与える ダメージを最小限に抑え、特殊な染料や特殊な遺伝子導入を用いずに、細胞の生 死を精度よく判定する装置を実現できる。
[0135] 本発明は、上述した実施の形態に限らず、本発明の趣旨を逸脱しない範囲であれ ば、種々の変形が可能である。例えば、前述の細胞認識部 306、パラメータ計測部 3 07、細胞追跡部 308、細胞生死判定部 313等の各部による処理手順は、あらかじめ 用意された細胞観察プログラムを制御部 301などのマイクロコンピュータで実行する ことにより実現するようにしてもよい。この細胞観察プログラムは、インターネットなどの ネットワークを介して配布することもできる。また、この細胞観察プログラムは、ハード ディスク、 FD、 CD-ROM, MO、 DVDなどのマイクロコンピュータで読み取り可能 な記録媒体に記録され、マイクロコンピュータによって記録媒体力 読み出されること により実行することちできる。
産業上の利用可能性
[0136] 以上のように、本発明に係る細胞観察装置、細胞観察方法、及び細胞観察プログ ラムは、生細胞を長期間培養しながら経時的に観察する場合に有用であり、特に、培 養中の細胞の生死を判定する場合に適している。

Claims

請求の範囲
[1] 複数の時点で細胞を撮影して得られたそれぞれの画像の細胞画像データから細 胞を示す細胞領域を認識する細胞認識手段と、
該細胞認識手段で認識した前記細胞領域の特徴を示す細胞パラメータを計測する 細胞パラメータ計測手段と、
該細胞パラメータ計測手段で計測した前記細胞パラメータと閾値とを比較して前記 細胞の生死を判定する細胞生死判定手段と、
を備えたことを特徴とする細胞観察装置。
[2] 異なる時点で撮影されたそれぞれの画像の前記細胞画像データから認識された細 胞領域同士の対応付けを行う細胞追跡手段をさらに備え、
前記細胞生死判定手段は、前記細胞追跡手段で対応付けられたそれぞれの細胞 領域について前記細胞パラメータと前記閾値との比較を繰り返し行うことで前記細胞 の生死を判定することを特徴とする請求項 1に記載の細胞観察装置。
[3] 前記細胞生死判定手段は、繰り返し行った比較の結果として同一の結論となる割 合が所定の割合を下回る場合には前記細胞追跡手段で対応付けられた前記細胞 領域で示される前記細胞が死滅して ヽな ヽと判定することを特徴とする請求項 2に記 載の細胞観察装置。
[4] 前記細胞生死判定手段は、前記細胞追跡手段で 1つの前記細胞領域に対して複 数の前記細胞領域が対応付けられているときには該 1つの前記細胞領域で示される 前記細胞が死滅して 、な 、と判定することを特徴とする請求項 2又は 3に記載の細胞 観察装置。
[5] 前記細胞生死判定手段は、観察対象となる前記細胞の平均的な細胞周期におけ る分裂期より長くなるように設定された撮影期間に渡る複数の時点のそれぞれの前 記細胞領域力 計測された前記細胞パラメータと前記閾値との比較を繰り返し行うこ とで前記細胞の生死を判定することを特徴とする請求項 1〜4のいずれか 1つに記載 の細胞観察装置。
[6] 前記細胞パラメータは、少なくとも前記細胞領域の円形度を含むことを特徴とする 請求項 1〜5のいずれか 1つに記載の細胞観察装置。
[7] 前記細胞パラメータは、少なくとも前記細胞領域の平均輝度を含むことを特徴とす る請求項 1〜5のいずれ力 1つに記載の細胞観察装置。
[8] 前記細胞パラメータは、少なくとも前記細胞領域のエッジ強度を含むことを特徴とす る請求項 6又は 7に記載の細胞観察装置。
[9] 細胞を培養する培養手段をさらに備えたことを特徴とする請求項 1〜8のいずれか 1 つに記載の細胞観察装置。
[10] 前記細胞は、蛍光タンパクを導入した細胞であることを特徴とする請求項 1〜9のい ずれか 1つに記載の細胞観察装置。
[11] 前記細胞は、局在化せずに発現する蛍光タンパクを導入した細胞であることを特徴 とする請求項 10に記載の細胞観察装置。
[12] 複数の時点で細胞を撮影した画像を取得する撮像手段をさらに備えたことを特徴と する請求項 1〜11のいずれ力 1つに記載の細胞観察装置。
[13] 細胞観察装置で細胞の観察を行う細胞観察プログラムであって、
前記細胞観察装置に、
複数の時点で細胞を撮影して得られたそれぞれの画像の細胞画像データ力ゝら細 胞を示す細胞領域を認識する細胞認識ステップと、
該細胞認識ステップで認識した前記細胞領域の特徴を示す細胞パラメータを計測 する細胞パラメータ計測ステップと、
該細胞パラメータ計測ステップで計測した前記細胞パラメータと閾値とを比較して 前記細胞の生死を判定する細胞生死判定ステップと、
を実行させることを特徴とする細胞観察プログラム。
[14] 異なる時点で撮影されたそれぞれの画像の前記細胞画像データから認識された細 胞領域同士の対応付けを行う細胞追跡ステップをさらに含み、
