WO2006120784A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2006120784A1
WO2006120784A1 PCT/JP2006/302547 JP2006302547W WO2006120784A1 WO 2006120784 A1 WO2006120784 A1 WO 2006120784A1 JP 2006302547 W JP2006302547 W JP 2006302547W WO 2006120784 A1 WO2006120784 A1 WO 2006120784A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
cartridge
fuel cell
cell system
water discharge
Prior art date
Application number
PCT/JP2006/302547
Other languages
English (en)
French (fr)
Inventor
Mitsuru Nozue
Original Assignee
Kurita Water Industries Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd. filed Critical Kurita Water Industries Ltd.
Publication of WO2006120784A1 publication Critical patent/WO2006120784A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • a solid polymer electrolyte fuel cell is formed by using a solid electrolyte membrane such as a perfluorosulfonic acid membrane as an electrolyte, and a fuel electrode and an oxidant electrode are joined to both surfaces of the membrane, and hydrogen or It is a device that generates oxygen by electrochemical reaction by supplying oxygen to methanol and power sword.
  • the electrochemical reaction that occurs at each electrode is as follows:
  • both electrodes are composed of a mixture of fine carbon particles carrying a catalyst material and a solid polymer electrolyte.
  • the fuel of the direct methanol fuel cell uses methanol as a liquid.
  • methanol as a liquid.
  • a method of safely storing such fuel a method using a fuel as a molecular compound (see Patent Document 1), a method of absorbing the polymer into a gel (see Patent Document 2), a fatty acid ester of a polyhydric alcohol, A method of blending (see Patent Document 3) has been reported.
  • a method for releasing fuel cell fuel from those fuel cell fuels having stable compositions it has been reported that water is passed through the fuel composition to release it.
  • Patent Document 1 International Publication No. 2004Z000857 Pamphlet
  • Patent Document 2 JP 2004-127659 A
  • Patent Document 3 Japanese Patent Application Laid-Open No. 8-231970
  • an object of the present invention is to provide a fuel cell system that can safely carry fuel for fuel cells and can easily supply fuel to fuel cells by using only the fuel composition as a cartridge.
  • the fuel cell system of the present invention is provided with a fuel cartridge that contains a fuel composition obtained by solidifying a liquid fuel component, a storage member that detachably stores the fuel cartridge, and a connection member that can be connected to the storage member.
  • the liquid fuel component can be solidified and carried or stored, and when the fuel cell is in operation, the cartridge is accommodated so that the liquid fuel component is released by being pressed against the water discharge member.
  • fuel can be supplied to the fuel electrode of the fuel cell to generate electricity.
  • the fuel cartridge is plate-like, it is particularly preferable in terms of portability (Invention 2).
  • the storage member includes an insertion port for inserting the plate-like fuel cartridge in the lateral direction and a cartridge storage unit continuous with the insertion port, and a water discharge member is connected to one side of the cartridge storage unit.
  • the pressing means can also be configured as a pressing member that presses the fuel cartridge against the water discharge member (Invention 3).
  • the cartridge when the fuel cartridge is inserted from the insertion port, the cartridge is housed in the cartridge housing portion, and is pressed against the water discharge member by the pressing member to release the liquid fuel component. Fuel is supplied to the fuel electrode of the fuel cell, and it is possible to generate electricity.
  • the housing member includes a cartridge housing portion for housing the plate-shaped fuel cartridge and the opening / closing body provided on the other side of the cartridge housing portion, and one side of the cartridge housing portion is The water discharge member is connected, and the pressing means is constituted by the opening / closing body.
  • the fuel cartridge is accommodated in the cartridge housing portion and the opening / closing body is closed, the fuel cartridge is pressed against the water discharge member.
  • a configuration Invention 4
  • the fuel cartridge is pressed against the water discharge member by the open / close body as a pressing member. Then, the liquid fuel component is released, and the fuel is supplied to the fuel electrode of the fuel cell so that it can generate electric power.
  • the water discharge member is connected to the opening / closing body, and the fuel cell is arranged so that the fuel electrode is on the water discharge member side in the vicinity of the water discharge member of the opening / closing body.
  • fuel can be generated by supplying fuel to the fuel electrodes of the two fuel cells on both sides of the fuel cartridge.
  • no liquid component can be present in the fuel cartridge (Invention 6).
  • One or two or more selected from the group power consisting of alcohols, ethers, hydrocarbons, and acetals can be used (invention 7).
  • the fuel cell system of the present invention is characterized in that the fuel composition includes a molecular compound of a liquid fuel component and an opposite compound (Invention 8).
  • Molecular compound of the fuel composition Power An inclusion compound formed from the fuel cell fuel and a host compound (Invention 9), wherein the host compound is also selected from the group consisting of an organic compound, an inorganic compound and an organic'inorganic composite compound. This is the above (Invention 10).
  • the host compound is one or more selected from the group power consisting of monomolecular, polymolecular and polymeric host compounds (Invention 11).
  • the fuel composition one containing a fatty acid ester of a polyhydric alcohol and a fuel for a fuel cell can be used (Invention 12).
  • a fuel composition in which a liquid fuel component is solidified is placed in a case to form a fuel cartridge, and this fuel cartridge is detachable, so that the liquid fuel component is solidified and carried. Furthermore, when the fuel cell is in operation, the cartridge is accommodated so that the cartridge is pressed against the water discharge member and water is supplied from the water discharge member to release the liquid fuel component. In addition, fuel is supplied to the fuel electrode of the fuel cell, and power can be generated.
  • FIG. 1 is a perspective view schematically showing a fuel cell system according to a first embodiment of the present invention.
  • FIG. 2 is a longitudinal sectional view of the fuel cell system according to the first embodiment of the present invention.
  • FIG. 3 is a longitudinal sectional view schematically showing a fuel cell system according to a second embodiment of the present invention.
  • Push button pressing means, pressing member
  • FIG. 1 is a perspective view schematically showing a fuel cell system according to a first embodiment of the present invention
  • FIG. 2 is a longitudinal sectional view of FIG.
  • a fuel cell system 1 includes a box-shaped rectangular housing member 2, a fuel cell 3 disposed on the lower side of the housing member 2, and a rectangular thin plate-like fuel cartridge.
  • the housing member 2 has a side surface formed with an insertion port 5 having a shape corresponding to the fuel cartridge 4, and a cartridge housing portion 6 corresponding to the fuel cartridge 4 is formed continuously from the insertion port 5.
  • a water discharge member 7 is disposed at the lower end of the cartridge housing portion 6.
  • the water release member 7 has a structure in which microcapsules made of silicon or the like containing water are filled in a base made of sponge.
  • the fuel battery cell 3 has a fuel electrode 8, an electrolyte membrane 9, and an air electrode 10, and the fuel electrode 8 is in contact with the water release member 7.
  • a circular opening 11 is formed on the upper surface of the housing member 2, and a flexible liquid-impermeable film 12 such as elastomer or synthetic rubber is provided in the opening 8.
  • a push button 13 serving as a pressing member as a pressing means is provided on the upper side.
  • the push button 13 is provided with a not-shown stagger.
  • the push button 13 is adjustable in its insertion position and can be released.
  • Reference numeral 14 denotes a shirter that is rotatably provided on the upper side of the insertion port 5.
  • the shirter 14 is urged in a direction to close the insertion port 5 by an elastic member (not shown). It is always closed by the shirt 15.
  • the fuel cartridge 4 has a structure in which a methanol clathrate compound in which methanol, which is a liquid fuel component, is solid-filled in a water-permeable casing only on the lower surface is filled. is doing.
  • the sponge which is the base of the water discharge member 7 since the sponge which is the base of the water discharge member 7 is compressed and contracted, it does not absorb the water oozed out from the microcapsule, and the water enters the fuel cartridge 4 and the methanol inclusion in the fuel cartridge 4 is absorbed. When it comes into contact with the compound, methanol is released, and fuel for the fuel cell made of an aqueous methanol solution is produced.
  • the methanol aqueous solution that is the fuel solution for the fuel cell is supplied from the water release member 7 to the fuel electrode 8 of the fuel cell 3 by the pressure at which the fuel cartridge 4 is pushed down, and the catalyst component of the fuel electrode 8 Converted into hydrogen ions (H +), carbon dioxide (CO), and electrons (e_).
  • Electrons (e_) are introduced from the external circuit (not shown) by electrical connection, and hydrogen ions (H +) are introduced into the air electrode 10 by passing through the electrolyte membrane 9.
  • air or oxygen (O 2) is supplied to the air electrode 10, and this oxygen (O 2) is generated by hydrogen ions (
  • the fuel cartridge 4 as the fuel does not contain water, so it can be safely stored and transported, and can be stored in the housing member 2 from the insertion port 5 during use.
  • a methanol aqueous solution as fuel can be easily supplied to the fuel cell 3.
  • a fuel cell system 21 includes a box-shaped rectangular housing member 22, fuel cell cells 23 A and 23 B disposed on both upper and lower sides of the housing member 22, and a rectangular plate-shaped fuel cartridge 24. Consists of.
  • the housing member 22 has a structure in which an opening / closing lid 27 as an opening / closing body as a pressing means is attached to the upper side of the housing main body 25 having a space substantially the same as the thickness of the fuel cartridge 24 so as to be rotatable by a pivot 26.
  • the open / close lid 27 can hold the housing body 25 in a sealed state by a stopper (not shown).
  • An opening 28 is formed in the floor plate 25A of the housing main body 25, and a water discharge member 29 is attached so as to fit into the opening 28 and protrude toward the housing main body 25.
  • the water release member 29 has a structure in which a microcapsule having a force such as silicon containing water is filled in a base made of sponge.
  • an opening 30 is formed in the opening / closing lid 27, and a water discharge member 31 is attached so as to fit into the opening 30 and protrude downward (inside) of the opening / closing lid 27.
  • Fuel cell cells 23A and 23B are provided on both sides of the accommodating member 22, that is, on the lower side of the accommodating portion main body 25 and the upper side of the opening / closing lid 27, respectively.
  • These fuel cells 23A and 23B have a fuel electrode 32, an electrolyte membrane 33, and an air electrode 34, and the fuel electrode 32 is connected to the water discharge members 29 and 31.
  • the fuel cartridge 24 has a configuration in which a methanol clathrate compound in which methanol, which is a liquid fuel component, is solid is filled in a water-permeable casing on the upper and lower surfaces. Speak.
  • the fuel cartridge 24 is installed in the housing body 25 with the opening / closing lid 27 opened, and the opening / closing lid 27 is closed.
  • the internal space of the storage unit body 25 has substantially the same thickness as the fuel cartridge 24, and water discharge members 29 and 31 are provided below the floor plate 25A and the opening / closing lid 27, respectively. Therefore, the housing body 25 is not closed with the opening / closing lid 27 as it is. Therefore, when the opening / closing lid 27 is pressed, the water discharge members 29, 31 are contracted since the sponge is used as a base, and when the opening / closing lid 27 closes the housing main body 25, the opening / closing lid 27 is fixed by a stagger (not shown).
  • the fuel for the fuel cell is made of methanol aqueous solution. Produces.
  • the aqueous methanol solution which is a fuel solution for the fuel cell, has the upper and lower fuel cell cells 23A, 23B by the pressure with which the water release members 29, 31 are pressed against the fuel electrode 32 of the fuel cell 23A, 23B.
  • H + hydrogen ion
  • CO carbon dioxide
  • e_ electron
  • hydrogen ions are introduced into the air electrode 34 from the external circuit (not shown) by passing through the electrolyte membrane 33.
  • the air electrode 34 is supplied with air or oxygen (O 2).
  • This oxygen (O) reacts with hydrogen ions (H +) and electrons (e_) generated at the fuel electrode 32.
  • the fuel cartridge 24 used as fuel since the fuel cartridge 24 used as fuel does not contain water, it can be safely stored and transported, and is installed in the housing portion main body 25 during use. By simply closing the open / close lid 27, the methanol aqueous solution as fuel can be easily supplied to the fuel cells 23A and 23B.
  • examples of the fuel (or liquid fuel component) for fuel cells include hydrogen, alcohols, ethers, hydrocarbons, and acetals.
  • the present invention is not limited to these as long as it can be used as a fuel for a polymer electrolyte fuel cell.
  • hydrogen; alcohols such as methanol, ethanol, n-propanol, isopropanol, and ethylene glycol
  • ethers such as dimethyl ether, methyl ethyl ether, and jetyl ether
  • hydrocarbons such as propane and butane
  • Acetals such as dimethoxymethane and trimethoxymethane, etc. 1S are not limited to these, and these may be used alone or in admixture of two or more. .
  • the fuel cell is preferably a polymer electrolyte fuel cell, and among them, direct methanol
  • the present invention is not limited to this.
  • a fuel cell fuel composition that is solid or gelled as a molecular compound or polymer of the fuel cell fuel can be used.
  • the molecular compound is a compound that can exist stably by two or more kinds of compound forces bonded by relatively weak interactions other than covalent bonds typified by hydrogen bonds and van der Waals forces. Yes, including hydrates, solvates, addition compounds, and inclusion compounds.
  • Such molecular compounds can be formed by contact reaction between the compound forming the molecular compound and the fuel for the fuel cell, and the fuel for the fuel cell can be changed into a solid compound, which is relatively light and stable.
  • Examples of the molecular compound include clathrate compounds in which the fuel for the fuel cell is clathrated by the contact reaction between the host compound and the fuel for the fuel cell.
  • the host compounds that form the clathrate compound that clathrates the fuel for fuel cells are known to be composed of organic compounds, inorganic compounds, and organic / inorganic composite compounds, Among organic compounds, monomolecular, polymolecular, and polymeric hosts are known.
  • Examples of monomolecular hosts include cyclodextrins, crown ethers, cryptands, cyclophanes, azacyclophanes, calixarenes, cyclotriveratrilens, spherands, and cyclic oligopeptides. .
  • Multimolecular hosts include ureas, thioureas, deoxycholic acids, cholic acids, perhydrotriphenylenes, tri-o-thymotides, beanthryls, spirobifluorenes, cyclophosphazenes, Alcohols, diols, hydroxybenzophenones, acetylene alcohols, phenols, bisphenols, trisphenols, tetrakisphenols, polyphenols, naphthols, bisnaphthols, diphenol methanol, carbon Examples include acid amides, thioamides, bixanthenes, carboxylic acids, imidazoles, and hydroquinones.
  • Polymeric hosts include celluloses, starches, chitins, chitosans, polybutyl alcohols, polyethylene glycol arm polymers with 1,1,2,2, -tetrakisphenol as cores, a, Examples thereof include polyethylene glycol arm type polymers having ⁇ , ⁇ ′, ⁇ , monotetrakisphenol xylene as a core. So In addition, organic phosphorus compounds, organic silicon compounds, and the like are also included.
  • inorganic host compounds include titanium oxide, graphite, alumina, transition metal dicargogenite, lanthanum fluoride, clay minerals (such as montmorillonite), silver salts, silicates, phosphates, zeolites, and silicas. And porous glass.
  • organometallic compounds exhibit properties as host compounds, such as organoaluminum compounds, organotitanium compounds, organoboron compounds, organozinc compounds, organoindium compounds, organogallium compounds, organic Examples include tellurium compounds, organotin compounds, organozirconium compounds, and organomagnesium compounds.
  • organoaluminum compounds such as organoaluminum compounds, organotitanium compounds, organoboron compounds, organozinc compounds, organoindium compounds, organogallium compounds, organic Examples include tellurium compounds, organotin compounds, organozirconium compounds, and organomagnesium compounds.
  • a metal salt or organic metal complex of organic power rubonic acid but it is not particularly limited as long as it is an organic metal compound.
  • multimolecular host compound examples include urea, 1, 1, 6, 6-tetraphenylhexa-2, 4 diyne-1, 6 diol, 1, 1-bis (2, 4 Dimethylphenol) — 2—Propin 1 ol, 1, 1, 4, 4-Tetraphenolic leu 2 Butine 1,4-diol, 1, 1, 6, 6—Tetrakis (2, 4 Dimethinolevenole) 2, 4 Xadiyne 1,6 diol 9,10 diphenol 9,10 dihydroanthracene 9,10 diol 9,10 bis (4-methylphenol) 9,10 dihydroanthracene 9,10 diol 1, 1, 2, 2-tetraphenylethane 1,2 diol, 4-methoxyphenol, 2,4 dihydroxybenzophenone, 4,4'-dihydroxybenzophenone, 2,2 ', 4,4'-tetrahi Droxybenzophenone, 1,1-bis (4hydroxyphenyl) cyclohexane, 4,4'-
  • These host compounds may be used alone or in combination of two or more. As long as these host compounds form a solid clathrate compound with the fuel for the fuel cell, compounds of any shape can be used.
  • the above-mentioned organic host compound can also be used as an organic / inorganic composite material supported on an inorganic porous material.
  • the porous material supporting the organic host compound include intercalation compounds such as clay minerals and montmorillonites in addition to silicas, zeolites, and activated carbons, but are not limited thereto. Absent.
  • the above-mentioned organic host compound is dissolved in a solvent that can be dissolved, and the solution is impregnated in an inorganic porous material.
  • a solvent that can be dissolved can be dissolved
  • the solution is impregnated in an inorganic porous material.
  • the amount of the organic host compound supported on the inorganic porous material is not particularly limited, but is usually about 10 to 80% by mass based on the inorganic porous material.
  • a fuel cell fuel and Hos can be easily synthesized by direct contact and mixing with the compound.
  • the host compound can be obtained by heating, dissolving, and recrystallization in the fuel for the fuel cell. If the fuel for the fuel cell is a gas or a liquid, it can be obtained by contacting the host compound with the fuel in a pressurized state.
  • the temperature at which the fuel for the fuel cell and the host compound are brought into contact with each other is not particularly limited, but is preferably from room temperature to about 100 ° C. Further, the time for contacting the fuel for the fuel cell and the host compound is not particularly limited, but is preferably about 0.01 to 24 hours from the viewpoint of work efficiency.
  • the fuel for the fuel cell to be brought into contact with the host compound is preferably a high-purity fuel.
  • a liquid mixture of fuel for fuel cells and other components may be used.
  • the clathrate compound thus obtained varies depending on the type of the host compound used, the contact conditions with the fuel for the fuel cell, etc. It is an inclusion compound containing 0.1 to 10 mol of fuel molecules for fuel cells.
  • the clathrate compound thus obtained can stably store fuel for fuel cells for a long period of time in a normal temperature / normal pressure environment.
  • This clathrate compound is lightweight, easy to handle, and has a solid force, so it can be easily stored in glass, metal, plastic containers, etc.
  • the problem is solved.
  • liquid fuel usually becomes solid due to the inclusion, it can avoid properties as a deleterious substance or a dangerous substance.
  • the chemical reactivity of fuel for fuel cells can be reduced, and for example, the corrosiveness to metals can be alleviated.
  • the fuel composition contains 20 to LOO% by mass of a structural unit having a carboxyl group and Z or sulfonic acid group in the molecule based on the polymer (1), and the carboxyl group and / or the A fuel composition for a fuel cell comprising a polymer (1) cross-linked product (A) in which 30 to 100 mol% of protons of a sulfonic acid group are substituted with an onium cation and a fuel for a fuel cell is also used. Can do.
  • a fuel for a fuel cell contains a predetermined amount of a structural unit having a carboxyl group and Z or sulfonic acid group in the molecule, and the carboxyl group and Z or sulfonic acid.
  • the proton of the group A cross-linked product (A) of polymer (1) substituted with a predetermined amount of organic cation is used.
  • a monomer having a carboxyl group for example, (meth) acrylic acid, etaatalic acid, crotonic acid, sorbic acid, maleic acid, itaconic acid, fumaric acid, cinnamic acid, and anhydrides thereof Etc.]; Monomers having a sulfonic acid group [for example, aliphatic vinyl sulfonic acids [Bulsulfonic acid, allylic sulfonic acid, butyltoluenesulfonic acid, styrenesulfonic acid, etc.], (meth) acrylated sulfonic acid [sulfoethyl (meth) attaly Rate, sulfopropyl (meth) acrylate, etc.) and (meth) acrylamide type sulfonic acid [acrylamide-2-methylpropane sulfonic acid, etc.]] and the like. ) It can be a constituent unit.
  • a method of obtaining a polymer (1) containing a predetermined amount of a structural unit having a carboxyl group and Z or a sulfonic acid group in the molecule in addition to a method of polymerizing the monomer (a) in a predetermined amount.
  • a monomer that can be easily changed to a carboxyl group or a sulfonic group, such as an esterified product or an amidated product of the carboxyl group or sulfonic acid group-containing monomer is polymerized, and a method such as hydrolysis is used.
