WO2006118260A1 - 静電結合型高分子ベシクル - Google Patents

静電結合型高分子ベシクル Download PDF

Info

Publication number
WO2006118260A1
WO2006118260A1 PCT/JP2006/309008 JP2006309008W WO2006118260A1 WO 2006118260 A1 WO2006118260 A1 WO 2006118260A1 JP 2006309008 W JP2006309008 W JP 2006309008W WO 2006118260 A1 WO2006118260 A1 WO 2006118260A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
force
block copolymer
hydrogen atom
segment
Prior art date
Application number
PCT/JP2006/309008
Other languages
English (en)
French (fr)
Inventor
Kazunori Kataoka
Aya Koide
Kensuke Osada
Yuichi Yamasaki
Shigeto Fukushima
Joon-Sik Park
Original Assignee
The University Of Tokyo
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The University Of Tokyo filed Critical The University Of Tokyo
Priority to JP2007514840A priority Critical patent/JP4992090B2/ja
Priority to EP06745867.9A priority patent/EP1878766B1/en
Priority to US11/919,744 priority patent/US8304497B2/en
Publication of WO2006118260A1 publication Critical patent/WO2006118260A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/127Liposomes
    • A61K9/1271Non-conventional liposomes, e.g. PEGylated liposomes, liposomes coated with polymers
    • A61K9/1273Polymersomes; Liposomes with polymerisable or polymerised bilayer-forming substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/028Polyamidoamines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a vesicle formed of a water-soluble and charged block copolymer. More specifically, the present invention relates to a drug delivery system and a vesicle having functions useful as various materials.
  • a polymer whose primary structure is precisely controlled can spontaneously generate a texture and form a higher order structure.
  • Specific examples include structures such as micelles and vesicles.
  • Such a polymer self-organized structure can be designed in various ways, and can be a structure having a new function in addition to the properties inherent to the polymer. The use of such a polymer self-organized structure has been studied in various fields including drug delivery systems and material science.
  • JP-A-8-188541 discloses an electrostatically coupled polymer micelle drug carrier comprising a block copolymer having an uncharged segment and a charged segment. Is disclosed.
  • MAKOKO Helmut bcnlaaa et al., Macromolecules, volume 36, number 5, p 1417-1420 includes both poly (1,2-butadiene) block and poly (cesium metatalylate) block force. It is disclosed that a vesicle called a polymer nome can be formed by using a polymer and a block copolymer having a polystyrene block and a poly (1-methyl-4-bulupyridinium iodide) block force.
  • the present inventors have recently found that a new vesicle excellent in structural stability and environmental responsiveness can be obtained by using two block copolymers having a specific structure and charged. Obtained . Further, the present inventors have obtained the knowledge that a novel vesicle can be easily produced by mixing the two block copolymers in an aqueous solution. The present invention is based on these findings.
  • an object of the present invention is to provide a new vesicle.
  • the vesicle according to the present invention includes a first block copolymer having an uncharged hydrophilic segment and a charged segment, an uncharged hydrophilic segment, and a charge of the first block copolymer. And a second block copolymer having a chargeable segment charged to a charge opposite to the chargeable segment.
  • the vesicle according to the present invention can be advantageously used in the field of biomaterials and DDS where it is not necessary to use an organic solvent in the production thereof.
  • the vesicle according to the present invention has a central void in which a large amount of compound can be encapsulated, and is advantageously used as a transport carrier for in-vivo substances and drugs, or as reactor fine particles having the central void as a reaction field for an enzyme. Can do.
  • the vesicle according to the present invention can stably maintain its structure in the presence of physiological saline and serum, and can impart various functions such as semi-permeability to the membrane. Therefore, the vesicle according to the present invention can be advantageously used as a biomaterial or drug delivery system excellent in structural stability and environmental responsiveness.
  • FIG. 1 is a schematic view showing the structure of a vesicle formed from a positively charged block copolymer and a negatively charged block copolymer and the mechanism of the formation.
  • FIG. 2 is a photograph of vesicles formed by PEG-PeDA and PEG-PAsp, observed with a dark field microscope.
  • FIG. 3 is a photograph of vesicles formed by PEG-PeDA and PEG-PAsp, observed with a confocal microscope.
  • FIG. 5 is a photograph of vesicles formed with PiPrOx-P (Lys) and PEG-PAsp, observed with a transmission electron microscope.
  • FIG. 6 is a photograph of vesicles formed with PEG-PeDA and PEG-PAsp in the presence of NaCl at a physiological saline concentration, observed with a confocal microscope.
  • FIG.7 A photograph of a vesicle consisting of PEG-PeDA and PEG-PAsp with FITC—dextran encapsulated in a dextran-labeled dextran solution observed with a confocal microscope. is there.
  • FIG. 8 is a photograph of a vesicle composed of PEG-PeDA and PEG-PAsp, which contains FITC-dextran, when observed with a confocal microscope, when a TRITC solution is prepared.
  • FIG. 9 is a photograph of a vesicle composed of PEG-PeDA and PEG-PAsp in the presence of serum, observed with a B-sound field microscope.
  • vesicle means a basic structure having a void inside and closed by a membrane.
  • alkyl or “alkoxy” as a group or part of a group means that the group is linear, branched, or cyclic alkyl or alkoxy. Means. Also, for example, "C alkyl group” t,
  • aryl means phenyl, naphthyl, anthryl or pyrenyl.
  • halogen atom means a fluorine atom, a chlorine atom, a bromine atom, or an iodine atom.
  • an alkyl group may be “substituted”, wherein one or more hydrogen atoms on the alkyl group are one or more substituents (which may be the same or different). Means that it may be substituted. It will be apparent to those skilled in the art that the maximum number of substituents can be determined depending on the number of substitutable hydrogen atoms on the alkyl.
  • the substituent is a halogen atom, aryl group, hydroxyl group, amino group, carboxyl group, cyano group, formyl group, dimethylacetalized formyl group, jetylacetalized formyl group, c alkoxycarbo group, C-acylamide group, tri-C alkyl silo
  • the vesicle according to the present invention comprises a water-soluble and charged membrane formed by the interaction of two block copolymers.
  • the first block copolymer has an uncharged hydrophilic segment and a charged segment
  • the second block copolymer The coalescence has an uncharged hydrophilic segment and a charged segment charged to the opposite charge to the charged segment in the first block copolymer.
  • FIG. 1 is a schematic diagram showing the structure of a vesicle according to the present invention and the mechanism formed as one embodiment.
  • the first block copolymer (a) has an uncharged hydrophilic segment (c) and a positively charged charged segment (d), while the second block copolymer
  • the union (b) has an uncharged hydrophilic segment (e) and a negatively charged charged segment (f).
  • the first block copolymer ( a ) and the second block copolymer (b) self-assemble when placed in a system where charge interaction can occur, and as shown in FIG.
  • An ion complex intermediate layer (g) consisting of charged segments (d, f) and two hydrophilic layers (h, i) consisting of uncharged hydrophilic segments (c, e) are formed.
  • the vesicle (C) is formed with the body (B) as a membrane.
  • the vesicle according to the present invention is formed using electrostatic interaction between charged segments as a main driving force. Therefore, the formation and dissociation of vesicles can be controlled by the ionic strength. As a result, it is considered that the vesicles according to the present invention can exhibit excellent environmental responsiveness.
  • the vesicle film has a three-layer structure including an outer layer (h), an intermediate layer (g), and an inner layer (and according to a preferred embodiment of the present invention).
  • the first block The uncharged hydrophilic segment of either the copolymer or the second block copolymer forms the outer layer, the outer layer is not formed, and the non-charged hydrophilic segment of the other block copolymer forms the inner layer.
  • the vesicle according to the present invention has an inner layer composed of uncharged hydrophilic segments, an aqueous medium can be contained in the central void.
  • the shape of the vesicle according to the present invention is usually spherical.
  • the particle size of the vesicles in the present invention is not particularly limited as long as it has a hollow structure, but is preferably 10 m or less, more preferably 50 nm to: LO ⁇ m.
  • the charged segment contained in the first block copolymer and the charged segment contained in the second block copolymer can be charged to opposite charges.
  • These two charged segments are usually composed of polymer blocks.
  • the same chain length and number of charges in these charged segments means that the structure and size of the vesicles are stable and uniform. It is advantageous. Therefore, the chain length and the number of charges of the chargeable segments in the two copolymers are preferably the same.
  • the charged segment contained in the first block copolymer and the charged segment contained in the second block copolymer are each composed of a repeating unit having a monovalent charge.
  • the ratio of the number of repeating units in the charged segment contained in the first block copolymer to the number of repeating units in the charged segment contained in the second block copolymer is 1: 1.
  • the repeating unit and the number of charges in the charged segment can be adjusted by appropriately selecting the monomer constituting the charged segment and the reaction conditions for producing the charged segment.
  • a polyamine when used as a positively chargeable segment, it is positively charged by acid addition to the polyamine.
  • the type of acid to be added is appropriately determined according to the usage of the vesicle.
  • the positively chargeable segment of the first or second block copolymer is represented by the following formula (I). [Chemical 1]
  • NR (CH) At least one selected from the group consisting of NHR, where
  • R represents a hydrogen atom or a methyl group
  • R represents a hydrogen atom, a acetyl group, trifluoro
  • a force is 0 to 5,000
  • b force is 0 to 5,000
  • a + b force is 2 to 5,000.
  • Each repeating unit may be the same functional group or different functional groups.
  • R represents a —CONH (CH 2) —NH group, s is 2 to 5, and R represents a hydrogen atom.
  • A is between 0 and 200
  • b force is 0-200, and a + b force is 10-200.
  • the negatively charged charged segment of the first or second block copolymer is represented by the following formula ( ⁇ ).
  • Each R independently represents a methylene group or an ethylene group
  • c force is 0 to 5,000
  • d force is 0 to 5,000
  • c + d force is 2 to 5,000.
  • R represents the same functional group for each repeating unit of the charged segment.
  • It may be a group or a different functional group.
  • R is a hydrogen atom
  • R represents a methylene group, c force S0 to 200, d force S0 to 200, and c + d is 1
  • non-charged hydrophilic segment included in the block copolymer examples include polyalkylene glycols such as polyethylene dallicol, poly (2-isopropyl 2-oxazoline), polysaccharides, polybulal alcohol, polybulurpyrrolidone, poly (polyethylene glycol).
  • examples include acrylamide, polymethacrylamide, polyacrylic acid ester, polymethacrylic acid ester, and derivatives thereof.
  • the uncharged hydrophilicity of the first block copolymer The segment and the uncharged hydrophilic segment of the second block copolymer are polyethylene glycol and Z or poly (2-isopropyl-1-oxazoline). Furthermore, according to a more preferred embodiment of the present invention, the uncharged hydrophilic segment of the first block copolymer or the uncharged hydrophilic segment of the second block copolymer is polyethylene glycol.
  • the use of polyethylene glycol as the uncharged hydrophilic segment is advantageous for imparting biocompatibility to the vesicle.
  • the non-charged hydrophilic segment of the non-charged hydrophilic segment or the second block copolymer of the first block copolymer is a poly (2-isopropyl 2—Oxazoline).
  • poly (2-isopropyl-2-oxazoline) as the uncharged hydrophilic segment is advantageous for imparting temperature responsiveness to the vesicle.
  • the molecular weight (Mw) of the polyethylene glycol is preferably 500 to 15,000, more preferably 1,000 to 5,000.
  • the molecular weight (Mw) of poly (2-isopropyl-2-oxazoline) is preferably ⁇ 1,000 to 30,000 and more preferred ⁇ is 1,000,000 to 10,000.
  • the use of a polymer having the above-mentioned molecular weight as the uncharged hydrophilic segment is advantageous in forming vesicles preferentially in the block copolymer rather than forming micelles.
  • the block copolymer having a positively chargeable segment is represented by the following formula ( ⁇ ).
  • NR (CH) at least one selected from the group consisting of NHR, where
  • R represents a hydrogen atom or a methyl group
  • R is a hydrogen atom or an optionally substituted linear or branched C alkyl group
  • the scale represents — (CH 2) NH—, and g is 0 to 5,
  • Each repeating unit of the combination may be the same functional group or a different functional group.
  • R represents a -CONH (CH) -NH group, s is 2 to 5, R represents a hydrogen atom, R-catyl group
  • the a force is 0 to 200
  • the b force is 0 to 200
  • the a + b force is 10 to 200
  • the e force is 10 to 300.
  • the block copolymer having a positively chargeable segment is represented by the following formula (IV).
  • X is NH, pyridyl group, morpholyl group, 1 imidazolyl group, piperazyl group,
  • R (CH) at least one selected from the group consisting of NHR, where R
  • R 1S hydrogen atom or optionally substituted linear or branched C alkyl
  • the scale represents — (CH 2) NH, and h is 0-5,
  • R represents a linear or branched C alkyl group
  • Each repeating unit of the combination may be the same functional group or a different functional group.
  • R is-(C H) represents NH
  • R represents a hydrogen atom
  • R represents a methyl group
  • R represents -CH (CH)
  • 2 3 2 2 6 8 3 2 represents a force 0 to 200, b force 0 to 200, powerful a + b force 10 to 200, and f force 10 to 300.
  • the block copolymer having a negatively charged chargeable segment is represented by the following formula (V).
  • Each R independently represents a methylene group or an ethylene group
  • R is a hydrogen atom or an optionally substituted linear or branched C alkyl group
  • the scale represents — (CH 2) NH—, and g is 0 to 5,
  • R represents the same functional group for each repeating unit of the block copolymer.
  • It may be a group or a different functional group.
  • R is a hydrogen atom.
  • R 2 represents a child
  • R represents a methylene group
  • R represents an S methyl group
  • c force is 200
  • the block copolymer having a negatively chargeable segment is represented by the following formula (VI). [Chemical 6]
  • Each R independently represents a methylene group or an ethylene group
  • R is a hydrogen atom or an optionally substituted linear or branched C alkyl group
  • the scale represents — (CH 2) NH, and h is 0-5,
  • R represents a linear or branched C alkyl group
  • R represents the same functional group for each repeating unit of the block copolymer.
  • It may be a group or a different functional group.
  • R is a hydrogen atom.
  • R represents a methylene group, R represents a methyl group, R represents -CH (CH), c +
  • d is 10 to 200
  • j is 10 to 300.
  • the first block copolymer comprises an uncharged hydrophilic segment composed of polyethylene glycol or poly (2-isopropyl-2-oxazoline), and the above formula (I).