前記細胞生死判定ステップは、前記細胞追跡ステップで対応付けられたそれぞれ の細胞領域について前記細胞パラメータと前記閾値との比較を繰り返し行うことで前 記細胞の生死を判定することを特徴とする請求項 13に記載の細胞観察プログラム。
[15] 前記細胞生死判定ステップは、繰り返し行った比較の結果として同一の結論となる 割合が所定の割合を下回る場合には前記細胞追跡ステップで対応付けられた前記 細胞領域で示される前記細胞が死滅して ヽな ヽと判定することを特徴とする請求項 1
4に記載の細胞観察プログラム。
[16] 前記細胞生死判定ステップは、前記細胞追跡ステップで 1つの前記細胞領域に対 して複数の前記細胞領域が対応付けられているときには該 1つの前記細胞領域で示 される前記細胞が死滅していないと判定することを特徴とする請求項 14又は 15に記 載の細胞観察プログラム。
[17] 前記細胞生死判定ステップは、観察対象となる前記細胞の平均的な細胞周期にお ける分裂期より長くなるように設定された撮影期間に渡る複数の時点のそれぞれの前 記細胞領域力 計測された前記細胞パラメータと前記閾値との比較を繰り返し行うこ とで前記細胞の生死を判定することを特徴とする請求項 13〜 16のいずれか 1つに記 載の細胞観察プログラム。
[18] 前記細胞パラメータは、少なくとも前記細胞領域の円形度を含むことを特徴とする 請求項 13〜 17の 、ずれか 1つに記載の細胞観察プログラム。
[19] 前記細胞パラメータは、少なくとも前記細胞領域の平均輝度を含むことを特徴とす る請求項 13〜 17の 、ずれか 1つに記載の細胞観察プログラム。
[20] 前記細胞パラメータは、少なくとも前記細胞領域のエッジ強度を含むことを特徴とす る請求項 18又は 19に記載の細胞観察プログラム。
[21] 細胞を培養する培養手段と、該培養手段に収容されて!ヽる細胞を撮影する撮像手 段とを備えた細胞観察装置で細胞の観察を行う細胞観察方法であって、
前記培養手段で培養している最中の細胞を前記撮像手段によって複数の時点で 撮影して得られたそれぞれの画像の細胞画像データから細胞を示す細胞領域を認 識する細胞認識工程と、
該細胞認識工程で認識した前記細胞領域の特徴を示す細胞パラメータを計測する 細胞パラメータ計測工程と、
該細胞パラメータ計測工程で計測した前記細胞パラメータと閾値とを比較して前記 細胞の生死を判定する細胞生死判定工程と、
を備えたことを特徴とする細胞観察方法。
[22] 異なる時点で撮影されたそれぞれの画像の前記細胞画像データから認識された細 胞領域同士の対応付けを行う細胞追跡工程をさらに含み、
前記細胞生死判定工程は、前記細胞追跡工程で対応付けられたそれぞれの細胞 領域について前記細胞パラメータと前記閾値との比較を繰り返し行うことで前記細胞 の生死を判定することを特徴とする請求項 21に記載の細胞観察方法。
PCT/JP2006/308888 2005-05-10 2006-04-27 細胞観察装置、細胞観察方法、及び細胞観察プログラム WO2006120924A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06732439A EP1881061A1 (en) 2005-05-10 2006-04-27 Cell observation apparatus, method of cell observation and cell observation program
US11/936,467 US20080176276A1 (en) 2005-05-10 2007-11-07 Cell observation apparatus, cell observation method, and program product
US14/528,548 US20150050687A1 (en) 2005-05-10 2014-10-30 Cell observation apparatus, cell observation method, and program product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-137854 2005-05-10
JP2005137854A JP4744187B2 (ja) 2005-05-10 2005-05-10 細胞観察装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/936,467 Continuation US20080176276A1 (en) 2005-05-10 2007-11-07 Cell observation apparatus, cell observation method, and program product