  • the content of the structural unit having a carboxyl group and Z or sulfonic acid group in the polymer (1) is usually 20 to: LOO mass%, preferably 40 to: LOO mass%, more preferably 60. ⁇ 100 mass%.
  • LOO mass% preferably 40 to: LOO mass%, more preferably 60. ⁇ 100 mass%.
  • the content is less than 20% by mass, even if the proton of the carboxyl group or sulfonic acid group is replaced by a form cation described later, the absorption amount to the target liquid fuel is reduced, or the liquid fuel is used in a small amount. There may be cases where Gelui can't be done.
  • Examples of the copolymerizable monomer (b) that forms a structural unit other than the structural unit having a carboxyl group and Z or a sulfonic acid group include alkyl (meth) acrylate (carbon Number 1-30) Esters [Methyl (meth) acrylate, Ethyl (meth) acrylate, Propyl (meth) acrylate, Butyl (meth) acrylate, Ethylhexyl (meth) acrylate, (Meth) Octyl acrylate, dodecyl (meth) acrylate, stearyl (meth) acrylate, phenol (meth) acrylate, octyl file (meth) acrylate, cyclohexyl (meth) acrylate, etc.]; Oxyalkyl (meth) acrylates (1 to 4 carbon atoms) [Hydroxypropyl (meth) acrylate, hydroxypropyl (meth) acryl
  • (meth) acrylic acid alkyl esters, oxyalkyl (meth) acrylates, aryl ethers, a- olefins Aromatic vinyl compounds are preferred.
  • the monomer (the difference between the SP value of the solvent and the SP value of the monomer (b) is 5 or less ( The monomer (b) in which the difference between the SP value of the solvent to be preferred and the SP value of the monomer (b) is 3 or less was selected because the absorption amount and the Gelich force were more likely to be selected when b) was selected. It is more preferable.
  • Examples of the quaternary ammonia cation (I) include the following (1-1) to (1-11).
  • (1-1) Aliphatic quaternary ammonium having 4 to 30 or more carbon atoms having an alkyl and Z or alkenyl group; tetramethyl ammonium, ethyl trimethyl ammonium, Jetyldimethyl ammonium, triethyl methyl ammonium, tetraethyl ammonium, trimethylpropyl ammonium, tetrapropyl ammonium, butyl trimethyl ammonium, tetraptyl ammonium, etc. .
  • Aromatic quaternary ammonia having 6 to 30 or more carbon atoms; trimethylphenol, dimethylethylamine, dimethylethylamine, triethylylamine Mu etc.
  • (1-3) Alicyclic quaternary ammonium having 3 to 30 or more carbon atoms; N, N-dimethylpyrodium, N ethyl N-methylpyrrolidinium, N, N Dimethyl morpholine, N, N Jetyl morpholium, N, N dimethyl piperidium, N, N dimethyl biverium, etc.
  • 1-Ethinole 1-Methinoreido imidazolium, 1-Metinore 1 ethino-reyl imidazolium, 1, 2, 3, 4-tetramethylimidazole, 1, 2 dimethyl 3-ethyl imidazolium, 1 1-Methinoremidazolium, 1-Methinore 1 ethenoremidazolium, 1, 2, 3 Trier Chile imidazolium, 1, 2, 3, 4-tetraethyl imidazolium, 1, 3 Dimethyl—2 Fe-imidazolium, 1, 3 Dimethyl-1-benzylimidazole, 4 Cyan 1, 2
  • 3 Trimethylimidazole 3 Cyanmethyl 1,2 Dimethylimidazole, 4 Cetinolide 1, 2, 3 Trimethylimidazole, 4-Methoxy-1, 2, 3 Trimethylimidazolium, 3 Formylmethyl-1, 2 Dimethylimidazole, 2 Hydroxyethyl 1,3-Dimethylimidazole, N, N, -Dimethylbenzimidazole, N, N, Monoethylbenzimidazolium, N-Methyl-N, Ichiethyl Benzimidazolium etc.
  • (I-10) Gua-dium having a tetrahydropyrimidi-um skeleton having 4 to 30 or more carbon atoms; 2 Dimethylamino-1, 3, 4 Trimethyltetrahydropyrimidium, 2 Jettyamino 1 , 3, 4 Trimethyltetrahydropyrimidium, 2 Dimethylamino-1,3-dimethyltetrahydropyrimidium, 2 Jetylamino-1,3 Dimethyltetrahydropyrimidium, 1, 3, 4, 6, 7, 8 Hexahydro 1,2 dimethyl— 2H—imide [1, 2 a] pyrimidium, 1, 3, 4, 6, 7, 8 Hexahydro 1,2 dimethyl 1 2H pyrimido [1,2a] pyrimidium 2 dimethylamino 1-cyanomethyl 1-methyltetrahydropyrimidium, 2 dimethylamino-4 acetyl-1,3 dimethyltetrahydropyrimidium 2 dimethylamino-4 methylcarboxymethyl-1,3 dimethylte
  • Examples of the tertiary sulfoyuium cation (II) include the following (II 1) to (II 3).
  • (II-1) having an alkyl group having 1 to 30 or more carbon atoms and a Z or alkenyl group Aliphatic tertiary sulfur: trimethyl sulfone, triethyl sulfome, ethyl dimethyl sulfome, jetyl methyl sulfome, etc.
  • Examples of the quaternary phosphonium cation (III) include the following (III 1) to (III 3).
  • (III 1) Aliphatic quaternary phosphonium having 1 to 30 or more carbon atoms and Z or alkenyl groups; tetramethylphosphonium, tetraethylphosphonium, tetrapropy Norrephosphonium, Tetrabutinorephosphonium, Methyltritinorephosphonium, Methyltripropylphosphonium, Methyltributylphosphonium, Dimethyljetylphosphonium, Dimethyldibutylphosphonium, Trimethyl Ethylphosphonium, trimethylpropylphosphonium, trimethylbutylphosphonium, etc.
  • (III 2) Aromatic quaternary phosphonium having 6 to 30 or more carbon atoms; triphenyl methole norephospho um, diphenol noresi methino rephospho um, triphenol nore veneno lesphospho -Um etc.
  • (III 3) Cycloaliphatic quaternary phosphonium having 3 to 30 or more carbon atoms; 1, 1-dimethylphosphoranium, 1-methinoleol 1-etinorephosphoranium, 1, 1 Jetinore phosphoranium, 1, 1-jetyl phosphorinum, 1, 1-pentaethylene phosphorinum, etc.
  • Examples of the tertiary oxoyuium cation (IV) include the following (IV-1) to (IV-3).
  • (IV-1) Aliphatic tertiary oxoumo having an alkyl group having 1 to 30 or more carbon atoms and a Z or alkenyl group; trimethylxosium, trityloxosium, ethyldimethyloxosium, jetylmethylo Kiso-um etc.
  • a preferred form cation is (I), more preferred are (1-1), (I 4) and (I 5), and particularly preferred are (I 4) and (I 5). These lithium cations may be used alone or in combination of two or more.
  • Examples of the method for introducing the form cation into the polymer include a method of substituting the proton of the carboxyl group and Z or sulfonic acid group of the polymer with the form cation. Any method can be used to replace a proton with an onium cation as long as it can be substituted with a predetermined amount of an onium cation.
  • a hydroxide salt of the above cation for example, tetraethylammonium ⁇ Um hydroxide, etc.
  • Monomethyl carbonate salts eg, 1, 2, 3, 4 trimethylimidazolium monomethyl carbonate
  • the substitution may be performed in the same way at the monomer stage.
  • stage of substitution with the form cation for example, a method in which the monomer containing the carboxyl group and Z or sulfonic acid group is substituted with an form cation and then polymerized, or the carboxyl group and Z or sulfonic acid group After creating the polymer, the ability to replace the proton of the acid with a humum cation, etc.
  • the ability to replace the proton of the carboxyl group and Z or sulfonic acid group of the final polymer You can do it at the slip stage! /.
  • the proton of the carboxyl group and Z or sulfonic acid group O - degree of substitution by Umukachion is,. 30 to: LOO mol 0/0, preferably 50 to: LOO mol 0/0, more preferably it is 70: a LOO mole 0/0.
  • the structural unit having a carboxyl group and Z or a sulfonic acid group is contained in a predetermined amount, and the carboxyl group and Z or sulfonic acid group are substituted with a predetermined amount of formcation.
  • the polymer (1) is finally crosslinked at any stage to form a crosslinked product.
  • a crosslinking method a known method may be used. For example, the following methods [1] to [5] are used. Can be mentioned.
  • Two or more double bonds can be copolymerized with the carboxyl group- and Z- or sulfonic acid group-containing monomer, an cation-substituted cation of the monomer, and, if necessary, another monomer (b) to be copolymerized.
  • Copolymerizable cross-linking agent [polyvalent beryl type cross-linking agent such as dibutenebenzene, (meth) acrylamide type cross-linking agent such as N, N, and methylenebisacrylamide, polyvalent allylic ether type such as pentaerythritol triallyl ether Crosslinking agent, polyvalent (meth) acrylic acid ester type crosslinking agent such as trimethylolpropane tritalylate] and the like].
  • polyvalent beryl type cross-linking agent such as dibutenebenzene
  • (meth) acrylamide type cross-linking agent such as N, N, and methylenebisacrylamide
  • polyvalent allylic ether type such as pentaerythritol triallyl ether Crosslinking agent
  • polyvalent (meth) acrylic acid ester type crosslinking agent such as trimethylolpropane tritalylate
  • Reactive crosslinkers having two or more functional groups in the molecule that can react with carboxyl groups and Z or sulfonic acid groups or their cation substitution products, and if necessary, functional groups of monomers to be copolymerized [4, 4, Polyhydric isocyanate type crosslinking agents such as diphenylmethane diisocyanate, Polyhydric epoxy type crosslinking agents such as polyglycerol polyglycidyl ether, Polyhydric alcohol type crosslinking agents such as glycerin, Hexamethylenetetramine and Polyethyleneimine Or the like, a haloepoxy type cross-linking agent such as epichlorohydrin, or a polyvalent metal salt type cross-linking agent such as aluminum sulfate.
  • Polyhydric isocyanate type crosslinking agents such as diphenylmethane diisocyanate
  • Polyhydric epoxy type crosslinking agents such as polyglycerol polyglycidyl ether
  • Glycidyl (meth) allylicate type cross-linking agent, and aryl epoxy type cross-linking agents such as allyl glycidyl ether].
  • the polymer (1) is irradiated with radiation such as ultraviolet rays, electron beams, and ⁇ rays, and the polymer (1) is crosslinked.
  • the monomer is irradiated with ultraviolet rays, electron beams, ⁇ rays, and the like, and polymerization and crosslinking are simultaneously performed. line How to do it.
  • cross-linking methods the preferred one varies depending on the use and form of the final product, but when considered comprehensively, [1] cross-linking with a copolymer cross-linking agent, [2] cross-linking with a reactive cross-linking agent and [
  • copolymerizable crosslinking agents preferred are polyvalent (meth) acrylamide type crosslinking agents, aryl ether type crosslinking agents, and polyvalent (meth) acrylic acid ester type crosslinking agents, and more preferred.
  • polyvalent isocyanate type crosslinking agents preferred are polyvalent isocyanate type crosslinking agents and polyvalent epoxy type crosslinking agents, and more preferred are polyvalent isocyanate types having three or more functional groups in the molecule. It is a crosslinking agent or a polyvalent epoxy type crosslinking agent.
  • the degree of crosslinking can be appropriately selected depending on the purpose of use, but when a copolymerizable crosslinking agent is used, 0.001 to 10% by mass is preferable with respect to the total monomer mass.
  • the amount of addition in the case of using a reactive crosslinking agent is such that the preferred amount of addition varies depending on the shape of the crosslinked body (A).
  • 0.01 to 50% by mass is preferable.
  • a polymerization method for the carboxyl group and Z or sulfonic acid group-containing monomer, an cation substitution product of the monomer and, if necessary, another monomer (b) to be copolymerized is also a known method.
  • a solution polymerization method in a solvent in which each of the above monomers and the polymer to be formed dissolves a bulk polymerization method in which polymerization is performed without using a solvent, and an emulsion polymerization method can be exemplified.
  • the solution polymerization method is preferable.
  • the organic solvent by solution polymerization can be selected as appropriate depending on the solubility of the monomer or polymer used.
  • alcohols such as methanol and ethanol
  • carbonates such as ethylene carbonate, propylene carbonate and dimethyl carbonate
  • ⁇ -butyrolacta Latones such as ⁇ -force prolatatam
  • ketones such as acetone and methyl ethyl ketone
  • carboxylic acid esters such as ethyl acetate
  • ethers such as tetrahydrofuran and dimethoxyethane
  • aromatics such as toluene and xylene
  • hydrocarbons and water examples thereof include hydrocarbons and water.
  • the polymerization concentration in the solution polymerization is not particularly limited and may vary depending on the intended use, but 1 to 80% by mass is preferable, and 5 to 60% by mass is more preferable.
  • the polymerization initiator may be a normal one, such as an azo-based initiator [azobisisobuty-mouth-tolyl, azobis-succinovaleric acid, azobis (2,4 dimethylvale-tolyl), azobis (2 amidinopropane) dihydride mouth chloride, Azobis ⁇ 2-methyl ⁇ — (2-hydroxyethyl) propionamide ⁇ , etc.], peracid-based initiators [peracid benzoyl, di-t-butyl peroxide, tamen hydroperoxide, succinic acid Peroxide, di (2-ethoxyethyl) peroxydicarbonate, hydrogen peroxide, etc.], redox initiator [combination of the above peroxide initiators and reducing agents (ascorbic acid or persulfate), etc.] Etc. can be illustrated.
  • an azo-based initiator azobisisobuty-mouth-tolyl, azobis-succinovaleric
  • Examples of other polymerization methods include a method of adding a photosensitizer [benzophenone or the like] and irradiating ultraviolet rays or the like, a method of polymerizing by irradiating radiation such as y rays or electron beams, and the like. it can.
  • the amount of the initiator added when a polymerization initiator is used is not particularly limited, but is 0.0001 to 5% of the total weight of monomers used, 0.001 to 2% is more preferable
  • the polymerization temperature varies depending on the target molecular weight, the decomposition temperature of the initiator, the boiling point of the solvent used, and the like, but is preferably 20 to 200 ° C, more preferably 0 to 100 ° C.
  • the volume average particle size is preferably 0.1 to 5000 ⁇ m, more preferably 50 to 2000 ⁇ m. Further, less than 0.1 m is preferably 10% by mass or less, and more than 5000 m is preferably 10% by mass or less, more preferably 5% by mass or less.
  • the particle size was measured using a low-tap test sieve shaker and JIS Z8801-2000 standard sieve using the Perry's Chemical Engineers Handbook 6th edition (McGlow Hill Hill (Company, 1984, p. 21) (hereinafter, this method is used to measure the particle size).
  • the method for obtaining the particulate form is not particularly limited as long as it finally becomes particulate, and examples thereof include the following methods (i) to (iv).
  • the polymer (1) is crosslinked by the reactive crosslinking agent or means such as irradiation, and then if necessary.
  • fuel stock For example, aeration drying (air circulation dryer etc.), air permeation drying (band type dryer etc.), vacuum drying (vacuum dryer etc.), contact drying (drum dryer etc.) and the like can be mentioned.
  • the drying temperature for drying is not particularly limited as long as the polymer or the like does not deteriorate or excessively crosslink, but is preferably 0 to 200 ° C, more preferably 50 to 150 ° C.
  • the pulverization method may be a well-known method.
  • impact pulverization Examples thereof include a pin mill, a cutter mill, a ball mill type pulverizer and a high-speed rotary pulverizer such as an ACM pulverizer, air pulverization (jet pulverizer, etc.), and freeze pulverization.
  • the particulate crosslinked body (A) is obtained.
  • the cross-linked product (A) in the fuel storage thus particulated has the ability to absorb the fuel.
  • the fuel composition accommodated in the fuel cartridge of the fuel cell system of the present invention can be processed into various forms, and the form is not particularly limited, but preferred forms are particulates, sheets, and integral gels. Can be mentioned.
  • a method for creating a preferred form will be described below, but the creation method, preferably the creation method, and the like differ slightly depending on the form.
  • the particulate fuel reservoir may be one obtained by absorbing fuel in the particulate cross-linked product (A)!
  • the crosslinked body (A) may be made particulate after the fuel is absorbed.
  • the method for making particles is the same as the method for producing the above crosslinked product (A)!
  • the volume average particle diameter and the like are preferably the same as those of the crosslinked product (A).
  • the particulate fuel composition has the ability to absorb fuel.
  • the amount of the crosslinked product (A) absorbed in the fuel storage of the present invention varies depending on the type of the target fuel, the polymer composition, the gel strength, etc., and the crosslinked product (A) is converted into the fuel storage product.
  • Examples of the method for forming a sheet include the following methods (v) to (vii).
  • (V) A method in which the particulate crosslinked product (A) is sandwiched between nonwoven fabrics, paper, or the like to form a sandwich sheet to absorb fuel.
  • the thickness of the sheet (B) is preferably 1 to 50000 111 centimeters, more preferably 5 to 30000 m, and particularly preferably 10 to 10000 m. If the sheet thickness is 1 m or more, the weight per unit area of the crosslinked product (A) will not be too small, and if it is 50000 ⁇ m or less, the sheet thickness will not be too thick.
  • the sheet length and width can be appropriately selected depending on the size to be used, and are not particularly limited.
  • the preferred length is 0.01 to L0m, and the preferred width is 0.1 to 300 cm.
  • the weight per unit area of the crosslinked polymer of the present invention in the sheet (B) is not particularly limited, but taking into account the absorption ability of the liquid fuel of interest and the ability to retain the liquid, and the thickness not becoming too thick. , Weight per unit area ⁇ , 10 ⁇ 3000g / m 2 force is preferred ⁇ , 20 ⁇ : L000g / m 2 force is more preferred! /, 0
  • Substrates such as non-woven fabric, woven fabric, paper, film, etc. that are used as necessary to form the sheet may be known, for example, synthetic fibers having a basis weight of about 10 to 500 g and Z or Z Can be exemplified by non-woven fabrics or woven fabrics made of natural fiber, paper (quality paper, thin paper, Japanese paper, etc.), films made of synthetic resin, and two or more substrates thereof and composites thereof. .
  • the thickness of these base materials is not particularly limited, but is usually 1 to 50000 111, preferably 10 to 20000 / ⁇ ⁇ . When the thickness is less than 1 m, it is difficult to impregnate or apply the predetermined amount of the polymer (1). On the other hand, when the thickness exceeds 50000 / zm, the sheet is too thick to be used as a fuel storage. It becomes ⁇ to use when the whole body becomes large.
  • the coating method or impregnation method of the polymer (1) to the base material may be a known method, for example, after performing a coating or padding treatment which is good if a normal method such as coating or padding is applied. If necessary, the solvent used for polymerization, dilution, viscosity adjustment and the like may be distilled off by a method such as drying.
  • the sheet containing the cross-linked product (A) thus prepared absorbs fuel efficiently, and is therefore used as a sheet-type fuel storage.
  • the amount of fuel absorbed in this sheet-type fuel storage is not particularly limited as long as the fuel supply time is sufficiently long, but 0.1 to 50 OgZcm 2 is preferred and l to 400 gZcm 2 is further preferred. preferable. If the absorbed amount is 0.1 gZcm 2 or more, the liquid fuel can be sufficiently absorbed, and if it is 500 gZcm 2 or less, the sheet that has absorbed the liquid fuel does not become too thick.
  • the ratio of the crosslinked body (A) Z fuel in the integral gelled fuel stock comprising the crosslinked body (A) and fuel is preferably 0.1 to 99Zl to 99.9% by mass, more preferably 0. 5 ⁇ 50Z50 ⁇ 99. 5 mass 0/0, particularly preferably a 1 ⁇ 30 ⁇ 70 ⁇ 99 mass 0/0, most preferably from 1 ⁇ 20 ⁇ 80 ⁇ 99 mass%.
  • the ratio of the crosslinked body ( ⁇ ) is 0.1% by mass or more, the gel strength of the generated fuel-containing gel may be weak, and the whole may not be gelled.
  • the content is 99% by mass or less. Since the content of the cross-linked product ( ⁇ ⁇ ⁇ ) is too large, the required amount of fuel added is not too low and the discharge time of the battery is not shortened.
  • the polymer (1) is dissolved in a fuel, and the polymer (1) is cross-linked by any cross-linking means of cross-linking with the cross-linking agent, cross-linking with radiation, or cross-linking with heating.
  • any cross-linking means of cross-linking with the cross-linking agent, cross-linking with radiation, or cross-linking with heating By one A method of forming a gel.
  • the form of the crosslinked body and the gel that also has fuel power can be selected as appropriate.
  • the shape include a sheet shape, a block shape, a spherical shape, and a cylindrical shape.
  • a preferable shape is a sheet shape, a block shape or a columnar shape.
  • the thickness of the gel in the case of a sheet-like gel is preferably 1 to 50000 111, more preferably 10 to 20000 ⁇ m.
  • the width and length of the sheet-like gel may be appropriately selected according to the purpose of use, the location, and the use.
  • the fuel composition may contain other gelling agents (fatty acid sarcophagus, dibenzal sorbite, hydroxypropyl cellulose, benzylidene sorbitol, carboxyvinyl polymer, polyethylene glycol, polyoxyanolylene, as necessary.
  • gelling agents fatty acid sarcophagus, dibenzal sorbite, hydroxypropyl cellulose, benzylidene sorbitol, carboxyvinyl polymer, polyethylene glycol, polyoxyanolylene, as necessary.
  • Sonorebithonole nitrocellulose, methinoresenorelose, ethinoresenorelose, acetinolebutinoresenellose, polyethylene, polypropylene, polystyrene, ABS resin, AB resin, acrylic resin, acetal resin, polycarbonate , Nylon, phenolic resin, phenoxy resin, urea resin, alkyd resin, polyester, epoxy resin, diaryl phthalate resin, polyallomer, etc.) and adsorbents (dextrin, dextran, silica gel, silica, alumina, molecular sieve) , Force orin , Diatomaceous earth, carbon black, activated carbon, etc.), thickeners, binders, group power consisting of substances that chemically convert the fuel into non-fluidized substances, or one or more of them may be blended. These are not particularly limited as long as they can exhibit their respective functions, and may be solid or liquid. Moreover, what is necessary is just to mix
  • BHC 1,2—Bis (4 hydroxyphenol) cyclohexane
  • THPE 1, 1, 2, 2—Tetrakis (4 hydroxyphenol) ethane
  • the resulting hydrogel was subdivided using a meat chopper, and then 60% of the methyl carbonate of 1, 2, 3, 4-tetramethylimidazolium cation (molecular weight: 203).
  • 1353 g (4 mol) of a methanol solution manufactured by Sanyo Chemical Industries
  • the gel added with the imidazolium cation was passed through a 100 ° C hot air using a band dryer (air-permeable dryer, manufactured by Inoue Metal Industry Co., Ltd.) and used as a solvent.
  • methanol by-produced was distilled off and dried.
  • the obtained dried product is pulverized using a cutter mill to form a particulate crosslinked body having an average particle diameter of 400 m, and 20 g of this particulate bridge body is absorbed with lOOg of methanol to obtain a fuel composition ( A1) was obtained.