  • the second block copolymer is polyethylene glycol or poly (2-isopropyl 2-oxazoline) It has a non-charged hydrophilic segment constituted and a charged segment represented by the above formula ( ⁇ ).
  • R represents -CONH (CH) -NH, s is 2 to 5, R represents a hydrogen atom, a force ⁇ 200
  • R is hydrogen
  • R represents a methylene group
  • c is 0 to 200
  • d force is 0 to 200
  • the first block copolymer is a block copolymer represented by the above formula (III)
  • the second block copolymer is the above block copolymer. It is a block copolymer represented by the formula (V).
  • R represents -CONH (CH) -NH, and s is 2 to 5 and R force S
  • R force represents an S methyl group
  • a is 0 to 200
  • b force is to 200
  • + b force is 0 to 200, e is 10 to 300, and in the above formula (V), R and R are
  • R force represents an S methylene group
  • c is 0 to 200
  • d is 0 to 200
  • + d is 10-200 and i is 10-300.
  • the first block copolymer is represented by the above formula (IV
  • the second block copolymer is a block copolymer represented by the above formula (V).
  • R is-(
  • CH represents NH
  • R represents a hydrogen atom
  • R represents a methyl group
  • R represents -CH (CH)
  • R is as defined above, and represents an R-alkylene group
  • R force Represents the S methinore group, c force is 0 to 200, d force is 0 to 200, powerful c + d force 10 to 200
  • the first block copolymer is a block copolymer represented by the above formula (III), and the second block copolymer is the above-mentioned It is a block copolymer represented by the formula (VI).
  • 1 ⁇ represents -CONH (CH2) -NH, s is 2 to 5, and R is hydrogen. Represents an atom, R is methyl
  • R is as defined above, and R represents a methylene group.
  • R force S represents a methyl group
  • R represents one CH (CH)
  • c force ⁇ 200 d force ⁇ 200
  • the first block copolymer has the above formula (IV
  • the second block copolymer is a block copolymer represented by the above formula (VI).
  • R is-(
  • CH represents NH
  • R represents a hydrogen atom
  • R represents a methyl group
  • R represents -CH (CH)
  • 2 6 8 3 represents a ren group
  • c force is 0 to 200
  • d force is 0 to 200
  • c + d force is 10 to 200
  • j force is l0 to 300.
  • the vesicle according to the present invention can encapsulate a compound in its central space.
  • the vesicle according to the invention can also insert compounds into its membrane.
  • the above-mentioned compound can be appropriately selected depending on the use of the vesicle and its properties. Examples thereof include drugs, proteins, fluorescent dyes, nucleic acids, and fine particles.
  • ⁇ -Benzyl-L aspartate- ⁇ Carboxylic anhydride is polymerized using polyethylene glycol having a primary amino group at one end as an initiator.
  • polyethylene glycol monopoly ( ⁇ , ⁇ -aspartic acid) bromide was obtained by subjecting the resulting polyethylene dallicol poly 13 monobenzylspartate copolymer (VII) to alkali treatment and debenzylation.
  • the copolymer (VIII) is obtained.
  • Amino acids (IX) of polyethylene glycol-polyaspartic acid block copolymer can be obtained by reacting amine with amine in a solvent such as DMF and further acid addition using HC1 or the like.
  • the negatively charged poly ( ⁇ , j8— in the block copolymer (VIII) The chain length and charge number of the (aspartic acid) block can be easily made equal to the chain length and charge number of the amination block of the positively charged polyaspartic acid in the block copolymer (IX). Therefore, the above method is useful for efficiently producing homogeneous vesicles.
  • a poly (2-isopropyl-2-oxazoline) -poly, ⁇ -aspartic acid) block copolymer which is a negatively chargeable block copolymer
  • (XI) and a poly (2-isopropyl-2-oxazoline) -poly (L-lysine) block copolymer ( ⁇ ), which is a positively chargeable block copolymer will be described.
  • ⁇ (benzyloxycarbol) L lysine N strong rubonic acid anhydride is polymerized using poly (2-isopropyl 2-oxazoline) having a primary amino group at one end as an initiator.
  • the resulting poly (2-isopropyl-2-oxazoline) poly ( ⁇ -carbobenzoxy L-lysine) block copolymer (XII) was subjected to a deprotection reaction with an acid to obtain poly (2-isopropyl-2-oxazoline).
  • XII poly( ⁇ -carbobenzoxy L-lysine) block copolymer
  • the vesicle according to the present invention is formed by utilizing electrostatic interaction between block copolymers, the first block copolymer and the second block copolymer are mixed in an aqueous solution. By combining, it can be manufactured easily. Furthermore, according to the production method of the present invention, since vesicles can be produced without using an organic solvent, It can be used advantageously for DDS!
  • a first aqueous solution containing the first block copolymer and a second aqueous solution containing the second block copolymer are prepared.
  • the first and second aqueous solutions may be purified by filtration if desired.
  • the ratio of the total charge number of the first block copolymer in the first aqueous solution to the total charge number of the second block copolymer in the second aqueous solution is preferably 5: 1. ⁇ 1: 5, more preferably about 1: 1.
  • the total number of charges in the block copolymer is appropriately determined by those skilled in the art according to the number of repeating units constituting the chargeable segment in the block copolymer and the number of charges that the repeating unit has. The use of two block copolymers in the above ratio is advantageous for the efficient production of homogeneous vesicles.
  • the concentration of the first block copolymer in the first aqueous solution and the concentration of the second block copolymer in the second aqueous solution is the ratio of the total number of charges between the block copolymers.
  • it is appropriately determined in consideration of the solubility of the block copolymer in an aqueous solution, the formation efficiency of vesicles, and the like.
  • the solvent in the first and second aqueous solutions is preferably water or a buffer, more preferably 10 mM Tris / H ⁇ buffer or the like. Can be mentioned.
  • ⁇ in the first and second aqueous solutions is preferably ⁇ 5 to ⁇ 9, more preferably about ⁇ ⁇ 7, which may be appropriately adjusted within a range without preventing formation of vesicles.
  • can be easily adjusted by using a buffer as a solvent in the aqueous solution. Adjusting and using ⁇ of the first and second aqueous solutions is advantageous for maintaining the charged state of the block copolymer and forming vesicles efficiently.
  • the temperature of the first and second aqueous solutions is a force that is appropriately determined according to the solubility of the block copolymer in the solvent, preferably 10 to 80 ° C, more preferably 20 ⁇ 60 ° C.
  • the ionic strength in the first and second aqueous solutions is preferably 10 to 300 mM, more preferably 10 to 150 mM, as long as it does not interfere with the formation of vesicles. .
  • the first aqueous solution and the second aqueous solution are mixed.
  • the mixing method is not particularly limited, and the second aqueous solution may be added to the first aqueous solution, or the first aqueous solution may be added to the second aqueous solution. Further, the first aqueous solution and the second aqueous solution may be simultaneously added to the container and mixed.
  • the mixed solution of the first aqueous solution and the second aqueous solution thus obtained may be appropriately stirred.
  • the temperature at which the first aqueous solution and the second aqueous solution are mixed is not particularly limited as long as it does not interfere with the formation of vesicles, but is dissolved according to the temperature of the block copolymer. It is preferable to set in consideration of the degree. For example, the mixing temperature is 20 to 50. C.
  • the vesicle is generated in the mixed solution by allowing the mixed solution to stand.
  • the time for which the mixture is allowed to stand varies depending on the formation efficiency of the vesicle, but is, for example, 5 to 30 hours.
  • the compound is added to the mixed liquid containing the first and second block copolymers during the formation of the vesicle.
  • the compound can be encapsulated in the cycle.
  • the compound may be encapsulated in the vesicle by adding a compound in advance to one or both of the first and second aqueous solutions and preparing a mixed solution thereof. Therefore, the production method according to the present invention preferably comprises adding a compound for inclusion in a vesicle.
  • operations such as dialysis, dilution, concentration, and stirring can be added as appropriate. The same method as described above can also be used when a compound is inserted into a vesicle membrane.
  • NMR measurement was performed on PEG-PBLA, and the proton specific power of the ethylene chain peak of PEG near 3.5 ppm and the methylene chain peak adjacent to the benzene ring near 5 ppm was also calculated as about 100 polymerization degree of BLA. .
  • GPC measurement was performed, the molecular weight distribution was 1.18.
  • [0078] 1-2 Synthesis of polyethylene glycol-polyaspartic acid (PEG-PASO)
  • PEG-PASO polyethylene glycol-polyaspartic acid
  • a 1 H NMR measurement was performed on PEG-PeDA, and an aminated unit was obtained from the proton ratio of the PEG ethylene chain peak near 3.5 ppm to the CH2 peak adjacent to the primary amine at around 3 ppm.
  • the degree of polymerization was calculated to be about 100. From this result, it was confirmed that 1,5-diaminopentane was quantitatively introduced into the side chain of aspartic acid.
  • the molecular weight of PEG-PeDA was 21,900.
  • PEG-PeDA and PEG-PAsp were each prepared in lmgZml.
  • PEG—PeDA / PEG—PAsp (w / w) 1.62) so that the number of charges in PEG—PeDA solution and PEG—PAsp solution are equal.
  • the obtained two solutions were mixed, stirred, and allowed to stand at room temperature.
  • PEG-PeDA and PEG-PAsp were each prepared in lmgZml.
  • a dextran with a molecular weight of 42000 labeled with the fluorescent dye FITC was added to the PEG-PAsp solution at a concentration of 1.5 gZml and dissolved.
  • weigh the solution so that the number of charges in the PE G-PeDA solution and PEG-PAsp solution are equal (PEG—PeDA / PEG—PAsp (w / w) 1.62).
  • the mixture was filtered through a 22 ⁇ membrane filter, the two solutions obtained were mixed, stirred, and allowed to stand at room temperature.
  • the solution obtained in 1-4 was dropped on a slide glass, covered with a cover glass, and directly observed with a dark field microscope. The result was as shown in FIG. About 1 ⁇ : LO / zm spherical Scattered light from the aggregate was observed, and the aggregate had a hollow structure.
  • PiPrOx -PLys (Z) was subjected to NMR measurement, and the proton ratio of the peak derived from the methyl group of the PiPrOx side chain near 1.0 ppm to the peak of the methylene chain adjacent to the benzene ring near 4.9 ppm
  • the degree of polymerization of Lys (z) -NCA was calculated to be about 79.
  • GPC measurement showed a molecular weight distribution of 1.2.
  • the solution was allowed to react for 3 days while stirring the solution. After confirming the disappearance of the NCA-specific peak by IR, the reaction solution was dropped into about 10 times the amount of hexane to obtain a precipitate. The precipitate was filtered and washed several times with hexane. Further, the precipitate was transferred to an eggplant flask, vacuum-dried, and freeze-dried using benzene to obtain PiPrOx-PBLA.
  • the proton specific power between the peak derived from the methyl group in the side chain and the methylene chain peak adjacent to the benzene ring at around 5.1 ppm was also calculated as about 80 polymerization degree of BLA-NCA.
  • the molecular weight distribution was 1.1.
  • PEG-PAsp polyethylene glycol-polyaspartic acid
  • the solution obtained in 2-5 was dropped onto a slide glass, covered with a cover glass and observed as it was. When observed with a dark field microscope, the results were as shown in FIG. A spherical aggregate of about 1 to 10 m was present, and the aggregate had a hollow structure.
  • the solution obtained in 2-5 was dropped onto a Cu grid covered with a formvar support membrane. Further, a small amount of uranium acetate was dropped, and excess water was absorbed by a filter paper and dried to produce a grid. When observed with a transmission electron microscope, the results were as shown in FIG. About ⁇ ! There was a spherical aggregate of ⁇ 10 / zm, and the aggregate had a hollow structure with a membrane.
  • PEG-PeDA and PEG-PAsp were each adjusted to 1 mg / ml using a buffer of 10 mM Tris / HCl (pH 7.4) containing 150 mM NaCl as a physiological saline concentration.
  • 42000 molecular weight dextran labeled with the fluorescent dye FITC was dissolved in PEG-PAsp solution at a concentration of 1 mg / ml.
  • weigh the solution so that the number of charges in the PEG-PeDA solution and PEG-PAsp solution are equal (PEG-PeDA / PEG-P Asp (w / w) 1.62).
  • the solution was filtered through a 22 ⁇ m membrane filter, and the resulting two solutions were mixed and stirred.
  • the obtained solution was subjected to ultrasonic treatment for 20 minutes and then allowed to stand at room temperature. Next, this solution was diluted 100 times with a buffer to obtain a solution.
  • the solution obtained in 3-1 was dropped on a glass plate and observed with a confocal microscope.
  • spherical aggregates of about 1 to: LO m were observed.
  • fluorescence emission by FITC was observed in the inner phase of the spherical aggregate.
  • the spherical aggregate retained its form. From this result, it was confirmed that the spherical aggregate retained its structure at room temperature for 3 months or more in the presence of a colloid osmotic pressure of about 10 MOsm.
  • Fluorescent dyes tetramethylrhodamine isocyanate (TRITC) with molecular weight 443.5 and T
  • Each dextran having a molecular weight of about 70000 labeled with RITC was dissolved in a buffer of 10 mM Tris / HCl (pH 7.4) containing 150 mM NaCl.
  • 900 ⁇ L of the two types of solutions obtained were each added to 100 L of a solution containing spherical aggregates containing FITC obtained in 31.
  • a dextran solution labeled with TRITC was prepared, the image shown in Fig. 7 was obtained.
  • FITC green fluorescence was observed in the inner phase of the spherical assembly, and TRITC red fluorescence was observed in the outer phase of the spherical assembly.
  • TRITC solution was added, the image shown in Fig. 8 was obtained.
  • yellow fluorescence in which the green color of FITC and the red color of TRITC overlap was observed in the inner phase of the spherical aggregate.
  • dextran labeled with TRITC does not penetrate into the inner phase of the spherical assembly, and TEITC having a lower molecular weight than the above dextran penetrates into the inner phase of the spherical assembly.
  • the body membrane was confirmed to be semi-permeable.
  • each solution was filtered through a 0.22 m membrane filter, and the obtained two solutions were mixed, stirred, and allowed to stand at room temperature. 10 L of rabbit fetal serum was added to 90 L of this mixed solution, stirred again, and allowed to stand at 37 ° C.
  • the solution obtained in 6-1 was allowed to stand for 1 day, then dropped on a glass plate and observed with a dark field microscope. As shown in FIG. 9, there was a spherical aggregate of about 1 to 5 m, and the aggregate had a hollow structure. As a result, it was confirmed that the spherical aggregate retained a hollow structure in a solution containing 10% serum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Preparation (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
  • Manufacturing Of Micro-Capsules (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 本発明は、構造安定性、環境応答性に優れ、かつ簡便な操作により製造しうるベシクルを開示する。より詳しくは、本発明は、非荷電親水性セグメントと、荷電性セグメントとを有する第一のブロック共重合体と、非荷電親水性セグメントと、第一のブロック共重合体の荷電性セグメントと反対の電荷に荷電した荷電性セグメントとを有する第二のブロック共重合体とにより形成された膜を有してなる、ベシクルを開示する。