Publications (1)

Publication Number Publication Date
WO2006120924A1 true WO2006120924A1 (ja) 2006-11-16

Family

ID=37396433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/308888 WO2006120924A1 (ja) 2005-05-10 2006-04-27 細胞観察装置、細胞観察方法、及び細胞観察プログラム

Country Status (4)

Country Link
US (2) US20080176276A1 (ja)
EP (1) EP1881061A1 (ja)
JP (1) JP4744187B2 (ja)
WO (1) WO2006120924A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135266A1 (ja) * 2018-01-04 2019-07-11 オリンパス株式会社 細胞画像処理装置、細胞画像処理方法および細胞画像処理プログラム
WO2022230673A1 (ja) * 2021-04-28 2022-11-03 富士フイルム株式会社 細胞培養装置及び生細胞濃度調整方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2022845B1 (en) 2006-05-22 2018-06-27 Nikon Corporation Apparatus for judging cell detachment, method of judging cell detachment and cell culture apparatus
JP4944641B2 (ja) * 2007-03-05 2012-06-06 学校法人順天堂 染色組織標本の陽性細胞の自動検出法
JP5446082B2 (ja) * 2007-10-05 2014-03-19 株式会社ニコン 細胞観察装置および細胞観察方法
JP5058962B2 (ja) 2008-12-22 2012-10-24 オリンパス株式会社 細胞画像解析装置、細胞画像解析方法、及びプログラム
JP5663147B2 (ja) * 2009-06-01 2015-02-04 オリンパス株式会社 活性度測定装置および活性度測定方法
JP2011022131A (ja) * 2009-06-18 2011-02-03 Olympus Corp 医療診断支援装置、画像処理方法、画像処理プログラム、およびバーチャル顕微鏡システム
JP5482057B2 (ja) * 2009-09-29 2014-04-23 オリンパス株式会社 細胞核を構成する構造体の解析方法
EP2585578A4 (en) * 2010-05-08 2014-01-08 Univ Twente EASY AND AFFORDABLE METHOD FOR IMMUNOPHENOTYPIZING ON SAMPLE PREPARATION WITH A MICROFLUIDIC CHIP WITH IMAGE CYTOMETRY
JP2014502146A (ja) * 2010-10-25 2014-01-30 政彦 佐藤 弁別的細胞イベントの定量的な識別を行う装置及び方法
US8942459B2 (en) 2011-09-12 2015-01-27 Perkinelmer Cellular Technologies Germany Gmbh Methods and apparatus for fast identification of relevant features for classification or regression
US8705834B2 (en) 2011-11-08 2014-04-22 Perkinelmer Cellular Technologies Germany Gmbh Methods and apparatus for image analysis using threshold compactness features
EP2776974B1 (en) * 2011-11-08 2021-01-20 Perkinelmer Cellular Technologies Germany GmbH Methods and apparatus for image analysis using threshold compactness features
JP5861428B2 (ja) * 2011-12-08 2016-02-16 大日本印刷株式会社 細胞挙動検出装置、細胞挙動検出方法、及びプログラム
GB201121959D0 (en) * 2011-12-21 2012-02-01 Univ Leeds Assay of functional cell viability
JP2013230145A (ja) * 2012-04-30 2013-11-14 Masahiko Sato 細胞集団の状態を評価するための方法、候補化合物の発癌性を評価するための方法、潜在的な抗癌化合物の抗癌活性を評価するための方法及び治療用細胞集団の品質を評価するための方法
JP5902049B2 (ja) * 2012-06-27 2016-04-13 クラリオン株式会社 レンズ白濁状態診断装置
FR2998370A1 (fr) * 2012-11-20 2014-05-23 Commissariat Energie Atomique Procede de caracterisation de particules par analyse d'image
GB2516196B (en) * 2013-01-25 2015-09-09 Xcell Biosciences Inc Methods, compositions, kits, and systems for selective enrichment of target cells
JP6097952B2 (ja) * 2013-08-22 2017-03-22 富士フイルム株式会社 観察画像判定装置および方法並びにプログラム
JP6130801B2 (ja) 2014-03-17 2017-05-17 富士フイルム株式会社 細胞領域表示制御装置および方法並びにプログラム
JP6277103B2 (ja) * 2014-09-30 2018-02-07 富士フイルム株式会社 細胞培養観察装置および方法
US9879216B2 (en) * 2015-12-10 2018-01-30 International Business Machines Corporation Infrared signal monitoring for cell cultures
US10796130B2 (en) * 2015-12-22 2020-10-06 Nikon Corporation Image processing apparatus
US10423819B2 (en) * 2017-10-31 2019-09-24 Chung Yuan Christian University Method and apparatus for image processing and visualization for analyzing cell kinematics in cell culture
JPWO2022163438A1 (ja) * 2021-01-26 2022-08-04