Abstract

 本発明は、燃料組成物をカートリッジとすることで、燃料電池用燃料を安全に持ち運べ、かつ簡単に燃料電池セルへ燃料を供給することが可能な燃料電池システムを提供することを目的とし、当該燃料電池システム1は、箱型の矩形の収容部材2と、この収容部材2の下側に配置された燃料電池セル3と、矩形薄板状の燃料カートリッジ4とからなり、収容部材2は、側面に燃料カートリッジ4に対応した形状の挿入口5が形成されていて、該挿入口5から連続して燃料カートリッジ4に対応したカートリッジ収容部6が形成されている。このカートリッジ収容部6の下端には、水放出部材7が配置され、この水放出部材7には燃料電池セルの燃料極8が当接している。また、収容部材2の上面には、押圧部材たる押ボタン13が設けられている。

Description

明 細 書
燃料電池システム
技術分野
[0001] 本発明は燃料電池システムに関する。
背景技術
[0002] 固体高分子電解質型燃料電池は、パーフルォロスルホン酸膜等の固体電解質膜 を電解質とし、この膜の両面に燃料極及び酸化剤極を接合して構成され、アノードに 水素やメタノール、力ソードに酸素を供給して電気化学反応により発電する装置であ る。各電極で生じる電気化学反応は、アノードでは、メタノールを用いた場合、
CH OH + H 0→6H+ + CO + 6e" ' · · [1]
3 2 2
であり、また、力ソードでは、
3/20 + 6H+ + 6e"→3H O - - - [2]
2 2
である。この反応を起こすために、両電極は触媒物質が担持された炭素微粒子と固 体高分子電解質との混合体より構成されて 、る。
[0003] このような固体高分子電解質型燃料電池において、燃料としてメタノールを用いた 場合、アノードに供給されたメタノールは、電極中の細孔を通過して触媒に達し、触 媒によりメタノールが分解されて、上記反応式 [1]の反応で電子と水素イオンを生成 する。水素イオンはアノード中の電解質及び両電極間の固体電解質膜を通ってカソ ードに達し、力ソードに供給された酸素及び外部回路より流れ込む電子と反応して、 上記反応式 [2]のように水を生じる。一方、メタノールより放出された電子はアノード 中の触媒担体を通って外部回路へ導き出され、外部回路より力ソードに流れ込む。こ の結果、外部回路ではアノードから力ソードへ向力つて電子が流れ電力が取り出され る。
[0004] このメタノールを燃料とするダイレクトメタノール型燃料電池は、携帯用小型燃料電 池として適用できる可能性が高ぐ近年、携帯用コンピューターや携帯電話等の次世 代二次電池として開発が活発化してきて 、る。
[0005] し力しながら、ダイレクトメタノール型燃料電池の燃料は、メタノールを液体のまま利 用していたので、危険性が高ぐ取り扱い上の問題が多い。このような燃料を安全に 貯蔵する方法として、燃料を分子化合物とする方法 (特許文献 1参照)、ポリマーに吸 収させてゲル化させる方法 (特許文献 2参照)、多価アルコールの脂肪酸エステルと 配合させる方法 (特許文献 3参照)が報告されている。また、これらの燃料電池用燃 料を安定な組成物としたものから、燃料電池用燃料を放出させる方法としては、燃料 組成物に水を通水して放出させることが報告されている。
特許文献 1:国際公開第 2004Z000857号パンフレット
特許文献 2 :特開 2004— 127659号公報
特許文献 3:特開平 8 - 231970号公報
発明の開示
発明が解決しょうとする課題
[0006] しかしながら、従来報告されて!ヽる燃料放出装置では、燃料電池用燃料組成物が 入っている容器内に通水する水が液体として存在しており、その水が漏れたりするお それがある。そこで、燃料組成物だけをカートリッジとすることで、燃料電池用燃料を 安全に持ち運べ、かつ簡単に燃料電池セルへ燃料を供給することが可能な燃料電 池システムを提供することを目的とする。
課題を解決するための手段
[0007] 本発明の燃料電池システムは、液体燃料成分を固体化した燃料組成物を収容した 燃料カートリッジと、この燃料カートリッジを着脱可能に収納する収容部材と、この収 容部材に接続可能に設けられた水放出部材と、この水放出部材に近接して配置され た燃料電池セルと、前記水放出部材と前記燃料カートリッジとを押圧する押圧手段と を備え、前記燃料電池セルは、燃料極が前記水放出部材側となるように配置されて いることを特徴とする (発明 1)。これにより、液体燃料成分を固体化して持ち運びや 保管することができ、さらに、燃料電池の稼動時にはカートリッジを収容することにより 、該カートリッジが水放出部材に押圧されることで、液体燃料成分を放出し、燃料電 池セルの燃料極に燃料が供給され、発電することが可能となる。
[0008] この燃料カートリッジは板状であれば、特に持ち運び性などの点で好ま 、 (発明 2 )。このような板状の燃料カートリッジとすることで、本発明の燃料電池システムは、前 記収容部材は、前記板状の燃料カートリッジを横方向に挿入する挿入口と、この挿入 口に連続するカートリッジ収容部とからなり、前記カートリッジ収容部の一側には水放 出部材が連接しているとともに、前記押圧手段は前記カートリッジ収容部内に燃料力 ートリッジが収容されると、該燃料カートリッジを前記水放出部材に圧接する押圧部 材カもなる構成とすることができる (発明 3)。
[0009] 前記構成を採用することにより、挿入口から燃料カートリッジを挿入すると、該カート リッジがカートリッジ収容部に収納され、押圧部材により、水放出部材に圧接され、液 体燃料成分を放出し、燃料電池セルの燃料極に燃料が供給され、発電することが可 能となる。
[0010] また、前記収容部材が前記板状の燃料カートリッジを収容するカートリッジ収容部と 該カートリッジ収容部の他側に設けられた前記開閉体とからなり、前記カートリッジ収 容部の一側には水放出部材が連接しているとともに、前記押圧手段は前記開閉体に より構成され、前記カートリッジ収容部内に燃料カートリッジを収容して前記開閉体を 閉鎖すると、該燃料カートリッジが前記水放出部材に圧接される構成としてもよい (発 明 4)。前記構成を採用することにより、開閉体が開いた状態でカートリッジ収容部に 燃料カートリッジを収容し、開閉体を閉鎖すると、押圧部材としての開閉体により、燃 料カートリッジが前記水放出部材に圧接され、液体燃料成分を放出し、燃料電池セ ルの燃料極に燃料が供給され、発電することが可能となる。
[0011] 特に前記開閉体にも水放出部材が連接しているとともに、この開閉体の水放出部 材にも近接して燃料極が前記水放出部材側となるように前記燃料電池セルが配置さ れている構成とすることができる (発明 5)。これにより、燃料カートリッジの両側で 2個 の燃料電池セルの燃料極に燃料を供給し、発電することができる。
[0012] 上述したような構成を有する本発明の燃料電池システムによれば、前記燃料カート リッジ中には液体成分が不存在とすることができる (発明 6)。そして、この液体燃料成 分力 アルコール類、エーテル類、炭化水素類、及びァセタール類よりなる群力 選 ばれる 1種又は 2種以上を用いることができる(発明 7)。
[0013] 本発明の燃料電池システムは、前記燃料組成物が、液体燃料成分と相手方化合 物との分子化合物を含むことを特徴とする (発明 8)。前記燃料組成物の分子化合物 力 該燃料電池用燃料とホスト化合物とから形成される包接化合物であり (発明 9)、 このホスト化合物が有機化合物、無機化合物及び有機'無機複合化合物よりなる群 力も選ばれる 1種又は 2種以上である (発明 10)。一方、前記ホスト化合物が単分子 系、多分子系及び高分子系ホストイ匕合物よりなる群力 選ばれる 1種又は 2種以上で ある (発明 11)。また、前記燃料組成物として、多価アルコールの脂肪酸エステルと燃 料電池用燃料とを含むものを用いることもできる (発明 12)。
発明の効果
[0014] 本発明の燃料電池システムは、液体燃料成分を固体ィ匕した燃料組成物をケースに 入れて燃料カートリッジとし、この燃料カートリッジを着脱可能としているので、液体燃 料成分を固体化して持ち運びや保管することができ、さらに、燃料電池の稼動時に はカートリッジを収容することにより、該カートリッジが水放出部材に押圧され水放出 部材カゝら水が供給されることで、液体燃料成分を放出し、燃料電池セルの燃料極に 燃料が供給され、発電することが可能となる。
図面の簡単な説明
[0015] [図 1]図 1は、本発明の第 1の実施形態に係る燃料電池システムを概略的に示す斜 視図である。
[図 2]図 2は、本発明の第 1の実施形態に係る燃料電池システムの縦断面図である。
[図 3]図 3は、本発明の第 2の実施形態に係る燃料電池システムを概略的に示す縦 断面図である。
符号の説明
[0016] 1, 21…燃料電池システム
2, 22…収容部材
3, 23A, 23Β· ··燃料電池セル
4, 24…燃料カートリッジ
5…挿入口
6…カートリッジ収容部
7…水放出部材
8, 32· ··燃料極 13· ··押ボタン (押圧手段、押圧部材)
27· ··開閉蓋 (押圧手段)
発明を実施するための最良の形態
[0017] 以下、図面を参照して本発明の実施形態について説明する。
図 1は本発明の第 1の実施の形態に係る燃料電池システムを概略的に示す斜視図 であり、図 2は図 1の縦断面図である。
[0018] 図 1及び図 2において、燃料電池システム 1は、箱型の矩形の収容部材 2と、この収 容部材 2の下側に配置された燃料電池セル 3と、矩形薄板状の燃料カートリッジ 4と カゝらなる。収容部材 2は、側面に燃料カートリッジ 4に対応した形状の挿入口 5が形成 されて 、て、該挿入口 5から連続して燃料カートリッジ 4に対応したカートリッジ収容部 6が形成されている。このカートリッジ収容部 6の下端には、水放出部材 7が配置され ている。
[0019] この水放出部材 7は、水を収容したシリコンなどからなるマイクロカプセルを、スポン ジからなる基体内に充填した構造を有する。一方、燃料電池セル 3は、燃料極 8と、 電解質膜 9と、空気極 10とを有しており、燃料極 8が水放出部材 7と当接している。そ して、収容部材 2の上面には、円形の開口部 11が形成されていて、この開口部 8に は、エラストマ一や合成ゴムなどの可撓性の液不透膜 12が設けられることにより漏液 を防止するとともに、上側には押圧手段としての押圧部材たる押ボタン 13が設けられ ている。
[0020] この押ボタン 13には図示しないストツバが設けられていて、該押ボタン 13はその揷 入位置が調節可能になっているとともに解除可能となっている。なお、 14は、挿入口 5の上側で回動自在に設けられたシャツタであり、このシャツタ 14は図示しない弾性 部材により、挿入口 5を閉鎖する方向に付勢されており、挿入口 5は常時該シャツタ 1 5により閉鎖されている。このような燃料電池システム 1において、燃料カートリッジ 4は 、下面のみが水透過性のケーシング内に液体燃料成分であるメタノールを固体ィ匕し たメタノール包接ィ匕合物が充填された構成を有している。
[0021] このような本実施形態の燃料電池システム 1にあっては、薄板状の燃料カートリッジ 4を、挿入口 5を閉鎖しているシャツタ 14に当接させ押圧すると、シャツタ 14が開成し て挿入口 5が開く。そして燃料カートリッジ 4をスライド挿入すると、該燃料カートリッジ 4がカートリッジ収容部 6に収容される。続いて、押ボタン 13を押圧して開口部 11に 押し込んだ状態で回動させることによりその位置を保持する。このとき液不透膜 12は 橈んだ状態で保持される。そうすると、燃料カートリッジ 4が押し下げられ、これにより 水放出部材 7が押圧圧縮され、マイクロカプセルが破砕されて水が染み出す。このと き水放出部材 7の基体となるスポンジは圧縮収縮しているのでマイクロカプセルから 染み出した水を吸収せず、燃料カートリッジ 4に水が浸入し、燃料カートリッジ 4内のメ タノール包接ィ匕合物と接触することでメタノールが放出され、メタノール水溶液よりな る燃料電池用燃料が生成される。
[0022] この燃料電池用燃料溶液であるメタノール水溶液は、燃料カートリッジ 4が押し下げ られている圧力により、水放出部材 7から燃料電池セル 3の燃料極 8に供給され、燃 料極 8の触媒成分により水素イオン (H+)と二酸化炭素 (CO )と電子 (e_)とに転換さ
2
れ、電子 (e_)は電気的接続により外部回路(図示せず)から、水素イオン (H+)は電 解質膜 9を通過することで、それぞれ空気極 10に導入される。一方、空気極 10では 、空気又は酸素 (O )が供給され、この酸素 (O )が燃料極 8で発生した水素イオン(
2 2
H+)及び電子 (e_)と反応して水が生じる。このような反応において、燃料極 8から空 気極 10に向力つて電子が流れ電力が取り出される。なお、さらに電力を必要とする 場合には、少しずつ押ボタン 13を押し込んで、水放出部材 7をさらに圧縮して燃料 電池用燃料溶液であるメタノール水溶液を供給すればよぐ一方、電力の供給を停 止する場合には、押ボタン 13のストツバを解除すれば、弾性力により水放出部材 7が 復元し、水放出部材 7 (スポンジ)に余剰のメタノール水溶液を吸収させることでメタノ ール水溶液の供給を停止すればょ ヽ。
[0023] このような水放出部材 7を用いることにより、メタノール水溶液の漏洩のおそれもない 。このように本実施形態においては、燃料となる燃料カートリッジ 4は水を含んでいな いので、安全に保管及び運搬が可能であり、使用時に挿入口 5から収容部材 2に収 容することで、簡単に燃料電池セル 3へ燃料としてのメタノール水溶液を供給すること ができる。
[0024] 次に本発明の第 2の実施の形態について図 3に基づいて説明する。 同図において、燃料電池システム 21は、箱型の矩形の収容部材 22と、この収容部 材 22の上下両側に配置された燃料電池セル 23A, 23Bと、矩形板状の燃料カートリ ッジ 24とからなる。収容部材 22は、燃料カートリッジ 24の厚さとほぼ同じ厚さの空間 を有する収容部本体 25の上側に、枢軸 26により回動自在に押圧手段としての開閉 体たる開閉蓋 27を取り付けた構造を有しており、この開閉蓋 27は図示しないストッパ により、収容部本体 25を密閉した状態で保持できるようになつている。