Description

明 細 書
静電結合型高分子べシクル
発明の背景
[0001] 発明の分野
本発明は、水溶性でありかつ荷電したブロック共重合体により形成されるべシクル に関し、さら〖こ詳しくは、薬物送達システム、各種材料として有用な機能を有するべシ クルに関する。
[0002] 背景 術
一次構造が精密に制御された高分子は、自発的に組織ィ匕を生じ、高次構造体を形 成しうることが知られている。その具体例としては、ミセル、べシクルなどの構造体が 挙げられる。このような高分子の自己組織化した構造体は、多様な分子設計が可能 であり、高分子が本来有している性質に加えて、新たな機能を備えた構造体となり得 る。このような高分子の自己組織ィ匕した構造体を利用することが、薬物送達システム や材料科学をはじめとする種々の分野にぉ 、て、従前検討されて 、る。
[0003] 例えば、特開平 8— 188541号公報には、非荷電性セグメントと荷電性セグメントと を有するブロック共重合体からなる静電結合型高分子ミセル薬剤担体が、本発明者 らの一部によって開示されている。
[0004] ま 7こ、 Helmut bcnlaaa et al., Macromolecules, volume 36, number 5, p 1417-1420 には、ポリ(1, 2—ブタジエン)ブロックおよびポリ(セシウムメタタリレート)ブロック力 なるブロック共重合体と、ポリスチレンブロックおよびポリ(1ーメチルー 4 ビュルピリ ジゥム アイオダイド)ブロック力もなるブロック共重合体とを用い、ポリマーノームと称 されるべシクルを形成しうることが開示されている。
[0005] 高分子材料により形成される構造体は、優れた有用性が期待されるにもかかわらず 、製造時にクロ口ホルムなどの有機溶媒を用いることがしばしば必要とされる。さらに、 高分子材料の自己組織ィ匕した構造体の製造にあっては、数工程に及ぶ煩雑な操作 力 S要求されることがある。したがって、有用性を備え、かつ簡便な操作により製造する ことが可能な構造体の創出が望まれるといえる。 発明の概要
[0006] 本発明者らは、今般、荷電した、特定の構造の二つのブロック共重合体を用いるこ とにより、構造安定性、環境応答性に優れた新規べシクルを得られるとの知見を得た 。また、本発明者らは、上記二つのブロック共重合体を水性溶液中で混合すること〖こ より、簡易に新規べシクルを製造しうるとの知見を得た。本発明はこれら知見に基づく ものである。
[0007] したがって、本発明は、新規べシクルの提供をその目的としている。
[0008] そして、本発明によるべシクルは、非荷電親水性セグメントと、荷電性セグメントとを 有する第一のブロック共重合体と、非荷電親水性セグメントと、第一のブロック共重合 体の荷電性セグメントと反対の電荷に荷電した荷電性セグメントとを有する第二のブ ロック共重合体とにより形成された膜を有してなるものである。
[0009] 本発明によるべシクルは、その製造において有機溶媒を用いる必要がなぐバイオ マテリアルの分野や DDSにおいて有利に利用することができる。また、本発明による べシクルは、大量の化合物を封入しうる中央空隙を有し、生体内物質および薬物の 輸送キャリアーや、中央空隙を酵素の反応場とするリアクター微粒子などとして有利 に利用することができる。さらに、本発明によるべシクルは、生理食塩水や血清の存 在下でその構造を安定に保持することができ、その膜には半透性等の多様な機能を 付与することが可能である。したがって、本発明によるべシクルは構造安定性や環境 応答性に優れたバイオマテリアルまたは薬物送達システムとして有利に利用すること ができる。
図面の簡単な説明
[0010] [図 1]正に荷電したブロック共重合体と、負に荷電したブロック共重合体とから形成さ れるべシクルの構造およびその形成されるメカニズムを示した模式図である。
[図 2]暗視野顕微鏡にぉ 、て観察された、 PEG- PeDAおよび PEG- PAspにより形成さ れたべシクルの写真である。
[図 3]共焦点顕微鏡にぉ 、て観察された、 PEG- PeDAおよび PEG- PAspにより形成さ れたべシクルの写真である。
[図 4]B音視野顕微鏡において観察された PiPrOx- P(Lys)および PEG- PAspにより形成 されたべシクルの写真である。
[図 5]透過型電子顕微鏡において観察された PiPrOx- P(Lys)および PEG- PAspにより 形成されたべシクルの写真である。
[図 6]共焦点顕微鏡にぉ 、て観察された、生理食塩水濃度の NaCl存在下 PEG- PeD Aおよび PEG- PAspにより形成されたべシクルの写真である。
[図 7]共焦点顕微鏡にぉ 、て観察された、 TRITCをラベルイ匕したデキストランの溶液 をカロえた場合の FITC—デキストランを内包した、 PEG- PeDAおよび PEG- PAspからな るべシクルの写真である。
[図 8]共焦点顕微鏡にぉ 、て観察された、 TRITCの溶液をカ卩えた場合の FITC—デ キストランを内包した、 PEG- PeDAおよび PEG- PAspからなるべシクルの写真である。
[図 9]B音視野顕微鏡にぉ 、て観察された、血清存在下における PEG- PeDAおよび PE G- PAspからなるべシクルの写真である。
発明の具体的説明
本明細書において、「べシクル」とは、内部に空隙を有し、膜により閉鎖された基本 構造体を意味する。
また、本明細書において、特に断らない限り、基または基の一部としての「アルキル 」または「アルコキシ」というという語は、基が直鎖状、分枝鎖状、または環状のアルキ ルまたはアルコキシを意味する。また、例えば「C アルキル基」 t 、う場合の「C
1 - 12 1 - 1
」とは、該アルキル基の炭素数が 1〜12個であることを意味する。
2
また、本明細書において、特に断らない限り、「ァリール」とは、フエニル、ナフチル、 アンス-ルまたはピレニルを意味する。
また、本明細書において、「ハロゲン原子」とは、フッ素原子、塩素原子、臭素原子 、またはヨウ素原子を意味する。
また、本明細書において、アルキル基が「置換されていてもよい」とは、アルキル基 上の 1またはそれ以上の水素原子が 1またはそれ以上の置換基(同一または異なつ ていてもよい)により置換されていてもよいことを意味する。置換基の最大数はアルキ ル上の置換可能な水素原子の数に依存して決定できることは当業者に明らかである またここで置換基は、ハロゲン原子、ァリール基、水酸基、アミノ基、カルボキシル基 、シァノ基、ホルミル基、ジメチルァセタール化ホルミル基、ジェチルァセタール化ホ ルミル基、 c アルコキシカルボ-ル基、 C ァシルアミド基、トリ C アルキルシロ
1 -6 2-7 1 -6
キシ基(ここで、 C アルキルは同一であっても異なって!/、てもよ!/、)、シロキシ基およ
1 -6
びシリルアミノ基力 なる群力 選択されるものである。
[0012] べシクル
本発明によるべシクルは、水溶性でありかつ荷電した、二つのブロック共重合体の 相互作用により形成される膜を含むことを一つの特徴とする。そして、べシクルの膜を 形成する二つのブロック共重合体のうち、第一のブロック共重合体は、非荷電親水性 セグメントと、荷電性セグメントとを有するものであり、第二のブロック共重合体は、非 荷電親水性セグメントと、第一のブロック共重合体における荷電性セグメントと反対の 電荷に荷電した荷電性セグメントとを有するものである。
[0013] 図 1は、一つの態様として、本発明によるべシクルの構造およびその形成されるメカ 二ズムを示した模式図である。
図 1 Aにおいて、第一のブロック共重合体 (a)は、非荷電親水性セグメント(c)と、正 に荷電した荷電性セグメント (d)とを有し、一方、第二のブロック共重合体 (b)は、非 荷電親水性セグメント(e)と、負に荷電した荷電性セグメント (f)とを有する。そして、 第一のブロック共重合体 (a)と、第二のブロック共重合体 (b)とは、電荷の相互作用 が生じ得る系に置かれると自己集合し、図 1Bに示される通り、荷電性セグメント (d、 f )からなる、イオンコンプレックスの中間層(g)と、非荷電親水性セグメント(c、 e)から なる二つの親水性層(h、 i)とが形成され、この構造体 (B)を膜とするべシクル (C)を 生じる。
[0014] 上述の通り、本発明によるべシクルは、荷電性セグメント間の静電相互作用を主な 駆動力として形成されるものである。したがって、イオン強度によってべシクルの形成 、解離を制御することが可能であり、その結果、本発明によるべシクルは優れた環境 応答性を発揮しうるものと考えられる。
[0015] また、図 1Cに示す通り、べシクルの膜は、外層 (h)、中間層(g)、および内層( か らなる三層構造を有する。そして、本発明の好ましい態様によれば、第一のブロック 共重合体または第二のブロック共重合体のいずれかの非荷電親水性セグメントが外 層を形成し、外層を形成していない、他方のブロック共重合体の非電荷親水性セグメ ントが内層を形成する。
また、本発明によるべシクルは、非荷電親水性セグメントから構成される内層を有す ることから、その中央空隙に水性媒体を含むことができる。
[0016] 本発明によるべシクルの形態は、通常球状とされる。また、本発明におけるべシク ルの粒径は、中空構造を取る限り特に限定されないが、好ましくは 10 m以下であり 、より好ましくは 50nm〜: LO μ mである。
[0017] 荷電セグメント
第一のブロック共重合体に含まれる荷電性セグメントと、第二のブロック共重合体に 含まれる荷電性セグメントとは、互いに反対の電荷に荷電することができる。これら二 つの荷電性セグメントは通常ポリマーブロックにより構成される力 これら荷電性セグ メントの鎖長および電荷数が同等であることは、べシクルの構造および大きさの安定 性、均一性確保の観点力 有利である。したがって、二つの共重合体における荷電 性セグメントの鎖長および電荷数は、同一であることが好ましい。具体的には、第一 のブロック共重合体に含まれる荷電性セグメントおよび第二のブロック共重合体に含 まれる荷電性セグメントがそれぞれ、一価の電荷を有する繰り返し単位から構成され るポリマーブロックである場合、第一のブロック共重合体に含まれる荷電性セグメント における繰り返し単位の数と、二のブロック共重合体に含まれる荷電性セグメントに おける繰り返し単位の数との比は 1: 1であることが好ましい。荷電性セグメントにおけ る繰り返し単位および電荷数は、荷電性セグメントを構成するモノマー、および荷電 性セグメントを製造する際の反応条件などを適宜選択することにより、調整することが できる。
[0018] また、本発明において、正に荷電しうる荷電性セグメントとしてポリアミンを用いる場 合、ポリアミンに酸付加して陽性に荷電させる。付加する酸の種類は、べシクルの用 法などに従って適宜決定される。
[0019] そして、本発明の好ましい態様によれば、第一または第二のブロック共重合体の正 に荷電しうる荷電性セグメントは、下記式 (I)で表されるものである。 [化 1]
Figure imgf000008_0001
( I )
(上記式中、
R力 - (CH ) NH基または— CONH (CH ) — Xを表し、かつ sが 0〜20であり
1 2 3 2 2 s
、ここで、 X力 -NH、ピリジル基、モルホリル基、 1 イミダゾリル基、ピペラジ-ル
2
基、 4— (C アルキル) -ピペラジ-ル基、 4 - (ァミノ C アルキル) -ピぺラジュ
1 -6 1 -6
ル基、ピロリジン 1ーィル基、 N—メチルー N フヱ-ルァミノ基、ピベリジ-ル基、 ジイソプロピルアミノ基、ジメチルァミノ基、ジェチルァミノ基、―(CH ) NH、または
2 t 2
— (NR (CH ) ) NHR からなる群から選択される少なくとも一つのものであり、ここ
9 2 o p 10
で、 Rが水素原子またはメチル基を表し、 R が水素原子、ァセチル基、トリフルォロ
9 10
ァセチル基、ベンジルォキシカルボ-ル基または tert ブトキシカルボ-ル基を表し 、 oが 1〜5であり、 pが 1〜5であり、 tが 0〜15であり、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
a力 0〜5,000であり、 b力 0〜5,000であり、力つ a+b力 2〜5,000である。 )
[0020] 上記式 (I)において、 Rがー CONH (CH ) —Xを表す場合、 Xは、荷電性セグメ
1 2 s
ントの繰り返し単位ごとに、同一の官能基であってもよぐまたは異なる官能基であつ てもよい。
[0021] さらに、本発明のより好ましい態様によれば、上記式 (I)において、 Rがー CONH ( CH ) —NH基を表し、かつ sが 2〜5であり、 Rが水素原子を表し、 aが 0〜200で
2 S 2 2
あり、 b力 0〜200であり、力つ a+b力 10〜200である。
[0022] また、本発明の好ましい態様によれば、第一または第二のブロック共重合体の負に 荷電した荷電性セグメントは、下記式 (Π)で表されるものである。
[化 2]
Figure imgf000009_0001
( II )
(上記式中、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
Rがそれぞれ独立してメチレン基またはエチレン基を表し、
3
c力 0〜5,000であり、 d力 0〜5,000であり、力つ c + d力 2〜5, 000である。 )
[0023] 上記式 (Π)において、 Rは、荷電性セグメントの繰り返し単位ごとに、同一の官能
3
基であってもよぐまたは異なる官能基であってもよい。