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377628B2 (ja) 1987-02-25 1991-12-11 Yazaki Corp
JPH05184579A (ja) 1992-01-10 1993-07-27 Fujitsu Ltd 光学的バイオアッセイ方法及び装置
JP2000316596A (ja) 1999-05-06 2000-11-21 Nippon Mizushori Giken:Kk 菌類の即時判別方法及び装置
JP2002510291A (ja) * 1997-05-22 2002-04-02 ケース ウェスタン リザーブ ユニバーシティ ガングリオシドgm3によって誘導される神経細胞のアポトーシス
WO2002052032A1 (fr) 2000-12-22 2002-07-04 Chugai Seiyaku Kabushiki Kaisha Procede servant a mesurer la mort cellulaire de cellules ciblees
JP2004113175A (ja) 2002-09-27 2004-04-15 Olympus Corp 細胞培養検出装置
JP2004175692A (ja) * 2002-11-25 2004-06-24 Fuso Pharmaceutical Industries Ltd 抗腫瘍剤
JP2005027623A (ja) * 2003-07-11 2005-02-03 Olympus Corp 細胞培養観察装置及び細胞培養観察方法
JP2005532031A (ja) * 2001-10-19 2005-10-27 ヴァスキュラー バイオジェニックス リミテッド 血管形成の標的化されたダウンレギュレーションおよび抗ガン治療のためのポリヌクレオチド構築物および薬学的組成物および方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2602228B2 (ja) * 1987-05-22 1997-04-23 株式会社島津製作所 細胞識別装置
JPH07121220B2 (ja) * 1988-07-18 1995-12-25 株式会社日立製作所 動物細胞の培養装置、培養方法及び活性診断装置
JP2510771B2 (ja) * 1990-07-25 1996-06-26 株式会社日立製作所 培養生体の活性診断方法及びシステム
US6096510A (en) * 1995-10-04 2000-08-01 Cytoscan Sciences, Llc Methods and systems for assessing biological materials using optical detection techniques
US6459805B1 (en) * 1996-03-26 2002-10-01 Childrens Hospital Los Angeles Fluorescence digital imaging microscopy system
US6927049B2 (en) * 1999-07-21 2005-08-09 The Regents Of The University Of California Cell viability detection using electrical measurements
US6893851B2 (en) * 2000-11-08 2005-05-17 Surface Logix, Inc. Method for arraying biomolecules and for monitoring cell motility in real-time
US20040241832A1 (en) * 2003-06-02 2004-12-02 Olympus Corporation Cell culture detection apparatus, cell culture observation apparatus, and cell culture observation method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0377628B2 (ja) 1987-02-25 1991-12-11 Yazaki Corp
JPH05184579A (ja) 1992-01-10 1993-07-27 Fujitsu Ltd 光学的バイオアッセイ方法及び装置
JP2002510291A (ja) * 1997-05-22 2002-04-02 ケース ウェスタン リザーブ ユニバーシティ ガングリオシドgm3によって誘導される神経細胞のアポトーシス
JP2000316596A (ja) 1999-05-06 2000-11-21 Nippon Mizushori Giken:Kk 菌類の即時判別方法及び装置
WO2002052032A1 (fr) 2000-12-22 2002-07-04 Chugai Seiyaku Kabushiki Kaisha Procede servant a mesurer la mort cellulaire de cellules ciblees
JP2005532031A (ja) * 2001-10-19 2005-10-27 ヴァスキュラー バイオジェニックス リミテッド 血管形成の標的化されたダウンレギュレーションおよび抗ガン治療のためのポリヌクレオチド構築物および薬学的組成物および方法
JP2004113175A (ja) 2002-09-27 2004-04-15 Olympus Corp 細胞培養検出装置
JP2004175692A (ja) * 2002-11-25 2004-06-24 Fuso Pharmaceutical Industries Ltd 抗腫瘍剤
JP2005027623A (ja) * 2003-07-11 2005-02-03 Olympus Corp 細胞培養観察装置及び細胞培養観察方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
TOMASI; MANDUCHI: "Bilateral Filtering for Gray and Color Images", IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, 1998
VINCENT; SOILLE: "Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations", IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, vol. 13, no. 6, June 1991 (1991-06-01), XP000949356, DOI: doi:10.1109/34.87344