[0025] この収容部本体 25の床板 25Aには開口部 28が形成されているとともに、この開口 部 28に嵌まり込んで収容部本体 25側に突出するように水放出部材 29が取り付けら れている。この水放出部材 29は、水を収容したシリコンなど力もなるマイクロカプセル を、スポンジからなる基体内に充填した構造を有する。一方、開閉蓋 27には開口部 3 0が形成されているとともに、この開口部 30に嵌まり込んで開閉蓋 27の下側(内側) に突出するように水放出部材 31が取り付けられている。そして、収容部材 22の両側 、すなわち収容部本体 25の下側及び開閉蓋 27の上側には、それぞれ燃料電池セ ル 23A, 23Bが設けられている。これら燃料電池セル 23A, 23Bは、燃料極 32と、電 解質膜 33と、空気極 34とを有しており、燃料極 32が水放出部材 29, 31と連接して いる。このような燃料電池システム 21において、燃料カートリッジ 24は、上面及び下 面が水透過性のケーシング内に液体燃料成分であるメタノールを固体ィ匕したメタノー ル包接化合物が充填された構成を有して ヽる。
[0026] 本実施形態の燃料電池システム 21にあっては、まず、開閉蓋 27が開成した状態で 燃料カートリッジ 24を収容部本体 25内に設置し、開閉蓋 27を閉鎖する。このとき、収 容部本体 25の内部空間は、燃料カートリッジ 24の厚さとほぼ同じ厚さであるとともに 、床板 25A及び開閉蓋 27の下側には水放出部材 29, 31がそれぞれ設けられてい るので、開閉蓋 27はそのままでは収容部本体 25を閉鎖しない。そこで、開閉蓋 27を 押圧すると水放出部材 29, 31はスポンジを基体としているので収縮し、開閉蓋 27が 収容部本体 25を閉鎖したらストツバ(図示せず)により開閉蓋 27を固定する。そうする と、前述した水放出部材 29, 31内のマイクロカプセルが破砕することにより水が染み 出し、燃料カートリッジ 24に水が浸入し、燃料カートリッジ 24内のメタノール包接ィ匕合 物と接触することでメタノールが放出され、メタノール水溶液よりなる燃料電池用燃料 が生成する。
[0027] この燃料電池用燃料溶液であるメタノール水溶液は、水放出部材 29, 31が燃料電 池セル 23A, 23Bの燃料極 32に押し付けられている圧力により、上下の燃料電池セ ル 23A, 23Bの燃料極 32にそれぞれ供給され、燃料極 32の触媒成分により水素ィ オン (H+)と二酸化炭素 (CO )と電子 (e_)とに転換され、電子 (e_)は電気的接続に
2
より外部回路(図示せず)から、水素イオン (H+)は電解質膜 33を通過することで、そ れぞれ空気極 34に導入される。一方、空気極 34では、空気又は酸素(O )が供給さ
2 れ、この酸素(O )が燃料極 32で発生した水素イオン (H+)及び電子 (e_)と反応して
2
水が生じる。このような反応において、燃料極 32から空気極 34に向力つて電子が流 れ電力が取り出される。なお、再度電力を必要とする場合には、開閉蓋 27を開成し て水放出部材 29, 31に水を含ませておき、新しい燃料カートリッジ 24を装着して同 様の操作を繰り返せばよい。一方、電力の供給を停止する場合には、開閉蓋 27のス トツパを解除すれば、弾性力により水放出部材 29, 31が復元することでメタノール水 溶液の供給を停止すればょ ヽ。
[0028] このように本実施形態にぉ 、ては、燃料となる燃料カートリッジ 24は水を含んで ヽ ないので、安全に保管及び運搬が可能であり、使用時に収容部本体 25に設置して 開閉蓋 27を閉鎖するだけで、簡単に燃料電池セル 23A, 23Bへ燃料としてのメタノ ール水溶液を供給することができる。
[0029] 上述したような第 1及び第 2の実施形態において、燃料電池用燃料 (又は液体燃料 成分)としては、水素、アルコール類、エーテル類、炭化水素類又はァセタール類な どが挙げられるが、固体高分子型燃料電池の燃料に使用できるものであれば良ぐこ れらに限定されるものではない。具体的には、水素;メタノール、エタノール、 n—プロ パノール、イソプロパノール、エチレングリコール等のアルコール類;ジメチルエーテ ル、メチルェチルエーテル,ジェチルエーテル等のエーテル類;プロパン、ブタン等 の炭化水素類;ジメトキシメタン、トリメトシキメタン等のァセタール類などが挙げられる 1S これらに限定されるものではなぐまたこれらは 1種を単独で用いても良いし、 2種 以上を混合して用いても良 ヽ。
[0030] 燃料電池は、好ましくは、固体高分子型燃料電池であり、その中でもダイレクトメタノ ール型燃料電池が好適であるがこれに限定されるものではない。
[0031] この燃料電池用燃料は、燃料電池用燃料の分子化合物やポリマーとして固体ィ匕ぁ るいはゲルイ匕された燃料電池用燃料組成物を用いることができる。前記分子化合物 とは、単独で安定に存在することのできる化合物の 2種類以上の化合物力 水素結 合やファンデルワールス力などに代表される共有結合以外の比較的弱い相互作用 によって結合した化合物であり、水化物、溶媒化物、付加化合物、包接化合物など が含まれる。このような分子化合物は、分子化合物を形成する化合物と燃料電池用 燃料との接触反応により形成することができ、燃料電池用燃料を固体状の化合物に 変化させることができ、比較的軽量で安定に燃料電池用燃料を貯蔵することができる
[0032] 分子化合物としては、ホスト化合物と燃料電池用燃料との接触反応により燃料電池 用燃料を包接した包接ィ匕合物が挙げられる。分子化合物のうち、燃料電池用燃料を 包接した包接化合物を形成するホスト化合物としては、有機化合物、無機化合物及 び有機 ·無機複合ィ匕合物よりなるものが知られており、また、有機化合物において単 分子系、多分子系、高分子系ホストなどが知られている。
[0033] 単分子系ホストとしては、シクロデキストリン類、クラウンエーテル類、クリプタンド類、 シクロフアン類、ァザシクロフアン類、カリックスアレン類、シクロトリベラトリレン類、スフ エランド類、環状オリゴペプチド類などが挙げられる。多分子系ホストとしては、尿素 類、チォ尿素類、デォキシコール酸類、コール酸類、ペルヒドロトリフエ-レン類、トリ —o—チモチド類、ビアンスリル類、スピロビフルオレン類、シクロフォスファゼン類、モ ノアルコール類、ジオール類、ヒドロキシベンゾフエノン類、アセチレンアルコール類、 フエノール類、ビスフエノール類、トリスフエノール類、テトラキスフエノール類、ポリフエ ノール類、ナフトール類、ビスナフトール類、ジフエ-ルメタノール類、カルボン酸アミ ド類、チォアミド類、ビキサンテン類、カルボン酸類、イミダゾール類、ヒドロキノン類な どが挙げられる。高分子系ホストとしては、セルロース類、デンプン類、キチン類、キト サン類、ポリビュルアルコール類、 1, 1, 2, 2, ーテトラキスフエ-ルェタンをコアとす るポリエチレングリコールアーム型ポリマー類、 a , α , α ' , α,一テトラキスフエ-ル キシレンをコアとするポリエチレングリコールアーム型ポリマー類などが挙げられる。そ の他に有機りん化合物、有機ケィ素化合物なども挙げられる。
[0034] 無機系ホストイ匕合物としては、酸化チタン、グラフアイト、アルミナ、遷移金属ジカル ゴゲナイト、フッ化ランタン、粘土鉱物 (モンモリロナイトなど)、銀塩、ケィ酸塩、リン酸 塩、ゼォライト、シリカ、多孔質ガラスなどが挙げられる。
[0035] さらに、有機金属化合物にもホストイ匕合物としての性質を示すものがあり、例えば、 有機アルミニウム化合物、有機チタン化合物、有機ホウ素化合物、有機亜鉛化合物 、有機インジウム化合物、有機ガリウム化合物、有機テルル化合物、有機スズ化合物 、有機ジルコニウム化合物、有機マグネシウム化合物などが挙げられる。また有機力 ルボン酸の金属塩や有機金属錯体などを用いることも可能であるが、有機金属化合 物であれば、特にこれらに限定されるものではない。
[0036] これらのホストイ匕合物のうち、包接能力がゲストィ匕合物の分子の大きさに左右されに くい多分子系ホストがより有効である。
[0037] 多分子系ホストイ匕合物としては、具体的には、尿素、 1, 1, 6, 6—テトラフヱニルへ キサ— 2, 4 ジイン— 1, 6 ジオール、 1, 1—ビス(2, 4 ジメチルフエ-ル)— 2— プロピン 1 オール、 1, 1, 4, 4ーテトラフエ二ルー 2 ブチン 1, 4ージオール、 1, 1, 6, 6—テトラキス(2, 4 ジメチノレフエ二ノレ) 2, 4 へキサジイン一 1, 6 ジ オール、 9, 10 ジフエ二ルー 9, 10 ジヒドロアントラセン 9, 10 ジオール、 9, 1 0 ビス(4—メチルフエ-ル)一 9, 10 ジヒドロアントラセン一 9, 10 ジオール、 1, 1, 2, 2—テトラフエニルェタン 1, 2 ジオール、 4ーメトキシフエノール、 2, 4 ジ ヒドロキシベンゾフエノン、 4, 4'ージヒドロキシベンゾフエノン、 2, 2', 4, 4'ーテトラヒ ドロキシベンゾフエノン、 1, 1—ビス(4 ヒドロキシフエニル)シクロへキサン、 4, 4' - スルホ-ルビスフエノール、 2, 2,一メチレンビス(4—メチル 6— t—ブチルフエノー ル)、 4, 4,ーェチリデンビスフェノール、 4, 4,ーチォビス(3—メチルー 6—t—ブチ ルフエノール)、 1, 1, 3 トリス(2—メチル—4 ヒドロキシ— 5— t—ブチルフエ-ル) ブタン、 1, 1, 2, 2—テトラキス(4ーヒドロキシフエニル)ェタン、 1, 1, 2, 2—テトラキ ス(4 ヒドロキシフエ-ル)エチレン、 1, 1, 2, 2—テトラキス(3—メチル 4 ヒドロ キシフエ-ル)ェタン、 1, 1, 2, 2—テトラキス(3 フルオロー 4 ヒドロキシフエ-ル) ェタン、 ex, α, α ', α,一テトラキス(4—ヒドロキシフエ-ル)一 ρ キシレン、 3, 6, 3 ' , 6 '—テトラメトキシー 9, 9 ' ビー 9Η—キサンテン、 3, 6, 3 ' 6 '—テトラァセトキ シ 9, 9,一ビー 9Η—キサンテン、没食子酸、没食子酸メチル、カテキン、ビス β —ナフトール、 a , , ' , α,一テトラフエニル一 1, 1,一ビフエニル一 2, 2,一ジメ タノール、ジフェン酸ビス(ジシクロへキシルアミド)、フマル酸ビス(ジシクロへキシル アミド)、コール酸、デォキシコール酸、 1, 1, 2, 2—テトラキス(4 カルボキシフエ- ル)ェタン、 1, 1, 2, 2—テトラキス(3—カルボキシフエ-ル)ェタン、アセチレンジカ ルボン酸、 2, 4, 5 トリフエ-ルイミダゾール、 1, 2, 4, 5—テトラフエ-ルイミダゾ一 ル、 2 フエ-ルフエナント口 [9, 10 d]イミダゾール、 2— (o シァノフエ-ル)フエ ナント口 [9, 10— d]イミダゾール、 2— (m—シァノフエ-ル)フエナント口 [9, 10— d] イミダゾール、 2— (p シァノフエ-ル)フエナント口 [9, 10— d]イミダゾール、ヒドロキ ノン、 2— t—ブチルヒドロキノン、 2, 5 ジ一 t—ブチルヒドロキノン、 2, 5 ビス(2, 4 —ジメチルフエ-ル)ヒドロキノン、などが挙げられる力 1, 1—ビス(4 ヒドロキシフエ -ル)シクロへキサンのようなフエノール系ホストイ匕合物が工業的に使用しやすい点 で有利である。
[0038] これらのホストイ匕合物は、 1種を単独で用いても良ぐ 2種以上を併用しても良い。こ れらのホスト化合物は、燃料電池用燃料と固体状の包接化合物を形成するものであ れば、どのような形状の化合物でも力まわな 、。
[0039] また、上述の有機ホストイ匕合物は、無機系多孔質物質に担持させた有機 ·無機複 合素材として使用することもできる。この場合、有機ホスト化合物を担持する多孔質物 質としては、シリカ類、ゼォライト類、活性炭類の他に、粘土鉱物類、モンモリロナイト 類などの層間化合物などが挙げられるが、これらに限定されるものではない。
[0040] このような有機 ·無機複合素材の製造方法としては、前述の有機ホストイ匕合物を溶 解することのできる溶媒に溶解させ、その溶液を無機多孔質物質中に含浸させ、溶 媒を乾燥、減圧乾燥するなどすることにより製造することができる。無機多孔質物質 に対する有機ホストイ匕合物の担持量としては特に制限はないが、通常の場合、無機 多孔質物質に対して 10〜80質量%程度である。
[0041] 前述の 1, 1 ビス(4ーヒドロキシフエ-ル)シクロへキサンなどのホスト化合物を用 Vヽて燃料電池用燃料の包接ィ匕合物を合成する方法としては、燃料電池用燃料とホス ト化合物とを直接接触、混合することで容易に合成することができ、またホストイ匕合物 を燃料電池用燃料に加熱等行 、溶解させ再結晶する方法でも得ることができる。ま た、燃料電池用燃料が気体や液体の場合であれば燃料を加圧状態でホスト化合物 と接虫することでち得ることがでさる。
[0042] 燃料電池用燃料とホストイ匕合物とを接触させる温度は、特に制限はないが、常温〜 100°C程度が好ましい。また、燃料電池用燃料とホスト化合物とを接触させる時間に ついても特に制限はないが、作業効率等の面から 0. 01〜24時間程度とするのが好 ましい。
[0043] なお、ホストイ匕合物と接触させる燃料電池用燃料は、高純度の燃料が好まし 、が、 燃料電池用燃料の選択的包接能を有したホストイ匕合物を用いる場合には、燃料電池 用燃料と他の成分との混合液体であっても良 、。
[0044] このようにして得られる包接ィ匕合物は、用いたホストイ匕合物の種類、燃料電池用燃 料との接触条件等によっても異なるが、通常ホストイ匕合物 1モルに対して燃料電池用 燃料分子 0. 1〜10モルを包接した包接ィ匕合物である。
[0045] このようにして得られた包接ィ匕合物は、常温 ·常圧環境において、長期に亘り燃料 電池用燃料を安定に貯蔵することができる。し力も、この包接ィ匕合物は、軽量で取扱 性にも優れ、し力も固体状であるため、ガラス、金属、プラスチック等の容器に入れて 容易に貯蔵することができ、液漏れの問題も解消される。また、通常液体状の燃料が 包接ィ匕により固体状になることで劇物や危険物としての性質を回避できるようにもなる 。さらには、燃料電池用燃料が有する化学的反応性を低減できるようになり、例えば 金属に対する腐食性なども緩和できるようになる。
[0046] 燃料組成物としては、分子内にカルボキシル基及び Z又はスルホン酸基を有する 構成単位を高分子(1)に基づいて 20〜: LOO質量%含有し、かつ該カルボキシル基 及び/又は該スルホン酸基のプロトンの 30〜100モル%がォ-ゥムカチオンで置換 されてなる高分子(1)の架橋体 (A)と、燃料電池用燃料とからなる燃料電池用燃料 組成物も使用することができる。燃料電池用燃料 (以下単に燃料という)を吸収、ゲル 化させるために、分子内にカルボキシル基及び Z又はスルホン酸基を有する構成単 位を所定量含有し、かつ該カルボキシル基及び Z又はスルホン酸基のプロトンが、 所定量ォ-ゥムカチオンで置換されてなる高分子(1)の架橋体 (A)を使用する。
[0047] 架橋体 (A)を構成するカルボキシル基及び Z又はスルホン酸基を有する構成単位