[0024] さらに、本発明のより好ましい態様によれば、上記式 (Π)において、 Rが水素原子
2
を表し、 Rがメチレン基を表し、 c力 S0〜200であり、 d力 S0〜200であり、かつ c + dが 1
3
0〜200である。
[0025] 親.7k' セグメン卜
ブロック共重合体が含む非荷電親水性セグメントとしては、例えば、ポリエチレンダリ コールをはじめとするポリアルキレングリコール、ポリ(2—イソプロピル 2—ォキサゾ リン)、ポリサッカライド、ポリビュルアルコール、ポリビュルピロリドン、ポリアクリルアミド 、ポリメタクリルアミド、ポリアクリル酸エステル、ポリメタクリル酸エステル、及びそれら の誘導体などが挙げられる。上記の非荷電親水性フラグメントを含むことにより、プロ ック共重合体は、水性溶液中で会合、沈殿することなく安定に存在し、効率的にべシ クルを構築することができる。さら〖こ、上記の非荷電親水性フラグメントを含むブロック 共重合体によって構築されることにより、べシクルは水性溶液中で安定した構造を保 持することができる。
[0026] そして、本発明の好ま U、態様によれば、第一のブロック共重合体の非荷電親水性 セグメントおよび第二のブロック共重合体の非荷電親水性セグメントは、ポリエチレン グリコールおよび Zまたはポリ(2—イソプロピル一 2—ォキサゾリン)である。さらに、 本発明のより好ましい態様によれば、前記第一のブロック共重合体の非荷電親水性 セグメントまたは第二のブロック共重合体の非荷電親水性セグメントは、ポリエチレン グリコールである。非荷電親水性セグメントとしてポリエチレングリコールを用いること は、べシクルに生体適合性を付与する上で有利である。また、本発明の別のより好ま LV、態様によれば、前記第一のブロック共重合体の非荷電親水性セグメントまたは第 二のブロック共重合体の非荷電親水性セグメントは、ポリ(2 イソプロピル 2—ォキ サゾリン)である。非荷電親水性セグメントとしてポリ(2—イソプロピル— 2—ォキサゾ リン)を用いることは、べシクルに温度応答性を付与する上で有利である。
[0027] そして、非荷電親水性セグメントとしてポリエチレングリコールを用いる場合、ポリエ チレングリコールの分子量(Mw)は、好ましくは 500〜15, 000であり、より好ましくは 1, 000-5, 000である。また、非荷電親水性セグメントとしてポリ(2—イソプロピル - 2-ォキサゾリン)を用 、る場合、ポリ( 2—イソプロピル - 2-ォキサゾリン)の分子 量(Mw)は、好まし <は 1, 000〜30, 000であり、より好まし <は 1, 000〜10, 000 である。非荷電親水性セグメントとして、上記の分子量を有するポリマーを用いること は、ブロック共重合体に、ミセルを形成するよりも優先的にべシクルを形成させる上で 有利である。
[0028] ブロック共重合体
また、本発明の好ましい態様によれば、正に荷電しうる荷電性セグメントを有するブ ロック共重合体は、下記式 (ΠΙ)で表されるものである。
[化 3]
Figure imgf000010_0001
( III ) (上記式中、
R 1S - (CH ) NHまたは— CONH (CH ) — Xを表し、かつ sが 0〜20であり、
1 2 3 2 2 s
ここで、 X力 -NH、ピリジル基、モルホリル基、ピペラジ-ル基、 1 イミダゾリル基
2
、 4— (C アルキル) -ピペラジ-ル基、 4 - (ァミノ C アルキル) -ピペラジ-ル
1 -6 1 -6
基、ピロリジン 1ーィル基、 N—メチルー N フエ-ルァミノ基、ピベリジ-ル基、ジ イソプロピルアミノ基、ジメチルァミノ基、ジェチルァミノ基、―(CH ) NH、または—
2 t 2
(NR (CH ) ) NHR からなる群から選択される少なくとも一つのものであり、ここで
9 2 o p 10
、 Rが水素原子またはメチル基を表し、 R 力 水素原子、ァセチル基、トリフルォロ
9 10
ァセチル基、ベンジルォキシカルボ-ル基または tert ブトキシカルボ-ル基を表し 、 oが 1〜5であり、 pが 1〜5であり、 tが 0〜15であり、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
Rが水素原子または置換されていてもよい直鎖もしくは分岐鎖の C アルキル基
4 1 - 12 を表し、
尺が—(CH ) NH—を表し、かつ gが 0〜5であり、
5 2 g
a力 0〜5,000であり、 b力 0〜5,000であり、力つ a+b力 2〜5,000であり、 e力 〜 2, 500である。 )
[0029] 上記式(III)において、 Rがー CONH (CH ) —Xを表す場合、 Xは、ブロック共重
1 2 s
合体の繰り返し単位ごとに、同一の官能基であってもよぐまたは異なる官能基であ つてもよい。
[0030] また、本発明のより好ましい態様によれば、上記 (ΠΙ)において、 Rがー CONH (C H ) -NH基を表し、かつ sが 2〜5であり、 Rが水素原子を表し、 Rカ^チル基を
2 S 2 2 4
表し、 a力 0〜200であり、 b力 0〜200であり、力つ a+b力 10〜200であり、 e力 10〜 300である。
[0031] また、本発明の別の好ましい態様によれば、正に荷電しうる荷電性セグメントを有す るブロック共重合体は、下記式 (IV)で表されるものである。
[化 4]
Figure imgf000012_0001
(IV)
(上記式中、
R 1S - (CH ) NHまたは— CONH (CH ) — Xを表し、かつ sが 0〜20であり、
1 2 3 2 2 s
ここで、 Xがー NH、ピリジル基、モルホリル基、 1 イミダゾリル基、ピペラジ-ル基、
2
4— (C アルキル)―ピペラジ-ル基、 4 - (ァミノ C アルキル) -ピペラジ-ル基
1 -6 1 -6
、ピロリジン 1ーィル基、 N—メチルー N フエ-ルァミノ基、ピベリジ-ル基、ジイソ プロピルアミノ基、ジメチルァミノ基、ジェチルァミノ基、―(CH ) NH、または—(N
2 t 2
R (CH ) ) NHR からなる群から選択される少なくとも一つのものであり、ここで、 R
9 2 o p 10
が水素原子またはメチル基を表し、 R 力 水素原子、ァセチル基、トリフルォロアセ
9 10
チル基、ベンジルォキシカルボ-ル基または tert ブトキシカルボ-ル基を表し、 o 力^〜 5であり、 pが 1〜5であり、 tが 0〜15であり、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
R 1S 水素原子または置換されていてもよい直鎖もしくは分岐鎖の C アルキル
6 1 - 12 基を表し、
尺が—(CH ) NH を表し、かつ hが 0〜5であり、
7 2 h
Rが直鎖または分岐鎖の C アルキル基を表し、
8 1 - 12
a力 0〜5,000であり、 b力 0〜5,000であり、力つ a+b力 2〜5,000であり、 f力 〜 2, 500である。 )
[0032] 上記式(IV)において、 Rが— CONH (CH ) —Xを表す場合、 Xは、ブロック共重
1 2 s
合体の繰り返し単位ごとに、同一の官能基であってもよぐまたは異なる官能基であ つてもよい。
[0033] また、本発明の別のより好ましい態様によれば、上記式 (IV)において、 Rが—(C H ) NHを表し、 Rが水素原子を表し、 R力メチル基を表し、 Rがー CH (CH ) を
2 3 2 2 6 8 3 2 表し、 a力 0〜200であり、 b力 0〜200であり、力つ a+b力 10〜200であり、 f力 10〜 300である。
また、本発明の好ましい態様によれば、負に荷電しうる荷電性セグメントを有するブ ロック共重合体は、下記式 (V)で表されるものである。
[化 5]
Figure imgf000013_0001
(上記式中、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
Rがそれぞれ独立してメチレン基またはエチレン基を表し、
3
Rが水素原子または置換されていてもよい直鎖もしくは分岐鎖の C アルキル基
4 1-12 を表し、
尺が—(CH ) NH—を表し、かつ gが 0〜5であり、
5 2 g
c力 0〜5,000であり、 d力 0〜5,000であり、力つ c + d力 2〜5, 000であり、 i力 〜 2, 500である。 )
[0035] 上記式 (V)において、 Rは、ブロック共重合体の繰り返し単位ごとに、同一の官能
3
基であってもよぐまたは異なる官能基であってもよい。
[0036] また、本発明の別のより好ましい態様によれば、上記式 (V)において、 Rが水素原
2 子を表し、 Rがメチレン基を表し、 R力 Sメチル基を表し、 c力 〜 200であり、 d力 S0〜2
3 4
00であり、力つ c + d力 10〜200であり、 i力 10〜300である。
[0037] また、本発明の別の好ま 、態様によれば、負に荷電しうる荷電性セグメントを有す るブロック共重合体は、下記式 (VI)で表されるものである。 [化 6]
Figure imgf000014_0001
(V I )
(上記式中、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
Rがそれぞれ独立してメチレン基またはエチレン基を表し、
3
Rが水素原子または置換されていてもよい直鎖もしくは分岐鎖の C アルキル基
6 1-12 を表し、
尺が—(CH ) NH を表し、かつ hが 0〜5であり、
7 2 h
Rが直鎖または分岐鎖の C アルキル基を表し、
8 1-12
c力 0〜5,000であり、 d力 0〜5,000であり、力つ c + d力 2〜5, 000であり、 j力 〜 2, 500である。 )
[0038] 上記式 (VI)において、 Rは、ブロック共重合体の繰り返し単位ごとに、同一の官能
3
基であってもよぐまたは異なる官能基であってもよい。
[0039] また、本発明の別の好ましい態様によれば、上記式 (VI)において、 Rが水素原子
2
を表し、 Rがメチレン基を表し、 R力メチル基を表し、 Rがー CH (CH ) を表し、 c +
3 6 8 3 2
dが 10〜200であり、 jが 10〜300である。
[0040] 第一のブロック共重合体および第二のブロック共重合体の組み合わせ
本発明の好ましい態様によれば、第一のブロック共重合体が、ポリエチレングリコー ルまたはポリ(2—イソプロピル— 2—ォキサゾリン)から構成される非荷電親水性セグ メントと、上記式 (I)で表される荷電性セグメントとを有するものであり、第二のブロック 共重合体が、ポリエチレングリコールまたはポリ(2—イソプロピル 2—ォキサゾリン) 力 構成される非荷電親水性セグメントと、上記式 (Π)で表される荷電性セグメントと を有するものである。
[0041] そして、本発明のより好ましい態様によれば、上記式 (I)において、 Rがー CONH ( CH ) -NHを表し、かつ sが 2〜5であり、 Rが水素原子を表し、 a力 〜 200であり
2 S 2 2
、 b力 0〜200であり、力つ a+b力 10〜200であり、上記式(Π)において、 Rが水素
2 原子を表し、 Rがメチレン基を表し、 cが 0〜200であり、 d力 0〜200であり、かつ c +
3
d力 0〜200である。
[0042] また、本発明の別の好ま 、態様によれば、第一のブロック共重合体が上記式 (III )で表されるブロック共重合体であり、第二のブロック共重合体が上記式 (V)で表され るブロック共重合体である。
[0043] また、本発明の別のより好ま 、態様によれば、上記式 (III)で表されるブロック共 重合体において、 Rが— CONH (CH ) -NHを表し、かつ sが 2〜5であり、 R力 S
1 2 S 2 2 水素原子を表し、 R力 Sメチル基を表し、 aが 0〜200であり、 b力 〜200であり、かつ a
4
+b力 0〜200であり、 eが 10〜300であり、上記式 (V)において Rおよび Rが前記
2 4 の通りであり、 R力 Sメチレン基を表し、 cが 0〜200であり、 dが 0〜200であり、かつ c
3
+ dが 10〜200であり、 iが 10〜300である。
[0044] また、本発明の別の好ま 、態様によれば、第一のブロック共重合体が上記式 (IV
)で表されるブロック共重合体であり、第二のブロック共重合体が上記式 (V)で表され るブロック共重合体である。
[0045] そして、本発明の別のより好ましい態様によれば、上記式 (IV)において、 Rがー(
CH ) NHを表し、 Rが水素原子を表し、 R力メチル基を表し、 Rがー CH (CH )
2 3 2 2 6 8 3 2 を表し、 a力 0〜200であり、 b力 0〜200であり、力つ a+b力 10〜200であり、 f力 10 〜300であり、上記式 (V)において、 Rが前記の通りであり、 Rカ^チレン基を表し、
2 3
R力 Sメチノレ基を表し、 c力 0〜200であり、 d力 0〜200であり、力つ c + d力 10〜200
4
であり、 iが 10〜300である。
[0046] また、本発明の別の好ま 、態様によれば、第一のブロック共重合体が上記式 (III )で表されるブロック共重合体であり、第二のブロック共重合体が上記式 (VI)で表さ れるブロック共重合体である。 [0047] また、本発明の別のより好ましい態様によれば、上記式 (ΠΙ)において、 1^がー CO NH (CH ) -NHを表し、かつ sは 2〜5であり、 Rが水素原子を表し、 Rがメチル