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019135266A1 (ja) * 2018-01-04 2019-07-11 オリンパス株式会社 細胞画像処理装置、細胞画像処理方法および細胞画像処理プログラム
WO2022230673A1 (ja) * 2021-04-28 2022-11-03 富士フイルム株式会社 細胞培養装置及び生細胞濃度調整方法

Also Published As

Publication number Publication date
JP4744187B2 (ja) 2011-08-10
US20150050687A1 (en) 2015-02-19
EP1881061A1 (en) 2008-01-23
US20080176276A1 (en) 2008-07-24
JP2006314214A (ja) 2006-11-24

Similar Documents

Publication Publication Date Title
WO2006120924A1 (ja) 細胞観察装置、細胞観察方法、及び細胞観察プログラム
WO2006092925A1 (ja) 細胞観察装置、細胞観察方法、顕微鏡システム、及び細胞観察プログラム
US8310531B2 (en) Methods and apparatuses for processing fluorescence images
US20200249459A1 (en) Determining a staining-quality parameter of a blood sample
JP6777726B2 (ja) コロニーコントラスト収集
Raimondo et al. Automated evaluation of Her-2/neu status in breast tissue from fluorescent in situ hybridization images
ES2928897T3 (es) Método y software para analizar el crecimiento microbiano
US7826652B2 (en) Method for forming an optimally exposed image of cytological specimen
JP2006317406A (ja) 細胞画像撮像装置、細胞画像撮像方法、細胞画像撮像プログラム、及び細胞観察装置
US9607372B2 (en) Automated bone marrow cellularity determination
US8237785B2 (en) Automatic focusing apparatus for use in a microscope in which fluorescence emitted from a cell is captured so as to acquire a cell image, and automatic focusing method therefor
JP2014533857A (ja) 画像処理
EP1631814A1 (en) System for determining the stain quality of slides using scatter plot distributions
US8693743B1 (en) Analysis and display of multiple biomarker co-expression in cells and tissues
CN113853607A (zh) 用于监测菌落的细菌生长和预测菌落生物量的系统和方法
US20240185422A1 (en) Plaque detection method and apparatus for imaging of cells
EP1631813A1 (en) System for classifying slides using scatter plot distributions
WO2023278692A1 (en) Plaque detection method and apparatus for imaging of cells
KR101873318B1 (ko) 세포 이미징 장치 및 그 방법
WO2023059764A1 (en) Method and apparatus for searching and analyzing cell images
EP3938999A1 (en) Correlated image analysis for 3d biopsy
Neuman et al. E-mail: urszula. neuman@ gmail. com

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006732439

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006732439

Country of ref document: EP