(a)としては、カルボキシル基を有するモノマー [例えば、(メタ)アクリル酸、エタアタリ ル酸、クロトン酸、ソルビン酸、マレイン酸、ィタコン酸、フマル酸、ケィ皮酸、及びそ れらの無水物等];スルホン酸基を有するモノマー [例えば、脂肪族ビニルスルホン酸 〔ビュルスルホン酸、ァリルスルホン酸、ビュルトルエンスルホン酸、スチレンスルホン 酸等〕、(メタ)アタリレート型スルホン酸〔スルホェチル (メタ)アタリレート、スルホプロピ ル (メタ)アタリレート等〕及び (メタ)アクリルアミド型スルホン酸〔アクリルアミド— 2—メ チルプロパンスルホン酸等〕]等が挙げられ、これらの 1種又は 2種以上を高分子(1) 中の構成単位とすることができる。好ましくはカルボキシル基及び Z又はスルホン酸 基を有する炭素数 3〜30の構成単位である。
[0048] また、カルボキシル基及び Z又はスルホン酸基を有する構成単位を分子内に所定 量含有する高分子(1)を得る方法として、上記のモノマー (a)を所定量重合する方法 の他に、例えば、前記カルボキシル基、スルホン酸基含有モノマーのエステル化物 やアミド化物等のような、容易にカルボキシル基ゃスルホン酸基に変更できるモノマ 一を重合し、加水分解等の方法を用いて、所定量のカルボキシル基ゃスルホン酸基 の構成単位を分子内に導入したもの、カルボキシメチルセルロースに代表されるカル ボキシル基、スルホン酸基含有多糖類高分子、及び該多糖類高分子と他のモノマー とのグラフト共重合体等を例示することができる力 最終的にカルボキシル基及び Z 又はスルホン酸基の構成単位を所定量含有するポリマーが得られるものであれば特 に限定はない。
[0049] カルボキシル基及び Z又はスルホン酸基を有する構成単位の、高分子(1)中の含 有量は、通常 20〜: LOO質量%、好ましくは 40〜: LOO質量%、さらに好ましくは 60〜1 00質量%である。含有量が 20質量%未満であると、後述するォ-ゥムカチオンで力 ルポキシル基ゃスルホン酸基のプロトンを置換しても、対象となる液体燃料に対する 吸収量が低下したり、少量では液体燃料をゲルイ匕できな 、場合がある。
[0050] カルボキシル基及び Z又はスルホン酸基を有する構成単位以外の構成単位を形 成する共重合可能なモノマー (b)としては、例えば、(メタ)アクリル酸アルキル (炭素 数 1〜30)エステル類 [ (メタ)アクリル酸メチル、(メタ)アクリル酸ェチル、(メタ)アタリ ル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸ェチルへキシル、(メタ)ァク リル酸ォクチル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ステアリル、(メタ)アタリ ル酸フエ-ル、(メタ)アクリル酸ォクチルフヱ-ル、(メタ)アクリル酸シクロへキシル等 ]; (メタ)アクリル酸ォキシアルキル (炭素数 1〜4)類 [ (メタ)アクリル酸ヒドロキシェチ ル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸モノ(ポリエチレングリコール )エステル(PEG数平均分子量: 100〜4000)、(メタ)アクリル酸モノ(ポリプロピレン グリコール)エステル(PPG数平均分子量: 100〜4000)、(メタ)アクリル酸モノメトキ シポリエチレングリコール(PEG数平均分子量: 100〜4000)、(メタ)アクリル酸モノ メトキシプロピレングリコール(PPG数平均分子量: 100〜4000)等]; (メタ)アクリル アミド類 [ (メタ)アクリルアミド、(ジ)メチル (メタ)アクリルアミド、(ジ)ェチル (メタ)アタリ ルアミド、(ジ)プロピル (メタ)アクリルアミド等];ァリルエーテル類 [メチルァリルエーテ ノレ、ェチノレアリノレエーテノレ、プロピノレアリノレエーテノレ、グリセローノレモノアリノレエーテ ル、トリメチロールプロパントリアリルエーテル、ペンタエリスリトールモノアリルエーテ ル等] ;炭素数 4〜20の α—ォレフィン類 [イソブチレン、 1一へキセン、 1—オタテン、 イソオタテン、 1—ノネン、 1—デセン、 1—ドデセン等] ;炭素数 8〜20の芳香族ビ- ル化合物類 [スチレン、 tーブチルスチレン、ォクチルスチレン等];その他のビ-ルイ匕 合物 [N—ビュルァセトアミド、カプロン酸ビュル、ラウリン酸ビュル、ステアリン酸ビ- ル等];ァミノ基含有モノマー [ジアルキル(アルキルの炭素数: 1〜5)アミノエチル (メ タ)アタリレート、メタ (アタリロイル)ォキシェチルトリアルキル (アルキル炭素数: 1〜5) アンモ-ゥムクロリド、ブロマイド又はサルフェート等]及び前記カルボキシル基、スル ホン酸基を有するモノマーのアルカリ金属塩
、 1〜3級ァミン塩又はアル力ノールアミン塩等を挙げることができる。これらのモノマ 一 (b)は、 1種又は 2種以上を、必要により前記 (a)と所定量の範囲内(ポリマー構成 単位の 80%未満)で共重合すればよ!、。
前記モノマー (b)の中で、モノマーの重合性や生成したポリマーの安定性等の観点 力 、(メタ)アクリル酸アルキルエステル類、ォキシアルキル (メタ)アタリレート類、ァリ ルエーテル類、 aーォレフイン類、芳香族ビニル化合物類が好ましい。 [0052] 液体燃料の吸収やゲル化の対象となる溶媒の SP (ソリュビリティーパラメーター)値 に合わせて、溶媒の SP値とモノマー(b)の SP値との差が 5以下であるモノマー(b)を 選択した方が吸収量やゲルィヒ力が上がりやすいため好ましぐ対象とする溶媒の SP 値と前記モノマー (b)の SP値との差が 3以下であるモノマー (b)を選択した方がさら に好ましい。
[0053] 前記カルボキシル基及び Z又はスルホン酸基のプロトンをォ-ゥムカチオンで 30 〜 100モル0 /0置換することが望ましい。ォ-ゥムカチオンとしては、第 4級アンモ-ゥ ムカチオン(1)、 3級スルホユウムカチオン(11)、第 4級ホスホ-ゥムカチオン(111)、 3級 ォキソユウムカチオン(IV)力 なるカチオンの群力 選ばれる 1種又は 2種以上であ る。
[0054] 第 4級アンモ-ゥムカチオン (I)としては、下記 (1—1)〜 (1—11)が挙げられる。
(1- 1)アルキル及び Z又はァルケ-ル基を有する炭素数 4〜30又はそれ以上の 脂肪族系第 4級アンモ-ゥム;テトラメチルアンモ-ゥム、ェチルトリメチルアンモ-ゥ ム、ジェチルジメチルアンモ-ゥム、トリェチルメチルアンモ-ゥム、テトラエチルアン モ-ゥム、トリメチルプロピルアンモ-ゥム、テトラプロピルアンモ-ゥム、ブチルトリメチ ルアンモ-ゥム、テトラプチルアンモ -ゥム等。
[0055] (1— 2)炭素数 6〜30又はそれ以上の芳香族第 4級アンモ-ゥム;トリメチルフエ- ルアンモ-ゥム、ジメチルェチルフエ-ルアンモ-ゥム、トリェチルフエ-ルアンモ-ゥ ム等。
[0056] (1— 3)炭素数 3〜30又はそれ以上の脂環式第 4級アンモ-ゥム; N, N—ジメチル ピロジ-ゥム、 N ェチルー N—メチルピロリジ-ゥム、 N, N ジメチルモルホリュウ ム、 N, N ジェチルモルホリュウム、 N, N ジメチルピベリジ-ゥム、 N, N ジェチ ルビベリジ-ゥム等。
[0057] (1—4)炭素数 3〜30又はそれ以上のイミダゾリ-ゥム; 1, 2, 3 トリメチルイミダゾリ ユウム、 1, 2, 3, 4—テトラメチルイミダゾリ-ゥム、 1, 3, 4 トリメチル—2 ェチルイ ミダゾリ二ゥム、 1, 2 ジメチルー 3, 4 ジェチルイミダゾリ二ゥム、 1, 2 ジメチルー 3 ェチルイミダゾリ-ゥム、 1—ェチル—3—メチルイミダゾリ-ゥム、 1, 2, 3, 4—テ トラェチルイミダゾリ-ゥム、 1, 2, 3 トリェチルイミダゾリ-ゥム、 4 シァノ 1, 2, 3 —トリメチルイミダゾリ-ゥム、 2 シァノメチル 1, 3 ジメチルイミダゾリ-ゥム、 4— ァセチル— 1, 2, 3 トリメチルイミダゾリ-ゥム、 4—メチルカルボキシメチル— 1, 2, 3 トリメチルイミダゾリ-ゥム、 4 ホルミル— 1, 2, 3 トリメチルイミダゾリ-ゥム、 3 —ヒドロキシェチル一 1, 2, 3 トリメチルイミダゾリ-ゥム、 3 ヒドロキシェチル一 1, 2 ジメチルイミダゾリ-ゥム等。
[0058] (1— 5)炭素数 3〜30又はそれ以上のイミダゾリゥム; 1, 3 ジメチルイミダゾリゥム、
1—ェチノレ一 3—メチノレイミダゾリゥム、 1—メチノレ一 3 ェチノレイミダゾリゥム、 1, 2, 3 , 4ーテトラメチルイミダゾリゥム、 1, 2 ジメチルー 3 ェチルイミダゾリゥム、 1ーェチ ノレ一 3—メチノレイミダゾリゥム、 1—メチノレ一 3 ェチノレイミダゾリゥム、 1, 2, 3 トリエ チルイミダゾリゥム、 1, 2, 3, 4—テトラエチルイミダゾリゥム、 1, 3 ジメチル— 2 フ ェ-ルイミダゾリゥム、 1, 3 ジメチル一 2 ベンジルイミダゾリゥム、 4 シァノ 1, 2
, 3 トリメチルイミダゾリゥム、 3 シァノメチル 1, 2 ジメチルイミダゾリゥム、 4 ァ セチノレ一 1, 2, 3 トリメチルイミダゾリゥム、 4—メトキシ一 1, 2, 3 トリメチルイミダゾ リウム、 3 ホルミルメチル—1, 2 ジメチルイミダゾリゥム、 2 ヒドロキシェチル 1 , 3—ジメチルイミダゾリゥム、 N, N,ージメチルベンゾイミダゾリゥム、 N, N, 一ジェチ ルベンゾイミダゾリゥム、 N—メチルー N, 一ェチルベンゾイミダゾリゥム等。
[0059] (1— 6)炭素数 4〜30又はそれ以上のテトラヒドロピリミジ-ゥム; 1, 3 ジメチルテト ラヒドロピリミジニゥム、 1, 2, 3 トリメチノレテトラヒドロピリミジニゥム、 1, 2, 3, 4ーテト ラメチルテトラヒドロピリミジ-ゥム、 8—メチル 1, 8 ジァザビシクロ [5, 4, 0] - 7 —ゥンデセ-ゥム、 5—メチル 1, 5 ジァザビシクロ [4, 3, 0]— 5 ノネ-ゥム、 3 ーシァノメチルー 1, 2 ジメチルテトラヒドロピリミジ-ゥム、 3 ァセチルメチルー 1,
2 ジメチルテトラヒドロピリミジ-ゥム、 4 メチルカルボキシメチルー 1, 2, 3 トリメ チルーテトラヒドロピリミジ-ゥム、 3—メトキシメチルー 1, 2 ジメチルテトラヒドロピリミ ジニゥム、 4 ヒドロキシメチル一 1, 3 ジメチルテトラヒドロピリミジ -ゥム等。
[0060] (1— 7)炭素数 4〜30又はそれ以上のジヒドロピリミジ-ゥム; 1, 3 ジメチルー 2, 4 もしくは 2, 6 ジヒドロピリミジ -ゥム [これらを 1, 3 ジメチルー 2, 4 (6) ジヒド 口ピリミジ-ゥムと表記し、以下同様の表現を用いる。 ]、 1, 2, 3 トリメチル—2, 4 (6 )ージヒドロピリミジ-ゥム、 1, 2, 3, 4ーテトラメチルー 2, 4 (6)—ジヒドロピリミジユウ ム、 1, 2, 3, 5—テトラメチノレー 2, 4 (6)—ジヒドロピミジユウム、 8—メチノレ一 1, 8— ジァザシクロ [5, 4, 0] - 7, 9 (10)—ゥンデカンジェ-ゥム、 2 シァノメチルー 1, 3 ジメチルー 2, 4 (6)—ジヒドロピリミジ-ゥム、 3 ァセチルメチルー 1, 2 ジメチル - 2, 4 (6)—ジヒドロピリミジ-ゥム、 4—メチルカルボキシメチル一 1, 2, 3 トリメチ ノレ一 2, 4 (6)—ジヒドロピリミジニゥム、 4 ホノレミノレ一 1, 2, 3 トリメチノレ一 2, 4 (6) —ジヒドロピリミジ-ゥム、 3 ヒドロキシェチル一 1, 2 ジメチルー 2, 4 (6)—ジヒドロ ピリミジ -ゥム等。
[0061] (I 8)炭素数 3〜30又はそれ以上のイミダゾリニゥム骨格を有するグァニジゥム;2 —ジメチルァミノ— 1, 3, 4 トリメチルイミダゾリ-ゥム、 2 ジェチルァミノ— 1, 3, 4 —トリメチルイミダゾリ-ゥム、 2 ジメチルァミノ一 1—メチル 3, 4 ジェチルイミダ ゾリ-ゥム、 2 ジメチルァミノ一 1, 3 ジメチルイミダゾリ-ゥム、 2 ジェチルァミノ 1 , 3 ジメチルイミダゾリ二ゥム、 2 ジェチノレアミノ 1 , 3 ジェチルイミダゾリ二 ゥム、 1, 5, 6, 7—テトラヒドロ 1, 2 ジメチル— 2H—ピリミド [1, 2a]イミダゾリ-ゥム 、 1, 5 ジヒドロー 1, 2 ジメチルー 2H—ピリミド [1, 2a]イミダゾリ-ゥム、 2 ジメチ ルァミノ 3 メチルカルボキシメチルー 1ーメチルイミダゾリ-ゥム、 2 ジメチルアミ ノ 3—メトキシメチル - 1—メチルイミダゾリ-ゥム、 2 -ジメチルァミノ 3 ヒドロキ シェチルー 1—メチルイミダゾリ-ゥム、 2 ジメチルァミノ一 4 ヒドロキシメチル一 1, 3 ジメチルイミダゾリ-ゥム等。
[0062] (I 9)炭素数 3〜30又はそれ以上のイミダゾリゥム骨格を有するグァニジゥム;2— ジメチルァミノ— 1, 3, 4 トリメチルイミダゾリゥム、 2 ジェチルァミノ— 1, 3, 4 トリ メチルイミダゾリゥム、 2 ジェチルアミノー 1, 3 ジメチルー 4ーェチルイミダゾリゥム 、 2 ジェチルァミノ— 1, 3, 4 トリェチルイミダゾリゥム、 2 ジメチルァミノ— 1, 3— ジメチノレイミダゾリゥム、 1, 5, 6, 7—テトラヒドロ一 1, 2 ジメチノレ一 2H—イミド [1, 2 a]イミダゾリゥム、 1, 5 ジヒドロー 1, 2 ジメチルー 2H—ピリミドー [1, 2a]イミダゾリ ゥム、 2 ジメチルアミノー 3 シァノメチルー 1ーメチルイミダゾリゥム、 2 ジメチルァ ミノー 4 メチルカルボキシメチルー 1, 3 ジメチルイミダゾリゥム、 2 ジメチルァミノ - 3 メトキシメチルー 1—メチルイミダゾリゥム、 2 -ジメチルァミノ 3 ホルミルメチ ルー 1—メチルイミダゾリゥム、 2 ジメチルァミノ一 4 ヒドロキシメチル一 1, 3 ジメ チルイミダゾリウム等。
[0063] (I— 10)炭素数 4〜30又はそれ以上のテトラヒドロピリミジ -ゥム骨格を有するグァ -ジゥム; 2 ジメチルァミノ一 1, 3, 4 トリメチルテトラヒドロピリミジ-ゥム、 2 ジェ チルアミノー 1, 3, 4 トリメチルテトラヒドロピリミジ-ゥム、 2 ジメチルァミノ一 1, 3 ージメチルテトラヒドロピリミジ-ゥム、 2 ジェチルアミノー 1, 3 ジメチルテトラヒドロ ピリミジ -ゥム、 1, 3, 4, 6, 7, 8 へキサヒドロ 1, 2 ジメチル— 2H—イミド [1, 2 a]ピリミジ-ゥム、 1, 3, 4, 6, 7, 8 へキサヒドロ一 1, 2 ジメチル一 2H ピリミド [ 1, 2a]ピリミジ-ゥム、 2 ジメチルァミノ一 3 シァノメチル 1—メチルテトラヒドロピ リミジ-ゥム、 2 ジメチルアミノー 4 ァセチルー 1, 3 ジメチルテトラヒドロピリミジ- ゥム 2 ジメチルアミノー 4 メチルカルボキシメチルー 1, 3 ジメチルテトラヒドロピリ ミジ-ゥム、 2 ジメチルァミノ一 3—メトキシメチルー 1—メチルテトラヒドロピリミジユウ ム、 2 ジメチルァミノ一 3 ヒドロキシェチル一 1—メチルテトラヒドロピリミジ-ゥム、 2 —ジメチルァミノ一 4 ヒドロキシメチル一 1, 3 ジメチルテトラヒドロピリミジニゥム等。