2 s 2 2 4 基を表し、 a力 0〜200であり、 b力 0〜200であり、力つ a+b力 10〜200であり、 e力 ^1 0〜300であり、上記式 (VI)において、 Rが前記の通りであり、 R力メチレン基を表
2 3
し、 R力 Sメチル基を表し、 Rが一 CH (CH ) を表し、 c力 〜 200であり、 d力 〜200
6 8 3 2
であり、かつ c + dが 10〜200であり、 jが 10〜300である。
[0048] また、本発明の別の好ま 、態様によれば、第一のブロック共重合体が上記式 (IV
)で表されるブロック共重合体であり、第二のブロック共重合体が上記式 (VI)で表さ れるブロック共重合体である。
[0049] そして、本発明の別のより好ましい態様によれば、上記式 (IV)において、 Rがー(
CH ) NHを表し、 Rが水素原子を表し、 R力メチル基を表し、 Rがー CH (CH )
2 3 2 2 6 8 3 2 を表し、 a力 0〜200であり、 b力 0〜200であり、力つ a+b力 10〜200であり、 f力 10 〜300であり、上記式 (VI)において、 R、 Rおよび Rが前記の通りであり、 Rカ チ
2 6 8 3 レン基を表し、 c力 0〜200であり、 d力 0〜200であり、力つ c + d力 10〜200であり、 j 力 l0〜300である。
[0050] べシクルの禾 II用
本発明によるべシクルは、その中央空隙に化合物を内包することができる。本発明 によるべシクルはまた、その膜に化合物を挿入することができる。上記化合物は、ベ シクルの用途およびその性質に応じて適宜選択することができる力 例えば、薬物、 タンパク質、蛍光色素、核酸、微粒子などが挙げられる。
[0051] 製造方法
ブロック共 ¾合体の合成 (1)
本発明におけるブロック共重合体の製造方法の一例として、スキーム Aにお 、て、 負に荷電しうるブロック共重合体であるポリエチレングリコール ポリ(α , β ァスパ ラギン酸)ブロック共重合体 (VIII)、および正に荷電しうるブロック共重合体であるポ リエチレングリコールーポリアスパラギン酸ブロック共重合体のアミノ化体 (IX)の製造 方法について説明する。
[0052] [化 7]
Figure imgf000017_0001
スキーム A
[0053] ポリエチレングリコール ポリ( α . —ァスパラギン酸)ブロック共重合体 (VIII)
まず、負に荷電しうるブロック共重合体である、ポリエチレングリコール ポリ ( α , β ーァスパラギン酸)ブロック共重合体について説明する。
β—ベンジル— L ァスパルテート— Ν カルボン酸無水物を、片末端一級アミノ 基のポリエチレングリコールを開始剤として重合する。次に、得られたポリエチレンダリ コール ポリ 13一べンジルーァスパルテート共重合体 (VII)をアルカリ処理して脱べ ンジル化を行うことによりポリエチレングリコール一ポリ(α , β—ァスパラギン酸)ブロ ック共重合体 (VIII)を得る。
[0054] ポリエチレングリコールーポリアスパラギン酸ブロック共重合体のアミノ化体 (IX) 次 に、正に荷電しうるブロック共重合体である、ポリエチレングリコールーポリアスパラギ ン酸ブロック共重合体のアミノ化体 (IX)につ 、て説明する。
上記スキーム Αにおけるポリエチレングリコール ポリ 13一べンジルーァスパルテー ト共重合体 (VII)と、 HN— R— NH (ここで、 Rは—(CH ) —である)で表される
2 2 2 2〜5
ァミンとを、 DMFなどの溶媒中にて反応させ、さらに HC1などを用いて酸付加させる ことにより、ポリエチレングリコールーポリアスパラギン酸ブロック共重合体のアミノィ匕 体 (IX)が得られる。
[0055] 上記手法によれば、ブロック共重合体 (VIII)における負に荷電したポリ( α , j8— ァスパラギン酸)ブロックの鎖長および電荷数と、ブロック共重合体 (IX)における正に 荷電したポリアスパラギン酸のアミノ化ブロックの鎖長および電荷数とを容易に同等と することができる。したがって、上記手法は、均質なべシクルを効率的に製造するた めに有禾 ljである。
[0056] ブロック共重合体の合成(2)
また、本発明におけるブロック共重合体の別の一例である、負に荷電しうるブロック 共重合体であるポリ(2—イソプロピル— 2—ォキサゾリン)—ポリ , β—ァスパラギ ン酸)ブロック共重合体 (XI)、および正に荷電しうるブロック共重合体であるポリ(2— イソプロピル— 2—ォキサゾリン)—ポリ(L リシン)ブロック共重合体 (ΧΙΠ)の製造方 法について説明する。
[0057] ポリ(2—イソプロピル一 2 ォキサゾリン)一ポリ( α . β—ァスパラギン酸)ブロック まず、負に荷電したブロック共重合体である、ポリ(2—イソプロピル 2—ォキサゾリ ン) ポリ( α , βーァスパラギン酸)ブロック共重合体についてスキーム Βにて説明す る。
[0058] [化 8]
Figure imgf000018_0001
スキーム Β まず、 13一べンジルー Lーァスパルテート—Ν—力ルボン酸無水物を、片末端一級 ァミノ基のポリ(2—イソプロピル— 2—ォキサゾリン)を開始剤として重合する。次に、 得られたポリ(2—イソプロピル 2—ォキサゾリン) ポリ β一べンジルーァスバルテ ート共重合体 (X)をアルカリ処理して脱べンジルイ匕を行うことによりポリ(2—イソプロ ピル— 2—ォキサゾリン)—ポリ , β—ァスパラギン酸)ブロック共重合体 (XI)を得 る。
[0060] ポリ(2—イソプロピル— 2—ォキサゾリン)—ポリ(L—リシン)ブロック共重合体 (XII)
また、正に荷電したブロック共重合体である、ポリ(2—イソプロピル 2—ォキサゾリ ン)—ポリ(L リシン)ブロック共重合体についてスキーム Cにて説明する。
[0061] [化 9]
Figure imgf000019_0001
CH^ (
NHCOOCHjPh
( XII )
Figure imgf000019_0002
( XIII ) スキーム C
[0062] まず、 ε (ベンジルォキシカルボ-ル) L リシン N 力ルボン酸無水物を、片末 端一級アミノ基のポリ(2—イソプロピル 2—ォキサゾリン)を開始剤として重合させる 。得られたポリ(2—イソプロピル 2—ォキサゾリン) ポリ( ε カルボベンゾキシ L リシン)ブロック共重合体 (XII)を酸を用いて脱保護反応を行うことにより、ポリ(2 —イソプロピル— 2—ォキサゾリン)—ポリリシンブロック共重合体 (ΧΙΠ)が得られる。
[0063] べシクルの製造
本発明によるべシクルは、ブロック共重合体間の静電相互作用を利用して形成され ることから、第一のブロック共重合体と第二のブロック共重合体とを、水性溶液中で混 合することにより、簡易に製造することができる。さらに、本発明による製造方法によ れば、有機溶媒を用いなくともべシクルを製造しうることから、バイオマテリアルの分野 や DDSにお!/、て有利に利用することができる。
[0064] 本発明による製造にあっては、まず、第一のブロック共重合体を含んでなる第一の 水性溶液と、第二のブロック共重合体を含んでなる第二の水性溶液とを用意する。こ こで、第一および第二の水性溶液は、所望により濾過して精製してもよい。
[0065] 上記第一の水性溶液における第一のブロック共重合体の総電荷数と、第二の水性 溶液における第二のブロック共重合体の総電荷数との比率は、好ましくは 5: 1〜1: 5 、より好ましくは約 1 : 1である。ブロック共重合体における総電荷数は、ブロック共重 合体中の荷電性セグメントを構成する繰り返し単位の数およびその繰り返し単位が有 する電荷数などに応じて当業者により適宜決定される。上記の比率にて二つのブロッ ク共重合体を用いることは、均質なべシクルを効率的に製造する上で有利である。
[0066] また、第一の水性溶液における第一のブロック共重合体、および第二の水性溶液 における第二のブロック共重合体の濃度は、上記のブロック共重合体間の総電荷数 の比率およびブロック共重合体の水性溶液への溶解度、べシクルの形成効率などを 勘案して適宜決定される。
[0067] また、ブロック共重合体はいずれも水溶性であることから、第一および第二の水性 溶液における溶媒は、好ましくは水、バッファーであり、より好ましくは 10mM Tris/H αバッファーなどが挙げられる。
[0068] また、第一および第二の水性溶液における ρΗは、べシクルの形成を妨げな 、範囲 で適宜調整してよぐ好ましくは ρΗ5〜ρΗ9であり、より好ましくは ρΗ約 7である。 ρΗの調整は、水性溶液における溶媒としてバッファーを用いることにより簡易に行う ことができる。第一および第二の水性溶液の ρΗを調整して用いることは、ブロック共 重合体の荷電状態を保持し、効率的にべシクルを形成するために有利である。
[0069] また、上記第一および第二の水性溶液の温度は、ブロック共重合体の溶媒に対す る溶解度に応じて適宜決定される力 好ましくは 10〜80°Cであり、より好ましくは 20 〜60°Cである。
[0070] また、上記第一および第二の水性溶液におけるイオン強度は、べシクルの形成を 妨げない範囲で適宜調整してよぐ好ましくは 10〜300mMであり、より好ましくは 10 〜150mMである。 [0071] 次に、本発明による製造方法にあっては、第一の水性溶液と、第二の水性溶液とを 混合する。混合方法は特に限定されず、第一の水性溶液に第二の水性溶液を加え てもよく、第二の水性溶液に第一の水性溶液を加えてもよい。また、容器に第一の水 性溶液と、第二の水性溶液とを同時に加えて混合してもよい。このようにして得られる 、第一の水性溶液と、第二の水性溶液との混合液は適宜攪拌してもよい。
[0072] 第一の水性溶液と、第二の水性溶液とを混合する際の温度は、べシクルの形成を 妨げない範囲であれば特に限定されないが、ブロック共重合体の温度に応じた溶解 度を勘案して設定されることが好ましい。このような混合する際の温度としては、例え ば、 20〜50。Cである。
[0073] そして、本発明による製造方法にあっては、上記混合液を静置することにより、混合 溶液中にてべシクルを生成させる。混合液を静置する時間は、べシクルの形成効率 によって異なるが、例えば、 5〜30時間である。
[0074] また、本発明によるべシクルに化合物を内包させる場合、例えば、べシクル形成の 間に、第一および第二のブロック共重合体を含む混合液中に化合物を添加すること により、べシクル中に化合物を内包させることができる。また、第一および第二の水性 溶液の 、ずれか一方または両方に予め化合物を添加し、これらの混合溶液を調製 することにより、べシクル中に化合物を内包させてもよい。したがって、本発明による 製造方法は、好ましくはべシクルに内包するための化合物を添加することを含んでな る。化合物をべシクルに内包させる際には、さらに、透析、希釈、濃縮、撹拌などの操 作を適宜に付加することができる。また、化合物をべシクルの膜に挿入する場合にも 上記と同様の手法を用いることができる。
実施例
[0075] 次に実施例を挙げて本発明を具体的に説明するが、本発明はこれらの実施例に限 定されるものではない。
[0076] ¾細
1— 1 :ポリエチレングリコール—ポリ( β—ベンジル— L—ァスパルテート)(PEG— PBLA)の合成
200mlナスフラスコに PEG— NH (分子量 2000) 250mg (0. 125mmol)を加え 、ベンゼンをカ卩えて溶液を得た。この溶液の凍結乾燥を行い、水分の除去を行った。 次にナスフラスコ内部を Arガスにて置換し、シリンジを用いて DMF/CH C1 = 1 :4
2 2 の混合溶媒 5mlをカロえ、 PEG— NH溶液を得た。また、別の 100mlナスフラスコに
2
、 β—ベンジル— L ァスパラテート Ν カルボン酸無水物(BLA— NCA) 2. 5g ( 10. 6mmol: 85eq)をカロえ、さらに、 DMF3ml、 CH CI 50mlをカ卩えて溶液を得た。
2 2
この溶液を、シリンジを用いて PEG— NH溶液の入ったナスフラスコへ撹拌しながら
2
加えた。次に、溶液の入ったナスフラスコを 35°Cの恒温漕に漬け、溶液を撹拌しなが ら 2日間反応させた。 IRにより NCA固有のピークの消失を確認した後、反応液中に 5 倍量程度のエーテルを加えて、沈殿物を得た。この沈殿をろ過し、エーテルで数回 洗浄した。次に、沈殿物をベンゼンにより凍結乾燥を行い、 PEG— PBLAを得た。
[0077] PEG— PBLAについて、 NMR測定を行い、 3. 5ppm付近の PEGのエチレン鎖 ピークと、 5ppm付近のベンゼン環に隣接するメチレン鎖ピークのプロトン比力も BLA の重合度を約 100と算出した。また、 GPC測定を行ったところ、その分子量分布は 1 . 18であった。
[0078] 1 - 2 :ポリエチレングリコールーポリアスパラギン酸(PEG— PASO)の合成 200 mlナスフラスコに、 1—1にて得られた PEG— PBLA 300mgおよびァセトニトリル 5 mlをカ卩えて、溶液を得た。この溶液に IN NaOH水溶液を 2. 5ml加え、室温にて 1 時間撹拌した。得られた反応溶液を透析チューブ (MWCO 3500)に入れ、蒸留水 を外液として透析を 3日間行った。外液を数回交換し、内液を回収した後、凍結乾燥 を行い、 PEG— PAspを白色固体として得た。
[0079] PEG— PAspについて1 H NMR測定を行い、 3. 5ppm付近の PEGエチレン鎖ピ ークと、 2. 6ppm付近のポリアスパラギン酸のメチレンピークとのプロトン比からポリア スパラギン酸の重合度を約 98と算出した。この結果から、 PBLAの脱保護反応が定 量的に進行したことを確認し、分子量を 13500と見積もった。
[0080] 1— 3 :ポリエチレングリコール ポリ —べンジルー Lーァスパルテートの 1. 5 ぺ ンタンジァミンによるアミノ化体(PEG— PeDA)の合成
PEG -PBLA 200mgを 200mLナスフラスコ中にてベンゼンに溶解し、凍結乾燥 行った。次に、上記ナスフラスコに DMF8mlをカ卩ぇ撹拌し、さらに蒸留精製した 1, 5 —ジァミノペンタン 3. 2ml (0. 89mol)を加え、 40°Cにて 2日間撹拌した。反応液を 氷冷し、この溶液に 10%酢酸溶液 16mlをカ卩えた。次に、この反応液を透析チューブ に入れ、 0. 01N HC1を外液として 2日間透析を行った。さらに、蒸留水を外液と数 回透析を行った。内液を回収した後、凍結乾燥を行い, PEG— PeDAを白色固体と して得た。
[0081] PEG— PeDAについて1 H NMR測定を行い、 3. 5ppm付近の PEGエチレン鎖ピ ークと、 3ppm付近の 1級ァミンに隣接する CH2ピークとのプロトン比から、ァミノ化さ れた単位の重合度を約 100と算出した。この結果から、ァスパラギン酸の側鎖に 1 , 5 -ジァミノペンタンが定量的に導入されたことが確認された。また、 PEG— PeDAの分 子量は 21900であった。
[0082] 1 -4 : PEG PeDA PEG PASPによるべシクルの形成
10mM Tris/HCl (pH7. 4)をバッファ一とし、 PEG— PeDAと PEG— PAspをそ れぞれ、 lmgZmlに調製した。 PEG— PeDA溶液および PEG— PAsp溶液中の電 荷数が等しくなるように溶液を量り取り PEG— PeDA/PEG— PAsp (w/w) = 1. 62 )、それぞれの溶液を 0. 22 μ mのメンブランフィルタ一にて濾過し、得られた二つの 溶液を混合し、撹拌した後、室温にて静置した。
[0083] 1 - 5 : PEG - PeDA PEG - PASPによる FITC -デキストランを内包したべシク ルの形成
10mM Tris/HCl (pH7. 4)をバッファ一とし、 PEG— PeDAと PEG— PAspをそ れぞれ、 lmgZmlに調製した。蛍光色素 FITCをラベルイ匕した分子量 42000のデキ ストランを PEG— PAsp溶液に 1. 5 gZmlの濃度で加えて溶解させた。次に、 PE G - PeDA溶液および PEG - PAsp溶液中の電荷数が等しくなるように溶液を量り 取り(PEG— PeDA/PEG— PAsp (w/w) = 1. 62) ,それぞれの溶液を 0. 22 μ ηι のメンブランフィルタ一にて濾過し、得られた二つの溶液を混合し、撹拌した後、室温 にて静置した。
[0084] 1 - 6 :暗視野顕微鏡による観察:べシクルの分析
1—4にて得られた溶液をスライドガラス上に滴下し、カバーガラスをかけそのまま暗 視野顕微鏡にて観察した。結果は図 2に示される通りであった。約 1〜: LO /z mの球状 集合体による散乱光が観察され、その集合体は中空構造を有していた。
[0085] 1 7 :共焦点顕微鏡による観,察
1— 5にて得られた溶液をガラスプレート上に滴下し、共焦点顕微鏡にて観察したと ころ、結果は図 3に示される通りであった。約 1〜: LO mの球状集合体が観察された
。さらに、その球状集合体の内相に FITCによる蛍光発光が観察され、集合体は中空 構造を有し、かつ内水相の空間に FITC デキストランが存在することが確認された
[0086] 実施例 2
2- 1 :ポリ(2—イソプロピル 2—ォキサゾリン) ポリ( ε (ベンジルォキシカルボ ニル)—L—リシン) (PiPrOx- PLvs (Z) )の合成
ポリ(2—イソプロピル一 2—ォキサゾリン) NH (PiPrOx— NH ) 20mg (0. 44 x
2 2
10_2mmol)をナスフラスコに量り取り、ベンゼンに溶解し、凍結乾燥した。次に、ナ スフラスコを Ar置換し、 DMFlmlをカロえた。また、別のナスフラスコに、 PiPrOx— N Hに対し 80ユニット相当量 (107. 8mg, 0. 352mmol)の ε (ベンジルォキシカルボ
2
-ル) L リシン Ν カルボキン酸無水物(Lys (Z)— NCA)を、 Ar下にて量り取 り、 DMFを加え(lml)溶解させた。得られた溶液を、シリンジを用いて PiPrOx-NHの
2 入ったナスフラスコへ撹拌しながらカ卩えた。次に、溶液の入ったナスフラスコを 37.5 °C の恒温槽に浸け、溶液を撹拌しながら 4日反応させた。 IRにて NCA固有のピークの 消失を確認した後、反応液を 10倍量程度のへキサン中に滴下し、沈殿物を得た。こ の沈殿を濾過し、へキサンで数回洗浄した。次に、沈殿物をナスフラスコに移し、真 空乾燥した後、ベンゼンを用いて凍結乾燥を行い、 PiPrOx— PLys (Z)を得た。
[0087] PiPrOx -PLys (Z)について NMR測定を行い、 1. 0 ppm付近の PiPrOx側 鎖のメチル基に由来するピークと、 4. 9 ppm付近のベンゼン環に隣接するメチレン 鎖ピークのプロトン比力も Lys (z)—NCAの重合度は約 79と算出した。また、 GPC測 定を行ったところ、その分子量分布 1. 2であった。
[0088] 2- 2 :ポリ(2 イソプロピル 2—ォキサゾリン) ポリ(L—リシン)(PiPrOx— P (L vs) )の合成
2—1にて得られた PiPrOx—PLys (Z) 100 mgにトリフルォロ酢酸(TFA) 5mlを 加え攪拌して溶液を得た。次に、この溶液に 30% HBr/AcOH 10 mlを加え、 1. 5時間攪拌した。得られた溶液を、その 15倍量程度のへキサン中に滴下し、沈殿物 を得た。得られた沈殿物を濾過し、へキサンにて洗浄した。次に、沈殿物を水に溶解 し、透析チューブ (MWCO 3500)〖こ入れ、蒸留水を外液として透析を行った。外液 を数回交換し、外液の pHがほぼ中性になった後、内液を回収し、凍結乾燥を行い、 PiPrOx - P (Lys)を得た。
[0089] PiPrOx— P (Lys)について1 H NMR測定を行い、 1. Oppm付近の PiPrOx側鎖 のメチル基に由来するピークと、 4. 2ppm付近 PLysの α -メチンに由来するピークと のプロトン比力 Lysの重合度は約 82と算出した。
[0090] 2— 3:ポリ( 2 イソプロピル 2 ォキサゾリン)—ポリ βベンジル -L-ァスバルテ ート(PiPrOx— PBLA)の合成
PiPrOx-NH 20 mg(0. 44 X 10— 2 mmol)をナスフラスコに量り取り、ベンゼンに溶
2
解し凍結乾燥した。このナスフラスコを Arにて置換し、 CH CI ImLを加えた。次に、
2 2
PiPrOx-NHに対し 80ユニット相当量 (88 mg, 3.2 x 10" mol)の BLA— NCAを、 Ar下
2
にて別のナスフラスコに量り取り、 CH CI ImLを加え、溶解した。得られた溶液をシリ
2 2
ンジで PiPr〇x-NHのナスフラスコへ撹拌しながら加えた。このナスフラスコを 37.5 °C
2
の恒温槽に浸け、溶液を撹拌しながら 3日反応させた。 IRで NCA固有のピークの消失 を確認した後、反応液を 10倍量程度のへキサン中に滴下し、沈殿物を得た。沈殿物 を濾過し、へキサンにて数回洗浄した。さらに、沈殿物をナスフラスコに移し、真空乾 燥した後、ベンゼンを用いて凍結乾燥を行い、 PiPrOx— PBLAを得た。
[0091] PiPrOx— PBLAについて1 H NMR測定(CD CI )を行い、 1. Oppm付近の PiPrOx
2 2
側鎖のメチル基に由来するピークと、 5.1 ppm付近のベンゼン環に隣接するメチレン 鎖ピークとのプロトン比力も BLA-NCAの重合度は約 80と算出した。また、 GPC測定を 行ったところ、その分子量分布は 1.1であった。
[0092] 2-4 :ポリエチレングリコールーポリアスパラギン酸(PEG- PASD)の合成
1 2と同様の手法により、ポリエチレングリコールーポリアスパラギン酸(PEG- PAsp )を得た。
[0093] 2- 5 : PiPrOx— P(b^よび PEG— PASD_によるべシクルの PiPrOx- P(lys)および PEG- PAspを用い、 1—4と同様の手法により、べシクルを製造 した。
[0094] 2- 6 :暗視野顕微鏡による観察:べシクルの分析
2— 5にて得られた溶液をスライドガラス上に滴下し、カバーガラスをかけそのまま観 察した。暗視野顕微鏡にて観察したところ、結果は図 4に示される通りであった。約 1 〜 10 mの球状集合体が存在し、その集合体は中空構造を有していた。
[0095] 2- 7 :诱渦型雷子顕微鏡による観,察
2— 5にて得られた溶液をホルムバール支持膜を張った Cuグリッド上に滴下し、さら に酢酸ウランを微量滴下し、余分な水分を濾紙により吸い取った後に乾燥させグリツ ドを作製した。透過型電子顕微鏡にて観察したところ、結果は図 5に示される通りであ つた。約 ΙΟΟηπ!〜 10 /z mの球状集合体が存在し、その集合体は膜を有した中空構 造を有していた。
[0096] 実飾 13
3 - 1 :牛.理食塩水濃度の Nacl存在下における PEG— PeDA PEG— PASPによる べシクルの形成
生理食塩水濃度である 150mMの NaClを含む 10mM Tris/HCl(pH7. 4)のバ ッファーを用いて、 PEG— PeDAと PEG— PAspをそれぞれ、 lmg/mlに調製した 。次に、蛍光色素 FITCをラベル化した分子量 42000のデキストランを PEG— PAsp 溶液に lmg/mlの濃度でカ卩えて溶解させた。次に、 PEG— PeDA溶液および PEG - PAsp溶液中の電荷数が等しくなるように溶液を量り取り (PEG - PeDA/PEG - P Asp (w/w) = 1. 62) ,それぞれの溶液を O. 22 μ mのメンブランフィルタ一にて濾 過し、得られた二つの溶液を混合し、撹拌した。次に、得られた溶液を 20分間の超音 波処理した後、室温にて静置した。次に、この溶液をバッファーで 100倍に希釈して 溶液を得た。
[0097] 3— 2 :共焦点顕微鏡による観,察
3— 1にて得られた溶液をガラスプレート上に滴下し、共焦点顕微鏡にて観察した。 その結果、図 6に示される通り、約 1〜: LO mの球状集合体が観察された。また、球 状集合体の内相には FITCによる蛍光発光が観察された。 さらに、上記溶液を室温で三ヶ月以上静置した後、共焦点顕微鏡による観察を行つ たところ、上記球状集合体はその形態を保持していた。この結果から、上記球状集合 体は約 10 MOsmのコロイド浸透圧の存在下、その構造を室温で三ヶ月以上保持 することが確認された。
[0098] 実施例 4
分子量の異なる带光色素を用いたべシクルの膜诱渦件の確認
4 1 :蛍光色素溶液のべシクルへの添加
分子量 443. 5の蛍光色素テトラメチルローダミンイソシァネート(TRITC)および T
RITCをラベル化した分子量約 70000のデキストランをそれぞれ、 150mMの NaCl を含む 10mM Tris/HCl (pH7. 4)のバッファーに溶解させた。次に、得られた 2種 類の溶液 900 μ Lをそれぞれ、 3 1にて得られた FITCを内包する球状集合体を含 む溶液 100 Lに加えた。
[0099] 4- 2 : ^ 点、顕微镱による観.察
4— 1にて得られた溶液をそれぞれガラスプレート上に滴下し、共焦点顕微鏡にて 観祭した。
TRITCをラベルイ匕したデキストランの溶液をカ卩えた場合、図 7に示される画像が得 られた。図 7において、球状集合体の内相では FITCの緑色の蛍光が観察され、球 状集合体の外相では TRITCの赤色の蛍光が観察された。一方、 TRITCの溶液を 加えた場合、図 8に示される画像が得られた。図 8において、球状集合体の内相では FITCの緑色と TRITCの赤色とが重なった黄色の蛍光が観察された。
図 7および図 8に示される通り、 TRITCをラベルイ匕したデキストランは球状集合体の 内相へ透過せず、上記デキストランより低分子量の TEITCは球状集合体の内相へ 透過しており、球状集合体の膜は半透過性を示すことが確認された。
[0100] 実施例 6
血清存在下における PEG— PeDAおよび PEG— PAsr>からなるべシクルの安定性 の確認
6- 1 :べシクルの調製および血清の添加
生理食塩水濃度である 150mMの NaClを含む 10mM Tris/HCl(pH7. 4)のバ ッファーを用い、 PEG— PeDAと PEG— PAspをそれぞれ、 lmg/mlに調製した。 P EG - PeDA溶液および PEG - PAsp溶液中の電荷数が等しくなるように溶液を量り 取った(PEG— PeDA/PEG— PAsp (wZw) = 1. 62)。次に、それぞれの溶液を 0 . 22 mのメンブランフィルタ一にて濾過し、得られた二つの溶液を混合し、撹拌し た後、室温にて静置した。この混合溶液 90 Lに 10 Lのゥシ胎児血清をカ卩え、再 び撹拌した後、 37°Cにて静置した。
6— 2 :暗視野顕微鎗による観察
6—1にて得られた溶液を 1日静置した後、ガラスプレート上に滴下し、暗視野顕微 鏡にて観察した。図 9に示される通り、約 1〜5 mの球状集合体が存在し、その集合 体は中空構造を有していた。この結果、 10%の血清が存在する溶液中において、球 状集合体は中空構造を保持することが確認された。