[0064] (I 11)炭素数 4〜30又はそれ以上のジヒドロピリミジ -ゥム骨格を有するグァ-ジ ゥム; 2 ジメチノレアミノー 1, 3, 4ートリメチノレー 2, 4 (6)—ジヒドロピリミジェゥム、 2- ジェチルァミノ一 1, 3, 4 トリメチルー 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジェチ ノレアミノー 1, 3, 4ートリエチノレー 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジェチノレアミノ - 1, 3 ジメチルー 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジメチルァミノ一 1—ェチ ノレ一 3—メチノレ一 2, 4 (6)—ジヒドロピリミジニゥム、 1, 6, 7, 8—テトラヒドロー 1, 2— ジメチル一 2H—イミド [1, 2a]ピリミジ-ゥム、 1, 6 ジヒドロ一 1, 2 ジメチル一 2H —ピリミド [1, 2a]ピリミジ-ゥム、 2 ジメチルァミノ一 4 シァノ 1, 3 ジメチル一 2 , 4 (6)—ジヒドロピリミジ-ゥム、 2 ジメチルァミノ 3 ァセチルメチルー 1—メチル - 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジメチルァミノ一 3—メチルカルボキシメチル — 1—メチル 2, 4 (6)—ジヒドロピリミジ-ゥム、 2 ジメチルァミノ一 4 ホルミル一 1, 3 ジメチノレ一 2, 4 (6)—ジヒドロピリミジェゥム、 2 ジメチノレアミノ一 3 ホノレミノレ メチル 1—メチル 2, 4 (6)—ジヒドロピリミジ -ゥム等。
[0065] 3級スルホユウムカチオン(II)としては、下記(II 1)〜(II 3)が挙げられる。
(II- 1)炭素数 1〜 30又はそれ以上のアルキル及び Z又はァルケ-ル基を有する 脂肪族系 3級スルホユウム;トリメチルスルホ-ゥム、トリェチルスルホ-ゥム、ェチルジ メチルスルホ-ゥム、ジェチルメチルスルホ -ゥム等。
[0066] (II 2)炭素数 6〜30又はそれ以上の芳香族系 3級スルホ -ゥム;フエ-ルジメチ ノレスノレホニゥム、フエ-ノレェチノレメチノレスノレホニゥム、フエ-ノレメチノレべンジノレスノレホ
-ゥム等。
[0067] (II 3)炭素数 3〜30又はそれ以上の脂環式 3級スルホユウム;メチルチオラ -ゥム
、フエ-ルチオラ-ゥム、メチルチア-ゥム等。
[0068] 第 4級ホスホ-ゥムカチオン(III)としては、下記(III 1)〜(III 3)が挙げられる。
(III 1)炭素数 1〜30又はそれ以上のアルキル及び Z又はァルケ-ル基を有する 脂肪族系第 4級ホスホ-ゥム;テトラメチルホスホ-ゥム、テトラエチルホスホ-ゥム、テ トラプロピノレホスホニゥム、テトラブチノレホスホニゥム、メチルトリェチノレホスホニゥム、メ チルトリプロピルホスホニゥム、メチルトリブチルホスホニゥム、ジメチルジェチルホスホ -ゥム、ジメチルジブチルホスホ-ゥム、トリメチルェチルホスホ-ゥム、トリメチルプロ ピルホスホ-ゥム、トリメチルブチルホスホ-ゥム等。
[0069] (III 2)炭素数 6〜30又はそれ以上の芳香族系 4級ホスホ-ゥム;トリフエ-ルメチ ノレホスホ-ゥム、ジフエ-ノレジメチノレホスホ-ゥム、トリフエ-ノレベンジノレホスホ -ゥム 等。
[0070] (III 3)炭素数 3〜30又はそれ以上の脂環式 4級ホスホ-ゥム; 1, 1ージメチルホ スホラ二ゥム、 1ーメチノレー 1ーェチノレホスホラ二ゥム、 1, 1 ジェチノレホスホラニゥム 、 1, 1—ジェチルホスホリナ-ゥム、 1, 1—ペンタエチレンホスホリナ-ゥム等。
[0071] 3級ォキソユウムカチオン(IV)としては、下記(IV— 1)〜(IV— 3)が挙げられる。
(IV— 1)炭素数 1〜 30又はそれ以上のアルキル及び Z又はアルケニル基を有する 脂肪族系 3級ォキソユウム;トリメチルォキソユウム、トリェチルォキソユウム、ェチルジ メチルォキソ-ゥム、ジェチルメチルォキソ -ゥム等。
[0072] (IV— 2)炭素数 6〜30又はそれ以上の芳香族系 3級ォキソユウム;フエ-ルジメチ ルォキソ-ゥム、フエ-ルェチルメチルォキソ-ゥム、フエ-ルメチルベンジルォキソ -ゥム等。
[0073] (IV— 3)炭素数 3〜30又はそれ以上の脂環式 3級ォキソユウム;メチルォキソラユウ ム、フエ-ルォキソラ-ゥム、メチルォキサ -ゥム等。
[0074] これらの中で、好ましいォ-ゥムカチオンは(I)であり、さらに好ましいものは(1—1) 、(I 4)及び (I 5)であり、特に好ましいものは (I 4)及び (I 5)である。これらォ ユウムカチオンは、 1種又は 2種以上を併用しても良い。
[0075] ォ-ゥムカチオンを高分子に導入する方法は、例えば、高分子のカルボキシル基 及び Z又はスルホン酸基のプロトンを前記ォ-ゥムカチオンにより置換する方法が挙 げられる。ォ-ゥムカチオンにより、プロトンを置換する方法としては、所定量ォ -ゥム カチオンに置換できる方法であればいずれの方法でも良いが、例えば、上記ォニゥ ムカチオンの水酸化物塩(例えば、テトラエチルアンモ -ゥムハイドロキサイド等)ゃモ ノメチル炭酸ィ匕物塩 (例えば、 1, 2, 3, 4 トリメチルイミダゾリ-ゥムモノメチル炭酸 塩等)をカルボキシル基及び Z又はスルホン酸基を含有する高分子に添加し、必要 により脱水や脱炭酸、脱メタノ―ルを行うことに容易に置換可能できる。また、モノマ 一の段階で同様に置換しても良い。
[0076] ォ-ゥムカチオンによる置換の段階に関しては、例えば、前記カルボキシル基及び Z又はスルホン酸基を含有するモノマーをォ-ゥムカチオンで置換した後重合する 方法や、カルボキシル基及び Z又はスルホン酸基を有する高分子を作成した後、酸 のプロトンをォ-ゥムゥムカチオンで置換する方法等を挙げることができる力 最終的 な高分子のカルボキシル基及び Z又はスルホン酸基のプロトンを置換されるのであ れば 、ずれの段階でおこなってもよ!/、。
[0077] カルボキシル基及び Z又はスルホン酸基のプロトンを前記ォ-ゥムカチオンにより 置換する度合い(置換度)は、 30〜: LOOモル0 /0、好ましくは 50〜: LOOモル0 /0、さらに 好ましくは 70〜: LOOモル0 /0である。ォ-ゥムカチオンによる置換度が 30モル0 /0未満 では、高分子(1)のカルボキシル基、スルホン酸基及びォ-ゥムカチオンの解離が低 すぎて膨潤カゃゲルイ匕力が低力 たりする場合がある。
[0078] 本発明にお 、て、カルボキシル基及び Z又はスルホン酸基を有する構成単位を所 定量含有し、かつ該カルボキシル基及び Z又はスルホン酸基が所定量ォ-ゥムカチ オンで置換された前記高分子(1)は、最終的にはいずれかの段階で架橋して架橋 体とする。架橋の方法としては、公知の方法で良ぐ例えば、下記 [1]〜[5]の方法を 挙げることができる。
[0079] [1]共重合性架橋剤による架橋;
前記カルボキシル基及び Z又はスルホン酸基含有モノマー、該モノマーのォ-ゥ ムカチオン置換体、必要により共重合する他のモノマー (b)と共重合可能な又は分 子内に 2重結合を 2つ以上有する共重合性架橋剤 [ジビュルベンゼン等の多価ビ- ル型架橋剤、 N, N,—メチレンビスアクリルアミド等の (メタ)アクリルアミド型架橋剤、 ペンタエリスリトールトリアリルエーテル等の多価ァリルエーテル型架橋剤、トリメチロ ールプロパントリアタリレート等の多価 (メタ)アクリル酸エステル型架橋剤等]を共重 合して架橋する方法。
[0080] [2]反応性架橋剤による架橋;
カルボキシル基及び Z又はスルホン酸基又はそのォ-ゥムカチオン置換体、必要 により共重合するモノマーの官能基等と反応しうる官能基を分子内に 2つ以上有する 反応性架橋剤 [4, 4,—ジフエ-ルメタンジイソシァネート等の多価イソシァネート型 架橋剤、ポリグリセロールポリグリシジルエーテル等の多価エポキシ型架橋剤、グリセ リン等の多価アルコール型架橋剤、へキサメチレンテトラミンやポリエチレンィミン等の 多価ァミン、イミン型架橋剤、ェピクロルヒドリン等のハロエポキシ型架橋剤、硫酸ァ ルミニゥム等の多価金属塩型架橋剤等]を用いて架橋する方法。
[0081] [3]重合反応性架橋剤による架橋;
前記カルボキシル基及び Z又はスルホン酸基含有モノマー、該モノマーのォ-ゥ ムカチオン置換体、必要により共重合する他のモノマー (b)と共重合可能な又は分 子内に 2重結合を有し、かつカルボキシル基及び Z又はスルホン酸基又はそのォ- ゥムカチオン置換体、必要により共重合するモノマーの官能基等と反応し得る官能基 を分子内に有する重合反応性架橋剤 [グリシジルメタタリレート等のグリシジル (メタ) アタリレート型架橋剤、ァリルグリシジルエーテル等のァリルエポキシ型架橋剤等]を 用いて架橋する方法。
[0082] [4]放射線照射による架橋;
前記高分子(1)に紫外線、電子線、 γ線等の放射線を照射して高分子(1)を架橋 する方法や前記モノマーに紫外線、電子線、 γ線等を照射し重合と架橋を同時に行 う方法等。
[0083] [5]加熱による架橋;
前記高分子(1)を 100°C以上に加熱して、高分子(1)の分子間で熱架橋 [加熱に よるラジカルの発生による炭素間の架橋や官能基間での架橋]する方法等。
[0084] これらの架橋方法の中で好ましいものは、最終品の用途、形態によって異なるが、 総合的に考えると [ 1 ]共重合架橋剤による架橋、 [ 2]反応性架橋剤による架橋及び [
4]放射線照射による架橋である。
[0085] 前記共重合性架橋剤の中で好ま 、ものは、多価 (メタ)アクリルアミド型架橋剤、ァ リルエーテル型架橋剤、多価 (メタ)アクリル酸エステル型架橋剤であり、さらに好まし いものは、ァリルエーテル型架橋剤である。
[0086] 前記反応性架橋剤の中で好ましいものは、多価イソシァネート型架橋剤及び多価 エポキシ型架橋剤であり、さらに好ましいものは分子内に 3つ以上の官能基を有する 多価イソシァネート型架橋剤又は多価エポキシ型架橋剤である。
[0087] 架橋度に関しては、使用する目的によって適宜選択できるが、共重合性架橋剤を 使用する場合は、全モノマー質量に対して、 0. 001〜10質量%が好ましぐ 0. 01
〜 5質量%が更に好ましい。
[0088] 反応性架橋剤を使用する場合の添加量は、架橋体 (A)をどのような形状とするか によって好ましい添加量が異なる力 0. 001〜: LO質量%が好ましぐ後述する燃料 電池用液体燃料を含有した一体化したゲルを作成する場合は、 0. 01〜50質量% が好ましい。
[0089] 本発明にお 、て、前記カルボキシル基及び Z又はスルホン酸基含有モノマー、該 モノマーのォ-ゥムカチオン置換体及び必要により共重合する他のモノマー(b)の重 合方法も公知の方法で良ぐ例えば、前記の各モノマー及び生成するポリマーが溶 解する溶媒中での溶液重合法、溶媒を使用せずに重合する塊状重合法、乳化重合 法等を例示することができる。この中で好ましいものは、溶液重合法である。
[0090] 溶液重合による有機溶媒は、使用するモノマーやポリマーの溶解性により適宜選 択できる力 例えば、メタノール、エタノール等のアルコール類;エチレンカーボネート 、プロピレンカーボネート、ジメチルカーボネート等のカーボネート類; γ —ブチロラタ トン、 ε—力プロラタタム等のラタトン類;アセトン、メチルェチルケトン等のケトン類;酢 酸ェチル等のカルボン酸エステル類;テトラヒドロフラン、ジメトキシェタン等のエーテ ル類;トルエン、キシレン等の芳香族炭化水素類及び水等を挙げることができる。これ ら、溶媒は 1種又は 2種以上を混合して使用しても良い。
[0091] 溶液重合における重合濃度も特に限定はなく目的の用途によって種々異なるが、 1 〜80質量%が好ましぐ 5〜60質量%がさらに好ましい。
[0092] 重合開始剤も通常のもので良く、ァゾ系開始剤 [ァゾビスイソブチ口-トリル、ァゾビ スシァノ吉草酸、ァゾビス(2, 4 ジメチルバレ口-トリル)、ァゾビス(2 アミジノプロ パン)ジハイド口クロライド、ァゾビス { 2—メチル Ν— (2—ヒドロキシェチル)プロロピ オンアミド}等]、過酸ィ匕物系開始剤 [過酸ィ匕べンゾィル、ジー t—ブチルパーォキサ イド、タメンヒドロパーオキサイド、コハク酸パーオキサイド、ジ(2—エトキシェチル)パ ーォキシジカーボネート、過酸化水素等]、レドックス開始剤 [上記過酸ィ匕物系開始 剤と還元剤(ァスコルビン酸や過硫酸塩)の組み合わせ等]などを例示することができ る。
[0093] 他の重合方法としては、光増感開始剤 [ベンゾフエノン等]を添加し紫外線等を照 射する方法、 y線や電子線等の放射線を照射し重合する方法等を例示することがで きる。
[0094] 重合開始剤を使用する場合の開始剤の添加量は、特に限定はないが、使用するモ ノマーの総重量に対して、 0. 0001〜5%カ 子ましく、 0. 001〜2%がさらに好ましい
[0095] 重合温度も目的とする分子量や開始剤の分解温度、使用する溶媒の沸点等により 種々異なるが、 20〜200°Cが好ましぐ 0〜100°Cがさらに好ましい。
[0096] 架橋体を粒子状とする場合、その粒子径は、体積平均粒径で 0. 1〜5000 μ mが 好ましぐさらに好ましくは 50〜2000 μ mである。また、 0. 1 m未満が全体の 10質 量%以下、 5000 mを超える部分が全体の 10質量%以下が好ましぐそれぞれ 5 質量%以下がさらに好ましい。
[0097] 粒子径の測定は、ロータップ試験篩振とう機及び JIS Z8801— 2000標準篩いを 用いて、ペリーズ ·ケミカル ·エンジニアーズ ·ハンドブック第 6版(マックグロ一ヒル ·ブ ック 'カンパ-一、 1984, 21頁)に記載の方法で行う(以下、粒子径の測定は本方法 による。)。
[0098] 粒子状の形態を得る方法としては、最終的に粒子状になれば特に限定はな 、が、 例えば、下記 (i)〜 (iv)等の方法が挙げられる。