Claims

請求の範囲
[1] 非荷電親水性セグメントと、荷電性セグメントとを有する第一のブロック共重合体と、 非荷電親水性セグメントと、前記第一のブロック共重合体の荷電性セグメントと反対 の電荷に荷電した荷電性セグメントとを有する第二のブロック共重合体とにより形成さ れた膜を有してなる、べシクル。
[2] 前記膜が、外層、中間層、および内層からなる三層構造を有し、前記第一のブロッ ク共重合体の荷電性セグメントと、前記第二のブロック共重合体の荷電性セグメントと が静電相互作用により結合し、該荷電性セグメントが中間層を構成し、前記非電荷親 水性セグメントが前記外層および内層を構成する、請求項 1に記載のべシクル。
[3] 第一のブロック共重合体または第二のブロック共重合体の 、ずれかの非荷電親水 性セグメントが前記外層を形成し、該外層を形成していない、他方のブロック共重合 体の非電荷親水性セグメントが前記内層を形成する、請求項 2に記載のべシクル。
[4] 前記第一のブロック共重合体の非荷電親水性セグメントおよび第二のブロック共重 合体の非荷電親水性セグメントが、ポリエチレングリコールおよび Zまたはポリ(2—ィ ソプロピル— 2—ォキサゾリン)である、請求項 1に記載のべシクル。
[5] 前記第一または第二のブロック共重合体の正に荷電しうる荷電性セグメントが、下 記式 (I)で表されるものである、請求項 1に記載のべシクル。
[化 1]
COCHNH-†[-COCH2CHNH-)— R
CH【2, \ R, ノ b
R,
( I )
(上記式中、
R 1S - (CH ) NHまたは— CONH (CH ) — Xを表し、かつ sが 0〜20であり、
1 2 3 2 2 s
ここで、 X力 -NH、ピリジル基、モルホリル基、 1 イミダゾリル基、、ピペラジ-ル
2
基、 4— (C アルキル) -ピペラジ-ル基、 4 - (ァミノ C アルキル) -ピぺラジュ
1-6 1-6 ル基、ピロリジン 1ーィル基、 N—メチルー N フヱ-ルァミノ基、ピベリジ-ル基、 ジイソプロピルアミノ基、ジメチルァミノ基、ジェチルァミノ基、―(CH ) NH、または
2 t 2
— (NR (CH ) ) NHR からなる群から選択される少なくとも一つのものであり、ここ
9 2 o p 10
で、 Rが水素原子またはメチル基を表し、 R 力 水素原子、ァセチル基、トリフルォ
9 10
ロアセチル基、ベンジルォキシカルボ-ル基または tert ブトキシカルボ-ル基を表 し、 oが 1〜5であり、 pが 1〜5であり、 tが 0〜15であり、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
a力 0〜5,000であり、 b力 0〜5,000であり、力つ a+b力 2〜5,000である。 )
[6] Rが— CONH (CH ) — NHを表し、かつ sが 2
1 2 S 2 〜5であり、
Rが水素原子を表し、
2
a力 0〜200であり、 b力 0〜200であり、力つ a+b力 10〜200である、請求項 5に記 載のべシクル。
[7] 前記第一または第二のブロック共重合体の負に荷電しうる荷電性セグメントが、下 記式 (Π)で表されるものである、請求項 1に記載のべシクル。
[化 2]
Figure imgf000030_0001
( II )
(上記式中、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
Rがそれぞれ独立してメチレン基またはエチレン基を表し、
3
c力 0〜5,000であり、 d力 0〜5,000であり、力つ c + d力 2〜5, 000である。 )
[8] Rが水素原子を表し、 Rカ チレン基を表し、
3
c力 0〜200であり、 d力 0〜200であり、力つ c + d力 10〜200である、請求項 7に記 載のべシクル。
正に荷電しうる荷電性セグメントを有するブロック共重合体力 下記式 (ΠΙ)で表さ れるものである、請求項 1に記載のべシクル。
[化 3]
Figure imgf000031_0001
( III )
(上記式中、
R 1S - (CH ) NHまたは— CONH (CH ) — Xを表し、かつ sが 0〜20であり、
1 2 3 2 2 s
ここで、 X力 -NH、ピリジル基、モルホリル基、 1 イミダゾリル基、ピペラジ-ル基
2
、 4— (C アルキル) -ピペラジ-ル基、 4 - (ァミノ C アルキル) -ピペラジ-ル
1 -6 1 -6
基、ピロリジン 1ーィル基、 N—メチルー N フエ-ルァミノ基、ピベリジ-ル基、ジ イソプロピルアミノ基、ジメチルァミノ基、ジェチルァミノ基、―(CH ) NH、または—
2 t 2
(NR (CH ) ) NHR からなる群から選択される少なくとも一つのものであり、かつ R
9 2 o p 10
が水素原子またはメチル基を表し、 R 力 水素原子、ァセチル基、トリフルォロアセ
9 10
チル基、ベンジルォキシカルボ-ル基または tert ブトキシカルボ-ル基を表し、 o が 1〜5であり、 pが 1〜5であり、 tが 0〜15であり、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
Rが水素原子または置換されていてもよい直鎖もしくは分岐鎖の C アルキル基
4 1 - 12
を表し、
尺が—(CH ) NH—を表し、かつ gが 0〜5であり、
5 2 g
a力 0〜5,000であり、 b力 0〜5,000であり、力つ a+b力 2〜5,000であり、 e力 〜 2, 500である。 )
[10] Rが— CONH (CH ) — NHを表し、かつ sが 2〜5であり、
1 2 S 2
Rが水素原子を表し、
2
Rカ チル基を表し、
4
a力 0〜200であり、 b力 0〜200であり、力つ a+b力 10〜200であり、
e力 O〜300である、請求項 9に記載のべシクル。
[11] 正に荷電しうる荷電性セグメントを有するブロック共重合体力 下記式 (IV)で表さ れるものである、請求項 1に記載のべシクル。
[化 4]
Figure imgf000032_0001
(IV)
(上記式中、
R 1S - (CH ) NHまたは— CONH (CH ) — Xを表し、かつ sが 0〜20であり、
1 2 3 2 2 s
ここで、 Xがー NH、ピリジル基、モルホリル基、 1 イミダゾリル基、ピペラジ-ル基、
2
4— (C アルキル)―ピペラジ-ル基、 4 - (ァミノ C アルキル) -ピペラジ-ル基
1 -6 1 -6
、ピロリジン 1ーィル基、 N—メチルー N フエ-ルァミノ基、ピベリジ-ル基、ジイソ プロピルアミノ基、ジメチルァミノ基、ジェチルァミノ基、―(CH ) NH、または—(N
2 t 2
R (CH ) ) NHR からなる群から選択される少なくとも一つのものであり、ここで、 R
9 2 o p 10
が水素原子またはメチル基を表し、 R 力 水素原子、ァセチル基、トリフルォロアセ
9 10
チル基、ベンジルォキシカルボ-ル基または tert ブトキシカルボ-ル基を表し、 o が 1〜5であり、 pが 1〜5であり、 tが 0〜15であり、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
R 1S 水素原子または置換されていてもよい直鎖もしくは分岐鎖の C アルキル
6 1 - 12 基を表し、 尺が—(CH ) NH—を表し、かつ hが 0〜5であり、
7 2 h
Rが直鎖または分岐鎖の C アルキル基を表し、
8 1-12
a力 0〜5,000であり、 b力 0〜5,000であり、力つ a+b力 2〜5,000であり、 f力 〜 2, 500である。 )
Rが一(CH ) NHを表し、
1 2 3 2
Rが水素原子を表し、
2
Rカ チル基を表し、
6
Rがー CH (CH ) を表し、
8 3 2
a力 0〜200であり、 b力 0〜200であり、力つ a+b力 10〜200であり、
fが 10〜300である、請求項 11に記載のべシクル。
負に荷電しうる荷電性セグメントを有するブロック共重合体が、下記式 (V)で表され るものである、請求項 1に記載のべシクル。
[化 5]
Figure imgf000033_0001
(V)
(上記式中、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
Rがそれぞれ独立してメチレン基またはエチレン基を表し、
3
Rが水素原子または置換されていてもよい直鎖もしくは分岐鎖の C アルキル基
4 1-12
を表し、
尺が—(CH ) NH—を表し、かつ gが 0〜5であり、
5 2 g
c力 0〜5,000であり、 d力 0〜5,000であり、力つ c + d力 2〜5, 000であり、 i力 〜 2, 500である。 )
Rが水素原子を表し、 Rカ チレン基を表し、
3
Rカ チル基を表し、
4
c力 0〜200であり、 d力 0〜200であり、力つ c + d力 10〜200であり、
i力 O〜300である、請求項 13に記載のべシクル。
負に荷電しうる荷電性セグメントを有するブロック共重合体が、下記式 (VI)で表さ れるものである、請求項 1に記載のべシクル。
[化 6]
Figure imgf000034_0001
(VI)
(上記式中、
R力 水素原子、ァセチル基、トリフルォロアセチル基、アタリロイル基またはメタタリ
2
ロイル基を表し、
Rがそれぞれ独立してメチレン基またはエチレン基を表し、
3
Rが水素原子または置換されていてもよい直鎖もしくは分岐鎖の C アルキル基
6 1-12
を表し、
尺が—(CH ) NH—を表し、かつ hが 0〜5であり、
7 2 h
Rが直鎖または分岐鎖の C アルキル基を表し、
8 1-12
c力 0〜5,000であり、 d力 0〜5,000であり、力つ c + d力 2〜5, 000であり、 j力 〜 2, 500である。 )
Rが水素原子を表し、
2
Rカ チレン基を表し、
3
Rカ チル基を表し、
6
Rがー CH(CH ) を表し、
8 3 2
c力 0〜200であり、 d力 0〜200であり、力つ c + d力 10〜200であり、 jが 10〜300である、請求項 15に記載のべシクル。
[17] 前記第一のブロック共重合体が前記式 (ΠΙ)で表されるブロック共重合体であり、前 記第二のブロック共重合体が前記式 (V)で表されるブロック共重合体である、請求項 1に記載のべシクル。
[18] 前記第一のブロック共重合体が前記式 (IV)で表されるブロック共重合体であり、前 記第二のブロック共重合体が前記式 (V)で表されるブロック共重合体である、請求項 1に記載のべシクル。
[19] 前記第一のブロック共重合体が前記式 (III)で表されるブロック共重合体であり、前 記第二のブロック共重合体が前記式 (VI)で表されるブロック共重合体である、請求 項 1に記載のべシクル。
[20] 前記第一のブロック共重合体が前記式 (IV)で表されるブロック共重合体であり、前 記第二のブロック共重合体が前記式 (VI)で表されるブロック共重合体である、請求 項 1に記載のべシクル。
[21] 化合物を内包するものである、請求項 1に記載のべシクル。
PCT/JP2006/309008 2005-05-02 2006-04-28 静電結合型高分子ベシクル WO2006118260A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2007514840A JP4992090B2 (ja) 2005-05-02 2006-04-28 静電結合型高分子ベシクル
EP06745867.9A EP1878766B1 (en) 2005-05-02 2006-04-28 Electrostatic bonding type polymer vesicle
US11/919,744 US8304497B2 (en) 2005-05-02 2006-04-28 Electrostatically bonded polymer vesicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005134350 2005-05-02
JP2005-134350 2005-05-02