(i)必要により溶媒を用いて、前記共重合性架橋剤を共重合して高分子(1)の架橋 体 (A)を作成し、必要により乾燥等の方法で溶媒を留去し、公知の粉砕方法を用い て粉砕して粒子状とする方法。
[0099] (ii)必要により溶媒を用いて、重合して高分子(1)を作成した後、前記反応性架橋 剤又は照射等の手段により、高分子(1)を架橋した後、必要により乾燥等の方法で 溶媒を留去し、公知の粉砕方法を用いて粉砕して粒子状とする方法。
[oioo] (m)前記カルボキシル基及び Z又はスルホン酸基含有モノマー及び必要により他 モノマー (b)を前記共重合性架橋剤の存在下、必要により溶媒を用いて共重合して 架橋し高分子化した後、前記ォニゥムカチオンィ匕合物を添加し、酸基のプロトンを所 定量ォ-ゥムカチオンに置換した後、必要により乾燥等の方法で溶媒を留去し、公 知の粉砕方法を用いて粉砕して粒子状とする方法。
[0101] (iv)前記カルボキシル基及び Z又はスルホン酸基含有モノマー及び必要により他 モノマー (b)を前記共重合性架橋剤の非存在下必要により溶媒を用いて共重合して 未架橋の高分子とした後、前記ォニゥムカチオン化合物及び反応性架橋剤や放射 線照射を行うことにより、酸基のプロトンを置換するのと同時に高分子を架橋し、必要 により乾燥等の方法で溶媒を留去し、公知の粉砕方法を用いて粉砕して粒子状とす る方法。
[0102] これらの燃料電池用燃料貯蔵物 (以下燃料貯蔵物と!ヽぅ)の架橋体 (A)の形状を粒 子状にする過程で、必要により行う乾燥は、公知の乾燥方法で良ぐ例えば通気乾 燥 (循風乾燥機等)、透気乾燥 (バンド型乾燥機等)、減圧乾燥 (減圧乾燥機等)、接 触乾燥 (ドラムドライヤー等)等を挙げることができる。
[0103] 乾燥する場合の乾燥温度に関しては、ポリマー等の劣化や過度の架橋が起こらな ければ特に限定はないが、好ましくは 0〜200°C、さらに好ましくは、 50〜150°Cであ る。形状を粒子状とする場合の、粉砕方法も公知の方法で良ぐ例えば、衝撃粉砕( ピンミル、カッターミル、ボールミル型粉砕機や ACMパルべライザ一等の高速回転 型粉砕機等)、空気粉砕 (ジェット粉砕機等)、凍結粉砕等の方法を挙げることができ る。
[0104] このようにして粒子状の架橋体 (A)が得られる。本発明にお 、て、このように粒子状 化した燃料貯蔵物中の架橋体 (A)は、燃料を吸収する能力がある。
[0105] 本発明の燃料電池システムの燃料カートリッジに収容する燃料組成物は、種々の 形態に加工でき、その形態は特に限定されないが、好ましい形態としては粒子状、シ ート状、一体ゲルィ匕の形態を挙げることができる。
[0106] 以下、好ましい形態の作成方法について説明するが、形態によりその作成方法、好 ま 、作成方法等が若干異なるので、それぞれにつ!/、て説明する。
[0107] 粒子状の燃料貯蔵物は、粒子状の架橋体 (A)に燃料を吸収させたものでもよ!/、し
、架橋体 (A)に燃料を吸収させた後粒子状としてもよい。粒子状にする方法は、上記 の架橋体 (A)を製造する方法と同じでよ!、。体積平均粒子径等は架橋体 (A)と同じ ものが好ましい。
[0108] このように粒子状ィ匕した燃料組成物は、燃料を吸収する能力がある。この本発明の 燃料貯蔵物中の架橋体 (A)の吸収量は、対象とする燃料の種類や前記ポリマー組 成、又はゲル強度等により種々変化し、該架橋体 (A)を燃料貯蔵物として使用する 場合は、メタノールに対する吸収量を 10〜: LOOOgZgに設計するのが好ましぐ 50 〜900gZgに設計するのがさらに好ましい。吸収量が lOgZg以上であれば、従来 の非イオン系吸収剤に比べ保液量が大幅に大きぐ lOOOgZg以下であると液体燃 料を保液した燃料貯蔵物のゲル強度が弱すぎると ヽぅ問題がな!ヽ。
[0109] 次に燃料組成物の形状をシート状とする場合に関して説明する。
シート状にする場合の方法としては、例えば、下記 (v)〜(vii)の方法を挙げることが できる。
[0110] (V)前記粒子状の架橋体 (A)を不織布や紙等の間に挟み込んでサンドイッチシー トとし、燃料を吸収させる方法。
[0111] (vi)前記高分子(1)の未架橋体を不織布、織布、紙及びフィルムよりなる群から選 ばれる 1又は 2以上の基材に含浸及び Z又は塗工した後、前記架橋剤による架橋、 前記放射線照射による架橋及び加熱による架橋からなる群から選ばれる 1又は 2以 上の架橋手段を用いて高分子(1)を架橋するとともに、必要により溶媒を留去しシー ト化した後、燃料を吸収させる方法。
[0112] (vii) 30〜 100モル0 /0のプロトンを前記ォ-ゥムカチオンで置換したカルボキシル 基及び Z又はスルホン酸基含有モノマー 20〜: LOO質量%と、他の共重合可能なモ ノマーを 0〜80質量%、前記架橋剤からなる混合溶液を、不織布、織布、紙及びフィ ルムよりなる群力 選ばれる 1又は 2以上の基材に含浸及び Z又は塗工した後、該基 材を重合開始剤及び Z又は放射線等の照射による架橋、加熱による架橋の群から 選ばれる 1又は 2以上の架橋手段を用いて重合し、必要により溶媒を留去することに よりシート化した後、燃料を吸収させる方法。
[0113] これらの方法の中で、作成したシート(B)の厚みの調整の容易さや作成したシート の吸収速度等の観点から、(vi)又は (vii)が好ましい。形状をシート状とした場合のシ ート(B)の厚みは、 1〜50000 111カ 子ましく、 5〜30000 m力さらに好ましく、 10 〜 10000 mが特に好ましい。シートの厚みが、 1 m以上であると架橋体 (A)の目 付量が少なくなりすぎず、 50000 μ m以下ではシートの厚みが厚すぎることがない。 シート長さや巾に関しては、使用する大きさにより適宜選択でき、特に限定はないが 、好ましい長さは 0. 01〜: L0m、好ましい巾は 0. l〜300cmである。前記シート(B) における本発明の高分子の架橋体の目付量に関しては、特に限定はないが、対象と する液体燃料の吸収'保液能力、また厚みが厚くなりすぎないこと等を加味すると、 目付量 ίま、 10〜3000g/m2力好まし <、 20〜: L000g/m2力さらに好まし!/、0
[0114] 形態をシート状とするために必要により使用する、不織布、織布、紙、フィルム等の 基材は公知のもので良ぐ例えば、 目付量が 10〜500g程度の合成繊維及び Z又 は天然繊維カゝらなる不織布又は織布、紙 (上質紙、薄葉紙、和紙など)、合成樹脂か らなるフィルム、並びにこれらの 2つ以上の基材及びこれらの複合体を例示することが できる。
[0115] これらの基材の中で、好ましいものは、不織布、及び不織布とプラスチックフィルム 又は金属フィルムとの複合体であり、特に好ましいものは、不織布、及び不織布とプ ラスチックフィルムとの複合体である。 [0116] これら基材の厚みに関しては特に限定はないが、通常1〜50000 111、好ましくは 10〜20000 /ζ πιである。厚みが、 1 m未満であると、所定量の前記高分子(1)の 含浸や塗工が難しぐ一方、厚みが 50000 /z mを越えるとシートが厚すぎて燃料貯 蔵物としたときに全体のカサが大きくなつて使用しに《なる。基材への、高分子(1) の塗工方法や含浸方法は、公知の方法で良く例えば、通常のコーティングやパディ ング等の方法を適用すれば良ぐコーティングやパディング処理を行った後、重合や 希釈、粘度調整等のために使用した溶媒を、必要により乾燥等の方法で留去しても 良い。
[0117] このようにして作成した架橋体 (A)を含有するシートは、燃料を効率よく吸収するの で、シート型燃料貯蔵物として用いられる。このシート型燃料貯蔵物における燃料に 対する吸収量も、燃料の供給時間が十分に長ければ特に限定はないが、 0. 1〜50 OgZcm2のものが好ましぐ l〜400gZcm2のものがさらに好ましい。吸収量が 0. 1 gZcm2以上であると液体燃料を十分に吸収できて、 500gZcm2以下であると液体 燃料を吸収したシートが厚くなりすぎない。
[0118] 前記架橋体 (A)と燃料とからなる一体ゲル化型燃料貯蔵物における前記架橋体( A) Z燃料の比率は、好ましくは 0. l〜99Zl〜99. 9質量%であり、さらに好ましく は 0. 5〜50Z50〜99. 5質量0 /0、特に好ましくは 1〜30Ζ70〜99質量0 /0であり、 最も好ましくは 1〜20Ζ80〜99質量%である。該架橋体 (Α)の比率が 0. 1質量% 以上であると、生成した燃料含有ゲルのゲル強度が弱ぐ全体をゲルィヒできない場 合がなぐ一方含有量が、 99質量%以下であると該架橋体 (Α)の含有量が多すぎる ために、必要とする燃料の添加量が低すぎて電池の放電時間が短くなることがない。
[0119] 一体ゲルィ匕型燃料貯蔵物に使用する燃料も、前記のものと同じ物が使用できる。
一体ゲル化型燃料貯蔵物の作成方法としては、例えば、(viii)前述した本発明の粒 子状の架橋体 (A)に所定量の燃料を添加する方法、 (ix)該架橋体 (A)を含有する シートに燃料を添加する方法でも良いが、これらの燃料含有ゲルは、下記 (X)や (xi) 等に挙げた方法で一体ィ匕したゲルを作成できるものが好ましい。
[0120] (X)前記高分子(1)を燃料に溶解し、該高分子(1)を前記架橋剤による架橋、放射 線照射による架橋、加熱による架橋のいずれかの架橋手段で架橋することにより一 体化したゲルとする方法。
[0121] (xi)燃料中で、前記ォ-ゥムカチオンで 30〜100モル0 /0のプロトンを置換したカル ボキシル基及び Z又はスルホン酸含有モノマー 20〜: LOO質量%、及び必要により他 の共重合可能なモノマーを 0〜80質量%を、前記共重合性架橋剤の存在下重合す ることにより、一体化したゲルとする方法。
[0122] 架橋体及び燃料力もなるゲルの形態は適宜選択することができ、形状としては、例 えば、シート状、ブロック状、球状、円柱状などの形状を例示することができる。これら の中で燃料貯蔵物として使用する場合、好ましい形状はシート状、ブロック状又は円 柱状である。
[0123] シート状ゲルとする場合のゲルの厚みは、 1〜50000 111カ 子ましく、 10〜20000 μ mがさらに好ましい。シート状ゲルの巾や長さに関しては、その使用目的や場所、 用途等に合わせて適宜選択すればよい。
[0124] これらの形状のゲルの作成方法も、特に限定はなぐ例えば、作成した!/ヽ形状に合 わせた容器中やセル中でゲルィ匕させる方法や、離型紙、フィルム、不織布等の上に 、前記高分子(1)やモノマー等と液体燃料との混合物を積層又はコーティング等する ことによりシート状のゲルを作成する方法等を例示できる。
[0125] 燃料組成物には、必要に応じて他のゲル化剤 (脂肪酸石鹼、ジベンザルソルビット 、ヒドロキシプロピルセルロース、ベンジリデンソルビトール、カルボキシビ二ルポリマ 一、ポリエチレングリコール、ポリオキシァノレキレン、ソノレビトーノレ、ニトロセルロース、 メチノレセノレロース、ェチノレセノレロース、ァセチノレブチノレセノレロース、ポリエチレン、ポ リプロピレン、ポリスチレン、 ABS榭脂、 AB榭脂、アクリル榭脂、ァセタール榭脂、ポリ カーボネート、ナイロン、フエノール榭脂、フエノキシ榭脂、ユリア榭脂、アルキッド榭 脂、ポリエステル、エポキシ榭脂、フタル酸ジァリル榭脂、ポリアロマー等)や吸着剤( デキストリン、デキストラン、シリカゲル、シリカ、アルミナ、モレキュラーシーブ、力オリ ン、珪藻土、カーボンブラック、活性炭等)、増粘剤、結着剤、燃料をィ匕学変換して非 流動化させる物質よりなる群力 選ばれる 1種又は 2種以上を配合してもよい。これら は、それぞれの機能を発揮できるものであれば特に限定はなぐ固体、液体のものを 問わない。また、燃料貯蔵物を作成する任意の段階で配合すればよい。 実施例
[0126] 以下に実施例を挙げて本発明をより具体的に説明する力 本発明はその要旨を超 えない限り、何ら以下の実施例に限定されるものではな 、。
[0127] 〔製造例 1〕
1, 1—ビス(4 ヒドロキシフエ-ル)シクロへキサン(BHC) 26. 8g (0. lmol)をメタ ノール 50mlに加熱溶解して再結晶を行うことにより、 BHC :メタノール = 1: 1 (モル比 )でメタノール含有率 11質量%の固体状のメタノール包接化合物を得た。
[0128] 〔製造例 2〕
1, 1, 2, 2—テトラキス(4 ヒドロキシフエ-ル)ェタン (THPE) 39. 8g (0. lmol) をメタノール 100mlに加熱溶解して再結晶を行うことにより、 THPE :メタノール = 1: 2 (モル比)でメタノール含有率 14質量%の固体状のメタノール包接ィ匕合物を得た。
[0129] 〔製造例 3〕
アクリル酸 360g (5モル)、ペンタエリスリトール卜リアリルエーテル 1. 08g及び水 11 40gを 2リットルの断熱重合槽に入れた。モノマー溶液の温度を 0°Cまで冷却して、溶 液に窒素を通じて溶存酸素を低下させた後、重合開始剤として 2, 2'—ァゾビス(2 アミジノプロパン)ハイド口クロライド 0. 36gと 35%過酸ィ匕水素水 3. lgと L ァスコ ルビン酸 0. 38gとを添加し、重合を開始させた。重合後、生成した含水ゲルを、ミート チョッパーを用いて細分ィ匕した後、このゲルに、 1, 2, 3, 4ーテトラメチルイミダゾリ- ゥムカチオンのメチル炭酸塩 (分子量: 203)の 60%メタノール溶液 (三洋化成工業 社製) 1353g (4モル)を添加したところ、脱炭酸及び脱メタノールが起こったのが観 察された。前記イミダゾリ-ゥムカチオンを添加したゲルを、バンド型乾燥機 (透気乾 燥機、井上金属工業社製)を用いて、 100°Cの熱風をゲルに透気して、溶媒として使 用した水及び副成したメタノールを留去し、乾燥した。得られた乾燥物を、カッターミ ルを用いて粉砕し、平均粒径 400 mの粒子状の架橋体を作成し、この粒子状の架 橋体 20gにメタノールを lOOg吸収させて、燃料組成物 (A1)を得た。
[0130] 〔実施例 1〜3〕
製造例 1〜3で得られたメタノール包接ィ匕合物又は燃料組成物 (A1)を収容した燃 料カートリッジ 4を、図 1及び図 2に示す燃料電池システム 1の収容部材 2に挿入口 5 から挿入し、押ボタン 13を押圧して燃料カートリッジ 4を押し下げ、水放出部材 7を押 圧圧縮して水を燃料カートリッジ 4に流入させたところ、 V、ずれの場合にもメタノール 水溶液が生成され、このメタノール水溶液が燃料極 8に供給されることにより、燃料電 池セル 3により発電させることができた。
また、この燃料電池システムを lmの高さから落下させても水漏れ等は生じず、 48 時間室温で放置しても同様に燃料電池により発電させることができた。