Publications (1)

Publication Number Publication Date
WO2006118260A1 true WO2006118260A1 (ja) 2006-11-09

Family

ID=37308054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/309008 WO2006118260A1 (ja) 2005-05-02 2006-04-28 静電結合型高分子ベシクル

Country Status (4)

Country Link
US (1) US8304497B2 (ja)
EP (1) EP1878766B1 (ja)
JP (1) JP4992090B2 (ja)
WO (1) WO2006118260A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145745A1 (ja) 2010-05-21 2011-11-24 独立行政法人科学技術振興機構 物質内包ベシクル及びその製造方法
WO2012014942A1 (ja) 2010-07-28 2012-02-02 国立大学法人東京大学 静電結合型ベシクル
WO2014133172A1 (ja) 2013-03-01 2014-09-04 独立行政法人科学技術振興機構 物質内包ベシクル及びその製造方法
WO2015104739A1 (ja) 2014-01-10 2015-07-16 Jfeスチール株式会社 極厚肉油井管用ねじ継手
US10046065B2 (en) 2013-08-06 2018-08-14 Japan Science And Technology Agency Nucleic acid-encapsulating polymer micelle complex and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2432152T3 (es) * 2008-07-29 2013-12-02 Nanocarrier Co., Ltd. Micela polimérica de tipo de direccionamiento activo que porta fármaco encerrado en ella y composición medicinal
EP2374535A1 (de) 2010-04-06 2011-10-12 Bühler AG Verfahren und Vorrichtungen zur Vesikelbildung, insbesondere unter Verwendung von Block-Coplymeren
EP2907509A4 (en) * 2012-10-12 2016-06-29 Teijin Ltd VESICLES FOR ELECTROSTATIC BINDING WITH METAL MICROPARTICLES
CN103524728B (zh) * 2013-10-12 2016-01-20 中国科学院长春应用化学研究所 聚(ε-甲基丙烯酰基-L-赖氨酸)均聚物、嵌段共聚物及功能化聚合物

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08188541A (ja) * 1995-01-10 1996-07-23 Res Dev Corp Of Japan 静電結合型高分子ミセル薬物担体とその薬剤
JP2001131271A (ja) * 1999-11-04 2001-05-15 Kazunori Kataoka ポリマーミセルの層の積層した表面およびその作成方法
JP2001208754A (ja) * 2000-01-26 2001-08-03 Kazunori Kataoka 生物学的な被検体を検出するための組成物
JP2002179556A (ja) * 1992-10-26 2002-06-26 Nippon Kayaku Co Ltd ブロック共重合体−抗癌剤複合体医薬製剤

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04175352A (ja) * 1990-11-08 1992-06-23 Sumitomo Electric Ind Ltd 難燃性樹脂組成物及びチューブ
US7056532B1 (en) * 1997-06-13 2006-06-06 Univ. Nebraska Bd. of Regents Compositions for delivery of biological agents and methods for the preparation thereof
GB9811059D0 (en) * 1998-05-23 1998-07-22 Univ Strathclyde Polyamino acid vesicles
JP4659937B2 (ja) * 1999-11-19 2011-03-30 ナノキャリア株式会社 コア−シェル構造のポリイオンコンプレックスミセル
EP1459493A1 (en) * 2001-12-11 2004-09-22 Koninklijke Philips Electronics N.V. System for transmitting additional information via a network
JP4535229B2 (ja) * 2003-05-08 2010-09-01 国立大学法人 東京大学 ポリエチレングリコール−ポリカチオンブロック共重合体
EP1663171B9 (en) * 2003-08-26 2009-08-19 SmithKline Beecham Corporation Heterofunctional copolymers of glycerol and polyethylene glycol, their conjugates and compositions
CN1882693B (zh) * 2003-09-15 2012-08-15 普洛体维生物治疗公司 聚乙二醇修饰的脂质化合物及其应用
SI1695991T1 (sl) * 2003-12-10 2010-04-30 Toudai Tlo Ltd Koordinacijski kompleks diaminocikloheksan platine (II) z blok kopolimerom, ki vsebuje segment poli(karboksilne kisline) in antitumorni agens, ki jih vsebuje
FR2873704B1 (fr) * 2004-07-30 2006-12-08 Flamel Technologies Sa Polyaminoacides fonctionnalises par des greffons hydrophobes portant une charge anionique et leurs applications notamment therapeutiques
WO2008105773A2 (en) * 2006-03-31 2008-09-04 Massachusetts Institute Of Technology System for targeted delivery of therapeutic agents

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002179556A (ja) * 1992-10-26 2002-06-26 Nippon Kayaku Co Ltd ブロック共重合体−抗癌剤複合体医薬製剤
JPH08188541A (ja) * 1995-01-10 1996-07-23 Res Dev Corp Of Japan 静電結合型高分子ミセル薬物担体とその薬剤
JP2001131271A (ja) * 1999-11-04 2001-05-15 Kazunori Kataoka ポリマーミセルの層の積層した表面およびその作成方法
JP2001208754A (ja) * 2000-01-26 2001-08-03 Kazunori Kataoka 生物学的な被検体を検出するための組成物

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011145745A1 (ja) 2010-05-21 2011-11-24 独立行政法人科学技術振興機構 物質内包ベシクル及びその製造方法
EP2626130A1 (en) 2010-05-21 2013-08-14 Japan Science And Technology Agency Substance-encapsulating vesicle and process for producing the same
US10357454B2 (en) 2010-05-21 2019-07-23 Japan Science And Technology Agency Substance-encapsulating vesicle and process for producing the same
EP3417934A1 (en) 2010-05-21 2018-12-26 Japan Science And Technology Agency Substance-encapsulating vesicle and process for producing the same
JP5843763B2 (ja) * 2010-05-21 2016-01-13 国立研究開発法人科学技術振興機構 物質内包ベシクル及びその製造方法
US9750687B2 (en) 2010-05-21 2017-09-05 Japan Science And Technology Agency Substance-encapsulating vesicle and process for producing the same
WO2012014942A1 (ja) 2010-07-28 2012-02-02 国立大学法人東京大学 静電結合型ベシクル
JP5679357B2 (ja) * 2010-07-28 2015-03-04 国立大学法人 東京大学 静電結合型ベシクル
US9051437B2 (en) 2010-07-28 2015-06-09 The University Of Tokyo Electrostatically bonded vesicle
JP6049854B2 (ja) * 2013-03-01 2016-12-27 国立研究開発法人科学技術振興機構 物質内包ベシクル及びその製造方法
EP2962752A4 (en) * 2013-03-01 2016-09-07 Japan Science & Tech Agency VESICLE CONTAINING A SUBSTANCE, AND PROCESS FOR PRODUCING THE SAME
WO2014133172A1 (ja) 2013-03-01 2014-09-04 独立行政法人科学技術振興機構 物質内包ベシクル及びその製造方法
US10046065B2 (en) 2013-08-06 2018-08-14 Japan Science And Technology Agency Nucleic acid-encapsulating polymer micelle complex and method for producing same
WO2015104739A1 (ja) 2014-01-10 2015-07-16 Jfeスチール株式会社 極厚肉油井管用ねじ継手

Also Published As

Publication number Publication date
US8304497B2 (en) 2012-11-06
EP1878766A4 (en) 2012-06-13
EP1878766A1 (en) 2008-01-16
EP1878766B1 (en) 2020-01-01
JPWO2006118260A1 (ja) 2008-12-18
US20090081458A1 (en) 2009-03-26
JP4992090B2 (ja) 2012-08-08

Similar Documents

Publication Publication Date Title
WO2006118260A1 (ja) 静電結合型高分子ベシクル
Li et al. Integrated POSS-dendrimer nanohybrid materials: current status and future perspective
US5919442A (en) Hyper comb-branched polymer conjugates
JP4535229B2 (ja) ポリエチレングリコール−ポリカチオンブロック共重合体
Samad et al. Dendrimers: a class of polymers in the nanotechnology for the delivery of active pharmaceuticals
CN103087311B (zh) 两亲性三嵌段聚合物及其制备方法和应用
Kumar et al. Side-chain amino-acid-based ph-responsive self-assembled block copolymers for drug delivery and gene transfer
Ni et al. Two-dimensional supramolecular assemblies from pH-responsive poly (ethyl glycol)-b-poly (l-glutamic acid)-b-poly (N-octylglycine) triblock copolymer
CN103665384B (zh) 新型阳离子接枝共聚物及多重复合非病毒基因载体制备方法和应用
Ray et al. Peptide-based lipid mimetics with tunable core properties via thiol–alkyne chemistry
WO1997006833A9 (en) Hyper comb-branched polymer conjugates
Kim et al. Polymeric vesicles with a hydrophobic interior formed by a thiophene-based all-conjugated amphiphilic diblock copolymer
US20120135070A1 (en) Copolymers
CN105968367B (zh) 一种两亲性聚肽共聚物、自组装体及制备方法和应用
Liu et al. Synthesis of Thermo‐and pH‐Sensitive Polyion Complex Micelles for Fluorescent Imaging
CN110746599B (zh) 具有高效基因递送能力的UV光响应性超支化聚β-氨基酯及其制备方法与应用
Namazi et al. Fabrication of triblock ABA type peptide dendrimer based on glutamic acid dimethyl ester and PEG as a potential nano drug delivery agent
Chaudhari et al. Dendrimers: novel carriers for drug delivery
CN102260376B (zh) 一种用作非病毒型基因载体的阳离子聚合物及其制备方法和用途
Boothroyd et al. Formation of mixed ionic complementary peptide fibrils
CN115417889A (zh) 一种l-4-二羟基硼苯丙氨酸-n-羧酸内酸酐单体和聚氨基酸及其制备方法和应用
JP2021020872A (ja) 複合コアセルベート、タンパク質内包複合コアセルベートの製造方法、タンパク質の濃縮方法、複合コアセルベート形成用溶液及び複合コアセルベート形成用キット
Okuno et al. Well‐Defined Anisotropic Self‐Assembly from Peptoids and Their Biomedical Applications
CN115926134B (zh) 一种阳离子聚酯及其制备方法和应用
JP4368183B2 (ja) ポリイオン会合体およびポリイオン会合体からなる生体物質キャリアー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11919744

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007514840

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006745867

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006745867

Country of ref document: EP