Claims

請求の範囲
[1] 液体燃料成分を固体化した燃料組成物を収容した燃料カートリッジと、
この燃料カートリッジを着脱可能に収納する収容部材と、
この収容部材に接続可能に設けられた水放出部材と、
この水放出部材に近接して配置された燃料電池セルと、
前記水放出部材と前記燃料カートリッジとを押圧する押圧手段とを備え、 前記燃料電池セルが、燃料極が前記水放出部材側となるように配置されて ヽること を特徴とする燃料電池システム。
[2] 前記燃料カートリッジが板状であることを特徴とする請求項 1記載の燃料電池システ ム。
[3] 前記収容部材は、前記板状の燃料カートリッジを横方向に挿入する挿入口と、この 挿入口に連続するカートリッジ収容部とからなり、
前記カートリッジ収容部の一側には水放出部材が連接しているとともに、 前記押圧手段は、前記カートリッジ収容部内に燃料カートリッジが収容されると、該 燃料カートリッジを前記水放出部材に圧接する押圧部材力 なることを特徴とする請 求項 2記載の燃料電池システム。
[4] 前記収容部材は、前記板状の燃料カートリッジを収容するカートリッジ収容部と、該 カートリッジ収容部の他側に設けられた前記開閉体とからなり、
前記カートリッジ収容部の一側には水放出部材が連接しているとともに、前記押圧 手段は前記開閉体により構成され、前記カートリッジ収容部内に燃料カートリッジを 収容して前記開閉体を閉鎖すると、該燃料カートリッジが前記水放出部材に圧接さ れることを特徴とする請求項 2記載の燃料電池システム。
[5] 前記開閉体にも水放出部材が連接しているとともに、この開閉体の水放出部材にも 近接して燃料極が前記水放出部材側となるように前記燃料電池セルが配置されて 、 ることを特徴とする請求項 4記載の燃料電池システム。
[6] 前記燃料カートリッジ中には液体成分が不存在であることを特徴とする請求項 1〜5 の!、ずれか 1項記載の燃料電池システム。
[7] 前記液体燃料成分が、アルコール類、エーテル類、炭化水素類、及びァセタール 類よりなる群力 選ばれる 1種又は 2種以上であることを特徴とする請求項 1〜6のい ずれ力ゝ 1項記載の燃料電池システム。
[8] 前記燃料組成物が、液体燃料成分と相手方化合物との分子化合物を含むことを特 徴とする請求項 1〜7のいずれ力 1項記載の燃料電池システム。
[9] 前記燃料組成物の分子化合物が、該燃料電池用燃料とホスト化合物とから形成さ れる包接ィ匕合物であることを特徴とする請求項 8記載の燃料電池システム。
[10] 前記ホスト化合物が有機化合物、無機化合物及び有機 ·無機複合化合物よりなる 群力 選ばれる 1種又は 2種以上であることを特徴とする請求項 9記載の燃料電池シ ステム。
[11] 前記ホスト化合物が単分子系、多分子系及び高分子系ホスト化合物よりなる群から 選ばれる 1種又は 2種以上であることを特徴とする請求項 9又は 10記載の燃料電池 システム。
[12] 前記燃料組成物が、多価アルコールの脂肪酸エステルと燃料電池用燃料とを含む ことを特徴とする請求項 1〜7のいずれか 1項記載の燃料電池システム。
PCT/JP2006/302547 2005-05-10 2006-02-14 燃料電池システム WO2006120784A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-137908 2005-05-10
JP2005137908A JP2006318684A (ja) 2005-05-10 2005-05-10 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2006120784A1 true WO2006120784A1 (ja) 2006-11-16

Family

ID=37396304

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302547 WO2006120784A1 (ja) 2005-05-10 2006-02-14 燃料電池システム

Country Status (3)

Country Link
JP (1) JP2006318684A (ja)
TW (1) TW200640070A (ja)
WO (1) WO2006120784A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273211A (ja) * 2006-03-31 2007-10-18 Hitachi Ltd 発電機

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100098995A1 (en) * 2006-10-11 2010-04-22 Kurita Water Industries Ltd Direct methanol fuel cell system and portable electronic device
JP5035536B2 (ja) 2007-03-29 2012-09-26 栗田工業株式会社 固体状メタノールを用いた直接メタノール形燃料電池システム及びこれを用いた携帯用電子機器、並びに直接メタノール形燃料電池システム用の燃料カートリッジ
WO2008123218A1 (ja) * 2007-03-29 2008-10-16 Kurita Water Industries Ltd. 固体状メタノールを用いた直接メタノール形燃料電池システム及びこれを用いた携帯用電子機器、並びに直接メタノール形燃料電池システム用の燃料カートリッジ
JP2009295437A (ja) * 2008-06-05 2009-12-17 Nippon Telegr & Teleph Corp <Ntt> 圧着式燃料電池セル
CN102487146B (zh) 2010-12-02 2014-03-26 扬光绿能股份有限公司 氢气产生装置
CN102530861B (zh) 2010-12-16 2013-09-25 扬光绿能股份有限公司 氢气产生装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413828B2 (ja) * 1982-04-23 1992-03-10 Hitachi Ltd
JP2001093558A (ja) * 1999-09-21 2001-04-06 Toshiba Corp 燃料電池用の燃料組成物
JP2001185184A (ja) * 1999-12-28 2001-07-06 Toshiba Corp 燃料電池および燃料電池用燃料タンク
JP2004127659A (ja) * 2002-10-01 2004-04-22 Sanyo Chem Ind Ltd 燃料電池用燃料貯蔵物及び燃料電池
JP2005203335A (ja) * 2003-12-18 2005-07-28 Kurita Water Ind Ltd 燃料電池用燃料及びその供給方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0413828B2 (ja) * 1982-04-23 1992-03-10 Hitachi Ltd
JP2001093558A (ja) * 1999-09-21 2001-04-06 Toshiba Corp 燃料電池用の燃料組成物
JP2001185184A (ja) * 1999-12-28 2001-07-06 Toshiba Corp 燃料電池および燃料電池用燃料タンク
JP2004127659A (ja) * 2002-10-01 2004-04-22 Sanyo Chem Ind Ltd 燃料電池用燃料貯蔵物及び燃料電池
JP2005203335A (ja) * 2003-12-18 2005-07-28 Kurita Water Ind Ltd 燃料電池用燃料及びその供給方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273211A (ja) * 2006-03-31 2007-10-18 Hitachi Ltd 発電機

Also Published As

Publication number Publication date
TW200640070A (en) 2006-11-16
JP2006318684A (ja) 2006-11-24

Similar Documents

Publication Publication Date Title
US7749625B2 (en) Fuel for fuel cell, fuel cell and application thereof
WO2006120784A1 (ja) 燃料電池システム
JP3862166B2 (ja) 燃料電池用燃料貯蔵物及び燃料電池
US7255947B2 (en) Fuel substance and associated cartridge for fuel cell
WO2006009100A1 (ja) 燃料電池装置
KR20160011235A (ko) 에어로겔 촉매를 구비한 수소발생기
WO2006126313A1 (ja) 燃料電池システム
JP4325493B2 (ja) 燃料電池用燃料及びその供給方法
US20060063058A1 (en) Fuel supplying system for fuel cell and fuel cell employing the same
JP2006156198A (ja) 燃料電池用燃料の供給装置、燃料供給方法及び燃料電池システム
WO2008047632A1 (fr) Système de batterie de piles à combustible de type à méthanol direct et équipement électronique portable
JP2007087646A (ja) 燃料電池システム
JP2007122895A (ja) 燃料電池システム
WO2006114929A1 (ja) 燃料電池用燃料供給装置
JP5083487B2 (ja) ダイレクトメタノール型燃料電池から発生する有害物質の除去方法
JP2006040629A (ja) 燃料電池用燃料組成物からの燃料放出方法
US20100092827A1 (en) Direct methanol fuel cell system using solid methanol, portable electronic device using same, and fuel cartridge for direct methanol fuel cell system
JP2006156197A (ja) 燃料電池用燃料供給装置および燃料供給方法
US20110217606A1 (en) Hydrogen generation device and fuel cell
JP2005327626A (ja) 燃料電池発電システム
KR101163243B1 (ko) 연료 전지용 연료와 연료 전지 및 그 응용
JP4806905B2 (ja) 燃料電池用燃料組成物中の燃料物質の存在量検知方法
JP2005327624A (ja) 燃料電池用燃料放出装置
JP2008034138A (ja) 直接メタノール形燃料電池及びメタノール濃度調整方法
JP2005095357A (ja) アルコール供給材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06713688

Country of ref document: EP

Kind code of ref document: A1